1L
o"ﬂ &,

g%%‘% Technische
Il &
O . !

»

Universitat
Y .
¢ Braunschweig

Bachelor’s Thesis

Incremental Construction of Modal

Implication Graphs for Feature-Model
Evolution

Author:

Rahel Arens

January 08, 2021

Advisors:

Prof. Dr.-Ing. Ina Schaefer
Michael Nieke, M.Sc.

Institute of Software Engineering and Automotive Informatics
TU Braunschweig

Prof. Dr.-Ing. Thomas Thiim

Institute of Software Engineering and Programming Languages
Ulm University

\)

1 I I
Y
.
AY
.

Institut fiir Softwaretechni

k
und Fahrzeuginformatik

N Ry,

i
it
vt

https://doi.org/10.24355/dbbs.084-202107050823-0

Arens, Rahel:
Incremental Construction of Modal Implication Graphs for Feature-Model Evolution
Bachelor’s Thesis, TU Braunschweig, 2021.

https://doi.org/10.24355/dbbs.084-202107050823-0

Abstract

Management of configurable software is often supported by using software product
lines. A feature model represents a software product line by modeling the config-
urable features in a hierarchical tree-structure. Additionally, it defines the set of
valid configurations. When constructing a configuration, a SAT solver is called mul-
tiple times after each (de-)selection of a feature to determine which features have
to be (de-)selected afterwards. For a large-scale feature model, the high number
of necessary SAT calls may take up to several hours. A modal implication graph
(MIG) describes dependencies between features to reduce the number of SAT calls
in the configuration process and, thus, the required time. However, the construction
of a MIG can take up to several hours for large feature models. Moreover, the MIG
has to be recalculated after every change in a feature model with state-of-the-art
methods which leads to high computational effort. In this thesis, we introduce a
concept to incrementally calculate a MIG by adapting it to changes in the feature
model. To this end, we calculate and use the differences in the conjunctive normal
forms (CNFs) representing the feature model versions before and after an evolu-
tion step. Based on these CNF' differences, the MIG is modified. We evaluate our
concept with regard to (1) the correctness of the incremental calculation, (2) the
advantage in the computation time when incrementally calculating, (3) the number
of SAT calls we reduced, and (4) the accuracy of the incremental calculation. Our
empirical evaluation strongly indicates high benefits of the incremental construction
regarding the number of required SAT calls and computation time. Our empirical

evaluation shows that the incremental construction saves up to 91% of computation
time and up to 86% of SAT calls.

https://doi.org/10.24355/dbbs.084-202107050823-0

https://doi.org/10.24355/dbbs.084-202107050823-0

Inhaltsangabe

Die Verwaltung von konfigurierbarer Software wird héufig durch die Verwendung von
Software-Produktlinien unterstiitzt. Ein Feature-Model reprisentiert eine Software-
Produktlinie durch Modellierung der konfigurierbaren Features in einer hierarchis-
chen Baumstruktur. Zusétzlich definiert es die Menge der giiltigen Konfigurationen.
Beim Erstellen einer Konfiguration wird ein SAT-Solver nach jeder (De-)Selektion
eines Features mehrfach aufgerufen, um zu bestimmen, welche Features danach (de-
)selektiert werden miissen. Die hohe Anzahl der notwendigen SAT-Aufrufe kann fiir
komplexe Feature-Modelle zu Laufzeiten von mehreren Stunden fithren. Ein modaler
Implikationsgraph (MIG) beschreibt Abhéngigkeiten zwischen Features, um die An-
zahl der SAT-Aufrufe im Konfigurationsprozess und damit die bené6tigte Zeit zu re-
duzieren. Allerdings kann die Konstruktion eines MIGs bei grofien Feature-Modellen
bis zu mehrere Stunden dauern. AuBerdem muss der MIG nach jeder Anderung
eines Feature-Models bei aktuellem Stand der Technik neu berechnet werden, was
zu einem hohen Rechenaufwand fiihrt. In dieser Arbeit fithren wir ein Konzept zur
inkrementellen Berechnung eines MIGs ein, indem der MIG nach einem Evolution-
sschritt angepasst wird statt neu berechnet zu werden. Zu diesem Zweck berechnen
und nutzen wir die Unterschiede in den konjunktiven Normalformen (CNFs), die
die Feature-Model Versionen vor und nach einem Evolutionsschritt repriasentieren.
Basierend auf dieser CNF-Differenz wird der MIG angepasst. Wir evaluieren unser
Konzept im Hinblick auf (1) die Korrektheit der inkrementellen Berechnung, (2)
den Vorteil in der Rechenzeit bei inkrementeller Berechnung, (3) die Anzahl der
reduzierten SAT-Aufrufe und (4) die Genauigkeit der inkrementellen Berechnung.
Unsere empirische Evaluation zeigt signifikante Vorteile der inkrementellen Kon-
struktion in Bezug auf die Anzahl der benotigten SAT-Aufrufe und die benétigte
Berechnungszeit. Unsere empirische Evaluation zeigt, dass die inkrementelle Kon-
struktion bis zu 91% der Berechnungszeit und bis zu 86% der SAT-Aufrufe einspart.

https://doi.org/10.24355/dbbs.084-202107050823-0

https://doi.org/10.24355/dbbs.084-202107050823-0

Contents

List of Figures

List of Tables

1 Introduction
2 Background
2.1 Feature Models
2.2 Feature Models and Logics
2.3 Modal Implication Graphs
3 Updating Modal Implication Graphs
3.1 Incomplete Modal Implication Graphs
3.1.1 Computing Redundant Clauses
3.1.2 Handling Added Clauses
3.1.3 Removal of Clauses in the CNF
3.2 Complete Modal Implication Graphs
4 Implementation
4.1 FeatureIDE
4.2 Integration of Incremental MIG
4.2.1 Necessary Adaptions
4.2.2 Incremental MIG
5 Evaluation
5.1 Experiment Design oo
52 Results.
5.3 Discussion
5.4 Threats to Validity
6 Related Work
7 Conclusion and Future Work
A Appendix
Bibliography
Task

https://doi.org/10.24355/dbbs.084-202107050823-0

11
11
14
15
16

21
21
22
22
23

27
27
30
45
47

49

51

53

55

59

https://doi.org/10.24355/dbbs.084-202107050823-0

List of Figures

2.1
2.2

3.1
3.2
3.3

4.1
4.2
4.3
4.4
4.5
4.6

5.1

5.2

2.3

5.4

2.9

5.6

2.7

Example of a feature diagram 4
Example of a modal implication graph 6
Order of events when updating the MIG 10
Example of a feature diagram after an evolution step 10
Example of a modal implication graph with transitive and implicit

edgeso 17
Example of a configuration, 21
Class diagram of the MIG implemented in FeatureIDE 22
Class diagram of the new MIG 22
Steps for adding aclauseo oL 23
Steps for removing a clauseo 23
Class diagram of the IncrementalMIGBuilder 24

Calculation times for all BusyBox evolution steps for an incomplete

MIG without redundant clauses. 30
Calculation times for all FinancialServicesO1 evolution steps for an
incomplete MIG without redundant clauses. 31
Calculation times for all Automotive02 evolution steps for an incom-
plete MIG without redundant clauses. 31
Calculation times for all BusyBox evolution steps for an incomplete
MIG with redundant clauses. 33
Calculation times for all FinancialServicesO1 evolution steps for an
incomplete MIG with redundant clauses. 33

Calculation times for all Automotive02 evolution steps for an incom-
plete MIG without redundant clauses. 34

Calculation times for all BusyBox evolution steps for a complete MIG
without redundant clauses. 0oL 35

https://doi.org/10.24355/dbbs.084-202107050823-0

List of Figures

5.8
5.9

5.10

5.11

5.12

0.13

5.14

0.15

5.16

5.17

5.18

5.19
5.20
0.21
5.22

Al

A2

Calculation times for all BusyBox evolution steps for a complete MIG. 36

Calculation times for all FinancialServicesO1 evolution steps for a
complete MIG. 36
Calculation times for all Automotive02 evolution steps for a complete
MIG. . . . e 37
Calculation times for all BusyBox evolution steps for a complete MIG
without affected clauses. L. 38
Calculation times for all FinancialServicesOl evolution steps for a
complete MIG without affected clauses. 38
Number of SAT calls necessary for all BusyBox evolution steps for
the calculation of redundant clauses. 39
Number of SAT calls necessary for all FinancialServicesO1 evolution
steps for the calculation of redundant clauses. 40
Number of SAT calls necessary for all Automotive02 evolution steps
for the calculation of redundant clauses. 40
Number of SAT calls necessary for all BusyBox evolution steps for
the calculation of implicit strong edges. 41
Number of SAT calls necessary for all FinancialServicesO1 evolution
steps for the calculation of implicit strong edges. 42
Number of SAT calls necessary for all Automotive02 evolution steps
for the calculation of implicit strong edges. 42
Number of found redundant clauses for all FinancialServicesO1 MIGs. 43
Number of found redundant clauses for all Automotive02 MIGs. . . . 43
Number of found implicit strong edges for all FinancialServices01 MIGs. 44

Number of found implicit strong edges for all Automotive02 MIGs. . 44

Calculation times for all FinancialServicesO1 evolution steps for a
complete MIG without redundant clauses. 53

Calculation times for all Automotive02 evolution steps for a complete
MIG without redundant clauses. 54

https://doi.org/10.24355/dbbs.084-202107050823-0

List of Tables

5.1 All FM evolution steps for the Automotive02 FM versions. 28
5.2 All FM evolution steps for the FinancialServicesO1 FM versions. . . . 28

5.3 Calculation times for each step for the incomplete MIG without re-
dundant clauses in the evolution step from Automotive02_V2 to Au-
tomotive02_V3. 32

5.4 Calculation times for each step for the incomplete MIG with redun-
dant clauses in the evolution step from Automotive02_V2 to Auto-
motive02_V3. 35

5.5 Calculation times for each step for the complete MIG in the evolution

step from Automotive02_V3 to Automotive02_-V4. 37

A.1 Calculation times for each step for the complete MIG without redun-
dant clauses in the evolution step from Automotive02_02 to Automo-
tive02_03. e 54

https://doi.org/10.24355/dbbs.084-202107050823-0

x11

List of Tables

https://doi.org/10.24355/dbbs.084-202107050823-0

1. Introduction

Managing configurable software systems is a complex task as they may contain a high
number of features with a much higher number of different variants [BSRC10, TF'10,
KTS*18, STS20, KZK10]. To support the development of configurable systems a
product line (PL) can be defined to manage the features and facilitate reusability of
their functionalities. With a feature model (FM), the different features of a PL and
the dependencies between the features can be organized [BSRC10, SSK*20, Bat05,
CHE05, CWO07]. The FM represents the features in a hierarchical tree structure
with cross-tree constraints for the dependencies that cannot be expressed by the
tree [BSRC10, KTST18]. A configuration is a combination of selected features for
a product. We call a configuration valid if its selected feature do not violate any
of the constraints that are imposed by the feature model and a FM valid if there
is at least one valid configuration for the FM [BSRC10, KTS"18]. To analyze an
FM, e.g. to verify whether it is valid, it is typically translated into a conjunctive
normal form (CNF) which can be verified by a SAT solver [Bat05, BSRC10]. A
SAT solver is a tool to check whether a given boolean formula is satisfiable. Using
a SAT solver, we can also verify the validity of a given configuration [KTST18].
When constructing a configuration, it is important to keep the user informed what
features are left to be selected or have to be selected now. To this end, a SAT solver
needs to be called several times after each selection or deselection of a feature. Using
the unfinished configuration, the SAT solver can be used to determine the remaining
possible selections. That process is called decision propagation [KTS*18]. For large-
scale FMs, decision propagation requires high numbers of SAT calls, each potentially
taking up to several hours [KTS"18].

A Modal Implication Graph (MIG) is a directed graph that was introduced to reduce
the number of SAT calls necessary for the decision propagation. A MIG describes
the dependencies between variables of a propositional formula [KTST18]. Instead
of calling a SAT solver several times after a (de-) selection of a feature, we can
use a MIG to support the decision propagation regarding the computation time.
Each node in a MIG represents a selected or deselected feature. The nodes can be
connected by edges. We distinguish between the construction of a MIG and the
usage of the MIG afterwards. A MIG is calculated once after the construction of a

https://doi.org/10.24355/dbbs.084-202107050823-0

2 1. Introduction

FM. Calculating a MIG from scratch requires a lot of time [KTS*18]. But since this
step is done without any user interaction and improves the user experience in the
configuration construction, the MIG brings an added value. After the construction
it can be used until the respective FM is changed. In this case, the MIG is no longer
valid, even when the changes in the FM are small and the main part of the MIG
still is valid. Recalculating the MIG can take up to several hours, depending on the
size of the FM.

To improve the usage of MIGs in the case of FM evolution, we introduce a method
to adapt an existing MIG after changes in a FM. This way, we aim to accelerate the
construction of the MIG regarding the necessary calculation time when calculating
it from scratch. Our main focus is to reduce the number of required SAT calls when
constructing the MIG. For the construction of a MIG, the FM’s CNF is used as
basis of the calculation. We also use the CNF for the incremental construction but
we use the changes in the CNFs of the old and the new FM as basis. The from
scratch calculated MIG is improved by multiple steps to make the MIG smaller on
the one hand and more efficient on the other hand. It is possible to skip some of the
additional steps and still have a resulting MIG that is correct. In this case we call
the MIG incomplete. Otherwise, we call the MIG complete. For the incremental
construction of a MIG, we also distinguish between an incomplete and a complete
MIG.

In summary, we provide concepts and algorithms for the following steps to incre-
mentally compute MIGs:

1. Compute differences between two FM versions in terms of differences of their
respective CNFs

2. Incrementally compute incomplete MIGs

3. Incrementally compute complete MIGs

We implement the algorithms as addition to the already existing calculation of a
MIG in the feature modeling toolsuite FeatureIDE [TKB*14]. We empirically eval-
uate the incremental adaption with different feature models that have a different
number of changes, features, and constraints. To this end, we measure the calcula-
tion times and the number of SAT calls needed for the calculation from scratch and
the incremental construction. Additionally, we investigate the difference between
the two resulting MIGs and the trade-offs between runtime and accuracy of the in-
cremental construction. Our evaluation shows saving of up to 91% of computation
time and up to 86% of SAT calls while keeping a high degree of accuracy.

We provide the basics that are necessary to understand the rest of the thesis in
Chapter 2. Afterwards, we introduce multiple new algorithms for the incremental
construction in Chapter 3. In Chapter 4, we explain the implementation of our
algorithms in FeatureIDE, the additional challenges we had to cope with to imple-
ment the incremental construction, and the adaptions that were necessary in the
existing MIG for the incrementally constructed MIG. In Chapter 5 we present the
results of our empirical evaluation. We discuss related work in Chapter 6. Finally,
in Chapter 7, we provide a conclusion and discuss future work on the incremental
construction.

https://doi.org/10.24355/dbbs.084-202107050823-0

2. Background

In this chapter, we give an overview of the knowledge and techniques that are the
basis of this thesis. To this end, we explain feature models and their semantics, the
analysis of feature models using propositional logic with an emphasis on CNFs and
SAT solvers, and the concept of a modal implication graph.

2.1 Feature Models

A software product line (SPL) manages the different functionalities of a variable
software system. A software product line contains variable artifacts that support
reusing code of features in different products. A variable software system typically
consists of multiple distinct fragments called features which can be composed to
derive a variety of products. Constructing multiple products without a product line
leads to repeated implementations. A feature model (FM) can be used to describe
a software product line on an abstract level [Bat05, CHE05, CWO07]. It contains all
features of the SPL and defines all valid combinations of features. For a graphical
representation of a FM, a feature diagram visualizes the features and the relation-
ships among them. In a feature diagram, the features are displayed hierarchically
in a tree structure. If a selection of a feature always leads to the selection of a child
features, we call this child feature mandatory. Otherwise, we call it optional. De-
pendencies that cannot be represented by the tree structure are typically displayed
separately as propositional constraints (i.e., cross-tree constraints).

Figure 2.1 shows an example of a feature diagram for an election registration soft-
ware. The FM contains two mandatory features: Way of voting and ldentification.
When selecting the way of voting, the features below are part of an alternative group.
This means, the voter can choose either voting in person or by post. When choosing
how to identify, the features below are part of an or group. That means, the voter
can identify either by using an online service, at a polling station, or both. Optionally,
the voter can specify the city he is from.

A combination of features that can be used to derive a product is called a configura-
tion [BSRC10]. We call a configuration valid if the chosen combination of features

https://doi.org/10.24355/dbbs.084-202107050823-0

4 2. Background

Election Legend:

¢ Mandatory

Cit Way of voti Identificati J Optional
i ay of votin entification
Y y 9 /‘\ Or Group

/<f>\ /O\ /‘\ A Alternative Group

Abstract Feature
Duckburg Mouseton Springfield | In person | | By post | | Online | At a polling station
Concrete Feature

Figure 2.1: Example of a feature diagram

does not violate any constraint imposed by the FM (e.g., Election, Way of voting, In
person, Identification, Online). If there exists no valid configuration for a FM, we call
the FM wvoid. We refer to features that have to be selected for a valid configuration
as core. In our example, the features Election, Way of voting, and ldentification are
core features. As a FM grows, different constraints may lead to features that have to
be deselected in each valid configuration [KZK10, STS20]. We refer to these features
as dead. In the following, we explain how to verify the validity of a configuration
with regards to FM constraints.

2.2 Feature Models and Logics

A conjunctive normal form CNF = {L,C} is a propositional formula that consists
of a set of literals L = (I1, -y, .., 1;, —l;) and a set of clauses C' = (cq, .., ¢,). A literal
corresponds to a single variable and can either be positive or negative. A single
clause represents a dependency between literals, where the literals within the clause
are connected with a logical or (i.e., ¢; = {l;,...,0ln} = [; V.. V1,,,). The clauses
contained in the CNF are connected with a logical and (i.e., ¢; A .. A¢,). We call a
specific selection and deselection of features an assignment (e.g., l3 A l; A —lg). An
assignment satisfies a CNF if it does not violate any of the clauses of the CNF. A
CNF is satisfiable if there is a valid assignment for the CNF. If the CNF represents
a FM, the literals describe either a selected or a deselected feature. We translate
a FM into a CNF to check if the FM is not void (i.e., if the CNF is satisfiable).
Every existing FM can be translated into a CNF [Bat05]. The corresponding CNF
for Figure 2.1 is the following:

CNF :({Election, City, Way of voting, Identification, Duckburg, Mouseton,
Springfield, In person, By post, Online, At a polling station}, { {Election},
{Way of voting}, {Identification}, { Duckburg, Mouseton, Springfield},
{=Duckburg, —~Mouseton},{—Springfield, —Mouseton},

{=Duckburg, =Springfield}, { City, ~Mouseton}, { City, =Duckburg},

{City, = Springfield}, {—City, Mouseton, Springfield, Duckburg},

{=In person, =By post}, {In person, By post}, { Online, At a polling station} })

We can see three kinds of clauses in the CNF: (1) clauses with one feature, called unit
clauses, (2) clauses with two features that have a binary relation, and (3) clauses
with three features. A unit clause, e.g. {FElection}, indicates that the contained

https://doi.org/10.24355/dbbs.084-202107050823-0

2.3. Modal Implication Graphs 53

feature has to be selected for a valid configuration. Having a negated feature in a
unit clause means that it has to be deselected. A clause with two features means
that at least one of these features has to be selected or, if negated, deselected. For
example, the clause {—In person, =By post} means that when selecting In person,
By post has to be deselected. In combination with the clause {In person, By post}
it expresses that either In person or By post has to be selected but not both.

To check whether a specific feature is core or dead, we add the corresponding literal
(i.e., a positive literal for core and a negative literal for dead) as a unit clause to
the CNF. Afterwards, we check if the resulting CNF is still satisfiable. If it is not,
the corresponding feature is dead if the literal in the unit clause is positive and
core otherwise. In the following, we explain the usage of SAT solvers to verify the
satisfiability of a CNF.

A SAT solver is a tool that checks whether a boolean formula is satisfiable [Jan08].
We can use a SAT solver to verify if a CNF induces any satisfying assignments. To
this end, the SAT solver gets a CNF as input and returns true if there exists an as-
signment for the CNF. If not, it returns false. We can check if a FM is valid by giving
the FM’s CNF as input to a SAT solver. Additionally, a SAT solver can verify the
validity of a given configuration. When selecting a feature, we add the corresponding
literal as unit clause to the CNF of the FM and when deselecting a feature, we add
the corresponding negated literal as a unit clause to the CNF. Then, we verify with
a SAT solver if the resulting CNF is still satisfiable. A SAT solver can also be used
to check whether any other feature has to be selected or deselected after selecting or
deselecting a specific feature. For example, when selecting the feature Duckburg we
can add the unit clauses { Duckburg} and { Mouseton} to the SAT solver. The SAT
solver would return false and, thus, we know that after selecting Duckburg, Mouseton
can not be selected anymore. When a user constructs a configuration, we can keep
him informed after each selection or deselection of a feature which features have to
be selected or deselected now. This is called decision propagation. For large-scale
feature models, the high number of SAT calls necessary to provide decision propaga-
tion cost several minutes for each decision in the configuration process [KTS18]. In
the following, we explain modal implication graphs that were introduced to reduce
the number of SAT calls necessary for decision propagation [Kril5].

2.3 Modal Implication Graphs

A modal implication graph (MIG) is a directed graph G = (L, E) with a set of literals
L as nodes and a set of edges E consisting of weak and strong edges [KTST18, Kril5].
A MIG represents the dependencies between features of a FM. Figure 2.2 shows the
corresponding MIG for the FM example in Figure 2.1. A strong edge represents a
binary relation between two literals and is displayed in the graph by a black triangle
arrow —». Let f be a feature, [a positive literal corresponding to f, and [y —» [,
and [y —» —lj, be strong edges to literals corresponding to the features g and h. If f
has been selected, g has to be selected too. Additionally, h has to be deselected. For
instance, when selecting the feature Springfield, the strong edges going away from
the corresponding literal show that Mouseton and Duckburg have to be deselected
now because strong edges go from Springfield to —Mouseton and to —=Duckburg. A

https://doi.org/10.24355/dbbs.084-202107050823-0

6 2. Background

weak edge represents a connection between two literals that are part of an n-ary
clause with at least three literals. In the MIG, a weak edge is displayed by a white
triangle arrow —{>. For example, when deselecting the feature Duckburg, the MIG
shows that either Mouseton or Springfield have to be selected now.

/ Mouseton
/.Y

By post \ By post
1 —» ~Duckburg ~Springfield [« A
\ 4
\
I City
/ |—\ v
! Springfield Duckburg y
In person \ / =In person
“Mouseton
1
'
- -City <t
Online - —At a polling
station
—Onli At a polling
Onfine station

Figure 2.2: Example of a modal implication graph

The literature distinguishes between incomplete and complete MIGs. The construc-
tion of an incomplete MIG includes three steps.

1. The first step is to collect all clauses that have to be added to the MIG.
That includes finding core and dead features and removing clauses from that
CNF that are either redundant (i.e., their logic is already defined by a set
of other clauses) or a tautology (i.e., the clause is satisfied for every possible
assignment). For redundant clauses, consider the following example. We have
a CNF = { {4, B}, {A, B, C}}. The clause {A, B, C} is a redundant
clause, because the clause {A, B} already defines that either A or B have to
be selected. For a tautology, consider the clause {A, = A, B}. This clause is
satisfied if A is either selected or deselected and, thus, always satisfied.

2. The second step is to add all of these clauses to the MIG. For each variable
appearing in the CNF, we add two vertices corresponding to the positive and
negative literals to the MIG. For core and dead features, we add no edge to
the MIG but save the information for the corresponding literals. We do so,
because the MIG displays the connection between features and to be core or
dead is an attribute of a feature itself. Strong edges are added for clauses
with two literals, e.g., for the clause {—Duckburg, —Mouseton} in the CNF
representing our running example, we add a strong edge from Duckburg to
—Mouseton and a strong edge from Mouseton to —=Duckburg. For clauses with

https://doi.org/10.24355/dbbs.084-202107050823-0

2.3. Modal Implication Graphs 7

three or more literals, we add two weak edges for each pair of variables. For
example, for the clause { Duckburg, Mouseton, Springfield} we add a weak edge
from —Duckburg to Mouseton and from —Mouseton to Duckburg. We add weak
edges analogously for the other pairs.

3. Afterwards, transitive strong edges are calculated. For our example MIG in
Figure 2.2, consider an additional strong edge from —Duckburg to Mouseton.
Since the MIG also contains a strong edge from Springfield to —~Duckburg, se-
lecting Springfield always requires to select Mouseton. Thus, we add a transitive
strong edge from Springfield to Mouseton.

Transforming an incomplete MIG to a complete MIG takes two additional steps.

1. The first one is finding transitive weak edges and adding them to the MIG.
This works similar to the way that transitive strong edges were detected in
the construction of the incomplete MIG.

2. The second step is detecting implicit strong edges. These edges are weak
edges that can be transformed to strong edges. The reason for the possible
transition can be caused due to other constraints and edges. Consider the
following example. We have the clauses {4, B, C} and {—A}. The weak edges
from =B to C and from —~C' to B are implicit strong edges, since A can never
be selected and, thus, either B or C' has to be selected.

A MIG represents a lot of information about the dependencies among features which
simplifies the construction of a valid configuration. When using a MIG for decision
propagation, several SAT calls can be saved as the MIG provides knowledge about
the consequences that result from the selection or deselection of features.

https://doi.org/10.24355/dbbs.084-202107050823-0

2. Background

https://doi.org/10.24355/dbbs.084-202107050823-0

3. Updating Modal Implication
Graphs

During the evolution of a variable system, the corresponding FM typically changes
as well. After a new change to the FM, the MIG has to be adapted to the changes.
Algorithms considered in the literature require a construction of the corresponding
MIG from scratch. Building a new MIG for each new FM version typically costs a lot
of computation time [KTST18]. We introduce a method to adapt an existing MIG
to changes in the FM. The goal of incrementally constructing a MIG is to reduce
the time required for the MIG calculation after evolution steps. When constructing
a MIG, the main computational effort lies in invocations of SAT solvers. Therefore,
our main focus lies on reducing the required SAT queries with the incremental
construction.

In this chapter, we highlight challenges that we identified for incrementally creating
a MIG. We explain the concepts of our method including algorithms to solve the
aforementioned challenges. When building a MIG for an FM, the FM is translated
into a CNF. Subsequently, the clauses of the CNF are used to build the MIG (cf.
Section 2.3). Instead of using the FM for incremental construction, we use the
changes in the CNF. As Figure 3.1 shows, we identified calculating the difference
between the CNF's before and after FM evolution as the first step. Calculating the
incomplete MIG is the first step when constructing a MIG. Afterwards, a complete
MIG is built with the incomplete MIG as its base. To introduce our method, we
differentiate between incomplete and complete MIGs as introduced in Section 2.3.

To demonstrate the CNF difference resulting from changes to its FM, consider the
feature diagram from Figure 2.1 and add the cross-tree constraint By post = Duck-
burg V Mouseton (cf. Figure 3.2). Introducing the constraint adds the clause {—By
post, Duckburg, Mouseton} to the CNF. Thus, when calculating the CNF difference,
we detect exactly this clause as a newly added clause.

The method calculateCnfDiff (cf. Algorithm 1) shows how we calculate the dif-
ference between the CNF representing the old FM and the CNF representing the

https://doi.org/10.24355/dbbs.084-202107050823-0

10 3. Updating Modal Implication Graphs

calculate CNF

. ~—®
difference
rTmOVEd handile previously remove clauses
clauses
redundant from the MIG
clauses
update core/dead N
features
ha;dlz netwly add clauses to the
added | '€CUNMAN MIG
clauses | clauses
® calculate implicit update transitive
strong edges edges

Figure 3.1: Order of events when updating the MIG

Election Legend:

4 Mandatory

Cit Wi f voti Identificati t !
ay or votin: entirication
e y ol voling /A\ Or Group

/<F\ /G\ /‘\ /A Alternative Group

Abstract Feature
Duckburg Mouseton Springfield | | In person | By post | Online | | At a polling station
Concrete Feature

"By post" = "Duckburg " v "Mouseton "

Figure 3.2: Example of a feature diagram after an evolution step

changed FM. We differentiate between removed and added clauses. For instance,
adding a new constraint in the FM may result in an additional literal in an already
existing clause. We define the difference of two CNF's as the sets of removed and
added clauses. To retrieve the removed clauses, we remove all clauses of the new
CNF from the old CNF in lines 2 and 3. For the added clauses, we remove all clauses
from the new CNF that are in the old CNF in lines 4 and 5.

The next step, as shown in Figure 3.1, is calculating dead and core features, as
they might have changed because of the changes in the FM. To not detect these
changes would lead to a wrong MIG. Additionally, knowing which features are dead
and core simplifies detecting redundant clauses. Changes to the CNF may have an
impact on the redundancy of clauses. Removing a clause may affect other clauses
to lose their redundancy. Adding a clause may make other clauses redundant that
were not redundant before. We discuss the details of handling redundant clauses
when incrementally constructing a MIG in Section 3.1.1. Afterwards, we remove
and add the clauses that we detected by calculating the CNF difference. Finally,

https://doi.org/10.24355/dbbs.084-202107050823-0

3.1. Incomplete Modal Implication Graphs 11

Algorithm 1 Algorithm to calculate the difference between two CNF's
1: function CALCULATECNFDIFF(cnfBeforeChanges, cnfAfterChanges)
2: removed <— cnfBeforeChanges.getAl1Clauses ()
3 removed < removed.removeAll(cnfAfterChanges.getClauses())
4: added < cnfAfterChanges.getAl1Clauses ()
5 added < added.removeAll(cnfBeforeChanges.getClauses())
return (removed, added)

we update transitive edges in the MIG. For the incomplete MIG, we only update
strong transitive edges. To this end, we find literals without a strong edge that are
connected over at least two strong edges. For the complete MIG, we update weak
transitive edges (i.e. literals that are not connected that have a relation over at
least two other edges including at least one weak edge) and calculate implicit strong
edges (i.e., weak edges that can be updated to strong edges due to the impact of
other clauses).

3.1 Incomplete Modal Implication Graphs

Our first goal is to build the incomplete MIG. Consequently, we use the incomplete
MIG representing the old FM as the base for our incremental construction. As we
consider the difference of the CNFs as deleting and adding clauses, we only need to
inspect the impact of these two types of changes. First, we calculate the impact of
these clauses on the core and dead status of features. Second, we check the impact
on the redundancy of other clauses. Third, we remove and add the clauses to the
MIG and add transitive strong edges. We coordinate all of the aforementioned steps
in adaptMIG (cf. Algorithm 2). As we can see in line 2, we call calculateCnfDiff
(cf. Algorithm 1) to calculate the CNF difference as described above. Then, we
call updateDeadAndCoreFeatures in line 4 where we call a SAT solver to check
whether a feature is dead or core, as explained in Section 2.2. Afterwards, we start
to calculate the impact on redundant clauses.

3.1.1 Computing Redundant Clauses

Clauses that were redundant in the former CNF were not considered for the gen-
eration of the MIG. Thus, we do not need to compute the effect of removing the
respective clauses from the MIG after evolution. For that reason, we remove them
from the set of removed clauses in line 5 of adaptMig (cf. Algorithm 2).

However, clauses that are not redundant potentially have an impact on the redun-
dancy of other clauses. The removal of a clause may cause other clauses to lose their
redundancy status. Thus, we need to inspect for all clauses that were redundant if
they are still redundant after removing clauses. To reduce the number of required
SAT calls, we call handlePreviouslyRedundant (cf. Algorithm 3) in line 8 only if
any clauses were removed. HandlePreviouslyRedundant determines whether a re-
dundant clauses was a logical consequence of a set of clauses C' that includes at least
one of the removed clauses but not a logical consequence of a set of clauses without
one of the removed clauses. For a clause to be a logical consequence, every satisfying

https://doi.org/10.24355/dbbs.084-202107050823-0

12 3. Updating Modal Implication Graphs

Algorithm 2 Algorithm to adapt the MIG to the changes
1: function ADAPTMIG (cnfBeforeChanges, cnfAfterChanges, migBeforeChanges)
2: (removed, added) < calculateCnfDiff(cnfBeforeChanges,

enfAfterChanges)

migAfterChanges <— migBefore Changes

migAfterChanges < updateDeadAndCoreFeatures(cnfAfterChanges)

redundantClauses <— migBeforeChanges.getRedundantClauses ()

removed < removed.removeAll(redundantClauses)

if !removed.isEmpty () then

migAfterChanges.handlePreviouslyRedundant(redundantClauses)

for each clause € removed do
10: migAfterChanges.removeClause(clause)

11: notRedundantClauses <— cnfAfterChanges.removeAll(redundantClauses)
12: affectedClauses «— getAl1AffectedClauses(added, notRedundantClauses)
13: migAfterChanges.handleNewlyRedundant (affected Clauses)

14: for each clause € added do

15: if clause.size() < 3V lisRedundant(clause) then

16: migAfterChanges <— migAfterChanges.addClause(clause)
17: else

18: redundantClauses.add(clause)

19: migAfterChanges < dfsStrong(migAfterChanges)
return migAfterChanges

assignment of C' has to be a satisfying assignment of the clause. To determine if that
is the case, we call a SAT solver in line 3 of handlePreviouslyRedundant for every
clause. If a clause is not redundant anymore, we call addClause (cf. Algorithm 7)
in line 4 to add the clause to the MIG. Additionally, we remove it from the set of
redundant clauses in line 5.

Algorithm 3 Algorithm to handle previously redundant clauses
1. function HANDLEPREVIOUSLYREDUNDANT(clauses)

2: for each clause € clauses do

3 if lisRedundant(clause) then

4: mig.addClause(clause)

5 redundantClauses.remove(clause)

Analogously to removing clauses, adding clauses may result in other clauses to be-
come redundant. A clause might be a logical consequence of a set of clauses that
includes one of the added clauses. In lines 11 to 13 of adaptMig (cf. Algorithm 2),
we deal with the effect of added clauses to the redundancy of others. We call getAl-
1AffectedClauses (cf. Algorithm 5) in line 12 to figure out which clauses might be
affected in their redundancy status by the added clauses. To only consider clauses
that contain a literal that is also contained in the added clause does not cover every
possible impact. Consider the following clauses: {4, B, D} and {-X, A, B}. Now
we add the unit clause {X }. Since X is core in consequence of the unit clause, the

https://doi.org/10.24355/dbbs.084-202107050823-0

3.1. Incomplete Modal Implication Graphs 13

clause {—X, A, B} can now be expressed as {A, B}. Thus, either A or B has to be
selected and {A, B, D} is redundant.

We differentiate three cases for the incremental computation of redundant clauses
in this thesis:

1. ignore the redundant clauses,
2. search for clauses that have overlapping literals with the removed clauses,

3. or recursively find all clauses that share at least one literal as a clause that
contains a literal from the removed clause and so on.

We do so, because the third case, which is the most precise one with regards to the
already existing algorithm of the MIG calculated from scratch, costs a lot of compu-
tation effort. Using this differentiation we aim to investigate the trade-off between
accuracy and computational effort. The second case is an approximation where
we inspect the impact of the incremental adaption. We introduce two algorithms:
getThroughLiteralsAffectedClauses (cf. Algorithm 4) for the second case and
getAllAffectedClauses (cf. Algorithm 5) as the algorithm for the third case. The
difference between these two algorithms is the recursive search from lines 7 to 8 in
getAllAffectedClauses. We investigate the impact further in Chapter 5.

Algorithm 4 Algorithm to get all clauses that are affected by a same literal by the
given set of clauses in the given set of clauses
1: function GETTHROUGHLITERALSAFFECTEDCLAUSES(startClauses, possi-
bly AffectedClauses)
for each startClause € startClauses do
for each clause € possiblyAffectedClauses do
if startClause.containsAny(clause.getVariables()) then
affectedClauses.add(clause)

possiblyAffectedClauses.remove(clause)
return affectedClauses

Algorithm 5 Algorithm to get all clauses that are affected by the given set of clauses
in the given set of clauses
1: function GETALLAFFECTEDCLAUSES(startClauses, possiblyAffectedClauses)
2: for each startClause € startClauses do
for each clause € possiblyAffectedClauses do
if startClause.containsAny(clause.getVariables()) then
affectedClauses.add(clause)
possiblyAffectedClauses.remove(clause)

if laffectedClauses.isEmpty () then

affectedClauses.add(getAl1AffectedClauses(affectedClauses,
possiblyAffectedClauses))

return affectedClauses

https://doi.org/10.24355/dbbs.084-202107050823-0

14 3. Updating Modal Implication Graphs

Both algorithm return clauses that may be affected by one of the added clauses but
we do not know if they end up being redundant. To determine that, handleNew-
lyRedundant (cf. Algorithm 6) calculates with a SAT solver for all the possibly
affected clauses whether they are redundant after the evolution. In that case, the
algorithm removes them from the MIG in line 4 and adds them to the set of re-
dundant clauses in line 5. Once the impact of the added and removed clauses is
processed, we still have to add and remove them from the MIG.

Algorithm 6 Algorithm to handle newly redundant clauses
1: function HANDLENEWLYREDUNDANT(clauses)
2: for each clause € clauses do
if clause.size() > 2 A isRedundant(clause) then
mig.removeClause(clause)
redundantClauses.add(clause)

3.1.2 Handling Added Clauses

In line 18 of adaptMig (cf. Algorithm 2) we add the clauses that are new in the CNF
either to the MIG or, if they are redundant, to the set of redundant clauses. When
adding a clause to the MIG, we call addClause (cf. Algorithm 7). To compute
the incremental changes of a MIG for an added clause in the CNF, we distinguish
between three cases for a different number of literals in the clause, as the algorithm
shows. The three cases are:

1. clauses with one literal(i.e., a unit clause),
2. clauses with two literals,

3. and clauses with three or more literals.

We differentiate between these cases because the changes in the MIG depend on the
size of the clause. In the following, we discuss the details of the difference.

When we have a clause with one literal, the vertex of the literal needs to be set to
dead if the literal is negative and set to core if the literal is positive. A unit clause
with a negative literal indicates that the belonging feature cannot be selected in any
valid configuration and, thus, is a dead feature. A unit clause with a positive literal
indicates that the belonging feature has to be selected in every valid configuration.
Accordingly, the feature is core and we express that by setting the vertex of the
literal to core. Since we calculate all dead and core feature in adaptMig, we do
not need to inspect the impact of a unit clause at this point. Apart from that, a
clause with one literal has no impact on the MIG, because the MIG displays the
dependencies between the literals. Hence, no edges are added to the MIG for a unit
clause.

The second case deals with clauses with exactly two literals. Clauses with two literals
imply that at least one of the literals needs to be selected for a valid configuration.
Hence, it leads to a direct implication between these literals. When one of them is

https://doi.org/10.24355/dbbs.084-202107050823-0

3.1. Incomplete Modal Implication Graphs 15

deselected for a configuration, the other literal needs to be selected. For example,
changing the or group for the children of ldentification to an alternative group in Fig-
ure 2.1 would result in the new clause {—~Online, = At a polling station}. The clause
can be transformed into the logical expression (- Online V —At a polling station) =
(Online = —At a polling station) = (At a polling station = —Online). In this ex-
ample, we would add a strong edge from Online to — At a polling station and from
At a polling station to — Online. Thus, two strong edges are added to the MIG. The
process is displayed in lines 4 to 10 of addClause.

The third case addresses clauses with three or more literals. We deal with that
case in lines 12 to 16 of addClause. Those clauses express, that at least one of the
contained literals has to be selected for a valid configuration. Consider our example
from Figure 3.2 which leads to the addition of the clause {—By post, Duckburg,
Mouseton}. The clause results in the logical expression (—By post V Duckburg V
Mouseton) = (By post = Duckburg V Mouseton) = (—~Duckburg = —By post V
Mouseton) = (-Mouseton = —By post V Duckburg). More precisely, deselecting
one of the literals implies that at least one of the remaining literals needs to be
selected. When adding such a clause, we add weak edges to the MIG. For example,
for (By post = Duckburg\V Mouseton) we add weak edges from By post to Duckburg
and from By post to Mouseton. The number of weak edges depends on the number
of literals in the clause. Let |L| be the number of literals contained in the clause.
Then, we have |L|-(|L| —1) new weak edges in the MIG, what would be six new weak
edges for the example. Analogously to the addition of a clause works the removal of
a clause.

Algorithm 7 Algorithm for adding a clause to a MIG
1: function ADDCLAUSE(clause, mig)

2: literals < clause.getAl1Literals()

3: if clause.size() == 1 then return

4: else if clause.size() == 2 then

5: firstLiteral <— literals.getFirstLiteral ()

6: secondLiteral < literals.getSecondLiteral ()

7 literal Vertex1 <— mig.getVertex(firstLiteral)

8: literal Vertex2 < mig.getVertex(secondLiteral)

9: mig <— mig.addStrongEdge(-literal Vertez1, literal Vertex?2)
10: mig < mig.addStrongEdge(-literal Vertez2, literalVertez1)
11: else
12: for each premise € literals do
13: for each literal € literals \ {premise} do
14: premise Vertex < mig.getVertex(premise)

15: literal Vertex <— mig.getVertex(literal)
16: mig <— mig.addWeakEdge(-premise Vertez, literal Vertez)

return mig

3.1.3 Removal of Clauses in the CNF

All clauses that are contained in the set of removed clauses in adaptMig (cf. Al-
gorithm 2) get removed from the MIG in lines 9 and 10 of the algorithm. To this

https://doi.org/10.24355/dbbs.084-202107050823-0

16 3. Updating Modal Implication Graphs

end, we call removeClause (cf. Algorithm 8). Similar to the addition of a clause
explained in Section 3.1.2, we also differentiate between the cases of one, two, and
more than two literals in the clause.

Since clauses with one literal have no effect on the MIG and were not displayed in
the MIG in the first place, we do not need to remove them.

After removing a clause with two literals, the direct implication between them does
not exist anymore. Thus, the two corresponding strong edges are removed from the
MIG in lines 4 to 10. For example, removing the clause {—In person, =By post}
leads to the removal of the strong edges from In person to =By post and from By
post to —In person.

When removing a clause with three or more literals, the corresponding weak edges
are removed from the MIG in lines 11 to 16. For instance, removing the constraint
By post = Duckburg VV Mouseton results in removing the clause { =By post, Duckburg,
Mouseton}. To this end, weak edges are removed from By post to Duckburg and to
Mouseton, from —Duckburg to =By post and to Mouseton, and from —Mouseton to
=By post and to Duckburg.

Algorithm 8 Algorithm for removing a CNF Clause from a MIG
1: function REMOVECLAUSE(clause, mig)

2: literals < clause.getAl1lLiterals ()

3: if clause.size() == 1 then return

4: else if clause.size() == 2 then

5: firstLiteral < literals.getFirstLiteral ()

6: secondLiteral < literals.getSecondLiteral ()

7 literal Vertex1 < mig.getVertex(firstLiteral)

8: literal Vertex2 < mig.getVertex(secondLiteral)

9: mig <— mig.removeStrongEdge(-literal Vertex1, literal Vertex2)
10: mig <— mig.removeStrongEdge(-literal Vertez2, literalVertex1)
11: else
12: for each premise € literals do
13: for each literal € literals \ {premise} do
14: premise Vertex < mig.getVertex(premise)

15: literal Vertex <— mig.getVertex(literal)
16: mig < mig.removeWeakEdge(-premise Vertex, literal Vertex)

return mig

Now, we reached the end of Algorithm 2 and the only step left is dfsStrong. Here,
we find all transitive strong edges in the MIG with a depth first search that we
adapted from the MIG calculated from scratch. Then, we went through all steps
necessary for the incremental construction of an incomplete MIG.

3.2 Complete Modal Implication Graphs

Extending an incomplete MIG to a complete MIG means that the graph includes
all possible strong edges. Building a complete graph includes two additional steps.
First, we have to find transitive weak edges. Second, we add implicit strong edges.

https://doi.org/10.24355/dbbs.084-202107050823-0

3.2. Complete Modal Implication Graphs 17

An implicit strong edge is a weak edge that can be transformed into a strong edge
due to other constraints. Since all weak edges could end up being implicit strong
edges, we have to consider the transitive weak edges as well. Therefore, we store the
transitive weak edges but do not add them to the MIG.

For a better understanding, we consider the evolution step in the feature diagram
from Figure 3.2 where we added the constraint By post = Duckburg VV Mouseton.
For better readability, Figure 3.3 shows the MIG only with the additional edges
that we need for this explanation. Every other new edge is ignored in this graph-
ical representation. Due to the new constraint, we have to add a weak edge from
=Duckburg to =By post. As we can see by the blue arrows, we have a connection
from Springfield to In person over —Duckburg and —By post that includes one weak
edge. Thus, there is a transitive weak edge from Springfield to In person which we
have to store.

$ Mouseton
“By post 1 \ By post

L —»{ —Duckburg =Springfield |« 4
4
| S |
y Springfield Duckburg Y

In person \ /v aln person
“Mouseton

> —City <t

Online < -Ata p_)olllng
station

=Online » Ata pglllng
station

Figure 3.3: Example of a modal implication graph with transitive and implicit edges

The transitive weak edge from Springfield to In person is an implicit strong edge
(visualized by the orange edge in Figure 3.3). This is due to the following constraints:

1. Exactly one of By post or In person has to be selected (because of the alternative
group which leads to the clauses {In person, By post} and {—In person, - By

post}).

2. Only one of Springfield, Duckburg, or Mouseton can be selected (because of
the alternative group which leads to the clauses {—Duckburg, =Mouseton},
{=Springfield, ~Mouseton}, and {—~Duckburg, —Springfield}).

3. When selecting By post, either Duckburg or Mouseton has to be selected (be-
cause of the cross-tree constraint which leads to the clause {—By post, Duck-
burg, Mouseton}).

https://doi.org/10.24355/dbbs.084-202107050823-0

18 3. Updating Modal Implication Graphs

When selecting Springfield and By post, we have to select Duckburg or Mouseton
as consequence of 3. Because of 2, that is not allowed since we already selected
Springfield and, thus, By post can not be selected when selecting Springfield. Due to
1, that leads to the selection of In person.

Now we consider the aforementioned transitive weak edge in a virtual clause {In
person, = Springfield}. We explain, how to figure out whether it is an implicit strong
edge on an algorithmical basis. We add both literals contained in the virtual clause
negated as a unit clause to the CNF (i.e., we add {—In person} and {Springfield}).
Afterwards, we use a a SAT solver to check whether the CNF is satisfiable with the
two unit clauses (i.e., we check whether we can select Springfield when deselecting
In person). If the SAT solver returns false, it means that at least one of the literals
of the virtual clause has to be selected for a valid assignment. Thus, we can add a
strong edge for the clause.

For example, the new weak edge between —Duckburg to =By post also leads to
a transitive weak edge between Mouseton and In person. Anyway, this is not an
implicit strong edge and also left out in Figure 3.3.

Given a set of clauses that express weak edges that we inspect for implicit strong
edges, we call a SAT solver for each pair of literals contained in a clause. To this
end, we introduce findImplicitStrongEdges (cf. Algorithm 9) which gets the set
of clauses as input.

Algorithm 9 Algorithm to check for implicit strong edges in weak edges
1: function FINDIMPLICITSTRONGEDGES(clauses)
2: temporaryCNF < cnfAfterChanges

3: for each clause € clauses do

4: for each literal € clause do

5: temporaryCNF.addClause(-literal)

6: for each otherLiteral € clause \ {literal} do

7 temporaryCNF.addClause(-otherLiteral)

8: if 'hasSolution(cnfAfterChanges) then

9: migAfterChanges.addClause(literal, otherLiteral)

10: migAfterChanges.addImplicitStrongEdge(literal,
otherLiteral)

11: temporaryCNF.removeClause(-otherLiteral)

12: temporaryCNF.removeClause(-literal)

13: clause.remove(literal)

For each pair of literals contained in a clause, we add both literals negated to the
CNF in lines 5 and 7. Then, we call a SAT solver to check if the CNF is still
satisfiable in line 8. If the SAT call returns false, we add the clause to the MIG in
line 9. Afterwards, we remove the unit clauses from the CNF in lines 11 and 12.

Finding implicit strong edges is the most time consuming step when constructing a
MIG from scratch [KTST18]. When constructing the complete MIG incrementally,
we calculate the new transitive weak edges from scratch. Afterwards, we have to
check if the weak edges that were implicit strong edges in the former MIG are still

https://doi.org/10.24355/dbbs.084-202107050823-0

3.2. Complete Modal Implication Graphs 19

implicit weak edges. Having a wrong implicit strong edge in the MIG would force
the user to (de-)select features in the configuration process that do not need to be
(de-)selected. Therefore, missing to delete a former implicit strong edge that is not
an implicit strong edge anymore leads to an incorrect MIG. To this end, we call
a SAT solver for each implicit strong edge from the former MIG with both of the
literals contained in the clause as a negated unit clause. If the SAT solver returns
true (i.e., the CNF is satisfiable with both literals deselected), we remove the implicit
strong edge with removeClause (cf. Algorithm 8).

To find new implicit strong edges, we distinguish between two ways where we eval-
uate the trade-off between accuracy and computational effort in Chapter 5:

1. investigate all new weak edges (including the new transitive weak edges),

2. additionally investigate the weak edges of the clauses affected by the added
and removed clauses,

For the first case, we call findImplicitStrongEdges (cf. Algorithm 9) with the set
of clauses C of all new weak edges. For the second case, we call getThroughLit-
eralsAffectedClauses (cf. Algorithm 4) to get a set of clauses Cy. C4 contains
all clauses, including new transitive weak edges, that are affected through a shared
literal by the added clauses Cy. In this case, because the number of new transitive
weak edges is very high we leave them out of C'y and only investigate those that
have a shared literal with the added clauses. We remove all clauses with two literals
from C'4 since they already represent strong edges. Then, we add the remaining
clauses in Cy to Cy. Afterwards, we call findImplicitStrongEdges with Cy as
parameter.

Now, we described all steps necessary to extend the incomplete MIG to a complete
MIG. With the introduced concepts and algorithms, it is now possible to incremen-
tally calculate MIGs after FM evolution.

https://doi.org/10.24355/dbbs.084-202107050823-0

20

3. Updating Modal Implication Graphs

https://doi.org/10.24355/dbbs.084-202107050823-0

4. Implementation

In this chapter, we explain the implementation of the concepts introduced in Chap-
ter 3. To this end, we give an overview of the open-source framework FeaturelDE.
Therein, we integrated the incremental construction of a MIG since, to the best of
our knowledge, FeatureIDE is the only feature modeling toolsuite that provides a
MIG calculation. Afterwards, we point out the adaptions we made in the MIG that
is calculated from scratch. These adaptions are necessary for the incremental con-
struction. Finally, we explain how the incremental constructed MIG is implemented.

4.1 FeaturelDE

FeaturelDE is a tool for feature-driven development based on the open-source IDE
Eclipse [KTST09, MTS*17, TKB"14]. FeatureIDE, provides a graphical interface
to edit feature models as depicted by Figure 2.1 and Figure 3.2, and various anal-
yses (e.g., detecting dead features). The tool also supports the process of defining
configurations. Hereby, mandatory (de-)selections with regards to the current com-
bination of features are performed automatically. As illegal selections are disabled,
it is not possible to construct an invalid configuration. Figure 4.1 shows an exam-
ple of a valid configuration based on the feature model of our running example (cf.
Figure 2.1). As we can see, By post is grayed out since In person was selected by
the user and only one of them can be selected at the same time. To compute the
mandatory selections, FeatureIDE uses a combination of a MIG and a SAT solver.

~ [m] Election
[ciy
w [m] Way of voting
In person
[] By post
~ [m] Wentification
Online
At a polling station

Figure 4.1: Example of a configuration

https://doi.org/10.24355/dbbs.084-202107050823-0

22 4. Implementation

4.2 Integration of Incremental MIG

Figure 4.2 shows the class diagram of the MIG implemented in FeatureIDE. It
contains a list adjacencyList that stores the vertices and a list complexClauses that
stores all clauses of weak edges (i.e., clauses with three or more literals). A vertex
stores the complexClauses and the strongEdges for each variable and whether it is
core or dead. As introduced in Chapter 3, the incremental construction adapts the
edges and clauses of the MIG, the redundant clauses, the transitive weak edges,
the transitive strong edges and the implicit strong edges. This means, that the
implementation of the former MIG is not sufficient for the incremental construction
since it does not contain the required information about the constructed MIG (i.e.,
the redundant clauses, the transitive edges, and the implicit strong edges that the
incrementally calculated MIG needs to adapt).

Vertex

ModallmplicationGraph -core: boolean

- - - 1 1..n~\]-dead: boolean
+adjacencylList: List<Vertex>
) y “|-complexClauses: int[]

+complexClauses: List<LiteralSet>
-strongEdges: int[]

-variable: int

Figure 4.2: Class diagram of the MIG implemented in FeatureIDE

4.2.1 Necessary Adaptions

In this subsection, we point out the adaptions we made in the class MODALIMPLI-
CATIONGRAPH that are necessary to be able to incrementally construct a MIG.
Figure 4.3 shows the class diagram of the MIG after our adaptions for the incre-
mental calculations. We save transitiveStrongEdges, transitive WeakEdges, implic-
itStrongEdges and redundantClauses of the MIG. Additionally, we added multiple
methods to the class.

ModallmplicationGraph
+adjacencylList: List<Vertex>

+complexClauses: List<LiteralSet> Vertex
+transitiveStrongEdges: Set<LiteralSet>

+transitiveWeakEdges: Set<LiteralSet> -core: boolean
+implicitStrongEdges: Set<LiteralSet> -dead: boolean
+redundantClauses: Set<LiteralSet> 1 1..n -complexglau§e§: int(]
+addClause(clause:LiteralSet): void _3::gggfe?eiat1nt[]
+removeClause(clause:LiteralSet): void

-addStrongEdge(vertex:Vertex,edge:int): void
-addWeakEdge (vertex:Vertex,edge:int): void
-removeStrongEdge(vertex:Vertex,edge:int): void
-removeWeakEdge (vertex:Vertex,edge:int): void
-addVertexForLiteral(literal:int): void
-removeComplexClause(index:int): void

Figure 4.3: Class diagram of the new MIG

First, we call addClause (cf. Algorithm 7) when adding a clause to the MIG. This
method checks whether the literals in the clause already have a vertex. If they
are new to the MIG, a vertex is added with addVertexForLiteral. Afterwards,

https://doi.org/10.24355/dbbs.084-202107050823-0

4.2. Integration of Incremental MIG 23

depending on the size of the clause addClause returns or calls either addStrongEdge
or addWeakEdge.

add clause

add strong
clause —
size = 2 edge
vertex
ists .
check IS inspect
@ — . —o—@
vertex no clause size
vertex
exists clause
size >2 add weak
L

add vertex edge
for literal

Figure 4.4: Steps for adding a clause

Second, we call removeClause (cf. Algorithm 8) when removing a clause from the
MIG. Again, we distinguish between the size of the clause and return or call either
removeStrongEdge or removeWeakEdge. When removing a weak edge, we have to
consider that the associated complex clause is not only saved in the vertices but
also in the MIG itself. Hence, removeClause also calls removeComplexClause when
removing a weak edge to (1) remove the complex clause from the MIG and (2) make
sure that the indices of the complex clauses are still saved correctly for the contained
vertices after the removal of one of the complex clauses.

remove clause
remove
clause
size = 2 strong edge
check l remove complex
@o— ® p
Vertex clause
clause
size > 2 remove
weak edge

Figure 4.5: Steps for removing a clause

4.2.2 Incremental MIG

In this subsection, we present the class INCREMENTALMIGBUILDER that contains
the implementation for incrementally constructing incomplete and complete MIGs.
Figure 4.6 shows the class diagram for this specific class.

The first method of this class is buildPreconditions. Here, we determine the old-
Cnf of the oldMig where we use the CNF that resulted from sorting out unnecessary
clauses. We also determine the newCnf of the FM after the evolution step. We also
copy the values of the old MIG into the variable newMsig, which we adapt in the
following steps.

The second method we call is execute which coordinates all steps and calls all of
the methods in the following order.

https://doi.org/10.24355/dbbs.084-202107050823-0

24 4. Implementation

IncrementalMIGBuilder

-oldCnf: CNF

-newCnf: CNF

-removedClauses: Set<LiteralSet>
-addedClauses: Set<LiteralSet>
-redundantClauses: Set<LiteralSet>
-oldMig: ModalImplicationGraph
-newMig: ModalImplicationGraph
+buildPreconditions(): void
+execute(): void
-removeTransitiveStrongEdges(): void

-calculateDeadAndCoreFeatures(): void
-cleanClauses(): void
-calculateCNFDifference(): void

-removeClauses(): void

-handlePreviouslyRedundant(clauses:List<LiteralSet>): void

-getThroughLiteralsAffectedClauses(startClauses:List<LiteralSet>,

possiblyAffectedClauses:List<LiteralSet>): List<LiteralSet>

-getAllAffectedClauses(startClauses:List<LiteralSet>,
possiblyAffectedClauses:List<LiteralSet>): List<LiteralSet>

-handleNewlyRedundant(clauses:List<LiteralSet>)

-addClauses(): void

-dfsStrong(): void

-dfsWeak(): void

-checkOldImplicitStrongEdges(): void

-detectStrongEdges (possibilyImplicitStrongEdges:Set<LiteralSet>): void

Figure 4.6: Class diagram of the IncrementalMIGBuilder

1. RemoveTransitiveStrongEdges. This method removes all deprecated strong
edges from the new MIG. The methods operates on the old transitive strong
edges from transitiveStrongEdges stored in MODALIMPLICATIONGGRAPH. Df-
sStrong (i.e., the depth first search for finding transitive strong edges) finds
all possible transitive strong edges and, thus, it is not necessary to distinguish
between deprecated and valid strong edges in this step. We have to remove
the strong edges, because wrong strong edges in the MIG lead to an incorrect

MIG.

2. CalculateDeadAndCoreFeatures. This method is adopted from MIGBUIL-
DER, the class that coordinates the steps for calculating a MIG from scratch.
It calculates the core and dead features in newCnf and changes the respective
vertices.

3. CleanClauses. This method is adopted from MIGBUILDER as well and sorts
out unnecessary clauses in newCnf (e.g., clauses that contain a core feature).
This reduces the MIG to a size where it only contains the necessary clauses.
Additionally, it simplifies the following steps (e.g., calculateCNFDifference
is faster when using smaller CNFs).

4. CalculateCNFDifference. This method calculates the difference between
oldCnf and newCnf (cf. Algorithm 1). It stores the determined clauses in
removedClauses and addedClauses which we use later on.

5. RemoveClauses. This method removes the edges of the clauses that are con-
tained in removedClauses (cf. Algorithm 8). We also have to consider clauses
that were redundant in the former MIG and are in the set of removed clauses.

https://doi.org/10.24355/dbbs.084-202107050823-0

4.2. Integration of Incremental MIG 25

10.

11.

To this end, we remove all clauses that are contained in redundantClauses of
the oldMig from removedClauses. Also, we remove all clauses that are con-
tained in removedClauses from the redundantClauses of newMig.

. HandlePreviouslyRedundant. This method checks for each redundantClause

of oldMig if it still is a redundant clause (cf. Algorithm 3). If it is not, the
method calls addClause for adding the specific clause to the newMig and
removes the clause from the set of redundantClauses. This step is necessary to
prevent clauses to be declared redundant even when their redundancy changed
due to the FM evolution.

GetThroughLiteralsAffectedClauses. This method gets two sets of clauses
as parameters, i.e., startClauses and possiblyAffectedClauses (cf. Algorithm 4).
It returns a list of all clauses in possiblyAffectedClauses that contain a literal
that is also contained in a clause in startClauses. With this method we find
the clauses that are most likely to be affected by the FM evolution regarding
(1) their redundancy and (2) to contain implicit strong edges due to added
clauses.

. GetAllAffectedClauses. This method gets the same parameters as get-

ThroughLiteralsAffected (cf. Algorithm 5). But instead of returning clauses
that share a literal with an added clause, it returns a list of all clauses in pos-
siblyAffectedClauses that have any connection over literals with a clause that
is contained in startClauses. With this method we find all clauses that are
affected by the FM evolution. getAllAffectedClauses has a higher degree
of accuracy than getThroughLiteralsAffectedClauses regarding the simi-
larity to the from scratch calculated MIG.

. HandleNewlyRedundant. This method gets the clauses that were returned

by either getThroughLiteralsAffectedClauses or getAl1AffectedClauses
(depending on the desired degree of accuracy) as input (cf. Algorithm 6).
Then, it checks which of them are now redundant after the FM evolution step.

AddClauses. This method adds all clauses from addedClauses that are not
redundant to the MIG by calling addClause for each clause. Otherwise, it
adds them to redundantClauses of newMig.

DfsStrong. This method is adapted from MIGBUILDER to fit into our imple-
mentation (i.e., we use the adjancencyList of the MIG instead of an adjacency
matrix that the MIGBUILDER uses). With a depth first search, this method
searches the MIG to find literals that have a connection over at least two strong
edges. It adds a strong edge between respective literals.

By executing the previously introduced methods, we incrementally calculate an in-
complete MIG. As we can see, the class diagram in Figure 4.6 contains three addi-
tional methods. These methods are ignored when building an incomplete graph and
are only executed when calculating a complete graph.

https://doi.org/10.24355/dbbs.084-202107050823-0

26 4. Implementation

Extensions for complete MIG

To make an incomplete MIG complete, we need to calculate implicit strong edges
which is done using the following methods:

1. DfsWeak. This method is adapted from MIGBUILDER, but we again use the
adjacencyList instead of a matrix. This method uses a depth first search to
find literals that have a connection over at least two edges containing at least
one weak edge. We store these edges for the detection of implicit strong edges.

2. CheckPreviouslyImplicitStrongEdges. This method checks for all implic-
itStrongEdges of the oldMig whether they are still implicit strong edges after
the FM evolution.

3. DetectStrongEdges. This method finds new implicit strong edges. As input
it gets a set of possibly implicit strong edges. Depending on the degree of
accuracy, the set contains either the added clauses plus the new transitive weak
edges, or the added clauses plus the clauses affected by the added clauses and
the new transitive weak edges.

In this section, we explained our implementation to incrementally construct MIGs as
an extension of the already existing, from scratch calculated MIG in FeatureIDE. To
this end, we provide implementations for the concepts and algorithms Chapter 3 that
result in a logically correct MIG. The empirical evaluation presented in Chapter 5
is based on this implementation.

https://doi.org/10.24355/dbbs.084-202107050823-0

5. Evaluation

In this chapter, we examine the benefits of the incremental construction introduced
in Chapter 3 based on the implementation described in Chapter 4. To this end,
we introduce three research questions and answer the questions with an empirical
evaluation of our method. For our evaluation, we use feature models of different
sizes and different numbers of evolution steps to investigate how much the efficiency
of the incremental construction depends on (1) the size of the feature model and
(2) the number of changes in the FM and, thus, in the CNF. For each research
question, we compare the incremental constructed MIG with the MIG constructed
from scratch. After presenting the results of the evaluation in Section 5.2, we discuss
them in Section 5.3.

5.1 Experiment Design

In the following, we describe the software and hardware we use in our evaluation:

e Operating system: Windows 10

Eclipse version: Eclipse Modeling Tools version 2020-03 (4.15.0)

FeatureIDE version: FeaturelDE version 3.7

RAM: 16GB

Architecture: 64-bit

CPU: AMD Ryzen 7 3700U, 2300MHz, 4 cores

In the following, we present the FMs and their respective versions that we use for
our evaluation:

1. Automotive02. These are by far the largest FMs and the most added /removed

clauses in the CNF that we evaluate in this work. We have three different FM
evolution steps that we evaluate:

https://doi.org/10.24355/dbbs.084-202107050823-0

28 5. Evaluation

FM evolution Number of Number of Number of
clauses added clauses removed clauses

V1 to V2 2?;;’267%82;0 241,635 136,410

V2 to V3 3‘;2’7972;0 5,366 748

V3 to V4 3‘;’5’%50 2,913 274

Table 5.1: All FM evolution steps for the Automotive02 FM versions.

2. FinancialServices01. The evaluation consists of nine FM versions that are
collected from monthly commits, whereas the first and the second FM version
have four months in between.

M Luti Number of Number of Number of
evotution clauses added clauses removed clauses

4,992 to

2017-05-22 to 2017-09-28 6.544 2,271 719
6,544 to

2017-09-28 to 2017-10-20 6,778 255 21
6,778 to

2017-10-20 to 2017-11-20 6.866 173 85
6,866 to

2017-11-20 to 2017-12-22 6.860 107 113

2017-12-22 to 2018-01-23 | 50U t0 2,599 2,777

6,682

6,682 to

2018-01-23 to 2018-02-20 6,792 320 210

2018-02-20 to 2018-03-26 6’77912150 667 347
7,112 to

2018-03-26 to 2018-04-23 7134 181 159

2018-04-23 to 2018-05-09 7771:;?3;0 300 196

Table 5.2: All FM evolution steps for the FinancialServices01 FM versions.

3. BusyBox. Here we have 3,712 FM versions that were collected by daily com-
mits from 20.05.2007 until 09.05.2010 with around 1,000 clauses in the CNF.

To cover all algorithms we introduced in Chapter 3, we distinguish between nine
different calculations that we evaluate:

1. Incomplete MIG without the calculation of redundant clauses

2. Incomplete MIG with the calculation of redundant clauses, where we only
inspect through literals affected clauses in the incremental construction

https://doi.org/10.24355/dbbs.084-202107050823-0

5.1. Experiment Design 29

3. Incomplete MIG with the calculation of redundant clauses, where we inspect
all affected clauses

4. Complete MIG without the calculation of redundant clauses and with only the
new weak and the new transitive weak edges as possibly implicit strong edges

5. Complete MIG without the calculation of redundant clauses and with addi-
tionally affected clauses as possibly implicit strong edges

6. Complete MIG with the calculation of redundant clauses as in 2. and with only
the new weak and the new transitive weak edges as possibly implicit strong
edges

7. Complete MIG with the calculation of redundant clauses as in 2. and with
additionally affected clauses as possibly implicit strong edges

8. Complete MIG with the calculation of redundant clauses as in 3. and with only
the new weak and the new transitive weak edges as possibly implicit strong
edges

9. Complete MIG with the calculation of redundant clauses as in 3. and with
additionally affected clauses as possibly implicit strong edges

In the following, we introduce the research questions of this thesis:

RQ1: How much computation time can we save with the incremental construction
of a MIG?

In the first research question, we investigate the computation time of the incremental
construction. In this research question, we inspect the advantages of the incremental
calculation compared with the calculation from scratch regarding the computation
time. To this end, we compare (1) the times that both calculations need to construct
a MIG and (2) the times that both calculation need for each step when constructing
a MIG.

RQ2: How many SAT queries can we reduce with the incremental construction?

In the second research question, we check how many SAT queries are saved with our
method. Since the goal of this thesis was to reduce the number of SAT calls that
the calculation from scratch needs when constructing a MIG, we investigate whether
we achieve that goal with the incremental construction. To this end, we count how
often we call a SAT solver when (1) incrementally constructing the MIG and (2)
constructing the MIG from scratch. Afterwards, we compare the two results with
each other.

RQ3: How does the size of the incrementally constructed MIG compare to the MIG
constructed from scratch?

In the third and last research question, we inspect the difference between the result-
ing MIGs. This is necessary to find out the degree of accuracy of the incremental
construction. To this end, we investigate the number of redundant clauses and the
number of implicit strong edges since these are the only differences that may appear.

https://doi.org/10.24355/dbbs.084-202107050823-0

30 5. Evaluation

5.2 Results

In the following, we show the results of our empirical evaluation for each research
question. First, we present the results of our evaluation regarding the incomplete
graph. Second, we show the results regarding the complete graph. To this end,
we evaluate and compare the necessary calculation time needed for the incremental
construction and the calculation from scratch for all BusyBox models, FinancialSer-
vicesO1 models, and Automotive02 models. Additionally, we compare the times that
each step (e.g., find redundant clauses, find transitive edges) in the calculation pro-
cess needs for some examples. The x-axis of all following diagrams lists the FM
evolution step for which we construct the MIG and the y-axis shows, depending
on the research question, the calculation time required for that construction, the
number of SAT calls, the number of redundant clauses, or the number of implicit
strong edges. The data for the incremental construction is illustrated with green
circles and for the calculation from scratch, it is illustrated with blue triangles.

RQ1

To retrieve the computation time we save, we measure the time between the start
and the end of the calculation for the incremental MIG as well as its calculation
from scratch. Then, we compare these two times with each other. We also measure
the time of the single steps (e.g., calculating the redundant clauses, adding and
removing the edges, calculating core and dead features,..) for both methods and
compare them. Before each calculation, we warm up the java virtual machine (JVM)
by running the MIG calculations on ten FM evolution steps.

Incomplete Graph

In the following, we present the results for incomplete MIGs without redundant
clauses. Figure 5.1 shows the required times of the calculation from scratch and the

Incremental A From scratch

Time in seconds

0.00

00 1,000 2,000 3,000

FM evolution step

Figure 5.1: Calculation times for all BusyBox evolution steps for an incomplete MIG
without redundant clauses.

https://doi.org/10.24355/dbbs.084-202107050823-0

5.2. Results 31

incremental construction for all BusyBox evolution steps. As the diagram shows,
the incremental construction takes less time than the calculation from scratch for
each of the 3,711 FM evolution steps. The results show that, except a few outliers,
the incremental construction takes about half of the time or less than the calculation
from scratch.

Figure 5.2 shows the required times of the calculation from scratch and the in-
cremental construction for all FinancialServicesO1 evolution steps. For each FM
evolution step, the incremental construction takes between 1.5 and 2 seconds and
the construction from scratch takes around 0.5 seconds.

Incremental A From scratch

2.0

1.5
(%)
o
c
o
o
3 1.0
£
g

A A A

= 0.5 A A A A A A

0.0

0 2 4 6 8

FM evolution step

Figure 5.2: Calculation times for all FinancialServicesO1 evolution steps for an in-
complete MIG without redundant clauses.

Figure 5.3 shows the required times of the calculation from scratch and the incre-
mental construction for all Automotive02 evolution steps. Incrementally calculating

Incremental A From scratch

60

A
A A
(2]
3 40
C
[e]
(8]
()
w
£
g 20
£
0
0 1 2 3

FM evolution step

Figure 5.3: Calculation times for all Automotive02 evolution steps for an incomplete
MIG without redundant clauses.

https://doi.org/10.24355/dbbs.084-202107050823-0

32 5. Evaluation

Automotive02_V2 with Automotive02_V1 as base takes just a few seconds less
than calculating it from scratch. Anyway, the incremental construction of Auto-
motive02_V3 and Automotive 02_V4 takes less than half of the calculation time
needed to calculate the MIG from scratch.

To get a better overview where the computation time difference comes from, we take
a closer look at the computation times each step takes in Table 5.3. We chose the
evolution step from Automotive02_V2 to Automotive02_V3 as representative. The
runtime distribution for other evolution steps and models is similar.

Time Difference
Calculation Calculated Adapted Adapted MIG -
Step MIG (sec) MIG (sec) Calculated MIG(sec)
Remove old transitive strong edges 0 0.09 +0.09
Calculate core and dead feature 9.18 9.08 -0.1
Clean CNF 0.19 0.11 -0.07
Calculate CNF difference 0 0.52 +0.52
Removed clauses 0 0.005 +0.005
Added clauses 0 1.04 +1.04
Create MIG 2.25 0 -2.25
Calculate redundant clauses 0.03 0 -0.03
Find transitive strong edges 32.77 6.0 -26.77
Overall time 44.53 16.93 -27.59

Table 5.3: Calculation times for each step for the incomplete MIG without redundant
clauses in the evolution step from Automotive02_V2 to Automotive02_V3.

The table shows that the additional steps for the incremental construction (re-
move old transitive strong edges, calculate CNF difference, remove clauses, and add
clauses) take around a half second less time as calculating the MIG from scratch
(1.655 seconds vs. 2.25 seconds). The most time is saved when calculating transitive
strong edges in the MIG. In the end, the incrementally calculated MIG is 27.59 sec-
onds faster, whereas 26.77 seconds derive from the calculation of transitive strong
edges.

In the following, we present the evaluation of the incomplete graph with the calcu-
lation of redundant clauses, where we only include clauses that are affected through
literals, as we introduced in Section 3.1.1.

Figure 5.4 shows the calculation times for all BusyBox models. Except a few out-
liers, the incrementally constructed MIG takes around 0.01 seconds and the required
time for the from scratch calculated MIG grows with the FM versions from around
0.02-0.03 seconds to around 0.04 seconds. Comparing to the calculation without

https://doi.org/10.24355/dbbs.084-202107050823-0

5.2. Results 33

redundant clauses, the time needed for the incremental construction is the same but
the time needed for the MIG calculated from scratch increases.

Incremental A From scratch

0.06

0.04

Time in seconds

0.00

00 1,000 2,000 3,000

FM evolution step

Figure 5.4: Calculation times for all BusyBox evolution steps for an incomplete MIG
with redundant clauses.

Figure 5.5 shows the FinancialServicesO1 calculation times. While the incremental
construction without redundant clauses takes more than three times as much as
the calculation from scratch, the calculation with redundant clauses takes for the
incremental construction more than double of the time that the calculation from
scratch takes.

Incremental A From scratch

2.5

2.0
%)
o
5 15
O
D
»
'E 1.0

A A

£ A 4 A A A 1 A
'—

0.5

0.0

0 2 4 6 8

FM evolution step

Figure 5.5: Calculation times for all FinancialServicesO1 evolution steps for an in-
complete MIG with redundant clauses.

With Figure 5.6, we present the calculation times for Automotive02, the largest
FMs in our evaluation. In the first evolution step, from Automotive02_V1 to Auto-
motive02_V2, the incremental construction does not save a lot of time, but in the

https://doi.org/10.24355/dbbs.084-202107050823-0

34 5. Evaluation

second and third evolution step, the incremental construction takes less than half of
the time the calculation from scratch requires.

Incremental A From scratch

80

60 A
(2]
g 1 {
O
3 40
£
[
E
[20
0
0 1 2 3

FM evolution step

Figure 5.6: Calculation times for all Automotive02 evolution steps for an incomplete
MIG without redundant clauses.

Table 5.4 depicts the required time of each step for Automotive02_V2 to Automo-
tive02_V3. Similar to the results presented in Table 5.3, the most time is saved
during the calculation of the transitive strong edges. Additionally, the incremental
construction improves the calculation of redundant clauses. We have to consider,
that some of the redundant clauses are calculated when adding clauses. Anyway,
when comparing the time necessary for adding clauses to the calculation without
redundant clauses, we can see that ~ 1.7 seconds are required in addition. With
regards to these seconds, the calculation of redundant clauses is still three seconds
faster when calculating incrementally.

When calculating the MIG including the redundant clauses with all affected clauses
as introduced in Section 3.1.1, too much memory space is required. With 12GB of
RAM available, BusyBox, FinancialServicesO1 and Automotive02 throw a java.lang.
OutOfMemoryError: Java heap space Exception. Thus, we could not evaluate these
calculations.

Complete Graph

Second, we show the results of the evaluation regarding the complete graph. We take
a look at the calculation of complete MIGs including redundant clauses. We also
present one representative example for the calculation without redundant clauses for
the BusyBox FMs in Figure 5.7.

We can see the computation times for BusyBox for the complete graph in Figure 5.8.
The times are similar to the calculation without redundant clauses. As we can see,
the complete MIG takes much more computation time compared to the incomplete
MIG. While the calculation from scratch takes maximum a half second for the in-
complete MIG, for the complete MIG early versions require a half second and, as

https://doi.org/10.24355/dbbs.084-202107050823-0

5.2. Results

35

Calculation
Step

Calculated
MIG (sec)

Time Difference
Adapted Adapted MIG -
MIG (sec) Calculated MIG(sec)

Remove old transitive strong edges
Calculate core and dead feature
Clean CNF

Calculate CNF difference
Removed clauses

Added clauses

Create MIG

Calculate redundant clauses

Find transitive strong edges

Overall time

0
9.43
0.19

0

0

0
1.86
5.11

32.24
49.22

0.09 +0.09
9.65 +0.22
0.11 -0.08
0.49 +0.49
0.007 -+0.007
2.74 +2.74
0 -1.86
1.42 -3.69
5.8 -26.44
20.37 -28.84

Table 5.4: Calculation times for each step for the incomplete MIG with redundant
clauses in the evolution step from Automotive02_V2 to Automotive02_V3.

Incremental

Time in seconds

AA

A From scratch

A

00 1,000

2,000

3,000

FM evolution step

Figure 5.7: Calculation times for all BusyBox evolution steps for a complete MIG

without redundant clauses.

the FM versions grow, require up to over 2 seconds. The calculated average is 1.121
seconds. However, incrementally constructing the MIG takes on the average 0.009
seconds and, thus, is ~125x faster on average than calculating the MIG from scratch.

Figure 5.9 shows the calculations for the FinancialServicesO1 models. In this dia-
gram, the time is given in minutes on the y-axis. We can see that the incremental
construction for the first and the fifth evolution step take a lot of time (between eight
and ten minutes). Table 5.2 shows that the first and fifth evolution step include large

https://doi.org/10.24355/dbbs.084-202107050823-0

36 5. Evaluation

Incremental A From scratch

an AA‘&
. <+ A
(7] 4 A .
'8 2 A AA a
8 .
»
c A%
= a
A
E 1 VI A A A
A
0
00 1,000 2,000 3,000

FM evolution step

Figure 5.8: Calculation times for all BusyBox evolution steps for a complete MIG.

changes in the FM. However, the other incrementally calculated evolution steps are
multiple minutes faster than calculating the MIG from scratch. Overall, the incre-
mental calculation requires ~15 1/2 minutes and the calculation from scratch ~38
minutes for the eight evolution steps.

Incremental A From scratch

Time in minutes

0 2 4 6 8

FM evolution step

Figure 5.9: Calculation times for all FinancialServices01 evolution steps for a com-
plete MIG.

Figure 5.10 shows the calculation for all Automotive02 versions. Again, the y-axis
shows the time in minutes. We can see that in the first step, the incremental
calculation takes more than double of the time that the calculation from scratch
takes. However, in the second and third evolution step, the incrementally calculated
MIG takes much less computation time (i.e., ~5.8x faster for the second step and
~11.8x faster for the third step).

https://doi.org/10.24355/dbbs.084-202107050823-0

5.2. Results

37

Incremental

300

200

100

Time in minutes

A From scratch

FM evolution step

Figure 5.10: Calculation times for all Automotive02 evolution steps for a complete

MIG.

Time Difference

Calculation Calculated Adapted Adapted MIG -
Step MIG (sec) MIG (sec) Calculated MIG(sec)

Remove old transitive strong edges 0 0.08 +0.08
Calculate core and dead feature 9.38 9.33 +0.05
Clean CNF 0.24 0.11 -0.13
Calculate CNF difference 0 0.43 +0.43
Check previously implicit strong edges 0 0.96 +0.96
Removed clauses 0 0.003 +0.003
Added clauses 0 0.83 +0.83
Find transitive strong edges 34.05 5.16 -28.89
Find transitive weak edges 43.56 0.86 -42.7
Find implicit strong edges 14,881.84 1,267.71 -13,614.13
Create MIG 2.07 0 -2.07
Calculate redundant clauses 0.47 0.89 -4.58
Find transitive strong edges 33.77 5.2 -28.57
Overall time 15,010.45 1,291.63 -13,718.82

Table 5.5: Calculation times for each step for the complete MIG in the evolution
step from Automotive02_V3 to Automotive02_V4.

https://doi.org/10.24355/dbbs.084-202107050823-0

38 5. Evaluation

Finally, we take a look at the exact times that each calculation step takes for the
complete graph in Table 5.5. As the table shows, finding implicit strong edges
is the most time consuming step and also the biggest difference between the two
calculations. The calculation from scratch takes ca 248 minutes (14,881 seconds)
and the incremental construction takes ca 21 minutes (1,267 seconds). This leads
to the incremental construction being ca 226 minutes faster, only considering this
specific calculation step. Overall, the incremental construction takes 228 minutes
less than the calculation from scratch.

Figure 5.11 and Figure 5.12 show the calculation times needed for the complete graph
without affected clauses for BusyBox and FinancialServicesO1. When comparing to

Incremental A From scratch

3 A
[%2]
2
5 s a3 m
9 2
C
.5 ’
=
[1 -

A
0 I
00 1,000 2,000 3,000

FM evolution step

Figure 5.11: Calculation times for all BusyBox evolution steps for a complete MIG
without affected clauses.

Incremental A From scratch

Time in minutes

0 2 4 6 8

FM evolution step

Figure 5.12: Calculation times for all FinancialServices0O1 evolution steps for a com-
plete MIG without affected clauses.

https://doi.org/10.24355/dbbs.084-202107050823-0

5.2. Results 39

the calculation times needed when finding affected clauses, we can see that the
calculation without affected clauses takes more time. Additionally, this method
is not more accurate than calculating with affected clauses. When evaluating this
calculation with Automotive02 we received a warning and, e.g., Automotive02_V2 to
Automotive02_V3 took 380 minutes to calculate. Since we did not have the capacity
to find the cause of the warning and the results of this calculation are not very
promising anyway, we did not evaluate the calculation for complete MIGs without
affected clauses further.

RQ2

As SAT solver calls are very expensive and a driving factor for the complexity of the
MIG calculation, we analyze in RQ2 to which extent we are able to reduce necessary
SAT solver calls for each calculation we presented in Section 5.2. We distinguish
between the SAT calls necessary for the calculation of (1) redundant clauses (i.e.,
an incomplete MIG with redundant clauses) and (2) implicit strong edges (i.e., a
complete MIG without redundant clauses). Without redundant clauses and implicit
strong edges, we only call a SAT solver when calculating dead and core features.
Since the algorithms for this calculation are the same for the incremental constructed
MIG and the MIG calculated from scratch, we do not have to evaluate the number
of SAT calls in this case.

With redundant clauses calculation

First, we analyze the number of SAT calls that are required for detecting redundant
clauses when (incrementally) calculating the MIG. Figure 5.13 shows the number
of SAT calls necessary to find the redundant clauses of each BusyBox FM. The
diagram shows that, except one outlier, the incremental constructed MIG needs
less time than the MIG calculated from scratch. Comparing the number of SAT
calls to Figure 5.4, which shows the computation time of an incomplete graph with
redundant clauses, we can see similarities between the computation times and the
number of SAT calls.

Incremental A From scratch

Number SAT calls
ll
\
’

00 1,000 2,000 3,000

FM evolution step

Figure 5.13: Number of SAT calls necessary for all BusyBox evolution steps for the
calculation of redundant clauses.

https://doi.org/10.24355/dbbs.084-202107050823-0

40 5. Evaluation

Figure 5.14 shows the SAT calls of the FinancialServices01 FMs. Again, the diagram
shows that, except for two outliers, the incremental construction requires less SAT
calls than the computation from scratch. The diagram shows, that the difference
between the two calculations is not large (i.e., the incremental construction requires
8,841 SAT calls and the construction from scratch requires 9,070 SAT calls for the
eight evolution steps). But the number of SAT calls necessary for the redundant
clauses calculation is relatively small anyway.

Incremental A From scratch

2,000
o 1500
‘©
[&]
= A
< 1,000 a A a A a A ¢ 4
P
[
Qo
E
3 500
00
0 2 4 6 8

FM evolution step

Figure 5.14: Number of SAT calls necessary for all FinancialServicesO1 evolution
steps for the calculation of redundant clauses.

Now, we examine the required SAT calls for redundant clauses for the Automotive(2
FM evolution steps, displayed in Figure 5.15. We can see that the incremental
construction needs a few less SAT calls for the second and third evolution step. In

Incremental A From scratch

4,000
A A
A
0 3,000
©
o
[
<
) 2,000
A
[
Qo
5
= 1,000
00
0 1 2 3

FM evolution step

Figure 5.15: Number of SAT calls necessary for all Automotive02 evolution steps
for the calculation of redundant clauses.

https://doi.org/10.24355/dbbs.084-202107050823-0

5.2. Results 41

the first, both calculation need about the same number of SAT calls (3,216 for
incremental vs. 3,229 for from scratch). Overall, similar to the number of SAT calls
necessary for the FinancialServicesO1 models, the incremental calculation does not
need significantly less SAT calls than the calculation from scratch.

With implicit strong edges

Second, we inspect the number of SAT calls that both MIG calculations need for
the detection of implicit strong edges. Figure 5.16 shows the number of SAT calls
necessary for all BusyBox FM evolution steps. We can see that the incremental
construction needs much fewer SAT calls than the calculation from scratch. On the
average, the incrementally calculated MIG calls a SAT solver 51.87 times and the
calculation from scratch 2,980.25 times.

Incremental A From scratch

10,000
» 7,500
‘©
o b
- a
<
n 5000 ;
e
3 a
£
= 2,500

00 =
00 1,000 2,000 3,000

FM evolution step

Figure 5.16: Number of SAT calls necessary for all BusyBox evolution steps for the
calculation of implicit strong edges.

Figure 5.17 shows the SAT calls necessary in the calculation for all FinancialSer-
vices01 evolution steps. When comparing to the computation time necessary in this
specific calculation (cf. Figure 5.9), we can see a correlation between the number of
SAT calls and the necessary computation time.

The last FMs we evaluate are the Automotive02 versions in Figure 5.18. On the
one hand, we can see that the number of SAT calls necessary for the incremental
construction in the first evolution step is more than 4 times as large as for the
calculation from scratch. On the other hand, the SAT calls for the second and third
evolution step are more than 4 times and more than 7 times larger for the calculation
from scratch.

RQ3

Finally, we investigate the differences between the incrementally constructed MIG
and the MIG calculated from scratch. Even though the MIGs are both logically
correct, we analyze their difference regarding the number of (1) detected redundant

https://doi.org/10.24355/dbbs.084-202107050823-0

42 5. Evaluation

Incremental A From scratch

800,000
@ 600000
©
(&)
'—
< 400000
— A A A
3 A A A A A A
=
2 200000
00
0 2 4 6 8

FM evolution step

Figure 5.17: Number of SAT calls necessary for all FinancialServicesO1 evolution
steps for the calculation of implicit strong edges.

Incremental A From scratch

2,500,000
2,000,000
0
©
|2 1,500,000
< A
%)
@ 1,000,000
g 000,
S
A A
z 500,000
00
0 1 2 3

FM evolution step

Figure 5.18: Number of SAT calls necessary for all Automotive02 evolution steps
for the calculation of implicit strong edges.

clauses and (2) implicit strong edges. This way, we inspect the degree of accuracy of
the incremental constructed MIG in comparison to the MIG calculated from scratch
in order to analyze the trade-off between the accuracy and the computation time
between the incremental construction and the calculation from scratch.

Redundant Clauses Difference

For BusyBox we have 3,712 FM versions. For better readability, we present the sum
of the difference of the redundant clauses for all 3,712 steps and not the difference for
each single step. In total, the from scratch calculated MIG detected 190 redundant
clauses that the incremental calculation did not detect. The incremental calculation
detected 184 redundant clauses that the calculation from scratch did not find.

https://doi.org/10.24355/dbbs.084-202107050823-0

5.2. Results 43

For FinancialServices01 we have ten FM versions with nine evolution steps. In
Figure 5.19, we show the difference between the number of detected redundant
clauses for each evolution step. As the diagram depicts, the incremental calculation
finds more redundant clauses for each evolution step.

Incremental A From scratch

300

200

100

Number redundant clauses

0 2 4 6 8

FM evolution step

Figure 5.19: Number of found redundant clauses for all FinancialServices01 MIGs.

Figure 5.20 shows the redundant clauses that both kinds of calculation have de-
tected. The diagram shows that the incremental construction and the calculation
from scratch find around the same number of redundant clauses.

Incremental A From scratch
300

200

100

Number of redundant clauses

FM evolution step

Figure 5.20: Number of found redundant clauses for all Automotive02 MIGs.

Implicit Strong Edges Difference

For the BusyBox models, we evaluated all 3,712 FM versions as one. We detected
differences in the implicit strong edges in only 2 of the 3,711 evolution steps. This

https://doi.org/10.24355/dbbs.084-202107050823-0

44 5. Evaluation

means, that the incremental construction found almost every implicit strong edge
that the calculation from scratch detects.

Now, we show the difference in the implicit strong edges for the FinancialServices01
MIGs in Figure 5.21. As the diagram shows, the incremental calculation finds almost
as many implicit strong edges as the calculation from scratch (i.e., the incremental
calculation finds 359,946 and the calculation from scratch finds 363,333 in total).

Incremental A From scratch

50,000 A

n
g A A ® A A
2 40,000 A
= s e
c
g 30,000
)
S
S 20,000
£
F .
)
Qo 10,000
S
S
zZ

00

0 2 4 6 8

FM evolution step

Figure 5.21: Number of found implicit strong edges for all FinancialServices01 MIGs.

For the Automotive02 MIGs, the difference regarding the implicit strong edges,
depicted by the diagram in Figure 5.22, is zero for the first evolution step (both
calculations found 166 implicit strong edges). In the second evolution step, the
incremental calculation found 634 implicit strong edges while the calculation from
scratch found 700. In the third evolution step, the incremental calculation found
690 implicit strong edges and the calculation from scratch 696.

Incremental A From scratch

800
3 A a
[®)]
B 600
(@)]
C
@]
=
7]
= 400
O
a
£
=200
2 a
IS
>
=z
0
0 1 2 3

FM evolution step

Figure 5.22: Number of found implicit strong edges for all Automotive02 MIGs.

https://doi.org/10.24355/dbbs.084-202107050823-0

5.3. Discussion 45

5.3 Discussion

Regarding the RQ1, the evaluation shows that for most cases, the incremental cal-
culation of the MIG takes less time than calculating the MIG from scratch. As
Table 5.3 and Table 5.4 show, when constructing an incomplete MIG, the most time
is saved during the calculation of transitive strong edges. Since this calculation is
the same as for the from scratch calculated MIG except a few adaptions, it is only
faster because of the way we implemented the method and not because of its incre-
mentality. When disregarding the time for this step, Table 5.3 and Table 5.4 show
that the incremental calculation still requires less computation time.

When constructing a complete MIG, depending on the size of the changes, the
incremental calculation brings a large advantage. When inspecting the necessary
calculation times for Automotive02, the first evolution step takes the incremental
construction a lot of more time than for the other evolution steps. However, the
first evolution step includes large changes in the CNF (i.e., more clauses have been
added than clauses contained in the CNF before the evolution step). The second and
third evolution steps also include relatively large changes to the FM, but the incre-
mental construction is faster anyway. In summary we can say that the incremental
construction brings a bigger advantage for large-scale feature models regarding the
computation time. Also, the bigger the changes to the FM and, thus, to the CNF,
the less advantage brings the incremental construction. This claim is also supported
by Figure 5.9 where the first and the fifth evolution step are the only ones were the
incremental construction takes more time than calculating from scratch. Table 5.2
shows, that these are by far the largest changes in the CNF for all nine evolution
steps as there are over 2,000 added clauses whereas the other steps have less than
700 added clauses.

When evaluating RQ2 and, thus, the necessary SAT calls for every calculation, we
can see that there is a connection between the calculation time and number of SAT
calls in the calculation. This confirms our assumption that the reduction of SAT
calls is an effective approach for reducing the calculation time which we achieved
with our incremental calculations. For the vast majority of the evolution steps
that we evaluated, the incremental construction requires fewer SAT calls than the
calculation from scratch.

We detected that the incremental calculation of redundant clauses needs less time
without a high loss of accuracy as we can see by the fact that it finds more redundant
clauses in most of the cases we evaluated in RQ3. The reason is how the SAT solver
works. Every clause that is already negatively checked for redundancy is added to
the SAT solver. Clauses that were not checked yet are not part of the SAT solver. It
might be that a clause that would be redundant is checked before the set of clauses
causing the clause to be redundant is part of the SAT solver. Hence, the clause
would not be declared redundant. In the incremental construction, the clauses that
are not directly affected by one of the added clauses are added to the SAT solver
before we inspect the potentially redundant clauses. Since it is more likely that
clauses that share a literal with one of the the added clauses or one of the added
clauses are also affected in their redundancy, the incremental construction enlarges
the chance to find them due to the already existing set of remaining clauses in

https://doi.org/10.24355/dbbs.084-202107050823-0

46 5. Evaluation

the SAT solver. Consider the following example: we have the clauses {B, C} and
{A, =C}. These clauses express, that when deselecting C' we have to select B and
when selecting C' we have to select A. Then, we add the clause {A, B} which is
redundant, because either A or B have to be selected due to the already existing
clauses. When calculating from scratch, we might check the clause {A, B} first and
since the other clauses are not checked yet and, thus, are not part of the CNF in
the SAT solver yet, we would not detect the redundancy of the clause {A, B}. In
the incremental calculation, the clauses {B, C} and A, —=C are part of the SAT
solver before verifying { A, B}, since the added clauses are checked last with all the
remaining clauses already in the CNF of the SAT solver. Thus, the incremental
calculation would detect the redundancy of the specific clause.

As we also show when answering RQ3, the incremental construction does not find
all implicit strong edges. The main cause of implicit strong edges are cross-tree
constraints, since they cause relations between features that are neither expressed
by the FM nor explicitly by a constraint. For the FinancialServices01 evolution steps,
where the incremental construction misses the most implicit strong edges, we argue
that the loss is relatively small compared to the time we can save. Comparing the
results of FinancialServicesO1 and Automotive02 it might seem like an irregularity
that the incremental construction misses for Automotive02, which has much more
added and removed clauses, less implicit strong edges. This is probably due to the
fact that FinancialServices01 has more cross-tree constraints in relative terms. While
the Automotive02 versions have between 14,010 and 18,616 features and between
666 and 1,319 cross-tree constraints, FinancialServices01 has around 700 features
but around 1,000 cross-tree constraints. That means, that FinancialServices01 has
a lot of features that have a relation due to the cross-tree constraints and, hence,
the MIGs of these FMs have a lot more implicit strong edges than the MIGs of the
Automotive02 FM versions. Anyway, missing implicit strong edges has no impact
on the correctness of the MIG but on the performance during the configuration
construction. The implicit strong edges give a small benefit regarding the time
needed to find the connections between features and, thus, the consequences of a
(de-)selection of a feature.

The evaluation shows that the efficiency of the incremental calculation depends on
multiple characteristics of the FM (i.e., the size, the number of changes, and the
relative number of cross-tree constraints). The advantage of the incremental con-
struction grows with the size of the feature models. The reason is, that the required
time for the calculation from scratch typically grows with the size of a FM. When
adapting the MIG to changes the size of the feature model has much less influence
on the computation time than the number of changes that have to be adapted. The
relative number of cross-tree constraints also influences the incremental adaption in
a way that more cross-tree constraints lead to more implicit strong edges. Anyway,
the goal of this thesis was to reduce the high number of SAT calls and the related
high computation time when constructing a MIG and still have a resulting MIG that
is efficient and correct. The evaluation strongly indicates that the goal is achieved.
Even though we do not have a fully complete MIG resulting by the incremental
construction, the loss is relatively small when comparing to the time we can save
with the introduced concept.

https://doi.org/10.24355/dbbs.084-202107050823-0

5.4. 'Threats to Validity 47

5.4 Threats to Validity

In this section, we describe the threats to the validity of our evaluation.

We cannot guarantee the efficiency of the incremental construction of a MIG when
using for FMs we did not evaluate in this thesis. To prevent that and give the
best overview of the advantage of the incremental construction, we evaluated FMs
from multiple domains with different sizes and FM evolution steps with a different
number of changes in the FM. To present the best use cases for the incrementally
calculated MIG we identified the characteristics of FMs that bring advantages for
the incremental construction in Section 5.3.

We did not formally prove the correctness of the incrementally constructed MIG.
Thus, we cannot completely guarantee the correctness of the incrementally con-
structed MIG. To this end, we made a lot of sanity checks. For example, we com-
pared the resulting MIGs not only by time but also each variable to verify that the
MIGs have the same strong edges, the same weak edges, and the same attributes
(i.e., the same variables are core/dead). When detecting differences, like a clause
that exists in the from scratch calculated MIG but not in the incrementally con-
structed MIG, we verified that it is a redundant clause and not a falsely ignored
clause.

When using Java for the implementation, just-in-time compilation can have an im-
pact on the required time for each calculation. To prevent the calculation times to
be influenced by the JVM, we run a JVM warm up before each calculation.

We did not evaluate the additional memory that is required when incrementally
calculating. Since we have to save a lot more information than necessary for the
calculation from scratch, this might be an interesting part to evaluate in the future.
However, for large-scale feature models this can be outsourced on servers. The money
for the server can be retrieved by the time savings of the incremental construction.

https://doi.org/10.24355/dbbs.084-202107050823-0

48

5. Evaluation

https://doi.org/10.24355/dbbs.084-202107050823-0

6. Related Work

In this chapter, we describe work that is related to this thesis. We discuss feature
model evolution and incremental SAT solvers.

Multiple researchers investigate feature model evolution on a feature level. Pleuss
et al. [PBD"12] split FMs into fragments wherein changes in the fragments due
to evolution are modeled by EvoOperators. Cordy et al. [CCST12] analyze feature
model changes whereas they reduce the model with knowledge about the edits for
model checking after evolution steps. Thiim et al. [TBKO09] divide edits to feature
models into four classifications. Even though they also use the CNF of feature
models to verify changes in the FM, that is done only for the classifications and not
for finding the exact difference in the CNF's of the FMs as base for FM evolution
analysis. Hoff et al. [HNST20] save FM evolution operations and determine changes
in the FM by inspecting the performed operations. The described information about
FM evolution operations could be used for future work to incrementally adapt MIGs
more efficiently. Neves et al. [NTS*11] introduce multiple templates for the analysis
of different FM evolution scenarios. However, none of these approaches uses CNF
differences for feature model evolution changes. Acher et al. [AHCT12] introduce a
concept of composing and decomposing FMs. They determine the FM differences
of two FMs by translating them into a CNF and into a binary directed graph and
compute the FM difference with the CNF or with the graph.

The literature contains multiple approaches for incremental SAT solvers [ES03,
FBS19, NRS14]. Besides, Een et al. [EB05] introduce techniques to reduce a CNF
to speed up the usage of a SAT solver. However, since the goal of this thesis is to an-
alyze the advantage of the incremental MIG compared to the MIG calculated from
scratch, we did not consider improvements regarding the SAT solver and instead
adapted the SAT solver that already exists in the implementation of a MIG. Inves-
tigating the usage of incremental SAT solvers for improvements of the incremental
calculation of a MIG is an interesting factor for future work.

https://doi.org/10.24355/dbbs.084-202107050823-0

50

6. Related Work

https://doi.org/10.24355/dbbs.084-202107050823-0

7. Conclusion and Future Work

In this thesis, we introduced all concepts that are necessary for the incremental
calculation of a MIG and provided an implementation realizing our method. We
also presented an evaluation of our work for multiple industrial feature models with
different evolution steps. For several steps of the incremental construction, we eval-
uated multiple algorithms to examine trade-offs between accuracy and runtime. In
summary, we conclude that on the one hand the incrementally constructed MIG
is more efficient regarding the computation time and the reduction of number of
necessary SAT calls. On the other hand, it has a small loss of accuracy regarding
the redundant clauses and the implicit strong edges. We argue that this loss is
relatively small compared to the possible reduction of computation time and that
the incremental construction is especially worth using when calculating a complete
MIG. Our empirical evaluation indicates that the advantage grows for larger feature
models when incrementally adapting the MIG after every evolution step in the FM.
However, even for small feature models the incremental calculation is typically more
efficient. Thus, we argue that applying the incremental construction yields benefits
for feature models of various sizes. In general, the improvement regarding efficiency
is larger for the calculation of a complete MIG since we save the most time when
detecting implicit strong edges.

We identified multiple possible improvements for the incremental construction as
future work. First, we can analyze whether we can use the knowledge of the previ-
ously dead and core features for an incremental algorithm of the calculation of the
new dead and core features. Second, we can investigate changes on the level of FM
edit operations (e.g., move feature) to detect affected features and, thus affected
clauses more efficiently. This way, we might ignore clauses that are unnecessarily
observed. Third, we can improve the search for implicit strong edges to save even
more SAT calls. The MIG calculated from scratch uses a depth first search and a
method for a preselection involved in the calculation of implicit strong edges which
we could adapt for the incremental calculation. Thereupon, we can analyze whether
the knowledge of changes in the MIG can be used to fix existing configurations that
are invalid after the evolution of its FM.

https://doi.org/10.24355/dbbs.084-202107050823-0

52

7. Conclusion and Future Work

https://doi.org/10.24355/dbbs.084-202107050823-0

A. Appendix

Figure A.1 shows the calculation for the FinancialServicesO1 models for complete
graphs without redundant clauses.

Incremental A From scratch

Time in minutes

0 2 4 6 8

FM evolution step

Figure A.1: Calculation times for all FinancialServices01 evolution steps for a com-
plete MIG without redundant clauses.

Figure A.2 shows the calculation for the Automotive02 models for complete graphs
without redundant clauses.

Table A.1 shows the exact times for each calculation for the evolution step from
Automotive02_V2 to Automotive02_V3 for a complete graph without redundant
clauses.

https://doi.org/10.24355/dbbs.084-202107050823-0

54

A. Appendix

Incremental

300

200

100

Time in minutes

A From scratch

FM evolution step

Figure A.2: Calculation times for all Automotive02 evolution steps for a complete

MIG without redundant clauses.

Time Difference

Calculation Calculated Adapted Adapted MIG -
Step MIG (sec) MIG (sec) Calculated MIG(sec)
Remove old transitive strong edges 0 0.09 +0.09
Calculate core and dead feature 8.92 8.94 +0.02
Clean CNF 0.18 0.1 -0.08
Calculate CNF difference 0 0.48 +0.48
Removed clauses 0 0.01 +0.01
Added clauses 0 2.05 +2.05
Find transitive strong edges 33.11 5.54 -27.57
Find transitive weak edges 12.65 0.8 -11.85
Find implicit strong edges 5,958.84 974.57 -4,984.27
Create MIG 1.86 0 -1.86
Calculate redundant clauses 0.02 0 -0.02
Find transitive strong edges 32.95 0.04 -32.91
Overall time 6,048.71 992.83 -5,055.88

Table A.1: Calculation times for each step for the complete MIG without redundant
clauses in the evolution step from Automotive02_02 to Automotive02_03.

https://doi.org/10.24355/dbbs.084-202107050823-0

Bibliography

[AHC*12]

[Bat05]

[BSRC10]

[CCST12]

[CHEO5]

[CW07]

[EB05)

[ES03]

[FBS19]

Mathieu Acher, Patrick Heymans, Philippe Collet, Clément Quinton,
Philippe Lahire, and Philippe Merle. Feature model differences. In In-
ternational Conference on Advanced Information Systems Engineering,
pages 629-645. Springer, 2012. (cited on Page 49)

Don Batory. Feature models, grammars, and propositional formulas.
In International Conference on Software Product Lines, pages 7-20.
Springer, 2005. (cited on Page 1, 3, and 4)

David Benavides, Sergio Segura, and Antonio Ruiz-Cortés. Automated
analysis of feature models 20 years later: A literature review. Information
systems, 35(6):615-636, 2010. (cited on Page 1 and 3)

Maxime Cordy, Andreas Classen, Pierre-Yves Schobbens, Patrick Hey-
mans, and Axel Legay. Managing evolution in software product lines:
A model-checking perspective. In Proceedings of the Sixth International
Workshop on Variability Modeling of Software-Intensive Systems, pages
183191, 2012. (cited on Page 49)

Krzysztof Czarnecki, Simon Helsen, and Ulrich Eisenecker. Formalizing
cardinality-based feature models and their specialization. Software pro-
cess: Improvement and practice, 10(1):7-29, 2005. (cited on Page 1 and 3)

Krzysztof Czarnecki and Andrzej Wasowski. Feature diagrams and log-
ics: There and back again. In 11th International Software Product Line
Conference (SPLC 2007), pages 23-34. IEEE, 2007. (cited on Page 1
and 3)

Niklas Eén and Armin Biere. Effective preprocessing in sat through
variable and clause elimination. In International conference on theory and
applications of satisfiability testing, pages 61-75. Springer, 2005. (cited
on Page 49)

Niklas Eén and Niklas Sorensson. Temporal induction by incremental sat
solving. Electronic Notes in Theoretical Computer Science, 89(4):543—
560, 2003. (cited on Page 49)

Katalin Fazekas, Armin Biere, and Christoph Scholl. Incremental inpro-
cessing in sat solving. In International Conference on Theory and Appli-

https://doi.org/10.24355/dbbs.084-202107050823-0

56

Bibliography

[HNS*20]

[IF10]

[Jan08§]

[Kril5]

[KTS*09]

[KTST18]

[KZK10]

[MTS*17]

[NRS14]

INTS*11]

cations of Satisfiability Testing, pages 136—154. Springer, 2019. (cited on
Page 49)

Adrian Hoff, Michael Nieke, Christoph Seidl, Eirik Halvard Seether,
Ida Sandberg Motzfeldt, Crystal Chang Din, Ingrid Chieh Yu, and Ina
Schaefer. Consistency-preserving evolution planning on feature models.
In Proceedings of the 24th ACM Conference on Systems and Software
Product Line: Volume A-Volume A, pages 1-12, 2020. (cited on Page 49)

Ayelet Israeli and Dror G. Feitelson. The Linux kernel as a case study
in software evolution. 83(3):485-501, 2010. (cited on Page 1)

Mikolas Janota. Do sat solvers make good configurators? In SPLC (2),
pages 191-195, 2008. (cited on Page 5)

Sebastian Krieter. Efficient Configuration of Large-Scale Feature Models
Using Extended Implication Graphs. PhD thesis, Citeseer, 2015. (cited
on Page 5)

Christian Kastner, Thomas Thum, Gunter Saake, Janet Feigenspan,
Thomas Leich, Fabian Wielgorz, and Sven Apel. Featureide: A tool
framework for feature-oriented software development. In 2009 IEEE 31st
International Conference on Software Engineering, pages 611-614. IEEE,
2009. (cited on Page 21)

Sebastian Krieter, Thomas Thiim, Sandro Schulze, Reimar Schroter, and
Gunter Saake. Propagating configuration decisions with modal implica-
tion graphs. In 2018 IEEE/ACM 40th International Conference on Soft-
ware Engineering (ICSE), pages 898-909. IEEE, 2018. (cited on Page 1,
2.5,9, and 18)

Andreas Kiibler, Christoph Zengler, and Wolfgang Kiichlin. Model count-
ing in product configuration. arXiv preprint arXiw:1007.1024, 2010.
(cited on Page 1 and 4)

Jens Meinicke, Thomas Thiim, Reimar Schréter, Fabian Benduhn,
Thomas Leich, and Gunter Saake. Mastering software variability with
FeatureIDE. Springer, 2017. (cited on Page 21)

Alexander Nadel, Vadim Ryvchin, and Ofer Strichman. Ultimately in-
cremental sat. In International Conference on Theory and Applications
of Satisfiability Testing, pages 206-218. Springer, 2014. (cited on Page 49)

Lais Neves, Leopoldo Teixeira, Demodstenes Sena, Vander Alves, Uira
Kulesza, and Paulo Borba. Investigating the safe evolution of software
product lines. In Proceedings of the 10th ACM international conference
on Generative programming and component engineering, pages 33—42,
2011. (cited on Page 49)

https://doi.org/10.24355/dbbs.084-202107050823-0

Bibliography 57

[PBD*12)

[SSK*20]

[STS20]

[TBKO09]

[TKB+14]

Andreas Pleuss, Goetz Botterweck, Deepak Dhungana, Andreas Polzer,
and Stefan Kowalewski. Model-driven support for product line evolution
on feature level. Journal of Systems and Software, 85(10):2261-2274,
2012. (cited on Page 49)

Joshua Sprey, Chico Sundermann, Sebastian Krieter, Michael Nieke, Ja-
copo Mauro, Thomas Thiim, and Ina Schaefer. SMT-Based Variability
Analyses in FeatureIDE. February 2020. (cited on Page 1)

Chico Sundermann, Thomas Thiim, and Ina Schaefer. Evaluating #sat
solvers on industrial feature models. In Proceedings of the 14th In-
ternational Working Conference on Variability Modelling of Software-
Intensive Systems, pages 1-9, 2020. (cited on Page 1 and 4)

Thomas Thum, Don Batory, and Christian Kastner. Reasoning about
edits to feature models. In 2009 IEEE 31st International Conference on
Software Engineering, pages 254-264. IEEE, 2009. (cited on Page 49)

Thomas Thiim, Christian Késtner, Fabian Benduhn, Jens Meinicke,
Gunter Saake, and Thomas Leich. Featureide: An extensible frame-
work for feature-oriented software development. Science of Computer
Programming, 79:70-85, 2014. (cited on Page 2 and 21)

https://doi.org/10.24355/dbbs.084-202107050823-0

58

Bibliography

https://doi.org/10.24355/dbbs.084-202107050823-0

Task

Many software systems nowadays have a large number of features with a much larger
number of different variants, e.g., the operating system of a mobile phone. A soft-
ware product line (SPL) is used to manage the features and to provide reusability
of their functionalities. For a better overview on the features, a feature model (FM)
organizes them hierarchically in a tree structure that describes the dependencies
between the features. With an FM, all valid combinations of features, called con-
figurations, are defined, and a configuration’s validity can be tested using the FM.
The logic of an FM can be represented by a Boolean formula.

However, when selecting specific features while constructing an individual configura-
tion, it is possible that other features become either implicitly selected or deselected
due to constraints in the FM. To prevent the user from selecting an invalid combi-
nation of features, the configuration validity needs to be tested during this process,
which is called the online phase. Validating the configuration during the online
phase to inform the user about resulting consequences when selecting or deselecting
features is called decision propagation. The validity check can be done by a SAT
solver, that checks whether a Boolean term is satisfiable. Calling a SAT solver each
time a feature gets selected or deselected to check which other features are still valid
to be selected costs a lot of time in the decision propagation. To improve this sit-
uation, Modal Implication Graphs (MIGs) have been devised that can be used to
identify implicit selection during the configuration process. The MIG is computed
only once in the offline phase, to be used afterwards in the online phase.

A conjunctive normal form (CNF) as a logical representation of the FM serves as
base for the computation of a MIG. A CNF describes a FM as a logical formula and
contains a number of clauses that consist of literals. A clause represents the depen-
dency between features by connecting the literals with a logical OR. Each literal
represents the selection or deselection of a feature (e.g., having two features A and
B with A«++B, the clause would be (—A, B)). All clauses are connected with a logical
AND. A MIG consists of nodes, where each node represents a literal from the CNF.
The nodes are connected by strong and weak edges that represent the connection
between the features. Therefore, clauses with only one literal are ignored, a clause
with two literals is represented by a strong edge and a clause with more than two
literals by a weak edge. Despite the fact that a lot of time is saved during the
configuration process, constructing the MIG in the first place takes a huge amount
of time. Changing the FM in any way results in a changed CNF and, thus, requires
a recalculation of the respective MIG. This is even necessary if the changes to the
FM are small. Hence, a technique to incrementally compute a MIG based on FM
changes could make the use of MIGs more efficient.

https://doi.org/10.24355/dbbs.084-202107050823-0

60 Task

Introducing an algorithm for the incremental computation of a MIG

In this thesis, I will provide a method to construct an incremental MIG for an evolv-
ing FM. I will use the changes in the resulting CNF and compute their impact on
the respective MIG. As basis for the incremental algorithm, I calculate the differ-
ence between the CNF before and after the changes. During the construction of
an algorithm for the computation, I differentiate between complete and incomplete
MIGs. An incomplete MIG does not contain all possible strong edges but is correct
anyway. A complete MIG cannot be completely derived by the CNF, but requires
additional computations by a SAT solver. Therefore, I will focus on incomplete
MIGs in the first place. In the end, I will analyze the impact of the feature-model
evolution operations (e.g., create or move a feature) on the CNF and investigate on
how to improve the computation time of my algorithm.

To evaluate my method, I will test the correctness of the resulting graph. To do
so, I will use small samples, generate the MIG, and evaluate the result. In addi-
tion, I will compare the time my algorithm needs to adapt the MIG with the time
the original algorithm needs to recalculate the entire MIG. To this end, I will use
different sizes of FMs as well as different numbers of changes that have been made
since the last calculation. I will also compare the resulting MIGs by their size to in-
spect that the adapted MIG is not significantly larger than the newly calculated one.

For the development process I consider the following work packages:

Work package 1: Literature Study. I will study research on informations about
“Software Product Lines”, "Modal Implication Graphs”, “Differencing Algorithms”,
"SAT Solver”

Work package 2: Concept development. I subdivide the second work package in
several smaller tasks:

e The first package is to find a concept for the incomplete graph to adapt.
Therefore, I will develop an algorithm that detects the difference between the
CNF before and after changes in the FM and adapts the MIG. I will do so for
incomplete MIGs.

e In the second package, I need to analyze the impact of changes in the FM on
the CNF and, accordingly, on the MIG.

e In the third package, I will investigate the possibility to extend the concept
for complete graphs.

e The fourth package is to investigate whether knowing what operations have
been made can simplify the process in some cases.

Work package 3: Implementation. This includes implementing the aforementioned
algorithm in FeatureIDE, where it will be used when a MIG needs to be recalculated.
Work package 4: Evaluation. I will examine the correctness of my method as well
as its computation time and the size of the resulting MIG.

Work package 5: Writing of the thesis.

https://doi.org/10.24355/dbbs.084-202107050823-0

Hiermit erklare ich, dass ich die vorliegende Arbeit selbstéindig verfasst und keine
anderen als die angegebenen Quellen und Hilfsmittel verwendet habe.

Braunschweig, den 08. Januar 2021

https://doi.org/10.24355/dbbs.084-202107050823-0

	Contents
	List of Figures
	List of Tables
	1 Introduction
	2 Background
	2.1 Feature Models
	2.2 Feature Models and Logics
	2.3 Modal Implication Graphs

	3 Updating Modal Implication Graphs
	3.1 Incomplete Modal Implication Graphs
	3.1.1 Computing Redundant Clauses
	3.1.2 Handling Added Clauses
	3.1.3 Removal of Clauses in the CNF

	3.2 Complete Modal Implication Graphs

	4 Implementation
	4.1 FeatureIDE
	4.2 Integration of Incremental MIG
	4.2.1 Necessary Adaptions
	4.2.2 Incremental MIG

	5 Evaluation
	5.1 Experiment Design
	5.2 Results
	5.3 Discussion
	5.4 Threats to Validity

	6 Related Work
	7 Conclusion and Future Work
	A Appendix
	Bibliography
	Task

