
Institut für Softwaretechnik
und Fahrzeuginformatik

Bachelor’s Thesis

Deriving Subset Software Product
Lines Using Partial Configurations

with FeatureIDE

Author:

Paul Westphal

27th July 2020

Advisors:

Prof. Dr. Ina Schaefer, Dr. Lukas Linsbauer
Institiute of Software Engineering and Automotive Informatics

https://doi.org/10.24355/dbbs.084-202011201423-0

Westphal, Paul:
Deriving Subset Software Product Lines Using Partial Configurations with Fea-
tureIDE
Bachelor’s Thesis, TU Braunschweig, 2020.

https://doi.org/10.24355/dbbs.084-202011201423-0

Abstract

Software product lines are commonly used in software engineering to mass-produce
custom software. Over time, software product lines can become very large and
complex and, thus, difficult to work with. To hide information in a software prod-
uct line, or to reduce its size it may be necessary to remove features from it. To
support process, we introduce subset software products lines and an approach to
generate them using partial configurations. This allows developers to create a new
software product line without unwanted features and focus on the task at hand. To
demonstrate our approach, we implemented it for two composers in FeatureIDE,
an extensible framework for feature-oriented software development. We chose one
annotation-based (Antenna) and one feature-oriented (FeatureHouse) composition
mechanism to show the versatility of our concept. We evaluate our implementation
by deriving partial subset software product lines from known software product lines
with partial configurations. The evaluation shows that our implementation delivers
correct results in a runtime that is usable for further research.

https://doi.org/10.24355/dbbs.084-202011201423-0

iv

https://doi.org/10.24355/dbbs.084-202011201423-0

Zusammenfassung

Softwareproduktlinien werden häufig in der Softwaretechnik verwendet um kunden-
spezifische Software massenproduzierbar zu machen. Mit der Zeit können Soft-
wareproduktlinien sehr groß und komplex und damit schwierig zu benutzen werden.
Um Informationen zu verstecken, oder die Größe einer Softwareproduktlinie zu ver-
ringern, kann es nötig sein, Features aus ihr zu entfernen. Um diesen Prozess zu vere-
infachen, führen wir Teilmengen von Softwareproduktlinien und eine Art sie mithilfe
von partiellen Konfigurationen zu generieren. Dies erlaubt es Entwicklern, eine neue
Softwareproduktlinie ohne ungewollte Features zu erstellen und sich auf das Wichtige
zu konzentrieren. Um unser Konzept zu beweisen haben wir es für zwei Composer
in FeatureIDE, einem erweiterbaren Programmiergerüst für Feature-orientierte Soft-
wareentwicklung, implementiert. Wir haben uns für einen annotations-basierten
(Antenna) und einen feature-orientierten (FeatureHouse) composer entschieden um
die Vielseitigkeit dieses Konzepts zu demonstrieren. Wir werten unsere Implemen-
tierung aus indem wir mithilfe von partiellen Konfigurationen Teilmengen von bekan-
nten Softwareproduktlinien ableiten. Unsere Auswertung zeigt, dass unsere Umset-
zung korrekte Ergebnisse liefert, in einer Laufzeit die für weitere Forschung nutzbar
ist.

https://doi.org/10.24355/dbbs.084-202011201423-0

https://doi.org/10.24355/dbbs.084-202011201423-0

Contents

1 Introduction 1

2 Motivating Example 3

3 Background 7
3.1 Software Product Lines . 7
3.2 Feature Models . 7
3.3 Configurations . 9
3.4 Assets . 10
3.5 Generating Products . 10

4 Concept 11
4.1 The Problem Statement . 11
4.2 Our Approach to Solving the Problem 11

5 Implementation 17
5.1 FeatureIDE . 17
5.2 Deriving Subset SPLs in FeatureIDE 18
5.3 Composer-independent steps . 18
5.4 Modifying Propositional Formulas in FeatureIDE 21
5.5 Composer-Dependent Steps . 22

5.5.1 Antenna . 22
5.5.2 FeatureHouse . 25

6 Evaluation 27
6.1 Research Goal . 27
6.2 Research Questions . 27
6.3 Selection of Software Product Lines 28
6.4 Evaluation process . 29
6.5 Evaluation of Correctness of Valid Products of Subset SPLs 30
6.6 Evaluation of Runtime of the Derivation Process 32

7 Related Work 35

8 Conclusion and Future Work 37

A Appendix 39

Bibliography 41

https://doi.org/10.24355/dbbs.084-202011201423-0

https://doi.org/10.24355/dbbs.084-202011201423-0

1. Introduction

Reusing Software parts is crucial to large scale development of custom software.
Creating, as well as managing software families is a difficult task. Software product
line engineering has emerged as an effective way to leverage the commonalities of dif-
ferent software products, while managing the variabilities [BSRC10]. Configurations
offer the developer choices as to which features from a software product line should
be included in a product. For each selectable feature, conventional configurations
give developers a binary decision, whether to inlucde or exclude it.

During the configuration process, developers may not want to commit to selecting
some features immediately. However, for other features they may know in advance
whether they should be part of the eventual product or not. Partial configurations
allow developers to defer this choice to a later time by not only allowing the selection
or deselection of a feature, but to leave it undecided [BSRC10].

To further support the testing and development process with partial configurations,
it is possible to derive a new software product line from these partial configura-
tions, which is a subset of the original software product line. This process removes
variability from selected features and entirely removes unselected features and their
corresponding code. This simplifies the development process by reducing the size of
the software product line.

It allows developers to focus on the task at hand, without having to worry about
compatibility with unneeded features. To accomplish this, we have developed a
prototype in FeatureIDE, a framework for feautre-oriented software development.
We have then applied it to well known datasets to verify its correctness and examine
its performance.

Goal of this Thesis

The goal of this thesis is to explore the possibilities of partial configurations for
the derivation of subset software product lines and provide a usable framework
for further research. To accomplish this, we develop a prototype that allows the
derivation of subset software product lines and show its correctness.

https://doi.org/10.24355/dbbs.084-202011201423-0

2 1. Introduction

Structure of this Thesis

Our thesis is structured in the following way: In Chapter 2 (Motivating Example),
we present an example scenario that illustrates a use case for the derivation of
subset software product lines. We introduce the concepts and terminology that will
be used in this thesis. Next, in Chapter 3 (Background) we explain these concepts
more in-depth and introduce the definitions that we will be working with in the
following chapters. In Chapter 4 (Concept), we define subset software product
lines and the expected output of the derivation of subset software product lines
using partial configurations. We also introduce algorithms that we use for this
purpose. In Chapter 5 (Implementation), we present the FeatureIDE framework and
explain in detail our implementation of the concepts of Chapter 4 into FeatureIDE.
In Chapter 6 (Evaluation) we put our implementation to the test and evaluate
its correctness and performance. In Chapter 7 (Related Work) we present other
publications with similar goals and compare them to our work. Last, in Chapter 8,
we summarize our contributions and findings and propose ideas for possible future
research.

https://doi.org/10.24355/dbbs.084-202011201423-0

2. Motivating Example

In this chapter, we present a motivating example to illustrate a use case with a
problem we are attempting to solve.

Figure 2.1: Feature model representing an ATM software family

Figure 2.1 shows a feature model representing a family of automated teller machines
(ATM). An ATM requires a currency, an Authentication method, and at least one
language. Additionally, developers may choose to include any of the optional features
(e.g. Printer). Features in the feature model can either be abstract or concrete.
Abstract features represent a concept and do not have any code associated with
them, while each of the concrete features represents a software part. In our fictitious
scenario, a firm A producing ATMs wants to delegate the rest of the development of
an ATM software project to a subcontractor B. However, the software product line
contains source code involving new technologies that are security-critical. Iris_Scan
and Facial_Recognition are features that are not needed for subcontractor B to
finish their project. Sharing these software parts with another software firm could

https://doi.org/10.24355/dbbs.084-202011201423-0

4 2. Motivating Example

potentially increase the risk of a leak of these security-related software parts; firm
A wants to avoid this.

Figure 2.2: Partial configuration early in the development process of ATM

The software developers are early in the development process. As can be seen in
Figure 2.2, it has been decided that the machine will use Euro as a currency and have
the ability to print bank statements. The language French has been ruled out, and
as such its corresponding feature was deselected. It has also been decided that no
information about the facial recognition or iris scan authentication methods will be
given to the developers of firm B finishing the project. As a result of these decisions,
the features French, Facial_Recognition and Iris_Scan have been deselected.
Additionally, resulting from the alternative relationship between the currency fea-
tures, selecting the EUR feature automatically invalidates the GBP feature. Figure 2.3

Figure 2.3: Code excerpt from the ATM Software Product Line

shows java code from the software product line, which is associated with the feature
Facial_Recognition.

The goal is to derive a new software product line, which does not include these four
features and their corresponding code. Firm A can share this generated part of the

https://doi.org/10.24355/dbbs.084-202011201423-0

5

software product line with firm B, without having to worry about their security-
critical code being exposed to third parties.

https://doi.org/10.24355/dbbs.084-202011201423-0

6 2. Motivating Example

https://doi.org/10.24355/dbbs.084-202011201423-0

3. Background

This chapter provides the reader with the required knowledge and introduces the
terminology used in the following chapters. This includes software product lines,
feature models, configurations, assets, the generation of products. First, we roughly
describe each concept, then we define it in an abstract way. Last, we illustrate it
with an example.

3.1 Software Product Lines

A software product line (SPL) is a set of related software products. These prod-
ucts share features. A product can be derived from a valid selection of features
(see Section 3.5). SPLs are used to efficiently reuse code, rather than having to
create libraries from old code or even starting over from scratch with each software
project [PBL05].

Definition 3.1 (Software Product Line). A software product line S = (M,A) consists
of a Feature Model M = (F, P) (see Section 3.2) and corresponding assets A (see
Section 3.4).

3.2 Feature Models

Feature models are widely used to define the set of valid feature selections for a
software product line [BSRC10][HFACA13]. A feature model consists of features
and the relationships between those features. Figure 2.1 depicts an example feature
model showing a representation of an ATM software product line.

Definition 3.2 (Feature Model). A feature model M = (F, P) consists of a finite set
of features F and a propositional formula P in CNF, which is a set of clauses. Each
clause p ∈ P is a disjunction of literals. P defines the relationship between features.
The set of features F is the set of all variables in P .

https://doi.org/10.24355/dbbs.084-202011201423-0

8 3. Background

Each feature can be either abstract or concrete. Abstract features do not have assets
mapped to them. For example, the abstract feature Language represents the concept
of language and allows the selection of a concrete feature, but does not have any
code directly associated with it.

There are two types of relationships between features: The first type is a relationship
between a parent feature and its children; in FeatureIDE (see Section 5.1) these can
be and/or/alternative groups.

� An or relationship means that if the parent feature is selected, at least one
child feature must be selected. The ATM software product line represented
by Figure 2.1 supports one or more of the languages English, German, and
French.

� An and relationship means that selecting the parent feature allows the selection
of any number of its child features. Any of the features Language, Currency,

Bank_Statement, Printer, and Authentication can be selected.

� An alternative relationship means that if the parent feature is selected, exactly
one of the child features must be selected. In Figure 2.1 upon selected Authen-

tication, there is a choice between PIN, Password, Facial_Recognition,

and Iris_Scan as an authentication method, but they are mutually exclusive.

For the example feature model shown in Figure 2.1, the set F is

{Automated Teller Machine, Language, English, German, French, Currency, EUR,
GBP, Bank Statement, Print Statement, Printer, Authentication, PIN, Change PIN,
Password, Facial Recognition, Iris Scan}.

Features can be marked as mandatory. A mandatory feature has to be selected, if
its parent feature is selected. There are constraints that cannot be expressed with a
feature model’s hierarchy. These are cross-tree relationships, which are modeled via
constraints. For example, in the ATM feature model in Figure 2.1, by selecting the
feature Print_Statement you have to select the feature Printer as well, despite
these features not being directly related via the feature model’s hierarchy.

All of these relationships are modeled by the feature model’s propositional formula
P . The propositional formula P for the example feature model Figure 2.1 is:

{(Automated Teller Machine), (Bank Statement ∨ ¬Print Statement), . . . } 1

Each cross-tree constraint or added feature adds more clauses to the feature model’s
propositional formula. For example, the or relationship between the mandatory
feature Language and its children is realized by adding the following clauses to the
feature model’s propositional formula P :

(Language∨¬Automated Teller Machine), (Language∨¬English), (Language∨
¬German), (Language ∨ ¬French), (English ∨German ∨ French ∨ ¬Language)

1The full propositional formula can be found in the Appendix Chapter A.

https://doi.org/10.24355/dbbs.084-202011201423-0

3.3. Configurations 9

3.3 Configurations

A configuration is a selection of features. Each feature can be selected, deselected,
or left undecided. A full configuration is a configuration where no feature is left
undecided. A configuration where at least one feature is left undecided is a partial
configuration.

Definition 3.3 (Configuration). Given a set of Features F , a configuration C is a
set of tuples c = (f, b) with b ∈ {true, false, ?} that assign one truth value b to each
feature f ∈ F . The set of possible truth values {true,false,?} represent selection
(true), deselection (false) or undecided (?).

Definition 3.4 (Full Configuration). A configuration C is a full configuration,

iff @x ∈ C : x.b = ?.

Definition 3.5 (Partial Configuration). A configuration C is a partial configuration,

iff ∃x ∈ C : x.b = ?.

Figure 2.2 shows a configuration. The features English, German, French, PIN, and
Password are still undecided.

A configuration can be valid or invalid for a feature model’s propositional formula
P . If the assignments of truth vales to the features evaluate to true, it is a valid
configuration. It is invalid if they evaluate to false.

Definition 3.6 (Evaluation of Propositional Formula with a Configuration). Given
a propositional formula P and a set of tuples C with c = (f, b) ∈ C, we define the
operation

P (C) = r ∈ {true, false}

as an evaluation of the propositional formula P , using the truth value assignments
of the tuples c = (f, b) ∈ C as variables in the clauses in C. If a variable f ∈ Vp

does not have a truth value assignment in C or is assigned the truth value ?, it is
treated as false for the purpose of evaluation the propositional formula.

Definition 3.7 (Valid Configuration). A configuration C is valid for a Feature Model
m = (F, P) if and only if P (C) evaluates to true.

Definition 3.8 (Invalid Configuration). A configuration C is invalid for a Feature
Model m = (F, P) if and only if P (C) evaluates to false.

Definition 3.9 (Core Features). Given a set of all valid configurations Cvalid and a
set of features F , a feature f is a core feature if

∀c ∈ Cvalid : fc = true.

In practice, undecided features are often implicitly treated as unselected. Partial
configurations allow a developer to defer the choice which features to include in the
final product to a later point in time. A partial configuration can not be used to
create a software product unless undefined features are treated as unselected. In
this thesis, we develop a way to use partial configurations to derive a subset of a
software product line.

https://doi.org/10.24355/dbbs.084-202011201423-0

10 3. Background

3.4 Assets
The assets of an SPL consist of a payload and its mapping to the SPL’s features. The
payload is usually source code, but it can be anything on a computer’s file system.
For example, FeatureIDE supports the composer ImageComposer that supports the
generation of .png files by superimposing them2.

Definition 3.10 (Assets). Given a Feature Model M = (F, P), we define assets A as
a set of tuples a = (s, U) where s is a unique payload and its location in the context
of the SPL and U is a propositional formula in CNF using the features F as variables.
If the propositional formula U is empty, it is treated as a tautology. Sall is the set
of all payloads in A.

Definition 3.11 (Reachable Asset). Given an SPL S = (M,A), an asset a ∈ A with
a propositional formula U is reachable if ∃C : (U(C) = true) ∧ (M.P (C) = true).

Definition 3.12 (Reachable with partial configuration). Let Cundecided be the set of
tuples c = (f, b) with b = ?. Given an SPL S = (M,A), an asset b ∈ A with a
propositional formula U is reachable with a partial configuration C if there is a set
Cdecision of tuples a = (f, b), such that

� U((C \ Cundecided) ∪ Cdecisions) = true

� M.P ((C \ Cundecided) ∪ Cdecisions) = true

Figure 2.3 shows some of the assets of the ATM software product line. There is
a direct mapping between the lines 2 to 9 of this source code and the feature Fa-

cial_Recognition through the preprocessor statement // #if Facial_Recognition.
The propositional formula U of this asset is {(Facial Recognition)}. The payload
s is the Java code in lines 2 to 9.

The asset is reachable because the propositional formula P ∧ U is solvable. How-
ever, it is not reachable with the configuration pictured in Figure 2.2, because the
feature Facial_Recognition is deselected. This means the propositional formula
U evaluates to false, making the asset unreachable.

3.5 Generating Products
Given a software product line and a configuration, a product can be generated. We
define a product as the set of all payloads of the assets in an SPL that evaluate to
true, with a given configuration.

Definition 3.13 (Generating a product). Given a software product line S = (M,A)
with M = (F, P), and a configuration C, the function generate(S,C) returns the
following set of payloads:

generate(S, C) =

{
∅ P (C) = false
{a.s|(a.U(C) = true) ∧ (a ∈ A)} sonst

If the configuration is invalid, an empty set is returned. Otherwise, the payloads of
all assets with propositional formulas that evaluate to true for the given configuration
are included in the generated product.

2https://github.com/FeatureIDE/FeatureIDE/tree/develop/plugins/de.ovgu.featureide.core.images

https://doi.org/10.24355/dbbs.084-202011201423-0

4. Concept

In this chapter, we describe our concept for the derivation of subset SPLs. First,
we define the problem we are attempting to solve. Second, we define a solution to
the problem and provide a step-wise overview of how we get to the solution. Then
we go further into detail for each step and introduce the algorithms that we use to
solve the problem.

4.1 The Problem Statement

Over time, software product lines can become very large and complex or contain
unwanted features. For certain stakeholders, a smaller version of a software product
line can be enough, but manually reducing the size of both the SPL’s feature model
and corresponding assets is a very time-consuming and error-prone process.

4.2 Our Approach to Solving the Problem

Our goal is to derive a subset SPL S1 from an SPL S0 using a configuration C. In
this section, we first define subset SPLs. Second, we define the expected output of
the operations we use to derive subset SPLs using configurations. Then, we give an
overview over the three steps that are applied to an SPL to produce this output.
Configurations are a widely used and understood mechanism to generate products,
we found that they can also be used to simplify a software product line.

A subset SPL S1 is a reduced version of a software product line S0. The set of
features in S1 and the set of products that can be generated are subsets of those
sets in S0.

Definition 4.1 (Subset Software Product Line). We have a software product line
S1 = (M1, A1) with M1 = (F1, P1) and A1 = (S1, U1) and a software product line
S0 = (M0, A0) with M0 = (F0, P0) and A0 = (S0, U0). Let Cp be a set of all possible
configurations C = (f, b), i.e. permutations of features f ∈ F1 and truth values
b ∈ {true, false}.

Then, S1 is a subset of product line S0 (S1 ⊂ S0) if and only if:

https://doi.org/10.24355/dbbs.084-202011201423-0

12 4. Concept

1. F1 ⊂ F0

2. ∀C ∈ Cp : generate(S0, C) = generate(S1, C)

4.1 implies that for an SPL S1 to be a subset of another SPL S0, its set of features
F1 has to be a subset of F0 and each possible configuration for S1 has to generate
the same product for both SPLs.

However, the goal is not to create any subset of a software product line. As described
in the motivating example in Chapter 2, we want to use a configuration C to derive
a subset sofware product line S1 from a software product line S0. We now define
the expected output of this process.

Definition 4.2 (Output: Subset Software Product Line derived with a Configu-
ration). Given a software product line S1 = (M1, A1) with M1 = (F1, P1) and
A1 = (S1, U1), a software product line S0 = (M0, A0) with M0 = (F0, P0) and
A0 = (S0, U0), and a configuration Cbase with Cbase being a set of tuples a = (f, b).

We define Fundecided as a set of features that are not assigned true or false in Cbase:

Fundecided = {∀f ∈ F : f |(f, true) /∈ C ∧ (f, false) /∈ C}

We define Cbasep as the set of all possible configurations of undecided features in
Cbase, i.e. permutations of features f ∈ Fundecided and truth values b ∈ {true, false}.

Then S1 is the subset of S0 based on the configuration Cbase if and only if:

1. S1 ⊂ S0

2. ∀C ∈ Cbasep : generate(S0, c) = generate(S1, C)

3. ∀p ∈ P1 : ∀f ∈ Fdesel : f /∈ p

4. ∀a ∈ A1 : ∀u ∈ a.U : ∀f ∈ Fdesel : f /∈ u

4.2 implies that the expected output of our operation is an SPL1 where all configura-
tions that are still reachable with the selections in Cbase generate the same products
from S1 and S0. Also S1 no longer contains any features that were deselected in
Cbase.

We now describe our procedure to deriving subset SPLs based on a configuration
and generating this output. It can be summed up in the following three steps applied
to a copy of a software product line S0 in the following order:

1. Remove features specified as unselected in Cbase from feature model.

2. Turn features specified as selected in Cbase into core features.

3. Modify propositional formulas of assets.

We explain each of these steps in detail in the following sections.

https://doi.org/10.24355/dbbs.084-202011201423-0

4.2. Our Approach to Solving the Problem 13

Removing features specified as unselected from feature model

In this section, we explain the first step of our approach to solving the problem
outlined in Section 4.2. We define the set of features F1 and present an algorithm
we use to modify the propositional formula of the feature model M0.

The input for this step is an SPL S0 = (M0, A0) and a configuration C, which
is a set of tuples a = (f, b). The goal of this step is to create a feature model
M1 = (F1, Pmodified) with all deselected features removed. The assets of our SPL
will be modified at a later time. We modify the propositional formula P0, such that
all deselected features are replaced with false and thus removed. We define Fdesel

as the set of features that are assigned the value false in the configuration C:

∀x ∈ C : (x.b = false) =⇒ fx ∈ Fdesel

Then, we modify the propositional formula using the Algorithm 1, with P0 and Fdesel

as inputs:

Algorithm 1: Remove deselected features from propositional formula in CNF

input : propositional formula P in CNF

set of features F , each f ∈ F corresponding to a variable in P
output: propositional formula Pmodified, with all features f ∈ F removed.
foreach clause c ∈ P do

foreach feature f ∈ F do
if c contains f then

replace all occurrences of f in c with false

if c is tautology then
remove clause c from P
continue

else if c is contradiction then
replace clause c with (false)
continue

else
remove all occurrences of false from c
continue

foreach clause c ∈ P do
if P contains duplicate of c then

remove clause c from P

return P

This algorithm iterates over every clause in the propositional formula and replaces
all occurrences of features in F with false. Afterwards, it iterates over all clauses in
P a second time to remove any duplicate clauses (i. e., clauses with an equivalent
propositional formula).

Assume we have a propositional formula P = {(Authentication∨¬Iris Scan), (PIN∨
Password∨Facial Recognition∨ Iris Scan∨¬Authentication)} and a set of fea-
tures F = {Facial Recognition, Iris Scan} as inputs for Algorithm 1.

� The first clause is removed, because (Authentication∨¬False) is a tautology.

https://doi.org/10.24355/dbbs.084-202011201423-0

14 4. Concept

� The second clause is changed to (PIN∨Password∨False∨False∨¬Authentication)
and all occurences of False are then removed.

� The second iteration over P does not change the propositional formula, since
there are no duplicates.

The algorithm then returns the propositional formula P = {(PIN ∨ Password ∨
¬Authentication)}.

The return value of this algorithm with P0 and Fdesel as inputs is a propositional
formula Pmodified in CNF. The set of features F1 is defined as the set of features
variables in Pmodified. After removing all features in Fdesel from the propositional
formula, the SPLs set of features F is now F1. With this step completed, the feature
model M = (F1, Pmodified) now fulfills the following condition F1 ⊂ F0 of Definition
4.1.

Turning Selected Features into Core Features

Next, we explain the second step of our approach and the reasoning behind it. This
section covers how to turn features in a feature model, which are selected in a
configuration C, into core features. We define the set of selected features Fsel and
introduce an algorithm to turn features into core features.

As described in Section 3.9, a core feature is a feature that has to be included in
every valid configuration. Features that have been selected in the configuration that
is used to derive a subset SPL will definitely be included in the final product. If they
could still be deselected, there would be a difference between the products that can
be generated from the partial configuration and generated SPL, which means it can
not be a subset SPL according to 4.2. Additionally, not all composition mechanisms
(e.g., FeatureHouse [AKL09]) can include assets if they do not have an associated
feature. Therefore, we preserve these features and turn them into core features,
rather than removing them. This solution works for every composition mechanism
we are aware of. Furthermore, we avoid having to merge the payloads of selected
features into unrelated features to preserve their assets.

For this step, we further modify our feature model M = (F1, Pmodified) from the last
step. We define Fsel as the set of features that are assigned the value true in the
configuration C: Fsel = {f |(f, true) ∈ C}. We then use Algorithm 2 with Pmodified

and Fsel as inputs.

Algorithm 2: Turn selected features into core features

input : propositional formula P in CNF

set of features F , each f ∈ F corresponding to a variable in P
output: propositional formula Pmodified, with all features f ∈ F turned into

core features
foreach feature f ∈ F do

add a clause (f) to P

return P

This algorithm iterates over all features in F and adds a clause mandating that
feature to the propositional formula.

https://doi.org/10.24355/dbbs.084-202011201423-0

4.2. Our Approach to Solving the Problem 15

Suppose we have a propositional formula

P = {(PIN ∨ Password ∨ ¬ Authentication)}

and a set of features F = {Automated Teller Machine, Language, Currency, EUR,
Bank Statement, Print Statement, Printer, Authentication}, which is the set of
selected features in Figure 2.2, as inputs.

Algorithm 2 returns a propositional formula P = {(PIN ∨ Password ∨ ¬ Authentica-
tion), (Automated Teller Machine), (Language), (Currency), (EUR), (Bank Statement),
(Print Statement), (Printer), (Authentication)}.

The return value with Pmodified and Fsel as inputs is a finished propositional formula
P1. With this step completed, only the set of assets has to be modified for all
conditions in Definitions 4.1 and 4.2 to hold.

Modifying Propositional Formula of Assets

In this section, we explain the last step of our approach. We explain how the assets
A of an SPL have to be modified to derive a subset SPL S1 with a configuration C
and present Algorithm 3 for this purpose.

Assets consist of a payload and a propositional formula in CNF. If the propositional
formula is empty or evaluates to true, the payload is included in the product. We
exclude assets from the subset SPL that are not reachable after their associated
features have been removed. Additionally, propositional formulas of assets that are
still reachable are modified, such that features that are no longer in the set of features
F1 ∈M1 are not being used as variables.

To accomplish this, we use Algorithm 3 with the asset of assets A0 from the original
SPL S0 and the set of deselected features Fdesel from configuration C.

Algorithm 3: Modify propositional formula of assets

input : set of assets A0 with a = (s, U0) ∈ A0

set features F , each f ∈ F corresponding to a variable in a.U
output: set of assets A1 with adjusted propositional formulas a.Umodified,

with all features f ∈ F removed.
and with unreachable assets removed

foreach Asset a ∈ A do
a.U := Algorithm1(a.U, F)
if a.U is contradiction then

A := A \ a
return A

This algorithm iterates over every asset a ∈ A and calls Algorithm 1 to modify the
asset’s propositional formula. Afterwards, the algorithm evaluates the propositional
formula. If it is a contradiction, the asset a is removed from the set of assets A.
After the algorithm is done with this process for every asset, it returns the remaining
set of assets Amodified.

Suppose we have a set of assets A = {(source code implementation of facial recogni-
tion, (Facial Recognition)), (source code to initialize authentication,(Authentication),

https://doi.org/10.24355/dbbs.084-202011201423-0

16 4. Concept

(Iris Scan ∨ Password ∨ Facial Recognition ∨ PIN))} and a set of features F = {Fa-
cial Recognition, Iris Scan} as inputs for Algorithm 3 as inputs for Algorithm 3.

� The first asset is removed from A, because the propositional formula (false)
is a contradiction.

� The propositional formula of the second asset is changed: (source code to
initialize authentication,(Authentication), (Password ∨ PIN))

Algorithm 3 returns the set A = {(source code to initialize authentication,(Authentication),
(Password ∨ PIN))} with the implementation of facial recognition removed.

The return value of this algorithm with A0 and Fdesel as inputs is the set A1. The
assets of the SPL have been modified such that assets that are unreachable with
Cbase are removed and the propositional formulas of all assets a ∈ A0 have been
modified to exclude deselected features Fdesel.

With this step completed, the assets A1 now fulfill the following necessary conditions
according to Definition 4.1

� F1 ⊂ F0

� ∀C ∈ Cp : generate(S0, C) = generate(S1, C)

� ∀C ∈ Cbasep : generate(S0, C) = generate(S1, C)

� ∀p ∈ P1 : ∀f ∈ Fdesel : f /∈ p

� ∀a ∈ A1 : ∀u ∈ a.U : ∀f ∈ Fdesel : f /∈ u

Therefore, all conditions are fulfilled and S1 is a subset SPL of S0 based on Cbase.

In this chapter, we described a series of steps that allow the derivation of a subset
SPL from an existing SPL with a configuration. In the next chapter, we will apply
this concept by implementing it in FeatureIDE. Then, we evaluate the correctness
and runtime of that implementation.

https://doi.org/10.24355/dbbs.084-202011201423-0

5. Implementation

In this chapter, we explain how we implemented the concepts from the last chapter
in FeatureIDE. First, we present the tool FeatureIDE and explain why we chose it
to implement derivation of subset SPLs. Next, we describe in detail how we imple-
mented the concepts from the previous chapter into FeatureIDE. We implemented
the above concepts for two concrete variability mechanisms: The annotative com-
poser Antenna and the feature-oriented composer FeatureHouse. We later explain
the syntax and differences in feature-code mapping of Antenna and FeatureHouse.
All code described in this chapter is available on github1.

5.1 FeatureIDE
FeatureIDE is a framework for feature-oriented software development [MTS+17a].
It has been under constant development as an open-source project since 2004. Fea-
tureIDE can be used as a standalone library or as a plugin for the popular open-
source IDE Eclipse. FeatureIDE offers developers a wide variety of tools for the
development of software product lines, such as a graphical feature diagram editor,
automated analysis of feature models, a large selection of composers (which we ex-
plain in further detail in Section 5.5), a configuration editor that supports partial
configurations, and support for the generation and testing of products.

We chose FeatureIDE for this project, because it already offers a lot of functionali-
ties (e.g. partial configurations editor, support for propositional formulas) that are
useful for the derivation of subset product lines. Additionally, the large number of
existing tools in FeatureIDE allow us to further use and test newly generated subset
SPLs in a variety of ways. FeatureIDE is written in Java, so our implementation is
written in Java as well. FeatureIDE’s different functionalities are spread out over
multiple plugins such that users can pick and choose which parts of FeatureIDE they
want to install in their Eclipse application. Our implementation of subset software
product lines is built into existing FeatureIDE plugins; we extended the plugin Fea-

tureIDE, as well as the composer plugins Antenna, and FeatureHouse. To use the
functionality presented in this chapter, one only needs to install these plugins.

1https://github.com/PaulWestphal/FeatureIDE-subsetSPL

https://doi.org/10.24355/dbbs.084-202011201423-0

18 5. Implementation

5.2 Deriving Subset SPLs in FeatureIDE

As shown in Figure 5.1, the derivation of subset SPLs is split over three distinct
classes, each solving distinct tasks. First, NewPartialFeatureProjectWizard al-
lows the user to input the configuration, project name, and target path through a
graphical user interface (GUI). The class uses this information to set up the new
project. Second, the project is passed to the PartialFeatureProjectBuilder.
This class removes deselected features from the project’s feature model and cre-
ates a constraint, mandating the selection of selected features. Last, the project is
passed to the feature project’s composer. Here, the assets will be manipulated such
that unreachable code is removed. Due to the differences in mapping betwen code
and features between the different composers, this step has to be implemented for
each composer individually. For our prototype, we decided to extend one annotation-
based composer (Antenna Section 5.5.1) and one composer from the feature-oriented
programming paradigm (FeatureHouse Section 5.5.2).

Figure 5.1: Simplified Class Diagrams Showing the Tasks of each Class involved in
the Building of Subset SPL

In the following sections, we describe in more detail how these classes and their
methods work on a technical level.

5.3 Composer-independent steps

In this section, we explain the implementation of steps one and two of the derivation
of subset SPLs that were outlined in the concept chapter Section 4.2. Namely,
modifying the feature model’s propositional formula and turning selected features
into core features. These steps are independent of the composer being used and do
not need to be changed if one wants to implement this process for any additional
composers.

NewPartialFeatureProjectWizard

In this section, we explain how the NewPartialFeatureProjectWizard is used and
how it is implemented in FeatureIDE. This class provides users a graphical interface
to decide the inputs to use for the steps outlined in Section 4.2 in the concept
chapter.

The NewPartialFeatureProjectWizard offers users a simple graphical interface to
derive subset SPLs from existing FeatureIDE projects. To access this wizard, one
only needs to right-click any FeatureIDE project which supports the derivation of
partial feature projects (Section 5.5), navigate to the FeatureIDE submenu, and click
the menu entry Derive Partial Project. The wizard is instantiated and passed
the selected FeatureIDE project by our handler class NewPartialProjectWizard-

Handler. This class extends the FeatureIDE class AFeatureProjectHandler, which
is an abstract class for operations in FeatureIDE that work on a FeatureIDE project.

https://doi.org/10.24355/dbbs.084-202011201423-0

5.3. Composer-independent steps 19

Figure 5.2: Class Diagram for New Partial Feature Project Wizard

Figure 5.3: Screenshots of the NewPartialFeatureProjectWizard pages

The class NewPartialFeatureProjectWizard is located in the package
de.ovgu.featureide.ui.wizards. As shown in Figure 5.2, our class NewPar-

tialFeatureProjectWizard is an extension of Eclipse’s BasicNewResourceWizard.
That means it consists of Eclipse WizardPage objects.

The wizard has two pages, which can be seen in Figure 5.3. The first page Config-

urationSelectionPage is a simple extension of the Eclipse WizardPage and offers
the user a simple menu where they can choose one configuration. We wrote this page
to not be specific to the derivation of partial feature projects, such that it could be
used for other tasks in the future that require the selection of a configuration in
FeatureIDE. The page is constructed by calling the constructor ConfigurationS-

electionPage() and passing a list of configuration names and the name of the
configuration that should be selected by default.

The second page is a WizardNewProjectCreationPage, which is a wizard page that
is commonly used in Eclipse to set up new projects. This page allows users to input
a name and location for the new partial FeatureIDE project and allows adding it to
the working sets.

Before beginning the steps described in Chapter 4, we first make a copy of the base
project to then work on. This task is also handled by the NewPartialFeature-

ProjectWizard. We implemented copying of the base project by using Eclipse’s
CopyProjectOperation, which is created and executed after pressing finish. After

https://doi.org/10.24355/dbbs.084-202011201423-0

20 5. Implementation

this step, the class PartialFeatureProjectBuilder is instantiated by passing the
newly created copy and the path to the selected configuration.

PartialFeatureProjectBuilder

In this section, we explain how the PartialFeatureProjectBuilder class takes a
configuration and a FeatureIDE project as inputs to fulfill steps one and two of our
approach to solve the problem outlined in the concept chapter Section 4.2.

Figure 5.4: Class Diagram for Partial Feature Project Builder

The class PartialFeatureProjectBuilder has been developed such that it can
be used independently from the wizard we introduced in the last section. Only
a FeatureIDE project and a configuration are required to instantiate and run the
PartialFeatureProjectBuilder. Upon calling the method transformProject(),
the builder class begins working on the project.

First, the builder calls the method manageConfigurations(). This method deletes
all configuration files in the new FeatureIDE project because they will be unusable
after the subset SPL derivation process. The method then creates a copy of the con-
figuration that was used to instantiate the PartialFeatureProjectBuilder class
in the new FeatureIDE project’s configuration directory.

Then, the two lists removedFeatureList and selectedFeatureList are created
from the configuration file. These lists will be used in the modifyFeatureModel()

and buildPartialFeatureProjectAssets() methods.

Previously, only the method getSelectedFeatureNames() was available in Fea-
tureIDE’s Configuration class. We implemented the methods getUnselected-

FeatureNames() and getUndefinedFeatureNames() in Configuration to return
the names of deselected and undecided features. Analogous to getSelectedFea-

tures(), these methods create a list of strings with features names. This accom-
plished by iterating over the features in the configuration and adding the names of
each feature with the corresponding selection type to the list.

These lists, along with the FeatureIDE project’s feature model, are then passed
to the method modifyFeatureModel(). This method is used for fulfilling steps one
and two in Section 4.2. First, the feature model’s cross-tree constraints are modified.
All constraints with unselected features have their unselected features replaced with

https://doi.org/10.24355/dbbs.084-202011201423-0

5.4. Modifying Propositional Formulas in FeatureIDE 21

false and are then simplified. The exact way that propositional formulas are pro-
cessed in FeatureIDE will be explained in the next section. modifyconstraints()

also adds a constraint mandating the selection of each feature that was selected in the
configuration the derivation is based on. For the configuration shown in Figure 2.2
for example, the constraint Automated Teller Machine ∧ Language ∧ Currency ∧
EUR ∧ Bank Statement ∧ Print Statement ∧ Printer ∧ Authentication is added to
the feature model. Users may simply delete this constraint if they don’t want these
features to always be selected. Then, features that are deselected in the confguration
are deleted. If these features are in a or or alternative relationship and only have
one remaining sibling, that sibiling is set to mandatory. This is done to preserve
the logical constraints of that relationship by forcing the selection of at least one
child feature if the parent was selected. Last, the source folder of the FeatureIDE
project and a list of deselected features is passed to the builPartialFeaturePro-

jectAssets() method of the project’s composer. The way assets are mapped to
features in the feature model is different for each composer, therefore it needs to be
implemented seperately for each composer.

5.4 Modifying Propositional Formulas in FeatureIDE
For the sake of simplicity, we defined all propositional formulas in the concept chapter
as CNF. In FeatureIDE however, formulas for feature models can be any propositional
formula that can be expressed through prop4j nodes. prop4j is a Java library for
propositional formulas. Its source code is publicly available 2. Propositional formulas
in prop4j are made up of nodes, which may consist of just a feature (Literal), or
a combination of features and logical operators (Not, And, Or, Equals). prop4j

includes a SAT solver, which we use to evaluate propositional formulas.

Figure 5.5: Simplified Class Diagram for prop4j Node. Only includes Nodes that
are relevant to this Thesis.

For this thesis, we extended the abstract class Node with the classes True and False,
which represent literals that are a tautology or a contradiction. We also extended
the Node class by adding the method replaceLiterals(). This method takes a list
of features that should be replaced with false in the specified Node as an input.
One can also specify if the propositional formula should be resolved and simplified
further by passing a boolean resolve. This method is based on Algorithm 1 from the
concept chapter. This method is used to both modify a feature model’s constraints
and later to modify Antenna preprocessor statements.

2http://spl2go.cs.ovgu.de/projects/1

https://doi.org/10.24355/dbbs.084-202011201423-0

22 5. Implementation

5.5 Composer-Dependent Steps

In FeatureIDE, composers offer developers different ways to generate software prod-
ucts [MTS+17a]. The mapping between features and source code in each of these
composers is handled differently. In this section, we give an overview over the syntax
and underlying mechanics of Antenna and FeatureHouse. We then explain how the
assets are modified in the derivation process using an example. This is equivalent to
the third step of our our approach to solving the problem described in Section 4.2 in
Chapter 4. Furthermore, we explain why we chose to extend these specific composers
with the capability to derive partial feature projects.

5.5.1 Antenna

One of the composers we use to derive subset software product lines is Antenna3.
It is a simple preprocessor for Java files that allows the user to include or exclude
code based on the truth-values of features. It is implemented in FeatureIDE as a
composer. We chose Antenna, because it is very intuitive and easy to understand
and, thus, can be used to illustrate the derivation process. However, the simplicity
of preprocessor annotations has a downside. Preprocessor annotations are written
directly in a software project’s source code, which is a common point of criticism
because it can make code hard to read and maintain [BM01][EBN02][MKR+].

Each line of code can be annotated by //#if condition expression //#endif.
The annotation corresponds to the asset’s propositional formula U , while the en-
closed code corresponds to its payload s. If the condition evaluates to true, the
lines enclosed by the //#if and //#endif annotations are turned into java com-
ments and thus deactivated. In addition to //#if, Antenna also supports //#else

and //#elif annotations [MTS+17b].

Figure 5.6: Code Excerpt Showing a Series of Antenna Preprocessor #elif Anno-
tations.

Figure 5.6 and Figure 5.7 show two example code excerpts from the ATM SPL from
Chapter 2. Figure 5.6 shows a series of mutually exclusive code blocks. Depending on
which authentication method is chosen, the object auth is initialized with a different
constructor. Figure 5.7 shows the initialization of a language selection menu. The
annotation makes it so the menu is only built if at least two languages are selected.

3http://antenna.sourceforge.net/

https://doi.org/10.24355/dbbs.084-202011201423-0

5.5. Composer-Dependent Steps 23

Figure 5.7: Code Excerpt Showing a Complex Antenna Preprocessor Annotation.

We explain how these code excerpts are modified when deriving a subset SPL from
the ATM SPL using the configuration from Figure 2.2. We remove code blocks that
are unreachable due to the removal of the features French Facial_Recognition,
and Iris_Scan. Additionally, we want to modify annotations, such that removed
features are no longer used as variables. We extended the Antenna Preprocessor
with a number of methods to accomplish this task. These methods can be seen in
Figure 5.8, we will explain them in detail in the next paragraphs.

Figure 5.8: Simplified Class Diagram of AntennaPreprocessor, Showing the Methods
we Implemented.

The implementation of the method buildPartialFeatureProjectAssets() in the
class AntennaPreprocessor iterates over all files in the specified folder. For each
.java file, it first identifies a list of code blocks using the method lookForCode-

Blocks(). This method returns a list. The CodeBlock class is a data type that
holds the first line, the last line, and the code block’s annotation as a prop4j Node.
It may also have children, which are code blocks contained inside of the code block.
The method lookForCodeBlocks() iterates over the lines of each file and looks for
an //#if condition. It then looks for an //#endif, //#elif or //#else annotation
that ends this code block and the code block object is created.

For the codeblock in Figure 5.6 for example, it creates an IfBlock object and four
ElifBlock ojects. The propositional formula of IfBlock objects is exactly the
preprocessor statement. For example, the propositional formula of the IfBlock is

Iris Scan.

The propositional formula of an ElseBlock consists of a conjunctions of the nega-
tions of all prior propositional formulas. Each ElifBlock additionally has a con-
junction of its own annotation added. For example, the propositional formula of the
last ElifBlock in Figure 5.6 is:

P = (Facial Recognition ∧¬Iris Scan ∧¬PIN ∧¬Password).

https://doi.org/10.24355/dbbs.084-202011201423-0

24 5. Implementation

Then, the method is called recursively for the lines between the first and last line of
the code block, to identify its child code blocks.

The .java file’s lines and its list of code blocks are then passed to the method up-

dateAnnotations(). This method evaluates each code block’s node (beforeNode)
before and after the removal of deselected features with the method replaceLiter-

als() (afterNode). Code blocks that do not contain features that are deselected in
the configuration are left unchanged. Then, a decision is made for every other code
block whether to keep it, change the preprocessor annotation, delete the preprocessor
annotation, or to delete it and its child code blocks.

� Node is now a contradiction =⇒ code block and all of its children are removed.

� Node is now a tautology =⇒ the code block’s annotation is removed, the
associated code remains.

� Node has a solution, but is not a tautology =⇒ the code block’s annotation
is modified, all deselected features are set to false and the formula is simplified.

Figure 5.9: Code Excerpt Showing a Series of Antenna preprocessor #elif Annota-
tions.

Figure 5.10: Code Excerpt Showing a Complex Antenna Preprocessor Annotation.

The results of this process for the examples in Figure 5.6 and Figure 5.7 with the
configuration in Figure 2.2 can be seen in Figure 5.9 and Figure 5.10. The first
and the fourth annotations in Figure 5.6 became contradictions with Iris_Scan

and Facial_Recognition being replaced with false. The enclosed Java code was
removed as well. The second annotation had it’s propositional formula changed from

https://doi.org/10.24355/dbbs.084-202011201423-0

5.5. Composer-Dependent Steps 25

¬ Iris_Scan ∧ PIN to just PIN, and was thus changed to an // #If notation. With
the feature French being replaced with False, the clauses (German && French)
and (English && French) were found to be contradictions, and thus removed, the
annotation was changed to reflect this.

5.5.2 FeatureHouse

FeatureHouse is a feature-oriented composition mechanism that is also supported
by FeatureIDE[MTS+17a]. FeatureHouse generates software products by merging
Feature Structure Trees (FST) of each feature[AKL09]. An FST is a hierarchical
representation of a software artifact. Each inner node of an FST represents the
structure of a software artifact (e.g. in java folders, packages, classes, methods,..)
and determine the location. Only the leaf nodes of an FST represent the contents
(e.g. in java the instructions inside a method). FeatureHouse is built such that
it supports the merging of FSTs for any format of which it can generate FSTs.
FeatureHouse is open-source and can be extended4.

We chose FeatureHouse, because it is widely used in SPL research [AVF17] [BAS15]
[SKLA12]. Moreover, FeatureIDE has a wide variety of example SPLs using Feature-
House, which allow us to test our implementation under real-world circumstances.

Figure 5.11: Simplified class diagram of FeatureHouse, showing the method we
implemented.

Figure 5.11 shows the method we implemented to modify the assets of Feature-
House projects when deriving a subset SPL. The implementation of the method
buildPartialFeatureProjectAssets() in the FeatureHouseComposer class iter-
ates over the FeatureIDE project’s feature folders and deletes all feature folders of
deselected features.

The mapping between features and code with FeatureHouse is much more straight-
forward than Antenna. Each feature in FeatureHouse has a feature folder containing
structure and code that is merged with the other folders, which is the payload s.
Each feature folder can be included or excluded, each assets propositional formula
U is just the corresponding feature. Due to this, there are no complicated feature
relations like in Antenna. Adding a feature will for example never exclude code from
the eventual product.

Deselecting a feature turns the propositional formula of an asset in FeatureHouse
into a cotradiction. Therefore, the third step our approach to the derivation of subset
SPLs with partial configurations outlined in Section 4.2 is realized by deleting the
feature folders of each deselected feature.

5.12(a) shows an example FeatureIDE project implemented with FeatureHouse.
5.12(b) shows the subset of that FeatureIDE project generated with the configu-
ration from Figure 2.2.

4https://github.com/joliebig/featurehouse

https://doi.org/10.24355/dbbs.084-202011201423-0

26 5. Implementation

(a) ATM Software Product line imple-
mented with FeatureHouse.

(b) Subset of ATM Software Prod-
uct line based on configuration from
Figure 2.2 implemented with Feature-
House.

https://doi.org/10.24355/dbbs.084-202011201423-0

6. Evaluation

In this chapter, we evaluate our procedure to derive subset SPLs with partial config-
urations. In order to do this, first, we first formulate research questions. Then, we
introduce projects from different domains that we use as an input for our evaluations.
We then present results from our tests and conclude on our research questions.

6.1 Research Goal

The goal of this thesis is to explore the possibilities of partial configurations for the
derivation of subset software product lines and provide a usable framework for further
research. To accomplish this, we develop a prototype that allows the derivation of
subset software product lines and show its correctness.

To show that we have accomplished this goal, we need to demonstrate for a variety
of different inputs that our implemented solution delivers correct results. For this
to be true, each valid configuration from a subset SPL S1 has to generate the same
product from SPLs S1 and S0. Additionally, we need to demonstrate that it is
usable under real-world circumstances. This means that our approach to deriving
subset SPLs needs to scale to deliver solutions for large software product lines with
hundreds of features and source code files in a reasonable amount of time.

6.2 Research Questions

In this section, we specify the research questions that we are attempting to answer
in this chapter.

� RQ1: Are the products generated from subset SPLs equal to corresponding
products generated from the original SPL?

� RQ2: What is the runtime of the derivation of subset SPLs?

https://doi.org/10.24355/dbbs.084-202011201423-0

28 6. Evaluation

6.3 Selection of Software Product Lines

FeatureIDE offers a variety of example software product lines. All software product
lines we use to evaluate our implementation are available in the FeatureIDE github
repository1 and can be accessed via the FeatureIDE example wizard. In this section,
we briefly introduce each of these SPLs and explain our reasoning behind using them.

We have decided to implement a command-line dialog in Antenna for the ATM soft-
ware product line from our motivating example and evaluate it. We have added this
example to the FeatureIDE example wizard under the name Automated_Teller_Ma-
chine-Antenna to offer more data for preprocessor-based composition mechanisms.
We chose this example for our evaluation, because readers of this paper are already
familiar with it through prior chapters.

One of the FeatureIDE examples is a small software product line Elevator-Antenna-
v1.4 implemented with Antenna. This software product line represents software
simulating the movement of an elevator and its control panels. These aspects can be
configured in a variety of ways [MTS+17a]. There is also an equivalent implementa-
tion for FeatureHouse called Elevator-FeatureHouse-v1.1. We have chosen these
examples because they allow for a direct comparison between the two approaches.

Another software product line we use for our evaluation is GPL-FH-Java. It is
an implementation of a graph data type. The features allow for different types
of graphs to be created, for example graphs with weighted and unweighted edges.
Additionally, algorithms that can be run on the graphs can be selected. There are
also cross-tree constraints, e.g. the selection of Kruskal’s algorithm mandates the
selection of weighted edges. Lopez-Herrejon et al. proposed this product line as a
standard problem for the evaluation of operations on product lines [Bos01].

Last, we chose the example software product line BerkeleyDB-FH to measure the
time it takes to derive subset SPLs from it. This SPL was composed by Apel et al.
to demonstrate the scalability of FeatureHouse [AKL09]. Berkeley DB is a software
library that offers operations for for key/value databases. We chose BerkeleyDB to
test the performance of our tool with a large SPL and this is the largest software
product line implemented with either Antenna or FeatureHouse that we have access
to.

Figure 6.1: Table Showing all SPLs used in the Evaluation

1https://github.com/PaulWestphal/FeatureIDE-subsetSPL

https://doi.org/10.24355/dbbs.084-202011201423-0

6.4. Evaluation process 29

Figure 6.1 gives an overview over the selection of software product lines that we use
to evaluate our implementation.

6.4 Evaluation process
In this section, we explain the evaluation process. First we briefly state each step.
Then, we describe each step in more detail and explain how these steps help us
answer the research questions.

1. Derive subset SPLs from Original SPL_0.

2. Generate all valid products from these subset SPLs.

3. Generate these products from the Original SPL_0.

4. Compare valid products generated from subset SPLs to the same valid prod-
ucts generated from Original SPL_0.

Figure 6.2: Diagram Showing the Evaluation Process

Figure 6.2 shows how we derive subset SPLs and products for the evaluation. For
each software product line Original SPL_0, we randomly generate five partial con-
figurations. We aimed to leave progressively more features undecided with each
configuration. The first configuration is a full configuration, the second has a few
features left undecided and the fifth one has almost no decisions made yet. We
decided on this process to cover a wider variety of different configurations. We use
these partial configurations to derive Subset SPL_1 to Subset SPL_5. For each of
these derivation processes, we record how much time they take to gather data to
answer RQ2. Then, we generate all valid products (up to a maximum of 100) from
the newly generated Subset SPL.

Figure 6.3 shows the comparison step. We use the same configurations to gener-
ate all valid products for the original and the derived software product line. We
then compare the assets of each valid product of the Subset SPL with the prod-
uct generated from the Original SPL with that same configuration. We do this
by recursively iterating over the folder structure of the generated source files of the
Original SPL and comparing their contents with the corresponding files from the
subset SPL.

If we are able to empirically demonstrate correct results for each of the different
software product lines and randomly generated configurations, we can answer RQ1.

https://doi.org/10.24355/dbbs.084-202011201423-0

30 6. Evaluation

Figure 6.3: Diagram Showing Comparison between Products Generated from Orig-
inal SPL and Subset SPL

Hardware and Software used for Evaluation

In this section, we specify the hardware and software we used to run the evaluation
of our implementation.

� Intel Core i5-6600k CPU 4 cores, 4 threads @ 3500 MHZ

� 2x8 GB DDR-4 RAM @ 3000 MHZ

� 525GB Crucial MX300 SSD

� Windows 10 64 bit

� Eclipse Photon 4.8.0

� Java 1.8

This is important context for RQ2 because each of these factors may change the time
needed for all operations to finish. The implementation and performance of some of
Eclipse’s methods we used may have changed with more recent versions of Eclipse,
or may change in the future.

6.5 Evaluation of Correctness of Valid Products of Sub-

set SPLs

In this section, we evaluate the correctness of valid products derived from subset
SPLs, by comparing them to the same products generated from the SPLs the subsets
were derived from. First, we present the data we collected for this evaluation. Then,
we discuss the implications of this data for the correctness of our approach.

Table 6.1 to Table 6.4 show the comparison results. For each configuration used in
the evaluation process, we show the number of selected, deselected, and undecided
features. The row ”#.java File Comparisons Passed” denotes the number of .java
files that were equal in generated products from the Original SPL and the Subset

SPL, while the row ”#.java File Comparisons Failed” denotes the number of unequal
files. Before doing a line-by-line comparison on each file, we removed all Java com-
ments and leading and trailing whitespaces. We did this to avoid possible errors
from differing indentations, despite the contents of the files being equal.

https://doi.org/10.24355/dbbs.084-202011201423-0

6.5. Evaluation of Correctness of Valid Products of Subset SPLs 31

Automated Teller Machine-Antenna
Configuration Index 1 2 3 4 5
#Selected Features 15 6 3 3 0
#Deselected Features 7 5 4 2 4
#Undecided Features 0 11 15 17 18
#Valid Configurations 1 16 60 75 336
#.java File Comparisons Passed 24 384 1440 1800 2400
#.java File Comparisons Failed 0 0 0 0 0

Table 6.1: Comparison Results of Automated_Teller_Machine-Antenna

Elevator-Antenna-v1.4
Configuration Index 1 2 3 4 5
#Selected Features 13 5 4 2 1
#Deselected Features 8 5 3 3 3
#Undecided Features 0 11 14 16 17
#Valid Configurations 1 2 32 96 96
#.java File Comparisons Passed 12 24 384 1152 1152
#.java File Comparisons Failed 0 0 0 0 0

Table 6.2: Comparison Results of Elevator-Antenna-v1.4

Elevator-FeatureHouse-v1.1
Configuration Index 1 2 3 4 5
#Selected Features 13 5 4 2 1
#Deselected Features 8 5 3 3 3
#Undecided Features 0 11 14 16 17
#Valid Configurations 1 2 32 96 96
#.java File Comparisons Passed 12 24 384 1152 1152
#.java File Comparisons Failed 0 0 0 0 0

Table 6.3: Comparison Results of Elevator-FeatureHouse-v1.1

GPL-FH-Java
Configuration Index 1 2 3 4 5
#Selected Features 16 12 8 8 9
#Deselected Features 7 6 4 2 1
#Undecided Features 0 5 11 13 13
#Valid Configurations 1 12 44 96 102
#.java File Comparisons Passed 18 200 656 1484 1598
#.java File Comparisons Failed 0 0 0 0 0

Table 6.4: Comparison Results of GPL-FH-Java

Regarding RQ1 (Are the products generated from subset SPLs equal to these products
generated from the original SPL?), one can see from the tables that a total of 15452
comparison tests succeeded and a total of 0 comparison tests failed. In 100% of
cases, the generated products of the subset SPL were equal to the corresponding

https://doi.org/10.24355/dbbs.084-202011201423-0

32 6. Evaluation

product generated from the original SPL. This indicates that our implementation of
the derivation of subset SPLs indeed delivers correct results.

Our way of evaluating the correctness has limitations, however. For one, the set
of products that can be derived from the Subset SPL may differ from the set of
products that can be derived from the Original SPL starting from the Partial

Config. This may occur if the propositional formula of the subset SPL is modified
incorrectly. Additionally, despite attempting to cover a wide variety of domains and
concepts with our selection of SPLs for the evaluation, is still a small sample and a
test case with a bug may have been missed. Especially for Antenna, there is a lack
of example SPLs with very long and complex preprocessor annotations.

6.6 Evaluation of Runtime of the Derivation Process

In this section, we evaluate the runtime of our implementation of the subset SPL
derivation process. First, we present the data we collected for this evaluation. Then,
we discuss the implications of this data for RQ2.

Automated Teller Machine-Antenna
Configuration Index 1 2 3 4 5
#Selected Features 15 6 3 3 0
#Deselected Features 7 5 4 2 4
#Undecided Features 0 11 15 17 18
#Valid Configurations 1 16 60 75 336
t in ms 1535 887 1149 968 1040

Table 6.5: Measured Time Results of Automated_Teller_Machine-Antenna

Elevator-Antenna-v1.4
Configuration Index 1 2 3 4 5
#Selected Features 13 5 4 2 1
#Deselected Features 8 5 3 3 3
#Undecided Features 0 11 14 16 17
#Valid Configurations 1 2 32 96 96
t in ms 3286 1471 1660 611 1866

Table 6.6: Measured Time Results of Elevator-Antenna-v1.4

Elevator-FeatureHouse-v1.1
Configuration Index 1 2 3 4 5
#Selected Features 13 5 4 2 1
#Deselected Features 8 5 3 3 3
#Undecided Features 0 11 14 16 17
#Valid Configurations 1 2 32 96 96
t in ms 2498 1254 964 1096 1104

Table 6.7: Measured Time Results of Elevator-FeatureHouse-v1.1

https://doi.org/10.24355/dbbs.084-202011201423-0

6.6. Evaluation of Runtime of the Derivation Process 33

GPL-FH-Java
Configuration Index 1 2 3 4 5
#Selected Features 16 12 8 8 9
#Deselected Features 7 6 4 2 1
#Undecided Features 0 5 11 13 13
#Valid Configurations 1 12 44 96 102
t in ms 2176 2622 2318 1056 1393

Table 6.8: Measured Time Results of GPL-FH-Java

Figure 6.4: Diagram showing time needed for derivation of subset SPLs

Table 6.5 to Table 6.8 show the results of the first four example SPLs. Figure 6.4
shows the required time of configurations 1 to 5 for each SPL as a graph. The times
required for the derivation of subset SPLs all lie very close together, with the fastest
process being 611ms (Elevator-Antenna-v1.4, configuration 3) and the slowest
being 3286ms (Elevator-Antenna-v1.4 configuration 1).

During the evaluation process, we noticed a strong variation in the times required for
the derivation process. Even restarting the operation with the same inputs delivered
widely varying results. Therefore, we decided for the last example to separately
record the time needed for operations on the feature model and its constraints and
operations on the SPL’s assets to get more insight. The results of this evaluation
are shown below.

We found that operations on the feature model took only a few milliseconds, while
operations that require writing in the file system (in this case, using Eclipse’s IRe-

source.delete() method to delete feature folders) took a comparatively very long
time.

https://doi.org/10.24355/dbbs.084-202011201423-0

34 6. Evaluation

BerkeleyDB-FH-Java
Configuration Index 1 2 3 4 5
#Selected Features 72 62 52 35 1
#Deselected Features 47 25 29 13 6
#Undecided Features 0 32 38 71 112
#Valid Configurations 1 >5499 >5665 >6649 >5755
Modifying Feature Model t in ms 2 2 4 4 2
Modifying Assets t in ms 23372 16533 52893 16216 8407
Total t in ms 23374 16535 52897 16220 8409

Table 6.9: Measured time results of BerkeleyDB-FH-Java

BerkeleyDB-FH-Java is the biggest example SPL we chose and as such, deriving a
subset SPL from it takes much longer than from the smaller SPLs. The shortest
time required was 8.4 seconds (configuration 5), while the longest time was 52.9
seconds (configuration 3). We calculated the average time of all five configurations
for each SPL and divided it by the number of files in each SPL. This data is shown
in table Table 6.10.

Avg t in ms #.java Files Avg t in ms per .java file
Automated Teller Machine-Antenna 1115.8 24 46.5
Elevator-Antenna-v1.4 1778.8 12 148.23
Elevator-FeatureHouse-v1.1 1383.2 43 32.17
GPL-FH-Java 1913 57 33.56
BerkeleyDB-FH-Java 23487 621 37.82

Table 6.10: Diagram showing time needed for derivation of subset SPLs

Regarding the long runtime of operations on the file system, we theorize that a multi-
threaded implementation of the deletion of feature folders for FeatureHouse and the
modifications of .java files for Antenna may significantly improve performance. The
long runtime of the SPL BerkeleyDB-FH-Java is explained by the number of source
files that need to be modified, since the average time per .java file is not exceptional.

To answer RQ2(How much time is spent on the derivation of subset SPLs?): Our pro-
totype implementation of the derivation of subset SPLs using partial configurations
delivers results within at most 52.9 seconds for a large SPL with 99 concrete features
and 621 java files. We consider this a reasonable amount of time, and consequently
the implemented protoypical approach to be usable for research.

https://doi.org/10.24355/dbbs.084-202011201423-0

7. Related Work

The difficulties of managing large software product lines and developing solutions
for these problems have been a research topic for a long time. In this chapter, we
present a selection of related publications and discuss similarities and differences to
our work.

Feature Model Slicing

Acher et al. [ACLF11] introduced feature model slicing, which aims to remove fea-
tures from feature models while preserving implicit dependencies between remain-
ing features. We also developed a method to reduce the size of a feature model,
but there are stark differences between our approaches that can be illustrated with
an example. When removing feature B with slicing, the propositional formula
(A =⇒ B) ∧ (B =⇒ (C ∧ D)) results in A =⇒ (C ∧ D) [KST+16] [ACLF11].
The dependencies between the variables A,C, and D are kept intact. Our approach
on the other hand, eliminates unwanted features by setting them to false and sim-
plifying the propositional formula. With this approach, removing feature B from
the constraint (A =⇒ B) ∧ (B =⇒ (C ∧ D)) returns ¬A as a constraint in the
subset SPL’s feature model.

Acher et al. introduced an algorithm for feature model slicing in 2011[ACLF11].
Krieter et al. concluded that this algorithm does not scale for large feature models
with thousands of features and proposed a new algorithm for feature model slicing
with a better runtime for large feature models and the removal of more than 30%
of features [KST+16] [KSST].

Variant-Preserving Refactoring

Schulze et al. [STKS12] discuss the limitations of refactoring to improve code in
feature-oriented programming. They conclude that the techniques usually used for
refactoring are not sufficient for feature-oriented SPLs. This is because regular
refactoring techniques only have to preserve the same behavior for one product,

https://doi.org/10.24355/dbbs.084-202011201423-0

36 7. Related Work

while refactoring in a feature-oriented SPL has to preserve the behavior for all prod-
ucts that can be generated from that SPL. Schulze et al. define a refactoring as
variant-preserving, if after refactoring each valid configuration remains valid and
each product generated from a valid configuration that is compilable has the same
external behavior [STKS12]. To apply this concept, they also developed a tool for
the removal of code clones.

Our work is similar in the way that we create a new software product line from an
existing SPL in which all products generated from valid configurations must produce
the same behavior. The difference is that our approach specifically reduces the set
of valid variants in the subset SPL.

Preprocessors

Meinicke et al. [MTS+16] integrated preprocessors in FeatureIDE, which made the
derivation of subset SPLs with Antenna possible in the first place. They imple-
mented support for the development of variable software using preprocessors with
tools such as visualization (through feature models) and feature traceability (through
existing FeatureIDE views and color highlighting of features).

Deriving subset SPLs from preprocessor projects can also be used as a tool to make
code more legible. Subset SPLs may be used as a view if one selects features to
exclude from the preprocessor project. This way unwanted and distracting code or
even entire files can be removed and developers can focus on the task at hand.

https://doi.org/10.24355/dbbs.084-202011201423-0

8. Conclusion and Future Work

Large softwar eproduct lines are typically complex to analyze and, thus, automated
support is required. The goal of this thesis was to support the configuration and de-
velopment for software product lines, by developing a procedure to derive a reduced
version of an existing SPL. In order to do this, we introduced the concept of subset
SPLs and developed algorithms which can be used to generate a subset SPL based
on a configuration.

We realized these concepts by implementing them in FeatureIDE, a framework for
feature-oriented software development. We chose the two composers Antenna and
FeatureHouse and extended them with the capability to remove features from both
a feature model and the FeatureIDE project’s assets.

Our evaluation strongly indicates that the implementation we developed does indeed
produce correct results. We compared a total of 15452 .java files generated from
subset SPLs and the original SPLs and our procedure computes only correct results.
The longest runtime we measured for the derivation of subset SPLs was 52 seconds
in a test case with 621 .java files. We believe that this runtime could be improved in
the future by implementing work on each .java file in a multi-threaded environment.

Currently, the derivation of subset SPLs is a one-way street; a completely standalone
SPL is created with no direct connection to the old one. In some instances, develop-
ers may want to reuse code that has been developed with a subset SPL and integrate
it in the original one. In the future, a technique could be developed to automatically
merge subset SPLs with the original SPL again. This would allow users to easily
integrate any work done on a subset SPL back into the original.

While we expect various benefits from working on a subset SPL, we can not yet
quantify the benefits. An interesting topic for research could be a study examining
the advantages of working on a subset SPL. We believe that subset SPLs can simplify
reading, understanding, and subsequently working on large software product lines
by excluding unwanted code. However, exactly how much time and utility can be
gained from our approach must be studied in practice.

https://doi.org/10.24355/dbbs.084-202011201423-0

38 8. Conclusion and Future Work

https://doi.org/10.24355/dbbs.084-202011201423-0

A. Appendix

Propositional formula of ATM Feature Model

{(Automated Teller Machine), (Bank Statement ∨ ¬ Print Statement), (Language
∨ ¬ English), (Language ∨ ¬ German), (Language ∨ ¬ French), (English ∨ Ger-
man ∨ French ∨ ¬ Language), (PIN ∨ ¬ Change PIN), (Authentication ∨ ¬ PIN),
(Authentication ∨ ¬ Password), (Authentication ∨ ¬ Facial Recognition), (Au-
thentication ∨ ¬ Iris Scan), (PIN ∨ Password ∨ Facial Recognition ∨ Iris Scan
∨ ¬ Authentication), (¬ PIN ∨ ¬ Password), (¬ PIN ∨ ¬ Facial Recognition),
(¬ PIN ∨ ¬ Iris Scan), (¬ Password ∨ ¬ Facial Recognition), (¬ Password ∨
¬ Iris Scan), (¬ Facial Recognition ∨ ¬ Iris Scan), (Currency ∨ ¬ EUR), (Cur-
rency ∨ ¬ GBP), (EUR ∨ GBP ∨ ¬ Currency), (¬ EUR ∨ ¬ GBP), (Auto-
mated Teller Machine ∨ ¬ Language), (Automated Teller Machine ∨ ¬ Currency),
(Automated Teller Machine ∨ ¬ Bank Statement), (Automated Teller Machine ∨
¬ Printer), (Automated Teller Machine ∨ ¬ Authentication), (Language ∨ ¬ Auto-
mated Teller Machine), (Currency ∨ ¬ Automated Teller Machine), (Authentica-
tion ∨ ¬ Automated Teller Machine), (¬ Print Statement ∨ Printer)}

https://doi.org/10.24355/dbbs.084-202011201423-0

40 A. Appendix

https://doi.org/10.24355/dbbs.084-202011201423-0

Bibliography

[ACLF11] Mathieu Acher, Philippe Collet, Philippe Lahire, and Robert B. France.
Slicing feature models. In 2011 26th IEEE/ACM International Confer-
ence on Automated Software Engineering (ASE 2011), pages 424–427,
Lawrence, KS, USA, November 2011. IEEE. (cited on Page 35)

[AKL09] Sven Apel, Christian Kastner, and Christian Lengauer. FEATURE-
HOUSE: Language-independent, automated software composition. In
2009 IEEE 31st International Conference on Software Engineering,
pages 221–231, Vancouver, BC, Canada, 2009. IEEE. (cited on Page 14,

25, and 28)

[AVF17] Guilherme Assis, Gustavo Vale, and Eduardo Figueiredo. Feature ori-
ented programming in Groovy. In Proceedings of the 8th ACM SIG-
PLAN International Workshop on Feature-Oriented Software Develop-
ment - FOSD 2017, pages 21–30, Vancouver, BC, Canada, 2017. ACM
Press. (cited on Page 25)

[BAS15] Sandy Beidu, Joanne M. Atlee, and Pourya Shaker. Incremental and
Commutative Composition of State-Machine Models of Features. In
2015 IEEE/ACM 7th International Workshop on Modeling in Software
Engineering, pages 13–18, Florence, Italy, May 2015. IEEE. (cited on

Page 25)

[BM01] I.D. Baxter and M. Mehlich. Preprocessor conditional removal by sim-
ple partial evaluation. In Proceedings Eighth Working Conference on
Reverse Engineering, pages 281–290, Stuttgart, Germany, 2001. IEEE
Comput. Soc. (cited on Page 22)

[Bos01] Jan Bosch, editor. Generative and component-based software engi-
neering: third international conference, GCSE 2001, Erfurt, Germany,
September 10-13, 2001: proceedings. Number 2186 in Lecture notes in
computer science. Springer, Berlin ; New York, 2001. Meeting Name:
GCSE 2001. (cited on Page 28)

[BSRC10] David Benavides, Sergio Segura, and Antonio Ruiz-Cortés. Automated
analysis of feature models 20 years later: A literature review. Informa-
tion Systems, 35(6):615–636, September 2010. (cited on Page 1 and 7)

https://doi.org/10.24355/dbbs.084-202011201423-0

42 Bibliography

[EBN02] M.D. Ernst, G.J. Badros, and D. Notkin. An empirical analysis
of c preprocessor use. IEEE Transactions on Software Engineering,
28(12):1146–1170, December 2002. (cited on Page 22)

[HFACA13] Ruben Heradio, David Fernandez-Amoros, Jose A Cerrada, and Ismael
Abad. A literature review on feature diagram product counting and its
usage in software product line economic models. International Journal
of Software Engineering and Knowledge Engineering, 23(08):1177–1204,
2013. Publisher: World Scientific. (cited on Page 7)

[KSST] Sebastian Krieter, Reimar Schröter, Gunter Saake, and Thomas Thüm.
An Efficient Algorithm for Feature-Model Slicing. page 7. (cited on

Page 35)

[KST+16] Sebastian Krieter, Reimar Schröter, Thomas Thüm, Wolfram Fenske,
and Gunter Saake. Comparing algorithms for efficient feature-model
slicing. In Proceedings of the 20th International Systems and Software
Product Line Conference on - SPLC ’16, pages 60–64, Beijing, China,
2016. ACM Press. (cited on Page 35)

[MKR+] Flávio Medeiros, Christian Kästner, Márcio Ribeiro, Sarah Nadi, and
Rohit Gheyi. The Love/Hate Relationship with the C Preprocessor:
An Interview Study. page 24. (cited on Page 22)

[MTS+16] Jens Meinicke, Thomas Thüm, Reimar Schröter, Sebastian Krieter,
Fabian Benduhn, Gunter Saake, and Thomas Leich. FeatureIDE: tam-
ing the preprocessor wilderness. In Proceedings of the 38th International
Conference on Software Engineering Companion - ICSE ’16, pages 629–
632, Austin, Texas, 2016. ACM Press. (cited on Page 36)

[MTS+17a] Jens Meinicke, Thomas Thüm, Reimar Schröter, Fabian Benduhn,
Thomas Leich, and Gunter Saake. Mastering Software Variability with
FeatureIDE. Springer International Publishing, Cham, 2017. (cited on

Page 17, 22, 25, and 28)

[MTS+17b] Jens Meinicke, Thomas Thüm, Reimar Schröter, Fabian Benduhn,
Thomas Leich, and Gunter Saake. Mastering Software Variability with
FeatureIDE. Springer International Publishing, Cham, 2017. (cited on

Page 22)

[PBL05] Klaus Pohl, Günter Böckle, and Frank van der Linden. Software product
line engineering: foundations, principles, and techniques. Springer,
New York, NY, 1st ed edition, 2005. (cited on Page 7)

[SKLA12] Janet Siegmund, Christian Kästner, Jörg Liebig, and Sven Apel. Com-
paring program comprehension of physically and virtually separated
concerns. In Proceedings of the 4th International Workshop on Feature-
Oriented Software Development - FOSD ’12, pages 17–24, Dresden,
Germany, 2012. ACM Press. (cited on Page 25)

https://doi.org/10.24355/dbbs.084-202011201423-0

Bibliography 43

[STKS12] Sandro Schulze, Thomas Thüm, Martin Kuhlemann, and Gunter
Saake. Variant-preserving refactoring in feature-oriented software prod-
uct lines. In Proceedings of the Sixth International Workshop on Vari-
ability Modeling of Software-Intensive Systems - VaMoS ’12, pages 73–
81, Leipzig, Germany, 2012. ACM Press. (cited on Page 35 and 36)

https://doi.org/10.24355/dbbs.084-202011201423-0

44 Bibliography

https://doi.org/10.24355/dbbs.084-202011201423-0

Hiermit erkläre ich, dass ich die vorliegende Arbeit selbständig verfasst und keine
anderen als die angegebenen Quellen und Hilfsmittel verwendet habe.

Braunschweig, den 26. Juli 2020

https://doi.org/10.24355/dbbs.084-202011201423-0

	Contents
	1 Introduction
	2 Motivating Example
	3 Background
	3.1 Software Product Lines
	3.2 Feature Models
	3.3 Configurations
	3.4 Assets
	3.5 Generating Products

	4 Concept
	4.1 The Problem Statement
	4.2 Our Approach to Solving the Problem

	5 Implementation
	5.1 FeatureIDE
	5.2 Deriving Subset SPLs in FeatureIDE
	5.3 Composer-independent steps
	5.4 Modifying Propositional Formulas in FeatureIDE
	5.5 Composer-Dependent Steps
	5.5.1 Antenna
	5.5.2 FeatureHouse

	6 Evaluation
	6.1 Research Goal
	6.2 Research Questions
	6.3 Selection of Software Product Lines
	6.4 Evaluation process
	6.5 Evaluation of Correctness of Valid Products of Subset SPLs
	6.6 Evaluation of Runtime of the Derivation Process

	7 Related Work
	8 Conclusion and Future Work
	A Appendix
	Bibliography

