NIL
P 'Q

3 'f% Technische
A
3

S 7 Universitat
-]

>
4
Y

SR Braunschweig
ONscﬁ

Institut fiir Softwaretechni

und Fahrzeuginformati

~ X
nnn
(11110
1111
e

Master’s Thesis

Applications of #ASAT Solvers for
Product Lines

Author:
Chico Sundermann

July 22, 2020

Advisors:

Prof. Dr.-Ing. Ina Schaefer
Michael Nieke, M. Sc.

TU Braunschweig
Institute of Software Engineering and Automotive Informatics

Prof. Dr.-Ing. Thomas Thiim

University of Ulm
Institute of Software Engineering and Programming Languages

https://doi.org/10.24355/dbbs.084-202009161329-0

Sundermann, Chico:
Applications of #SAT Solvers for Product Lines
Master’s Thesis, TU Braunschweig, 2020.

https://doi.org/10.24355/dbbs.084-202009161329-0

Abstract

Product lines are widely used for managing families of similar products. Typi-
cally, product lines are complex and infeasible to analyze manually. In the last two
decades, product-line analyses have been reduced to satisfiability problems which
are well understood. However, there are methods for which satisfiability is not suf-
ficient. Recently, researchers begun to reduce other problems to #SAT. Yet, only
few applications have been considered and those are fairly limited in their scope.
Furthermore, the authors mainly propose ad-hoc solutions that are only applica-
ble under certain restrictions or do not scale to large product lines. In this thesis,
we aim show the benefits of applying #SAT for the analysis of product lines. To
this end, we make the following contributions: First, we summarize applications
dependent on #SAT considered in the literature and propose new applications to
motivate the usage of #SAT technology. Second, we present a variety of algorithms
and optimizations for these applications including new proposals. Third, we empir-
ically evaluate 10 proposed algorithms with 14 off-the-shelf #SAT solvers on 131
industrial feature models to identify the fastest algorithms and solvers. Our results
show that for each analysis at least one algorithm and solver scale on a vast majority
of the feature models, whereas Linux and an automotive model not be analyzed at
all. In addition, our results further reveal the benefits of knowledge compilation
to deterministic decomposable negation normal form for performing counting-based
analyses. Overall, our work shows that #SAT dependent analyses for feature models
open a new variety of different applications and scale to a large number of industrial
feature models.

https://doi.org/10.24355/dbbs.084-202009161329-0

v

https://doi.org/10.24355/dbbs.084-202009161329-0

Zusammenfassung

Produktlinien sind weit verbreitet fiir die Verwaltung von Familien verwandter Pro-
dukte. In der Regel sind Produktlinien komplex und manuell schwer zu analysieren.
In den letzten zwei Jahrzehnten wurden Produktlinienanalysen auf Erfiillbarkeit-
sprobleme reduziert, fiir welche es eine Vielzahl an effizienten Werkzeugen gibt.
Allerdings ist Erfiillbarkeit nicht fiir alle Analysen hinreichend. Kiirzlich haben
Forscher damit begonnen, andere Probleme auf #SAT zu reduzieren. Es wur-
den jedoch nur wenige Anwendungen in Betracht gezogen und auch der Anwen-
dungsbereich ist begrenzt. Dariiber hinaus schlagen die Autoren hauptséchlich
Ad-hoc-Lésungen vor, die nur unter bestimmten Einschrankungen der Produktlin-
ien anwendbar sind oder nicht fiir grofle Produktlinien skalieren. In dieser Arbeit
zeigen wir die Vorteile von #SAT Anwendungen fiir Produtlinien auf. Unser wis-
senschaftlicher Beitrag besteht aus den folgenden drei Punkten: Zuerst fassen wir
die in der Literatur betrachteten #SAT-Anwendungen zusammen und schlagen neue
Anwendungen vor, um den Einsatz von #SAT-Technologien zu motivieren. Zweit-
ens stellen wir eine Vielzahl von Algorithmen und Optimierungen fiir diese Anwen-
dungen vor, einschlielich neuer Vorschldge. Drittens fiihren wir eine empirische
Evaluation von 10 der vorgeschlagenen Algorithmen mit 14 #SAT-Solvern auf 131
industriellen Feature-Modellen aus, um die schnellsten Algorithmen und Solver zu
identifizieren. Die Ergebnisse der Evaluation zeigen, dass wir fiir jede Analyse wenig-
stens einen Algorithmus und Solver identifiziert haben, die fiir industrielle Feature-
Modelle skalieren. Dazu sind die Ergebnisse ein starker Indikator fiir die Vorteile
des Einsatzes von d-DNNFs bei #SAT-Anwendungen. Insgesamt zeigt unsere Ar-
beit, dass #SAT-abhingige Analysen fiir Feature-Modelle eine Vielzahl neuer un-
terschiedlicher Anwendungen ermoglicht und fiir viele industirelle Feature-Modelle
skaliert.

https://doi.org/10.24355/dbbs.084-202009161329-0

https://doi.org/10.24355/dbbs.084-202009161329-0

Contents

1 Introduction

2 Background

2.1 SAT . . e
2.1.1 Forms of Propositional Formulas
2.1.2 Ways to Solve SAT Problems
2.1.3 Complexity

2.2 #SAT . . . e
2.2.1 Ways to Solve #SAT Problems
2.2.2 Complexity

2.3 Feature Models

2.4 Feature Model Analysis.

3 Applications

3.1 Number of Valid Configurations

3.2 Commonality

3.3 Partial Configurations

3.4 SUMMATY v o e e e e e

4 Algorithms & Optimizations

4.1 Number of Valid Configurations
4.2 Commonality
4.3 Partial Configurations L.
4.4 Uniform Random Sampling
4.5 SUMMATY . . o v v ot e e e e e e

5 Implementation

5.1 Implementation of Applications
5.1.1 Algorithm Implementations
5.1.2 Exploitation of d-DNNFs.
5.2 Integration into FeatureIDE
5.3 Ewvaluation Framework
5.4 Summary

6 Evaluation

6.1 Research Questions
6.2 Experiment Design oo
6.2.1 Subject Systems. oo

https://doi.org/10.24355/dbbs.084-202009161329-0

19
19
26
31
33

35
36
41
47
49
55

57
o8
99
64
73
78
85

Contents

Viii
6.2.2 #SAT Solvers 92
6.3 Results. 96
6.4 Discussion 108
6.5 Threats to Validity 111
6.6 Summary e 113
7 Related Work 115
8 Thesis Summary 119
9 Future Work 121
Bibliography 123
Topic Description 135

https://doi.org/10.24355/dbbs.084-202009161329-0

1. Introduction

Mass customization allows developing individualized products while maintaining
low development costs. A common way to achieve mass customization are product
lines which represent a family of similar products [BSRC10]. The products are
decomposed into subsets called features [SAKS16]. Composing them allows their
reuse across multiple products [BSRC10]. Each different product corresponds to
a unique combination of features, called configuration. A common way to specify
the feature set and valid configurations of a product line is a feature model [CW07,
Bat05]. This describes the underlying product line by limiting the set of valid
configurations [BSRC10, Bat05, CW07].

Checking by hand, whether a given configuration satisfies all constraints specified by
the feature model, is not trivial and time-consuming [BSRC10]. Industrial feature
models often contain thousands of features and constraints [STS20, KZK10]. Keep-
ing track of every single dependency between features manually is therefore expensive
and prone to errors. It follows that automated support is required [Bat05]. Fur-
ther examples of important analyses that suffer the same issue are checking whether
a feature model induces any valid configurations, or a feature is dead (i.e., is not
part of any valid configuration) [BSRC10, SSK720]. To automate such analyses
tools typically rely on satisfiability-based solvers like SAT solvers [Bat05, SKT*16,
MWC09, PLP11, CW07, PSKT10, Seg08, GATT16], other constraint satisfaction
problem (CSP) solvers [BTRCO05, PLP11, Seg08, WBST10], and binary decision
diagrams (BDD) [MWCCO08, PLP11, Seg08, GAT16, CWO07].

For some analyses of feature models, satisfiability is not sufficient. For example,
uniform random sampling is reliant on counting all valid configurations [OGB™ 19,
OBMS17, MOP*19]. In theory, it is possible to count solutions with regular SAT,
CSP, and BDDs [PLP11]. However, this typically comes with major scalability
issues [PLP11, TS16, OGB*19]. #SAT solvers are specifically optimized for counting
solutions and made significant advances in the last decade [BJP00O, Thu06, BSB15,
Dar04, LM17].

Research is still required regarding the scalability and possibilites of #SAT solvers
for the analysis of product lines. Currently, only few applications are considered in

https://doi.org/10.24355/dbbs.084-202009161329-0

2 1. Introduction

the literature. #SAT had major scalability issues when applied to feature models in
previous surveys [PLP11, KZK10]. This is probably a main reason for the limited
research. However, early regular SAT solvers were significantly slower than modern
ones [MFMO04]. Now, state-of-the-art regular SAT solvers can even analyze large
scale feature models in a short amount of time [LGCR15]. Thus, it is reasonable to
assume that #SAT solvers will keep evolving and continually scale to larger feature
models.

For applications dependent on counting the number of valid configurations, the
literature often only presents the application without providing a feasible algo-
rithm to compute it [HFACA13, CMCO05, BSRC10]. Other works only provide
solutions for simplified feature models (e.g., feature models without cross-tree con-
straints) [FAGS09, HGFACC11]. Our main contributions are presenting applications
dependent on #SAT, providing implementations, and examining their scalability.

Goal of this Thesis

In this thesis, we aim to identify applications for #SAT and examine the scalability of
these using off-the-shelves #SAT solvers. Explicitly, we aim to answer the following
research questions during the thesis:

e RQ1: Which applications for #SAT on product lines are considered in the
literature?

RQ2: What are new applications for #SAT on software product lines?

RQ3: For a given #SAT application, is there an algorithm that scales to in-
dustrial product lines?

RQ/: For a given algorithm, what is the fastest off-the-shelf #SAT solver?

RQ5: What is the performance of approzimate #SAT solvers for analyzing
product lines?

We answer the first three research questions RQ1/2 theoretically and the following
three research questions RQ)3-5 with an empirical evaluation.

To answer R()1, we summarize applications for product lines that are dependent on
counting valid configurations already considered in the literature. To answer RQ2,
we propose new applications. The resulting survey indicates the relevance of #SAT
in the product line domain and presents potential benefits of using the technique.

To answer RQ)3, we examine the scalability of algorithms that can be used to compute
results for the applications in the survey. Algorithms are only usable in practice if
they scale to real product lines. Thus, we present empirical evaluations of the
algorithms on industrial feature models. The results are used to identify scalable
algorithms and compare different optimizations.

To answer R()4, we compare different off-the-shelves #SAT solvers with an em-
pirical evaluation. The scalability of the algorithms heavily depends on the used
#SAT solver. There are many #SAT solvers considered in the literature [Dar(4,

https://doi.org/10.24355/dbbs.084-202009161329-0

LM17, MMBH10, BJP00, SBK05a, Thu06, BSB15, Bie08, KLMT13, KMM13, TS16,
OD15]. Our previous results showed that their performance differs significantly for
counting the number of valid configurations [STS20]. A comparison of different
solvers yields the following two potential advantages. On the one hand, the solvers
that perform well in general can be identified. On the other hand, some solvers may
perform better for some algorithms but worse for others. We aim to identify the
most promising solver for a specific algorithm.

To answer R(Q)5, we evaluate the runtime of using approximate #SAT solvers. Ap-
proximate #SAT solvers estimate the number of satisfying assignments of a propo-
sitional formula within a given confidence level [AT17, GSS06, BG19]. Using ap-
proximate #SAT solvers may enable applications on feature models for which exact
results are infeasible.

Structure of the Thesis

In Chapter 2, we provide the background on which the rest of this thesis is based
on and we describe the state-of-the-art of feature model analysis. In Chapter 3,
we give a survey of possible #SAT applications for product lines to answer RQ1
and R()2. This survey consists of applications considered in the literature and our
own proposals. In Chapter 4, we discuss underlying algorithms and optimizations
for the applications. In Chapter 5, we provide implementations for the algorithms.
Furthermore, we describe the integration of #SAT solvers and their applications
to FeatureIDE [feal9], a popular environment for feature-based development. In
addition, we illustrate the the implementation of our evaluation framework. In
Chapter 6, we evaluate the applications using the implemented algorithms and sev-
eral experiments. The results are used to answer RQ3-5. In Chapter 7, we present
work that is related to ours. In Chapter 8, we summarize the insights of the thesis
and provide a short conclusion. In Chapter 9, we discuss possible future work.

https://doi.org/10.24355/dbbs.084-202009161329-0

1. Introduction

https://doi.org/10.24355/dbbs.084-202009161329-0

2. Background

In this chapter, we provide the required basics to understand the following chapters
of this thesis. First, we describe the basics of SAT and #SAT and the differences
between the two problems. Second, we present the necessary background for feature
models and how SAT is used to analyze them.

2.1 SAT

The SAT problem corresponds to the satisfiability of propositional formulas. Each
propositional formula F' holds a set of variables vars(F) and consists of literals
[€ vars(F) and logical operators = (not), A (conjunction), V (disjunction), =
(implies), <= (equals) that connect the literals [BSRC10]. For every variable, a
truth value {T, L} can be assigned. T corresponds to true and L to false. Let A be
the set of possible assignments. An assignment o € A is a function « : vars(F) —
{L, T, UNDEF'} that maps variables to truth values [KZK10]. If every variable is
mapped to either T or L, we call the assignment full. Otherwise, we call it a partial
assignment [KZK10]. An assignment « that satisfies a propositional formula F is
denoted by a(F) = T. If o does not satisfy I, a(F') = L holds. |«| corresponds to
the number of variables that are assigned either T or L in a. A formula F' that is
a tautology (i.e., Voo € A : a(F) = T) or a contradiction (i.e., Va € A: a(F) = 1)
is denoted by FF' =T or F' = L, respectively. SAT is used in many areas and is the
most popular NP-complete problem [NOTO0G].

2.1.1 Forms of Propositional Formulas

Different formats of propositional formulas are considered in the literature [DMO02,
BHvMO09, MMBH10]. Those typically have different advantages (e.g., fast queries,
succinctness, readability [DM02]) and can be translated into each other without
changing the semantic of the formula. For a better understanding of the different
formats, we display formulas as directed acyclic graphs (DAG). Each node of the di-
agram is a logical operator or a literal. For example, (AAB)V—C' can be represented
by the DAG displayed in Figure 2.1.

https://doi.org/10.24355/dbbs.084-202009161329-0

6 2. Background

V

N
AN -

P

|
A B C

Figure 2.1: DAG representing (A A B) V -C

Negation Normal Form

In a formula F' in negation normal form (NNF') negations may only appear directly in
front of literals, in contrast to in front of subformulas consisting of logical operators
and literals [HR04]. Every propositional formula can be translated to NNF using de
Morgan Rules [HR04].

Definition 2.1 (Negation Normal Form). A propositional formula F' is in NNF iff
every negation symbol appears directly in front of a literal [DMO02)].

Figure 2.2 shows a formula that is not in NNF as there is a negation symbol in front
of BV C. However, the formula can easily be translated to NNF.

N
N
A -
|
V
P
B C

Figure 2.2: Formula not in NNF

Figure 2.3 shows a formula that is semantically equivalent to Figure 2.2, but it is
translated to NNF using de Morgan rules. The translation to NNF is possible for
every propositional formula. NNF is a superset of many prominent propositional
formula formats (e.g. conjunctive normal form) [DM02].

A

N
A A

P
|
B C
Figure 2.3: Formula in NNF

Conjunctive Normal Form

Conjunctive normal form (CNF) is a subset of NNF [DM02]. Modern SAT solvers are
typically based on CNFs [TBWO04]. One of the most promiment algorithms to solve
SAT problems is Davis-Putnam-Logemann-Loveland (DPLL) which we describe in
Section 2.1.2. DPLL based solvers typically use CNFs as input [Lib00, HR04]. In

https://doi.org/10.24355/dbbs.084-202009161329-0

2.1. SAT 7

VAN
V V
T T
Li, ... Ly Lo, ... L,

Figure 2.4: Formula in CNF

addition to the NNF property, a CNF holds the following characteristics. A CNF is
a conjunction C' = Dy A ... A D,, of arbitrarily many disjunctions D; = L;, V...V L;
of different literals L;,. Formally, a CNF holds the following two properties. First,
a CNF is flat (i.e., the maximum nesting level is two). Second, every disjunction
is a clause (i.e., the child nodes of a disjunction are distinct and either positive or

negative literals) [DMO02]. Figure 2.4 displays the DAG of a CNF formula.

Definition 2.2 (Flatness). A propositional formula F is considered flat iff the maz-
imum nesting level in F is at most 2 [DM02].

Definition 2.3 (Conjunctive Normal Form). A propositional formula F' is in CNF
iff F is an NNF, flat, and every disjunction is a clause [DM02].

Any propositional formula can be translated to CNF using equivalence rules. How-
ever, this potentially increases the size of the formula exponentially [OGB™19]. In-
stead, equisatisfiable transformations are typically used [MOP*19, OGB*19, DDMOG].
Two formulas F' and F’ are considered equisatisfiable if both are satisfied and un-
satisfied for the same assignments (i.e., (a(F) =T <= a(F') = T)A (a(F) =
1l <= a(F') = 1)). One example, for a popular equisatisfiable transformation is
Tseitins transformation [Tse83].

Decomposable Deterministic Negation Normal Form

The decomposable deterministic negation normal form (d-DNNF) is a subset of NNF
that holds the properties decomposable and deterministic [DM02]. In contrast to
CNF, a d-DNNF is not flat [DMO02]. Formulas in d-DNNF allow a high number of
queries in polynomial time (e.g., model counting) [DM02]. Furthermore, any CNF
can be translated to d-DNNF in theory [LM17]. In the following, we define the
properties of a d-DNNF and show examples of formulas that fulfill them.

Definition 2.4 (Deterministic). A propositional formula F is deterministic iff the
children Dy, ..., D, of each disjunction in F' share no common solutions (i.e., Vi, j, i #

Figure 2.5 shows a DAG that represents a formula that is not deterministic as the
children of the root V share the solution {A,B}. Figure 2.6 shows an example of a
DAG for a deterministic formula, as AA (mAA B) = L.

Definition 2.5 (Decomposable). A propositional formula F' is decomposable iff the
children C4,...,C, of each conjunction in F share no variables(i.e., Vi,j,i # j :

C;,NC;=0) [DM02].

https://doi.org/10.24355/dbbs.084-202009161329-0

8 2. Background

V
PR

A B

Figure 2.5: Not deterministic formula

\

N
A A

PN
- B
|
A

Figure 2.6: Deterministic formula

Figure 2.7 shows a DAG that represents a non-decomposable formula, as the chil-
dren of the root A share the variable A. Figure 2.8 shows a DAG representing a
decomposable formula, as A and B A =C' share no variables.

A

N
A V

P
B -
|
A

Figure 2.7: Not decomposable formula

The children of a disjunction may contain different sets of variables in a d-DNNF.
This makes some analyses (e.g., counting the number of satisfying assignments)
more complex [Dar0la]. A formula that is smooth, contains no disjunctions whose
child nodes hold distinct variables. Adapting a d-DNNF so that it is smooth has a
polynomial time complexity [Dar0la]. Figure 2.9 shows a formula that is not smooth
as the children of the disjunction contain different variables. Figure 2.10 shows an
equivalent formula that is smooth. Let Fi, F5 be children of an Or node and v a
variable that is part of F} but not of F;5. The Or node can be smoothed by replacing
Fy with F3 A (v V —w). This does not change the semantics of the formula preserves
the properties decomposable and deterministic. Applying this technique for every
Or-node results in a smooth d-DNNF.

Definition 2.6 (Smooth). A propositional formula F is smooth, iff the children
Dy, ..., D, of each disjunction in F' contain the same variables(i.e., Vi, j : vars(D;) =
vars(D;)) [DMO02].

A special case of d-DNNFs considered in the literature are Decision-DNNFs [LM17,
Dar02]. In Decision-DNNFs, Or-nodes are replaced with decision nodes. Each de-
cision node has a left n; and a right n, child and corresponds to one variable v. It
can be interpreted as if v then n; else n,.. In propositional logic, a decision node is
equivalent to (vAn;)V(—vAn,). It is easy to see that this expression is deterministic

https://doi.org/10.24355/dbbs.084-202009161329-0

2.1. SAT 9

A

N
A V

P
B -
|
C

Figure 2.8: Decomposable formula

A

N
A V

FS
B =
|
C

Figure 2.9: Not smooth formula

in any case and also decomposable if n; and n, share no variables. Thus, decision
nodes do not violate the restrictions of a d-DNNF and a Decision-DNNF is also a
d-DNNF.

Knowledge compilation is about translating formulas into a format that supports
more or other types of queries in polynomial time [DM02]. d-DNNF is a promising
target language as there are algorithms exploiting the properties of d-DNNF's that,
inter alia, count the number of satisfying assignments in polynomial time [DMO02].
Current transformation algorithms typically translate a CNF to d-DNNF with a
traversal similar to DPLL [Dar02, MMBH10]. Another well-known format that
supports even more polynomial time queries are binary decision diagrams. However,
d-DNNFs are known to be more succinct [Dar02, DM02]. Thus, they should scale
to larger formulas than BDDs.

Binary Decision Diagram

Binary decision diagrams (BDDs) are another target language of knowledge compila-
tion [DMO02]. Intuitively, a BDD encodes every possible assignment of a propositional
formula as paths of a DAG. Each node of a path corresponds to a variable. The
path of a satisfying assignment « ends in a T-node to indicate o(F) = T.

Formally, a BDD consists of two types of nodes, namely variable and terminal nodes.
Each BDD has two of the latter corresponding to the truth values T and L, respec-
tively [HR04, HSJ04]. Each variable node corresponds to one variable v € vars(F).
Furthermore, each variable node has one low and one high edge leading to another
node. Let F' be a propositional formula represented by the BDD and a(F') be an
assignment. At a variable node N, corresponding to v € wvars(F'), the low/high
edge is taken if a(v) = L/T. Traversing the BDD with this logic ends in the T
or 1 terminal node. If the traverse corresponding to a ends in T, it follows that
a(F) = T. Otherwise, it is a(F) = L [HR04, HSJT04].

https://doi.org/10.24355/dbbs.084-202009161329-0

10 2. Background

A
o
/\
A A
N N
B V \Y,

Figure 2.10: Smooth formula

2.1.2 Ways to Solve SAT Problems

Davis-Putnam-Logemann-Loveland (DPLL) is the most prominent algorithm used
to check whether a propositional formula is satisfiable [Lib00]. It is a depth-first-
search backtracking algorithm that assigns a variable at each step. The algorithm
typically operates on a CNF (i.e., on a conjunction of clauses). After each assign-
ment, the algorithm checks whether all clauses are satisfied or at least one cannot
be satisfied anymore. If all clauses are satisfied, the current set of assignments is
returned as solution. If a clause cannot be satisfied given the current assignment,
the algorithm backtracks [Lib00]. The actual algorithm is shown in Algorithm 1.

Algorithm 1 DPLL(F,«)

if a(F) =T then
return T

end if

if o(F) = L then
return |

end if

lnest := getNextUnassignedVariable ()

Qpegt = U {lne:pt}

if dpll(F, apeys) = T then
return T

end if

Qopegt := U {_'lnext}

if dpll(F, a—pert) = T then
return T

end if

return |

There are many other possible algorithms to compute the satisfiability of a propo-
sitional formula (e.g. natural deduction [HR04], local search algorithms [HS00], and
the marking algorithm for horn formulas [HR04]). Another one that is relevant
for this thesis is exploiting the properties of knowledge compilation target languages
(e.g., &-DNNF and BDD) [DMO02]. Here, the main effort lies in the translation to the

https://doi.org/10.24355/dbbs.084-202009161329-0

2.2. #SAT 11

target language [Dar02, DM02]. For example, a propositional formula is satisfiable
iff the BDD representing it contains a path to the T terminal node [HR04].

2.1.3 Complexity

SAT is NP-complete [Joh92]. This implies two properties. First, a solution for
SAT can be verified with a polynomial time complexity [Wel82]. Second, assuming
P # NP, there is no deterministic algorithm that finds a solution with a polynomial
time complexity [Wel82]. However, various heuristics have been considered in the
literature that scale to large formulas in practice [GPFW96].

2.2 #SAT

In contrast to regular SAT, #SAT corresponds to the number of satisfying assign-
ments of a propositional formula [GSS06, KZK10, BDP03]. Let F be a formula
and Ap the set of all possible assignments for the variables vars(F). Formally,
a #SAT solver computes the cardinality of the set of satisfying full assignments

#F = |{a € Ap|a(F) =T}

2.2.1 Ways to Solve #SAT Problems

A naive solution to compute the number of satisfying assignments is enumerating
them using regular SAT solvers. First, the solver computes a full satisfying assign-
ment «, which can be translated to a term. The term is created by conjuncting a
literal [; for all variables f; € vars(F): 3 A ... Al,. If a(f;) = L, the corresponding
literal [; is negated. The resulting term is negated and conjuncted to F. Negating
a term with the De Morgan rule (e.g., =(A A B) = =A V =B) results in a clause
¢ [HRO4]. Thus, the resulting formula F” = F' A ¢ is still in CNF. In the next step,
F' is given as input to a SAT solver. As « is not a satisfying assignment for F”,
another assignment is returned. This procedure can be repeated until there is no
satisfying assignment left to compute the number of satisfying assignments [TS16].

Another possible way is to adapt the DPLL procedure described in Algorithm 1. Let
F be a propositional formula in CNF with n = |vars(F)|. If a satisfying assignment
« is found, regular DPLL stops the traversal and returns «. The adaption for
#SAT computes the number of satisfying assignments of the current branch using
the n — |af freely assignable variables. Each of those free variables can either be
assigned T or L. Thus, the number of satisfying assignments is 27!/, Then, the
procedure backtracks to find remaining satisfying branches. By definition of the
DPLL procedure, the assignments of the different branches are distinct. Thus, the
number of all satisfying assignments is the sum of the number of assignments of the
branches. [HFACA13, BHvM09, BDP03]. Adaptations of DPLL for #SAT is used
by many state-of-the-art #SAT solvers [BJP00, SBK05a, Thu06, BSB15, Bie08,
KMM13]. Algorithm 2 shows a basic DPLL algorithm that computes the number
of satisfying assignments.

A d-DNNF can be used to compute the number of satisfying assignments in poly-
nomial time [DM02]. The idea is to exploit the properties deterministic and decom-
posable of a d-DNNF. The children Dy, ..., D,, of a disjunction D in a deterministic

https://doi.org/10.24355/dbbs.084-202009161329-0

12 2. Background

Algorithm 2 CountDPLL(F, «)

lnext *= getNextUnassignedVariable ()
CcoOuNt eyt = CountDPLL(F, o U lpent)
count—peys = CountDPLL(F, ov U l_pest)
return count,e.; + count_, .

1. if a(F') =1 then
2. return 271l
3: end if

4: if o(F) =0 then
5. return 0

6: end if

7

8:

9:

._.
@

formula share no common solutions [DMO02]. Thus, the number of satisfying assign-
ments of the children can just be summed up (i.e.,#D = Y ", #D;) [BHvMO09].
However, this requires some extra handling of variables that are not part of every
child if the d-DNNF is not smooth. As an example, consider the deterministic dis-
junction F' = (AA B)V (=A A C). Without the context of the entire propositional
formula, A A B and —=A A C' both induce one solution each. However, F' induces
four solutions which is more than 1 + 1 = 2 solutions implied by the formula for
disjunctions. The problem is that B and C' do not appear in every child of the
disjunction. We consider two possible ways to acquire correct results. First, we can
adapt the formula to consider missing variables. For each child node, every missing
variable can be either T or L. Thus, the model count needs to be multiplied with
two for every variable. Let M; be the set of variables that appear in a child D;.;
but not in D;. To get correct results the formula for disjunctions can be adapted as
follows: i.e.,#D = > | #D; * 2IMil - Second, we can smooth the d-DNNF. Then,
each child of a disjunction contains the same set of variables and we do not need
to handle the issue for each single query on the d-DNNF. Smoothing our example
results in /' = (AANBA(CV-0C))V (mAANCA(BV —B)). Both children of
the disjunction in £’ induce two solutions without even without the context of F”.
Thus, the adaption to handle missing variables is not required as 2 + 2 = 4 is cor-
rect. The children C1, ..., C,, of a conjunction C' in a decomposable formula share
no variables [DMO02]. Thus, the number of satisfying assignments of the children
can just be multiplied (i.e.,#C = [[\~, #C;) [BHvMO09]. Each leaf is a literal and
contains one satisfying assignment. Applying the rules for deterministic and decom-
posable nodes, the number of satisfying assignments #F can be computed with a
single traversal of d-DNNF [BHvMO09]. Algorithm 3 shows the actual algorithm for
a smooth d-DNNF.

Computing the number of satisfying assignments with a BDD is possible in polyno-
mial time, like with d-DNNF [BHvMO09]. Starting from the T terminal node, every
path can be traversed to compute all satisfying assignments. The paths starting
from the | terminal node do not imply any satisfying assignment. Thus, a traversal
of these can be omitted to save time [BHvMO09].

#SAT solvers typically operate on a CNF [Dar04, LM17, MMBH10, BJP00, SBK05a,
Thu06, BSB15, Bie08]. For a correct result, an equisatisfiable transformation is
not sufficient as it is also necessary to preserve the number of satisfying assign-

https://doi.org/10.24355/dbbs.084-202009161329-0

2.3. Feature Models 13

Algorithm 3 recurseDDNNF(node)
1. if node.isLeaf() then
2: return 1
3: end if
4: if node.isAnd() then
5. result :=1
6: for child in node.getChildren() do
7
8
9

result := result * recurseDDNNF(child)
end for
. return result
10: end if
11: if node.isOr() then
12: result := 0
13: for child in node.getChildren() do
14: result := result + recurseDDNNF(child)
15: end for
16: return result
17: end if

Algorithm 4 countDDNNF(F)
1: return recurseDDNNF(ROOTy)

ments [OGB™19]. Some transformations introduce new variables to simplify the
transformation [PG86, Tse83]. In this case, it is possible that the resulting formula
is equisatisfiable but contains more solutions resulting from the added variables
[OGB*19]. This is an important point to consider for #SAT to prevent wrong
results.

2.2.2 Complexity

#SAT is widely assumed to be a harder problem than regular SAT [BSB15, BG19].
It is obvious that #SAT is at least as hard as SAT. Checking whether there is at least
one solution is trivial after computing the number of solutions [Joh92]. Furthermore,
there are problems which can be solved in polynomial time for SAT but not for
#SAT (e.g., horn-clauses or 2-CNF) [BG19]. While SAT is an NP-problem, #SAT
is #P-complete [BHvMO09]. Intuitively, #P problems correspond to computing the
number of solutions for an instance of a problem that are decidable in polynomial
time complexity [BHvMO09, KZK10]. Every #P-complete problem can be reduced
to every other #P-complete problem in polynomial time [BHvMO09].

2.3 Feature Models

A product line describes a family of similar products in contrast to standalone prod-
ucts [BSRC10]. Typically, these products can be decomposed into features, which
are reused in multiple products [SAKS16]. Product lines enable cost-efficient devel-
opment while still allowing individualized products [PLP11].

https://doi.org/10.24355/dbbs.084-202009161329-0

14 2. Background

Feature models are commonly used to describe a product line in terms of features
and dependencies between them on an abstract level [PLP11, BSRC10]. The depen-
dencies consist of hierarchical relations between a parent feature and its child, and
cross-tree constraints [BSRC10].

Definition 2.7 (Feature Model). A feature model FM = (FEATS, ROOT,w, REL,
P,CTC) is a 6-tuple with:

e FEATS is the set of features.
e ROOT is the root of the feature model.

e P : FEATS — FEATS is a function that maps each feature to its parent.
We define CHILDREN, = {f € FEATS|P(f) = p} as the set of children of
feature p. A child can only be selected if its parent is selected.

o w: FEATS — {mandatory, optional} is a function that maps each feature to
either mandatory or optional. A mandatory feature always needs to be selected
if the features parent is selected. This is not the case for an optional feature.

e REL: FEATS — N x N is a function that describes the relation of a feature
to its children. REL(f) =< n,m > indicates that at least n and at most m
children of f have to be selected if [is selected.

o CTC s the set of cross-tree constraints. Fach constraint ct € CTC 1is in
propositional logic with features as variables.

A feature diagram is often used to visualize a feature model [HFACA13]. Figure 2.11
displays the feature diagram of a simplified car. Each car requires a Carbody denoted
by a Mandatory-flag and exactly one type of a Gearbor denoted by an Alternative-
group. Additionally, the car may contain a Radio that can be further configured
(e.g., it may contain Bluetooth). If Ports is selected, a car may have USB, CD, or
both which is denoted by an Or-group. Overall, the following types of hierarchical
relations are displayed.

e An Alternative-relation indicates that exactly one child of a feature p needs to
be selected if p is selected (i.e., REL(p) =< 1,1 >) [BSRC10]. The simplified
car requires exactly one of Manual and Automatic. Thus, the features are
alternative to each other.

e An Or-relation indicates that at least one of the n children of a feature p needs
to be selected if p is selected (i.e., REL(p) =< 1,n >) [BSRC10]. If Ports is
selected, the car requires one or both of USB and CD. Thus, the features are
in an or-relation.

e An And-relation indicates that each child is either Mandatory or Optional.
The children of an Or or an Alternative are not considered Mandatory or
Optional.

https://doi.org/10.24355/dbbs.084-202009161329-0

2.3. Feature Models 15

Car
Carbody | | Radio Gearbox
Ports Navigation | | Bluetooth | | Manual | | Automatic

/\ O/\ Legend:

USB | | CD | | DigitalCards GPSAntenna | @& Mandatory

/é\ of Optional
A Or

Europe | | USA A Alternative

Feature

Navigation = USB

Figure 2.11: Simplified car adapted from Ananieva et al. [Anal6]

e An Optional-flag indicates that the feature f does not need to be selected if its
parent is selected (i.e., w(f) = optional) [BSRC10]. A car may have a Radio,
but does not require one. Thus, the feature is optional.

e A Mandatory-flag indicates that the feature f needs to be selected if its parent
is selected (i.e., w(f) = mandatory) [BSRC10]. A car requires a Carbody in
any case. Thus, the feature is mandatory.

For the remainder of this thesis, we limit the possible relations between a feature and
its children to Alternative (i.e., REL(p) =< 1,1 >), Or (i.e., REL(p) =< 1,n >),
and And.

The feature diagram also displays one cross-tree constraint Navigation = USB. This
means that every car that includes Navigation also requires USB. The hierarchical
relations and the cross-tree constraints specify the set of valid configurations. Each
feature model induces configurations that can be built by selecting and deselecting
features.

Definition 2.8 (Configuration). A configuration C' = (FM,I, E) is a 3-tuple with:
o 'M = (FEATS, ROOT,w,REL, P, CTC)
o [C FEATS is the set of features included in the configuration C'.
o F C FEATS is the set of features excluded from the configuration C.

e INE = (. A feature cannot be included and excluded in the same configuration
C [BSRC10].

Sometimes, one may aim to create a family of configurations, where some features

are neither included or excluded. Such a configuration is called partial. All features
of a full configuration are either included or excluded.

https://doi.org/10.24355/dbbs.084-202009161329-0

16 2. Background

Definition 2.9 (Partial Configuration). A configuration C = (FM, I, E) is partial
iff IUE C FEATSgy [BSRC10).

Definition 2.10 (Full Configuration). A configuration C = (FM,1,E) is full iff
I UE = FEATSpy [BSRC10].

There are 2/FPATS| possible configurations [KZK10]. However, not all of them satisfy
all constraints imposed by the feature model. We call a configuration that does not
violate any properties of the feature model valid [BSRC10]. We define VCpy, as the
set of valid configurations and #FM = | VCpy| as the number of valid configurations
of the feature model FM.

Definition 2.11 (Valid Configuration). A full configuration C = (FM, I, E) is valid
if each of the following properties is fulfilled.

e ROOT e 1

Vee FEATS :cel= P(c)el

Ve € FEATS : P(c) = p,w(c) = mandatory :pe l =ce€ [

Vp € FEATS : REL(p) =<n,m >:p €l =n < |{c e (CHILDREN,NI)}| <
m

/\ ct/\/\i/\/\ﬂeET

cteCTC il eckl

It is not trivial to manually determine whether a given configuration is valid as every
specified constraint has to be reviewed. Especially for larger feature models, it is
time-consuming to check the validity of a configuration. Thus, automated support
is required.

2.4 Feature Model Analysis

Manual analysis is error-prone and time-consuming, especially for larger feature
models [BSRC10]. Automated analyses can be used to support developers and users
of a feature model [BSRC10]. It can be used, inter alia, to extract information,
detect anomalies, or accelerate product derivation [BSRC10].

It is difficult to keep track of all dependencies between the features of a feature
model. Thus, edits may result in faulty models. Automated support can help
developers to detect and resolve such problems. With cross-tree constraints, it is
possible to create conflicts such that two or more constraints can never be fulfilled
under the same assignment. In this case, the feature model does not induce any
valid configuration. Such feature models are called void [BSRC10].

Definition 2.12 (Void model). A feature model F'M is void iff FM induces no valid
configurations.

https://doi.org/10.24355/dbbs.084-202009161329-0

2.4. Feature Model Analysis 17

Not all design errors directly result in a void feature model. However, some may
result in features that cannot be selected in any valid configuration. Such features
are called dead [BSRC10].

Definition 2.13 (Dead Feature). A feature f € FEATSpy is a dead feature iff
there is no valid configuration (FM,I, E) with f € I.

A core feature is part of every valid configuration [BSRC10]. It may be beneficial
to prioritize core features in the development, as no valid configuration can be built
without them.

Definition 2.14 (Core Feature). A feature f € FEATSpy is a core feature iff there
is no valid configuration (FM, I, E) with f ¢ I.

Sometimes, the feature tree indicates that an illegal combination of features is valid.
For example, a feature ¢ may be modeled as optional but is there is no valid con-
figuration that contains the parent of ¢ but not ¢. In this case, ¢ is a false-optional
feature [BSRC10]. It behaves as a mandatory feature but is wrongfully modeled as
optional.

Definition 2.15 (False-optional Feature). A feature c is false-optional iff w(c) =
optional andVC = (FM,I,E) € VCry :p €l =c€ .

A feature and its mandatory or false-optional feature always appear together in a
valid configuration [Seg08]. Thus, they are part of the same atomic set. An atomic
set is a set of features that only appears together in valid configurations. There
is no valid configuration, that contains only a subset of features in an atomic set.
Atomic sets can be regarded as a unit for the analysis of the feature model which
may simplify the computation [Seg08, ZZM04].

Definition 2.16 (Atomic Set). Two features f, g are part of an atomic set A iff For
every valid configuration C = (FM, I, E) € VCpy: f €1 < g€ 1.

Another use-case for feature model analysis is deriving valid configurations from a
feature model. Manually, the user would have to keep track of all the dependencies
to not accidentally create an invalid configuration. A given configuration should
be checked for validity automatically. Another aspect is interactive support. For
example, if a parent of a mandatory feature f is selected, f can automatically be
selected as well [SSKT20].

SAT-based Analysis

SAT is commonly used to analyze feature models [HFACA13, BSRC10, Bat05].
Any feature model can be translated to a propositional formula using rules shown in
Table 2.1 [MWC09, BSRC10]. The cross-tree constraints are already in propositional
logic and can be conjuncted to the resulting formula.

We define Frj; as the propositional formula representing feature model FM. A
configuration C' = (F'M, I, FE) can also be translated to propositional logic. We
define Fo = Frar A Nief AN Neeg e as the propositional formula representing C.
A SAT solver can use such formulas Fry; and F to analyze feature models and
configurations. Let A C FEATSp) be an atomic set.

https://doi.org/10.24355/dbbs.084-202009161329-0

18 2. Background

Relation Propositional Formula
Or p < o1V..Vo,
Alternative a; <= (—ag A ...\ =a, Ap)A

ag <= (a3 A —az A ... \—a, Ap)A
e Nay, = (Day A ... A 2au_1 A D)

Optional c=0p
Mandatory c &= p
ct e CTC ct

Table 2.1: Translation Feature Model to Propositional Logic

Analysis Propositional Computation
FM is void Fryr is unsatisfiable
f € FEATSE) is dead Fry A f is unsatisfiable
f € FEATSg), is core Fry A —f is unsatisfiable
¢ € FEATSpy, is false-optional, P(c) = p | Fpy A p A —c is unsatisfiable
f,g € A (Atomic Set) Fry AN f A—g and
Fryr A g A —f are unsatisfiable
C' is valid configuration F¢ is satisfiable
Propagate selection of f ¢ I for C Feo A —=f is unsatisfiable

In the literature, most analyses are only based on regular SAT. However, Fr), can
also be used as an input for a #SAT solver. Given Fr), as input, the solver computes
the number of valid configurations of F'M. Analyses that use #SAT solvers are
presented in Chapter 3.

https://doi.org/10.24355/dbbs.084-202009161329-0

3. Applications

In this chapter, we discuss applications that depend on the number of valid configu-
rations of a product line. Hereby, we present applications that are already considered
in the literature and also provide new ones. This is supposed to answer RQ1: Which
applications are possible for #SAT in the product line domain? and motivate the
usage of #SAT solvers for product line analysis.

While relevant analyses exist that require counting the number of valid configura-
tions (e.g., uniform random sampling [OBMS17, OBMS16, OGB*19, MOP*19]),
only little research addressing this topic has been conducted. A major issue has
been the scalability of counting the number of valid configurations [PLP11]. How-
ever, our prior results showed that it is feasible to use current #SAT solvers on
many industrial systems [STS20]. Thus, it is possible to use them to enable new
applications for product lines that are potentially relevant for industrial usage. The
presented applications rely on the number of valid configurations for entire models,
partial configurations and containing a specific feature.

For each application, we provide a qualitative explanation and a formal description.
We separated the applications depending whether they rely on computing the num-
ber of valid configurations (1) of an entire feature model, (2) containing a specific
feature (i.e., commonality), and (3) including or excluding sets of features (i.e.,
partial configurations). The specific algorithms to compute results for these three
analyses are discussed in Chapter 4. During the remainder of this chapter, we use
Figure 3.1 as a running example. The feature diagram of the simplified car was
already introduced in Chapter 2.

3.1 Number of Valid Configurations

A valid configuration satisfies all constraints given by the feature model FM [KZK10].
The number of valid configurations corresponds to the cardinality of the set of config-
urations that meet this requirement [KZK10]. This is trivial for feature models with-
out cross-tree constraints as there are no interdependencies between features from
different sub-trees [HGFACC11]. Thus, the number of valid configurations for each

https://doi.org/10.24355/dbbs.084-202009161329-0

20 3. Applications

Car
Carbody | | Radio Gearbox
Ports Navigation | | Bluetooth | | Manual | | Automatic

/\ O/\ Legend:

USB | | CD | | DigitalCards GPSAntenna | @& Mandatory

ﬁ\ /(R\’ Optional
or

Europe | | USA A Alternative
Feature

Navigation = USB
Figure 3.1: Simplified car adapted from Ananieva et al. [Anal6]

sub-tree can be computed independently. The number of valid configurations for the
entire feature model can be computed by traversing the feature tree and applying
different rules for each relationship-type. For example, the number of valid config-
urations of an alternative relation is the sum of its children’s counts [HGFACC11].
Applying this procedure to our running example while disregarding its cross-tree
constraints results in 66 valid configurations. However, with cross-tree constraints
this procedure computes wrong results as interdependencies between different fea-
ture sub-trees are disregarded. It has been shown that for each propositional formula
an equivalent feature model with cross-tree constraints exists [KTM™17]. It follows
that an algorithm able to compute the number of valid configurations for any pos-
sible feature model is also able to compute the number of satisfying assignments for
every propositional formula. Thus, regarding the worst-case complexity, computing
the number of valid configurations for a feature model with cross-tree constraints is
at least as hard as #SAT which is #P-complete. In the following, we describe eight
applications that make use of the number of valid configurations of a feature model.

Void Model

A void feature model FM induces no valid configurations [BSRC10]. Thus, it is
not possible to derive even a single configuration from FM which makes the feature
model unusable. Computing the number of valid configurations implicitly answers
whether a feature model is void. If the returned result #FM is zero, FM is void.
Otherwise, it is not void.

#FM =0 < Void FM (3.1)

The simplified car model induces 42 valid configurations and is, thus, not void. Void
models can be identified with satisfiability-based analyses [BSRC10]. We expect that
instead computing the number of valid configurations is more expensive. However, if

https://doi.org/10.24355/dbbs.084-202009161329-0

3.1. Number of Valid Configurations 21

the number of valid configurations is required anyways, the runtime of an additional
void analysis can be saved. Analogous, if the model has been found void by a prior
analysis, a #SAT call is not required.

Variability Factor

The variability factor of a feature model describes the share of configurations that
are valid [BTRC05, FAHCC14, HGFACC11, HFACA13]. The value lies between zero
and one. A variability factor close to zero indicates a highly restricted feature model,
while a product line with no restrictions has a variability factor of one [HGFACCI11,
HFACAT13]. Disregarding all restrictions, every combination of features induces a
valid configurations. In this case, there are 2/FPATSrul configurations. The variability
factor of a feature model F'M is computed as follows.

LFM

VariabilityFactor(FM) = QIFEATSmag]|

(3.2)
Benavides et al. [BTRCO05] argue that the variability factor can be used to estimate
the benefits of a product-line approach. A small variability factor may indicate that
developing standalone products is more beneficial. Additionally, an unexpected
variability factor may indicate a design error.

The simplified car model contains 15 features, only 1 cross-tree constraint, and
induces 42 valid configurations. The variability factor 24T25 = % = 0.0013 indicates
that only a fraction of all configurations induced by FM is valid. This shows that the
hierarchy of a feature model already limits the set of valid configurations by a large
margin. For example, an alternative of ten features induces ten valid configurations.

Without the limitation of the alternative, there are 21° = 1024 configurations.

The already strong limitations of the tree structure may make it difficult to grasp
the impact of cross-tree constraints. We propose to simplify this by comparing the
number of valid configurations of FM with and without cross-tree constraints. Let
FM’ be an adaption to FM that does not contain cross-tree constraints.

HFM

VariabilityFactor oo (FM) = ST

(3.3)

Without cross-tree constraints, our running example induces 66 valid configurations.
Thus, variability factor of cross-tree constraints is é—g = 0.636 which shows that the
cross-tree constraints do not limit the number of valid configurations by a large mar-
gin. A VariabilityFactor ., close to one also indicates that approximating count
based analyses by evaluating the feature model without cross-tree constraints pro-

vides more accurate results than a small VariabilityFactor ;.

Variability Reduction

The number of valid configurations can also be used to examine the impact of a
change to the feature model. Consider the feature model F'M and a possible adaption
FM' of it. We call the change in the number of valid configurations from FM to
FM’ variability reduction.

https://doi.org/10.24355/dbbs.084-202009161329-0

22 3. Applications

VariabilityReduction(FM') = #FM — #FM’ (3.4)
FM
RelativeVariabilityReduction(FM') = Z L (3.5)

One use-case of this metric is the identification of undesired changes to the prod-
uct line caused by the edits. If the number of valid configurations changes in
an unexpected way, this is an indicator for a faulty edit. For example, an addi-
tional constraint that does not change the number of valid configurations is redun-
dant [KZK10]. Also, new constraints may unexpectedly reduce the number by a
large margin. In this case, the edits can be re-evaluated and, thus, design flaws can
be prevented. Consider the following change to our example Figure 3.1. A company
sells the cars with Automatic exclusively to the USA. Thus, the developer wants
to introduce a new cross-tree constraint Automatic = USA. The resulting feature
model FM' induces 25 valid configurations. The original 42 valid configurations
can be separated in 21 configurations with Automatic and 21 configurations with
Manual. As the introduced constraint only affects cars with Automatic, we know
that there are only 4 valid configurations with Automatic left. This information can
be used by the developer to reconsider the change to the feature model. A possible
alternative may be DigitalCards N Automatic = USA. The resulting model induces
38 valid configurations. Even though the originally proposed constraint caused an
unintended high variability reduction, it did not introduce any traditional anomalies
like dead or false-optional features. Thus, such design flaws are difficult to detect
using traditional satisfiability-based analyses.

Reducing the variability of a product line may simplify quality assurance and mainte-
nance [KZK10], as fewer products need to be considered. In order to do so effectively,
it is necessary to know the impact of an edit regarding the reduction of variability.
However, it is difficult or even impossible to estimate the difference in the number
of configurations without automated support. The number of valid configurations
before and after multiple changes can be used as one of the criteria to select a
possible change. Consider the following two changes to our motivating example:
removing the gearbox type Manual or make Radio mandatory. These result in 21
or 40 remaining valid configurations, respectively. Thus, removing Manual is more
beneficial only considering the variability reduction.

Other works considered computing the added and removed configurations explic-
itly [TBK09, AHC™12]. While this provides the variability reduction implicitly and
additional useful information, it is not feasible for large differences. In previous
work, we showed that there are up-to ~ 10'% added configurations after a new
version of a feature model [STS20]. If we store the 10" configurations with a size
of one byte each, we need 108 terabytes of memory. Enumerating and storing
is not feasible in this case but we can compute the number of added and removed
configurations.

Rating Errors

Kiibler et al. [KZK10] propose using the variability of a feature model specialization
for rating an error. A specialization imposes additional constraints to the feature

https://doi.org/10.24355/dbbs.084-202009161329-0

3.1. Number of Valid Configurations 23

model which removes valid configurations from the configuration space. The idea is
that an erroneous subset of the configuration space included in more valid configu-
rations is potentially more critical. Let FMpggrg,, FMgrr, be two specializations of
the feature model FM that are erroneous.

#FMgrr, > #FMgrr, = FMgrg, is potentially more critical than F'Mggp,
(3.6)

Suppose there are two feature subsets that cause errors in our car product line:
{Bluetooth, USB} and { Automatic, GPSAntenna}. Those subsets appear in 16 and
12 valid configurations, respectively. This can be used as an indicator to argue that
the error in { Bluetooth, USB} is more critical and that the developers should focus
on this error first.

Degree of Orthogonality

Feature-model analyses are typically difficult because of the interdependencies be-
tween different sub-trees specified by cross-tree constraints. If the impact of these
interdependencies is small, the sub-trees can be evaluated separately to get an es-
timated result. To analyze a single sub-tree, it is possible to use only local con-
straints [CK05b, BSRC10]. Czarnecki et al. [CK05b] and Benavides et al. [BSRC10]
define local constraints as constraints that are imposed by the tree-structure and
cross-tree constraints that only contain a single feature. For more precise estima-
tions, we propose to also consider cross-tree constraints that only contain features
of the same sub-tree.

The degree of orthogonality describes the ratio between the number of valid configu-
rations regarding all and only local constraints [CW07]. A high degree of orthogonal-
ity indicates that interdependencies between subtrees have a low impact regarding
the number of valid configurations. In this case, analyses (e.g., the decision about
feature selections) can be performed locally [CWO07]. Let FM be a feature model and
FM,.. a generalization that only considers the tree hierarchy and local cross-tree
constraints. The degree of orthogonality is computed as follows.

FM
DegreeOfOrthogonality (FM) = ##W (3.7)
local

For our example, the feature model induces 66 valid configurations if we only consider
local constraints (i.e., disregard the cross-tree constraint in our example). Thus, the
DegreeOfOrthogonality(FM) = % ~ (0.636 indicates that analyses that only con-
sider local constraints may provide a reasonable estimate depending on the accuracy
required for the application.

Configuration Relevance

We propose using the number of valid configurations to rate a configurations rele-
vancy. For example, consider 1000 products that were ordered from a product line.
One product based on configuration € was ordered 20 times. Without knowing

https://doi.org/10.24355/dbbs.084-202009161329-0

24 3. Applications

the size of the configuration space, it is difficult to tell whether the configuration
is more or less represented than an arbitrary configuration. The product line may
contain 42 valid configurations like our motivating example or maybe 10! like a
smaller industrial model we evaluated in previous work [STS20]. In the first case,
the configuration has a below-average representation but in the second a highly
above-average representation. Let S be the sample of configurations, C; the config-
uration in question, and |S¢| the number of occurrences of C' in the sample.

RelevanceOfConfiguration(FM, S, C;) = |i§i‘ x #FM

RelevanceOfConfiguration(FM, S, C;) = a states that C; appears in a times as often
in S compared to an arbitrary configuration. A relevancy score a between zero and
one indicates, that C; has an below-average representation. A relevance score a
higher than one indicates, that (] has an above-average representation which can
be used to prioritize C] for testing and maintenance.

Cost Savings of a PL

Several authors use the number of valid configurations to evaluate whether it is
beneficial to develop a product family as product line (PL) or not (i.e., as standalone
products) (NPL) [CMC05, HFACA13]. The costs CNPL to develop standalone
products can be estimated by multiplying the number of valid configurations # FM
with an cost estimation CP to develop a single product.

CNPL(FM) = #FM x CP (3.8)

For the cost of a product line approach, the authors consider first building one
standalone product [CMCO05, HFACA13]|. Afterwards, the common features (i.e.,
features that appear in more than one configuration) are changed to be reusable.
The relative costs for developing the features for reusability are referenced by CR.
A C'R = 2 indicates that building the features for reuse is twice as much effort than
developing it as a standalone product. Then, the rest of the products #FM — 1 can
be built with a reduced cost CPR [HFACA13]. The details on how to compute CPR
are omitted in the following formula as they are not related to counting the number
of valid configurations.

CPL(FM) = CR x CP + (#FM — 1) x CPR (3.9)

Overall, we are interested in the difference between the costs of implementing the
family as product line and costs of all standalone products. This difference indicates
the benefit of a product-line approach [CMC05, HFACA13].

CSAVE(FM) = CNPL(FM) — CPL(FM) (3.10)

If the result CSAVE is positive, it is beneficial to build a product line. Both
CPL and CNPL are dependent on knowing the number of valid configurations

https://doi.org/10.24355/dbbs.084-202009161329-0

3.1. Number of Valid Configurations 25

#FM [CMCO05, HFACA13]. Consider the following example: Suppose the cost of
developing a standalone car of our example is CP = 3 and the cost for developing for
reuse is instead 6 which means that CR = 6. Furthermore, the cost for developing
a new product afterwards with the product line approach is CPR = 2. Overall,
this results in CNPL(FM) = 42 %3 = 126 and CPL(FM) = 2% 3 + 41 x2 = 87.
CSAVE(FM) = 126 — 87 = 39 indicates that it requires less effort to build all 42
possible cars with a product-line approach.

Variability of Feature Sets

Analyzing large feature models is expensive. In some instances, it may be sufficient
to focus analyses on specific parts of the feature model. We propose using the
number of valid configurations to compute the variability of only a subset of features
(e.g., a feature model sub-tree). This can be used to compute the number of valid
configurations disregarding abstract features. Abstract features are irrelevant for
the actual products and are used to structure the feature model [TKES11]. The
variability of a feature subset can also be used to find parts that have particularly
high or low variability. The identified parts can be used to set a focus for other
analyses. Furthermore, an unexpected degree of variability for a subset may indicate
modeling errors.

Given a set of features S C FEATSr), the idea is to compute the number of variants
induced by the different combinations of S. For each valid configuration C, every
feature f ¢ S is discarded. Then, configurations C;, C; that include (i.e., I¢, = I¢;)
and exclude (i.e., B¢, = E¢,) the same features are merged. The result is a set Dg
of distinct configurations that only contain features included in S. We are interested
in the cardinality of this set. The absolute cardinality or in relation to #FM may
be interesting.

AbsoluteVariability(S) = | Dg| (3.11)
RelativeVariability(S) = [Ds] (3.12)
#FM

In our example, the sub-tree induced by the feature Radio may be our subset of

interest S. The sub-tree induces 21 different variants. With this number, we can see

that the main variability results from our S, as the rest of the feature model only
42

induces 57 = 2 variants which result from the alternative between Automatic and

Manual.

To set the variablity of a feature set into perspective, we propose comparing it to
the average variabilities of multiple user defined feature sets. Suppose, the feature
model is separated in n distinct feature sets whose variability should be compared.
Let #5; be the variability of feature set S;. On average each part S has a variability
of Zi=t#5 Ty, AbsoluteVariability(S) > ZH:+#S shows that S has a higher

n
variability than the average of the other n — 1 parts.

https://doi.org/10.24355/dbbs.084-202009161329-0

26 3. Applications

AbsoluteVariability(S) > 2iz #5% = S has an above-average variability. (3.13)
n

Consider the above mentioned example and the two following feature sets: the sub-
tree induced by Radio (Sgragio) and the rest of the feature model (Sges;). Thus, n is
two, #Sgagio = 21, and #Sgest = 2. AbsoluteVariability (Sgragio) = 21 > 212—+2 =115
indicates that Sgruqi has a high variability.

3.2 Commonality

The commonality of a feature is the relative share of valid configurations that include
that feature [FAHCC14, PHRC06, TBC06]. Consequently, given an arbitrary valid
configuration C, the commonality of the feature f describes the probability of f
appearing in C' [PHRCO06]. Let FM; be a specialization of the feature model F'M that
always includes the feature f (i.e., f is a core feature in FM;). The commonality of
feature f is then described by the following formula [FAHCC14, PHRCO06, KZK10].

#IMN: M 40
Commonality(FM, f) = { #I'M # 7 (3.14)
0 #FM =0
If the feature model is void, i?ﬁ is undefined. In this case, we consider the com-

monality of the feature to be zero. Sometimes, commonality also refers to the abso-
lute number #F M/ of valid configurations containing the feature [BSTCO07, CE11].
We use both types, relative and absolute commonality in the remainder of this the-
sis. If not stated otherwise, we refer to the relative commonality. In the following,
we describe eight use cases for computing the commonality of features.

Dead & Core & False-Optional Features

The commonality of a feature can be used to identify defects. Given a feature model
FM, a feature f, and the commonalities of P(f), f the anomalies dead, core, and
false-optional feature can be computed in the following way. If the entire feature
model is void, we consider each feature to be dead as our definition of commonality
implies.

Commonality(FM, f) =1 <= f is a core feature [PM16] (3.15)

Commonality(FM, f) =0 <= f is a dead feature [TBC06, PM16] (3.16)

Commonality(FM, P(f)) = Commonality(FM, f) and f is not mandatory

3.17
<= f is false-optional ()

We expect that existing analyses for anomalies that are based on satisfiability are
less time-consuming. However, if the commonality of features is computed anyway
for other analyses, these defects can be identified without further computations.

https://doi.org/10.24355/dbbs.084-202009161329-0

3.2. Commonality 27

Atomic Set Candidates

When the commonality of features is computed anyway, the information can be
used to find possible candidates for atomic sets. Features in the same atomic set
always appear in the same number of valid configurations. Otherwise, there would
be at least one configuration that contains only a subset of the features. The fol-
lowing formulas can be used to find atomic set candidates only using the absolute
commonality of the features.

#FMy = #FM, = f, g are candidates for an atomic set (3.18)

#FM; # #FM, = f,g not part of the same atomic set (3.19)

In our example, both Nawvigation and GPSAntenna appear in 24 valid configurations.
Thus, they may be part of the same atomic set. A further analysis can examine
whether the features are part of the same atomic set. USB appears in 32 valid
configurations and, thus, is not part of this atomic set.

Feature Prioritization

We argue that commonality can be used as an indicator for the importance of a fea-
ture when developing the product line. For example, a developer may have to decide
between two alternative features f, fo to develop next. To potentially create more
distinct products, it is beneficial to develop the feature with a higher commonality
first. Another example is a supply shortage that for a resource that is required for
both f; and f,. Prioritizing the feature with a higher commonality for the allocation
of the resource, potentially allows to sell more distinct products.

Commonality(FM, fi) > Commonality(FM, fy) and prioritize f; over fo

3.20
= Build more distinct products ()

In our running example, a product-line engineer may have to decide to develop USB
or CD first. Those appear in 32 and 20 valid configurations, respectively. Therefore,
it may be more beneficial to develop USB first.

In testing, it may be also interesting to prioritize features with a low commonality
as features with a high commonality are covered with a high chance anyway. It
is typically more likely to oversee a bug in a feature that appears in fewer valid
configurations. The knowledge about the commonality of features can be used to
lower the chances of missing an uncommon feature during testing. In our example,
suppose the quality assurance tests five randomly configured cars. Manual is not
part of the sample with a probability of 3.12%. USA has a 34.77% chance to not
appear in the sample.

https://doi.org/10.24355/dbbs.084-202009161329-0

28 3. Applications

Heavily Constrained Features

We argue that commonality can be used to identify features which are heavily re-
stricted by cross-tree constraints. For this, we consider a feature model FM and an
adaption FM' of it that contains no cross-tree constraints. The tree hierarchy of
both models FM and FM' is equal. Then, we compare the absolute commonalities
of a feature f in FM and in FM’. This information can be used to identify design
eITors.

#EM;

CTCRestrictiveness(f) =1 — #FM]{

(3.21)

The CTCRestrictiveness lies between zero and one. Zero indicates that the variable
is not restricted at all through cross-tree constraints. A value close to one indi-
cates that the feature is heavily restricted through cross-tree constraints. Due to
modernization of automatic cars, CD is only available for Manual cars. The de-
veloper introduces a new constraint CD <= Manual which unintentionally also
requires every manual car to have a CD. These changes result in a CTCRestrictive-
ness(Manual) = —% = (.85 which indicates that Manual is heavily restricted. This
information may alert the developer to reconsider the added cross-tree constraint

and change it to CD = Manual instead.

Payoff Threshold of a Feature

Typically, it is more expensive to develop a feature such that it can be used for
multiple products instead of one. However, the required adaptions to use it in other
products is then typically cheaper than to develop it from scratch. For a feature
that appears only in a very small number of products it can be inefficient to engineer
it for generic usage. The absolute commonality of a feature may indicate whether it
is beneficial to develop the feature for reuse.

In general, if developing a feature for reuse is more expensive, a feature needs to be
reused a certain number of times before the development for reuse yields a benefit.
This break-even threshold is dependent on the added cost of developing a feature for
reuse and the reduced cost of reusing it. If the number of valid configurations that
contain f is smaller than the threshold, it is considered to be efficient to develop
the feature for reuse [HGFACCI1, HFACA13]. Let Cost; = 1 be the relative cost
of implementing the feature f from scratch. CostToDevelopForReuse; = a indicates
that its a times as expensive to develop f for reuse in the product line in contrast
to develop it for standalone products with Cost;. After developing f for reuse,
implementing the feature for a specific product only needs a proportion of the original
cost. This reduced cost is described by CostToReuse;.

CostToDevelopForReuse,

PayoffThreshold(f) = 1 — CostToReuse;

(3.22)

#FM; < PayoffThreshold; = It is not efficient to develop f for reuse. (3.23)

https://doi.org/10.24355/dbbs.084-202009161329-0

3.2. Commonality 29

In our motivating example, consider the feature USA. Suppose the cost of developing
the feature for reuse is doubled. Furthermore, reusing USA costs % of the regular
costs of implementing it. This results in threshold of 17% = 7. Thus, USA needs
to be reused at least seven times. Otherwise, developinfg the feature for reuse is
cost inefficient. USA appears in eight valid configurations. As the threshold of for
the number of reuses is seven, this indicates that it is beneficial to develop USA for

reuse.

Several authors proposed concrete procedures to compute the CostToReuse; and
CostToDevelopForReuse; [BBMY04, NdAMOS]. However, the exact computations
are beyond the scope of this thesis as we focus on the dependency of the threshold on
computing the commonality. In both publications, the authors considered product
lines with a single digit number of products to compute payoff thresholds. We expect
that the analysis only provides limited insights for industrial feature models as they
induce a large number of valid configurations, typically more than 10 [KZK10,
STS20].

Degree of Reuse

When implementing a product line, the degree of reuse can indicate the benefit of
a product-line approach. The degree of reuse indicates the portion of products that
is provided by common features (i.e., features that is part of at least two valid con-
figurations). For example, a degree of reuse of 0.4 indicates that a typical product
consists of 40% common features [HFACA13, FAHCC14, Coh03]. The following for-
mula quantifies the degree of reuse for the feature model F'M with the set of common
features COMMONpy C FEATSpy [HFACA13, FAHCC14]. Costy is supposed to
indicate the effort to develop the feature f.

Costy x #FM,
DegreeOfReuse(FM, COMMONgy) = 2 secoMIONs | s #EM) (3.24)

ZfeFEATSpM(OOStf * # M)

It is important to note that industrial feature models typically contain no features
that appear in exactly one valid configuration. In this case, the degree of reuse
does not provide usable results as it is always one. The analysis is more suited for
comparing a small number of products that only share some common features.

Suppose there are three additional cars of the product family described by our
running example Figure 3.1 that each contain a unique feature that is not part of
the feature model. Every feature that directly appears in the model is part of at
least two configurations and, thus, is common. For the sake of simplicity, we assume
that every common feature has a cost of one. The three unique features have a cost
of 2. This leads to: DegreeOfReuse = #—ie‘ = % = 0.71. The result shows that
the main effort to build the products comes from common feature. This indicates a

great benefit of the product line approach.

Homogeneity

The homogeneity of a product line describes the similarity of the valid configura-
tions [FAHCC14, CMCO05, HFACA13, HGFACC11]. The homogeneity is a value

https://doi.org/10.24355/dbbs.084-202009161329-0

30 3. Applications

between zero and one. A value close to zero indicates that the valid configura-
tions are dissimilar (i.e., share a small number of features) while a value of one
indicates that every configuration is the same (i.e., there is only one) [FAHCC14].
Clements et al. [CMCO05] proposed to compute the homogeneity of a product line
using the number of features that appear only in one valid configuration with the
following formula. Let FEATS nigue € FEATSpy be the set of features that only
appear in one valid configuration.

|\FEAT S uniquel

2
|FEATSpy| (3:25)

Homogeneityciements(FM) =1 —

Fernandez et al. [FAHCC14] argued that this formula computes unexpected results
for some cases. Consider a product line that contains 100 features and induces 100
valid configurations with each feature appearing in exactly two different configura-
tions. For this product line, we expect a low homogeneity. However, Equation 3.25
computes 1 —-% = 1 which indicates that every configuration is the same. Therefore,

100
the authors proposed using the commonality mean of all features [FAHCC14].

D feFEATS ny, COmmonality ;(F'M)
|FEATS |

Homogeneity(FM) = (3.26)

For the above mentioned example, Equation 3.26 results in Homogeneity(FM) =
100 _2 2x100

e = o — %, which indicates a low homogeneity of the product line. The
low homogeneity of the product line matches the expectation. The homogeneity of
our car example is 63% which indicates that the configurations of the product line

are relatively similar.

Configuration Derivation Optimizations

Deriving a configuration can also be improved with tool support. One popular ex-
ample is selection propagation [SSK™20]. Another option is ordering the features in
with different strategies to accelerate the derivation. First, a different feature order
may reduce the number of configuration steps. Consider an alternative relation with
a high number of features. Additionally, each of these features require other features
outside of the alternative relation to be selected or deselected. After selecting one
of the features, the selection is propagated. Thus, selecting a feature of the group
early in the configuration process reduces the number of necessary steps. Second,
assigning a feature that appears in many constraints may simplify the formula that is
used for background analyses (e.g., selection propagation). Selecting such variables
early in the configuration process may also accelerate the derivation.

Mazo et al. [MDSD14] proposed six different heuristics to order features to accelerate
the derivation. Two of the presented heuristics are dependent on #SAT. The first
heuristic orders the features by their commonality. The idea is to process features
first that appear in a large variety of products [MDSD14]. The authors argue that
this decreases the time required by the solver to find a valid configuration. However,
we assume that this is neglected by the higher number of configuration steps required
as the selection of a feature with high commonality reduces the remaining possible

https://doi.org/10.24355/dbbs.084-202009161329-0

3.3. Partial Configurations 31

selections by a smaller margin. It is important to note that the authors only consider
the possibility of selecting a feature and not explicitly deselecting features. Dese-
lecting a feature with a high commonality would reduce the remaining assignment
by a larger margin. The second heuristic prioritizes features that split the remaining
configuration space in two partitions of similar size. Selecting such a feature halves
the number of remaining valid configurations. Thus, following this procedure should
reduce the number of required steps and the cost of analyses [MDSD14].

Chen et al. [CE11] also propose to sort the features by their selectivity to optimize
the product derivation. The selectivity of a feature is dependent on its commonality
and the features that are automatically selected and deselected because of selection
propagation. A highly selective feature has a high commonality and selecting it
directly implies the selection of a high number of other features. If the selection of a
feature propagates to a high number of other features, the number of required config-
uration steps is reduced. It is important to note that the authors do not consider the
possibility of explicitly deselecting a feature. The authors also argue that the com-
monality of a feature indicates its importance in the product line, as a feature with
a high commonality appears in more configurations. The authors also performed an
empirical evaluation. The results strongly indicated that selecting highly selective
features first accelerates the derivation [CE11]. However, their evaluation does not
allow conclusions about the benefits of including commonality for the computation
of selectivity. Overall, the benefit of including the commonality of features in the
metric is not clear.

3.3 Partial Configurations

Commonality is limited to single features. For some use cases, it is necessary to
consider sub-sets of the configuration space that include or exclude multiple fea-
tures. Given a configuration C' = (FM, I, E), #FM¢ refers to the number of valid
configurations that include every feature ¢ € [and exclude every feature e € F.
If C is a full configuration, #FM¢ is one. If C is partial, #FM¢ is dependent on
the remaining unassigned features f ¢ I U E. In the following, we describe four
applications for counting the number of remaining valid configurations for a partial
configuration.

Uniform Random Sampling

While some anomalies can be found for an entire product line (e.g., dead feature
analysis [SSKT20, BSRC10]), a majority of operations for quality assurance works
on specific configurations, such as testing [MKR™*16]. Typically, the number of valid
configurations is growing exponentially with the number of features for configurable
systems [MKR"16]. Thus, analyzing all configurations is often infeasible. One
solution to solve this problem is creating a small subset used for analysis. This
procedure is called sampling. The literature considers multiple strategies to create
efficient samples (e.g., t-wise and random sampling) [MKR™*16].

Truly random configurations are useful as they can be used for representative testing,
provide accurate statistical data, and can be used to evaluate other sampling meth-
ods [OGBT19, CEM*15]. However, it is not trivial to create uniformly distributed

https://doi.org/10.24355/dbbs.084-202009161329-0

32 3. Applications

random configurations. Randomly including or excluding each feature typically re-
sults in a high number of invalid configurations [OBMS16]. Even after removing all
invalid configurations from a sample created by this procedure, there is no guarantee
for every configuration to have the same chance to appear in the sample [OBMS17].

Uniform random sampling generates such samples that guarantee true randomness
of the included configurations. The idea is to create a one-to-one mapping between
integers r € [1,#FM] and the valid configurations of FM [OBMS17, MOP*19].
Then, given a random number r € [1,#FM], exactly one configuration can be
selected. The resulting configurations should all be valid, uniformly distributed,
and independent of the order variables are processed [OBMS17, MOP*19]. We
discuss actual algorithms to perform uniform random sampling in Chapter 4.

Atomic Sets

In Section 3.2, we describe how to use commonality to find candidates for atomic
sets. This procedure can be extended to not only compute candidates but actual
atomic sets by exploiting the following property. Consider two features fi, fo that
share the same commonality #F' M. If the set of valid configurations that contain
both fi and f, is equal to #F' My, then f; and f5 are part of the same atomic set.
Let V' C FEATSpy be a set of features. The number of valid configurations that
contain V' is equivalent to #FM¢,, with Cy = (FM,V, ().

Vg FEATSFM,’UZ' GVZ#FMfl :#FMf2 ::#Fan :#FMCV

3.27
= V is atomic set. ()

In our running example, Navigation and GPSAntenna appear in 24 valid configura-
tions. Thus, they are potential candidates for an atomic set as stated in the previous
section about finding candidates for atomic sets6. Computing #FMq, with V =
{Navigation, Navigation} also results in #FM¢, = 24 valid configurations. Thus,
Navigation and GPSAntenna are part of the same atomic set. Manual and Auto-
matic both are part of 21 valid configurations. However, computing # FM, with
V' = {Manual, Automatic} results in zero valid configurations. Therefore, the fea-
tures are not part of the same atomic set.

Rate Feature Interactions for Sampling

We propose to use number of valid configurations that contain a feature set to rate
the relevancy of feature interactions. Hereby, interactions that appear in a low or a
high number of valid configurations may be interesting depending on the application.
For example, the number of valid configurations that contain a feature interaction
can be used as a metric for sampling to rate configurations. Krieter et al. [KTS20]
proposed a sampling algorithm that iteratively computes sets of configurations and
then removes configurations with low scores. The authors propose to use the number
of feature interactions that appear only in this configuration as the configuration’s
score. The goal is to reach a sample covering a high number of unique interactions
after a number of iterations specified by the user. It may be interesting to add

https://doi.org/10.24355/dbbs.084-202009161329-0

3.4. Summary 33

the number of valid configurations that contain the interactions as a criterion for
the configuration scores. Consider two configurations C7,Cs that both cover one
interaction 41,7, that does not appear in any other configuration of the sample.
Suppose, i1 appears in more valid configuration induced by the feature model. Then,
11 is more likely to be covered by another configuration in the next iteration. Thus,
Cs5 should have a higher score than C' to increase the probability of covering more
unique feature interactions.

#HEM,;, > #FM,;, = score(iy) < score(is) (3.28)

In our motivating example, the interaction between Radio and Manual is in 20 of
the 42 valid configurations. Thus, when creating samples for testing, it is very likely
that this interaction is covered by some configuration of the sample. However, an
interaction between CD and DigitalCards that appears in 8 valid configurations is
less likely to be included in the sample. A configuration that contains the latter
interaction should have a higher score, as it is more likely to hit a configuration
containing Radio and Manual in following iterations.

Interactive Support for Derivation of Configurations

Deriving valid configurations for a feature model is complex because of all the con-
straints imposed by the model. It is typically impossible for users to grasp the impact
of a selection. We propose to interactively display the number of valid configura-
tions for the current selection and the numbers that result from selecting unassigned
features. For each currently unselected feature, the number of valid configurations
that remain after selecting it should be shown next to the feature. On one hand,
this information can be used to grasp the impact of a feature selection. On the other
hand, unexpected resulting numbers may help to find design flaws of the product
line.

3.4 Summary

In this chapter, we presented 20 applications dependent on counting valid config-
urations of product lines to motivate the usage of #SAT solvers for analyses in
the product-line domain. The described applications can be used for economic es-
timations, detecting design flaws, simplifying other analyses, extracting statistical
information for further use, testing, or interactive support of users and developers.
Each application is based on one of the following analyses: (1) compute the number
of valid configurations for a feature model, (2) compute the commonality of features,
and (3) compute the number of valid configurations of a partial configuration. In the
next chapter, we describe algorithms and optimizations for each of those analyses.

https://doi.org/10.24355/dbbs.084-202009161329-0

34

3. Applications

https://doi.org/10.24355/dbbs.084-202009161329-0

4. Algorithms & Optimizations

In this chapter, we present algorithms to compute the applications described in
Chapter 3. The algorithms consist of adaptations from the literature and our own
proposals. Furthermore, we provide possible optimizations for the different algo-
rithms. This chapter is especially relevant to readers that want to implement the
previously presented applications on their own. Furthermore, the algorithms build
the basis for the implementation shown in Chapter 5 and the empirical evaluation
presented in Chapter 6.

We provide a variety of algorithms and optimizations that aim to reduce the number
or the required runtime of #SAT calls. These either invoke #SAT solvers or employ
knowledge compilation to BDD or d-DNNF. Similar to BDDs, d-DNNF's require one
expensive offline translation from the original formula to d-DNNF. Afterwards, the
number of satisfying assignments can be computed in polynomial time [DarOla]. The
benefit of d-DNNF's is that they are by definition more succinct than BDDs [DMO02].
Our previous results also indicate that they scale significantly better for our use
case of counting the number of valid configurations of a feature model [STS20]. We
propose using d-DNNFs also for commonality, counting remaining valid configura-
tions of a partial configuration, and uniform random sampling. As an example,
performing uniform random sampling with a regular #SAT solver requires up to
|FEATSpy| #SAT calls for a single configuration [OGB*19]. The d-DNNF only
needs to be computed once to create an arbitrary number of configurations. Given
the d-DNNF, the queries to compute the single configurations have a polynomial
time complexity [DMO02].

Most applications presented in Chapter 3 are usages of three analyses, namely num-
ber of valid configurations of a feature model, commonality of features, and remain-
ing valid configurations of partial configurations. Thus, the provided algorithms
and optimizations focus on these three metrics (in Section 4.1, Section 4.2, and
Section 4.3, respectively). For each metric, we provide a base algorithm that is
supposed to explain the procedure in a simple way. After each base algorithm, we
discuss possible optimizations and alternatives to it. While uniform random sam-
pling is heavily dependent on partial configurations, we decided to separate it in an

https://doi.org/10.24355/dbbs.084-202009161329-0

36 4. Algorithms & Optimizations

own section (Section 4.4). This is due to its relevancy and several optimizations that
are specific for uniform random sampling.

4.1 Number of Valid Configurations

The number of valid configurations of a feature model can be computed using a
#SAT solver. In order to do so, we translate the feature model to an equivalent
propositional formula, typically in CNF, and give it as input to the #SAT solver.
The number of satisfying assignments is then equal to the number of valid configu-
rations. Algorithm 5 describes this procedure.

Algorithm 5 NumberOfValidConfigurations(F'M)
1: CONFpy := convertToCNF(FM)
2: #CNFpy = execute#SAT(CNFpy,)
3: return #CNFpy

Optimizations

In this section, we describe procedures that aim to decrease the time required to
compute the number of valid configurations. The optimizations considered can also
be used to improve other analyses (e.g., computing commonality).

Simplify Feature Model Formula

We propose to use domain-specific formula pre-processing to reduce the runtime
required for the #SAT calls. Properties that are available due to previous feature-
model analyses can be used to simplify formulas. We consider using knowledge
about core features, dead features, and redundant constraints for the simplifica-
tion. Literals corresponding to a core feature have to be assigned true. Otherwise,
the formula is not satisfiable. Thus, each core feature can be added as a unit
clause. We expect that adding unit clauses increases the speed of the computation
as modern #SAT solvers [Thu06, BJP00, SBBT04, Bie08] and d-DNNF compil-
ers [LM17, MMBH10, Dar02] typically use unit propagation. Alternatively, one
may update the entire CNF by replacing core features with T and dead features
with L. Constraints can then be updated or entirely removed using the rules shown
in Equation 4.1 and Equation 4.2 [Tiu98]. Let ¢ be a variable corresponding to a
core feature and F' an arbitrary propositional formula. T and L correspond to true
and false, respectively as introduced in Chapter 2.

cNF=F
cVFEF=T
(4.1)
TANF=F
TVFEF=T

After propagating the changes resulting from a core feature to a cross-tree constraint,
the cross-tree constraint may become a tautology. A cross-tree constraint that is

https://doi.org/10.24355/dbbs.084-202009161329-0

4.1. Number of Valid Configurations 37

equivalent to T can be omitted. Let d be a variable corresponding to a dead feature
and F' an arbitrary propositional formula.

dNF =1
dVvVF=F
(4.2)
IANF=1
1lVvF=F

A cross-tree constraint that is equivalent to L causes the feature model to be void.
A redundant constraint has no impact on the set of valid configurations and can be
just removed. However, the removal of multiple redundant constraint at the same
time may change the semantics of a feature model. For example, two constraints
ct; and cty with ct; = ct; may both marked redundant. If ct; is removed, ct, may
not be redundant anymore. Thus, after the removal of ct; the status of ¢ty has to
be reviewed with a SAT solver once again. Suppose a constraint is removed and no
other changes are made to the feature model. In this case, it is not possible for a
constraint that was not redundant before the change to be redundant afterwards.
Thus, the list of redundant constraints from the current iteration can be used as
a list of potential candidates for remaining redundant constraints of the following
iteration after deleting a redundant constraint. However, it is unclear whether the
effort required to compute redundant constraints is worth given that only potentially
a few constraints are removed.

CNF Translation Techniques

CNF is a common format for propositional formulas when using SAT or #SAT
solvers [OGB™19, Thu06, BSB15, Bie08, MMZ*01]. Even though every proposi-
tional formula F' can be translated to CNF using logic equivalence rules (e.g. De
Morgan rules), this often results in large CNFs [OGB*19]. Thus, other procedures
have been proposed that create an equisatisfiable CNF. However, some of those
are not applicable for #SAT as it is possible that an equisatisfiable translation
changes the number of solutions if new variables are introduced [OGB*19]. Intro-
ducing new variables does not necessarily increase the number of satisfying assign-
ments [OGBT19]. For example, Tseytin’s transformation introduces new variables
but no additional satisfying assignments [OGB™ 19, Tse83]. If no new variables are
introduced, an equisatisfiable translation does not change the number of satisfying
assignments [OGB™19]. The performance of SAT solvers can be improved by using
another equivalent CNF [NWO01, OGB"19]. Thus, one way to decrease the runtime
of the #SAT calls is finding an effective translation technique that is applicable for
#SAT (i.e., does not change the number of solutions).

Variable Ordering

DPLL is internally used by a majority of #SAT techniques [BJP00, SBK05a, Thu06,
BSB15, Bie08, Dar04, LM17, MMBH10, HD04]. The complexity of DPLL for SAT
problem instances is, inter alia, dependent on the ordering of variables [HDO3,

https://doi.org/10.24355/dbbs.084-202009161329-0

38 4. Algorithms & Optimizations

WJHS04, AMS01, DKO05]. Thus, changing the order in which variables are pro-
cessed may reduce the runtime of #SAT calls. First, we present ordering strategies
that are applicable for any propositional formula. Second, we provide strategies that
exploit the structure of feature models.

Huang et al. [HDO3] proposed a variable ordering that enables the decomposition
of a formula after as few assignments as possible. A formula that is not decom-
posable may be decomposable after assigning certain variables. The problem can
be split into sub-problems after such assignments and the DPLL algorithm can
be accelerated. Thus, assigning these variables early is beneficial. This logic can
also be recursively applied to the resulting sub-problems. Another ordering strat-
egy is cube-and-conquer which prioritizes variables whose assignment immediately
eliminates a high number of clauses [OGB*19]. An aspect that is used by many
heuristics is the activity of a variable (i.e., the number of clauses the variable ap-
pears in) [SS03, DK05]. Assigning variables with a high activity potentially resolves
more clauses after multiple assignments compared to cube-and-conquer.

The described orderings can also be used to optimize the SAT analysis of feature
models. However, it may also be beneficial to exploit the properties of a feature
model and additional domain knowledge to order variables [MWCCO08]. On the one
hand, it may be less complex to find an effective ordering for feature models. On
the other hand, an ordering specifically optimized for feature models may improve
the performance even more. Thus, we propose two heuristics that exploit properties
of a feature model.

Considering a heuristic that aims to decompose the propositional formula with few
assignments, it may be beneficial to assign features that are connected to features
from other sub-trees via cross-tree constraints. If every feature of a sub-tree that is
part of cross-tree constraint with features from other sub-trees is assigned, the sub-
tree can be evaluated as an independent sub-problem. In our previously introduced
example feature model, if Navigation is assigned first, the feature trees induced by
Nauwigation and Ports can be evaluated separately.

A large alternative induces a high number of clauses that only contains the features
appearing in the alternative. Thus, prioritizing features of a large alternative should
resolve a high number of clauses which simplifies the following computations. Fur-
thermore, a tool can identify alternative features within linear time in the number of
features. Using easily accessible domain knowledge about the feature tree provides
potentially beneficial variable orderings efficiently.

Mendonca et al. [MWCCO8] propose feature model specific variable orderings to
reduce the sizes of BDDs. These may also be beneficial for #SAT. First, the authors
propose to order the variables such that children features are as close as possible
to their parents. Second, they propose grouping subtrees connected by cross-tree
constraints.

DPLL with Alternative Propagation

Typically, parsing the feature tree to propositional logic creates a high number of
clauses. This is especially the case for alternatives, as an alternative with n features

https://doi.org/10.24355/dbbs.084-202009161329-0

4.1. Number of Valid Configurations 39

produces O(n?) clauses or introduces additional variables [KK07, BTS19]. Further-
more, our data indicates that large alternative groups are prevalent in real-world
feature models [STS20]. Thus, we expect a decreased runtime by handling alterna-
tives separated from the propositional formula while performing DPLL. Let a be a
feature in an alternative group. While performing a DPLL procedure, assigning true
to a could easily propagate false to every other variable in the alternative group. Al-
gorithm 6 describes the procedure which handles the alternative groups separately
as seen in lines 8-12. The remainder of the algorithm is equivalent to the basic
counting DPLL Algorithm 2. If the propagation of alternative groups is integrated
into the DPLL procedure, clauses that result from translating alternative groups
can be omitted. Thus, we expect that the described integration reduces the size of
CNF's representing feature models and the time required for boolean propagation
of features in an alternative group. However, the technique requires to adapt the
underlying solver and, thus, is not easily applicable for off-the-shelf #SAT solvers.
We argue that the three optimizations described above, namely simplification of
the formula, variable ordering, and CNF translation techniques can be applied to
Algorithm 6 to reduce its runtime.

Algorithm 6 AlternativeDPLL(F,«)
if a(F) =T then
return T
end if
if o(F) = L then
return |
end if
lnest := getNextUnassignedVariable()
if isAlternative(l,e,) then
Onegt = @ U {lpent } U getNegatedSiblings(lpeer)
else
Qpezt = U {lnext}
. end if
. if AlternativeDPLL(F, aery) = T then
return T
. end if
D Qapegt = U {_'lnext}
. if AlternativeDPLL(F, a—yert) = T then
return T
: end if
: return L

N = = = s = = e s e
S © WU AW N O

Incremental Encoding During the Evolution of a System

Previous results showed that configuration spaces are continually growing which
typically results in continually harder computations during the evolution of a sys-
tem [STS20]. There are systems whose early evolution steps can be evaluated within
seconds but later ones cannot be analyzed even within 24 hours [STS20]. To reduce
the runtime of later evolution steps, we aim to reuse results from earlier evolu-
tion steps. Our idea is to compute the number of valid configurations of the first

https://doi.org/10.24355/dbbs.084-202009161329-0

40 4. Algorithms & Optimizations

evolution step. Then, we compute the following ones by computing the difference.
Let F'M’ be a model evolved from FM and #(F M) is known. It suffices to know
O#H(FM,FM') = #(FM') — #(FM) to compute #(FM'). We compute §# using
the number of added #(=FM A FM') and removed #(—FM' A FM) valid configu-
rations using the following equations Equation 4.3, Equation 4.4, and Equation 4.5.
Thiim et al. [TBK09] used this idea to compute the added and removed configura-
tions of feature model edits. For the sake of simplicity, we assume that the sets of
features for FM and FM' are equal. Thiim et al. [TBK09] describe how to handle
features that appear only in one of the feature models.

SH#(FM,FM') = 6 #(FM, FM') — 6_#(FM, FM')

= #(~FM A FM') — #(~FM' A FM) (4:3)
L(FM') = #(FM) + 64(FM, FM') (4.4)
#(FM') = #(FM) + #(~FM A FM') — #(~FM' A FM) (4.5)

Algorithm 7 shows the procedure. In lines 2-7, the number of valid configurations
for the first evolution step is computed. Afterwards, the following evolution steps
are iteratively analyzed in lines 8-14. The number of added and removed valid
configurations is computed in lines 9 and 10, respectively. The overall result is
computed and stored for the next iteration in lines 11-13.

Algorithm 7 Incremental#(FmFEvolution)

resultList = |

FMy = FmFEvolution.get(0)

CNFpy, = convertToCNF(F' M)

#FM,y = execute#SAT(CNFpyy,)

resultList.add(# FMy)

LastModel = FM,

LastCount = #FM,

for FM; in FmEvolution(1 : n) do
d, # = execute#SAT(getCombinedCNF(—LastModel, FM;))
J_# = execute#SAT(getCombinedCNF(LastModel, ~FM;))
#FM; = LastCount + 6, # — 6_#
resultList.add(# FM;)
LastCount = # FM;

: end for

: return resultList

[o T S
A e S .

Reusing the number of valid configurations of the previous model F'M; may reduce
the time required to compute #FM,; ;. Furthermore, Equation 4.5 provides ad-
ditional insights about the evolution of the configuration space in the number of
added and removed valid configurations. If computing one d#(FM;, FM;, ;) fails,
none of the following evolution steps can be evaluated using the algorithm presented
in Algorithm 7. In this case, directly computing #F M;,; may provide a result.

https://doi.org/10.24355/dbbs.084-202009161329-0

4.2. Commonality 41

If solver can compute a result, the algorithm can continue as described. Another
possibility is to decompose the changes from FM; to F'M;,; into smaller steps. For
example, a new version may introduce two new constraints. We first add one of
the constraints to FM; to create an intermediate model FM’. Then, we compute
O#(FM;, FM') and 0#(FM', FM;.) to implicitly get d#(FM;, FM,;;). Further-
more, if a later model F'Mj, j > i can be evaluated using #SAT(CN Fryy,), the pro-
cedure can be performed backwards (i.e., compute F'M;_y using 0#(FM;, FM;_,).
For large changes, it may also be beneficial to skip one step and instead compute
O#(FM;, FM;). However, we expect that 0#(FM;, FM;,) is more expensive to
compute than 6#(FM;, FM;, ;) for most changes. We expect that the first three
optimizations considered for computing the number of valid configurations are ap-
plicable without further adaptations for the incremental procedure. DPLL with
alternative propagation would require some adaptations as the two feature models
that are compared may contain different alternative groups.

Recap

We proposed five optimizations to reduce the required runtime to compute the num-
ber of valid configurations of a feature models. Four of those aim to decrease the
runtime of the corresponding #SAT call and can be applied to any feature model.
The fifth one is only applicable for a set of feature models representing the evolu-
tion of the system and potentially reduces the runtime required to analyze multiple
models of this set.

4.2 Commonality

For some applications considered in Chapter 3, it is not sufficient to compute the
number of all valid configurations. In this section, we discuss algorithms and op-
timizations for computing the number of valid configuration that contain a certain
feature (i.e., the commonality of that feature). To compute the commonalities of fea-
tures in a feature model using a #SAT solver, we convert the feature model to CNF.
For each feature, we conjunct the corresponding literal to the CNF as a unit clause.
Each resulting CNF is used as input for a #SAT solver [KZK10]. Algorithm 8 shows
this procedure for a single feature.

Algorithm 8 Commonality(FM, f,#FM)
: CNFpy = convertToCNF(FM)
: ONFpy, = CNFpy A f

1
2
3: #CNFpy, = execute#SAT(CNFFMf)
#CNFpur,
4 f

#FM

: return

Optimizations

In the following, we discuss optimizations that are specific for computing the com-
monality of features. Every optimization we considered for feature models is also

https://doi.org/10.24355/dbbs.084-202009161329-0

42 4. Algorithms & Optimizations

applicable for computing commonalities, as the major part of the CNF that repre-
sents the constraints imposed by the feature model is equal for both computations.
We propose to use the incremental encoding for the evolution of systems for com-
monality in two ways: (1) the commonality of a feature in a previous version can be
used to compute the commonality in the next version and (2) the adapted feature

model FM; for which f is a core feature can be treated as an evolution step following
FM.

Result Propagation Using Results from other Analyses

We argue that the commonality of some features can be computed without an extra
#SAT call using information resulting from other analyses. In order to do so, we
propose to use knowledge about core, dead, and false-optional features to reduce the
number of required #SAT calls. First, the commonality of a core feature is always 1.
Let f,g € FEATSp) be features, p € FEATSgy the parent of f, and A an atomic
set.

fis core <= Commonality(FM, f) =1 (4.6)

Computing core features typically requires multiple SAT calls and, thus, is compu-
tationally expensive [HPMFAT16]. A subset of the core features can be extracted
without SAT calls in linear time in the number of features using the following re-
cursive procedure. First, add the root to the subset. Then, recursively add all
mandatory children starting from the root.

The commonality of a dead feature is always zero. Furthermore, the commonality
of all features in an atomic set is always equal.

fis dead <= Commonality(FM, f) =0 (4.7)

f,9 € A= Commonality(FM, f) = Commonality(FM, g) (4.8)

Computing atomic sets is an expensive operation [SKT*16]. A mandatory or false-
optional child and its parent are always part of the same atomic set. There might
be other features in the same atomic set because of cross-tree constraints but par-
ents and their mandatory children can be used to under-approximate atomic sets.
These under-approximations can be used reduce the number of #SAT calls without
computing every atomic set.

Commonality DPLL

It is also possible to adapt the underlying #SAT procedure to reduce the number of
required #SAT calls. Algorithm 8 performs a separate #SAT call for every feature of
the feature model. We expect that each computation takes approximately as much
time as counting the number of valid configurations. Thus, we propose to adapt the
counting DPLL procedure to compute all commonalities within a single run. Each
time a partial assignment is found using DPLL, it is trivial to determine how many

https://doi.org/10.24355/dbbs.084-202009161329-0

4.2. Commonality 43

of the induced satisfying assignments contain a certain variable [SBK05b]. Let F' be
a formula with n variables and let o be a partial assignment that satisfies F'. n — |«
variables are unassigned (i.e., a(v) = UNDEF). Thus, o induces #a = 2771 as
every unassigned variable can be either assigned T or L without any impact on the
satisfiability of F'. «(v) corresponds to the value assigned for v in «. Let #a, be
the number of satisfying assignments induced by « that contain v. Every v with
a(v) = T appears in each of the #« assignments. Thus, Equation 4.9 holds. Every
v with a(v) = L appears in no satisfying assignment. Thus, Equation 4.10 holds.
Every v with a(v) = UNDEF appears in half of the satisfying assignments. Thus,
Equation 4.11 holds.

av) =T = #a, = #a =277 (4.9)
a(v) =1 = #a, =0 (4.10)

#a —lal—1
a(v) = UNDEF = #a, = o= o (4.11)

These properties can be used to adapt the #SAT DPLL Algorithm 2 presented in
Chapter 2 to compute the commonalities of all features. This idea was proposed by
Sang et al. [SBK05b] to consider single variables for weighted model counting. The
adaptation is shown in Algorithm 9. The sets a1, a, , aynprr C vars(F') correspond
to the variables that are assigned T, L, UNDEF in «. If a solution is found, the
commonalities are computed in lines 1-10. Equation 4.9 is used to handle variables
v with a(v) = T in lines 2-4. Equation 4.10 is used to handle variables v with
a(v) = L in lines 5-7. Equation 4.11 is used to handle variables v with a(v) =
UNDEF in lines 8-10. If the current formula is unsatisfiable under the current
assignment «, a commonality of zero is saved for every feature as seen in lines 11-
14. If the formula is neither already satisfied nor unsatisfiable, the algorithm is
recursively called with the next variable assigned to T and _L respectively in lines
16-18. Then, the commonalities for both cases are added for each feature and stored
in lines 19-21.

The procedure skips redundant effort as the DPLL procedure needs to identify the
satisfying assignments only once instead of once for every feature. Overall, only
one invocation of a #SAT solver is required. However, the procedure requires to
adapt the underlying solver and, thus, is not easily applicable for off-the-shelf #SAT
solvers. We argue that any optimization considered to reduce the runtime for a
#SAT call considered so far is applicable for our commonality adaptation of DPLL
as the behavior is analogous to counting DPLL for the most part.

Compute Solution Sets from CTCs

Fernandez et al. [FAHCC14] propose a procedure that aims to reduce the effort
required to analyze the feature tree by evaluating it separately. The authors com-
pute disjunct solution sets that are valid only considering the cross-tree constraints

https://doi.org/10.24355/dbbs.084-202009161329-0

44 4. Algorithms & Optimizations

Algorithm 9 CommonalityDPLL(F, «)
1. if a(F) =T then

2: forvear do

3: commonalities.put (v, 2"~ lol)

4: end for

5. forve o do

6: commonalities.put(v, 0)

7. end for

8 for v € ayyper do

9: commonalities.put (v, 21171

10: end for

11: else if o(F) = L then

12: for v € vars(F) do

13: commonalities.put (v, 0)

14: end for

15: else

16: lpest := getNextUnassignedVariable()

17: commonalities, e, = CommonalityDPLL(F, o U lyent)
18: commonalities_yey = CommonalityDPLL(F, o U —lest)
19: for v € vars(F') do

20: commonalities.put (v, commonalities,e:.get(v) +

commonalities_e..get(v))
21: end for
22: end if
23: return commonalities

https://doi.org/10.24355/dbbs.084-202009161329-0

4.2. Commonality 45

but not the tree-hierarchy. For example, the formula (A A B) V (A A C) induces
the following satisfying full assignments {A, B,~C}, {A, B,C}, {A,-B,C}. The
assignments {A, B, =C'} and {A, B,C} can be merged into the partial assignment
{A, B} which induces those two solutions. This results in the two solutions sets
{A, B} and {A,-B,C}. After computing the solution sets, the feature tree is tra-
versed for each set resulting in a number of solutions that results from the induced
sub-configuration space. The results can just be summed up as the solution sets
are disjunct. Their empirical evaluation indicates that this procedure performs es-
pecially well on feature models with a low number of constraints [FAHCC14]. This
makes sense as the procedure requires to enumerate all distinct partial solutions
resulting from the cross-tree constraints and store them temporarily.

Compute Commonalites with d-DNNF Traversal

We propose a procedure that computes all commonalities within a single traversal of
a d-DNNF. Instead of O(n) #SAT calls, the procedure translates the CNF into d-
DNNF and traverses the resulting d-DNNF once to compute all commonalities. The
algorithm works similarly to computing the overall number of satisfying assignments
with d-DNNF as described in Chapter 2. In addition to the current model count, the
current commonalities of all features are stored during the traverse. In the following,
we refer to the commonality of variable v in the sub-tree induced by the node N as
#N,. #N refers to the number of satisfying assignments in the sub-tree induced by
the node N.

A positive literal corresponding the variable v induces one solutions that contains
v (i.e., {v}). A negative literal induces one solution that does not contain v {-wv}
instead. At a positive/negative literal node L/—=L, the current absolute commonality
of the variable v which L corresponds to is set to 0/1 as seen in lines 17-30. At an
Or-node (disjunction) O the commonality of v is set to the sum of the child nodes
O1, ..., 0, commonalities #0, = #01, + #Os, + ... + #0O,,, as seen in lines 10-16.
This works because the children of a deterministic disjunction share no common
solutions. Let Ag be the child of the And-node (conjunction) A that contains the
variable v. By definition, the other children of A do not contain v. Thus, the model
count of the And-node #A, can be computed by multiplying the overall model
counts of the children #A, = #A,, * [[-, #A4; as seen in lines 2-9. At the end
of the traversal, the commonality of every feature is provided. The procedure is
described in Algorithm 10 and Algorithm 11.

Algorithm 10 DDNNFCommonalities(F'm)

1: dDNNF p); = convertToDDNNF(F'M)
2: ROOT = getRoot(dDNNFFy)
3: return getRecursiveCommonalities(ROOT)

The traversal has a computational complexity of O(n*m) for a formula with n vari-
ables and m nodes if we assume constant time complexity for arithmetic operations.
At each of the m nodes, the current count of all n variables has to be computed.
Another observation we made that has not been considered before is that core and
dead features can be easily extracted from a smooth d-DNNF without traversing

https://doi.org/10.24355/dbbs.084-202009161329-0

46 4. Algorithms & Optimizations

Algorithm 11 getRecursiveCommonalities(node)

1. commonalities = []
2: if node.isAnd() then
3: for f € FEATSpy do

4: Ap = getChildContaining(f)

5: Apiner = getChildren(node) \ {cs}
: #Ar = #Ao; ¥ aca,,, #4

7 commonalities.add(#Ay)

8: end for

9: end if

10: if node.is0r() then
11: for f € FEATSry do

12: children = getChildren(node)
13: #Of = Zoiéchildmn #Olf

14: commonalities.add(#O0y)

15: end for

16: end if

17: if node.isLeaf() then
18: for f € FEATSpy do

19: if getVariable(node) # f then
20: #Lf =0

21: end if

22: if isPositive(node) then
23: #Lf =1

24: end if

25: if isNegative(node) then
26: #Lf =0

27: end if

28: commonalities.add(#Ly)
29: end for

30: end if

31: return commonalities

https://doi.org/10.24355/dbbs.084-202009161329-0

4.3. Partial Configurations 47

it. A feature is core iff only positive literals corresponding to the feature appear
in the smooth d-DNNF. A feature is dead iff only negative literals corresponding
to the feature appear in the d-DNNF. We explain how this works inductively for
an arbitrary core feature f. In the following, we show that it is not possible to
induce a solution that excludes f (i.e., a(f) = L) without a negative literal -/, that
corresponds to f. It is important to note that (1) an And induces no solution with
a(f) = L if one of its children induces no solution with a(f) = L and (2) Or induces
no solution with a(f) = L if neither of its children does so. A positive literal [; only
induces one solution with a(f) = T. The parent of [; can either be an And or an
Or. For And, it is not possible that the parent induces a solution with a(f) = L as
its child {; directly implies a(f) = T by property (1). For Or, we assume that each
of its descendants is either And or a literal without a loss of generality (otherwise
we chose one of its descendant V which has no V as one of its descendants). Due
to the smooth property, every child of the chosen Or contains the variable f. We
argued that it is not possible to induce a solution that contains f with composition
of And and negative literals —=l;. Thus, neither disjunct of the chosen Or induces a
solution with f. (2) implies that the chosen Or induces no solution with f. These
properties can be inductively applied to show that the root and, thus, the entire
d-DNNF induces no solution with «(f) = L (making f a core feature) if there is no
negative literal —l; corresponding to f. This works analogously for dead features
and positive literals.

We can use this observation to save traversals for all core and dead features, as
we can efficiently extract all core and dead features by traversing the leafs of the
d-DNNF once. While most optimizations considered thus far are not applicable for
the traversal of the d-DNNF, we expect that the optimizations that reduce the time
required for a #SAT call (e.g., simplify the feature model formula) can be applied
to the translation from CNF to d-DNNF.

Recap

We provided a base algorithm that computes the commonality of each feature with
a separate #SAT call. As an optimization for that algorithm, we discussed how to
re-uses the results from other analyses to reduce the number of required #SAT calls.
In addition, we presented three other algorithms that compute the commonalities
by (1) adapting the DPLL procedure, (2) evaluating the feature tree and cross-tree
constraints separately, and (3) exploit the properties of a d-DNNF.

4.3 Partial Configurations

The number of remaining valid configurations of a partial configuration can be
computed in similar way as commonality. Given a propositional formula CNFgy,
that represents the feature model FM and a partial configuration C' = (FM, I, E),
the formula can be adapted in the following way. Each included feature ¢ € I is
conjuncted to CNFpgy. For each excluded feature e € E, a negation of the vari-
able corresponding to e is conjuncted to CNFgy;. The resulting formula CNFqs =
CNFpyr A (Nier©) A (Neeg —e) is given as an input to a #SAT solver to compute
the number of remaining valid configurations of the partial configuration C.

https://doi.org/10.24355/dbbs.084-202009161329-0

48 4. Algorithms & Optimizations

Algorithm 12 #PartialConfiguration(C' = (FM, I, E))
1: CNF gpr = convertToCNF(F M)
2: CNFC = CNFpy N (/\iEI Z) VAN (/\eGE _|€>
3: #CONF ¢ = execute#SAT(CNF)
4: return #CNF¢o

Optimizations

We argue that each of the five considered optimizations for computing the number
of valid configurations are applicable for the base algorithm described above. Also,
the algorithms and optimization considered for commonality can be adapted for the
usage on partial configurations. A partial configuration that excludes a core feature
induces zero valid configurations (analogous for included dead features). In this case,
a #SAT call is not required for the partial configuration. The solution sets resulting
from cross-tree constraints can also be used for partial configurations by applying the
solution sets that do not violate the partial configurations (e.g., variable excluded
in the partial configuration is assigned T in the solution set) to the feature tree. In
the following, we provide an algorithm that exploits the properties of a d-DNNF to
compute the number of remaining configurations of a partial configuration which is
an adaptation of the algorithm described for commonality.

Traversing d-DNNF

Computing the remaining valid configurations of multiple partial configurations
causes a large redundant effort as the major part of the CNF is equal. With the
following optimization, we aim to reduce the effort for multiple sequential queries
on partial configurations. The traversal to compute commonalities presented in Sec-
tion 4.2 can be extended for partial configurations. To this end, the rules for the
And-node and Or-node have to be changed as shown in Algorithm 13. Instead of
computing the number of satisfying assignments that contain one certain variable
as we did for commonality, we compute the number of satisfying assignments that
includes a set of variables I and excludes a set of variables E' to handle the partial
configuration C' = (FM, I, E). In the following, we describe the required adaptations
to handle partial configurations for the different node types.

For the children of an And-node A, there are two cases to consider as seen in lines 1-
6. First, the child may contain no variable that is included or excluded in the partial
configuration C. In this case, the procedure considers the number of all satisfying
assignments as there are no additional constraints on the variables imposed by the
configuration. Second, the child may contain a variable that is either included
or excluded in the partial configuration. In this case, the procedure considers all
satisfying assignment that assign a(i) = T for every ¢ € I and a(e) = L for
every e € E. All other satisfying assignments violate the constraints imposed by
the partial configuration. These two cases can be used to extract the number of
satisfying assignments of each child. The result for the parent And-node is the
product of those as explained in Chapter 2. Without a loss of generality, let A; with
it = 1,...,n be the children of the And-node that contain the subset S; C I U E of
the features included or excluded in the configuration C' = (FM, I, E) and A; with

https://doi.org/10.24355/dbbs.084-202009161329-0

4.4. Uniform Random Sampling 49

7 =mn+1,...,m be the children that contain no variable v € I U E. Furthermore,
let #A; be the number of satisfying assignments induced by A; overall and #A4,;, be
the number of satisfying assignments that assigned every included variable 1 € SN 1
with a(i) = T and every excluded variable e € SN E with a(e) = L. Equation 4.12
can be used to compute the number of satisfying assignments with the restrictions
of the partial assignment # Ac.

#ac = ([[#4.)+ (I #4) (112

j=n+1

For this algorithm we limit ourselves to smooth d-DNNF's. Thus, each child of an
Or-node O contains the same set of variables S C IUFE. Therefore, each child of the
or node O; contains the variable sub-set S. It follows that we consider the number of
satisfying assignments that assign every included i € SN I with a(i) = T and every
excluded variable e € SN E with a(e) = L for every child. The sum of the counts
for the children is the result for the parent Or O as the assignments of children are
distinct due to the deterministic property. The formula Equation 4.13 is applied in
lines 7-11.

#0g = Or, + ... + Op, (4.13)

The number of satisfying assignments for positive and negative literals that corre-
spond to an included feature are set to one and zero, respectively in lines 12-20.
For excluded features, the values are flipped (i.e., zero for positive and one for neg-
ative literals) as seen in lines 21-29. The values for literals are set analogous to
d-DNNF-based algorithm for commonality.

Just as for commonality, some queries can be skipped by using knowledge about
core and dead features. If a core feature is excluded or a dead feature is included
in the partial configuration, the number of valid configurations is always zero. For
commonality, we argued that other optimizations can be used to accelerate the com-
pilation from CNF to d-DNNF which should be analogous for partial configurations.

4.4 Uniform Random Sampling

Uniform random sampling creates a sample in which each valid configuration has
the same chance to appear in the sample (i.e., the configurations are uniformly
distributed). A naive solution may be to enumerate all #FM valid configurations
induced by FM, generate a random number r € [1,#FM], and select the r-th
configuration. However, this would require to store the actual configurations. This
is not feasible for large configuration spaces, as they often contain more than 10%°
valid configurations [OBMS17, ST'S20].

Oh et al. [OBMS16, OBMS17] propose using a counting binary decision diagram
(CBDD) for uniform random sampling. A CBDD is a special form of BDDs that
additionally stores the number of remaining solutions for each edge. This allows
a traverse in linear time in the number of features to find the r-th configuration

https://doi.org/10.24355/dbbs.084-202009161329-0

50 4. Algorithms & Optimizations

Algorithm 13 getRecursivePC(node, config)

1: if node.isAnd() then

2: children, := getChildrenWithVariableInConfig(node)

3: children_ := getChildrenWithoutVariableInConfig(node)
4: #OU@TCL” = Hchildechildren+Uchildren_ #ovemllc;”-ld

5 #config = Hchildechildrem_ #configenaa X 1 Lniac chiraren #0vETAll chita
6: end if

7. if node.is0r() then

8: children := getChildren(node)

9 Foverall ==Y e niaren FEOVETAllci1d

10: F#config = 3 piac chitaren 7 CON1Ychita

11: end if

12: if node.isPositiveLiteral() then

13: Foverall :=1

14: if fro4e € getIncluded(config) then

15: #config =1

16: end if

17: if fhode € getExcluded(config) then

18: #config =0

19: end if

20: end if

21: if node.isNegativeLiteral() then
22: Foverall :=1

23: if f04e € getIncluded(config) then
24: #Hconfig =0

25: end if

26: if fro4e € getExcluded(config) then
27: #config =1

28: end if

29: end if

30: return #owverall,# config

https://doi.org/10.24355/dbbs.084-202009161329-0

4.4. Uniform Random Sampling 51

after the CBDD is created [OBMS16]. We describe this procedure in detail later.
However, the authors argue that CBDDs do not scale for large systems regarding
memory and runtime of the translation [OBMS16, OBMS17, OGB*19].

Another proposal by Oh et al. [OGB*19] uses the DPLL-based #SAT solver sharp-
SAT for uniform random sampling. The procedure is shown in Algorithm 14. Given
a feature f € FEATg) the number of valid configurations that do not contain
f (#FM_5) is computed in line 3. If r < #FM_;, f is not part of the sam-
pled configuration as seen in lines 4-5. Otherwise, f is included and r is adjusted
r =1 — #FM_s for the following iterations as seen in lines 6-8. This procedure is
repeated until every feature is either included or selected in the configuration. By
construction, it is not possible to assign a variable such that the resulting number of
valid configurations under that assignment is zero as zero is always smaller than the
adapted random number. Thus, every resulting configuration is valid. Furthermore,
different random numbers always result in different configurations and the chance
that a specific configuration appears in the sample is not dependent on the order of
variables. The described procedure ensures a one-to-one mapping between integers
i € [1,#FM] and the valid configurations as every random number r € [1, #FM]
results in a different valid configuration. Assuming unbiased random numbers, it
follows that each configuration has appears in the sample with the same probability.
The procedure requires up to n #SAT calls if n is the number of features. To de-
crease the runtime, Oh et al. [OGB"19] also consider further optimizations, which
we discuss later.

Algorithm 14 UniformRandomSampling(FM, r) adapted from [OGB*19]

1: config :== ()
2: for f € FEATSFM do
3. count := #SAT(CNFry N (Nyceonpig V) N f)

4: if r < count then

5: config := config U{~f}
6: else

7: config := config U {f}
8: r =1 — count

9: end if

10: end for

11: return config

Optimizations

As the base algorithm repeatedly computes the number of remaining configurations
of a partial configuration, each optimization that is applicable for partial configura-
tions is applicable for uniform random sampling. This also included the optimiza-
tions for feature models and commonality that are applicable for partial configura-
tions. In the following, we describe optimizations and algorithms that specifically
optimize uniform random sampling.

Boolean Constraint Propagation

Boolean constraint propagation (BCP) can be performed to simplify the formula by
propagating the assignment of a variable to all clauses [CK05a]. Typically, a tool

https://doi.org/10.24355/dbbs.084-202009161329-0

52 4. Algorithms & Optimizations

performs BCP if a unit clause is found. A unit clause only contains one literal. In
order to satisfy the clause a positive literal has to be assigned T and a negative
literal 1. The assignment of the variable can then be propagated to the other
clauses which potentially results in new unit clauses. After including or excluding
a feature in Algorithm 14 (lines 5 and 7), BCP can be performed to include or
exclude further features. This potentially saves a high number of #SAT calls. The
features corresponding to a variable that appears in a unit clause can also be directly
included. This potentially saves a high number of #SAT calls.

After some iterations of the algorithm provided by Oh et al. [OGB*19], it is possible
that boolean constraint propagation results in an empty formula (i.e., every clause is
satisfied). In this case, every unassigned variable can be freely assigned resulting in
2" remaining valid configurations if n is the number of unassigned variables. Thus, it
is not necessary anymore to compute the number of remaining valid configurations.
Oh et al. propose the following procedure to resolve the remaining assignments. For
each feature f; the current random number r;,; = r;/2 is halved. If r,,1%2 =0, f
is excluded from the configuration. Otherwise, it is included. It follows that each
remaining feature has a 50% to be included and each different r results in a different
configuration. This potentially reduces the number of required #SAT calls and,
thus, the runtime [OGB™19].

Variable Ordering

The #SAT calls required for uniform random sampling can also benefit from alter-
native variable orderings for the DPLL traversal like proposed in Section 4.1. If a
feature is included or included in the configuration and, thus, a variable is assigned,
the formula can be simplified with boolean constraint propagation. The adapted for-
mula is then used for the following iterations. Therefore, processing variables first
that simplify the formula more effectively potentially reduces the runtime required
for the #SAT in the following iterations and, thus, the overall runtime.

Oh et al. [OGB™19] propose using cube-and-conquer to accelerate the sampling pro-
cess which we already considered for computing the number of valid configurations
in Section 4.1. Cube-and-conquer computes variables that eliminate the highest
number of clauses if boolean constraint propagation is applied. If these variables are
processed first, the following #SAT calls are accelerated and the number of required
#SAT calls is potentially reduced. Thus, this technique is especially beneficial for
algorithms that re-use adapted formulas, like uniform random sampling.

Propagating Results from Other Analyses

We propose to reuse information from other analyses to reduce the number of re-
quired #SAT calls for uniform random sampling. This idea is similar to the opti-
mization that propagates results from other analyses in Section 4.2. A dead/core
feature is part of no/all valid configurations, respectively. Therefore, a dead/core
feature can be excluded/included without an additional #SAT call. Furthermore,
atomic sets can be used for further optimization. Let A be an atomic set and
f,9,h € A features. If f is added to a configuration, g and h can be added without
further #SAT calls.

https://doi.org/10.24355/dbbs.084-202009161329-0

4.4. Uniform Random Sampling 53

d-DNNF Traversal

We propose to use d-DNNF query to evaluate the current partial configuration
instead of a #SAT call to perform uniform random sampling. In Section 4.3, we
proposed an algorithm that exploits the properties of an d-DNNF to compute the
number of remaining valid configurations. This can be applied for uniform random
sampling by simply replacing the #SAT calls with an according d-DNNF query in
Algorithm 14. The d-DNNF just needs to be computed once at the start of the
procedure. Additionally, we can exploit the extraction of core and dead features we
introduced for traversing d-DNNF to compute commonalities in Section 4.2.

Uniform random sampling using #SAT typically requires a large number of #SAT
calls. A single sample requires up-to | FEATS ppr| #SAT calls in the worst case [OGB™19].
Typically, multiple samples are required for effective testing [AMS™18, VAHT*18].
Thus, it may be beneficial to compute the d-DNNF once for polynomial queries dur-

ing the sampling process. Overall, we aim to reduce the number of requires queries

by using the knowledge about core and dead features and reduce the required run-
time of the queries by using a d-DNNF.

Sharma et al. [SGRM18] also used d-DNNF's to perform uniform random sampling.
The idea is to find n distinct samples within a single d-DNNF' traversal starting
from the root by recursively deciding how many samples are extracted from the
children of an Or-node. After a recursion step, n is adapted. In the following, we
the adapted n for a specific node as n’. As the traversal always ends in a literal
node, the procedure results in concrete valid configurations induced by the included
literals. Algorithm 15 shows the procedure. For And-nodes, each child induces
solutions that only contain a distinct subset of the variables. The procedure is
called recursively for every child of the node resulting in n samples for each child
as seen in lines 4-6. These can be merged to acquire n’ solutions with all variables
contained in the parent And-node as seen in line 7. As an example, consider an
And-node with two children with n = 2 which return x; = {A, B}, 2y = {—A, B}
and y; = {C,~D}, yo = {—~C, D}, respectively. These sets are merged resulting
inzy Uy, = {A,B,C,—D} and x5 Uys = {A, B,C, =D} as samples for the parent
node. For Or-nodes, the procedure picks how many solutions are derived from a
child node which is shown in lines 12-16 in the following way. First, the probability
with which a solution belongs to the child is computed via Moﬂg as seen in line
13. #child corresponds to the number of solutions induced by the child and #node
corresponds to the number of solutions induced by its parent. Second, the number
of samples that should be derived from the child is computed as seen in line 14
using a binomial distribution over the probability and n’. Third, the procedure is
recursively called for each child with the computed number of samples as seen in line
15. As an example consider an Or-node with two children z,y and n’ = 10. x and
y induce 400 and 600 solutions respectively. Therefore, the procedure chooses four
solutions from x and six solutions from y on average. For a Literal-node, n’ samples
are created and the literal corresponding to the node is added to each sample as
seen in lines 20-25.

We expect that the same optimizations can be applied to both d-DNNF-based algo-
rithms for uniform random sampling as for commonality and partial configurations

https://doi.org/10.24355/dbbs.084-202009161329-0

54 4. Algorithms & Optimizations

as they should accelerate the compilation to d-DNNF. However, using knowledge
about core and dead features is not applicable for the second procedure without
adaptations.

Algorithm 15 recursiveUrs(node,n) adapted from Sharma et al. [SGRM1§]

1: if node.isAnd() then
. children := getChildren(node)

2

3: partialSamples := ||

4: for child in children do

5: partialSamples.add(recursiveUrs(child, n))
6: end for

7. return mergePartialSamples(partialSamples)
8: end if

9: if node.is0r() then

1 samples = ||

11: children := getChildren(node)

12: for child in children do

@

13: probability.pig = %{Z‘:
14: Nenila = getNumber0fSamples(n, probability.piq)
15: samples.add(recursiveUrs(child, npiq))

16: end for

17 return samples

18: end if

19: if node.isLeaf () then
20: samples = ||

21: for i in [1,n] do

22: sample = ()
23: sample.add(node)
24: samples.add(sample)

25: end for
26: return samples
27: end if

Traversal of Counting BDDs

Oh et al. [OBMS16] propose using a counting BDD (CBDD) for uniform random
sampling. The difference to a regular BDD is that an edge outgoing from f indicates
the number of valid assignments that remain after the assignment of f. For example,
the number on the low edge indicates the remaining satisfying assignment if a(f) =
L. After computing the CBDD, a valid configuration can be created by the single
traversal of a single path in the CBDD. Thus, creating a configuration has a time
complexity of O(|FEATSpu|).

Algorithm 16 describes the procedure. Given a random number r € [1, # FM], the
procedure starts at the top node. In this paragraph, we reference to the number of re-
maining satisfying assignment when taking the high/low edge of f as #thigh /#flow .
At each variable node, if r >#low,, the high edge is taken and r = r—#lowis

https://doi.org/10.24355/dbbs.084-202009161329-0

4.5. Summary 55

adapted as seen in lines 10-13. Otherwise, the low edge is taken as seen in lines 14~
16. Often the assignment of a variable has no impact on the satifisfiability of a path
and is omitted as seen in lines 4-9. In this case, the variable is included if r%2 = 1
as seen in lines 5-7. Afterwards, r is halved even if the variable was excluded to
ensure that r is always smaller than the number of remaining valid configurations
as seen in line 8. The procedure can only result in valid configurations. In addition,
the configurations are uniformly distributed [OBMS16]. Analogously to d-DNNF's,
we expect that we can apply the optimizations that reduce the required runtime for
#SAT calls to the compilation from CNF to BDD.

Algorithm 16 BDDURS(config, r, f) adapted from [OBMS16]

1: if reachediTerminal() then
2 return

3: end if

4: if isOmittedInPath(f) then
5. if r%2 =1 then
6
7
8
9

config.add(f)
end if

: ri= T/2
: end if
10: if r > #low, then
11: config.add(f)
12: r:=r—F#low;
13: BDDURS(config, r, f.high)
14: else
15: BDDURS(config, r, f.low)
16: end if
17: return config

Recap

We provided six optimizations specific for uniform random sampling. The first three,
namely boolean constraint propagation, variable ordering, and propagating results
from other analyses accelerate the described base algorithm by reducing the number
of required #SAT calls. In addition, boolean constraint propagation also reduces
the required runtime of the #SAT calls, potentially more effective with certain
variable orderings (e.g., cube-and-conquer). The latter three optimizations employ
knowledge compilation to reduce the time required for #SAT queries. Two of those
optimizations use d-DNNFs and the other one counting BDDs.

4.5 Summary
In this chapter, we presented algorithms and optimizations for feature-model anal-
yses that are dependent on #SAT technology. First, we discussed computing the

number of valid configurations of a feature model. We (1) showed how to com-
pute the number of valid configurations with #SAT solver, (2) discuss four ideas to

https://doi.org/10.24355/dbbs.084-202009161329-0

56 4. Algorithms & Optimizations

reduce the required runtime for a #SAT call, and (3) present an algorithm for incre-
mentally computing results of a following version of a feature model by computing
the number of added and removed valid configurations.

We also considered algorithms and optimizations for computing the commonality of
features. We showed how to compute the commonality of a feature with: (1) a reg-
ular #SAT solver, (2) an adaptation of DPLL, (3) an algorithm that evaluates the
feature-tree and cross-tree constraints separately, (4) a d-DNNF. Furthermore, we
proposed to skip #SAT calls for some features by using results from other analyses.
In addition, the optimizations considered for feature models are also applicable for
commonality.

We presented two algorithms for computing the number of remaining valid config-
urations of a partial configuration. We (1) show how to compute the number of
remaining valid configurations of a partial configuration with a #SAT solver and
(2) provide an algorithm that computes the result with a d-DNNF traversal. In
addition, all optimizations considered for feature models are applicable for partial
configurations. The optimizations for commonality require further adaptations for
the usage on partial configurations.

At last, we discuss uniform random sampling. We (1) show how to perform uniform
random sampling using a #SAT solver, (2), discuss two optimizations to reduce
the number of required #SAT calls and the runtime required for the calls, and (3)
propose two algorithms that exploit the properties of a d-DNNF to perform uniform
random sampling. The majority of the algorithms is based on repetitive #SAT calls
on a partial configurations. Thus, the same optimizations are applicable for uniform
random sampling.

Each application described in Chapter 3 can be compute using on of the four anal-
yses considered in this chapter. Thus, every described algorithm and optimization
can be used to compute results for multiple applications for feature models. In ad-
dition, various optimizations can be used in parallel to further reduce the required
runtimes. In Chapter 5, we describe the implementation of the following algorithms.
For every analysis, we implement the base algorithm. For commonality, partial con-
figurations, and uniform random sampling, we implement the described algorithms
based on d-DNNF. In addition, we implement the propagation of results from other
analyses for commonality and uniform random sampling. The algorithms described
in this chapter build the base for our empirical evaluation as we evaluate the listed
implementations.

https://doi.org/10.24355/dbbs.084-202009161329-0

5. Implementation

In this chapter, we describe the implementation of algorithms that are dependent on
#SAT and used to compute the number of valid configurations of a feature model,
the commonality of features, the number of remaining valid configurations of a par-
tial configuration, and uniform random sampling. The goal is to enable the reader to
understand the algorithms and design decisions in the implementations such that the
reader could re-implement the algorithms. Additionally, we describe the integration
of these algorithms in FeatureIDE [feal9]. This may be especially interesting for
readers that aim to use the mentioned functionalities. Furthermore, we describe the
benchmark framework used for our empirical evaluation, such that our experiments
are comprehensible and the reader is able to perform new experiments.

We describe our implementations in Java [AGHO05]. We implement several algo-
rithms that each compute one of the following four analyses: 1) compute the number
of valid configurations of a feature model, 2) compute the commonalities of features,
3) compute the number of remaining configurations of a partial configurations, 4)
perform uniform random sampling. Furthermore, we present our d-DNNF engine
that supports these four metrics and can be used with multiple d-DNNF compilers.
To use the engine, the feature model needs to be translated once to d-DNNF. Af-
terwards, the four analyses can be run in polynomial time without computing the
d-DNNF once again.

This chapter is separated in three topics. First, we provide implementations of the
algorithms described in Chapter 4. Here, we describe the general idea to use #SAT
solvers for the analysis. Afterwards, we present the concrete implementations for the
different analyses and explain the implementation of the d-DNNF engine. Second,
we describe integration in the feature modeling tool FeatureIDE. Third, we provide
a description of the benchmark framework used for the empirical evaluation. To this
end, we describe structure and important classes of the framework. Afterwards, we
explain how to repeat the experiments of our empirical evaluation, perform other
experiments, and add new solvers, algorithms, and feature models.

https://doi.org/10.24355/dbbs.084-202009161329-0

© 0 N9 O s W N =

T e e =
ke W N = O

17
18

58 5. Implementation

(1) (2)
Model File Feature Model }—>’ Feature Model CNF ‘

(3)
(5) (4)
Output #SAT Solver Adapted CNF

Figure 5.1: Overview General Procedure

5.1 Implementation of Applications

In this section, we describe the technical implementation of the algorithms presented
in Chapter 4. We start by describing the procedure and tool chain that is shared by
all the algorithms and we used to call #SAT on a feature model. To this end, we
describe the translation from feature model to a propositional formula, the transfor-
mation to CNF, and the call of the #SAT solver. We do not consider the process
of parsing an arbitrary configurable system to a feature model. On a high level, the
analysis of a feature model with a #SAT solver is described in Figure 5.1. Also,
Listing 5.1 shows the implementation of that procedure in Java.

// 1. Parse file
String modelName = FileUtils.getFileNameWithoutExtension(file);
IFeatureModel model = FMUtils.readFeatureModel (file);

// 2. Translate to CNF
FeatureModelFormula formula = new FeatureModelFormula (model) ;
CNF cnf = formula.getCNF () ;

// 3. Adaptations depending on specific algorithm
cnf = adaptCNFDependingOnAlgorithm(cnf);

// 4. Save CNF as DIMACS
DIMACSUtils.createTemporaryDimacs (cnf) ;

// 5. Execute Solver

binaryResult = solver.executeSolver (DIMACSUtils.
TEMPORARY_DIMACS_PATH, timeout);

solverResult = solver.getResult (binaryResult.stdout);

results.put (modelName, solverResult.result.toString());

Listing 5.1: Implementation General Procedure

In (1), the tool reads and parses a feature model in any format supported by Fea-
turelDE. FeaturelDE supports a variety of feature model formats. Most of them are
based on xml. Thus, we provide the feature models in a .xml format that is sup-
ported by FeatureIDE and delegate the parsing to FeatureIDE. This part is shown
in lines 1-3 in Listing 5.1.

In (2), the tool translates the feature model to a CNF. FeatureIDE natively sup-
ports the translation of a feature model to a propositional formula and a conversion
to CNF which is equisatisfiable and also preserves the same number of satisfying
assignments [feal9]. The procedure is similar to the rules we introduced in Chap-

https://doi.org/10.24355/dbbs.084-202009161329-0

5.1. Implementation of Applications 59

ter 2. Thus, we can just delegate the translation to FeatureIDE. This part is shown
in lines 5-7 in Listing 5.1.

In (3), the tool performs changes to the CNF according to the specific algorithm
(e.g., add a unit clause of a feature to compute its commonality). The number of
satisfying assignments of the resulting propositional formula is equal to the number
of valid configurations of the feature model. Depending on the algorithm, the formula
can now be adapted to analyze a specialization or generalization of the feature model.
We discuss the required adapations to the formula for specific algorithms later. This
part is shown in lines 9-10 in Listing 5.1.

In (4), the tool stores the CNF in DIMACS format. Every #SAT solver we con-
sidered uses a CNF in the DIMACS format as input. FeatureIDE supports to save
the CNF in DIMACS format. Thus, we also delegate this procedure to FeatureIDE.
This part is shown in lines 12-13 in Listing 5.1.

In (5), the tool calls the selected #SAT solver with the new DIMACS file as input.
We pass the path of the previously stored DIMACS file to our selected #SAT solver.
After the solver terminates, we parse the command line output to get the number
of satisfying assignments. This part is shown in lines 15-18 in Listing 5.1.

5.1.1 Algorithm Implementations

In this section, we describe the implementation specifics for the four considered
analyses used for the empirical evaluation, namely computing the number of valid
configurations of a feature model, computing the commonalities of features, the
number of remaining configurations for a partial configuration, and performing uni-
form random sampling. We discuss algorithms that are dependent on exploiting the
properties of a d-DNNF separately in the next section.

Number of Valid Configurations

The CNF computed in step 2 of Figure 5.1 is equivalent to the underlying feature
model. Thus, invoking a #SAT solver with the CNF as input computes the number
of valid configurations of the feature model. Therefore, we can skip step 3 as no
adaptation of the CNF is required. We implemented the resulting procedure to
compute the number of valid configurations of a feature model.

Commonality

For the commonalities of features, we implemented two algorithms for the evaluation
besides the d-DNNF implementation. First, we implemented a naive approach that
performs a #SAT call for each feature f using Fry A f as input. This corresponds
to the base algorithm Algorithm 8 for computing commonalities described in Sec-
tion 4.2. Listing 5.2 shows a snippet of the used Java code. The currently iterated
feature is conjuncted to the CNF in lines 2-6. The #SAT solver is invoked with
the adapted CNF as input in lines 8-11. Finally in line 13, the result of the #SAT
solver is stored as commonality for the respective feature.

https://doi.org/10.24355/dbbs.084-202009161329-0

© 0 9 O s W N

-
o

11
12
13
14

© 0 N9 O s W N

-
o

11
12
13

14

15
16

18
19
20
21
22
23
24

60 5. Implementation

for (IFeature feat : model.getFeatures()) {
// 1. Adapt formula
CNF temp = cnf.clone();
String featName = feat.getName () ;
int varIndex = temp.getVariables () .getVariable (featName) ;
temp.addClause (new LiteralSet (varIndex));

// 2. Invoke solver

DIMACSUtils.createTemporaryDimacs (temp) ;

binaryResult = solver.executeSolver (runner,DIMACSUtils.
TEMPORARY_DIMACS_PATH, timeout);

solverResult = solver.getResult (binaryResult.stdout);

commonalities.put (featName, solverResult.result.toString());
Listing 5.2: Commonality Implementation

We also implement an adaptation that performs analyses that compute core, dead,
and false-optional features to reduce the number of required #SAT calls. We dele-
gate these analyses to FeatureIDE. If a feature is either core, dead, false-optional,
or mandatory, the #SAT call is redundant and can be skipped to save time. In
Section 4.2, we explain the details of the procedure. The non-naive approach cor-
responds to the optimization using result propagation of other analyses described
in Section 4.2, it’s implementation in Java is shown in Listing 5.3. The core, dead,
and mandatory/false-optional features are handled in lines 4-6, 8-10, and 12-14,
respectively. overallModelCount stores the number of valid configurations for the
feature model. Features that do not meet any of these conditions are handled in
lines 16-28. This behavior is equivalent to the naive procedure shown in Listing 5.2.

for (IFeature feat : model.getFeatures()) {
String featName = feat.getName () ;

// 1. Handle core features
if (coreFeatures.contains (feat)) {
commonalities.put (featName, overallModelCount);

// 2. Handle dead features
} else if (deadFeatures.contains (feat)) {
commonalities.put (featName, BigInteger.ZERO);

// 3. Handle mandatory and false—optional features
} else if (feat.getStructure () .isMandatory () ||

falseOptionalFeatures.contains (feat)) {
commonalities.put (featName, commonalities.get (FMUtils.getParent (
feat) .getName ()));

// 4. Handle other features (analogous to Listing 5.2)
} else ({
// 4.1 Adapt formula
CNF temp = cnf.clone();
int varIndex = temp.getVariables () .getVariable (featName) ;
temp.addClause (new LiteralSet (varIndex));

// 4.2 Invoke solver
DIMACSUtils.createTemporaryDimacs (temp) ;

https://doi.org/10.24355/dbbs.084-202009161329-0

25

26
27
28
29

© 0w 9 O s W N =

e T e e e
N O ok W N = O

18

5.1. Implementation of Applications 61

binaryResult = solver.executeSolver (runner,DIMACSUtils.
TEMPORARY_DIMACS_PATH, timeout);

solverResult = solver.getResult (binaryResult.stdout);

commonalities.put (featName, solverResult.result.toString());

Listing 5.3: Commonality Adaptation

Partial Configurations

For partial configurations, we implement Algorithm 12 described in Section 4.3 and
the computation using d-DNNF's which we describe separately later. The procedure
is similar to the base implementation of computing commonalities. Given a partial
configuration C' = (FM,I,E) with the set of included features I and set of excluded
features F, #SAT is called with Fry A \;c; i A Neep 7€ as input. Listing 5.4 shows
a snippet of the used Java code. The included and excluded features are conjuncted
in lines 1-6 and 8-13, respectively. #SAT is invoked with the adapted CNF as input
in lines 15-18.

// 1. Conjunct included features

for (IFeature feat : config.getSelectedFeatures()) {
String featName = feat.getName () ;
int varIndex = cnf.getVariables () .getVariable (featName) ;
temp.addClause (new LiteralSet (varIndex));

// 2. Conjunct negation of excluded features

for (IFeature feat : config.getUnSelectedFeatures()) {
String featName = feat.getName () ;
int varIndex = cnf.getVariables () .getVariable (featName) ;
temp.addClause (new LiteralSet (—varIndex));

// 3. Perform #SAT call
DIMACSUtils.createTemporaryDimacs (cnf);

binaryResult = solver.executeSolver (runner,DIMACSUtils.
TEMPORARY_DIMACS_PATH, timeout);
solverResult = solver.getResult (binaryResult.stdout);

Listing 5.4: Partial Configurations Implementation

Uniform Random Sampling

For uniform random sampling, we implement the naive Algorithm 14 and an adap-
tation in which we propagate use results of previous analyses (e.g., core and dead
features) to reduce the number of required #SAT calls. Listing 5.5 shows a snippet
of the used Java code. Beginning on line 2, the procedure computes the number of
valid configurations for the feature model. On line 8, a random number between
zero and the numberOfSolutions is generated. This number is used to generate the
configuration by iterating over the features and including or excluding the feature
from the configuration C' which is implemented in lines 16-40. For each feature,
the variable corresponding to the feature is negated and conjuncted to a temporary

https://doi.org/10.24355/dbbs.084-202009161329-0

© 0w 9 O

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

27
28
29
30
31
32
33

35
36
37
38
39
40
41

62 5. Implementation

copy of the CNF and the temporary CNF is stored as DIMACS in lines 19-23.
Then, the selected #SAT solver computes the number of valid configurations with
respect to the current configuration in lines 26-27. If the feature should be part of
the configuration according to the rules described in Chapter 4, it is added to the
configuration, added to the CNF for the next iterations, and the random number is
adapted in lines 34-39. Otherwise, the negated literal is added to the CNF for the
next iterations in line 31.

// 1. Compute number of valid configurations

IFeatureModel model = FMUtils.readFeatureModel (file);

FMUtils.saveFeatureModelAsDIMACS (model, DIMACSUtils.
TEMPORARY_DIMACS_PATH);

binaryResult = solver.executeSolver (runner,DIMACSUtils.
TEMPORARY_DIMACS_PATH, timeout);

BigInteger numberOfSolutions = solver.getResult (binaryResult.stdout) .
result;

// 2. Get random number
BigInteger randomNumber = getRandomNumber (0, numberOfSolutions);

// 3. Get CNF

FeatureModelFormula formula = new FeatureModelFormula (model) ;
CNF cnf = formula.getCNF () ;

List<String> includedFeatures = new ArrayList<>();

// 4. Perform uniform random sampling
for (IFeature feat : model.getFeatures()) {

// 4.1 Adapt formula

CNF temp = cnf.clone();

String featName = feat.getName () ;

int varIndex = temp.getVariables () .getVariable (featName) ;
temp.addClause (new LiteralSet (—varIndex));
DIMACSUtils.createTemporaryDimacs (temp) ;

// 4.2 Execute #SAT

binaryResult = solver.executeSolver (runner,DIMACSUtils.
TEMPORARY_DIMACS_PATH, timeout);
solverResult = solver.getResult (binaryResult.stdout) ;

// 4.3a Include feature
if (solverResult.result.compareTo (randomNumber) >= 0) {
cnf.addClause (new LiteralSet (—varIndex));

// 4.3b Exclude feature
} else {
includedFeatures.add (featName) ;
cnf.addClause (new LiteralSet (varIndex));
randomNumber = randomNumber.subtract (solverResult.result);

}

return includedFeatures;

Listing 5.5: Uniform Random Sampling Naive

https://doi.org/10.24355/dbbs.084-202009161329-0

© 0 9 O s W N

-
o

11
12
13
14
15
16
17
18
19
20
21
22
23

24
25
26
27
28
29
30
31
32

33
34

5.1. Implementation of Applications 63

In the adaptation shown in Listing 5.6, the CNF is pre-processed using knowledge
from the feature model. Prior starting to create samples, the set of core, dead,
and false-optional are computed. If the feature is core, it is immediately added
to the configuration and added to the CNF as a unit clause in lines 8-10. Even
though a feature is added, the random number does not need to be adapted as
#(Fpy A —f) = 0 always holds for a core feature f. This behavior is similar for
mandatory and false-optional features whose parents are part of the configuration,
as #(Fpy A p A —¢) = 0 always holds for a mandatory/false-optional child ¢ of p.
The procedure for false-optional and mandatory features is shown in lines 19-21
A dead feature is never part of a valid configuration. Thus, it is not added to the
configuration and a negative literal corresponding to the feature is conjuncted to
the CNF in lines 12-14. The same procedure is performed for any feature whose
parent has not been added in lines 16-17, as it cannot be part of this configuration
either. Here, it is important that a parent is always processed before its children,
as a non-core child which is processed before its parent could never be part of the
sample. For all feature that do not meet any of the above described conditions, the
naive procedure presented in Listing 5.5 is used.

FeatureModelFormula formula = new FeatureModelFormula (model) ;
CNF cnf = formula.getCNF () ;
List<String> includedFeatures = new ArrayList<>();
for (IFeature feat : model.getFeatures()) {
String featName = feat.getName () ;
int varIndex cnf.getVariables () .getVariable (featName) ;

// 1. Handle core features

if (coreFeatures.contains (featName)) {
includedFeatures.add (featName) ;
cnf.addClause (new LiteralSet (varIndex));

// 2. Handle dead features
} else if (deadFeatures.contains (featName)) {
cnf.addClause (new LiteralSet (—varIndex));

// 3. Handle features whose parents are not included
} else if (!includedFeatures.contains (feat.getParent () .getName())) {
cnf.addClause (new LiteralSet (—varIndex));

// 4. Handle mandatory and false—optional features
} else if (includedFeatures.contains (feat.getParent () .getName()) && (
feat.isMandatory () || falseOptionals.contains (featName))) {
includedFeatures.add (featName) ;
cnf.addClause (new LiteralSet (varIndex));

// 5. Handle other features

} else {
CNF temp = cnf.clone();
temp.addClause (new LiteralSet (—varIndex)) ;
DIMACSUtils.createTemporaryDimacs (temp) ;

binaryResult = solver.executeSolver (runner,DIMACSUtils.
TEMPORARY_DIMACS_PATH, timeout);
solverResult = solver.getResult (binaryResult.stdout

)i
if (solverResult.result.compareTo (randomNumber) >= 0) {

https://doi.org/10.24355/dbbs.084-202009161329-0

35
36
37
38
39
40
41
42
43

64 5. Implementation

cnf.addClause (new LiteralSet (—varIndex));
} else ({
includedFeatures.add (featName) ;
cnf.addClause (new LiteralSet (varIndex));
randomNumber = randomNumber.subtract (solverResult.result);

}
}

return includedFeatures;

Listing 5.6: Uniform Random Sampling Propagation

All the code snippets presented above utilize the #SAT solvers including d-DNNF
compilers as black boxes. In the following section, we present algorithms that instead
re-use the output of d-DNNF compilers.

5.1.2 Exploitation of d-DNNF's

In this section, we describe our implementation for the analysis of feature models
using deterministic decomposable negation normal forms (d-DNNF). We explained
d-DNNFs in Chapter 2 and provided several algorithms for the analysis of feature
models that exploit them in Chapter 4. On a high level, our procedure to exploit
d-DNNFs works as follows. First, we create a CNF from a given feature model.
Second, this CNF is used as input for an off-the-shelf compiler that translates the
CNF to d-DNNF. Third, we parse the output of the compiler and build a d-DNNF in
our own data structure. The parsed d-DNNF can then be used for several different
analyses (e.g., uniform random sampling).

Compiler Format

Darwiche et al. [Dar04] introduced a format for the compiler c2d to store d-DNNFs
in a format that is similar to DIMACS. Each sub-node only appears once in the file
and multiple parents may reference it. This format is also used by the compilers
d4 [LM17] and dSharp [MMBH10]. Thus, parsing the format allows re-using the
output of all the mentioned compilers. In this section, we explain the syntax of this
format as specified by the c2d project !.

The first line of the output file contains metadata of the d-DNNF, namely the
number of nodes, edges, and variables. Each edge corresponds to a reference from a
parent-node to its child. nnf n e v indicates that the d-DNNF contains n nodes, e
edges, and v variables. Every other line represents a node that is a logical element,
namely And, Or, Literal, True, or False.

A i xy zrepresents an And-node that has i (in this case ¢ = 3) variables with the
indices x, y, and z. A 0 is a special case and represents a True-node.

O ij x y z represents an Or-node that has j (in this case j = 3) child nodes with
the indices x, y, and z. For the value of i, there two cases: If i = 0, it can be
ignored. Otherwise, the Or-node may only contain two children and i is a variable
index corresponding to the variable v;. O i 2 x y with i > 0 indicates that x

Thttp://reasoning.cs.ucla.edu/c2d/

https://doi.org/10.24355/dbbs.084-202009161329-0

© 0w 9 O o ks W N =

L T T N S S S S =y
AW RN = O © 0 N O Uk W N = O

5.1. Implementation of Applications 65

only induces satisfying assignments that contain v; (i.e., x = v; holds) and y only
induces satisfying assignments with —wv; (i.e., y = —w; holds). The node can be
interpreted as the following formula: xVyA (v; = x) A (v; = —y). O 0 0 represents
a False-node.

L x represents a literal that corresponds to the variable x. The literal can either be
positive L x or negative L -x. Listing 5.7 shows an example of a smooth d-DNNF in
the specified format. It is equivalent to the CNF(1V—-2V3)A(2V4V5)A(4V6)A4.

nnf 23 26 6

L1

L 2

L 3

L 4

L5

L 6

L -1

L =2

L -3

L -5

L —6
022117
03228
05249
06 2510
A 212

A2 7 12
02 2 16 15
A2 6 17

A 30 12 11
01219 18
A 2 3 20

A 3 21 14 13

Listing 5.7: Example d-DNNF in ¢2d format

Analysis Data Structure

In this section, we describe the data structure we develop in which we store the
d-DNNF given by the compiler. We use this structure for the empirical evaluation
of the d-DNNF based algorithms and integrated it into FeatureIDE. Additionally,
we describe the translation from the solver output to our data structure.

The class Ddnnf, shown in Figure 5.2 represents the entire d-DNNF using a list
of nodes that each references its child nodes by index. These nodes are repre-
sented by the abstract class dDnnfNode. A node can be an instance of either And,
Or, PositiveLiteral, NegativeLiteral, True, or False. For each node N, the
number of satisfying assignments for the subtree that has N as root is stored in
overallModelCount. This count is reused by every algorithm. All algorithms tem-
porarily update the model count of the nodes depending on input and algorithms
this updated model count is stored in currentModelCount. Often the value of
a node does not change during an algorithm, this is indicated by the algortihms
via setting changedValue to false. This information can be used by the parents
of the node to skip redundant computations and save time. The three operations

https://doi.org/10.24355/dbbs.084-202009161329-0

66 5. Implementation

Ddnnf

+root: DdnnfNode

+numberOfVariables: int

+nodes: DdnnfNode[]

+readDdnnfFile(path:String)

+getCommonalities(): BigInteger[]
+performUrs(randomNumber:BigInteger): Config
+getPartialConfigurationCount(partialConfig:Config): BigInteger
1

*

dDnnfNode

+overallModelCount: BigInteger

+currentModelCount: BigInteger

+changedValue: boolean

+propogateCommonality(variable:int)
+propogatePartialConfiguration(included:int[],excluded:int[])
+propogateUniformRandomSampling(included:int[],excluded:int[])

And Or PositivelLiteral || NegativelLiteral || True || False
+children: List<dDnnfNode> ||+children: List<dDnnfNode> ||+variable: int +variable: int

+addChild(child:dDnnfNode) | |[+addChild(child:dDnnfNode)

Figure 5.2: Class Diagram for d-DNNF Structure

propogateCommonality(), propogatePartialConfiugration(), and propogate-
UniformRandomSampling() are used for the specific algorithms and are described
later.

And additionally stores its children as a list of dDnnfNode. The node is initialized
with a overallModelCount of one. When a child is added, the overallModelCount
is multiplied with the overallModelCount of the child. Thus, after all children are
added, the overallModelCount is the product of the children’s overallModelCount.

Or stores its children as a list of dDnnfNode, like And. The node is initialized with
an overallModelCount of zero. When a child is added, the overallModelCount of
the child is added to overallModelCount. Thus, after all children are added, the
overallModelCount is the sum of the children’s overallModelCount.

PositiveLiteral and NegativeLiteral both correspond to one variable in the
formula. Both nodes are initialized with an overallModelCount of one.

True is initialized with an overallModelCount and a currentModelCcount of one.
These values always stay the same. False behaves the same way, but both values
are initialized with zero.

The used off-the-shelf compiler stores the d-DNNF in a text file in the format de-
scribed in the previous paragraph. Excluding the initial line that contains meta data,
a dDnnfNode is created for each line of the file according to the rule set shown in
Table 5.1. i,j,k represent arbitrary numbers. x,y,z represent the indices of arbitrary
variables.

In the end of the parsing procedure a list of all nodes is stored in Ddnnf. The indices
in the list are equivalent to the line indices in the parsed file. For every node the
overallModelCount is stored for later use in the algorithms.

https://doi.org/10.24355/dbbs.084-202009161329-0

5.1. Implementation of Applications 67

Entry Procedure

nnfijk Save k as number of variables

Aixyz Create And and add nodes with index x|y|z as children.
overallModelCount = Hce{%yvz} overallModelCount,

Oijxyz Create Or and add nodes with index x|y|z as children.
overallModelCount = Zce{$’y7z} overallModelCount,

L x Create PositiveLiteral with variable = x
overallModelCount = 1

L -x Create NegativeLiteral with variable = x
overallModelCount = 1

A0 Create True
overallModelCount = 1

000 Create False

overallModelCount = 0

Table 5.1: d-DNNF Parsing Rules

Algorithms

In this section, we describe the implementations for computing the commonality
of features, the number of remaining configurations for a partial configuration, and
uniform random sampling by exploiting a d-DNNF. The algorithms were already
described in Chapter 4.

For every algorithm, the currentModelCount of nodes is updated iteratively, given
an assumption (e.g., to compute the commonality of feature f, the assumption
a(f) = T would be used). overallModelCount is constant and corresponds to the
number of satisfying assignments of the original formula without any additional as-
sumptions. During parsing, we preserve the order of nodes specified in the d-DNNF
file given by the compiler. This ensures that the index of a child is always smaller
than the index of its parent. Thus, if the procedure reaches a node, its children’s
currentModelCount are already updated according to the algorithm. Typically,
the currentModelCount differs to the overallModelCount for only a subset of all
nodes. It is not necessary to re-compute the currentModelCount if none of the
children has changes. Each node holds a changedValue-flag that indicates whether
its value changed during the current traversal of the d-DNNF. After the traversal,
the currentModelCount of the root holds the result of the algorithm. The imple-
mentations for the algorithms mentioned above proceed similar and only differ in
the procedure for PositiveLiteral and NegativeLiteral. In the following, we de-
scribe the behavior of the DdnnfNode subclasses And (Listing 5.8), Or (Listing 5.9),
True (Listing 5.10), False (Listing 5.11), when propagating intermediate results for
the different algorithms.

Listing 5.8 shows the procedure of propagating the model count for a new query
at And nodes. First, the procedure checks whether any child changed its value by
inspecting the boolean changedValue in lines 5-10. Note, that a parent is always
processed later than its children. If none of the children changed its value, the
model count is not recomputed and changedValue is set to false. This potentially
reduces the required time by a large margin as the runtime for a multiplication is

https://doi.org/10.24355/dbbs.084-202009161329-0

27
28
29
30

© 0 9 O A W N

68 5. Implementation

O(n?) where n is the number of digits and numbers sometimes reach more than
1000 digits [STS20]. Otherwise, the product of the children’s counts is recomputed
and changedValue is set to true in lines 14-28. If the value changed for a child,
its currentModelCount is used for the computation in lines 19-21. If the value did
not change, the child’s overallModelCount is used in lines 24-25.

public class And {
public void propagate() {

// 1. Check if any child changed
changedvValue = false;
for (IterativeBUNode child : children) {
if (child.changedvalue) {
changedvValue = true;
break;

// 2. Recompute if any child changed
if (changedvalue) {
currentModelCount = BigInteger.ONE;
for (IterativeBUNode child : children) {

// 2.a handle child that changed value

if (child.changedvalue) {
currentModelCount =
currentModelCount .multiply (child.currentModelCount) ;

// 2.b handle child that did not change value
} else {
currentModelCount = currentModelCount.multiply (child.
overallModelCount) ;

Listing 5.8: Procedure for And Nodes

Listing 5.9 shows the procedure of propagating the model count for a new query for
an Or node. Equivalent to And nodes, the procedure first checks whether none of the
children changed their values in lines 5-10. If any of them changed their value, the
sum of the children’s counts is recomputed in lines 14-29 and changedValue is set
to true. Otherwise, the value does not need to be recomputed and changedValue is
set to false.

public class Or {
public void propagate () {

// 1. Check if any child changed
changedvValue = false;
for (IterativeBUNode child : children) {
if (child.changedvalue) {
changedValue = true;

https://doi.org/10.24355/dbbs.084-202009161329-0

10
11
12
13

15
16
17
18
19
20
21
22
23
24
25
26
27

28
29
30
31
32

S

~ o«

e B L

5.1. Implementation of Applications 69

break;

// 2. Recompute if any child changed
if (changedvalue) {
currentModelCount = BigInteger.ONE;

for (IterativeBUNode child : children) {

// 2.a handle child that changed value
if (child.changedvalue) {
currentModelCount =
currentModelCount.add (child.currentModelCount) ;

// 2.b handle child that did not change value
} else {
currentModelCount = currentModelCount.add(child.
overallModelCount) ;

Listing 5.9: Procedure for Or Nodes

Listing 5.10 shows the procedure for a True-node for which the query is not relevant
as the value for a True-node is always one. The behavior is similar for False-nodes.
The procedure is shown in Listing 5.11. Here, the value is always zero independent
of the query.

public class True {

public void propagate() {
currentModelCount = overallModelCount;
changedValue = false;

Listing 5.10: Procedure for True Nodes

public class False {

public void propagate() {
currentModelCount = overallModelCount;
changedvalue = false;

Listing 5.11: Procedure for False Nodes

In contrast to the other nodes, PositivelLiteral and NegativeLiteral behave
differently depending on the input and algorithm. The idea for each algorithm is
to change the value currentModelCount of literals corresponding to the variable
f, for an assumption a(f) = T/L. Let a(f) = T be an assumption and Posi-
tiveLiteral and NegativeLiteral correspond to f. Then, the currentModel-
Count of NegativeLiteral is set to zero and changedValue is set to true. The

https://doi.org/10.24355/dbbs.084-202009161329-0

© 0 N 3 O

10
11
12
13

15
16
17
18
19

1
2
3

70 5. Implementation

value for PositiveLiteral does not change as the node still induces one solution
and changedValue is set to false. These changes are propagated using the presented
procedures til the root is reached. The currentModelCount at the root node then
is the result for the given assumption.

The procedures for PositiveLiteral are described in Listing 5.12. Uniform random
sampling uses the propagation of a partial configuration in each iteration. Thus, we
only consider methods for propagating values for commonality and partial configu-
rations. When computing commonality the only possible adaption is conditioning
a single variable f to be positive (i.e., a(f) = T). If the PositiveLiteral corre-
sponds to this variable, the model count is still one. If it corresponds to another
variable, nothing changes. Thus, the value for a PositiveLiteral never changes
when computing commonality which is shown in lines 14-16. For included variables
of a partial configuration, the behavior is the same and implemented in lines 9-
11. However, the PositiveLiteral corresponds to an excluded variable, the model
count is set to zero and changedValue is set to to true which can be see in lines

5-7.

public class PositivelLiteral {

public void propogatePartialConfiguration (Set<Integer> included, Set<
Integer> excluded) {

if (excluded.contains (variable)) {
currentModelCount = BigInteger.ZERO;
changedvValue = true;

} else {
changedvValue = false;

}
}

public void propagateCommonality (int variable) {
changedValue = false;

}

Listing 5.12: Procedures for PositiveLiteral Nodes

NegativeLiteral nodes behave similarly to PositiveLiteral nodes. For the com-
monality of a feature , if the considered feature corresponds to the same variable as
NegativeLiteral, the value is changed to zero, as =T = L which is shown in lines
16-18. For every other variable, the model count stays the same at one in lines
20-22. For partial configurations, the excluded features have no impact as seen in
lines 9-11. However, if the variable the NegativeLiteral corresponds to is part of
the included features, the model count is changed to zero and changes value is set
to true which is shown in lines 5-7.

public class NegativeLiteral ({

public void propogatePartialConfiguration (Set<Integer> included, Set<
Integer> excluded) {

https://doi.org/10.24355/dbbs.084-202009161329-0

I

© oo ~ o«

10
11
12
13

15
16
17
18
19
20
21
22
23
24
25
26

= W N

© oo ~ o«

11
12
13
14
15
16
17
18
19
20
21

5.1. Implementation of Applications

71

if (included.contains (variable)) {
currentModelCount = BigInteger.ZERO;
changedvValue = true;

} else {
changedValue = false;

public void propagateCommonality (int variable)

if (this.variable == variable) ({
changedValue = true;
currentModelCount = BigInteger.ZERO;
} else {

changedValue = false;

{

Listing 5.13: Procedures for NegativeLiteral nodes

These procedures described above can now be used to compute commonalities of
features, to compute the number of partial configurations and to perform uniform
random sampling with a d-DNNF. Listing 5.14 shows the procedure for commonal-
ities. If a feature has been found core or dead in lines 7 or 10, a traversal through
the d-DNNF is not required. Otherwise, propogateCommonality(f) is called for
every node of the d-DNNF in lines 14-17. Afterwards, the root holds the result in

its currentModelCount.

public List<BigInteger> getCommonalities () {

List<BigInteger> commonalities =
for (int 1 = 1; 1 <= numberOfVariables; i++)

if (cores.contains(i)) {

new ArrayList<>();

{

commonalities.add (root.overallModelCount) ;

} else if (deads.contains(i)) {
commonalities.add(BigInteger.ZERO) ;

} else {
for (IterativeBUNode node nodes) {
node.propagateCommonality (i) ;

}

commonalities.add(root.currentModelCount) ;

}

return commonalities;

Listing 5.14: Compute Commonalities with d-DNNF

https://doi.org/10.24355/dbbs.084-202009161329-0

0w N o O ks W

© o0 ~ o« - w [-

NN N R R R R R R e = e e
W N H O © N ke W NN = O

72 5. Implementation

Listing 5.15 shows the procedure for computing the remaining valid configurations
for a partial configuration. The method inputs two sets of integer which correspond
to the included and excluded variables. Here, the propogatePartialConfigura-
tionCount (included, excluded) is called for every node in lines 4-6. Afterwards,
the currentModelCount holds the result.

public BigInteger getPartialConfigurationCount (Set<Integer> included,
Set<Integer> excluded) {

for (IterativeBUNode node : nodes) {
node.propogatePartialConfigurationCount (included, excluded);

}

return root.currentModelCount;

Listing 5.15: Compute Partial Configurations with d-DNNF

Listing 5.16 shows the procedure for performing uniform random sampling with
d-DNNF. The method inputs a BigInteger which is then mapped to a configu-
ration. First, the required members included, excluded, and randomNumber are
initialized in ursInit(BigInteger) in lines 11-16. Second, the current variable is
handled in ursHandleNextVariable(int) for each node in lines 18-31. If a fea-
ture is core or dead, the d-DNNF does not need to be traversed. This is shown in
lines 16-19. Otherwise, the current variable is added to the excluded variables in
line 25. Then, the number of valid configurations of the partial configuration de-
scribed by included and excluded is computed by invoking getPartialConfigu-
rationCount (included, excluded) in line 26 which was described in Listing 5.15.
If the returned number of satisfying assignments is smaller than the randomNumber,
the randomNumber is updated, the variable is removed from excluded and added to
included in lines 27-30.

public Set<Integer> performUrs (BigInteger randomNumber) {

ursInit (randomNumber) ;
for (int 1 = 1; 1 <= numberOfVariables; 1i++) {
ursHandleNextVariable (1) ;

}

return included;

}

public void ursInit (BigInteger randomNumber) {
included = new HashSet<>();
excluded= new HashSet<>();

this.randomNumber = randomNumber;

}
public void ursHandleNextVariable (int variableIndex) {
if (cores.contains (variableIndex)) {

currentConfig.add(variableIndex)
} else if (deads.contains (variablelIndex)) {

https://doi.org/10.24355/dbbs.084-202009161329-0

24
25
26

27
28
29
30
31
32
33

5.2. Integration into FeaturelDE 73

} else {
excluded.add (variableIndex) ;
BigInteger result = getPartialConfigurationCount (included, excluded

)i
if (result.compareTo (randomNumber) < 0) {
randomNumber = randomNumber.subtract (result);
excluded.remove (variableIndex) ;
included.add(variableIndex) ;

}
Listing 5.16: Uniform Random Sampling with d-DNNF

5.2 Integration into FeaturelDE

In this section, we describe the integration of the devised algorithms in FeaturelDE.
After this section, the reader should understand the usage in FeatureIDE and com-
prehend the implementation which is available in our FeatureIDE fork?. The im-
plementation is based on the previously described d-DNNF engine. First, we give
a short introduction into FeatureIDE. Second, we describe the integration of the
d-DNNF engine. Third, we present the integration of the four algorithms.

FeatureIDE

FeatureIDE is an integrated development environment used for developing feature-
oriented software [TKB™14]. It is based on the IDE eclipse but also offers a headless
library for feature modeling. The source code for the eclipse plugin and the library
is available at the GitHub repository of the project?.

Featurel DE supports counting the number of valid configurations of a feature model
and a partial configuration. However, both implementations use SAT solvers and
are based on blocking clauses which work as follows. After finding a satisfying
full assignment with the SAT solver, a term, with as many literals as there are
features, is created that represents the assignment. Then, this term is negated
and conjuncted to the CNF representing feature model as the blocking clause. For
example, suppose solver returns a satisfying assignment {A, B, —~C,=D}. The term
representing the assignment is 7" = A A B A -C' A =D and the result blocking
clause is =T = =AV =BV CV D. The formula resulting from conjuncting the
blocking clause to the current formula is then used as input for the next SAT call
which returns another solution as long as there is one. The described procedure
can be repeated until no satisfying assignment is left to count the number of valid
configurations. However, this requires #FM SAT calls. Additionally, the CNF is
continually growing during the procedure which may even cause later runs to be
slower. Therefore, the described algorithm only scales to small feature models.

For sampling, FeatureIDE supports a variety of algorithms. Most of them are based
on t-wise interaction coverage (e.g., Chvatal [Chv79] and Incling [AHKT*16]). One
algorithm also creates random samples, but without a guarantee for a uniform distri-
bution. Currently, FeatureIDE does not support computing commonality of features.

Zhttps://github.com/SundermannC/FeatureIDE/tree/ma_ddnnf
3https://github.com /FeatureIDE /FeatureIDE

https://doi.org/10.24355/dbbs.084-202009161329-0

74 5. Implementation

Integration d-DNNF

We implement the d-DNNF structure described in Section 5.1.2 in FeatureIDE. We
save the source code in the package de.ovgu.featureide.fm.core.analysis.ddnnf.
For the compilation of a CNF to d-DNNF, we used the dSharp compiler which we
added as a binary in /plugins/de.ovgu.featureide.fm.core/lib. In the following,
we describe how we integrate the four computations in FeatureIDE. This is supposed
to enhance the reader to use the new computations in FeatureIDE and comprehend
the underlying implementation.

Integration Number of Valid Configurations

FeaturelDE offers a view that provides syntactical (e.g., number of features and
constraints) and semantical (e.g., number of core, dead, and false-optional features)
statistics about the currently loaded feature model. Figure 5.3 shows a screenshot
of the statistics view in FeatureIDE. The semantical statics also contain an entry for
counting the number of valid configurations that currently uses procedure described
above. As computing the number of valid configurations is an expensive operation,
the computation is only available on demand by double-clicking the corresponding
entry.

The existing interface provided a CNF representing the feature model and a time-
out that can be set by the user. We replaced the underlying analysis in the class
CountSolutionsAnalysis with a #SAT based computation. Thus, we used dSharp
as a model counter to compute the number of valid configurations.

Integration Commonality

FeaturelDE provides a graphical editor for feature models which can be used to cre-
ate and edit a feature model. For example, features or constraints can be added and
deleted. The editor also allows to compute the following anomalies: void model,
core, dead, false-optional features, tautological, and redundant constraints. Fur-
thermore, it is possible to compute explanations for the anomalies. These analyses
can be manually run or automatically after a change to the feature model. This is
enabled by a drop-down shown in Figure 5.4.

The computation of commonalities of features is currently not integrated in Fea-
tureIDE. We decided to integrate commonalities in the editor for feature models.
We added the entry Compute Commonalities to the drop-down menu used for anal-
yses which is shown in Figure 5.5. After running the analysis, the commonality of
features is visualized in two ways. First, each feature is colored with gradations that
indicate its commonality. For example, a core feature (i.e., commonality of one) is
colored in dark green and a feature with a commonality 0.25 < ¢ < 0.5 is colored in
yellow as seen in Figure 5.6 for features Carbody and CD, respectively. Additionally,
the actual value is displayed in the tooltip of the feature as seen in Figure 5.7.

Integration Partial Configurations

FeaturelDE provides a graphical editor to derive configurations. The user can select
and deselect features while the tool automatically performs selection propagation. In

https://doi.org/10.24355/dbbs.084-202009161329-0

5.2. Integration into FeaturelDE 75

-

4
4

-

FeaturelDE Statistics E:@W Collaboration Diagram g Configuration Map

Project Name: Car
Generation Tool: Feature Modeling

¥ Statistics of the feature model

Syntactical statistics

Number of features: 15

Number of concrete Features: 15

Number of abstract Features: 0

Number of compound Features: 6

Number of terminal Features: 9

Number of hidden features: 0

Number of constraints: 1

Number of Features in conskrainks: 2

Relative number of Features in constraints: 0.133

Semantical statistics

Feature modelis valid (not void): true

Number of core Features: 3

Number of dead features: 0

Number of false-optional features: 0

Number of atomic sets: (expand to calculate)

Number of configurations: (double-click to calculate)
Number of program variants: (double-click to calculate)

Figure 5.3: FeatureIDE Statistics View

Automated Calculations

s® Run Manual Calculations
calculate Features
Calculate Constraint Errors

Figure 5.4: Feature Model Editor Analyses Dropdown

Automated Calculations

#® Run Manual Calculations

#® Compute Feature Commonalities
Calculate Features
Calculate Constraint Errors

Figure 5.5: Feature Model Editor Analyses Dropdown With Commonality

https://doi.org/10.24355/dbbs.084-202009161329-0

76 5. Implementation

Car

Carbody | Radio Gearbox GearboxTest

AN

1. Ports 1\ Navigation | ' () Bluetooth | () Manual | j\ Automatic

/‘\ Legend:

1. USB | CD | | DigitalCards || GPSAntenna e

/O\

of
Europe | USA &
o

1

1

Mandatory
Optional

Or Group
Alternative Group
Feature

o Dead Feature
« Navigation = USB

« Europe = Gearbhox
GPSAntenna = USE

« Carbody A Gearbox
Gearbox A Radio = Navigation

Carbody = Automatic A —Bluetooth

False-Optional Feature
Redundant Constraint

Figure 5.6: Features Colored by their Commonalities

Europe

Concrete feature

Commonality: 0.29

Figure 5.7: Feature Tooltip with Commonality

https://doi.org/10.24355/dbbs.084-202009161329-0

5.2. Integration into FeaturelDE 77

Automatically Compute Number of Valid Configurations

Figure 5.8: Partial Configuration Count Toggle

valid valid, 537537024 possible configurations

(a) Toggle Off (b) Toggle On

Figure 5.9: Partial Configuration Count

the current version of FeatureIDE, the previously described procedure using blocking
clauses is performed to compute the number of valid configurations. After a short
timeout, the number of valid configurations that have been found during this time is
displayed. Thus, a lower bound is provided. However, these lower bounds are typi-
cally very imprecise for feature models with a high number of valid configurations.
After a feature has been selected this number is recomputed.

We replace this computation with an algorithm that is based on d-DNNFs. As this
computation is expensive, this can be prevented by a newly introduced toggle that
is shown in Figure 5.8. In this case, the editor only displays whether the current
partial configurations is valid or invalid as seen in 5.9(a). If the toggle is enabled the
number of remaining configurations is computed using a d-DNNF based approach
as seen in 5.9(b).

When the user enables the toggle, a d-DNNF that is equivalent to the feature model
is computed and stored. Then, after each change to the configuration editor a query
is run on the stored d-DNNF. This query computes the number of remaining valid
configurations of the current partial configuration. This allows for faster online
queries after the initial expensive computation of the d-DNNF.

Integration Uniform Random Sampling

FeaturelDE provides a wizard that can be used to generate configurations using
different algorithms. Currently, it is possible to generate configurations by the fol-
lowing strategies: configurations that cover t-wise interactions, randomly but not
uniformly distributed configurations, all valid configurations, or all current configu-
rations from the configs-folder. After selecting such a strategy the algorithm can be
selected. Each algorithm computes a set of literal sets that represent the computed
configurations. These literal sets are then used to create configuration files in the
directory products.

We added the d-DNNF-based procedure to perform uniform random sampling as a
possible algorithm for the random strategy to this wizard which is shown in Fig-
ure 5.10. FeatureIDE provides an abstract class ARandomConfigurationGenerator
that can be used to implement a generator for random samples. Using this class,
we only had to implement our procedure described in Section 5.1 in the interface
method generate() that creates a list of sets of literals which each correspond to
one configuration.

https://doi.org/10.24355/dbbs.084-202009161329-0

78 5. Implementation

Build Products o

Build products For project FinancialServices01.

Derive configurations

Strategy: Random configurations -
Algorithm: UniformRandom -
Interactions: T=2

Max Configurations: | 2

Order configurations

Order: Default -

Interactions: T=2

Create new projects:
Run JUnik tests:

Figure 5.10: Example of the Product Generator Wizard

5.3 Evaluation Framework

In this section, we describe the implementation of our benchmark framework we use
for the empirical evaluation. The implementation is focused on enabling easy addi-
tion of new #SAT solvers and new algorithms dependent on #SAT. The framework
is implemented in Java. This section explains the structure of the framework, helps
readers to repeat the experiments, and supports them in adding their own solvers
and algorithms for further comparisons. We uploaded our benchmark framework to
a Github repository.*

Structure

The two main parts of the benchmark framework are the different algorithms and
#SAT solvers. Wrappers are required to call and parse the result of the #SAT bi-
naries with our framework to use them in Java to allow further usage of the results
for the algorithms implemented in Java. For each solver, an instance of ICompa-
rableSolver needs to be implemented. A class diagram is shown in Figure 5.11.
executeSolver (dimacsPath, timeout) handles the execution of the solver and
passes the required arguments to the solver. The returned BinaryResult will indi-
cate a timeout should one occur, otherwise it holds the stdout stream of the solver.
parseResult (stdout) parses the stream to extract the computed number of sat-
isfying assignments. The returned SolverResult will indicate a failure should one
occur, otherwise it holds the number of satisfying assignments. We define methods
to retrieve useful descriptors. getIdentifier () provides a unique identifier for the
solver. The solvers can be grouped by different types which can be arbitrary strings.

4https://github.com/SundermannC /sharpsat-benchmark-framework

https://doi.org/10.24355/dbbs.084-202009161329-0

5.3. Evaluation Framework 79

<<Interface>>
IComparableSolver

+executeSolver(dimacsPath:String,timeout:int): BinaryResult
+parseResult(stdout:String): SolverResult

+getIdentifier(): String

+getSolverType(): String

Figure 5.11: Class Diagram for d-DNNF Structure

getSolverType() can be used to return the type of the solver. An example for a
solver type used in the framework is "DPLL".

The framework enables to compare multiple algorithms on the same task, as we
aim to identify the best performing algorithms and optimizations for specific task.
For example, an experiment may compare two different algorithms that perform
uniform random sampling. To this end, two different instances of IComparableAl-
gorithm that perform the same computation can be implemented. A class diagram
for IComparableAlgorithm is shown in Figure 5.12. The method measureRun-
time(file,solver,timeout) is used measure the runtime and memory usage of a
single algorithm which can be used to compare multiple algorithms of the same type
(e.g., algorithms that compute commonalities). The returned Map<String,String>
can be used to return arbitrary algorithm outputs (e.g., a configuration created by
uniform random sampling).

The framework also allows to directly compare the performance of solvers when used
for the same algorithm, as we aim to identify the best performing solver for a specific
task. compareSolvers(file, solvers, timeout) runs the entire algorithm once
but the required #SAT calls are repeated once for every solver that was passed
with solvers. The returned CompareSolverResultPackage contains the computed
number of satisfying assignments, the required runtime, and used memory for each
solver for each #SAT call required for the algorithm.

For some algorithms, it may not be obvious to detect computationally expensive
parts in the implementation. preciseAnalysis(file, solvers, timeout) allows
to measure the runtime of specific parts of an algorithm. The method returns a
PreciseAnalysisResultPackage object which provides runtimes required for spe-
cific parts that can be specified by the user. Additionally, it provides the number of
performed #SAT calls.

Usage

In this section, we describe how to use the benchmark framework. First, we describe
how to repeat the experiments that are used for our empirical evaluation. Second,
we explain how to configure new experiments using the existing solvers and algo-
rithms. Third, we describe how to add new solvers and algorithms to the benchmark
framework.

The main method lies in src/main/RunBenchmark. It expects the name of a config-
uration file as argument. If it is not provided as call argument, the user is asked to

https://doi.org/10.24355/dbbs.084-202009161329-0

Bow N =

oo ~ o«

80 5. Implementation

<<interface>>

IComparableAlgorithm

+compareSolvers(file:String,solvers:IComparableSolvers|[],
timeout:int): CompareSolverResultPackage

+measureRuntime(file:String,solvers:IComparableSolvers|[],
timeout:int): Map<String,String>

+preciseAnalysis(file:String,solvers:IComparableSolvers[],
timeout:int): PreciseAnalysisResultPackage

Figure 5.12: Class Diagram for d-DNNF Structure

specify a file during runtime. A Configuration file needs to be stored in the configs-
directory. Every configuration used for the evaluation is stored in this directory in
the repository. For example, to repeat experiment1, ”java src/main/RunBench-
mark experimentl” can be used.

To create their own experiment, the user must understand the elements of the exper-
iment configurations. The configuration an unordered key-value store. A template
for the configuration is shown in Listing 5.17.

type:<compareAlgorithms|compareSolvers|preciseAnalysis>

solvers:<all|typel| [solverl,...,solvern]>
files:<all| [dirl,...,dirn]>
seed:w

timelimit:x
memoryLimit:y
incrementSize:z
timeUnit:<m|s|ms|ns>

Listing 5.17: Experiment Configuration Template

A mandatory argument is the type of the benchmark which can be either compareAl-
gorithms, compareSolvers, or preciseAnalysis which correspond to the three different
methods of IComparableAlgorithm explained above. The selection of solvers can be
done using the solvers key. The legal values are either all, a type (e.g., DPLL), or
a list of n solvers [solverl,...,solvern]. A single solver can be selected using [solver].
Without the brackets, the parser tries to find a solver type (e.g., DPLL) named solver
instead. The default argument for solvers is all. The evaluated feature models can
be selected with the files key which only considers files that are stored in the direc-
tory models/. The possible arguments are either all or a list of m sub-directories
[dir1,...,dirn] of models/. Like for solvers, all is the default argument.

We also expose variables which can be set to control the behavior of the benchmark.
Some experiments are dependent on random number generation (e.g., uniform ran-
dom sampling). Therefore, it is possible to provide a seed for reproducible results
with the key seed. Furthermore, a timeout in minutes can be set using time-
limit. If this value is not specified, there is no timeout. Additionally, the RAM
usage of the solvers can be limited using memorylimit whose input is interpreted
as MB. As the computations using #SAT are often computationally expensive and

https://doi.org/10.24355/dbbs.084-202009161329-0

© 0 9 O s W N

= o= e
N o= O

13
14
15
16
17
18
19
20
21

22
23
24
25
26
27
28
29
30
31
32
33

5.3. Evaluation Framework 81

require a lot of time, it is possible run the experiments incrementally. To this
end, intermediate results are stored after every z processed models. If the exper-
iment is interrupted, the experiment can be continued from the last saved state.
The size = of the increments can be specified using incrementsize. Depending
on the expected runtime of the experiments the results that show the required
runtime may be more readable using different time units. This can be specified
with timeunit. The possible values are either m (minutes), s (seconds), ms (mil-
liseconds), or ns (nanoseconds). The results for a experiment are saved in re-
sults/ <experimenttype>/<algorithmtype>/<configname>.csv (e.g., re-
sults/compareSolvers/commonality /experiment1.csv).

One of the design goals for the framework is the easy addition of new #SAT solvers.
To add a new solver to the framework only two steps are required. First, one needs
to write a wrapper class for the solver that is an instance of IComparableAlgorithm.
Afterwards, the wrapper needs to be registered in the class comparablesolver/-
SolverProvider. java which holds a list of all solvers and is used to select the
solvers according to the experiment configuration. Listing 5.18 shows a simplified
example for a wrapper for the #SAT solver Cachet.

public class ComparableCachet implements IComparableSolver {
private final static String ID = "cachet";
private int memoryLimit;

public ComparableCachet (int memoryLimit) ({
this.memoryLimit = memoryLimit;

@Override
public BinaryResult executeSolver (BinaryRunner runner, String
dimacsPath, long timeout) throws InterruptedException ({
String command = buildCommand (dimacsPath) ;
BinaryResult output = runner.runBinary (command, timeout);
return output;

@Override
public SolverResult getResult (String output) {
final Pattern pattern = Pattern.compile ("Number of solutions)\\s
+[0=9]+\\.?[0 = 9]« [eE]?[+ —]?\\d+") ;
final Matcher matcher = pattern.matcher (output);
String result = "";

if (matcher.find()) {
result = matcher.group/();
} else {

return SolverResult.getUnexpectedErrorResult ();

}
final String[] split = result.split ("\\s+");
return SolverResult.getSolvedResult (split[split.length — 117);

QOverride
public String getIdentifier() {

https://doi.org/10.24355/dbbs.084-202009161329-0

[

ot

N O

10
11
12
13
14
15
16

17
18
19
20

21

22
23
24

25
26
27

28
29
30
31

82 5. Implementation

return ID;

@Override
public String getSolverType () {
return SolverTypes.DPLL;

Listing 5.18: Example Solver Wrapper Cachet

Adding a new algorithm is similar to adding a new solver. First, one needs to
create an instance of IComparableAlgorithm that computes the desired results.
Listing 5.19 shows a simplified example for an IComparableAlgorithm that com-
putes the number of valid configurations. Second, the instance has to be added at
comparablealgoriths/basics/AlgorithmProvider. java.

public class NaiveModelCount implements IComparableAlgorithm {

public static final String ALGORITHM_ID = "NaiveModelCount";
public static final String ALGORITHM_GROUPID = "count";
QOverride

public CompareSolverResultPackage compareSolvers (BinaryRunner runner,
String file,
List<IComparableSolver> solvers, int timeout, IPreprocessResult
preprocessResult) throws
InterruptedException {
Map<String, List<InstanceResult>> results = new HashMap<>();
List<InstanceResult> resultPackage;
BinaryResult binaryResult = null;
SolverResult solverResult = null;
String modelName = FileUtils.getFileNameWithoutExtension(file);
IFeatureModel model = FMUtils.readFeatureModel (file);
FMUtils.saveFeatureModelAsDIMACS (model, DIMACSUtils.
TEMPORARY_DIMACS_PATH) ;
resultPackage = new ArrayList<>();

for (IComparableSolver solver : solvers) {
long startTime = System.nanoTime () ;
binaryResult = solver.executeSolver (runner,DIMACSUtils.

TEMPORARY_DIMACS_PATH, timeout);
long runtime = BenchmarkUtils.getDurationNano (startTime, System.

nanoTime ()) ;
runner.killProcessesByUserAndName (solver.getBinaryName ()) ;
solverResult = solver.getResult (binaryResult.stdout);

resultPackage.add (InstanceResult.mergeBinaryAndSolverResult (
solverResult, binaryResult, runtime, timeout));
}
results.put (modelName, resultPackage);
return new CompareSolverResultPackage (solvers, results,
ALGORITHM_1ID);

@Override
public Map<String, String> measureRuntime (BinaryRunner runner, String
file,

https://doi.org/10.24355/dbbs.084-202009161329-0

32

33
34
35
36
37
38
39

40

41
42
43
44
45
46

48

49
50
51
52

53
54
55
56
57
58

60

61

62
63

64
65
66
67
68
69
70

71
72

73
74
75
76
7

5.3. Evaluation Framework 83

IComparableSolver solver, int timeout, IPreprocessResult
preprocessResult) throws
InterruptedException {
Map<String, String> results = new HashMap<>();
BinaryResult binaryResult = null;
SolverResult solverResult = null;
String modelName = FileUtils.getFileNameWithoutExtension(file);
IFeatureModel model = FMUtils.readFeatureModel (file);
FMUtils.saveFeatureModelAsDIMACS (model, DIMACSUtils.
TEMPORARY_DIMACS_PATH) ;
binaryResult = solver.executeSolver (runner,DIMACSUtils.
TEMPORARY_DIMACS_PATH, timeout);
solverResult = solver.getResult (binaryResult.stdout);
results.put (modelName, solverResult.result.toString());
return results;

@Override
public Map<String, String> measureRuntime (BinaryRunner runner, List<
String> files,
IComparableSolver solver, int timeout, IPreprocessResult
preprocessResult) throws
InterruptedException {
Map<String, String> results = new HashMap<> () ;
for (String file : files) {
Map<String, String> interimResult = measureRuntime (runner,file,
solver, timeout, preprocessResult);
results.putAll (interimResult);
}

return results;

@Override
@SuppressWarnings ("unused")
public PreciseAnalysisResultPackage preciseAnalysis (BinaryRunner
runner, String file,
IComparableSolver solver, int timeout, IPreprocessResult
preprocessResult) throws
InterruptedException {
PreciseAnalysisResultPackage results = new
PreciseAnalysisResultPackage (file);
results.startClock ("Init");
BinaryResult binaryResult = null;
SolverResult solverResult null;
String modelName = FileUtils.getFileNameWithoutExtension(file);
results.stopClock ("Init");
IFeatureModel model = FMUtils.readFeatureModel (file);
FMUtils.saveFeatureModelAsDIMACS (model, DIMACSUtils.
TEMPORARY_DIMACS_PATH) ;
results.startClock ("solver");
binaryResult = solver.executeSolver (runner, DIMACSUtils.
TEMPORARY_DIMACS_PATH, timeout);
results.stopClock ("solver");
solverResult = solver.getResult (binaryResult.stdout);
results.maxMemory = maxMemory;
results.maxMemorySource = maxMemorySource;
return results;

https://doi.org/10.24355/dbbs.084-202009161329-0

78
79
80
81
82
83
84
85
86
87
88
89
90

w

© oo ~ o« L

10
11
12
13
14
15

16
17
18
19
20
21
22
23

84 5. Implementation

QOverride

public String getAlgorithmId() {
return ALGORITHM_ ID;

}

@Override

public String getAlgorithmGroupId() {
return ALGORITHM_GROUPID;

}

Listing 5.19: Example Algorithm Wrapper

The three methods measureRuntime(), compareSolvers(), and preciseAnaly-
sis() typically share a majority of the code. Copying the code for each method is
error-prone and expensive to update. Thus, we create a code generator that uses a
source file that needs to contain the algorithm once with some tags which we describe
later added to it. The idea is to implement the procedure once without worrying
about source code that is used for the evaluation of the algorithm. Also, updating an
algorithm would otherwise require to update the three methods separately. Given
the created procedure with some tags added to it, the generator creates the actual
wrapper with the three methods measureRuntime (), compareSolvers(), and pre-
ciseAnalysis(). In the following, we present this generator in short. Listing 5.20
shows the annotated source code that was used to generate Listing 5.19 with the
help of our generator.

public class NaiveModelCount ({

public void measureRuntime (String file, IComparableSolver solver, int
timeout) {

//#RTB:Init

BinaryResult binaryResult = null;

SolverResult solverResult = null;

String modelName = FileUtils.getFileNameWithoutExtension(file);
//#RTE:Init

//#RT:ReadModel
IFeatureModel model = FMUtils.readFeatureModel (file);

//#RT:SaveDimacs

FMUtils.saveFeatureModelAsDIMACS (model, DIMACSUtils.
TEMPORARY_DIMACS_PATH) ;

//#CSOL :modelName

//#RESULT :modelName; solverResult.result.toString/()

//#RETURN

Listing 5.20: Example Solver Wrapper Cachet

https://doi.org/10.24355/dbbs.084-202009161329-0

5.4. Summary 85

Tag Explanation

#CSOL Invoke the solver.
#RESULT Save an intermediate result.
#RETURN Return the overall result.

#RT Measure the required time for the following statement.
Only used for preciseAnalysis.

#RTB Starts clock for a code block.
Only used for preciseAnalysis.

#RTE Stops clock for code block and saves measured time.

Only used for preciseAnalysis.

Table 5.2: Generator Annotations

The generator copies regular program lines for each method and replaces annota-
tions differently depending on which of three of three methods measureRuntime (),
compareSolvers (), and preciseAnalysis() is currently built. Table 5.2 shows an
overview of the important available tags. The general syntax for an annotations
is //#<TAG>:<argl>;<arg2>. For every method #CSOL:<resultname>
is replaced with a statement that invokes a solver. For compareSolvers(), ev-
ery passed solver is invoked once successively and the required runtime, memory;,
and result is saved for each. For preciseAnalysis(), the runtime is measured
and the counter that saves the number of #SAT calls is incremented. #RE-
SULT:<key>:<result> is ignored by compareSolvers() and preciseAnaly-
sis(). For compareAlgorithms (), it is replaced with a statement that saves result
in the Map<String,String> that is returned in the end. #RETURN is replaced
with a statement that returns the result of the analysis as CompareSolverResult-
Package, PreciseAnalysisResultPackage, and Map<String,String>. The tag
#RT:<key> is ignored by compareSolvers() and compareAlgorithms(). For,
preciseAnalysis() it is replaced with statements that measure the runtime of the
following statement. #RTB:<key> an #RTE:<key> behave similarly but are
used to measure the time of an entire code black instead of a single statement.
#RTB needs to be put at the beginning and #RTE end of the block.

To add a model to the framework, an user must add the model.xml file to the
models/ directory. Currently, the framework only supports formats that are also
supported by FeatureIDE. Thus, every model needs to be translated to a FeatureIDE
format before it can be used in the framework.

5.4 Summary

We first describe the implementation of algorithms for the four different analyses,
namely computing the number of valid configurations of a feature model, compute
the commonality of a feature, compute the number of remaining valid configurations
of a valid configurations, and perform uniform random sampling. First, we describe
the general procedure that is used for the algorithms that contains the following
steps: (1) read and parse the feature model, (2) translate the feature model to
CNF, (3) adapt the formula according to the query, (4) invoke the solver with the
adapted formula as input, and (5) parse the output of the solver. Afterwards, we

https://doi.org/10.24355/dbbs.084-202009161329-0

86 5. Implementation

describe the required adaptations to the CNF and different optimizations for the
different analyses. We explain the implementation for our d-DNNF engine that
can be used for all the listed analyses. The engine utilizes a off-the-shelf d-DNNF
compiler to translate the CNF to d-DNNF. Then, we store the resulting d-DNNF
in our own format which is used for the different queries.

We added our d-DNNF engine and four analyses using it to FeatureIDE. First, we
replaced the computation for the number of valid configurations for a feature model
in the view that displays statistics of the feature model. Second, the commonality of
a feature can be visually displayed in the editor for feature models. The commonality
is indicated by coloring the different features and presented in a tool-tip. Third,
we replaced the computation for the remaining valid configurations of a partial
configurations. Fourth, we added uniform random sampling as an algorithm for the
product generator that was already part of FeatureIDE.

In the third section, we describe a benchmark framework that can be used to com-
pare #SAT solvers on analyses for feature models. The main design goals are to
enable simple integration of new #SAT solvers, algorithms, and feature models. Ex-
periments can be parameterized with a key-value store configuration file which can
be used to specify the used solvers, algorithms, models, and properties as a timeout
or memory limit. We use the described benchmark framework for our empirical
evaluation which is described in the following chapter.

https://doi.org/10.24355/dbbs.084-202009161329-0

6. Evaluation

In this chapter, we examine the scalability of the implementations presented in
Chapter 5. For the evaluation, we consider 12 exact and 2 approximate off-the-
shelves #SAT solvers and 131 industrial feature models. The results are used to
answer the research questions R(Q)4-R(Q6 introduced in Chapter 1. Overall, we aim
to identify effective optimizations, solvers with short runtimes, and the scalability
of the applications especially regarding large industrial feature models.

For each of the four analyses considered in Chapter 4, we identify the best perform-
ing algorithm and discuss their scalability for industrial feature models. We also
discuss the efficiency of d-DNNF's as a reasoning engine for counting-based analyses
of feature models. In addition, we examine the performance of #SAT solvers for the
different algorithms. We provide insights in the benefits of using an approximate
#SAT solver to estimate the number of valid configurations.

In Section 6.1, we describe the research questions that we answer with our empirical
evaluation in more detail. In Section 6.2, we present the underlying experiment
design. Hereby, we specify the technical setup, give an overview of the evaluated
implementations, describe the different #SAT solvers, and discuss the product lines
included in our benchmark. In Section 6.3, we present the results of the experiments.
In Section 6.4, we discuss the results of our experiments separated and ordered by
the research questions RQ3-RQ5. In Section 6.5, we discuss potential threats to the
validity of our experiments.

6.1 Research Questions

In this section, we further specify the research questions RQ3-5 introduced in Chap-
ter 1 that we aim to answer with our empirical evaluation. We provide a survey for

RQ1 and RQ2 in Chapter 3.

e RQ3: For a given #SAT application, is there an algorithm that scales to in-
dustrial product lines? In Chapter 3, we show that each considered #SAT

https://doi.org/10.24355/dbbs.084-202009161329-0

88

6. Evaluation

application can be computed by one of the following analyses: the number
of valid configurations of a feature model, the commonality of features, and
the number of remaining valid configurations of a partial configuration. While
uniform random sampling is also an application that is dependent on partial
configurations, we decided to separate it due to its relevancy and optimizations
specifically for uniform random sampling. It is sufficient to show these four
analyses scale to industrial product lines as the results can be used to compute
the results for each considered #SAT application. Therefore, we evaluate the
algorithms described in Section 5.1 on the feature models presented in Sec-
tion 6.2.1 with the off-the-shelf solvers discussed in Section 6.2.2. We separate
the research question according to the specific analyses.

— RQ3.1: For computing the number of wvalid configurations of a feature
model, is there an algorithm that scales to industrial product lines?

— RQ3.2: For computing the commonalities of features, is there an algo-
rithm that scales to industrial product lines?

— RQ)3.3: For computing the number of remaining valid configurations of a
partial configuration, is there an algorithm that scales to industrial prod-
uct lines?

— RQ)3.4: For uniform random sampling, is there an algorithm that scales
to industrial product lines?

RQ4: For a given algorithm, is one #SAT solver superior to the others? We
expect that there are #SAT solvers that are overall faster than other solvers.
We aim to examine whether a solver is faster for a specific algorithm but slower
for others. Such conclusions may help a developer to select a solver depending
on the used algorithm.

RQ5: What is the performance of approximate #SAT solvers for analyzing
product lines? For some #SAT applications, the exact number of valid con-
figurations is not necessary and it may be beneficial to estimate results for
faster runtimes. We evaluate the runtime of two approximate #SAT solvers
on evaluating the number of valid configurations to examine whether the usage
of them yields benefits.

6.2 Experiment Design

In this section, we specify the technical setup and the evaluated algorithms, product
lines and #SAT solvers. The implementation of the benchmark framework is dis-
cussed in Chapter 5. To find a solution, the applications presented in Chapter 3 all
require either computing the number of valid configurations of a product line, the
commonality of features, the number of remaining valid configurations of a partial
configuration, or uniform random sampling. Thus, we evaluate different implemen-
tations for each of those four computations. These implementations consist of the
naive base algorithms and at least one optimization presented in Chapter 4. In the
following, we describe all performed experiments during our evaluation. We provide

https://doi.org/10.24355/dbbs.084-202009161329-0

6.2. Experiment Design 89

Title Algorithms RQs Solvers Timeout
1 | Feature Mod- | Model Counting RQ3.1, 4 | All 5 min.
els
Naive,
2 | Commonality | Propagate Analyses, | RQ3.2, 4 | Remaining 10 min.
d-DNNF
. Naive, - .
3 Part}al Config- LDNNF RQ3.3, 4 | Remaining 10 min.
urations
Naive,
4 | Uniform Ran- | Propagate Analyses, | R(Q)3.4, 4 | Remaining 15 min.
dom Sampling | &-DNNF
5 | Approximates | Model Counting RQS5 Approximates | 5 min.

Table 6.1: Overview Experiments

an overview in Table 6.1. For each experiment, we first explain the contribution
to our research questions. Second, we specify the technical details. The memory
usage is limited to eight gigabytes for the JVM and each solver. Overall, if solvers
reach the timeout for a specific algorithm, it is impossible to differentiate how much
time the solvers require to compute actual result. Therefore, we aimed to maximize
the timeouts for the different experiments while finishing all experiments within the
timeframe of this thesis. For this goal, we decided to set the timeout to ten minutes
as a baseline for the experiments. To put this in perspective: a single solver which
always hits the timeout of 10 minutes for 131 models requires 22 hours for a single
algorithm, this translates to almost 2 weeks of total time to evaluate all 14 solvers on
that algorithm. Increasing the timeout would allow us to conduct fewer experiments
in our evaluation. For some experiments, we decided to change the timeout. In each
of these cases, we discuss our reasons for this change.

In the first experiment, one goal is to identify solvers to exclude from following
experiments for performance reasons. A single solver that always hits the timeout
vastly increases the runtime required for the experiment. Furthermore, computing
the number of valid configurations of a feature model is the threshold problem for
every evaluated algorithm. Every solver that is slow for that task will be slow for
every other algorithm as well. For example, to compute commonalities of a feature
model with 1,000 features 1,000 #SAT calls are required for the base algorithm.
We expect that each of those calls requires a similar amount of time to counting
the number of valid configurations once. Thus, a #SAT solver that does not scale
for model counting should not scale for the other applications, namely computing
commonalities, computing remaining valid configurations of a partial configuration,
and performing uniform random sampling. Additionally, the results are used to
provide insight on the following sub-research questions: RQ)3.1 and R(Q)4. We set a
timeout of five minutes for each single model. Each solver that does not compute
the number of valid configurations for at least 10% of the systems is excluded from
the following experiments. We expect that analyses in subsequent experiments to
require a multiple of the runtime for this experiment, as such we reduced the timeout
by a factor of two. Therefore, we do not consider a solver that reaches a timeout of

https://doi.org/10.24355/dbbs.084-202009161329-0

90 6. Evaluation

five minutes on a majority of the models as suitable for the following experiments.
In this chapter, we use the term remaining solvers to identify solvers which fulfilled
these requirements.

In the second experiment, we examine the scalability of computing the commonality
of all features for a given feature model. To this end, we evaluate the three different
implementations for computing the commonality of features described in Chapter 5.
We aim to answer the sub-research questions RQ3.2 and R(Q)4. For the experiment,
we consider all remaining solvers and all industrial models. However, there is a
technical limitation with the algorithm that inputs the d-DNNF engine as it can
only be evaluated with the two d-DNNF compilers that produce a smooth d-DNNF,
namely C2D and dSharp. d4 does not support creating smooth d-DNNFs. In the
remainder of this chapter, we refer to an algorithm that does employ knowledge
compilation (i.e., uses a d-DNNF) as direct computation. The timeout is set to
10 minutes for computing the commonality of every feature for each solver and
algorithm.

In the third experiment, we examine the scalability of computing the number of
remaining valid configurations of a partial configuration. To this end, we evaluate the
two different implementations considered in Chapter 5. We aim to provide insight on
the research questions 3.3 and R@)4. For the experiment, we consider the remaining
solvers and all considered feature models. The implementations need to compute
the number of remaining valid configurations of 200 different partial configurations
for each model. These consist of 50 of each with 2, 5, 10, 50 randomly included or
excluded features. A considered partial configuration is not necessarily valid. The
timeout is set to 10 minutes. During this time, 200 (50 % 4) partial configurations of
a single feature model need to be evaluated.

In the fourth experiment, we examine the scalability of performing uniform random
sampling for a given feature model. To this end, we evaluate the three different
implementations for performing uniform random sampling described in Chapter 5.
We aim to answer the research questions R()3.4 and R(@)4. The implementations
need to create 10 uniform random configuration. The timeout is set to 15 minutes for
the following two reasons: First, creating samples is typically not used interactively
for the user and samples can be created in the background with a longer runtime.
Second, we expect uniform random sampling to be more expensive than the other
analyses. During the 15 minutes, 10 configurations of a single feature model need
to be created.

In the fifth experiment, we examine the scalability of approximate #SAT solvers
on computing the number of valid configurations for industrial feature models. We
argue that these results for the scalability of approximate #SAT solvers can be
transferred to the other applications (e.g., computing commonality), as the formulas
only differ in a minority of the clauses. We aim to answer the research question
RQ@5. For this experiment, we only consider the two approximate #SAT solvers and
all feature models described in the following section. We set the timeout to five
minutes for the same reasons as for experiment one. During this time, the evaluated
approximate #SAT solver needs to estimate the number of valid configurations for
a single feature model.

https://doi.org/10.24355/dbbs.084-202009161329-0

6.2. Experiment Design 91

Technical Setup

In this section, we describe the technical setup of our experiments. Hereby, we

specify the properties of the host system and the JVM.

The experiments were run on a machine with a Linux Centos 7 operating system and
a 64-bit architecture. The machine has an Intel Core Broadwell Processor consisting
of 16 sockets which each has one core. The clock rate of the processor is 2,394.47
Mhz. Overall, the machine contains 62 GB of RAM.

The compilation of our benchmark framework described in Section 5.3 to a .jar
has been performed with the Java Development Kit version 1.8.0_252. The Java
Runtime Environment version used to run the experiments was 1.8.0_232-009. The
following parameters have been set: -d64 -Xmz8g which limited the memory usage
of the Java Virtual Machine to 8GB. The runtimes were measured using Java’s
System.nanoTime () at the start and the end of an algorithm’s implementation.

6.2.1 Subject Systems

We argue that the scalability of #SAT dependent applications on industrial prod-
uct lines is the most relevant aspect. If the applications do not scale for industrial
models, they are currently not usable for the industry. Thus, we only considered
industrial product lines in constrast to synthesized ones. Overall, we used prod-
uct lines from the automotive, operating system, database, and financial services
domain. An overview of the used product lines is provided in Table 6.2. Some prod-
uct lines are grouped for readability, such as CDL and KConfig. Here, #Models
corresponds to the number of different product lines from that group. For multi-
ple product lines, an evolution that contains several version of the feature model is
available to us. In this case, we always consider the latest version.

Subject Systems | #Models | #Features | #Constraints
KConfig 7 966,467 14-3,545
CDL 116 | 1,178-1,408 816-956
Automotive0l 1 2,513 2,833
Automotive(2 1 18,616 1,369
Automotive03 1 588 1184
Automotive04 1 531 623
Automotive05 1 1,663 10,321
FinancialServices 1 771 1,080
BusyBox 1 631 681
BerkeleyDB 1 76 20

Table 6.2: Overview Subject Systems

The majority of product lines, namely the ones translated from KConfig, trans-
lated from CDL, and Automotive02 are provided by a benchmark from Kniippel
et al. [KTM*17]. The models can be found here.! KConfig is a tool used to manage
configurable systems that was originally developed for Linux [OGB"19]. CDL was

Thttps://github.com/AlexanderKnueppel /is-there-a-mismatch

https://doi.org/10.24355/dbbs.084-202009161329-0

92 6. Evaluation

developed for the eCos system [VD10]. Kniippel et al. [KTM*17] translated the de-
scribed models and four snapshots of an automotive product line provided by their
industry partner to FeatureIDE [MTS*17] format. For our evaluation, we use the
models in the FeatureIDE format.

In our previous work [STS20], we introduced Automotive03-05 which represent three
different automotive product lines provided by our industry partner. We translated
the three product lines from a proprietary format to FeatureIDE format.

Automotive0l, FinancialServices, and BerkeleyDB are available as example feature
models in FeatureIDE and are based on industrial product lines. FeatureIDE exam-
ples are uploaded in the project’s repository.? BusyBox is a software product line
also specified in KConfig and is available in another Github repository.?

6.2.2 #SAT Solvers

In this section, we present the #SAT solvers used for the evaluation. Overall, we
evaluated 12 exact and 2 approximate #SAT solvers. Table 6.3 gives an overview of
the exact #SAT solvers considered in the experiments. We only considered solvers
that are publicly available and accept DIMACS as input format. Each of the exact
solvers is either based on DPLL or is a knowledge compiler (i.e., compiles the original
input formula to another format that allows faster counting) which is indicated by
the "Target Format”-column in Table 6.3.

Solver Type Target Format Reference
PicoSAT DPLL - [Bic08]
Relsat DPLL - [BJPOO]
sharpCDCL | DPLL - [SBB*04, SBK05a]
Cachet DPLL - [KMM13]
sharpSAT DPLL - [Thu06]
countAntom | DPLL - [BSB15]
C2D Compiler d-DNNF [Dar02, Dar04]
dSharp Compiler d-DNNF [MMBH10]
d4 Compiler d-DNNF [LM17]
miniC2D Compiler SDD [OD15]
CNF20BDD | Compiler OBDD [TS16]
CNF2EADT | Compiler EADT [KLMT13]

Table 6.3: Overview Exact #SAT Solvers

PicoSAT [Bic08] is a SAT solver that is not intended to be used for counting the
number of satisfying assignments. However, it supports enumerating all satisfying
assignments and it allows to suppress printing them all out. Thus, it can be used
to compute the number of solutions. The options we used to enable model counting
are: -n and —all. For our empirical evaluation, we used the PicoSAT release 965.*

2https://github.com/FeatureIDE /FeatureIDE
3https://github.com /PettTo/Measuring-Stability-of-Configuration-Sampling
4http://fmv.jku.at/picosat/

https://doi.org/10.24355/dbbs.084-202009161329-0

6.2. Experiment Design 93

Relsat [BJP00] is a DPLL-based #SAT solver. It optimizes DPLL adapted for
counting by decomposing the formula in sub-formula during the DPLL procedure.
After a variable is assigned and boolean constraint propagation is performed, the
algorithm tries to decompose the remaining problem into independent subproblems.
For our empirical evaluation, we used the Relsat version v2.02.°

Cachet [SBB'04, SBK05a] is a DPLL-based #SAT solver. First, the solver exploits
component caching. After a sub-problem has been solved by the procedure, the
result is stored for re-use. Thus, the sub-problem only needs to be solved once.
Second, it uses clause learning. If the DPLL procedure finds an unsatisfying assign-
ment, the reason for the failure is stored in form of a clause. Both techniques have
already been used for regular SAT but are more promising for #SAT as it is more
likely to require to solve the same sub-problem multiple times [SBB*04]. For our
empirical evaluation, we used the Cachet version v1.21.5

SharpCDCL [KMM13] is a DPLL-based #SAT solver. The tool iteratively finds
solutions and conjuncts a negation of the solution to the CNF to count the number of
satisfying assignments. This concept is called blocking clauses and we it introduced
in Chapter 2. For our empirical evaluation, we used SharpCDCL version v2.2.”

SharpSAT [Thu06] is a DPLL-based #SAT solver. It uses the optimizations that were
used by Relsat and Cachet, namely component decomposition, clause learning, and
component caching. In addition, Thurley et al [Thu06] proposed to not store clauses
with one or zero unassigned literals to reduce required space, as these are handled
by boolean constraint propagation anyways. For our empirical evaluation, we used
version v13.02.%

CountAntom [BSB15] is a DPLL-based #SAT solver. It allows multi-threading. To
this end, the authors proposed a caching procedure that does not fault on an unex-
pected order of the traversed nodes. Otherwise, parallel computation may compute
incorrect results if a thread visits certain nodes too early. Thus, the caching proce-
dures cachet and sharpSAT cannot be directly applied for multi-threading. During
the entire empirical evaluation, we evaluated CountAntom with four threads. For
our empirical evaluation, we used CountAntom version v1.0."

C2D [Dar(02, Dar04] compiles a propositional formula in CNF to d-DNNF containing
Or-nodes and decision nodes. The procedure creates a binary decomposition tree
whose leaves are the clauses of the CNF at hand. If two child clauses of a node share
no common variables, the node is already in d-DNNF. Otherwise, shared variables
are eliminated from the clauses with a case analysis on the variable. Consider
two clauses c;, cy that share exactly one variable v € ¢y,co. Let ¢f,c;” be the
clause where v has been eliminated from ¢; by setting v to T, L, respectively. Then
caNecy <= (VA NGV (—vAc” AcyV) holds. Furthermore, the new expression
fulfills determinism and decomposability. The resulting d-DNNF is saved in the

format described in Chapter 5. The compiler can either be used solely as a model

Shttps://code.google.com/archive/p/relsat/
Shttps://www.cs.rochester.edu/u/kautz/Cachet /
"http://tools.computational-logic.org/content /sharpCDCL.php
8https://github.com/marcthurley /sharpSAT
9https://projects.informatik.uni-freiburg.de/projects/countantom

https://doi.org/10.24355/dbbs.084-202009161329-0

94 6. Evaluation

counter. In this case, the d-DNNF is not saved afterwards. C2D also supports
smoothing the d-DNNF'. This is recommended for model counting. For our empirical
evaluation, we used C2D version v2.20.'°

dSharp [MMBH10] compiles a propositional formula in CNF to d-DNNF. The com-
pilation is based on sharpSAT. The formula is also decomposed disjoint components
like for C2D, but this is done dynamically during the procedure. The d-DNNF is
saved in the format described in Chapter 5. The compiler can be used solely as
a model counter. In this case, the d-DNNF is not saved afterwards. dSharp also
supports smoothing the d-DNNF'. For our empirical evaluation, we used the dSharp
version with the commit tag b8b252.1!

d4 [LM17] compiles a propositional formula in CNF to d-DNNF. D4 also uses a
dynamic decomposition like dSharp. The d-DNNF is saved in the format described
in Chapter 5. The compiler can either be used solely as a model counter. In this case,
the d-DNNF is not saved afterwards. d4 does not support smoothing. Therefore,
the compiler is not suitable for our d-DNNF based algorithms and was solely used as
a model counter. For our empirical evaluation, we used the d4 binary as the source
code is not publicly available with version v1.0.!?

MiniC2D [OD15] offers the compilation of a CNF to a sentential decision diagram.
Additionally, it supports model counting without knowledge compilation. For our
experiments, we only used MiniC2D as a model counter. For our empirical evaluation,
we used MiniC2D version v1.0.0.!3

CNF20BDD [TS16] compiles a propositional formula in CNF to an OBDD. Afterwards,
the paths of the OBDD that represent a satisfying assignment are counted to ac-

quire number of solutions. For our empirical evaluation, we used CNF20BDD version
v1.0.2.1

CNF2EADT [KLMT13] compiles a propositional formula in CNF to extended affine
decision trees. An affine clause is a XOR with a finite number of variables. An affine
decision network is DAG whose leaves are terminals (i.e. T or L) and the internal
nodes are either A, V or an affine decision node which consists of an affine clause
and a left and a right child. An decision network DN is considered an extended
affine decision tree, if the following properties hold: First, children of A or V nodes
share no variables. Second, at most one child of an affine decision node n shares
variables with n. This format supports model counting in polynomial time. For our
empirical evaluation, we used CNF2EADT version v1.0.'%

In addition to the twelve exact #SAT solvers, we evaluated two approximate #SAT
solver to answer R()4. For both solvers, we explain the idea to approximate the
number of satisfying assignments and describe the way we used the solver for our
empirical evaluation.

Ohttp:/ /reasoning.cs.ucla.edu/c2d/
Hhttps://github.com/QuMuLab/dsharp
2http://www.cril.univ-artois.fr/kc/d4.html
Bhttp:/ /reasoning.cs.ucla.edu/minic2d/
Mywww.sd.is.uec.ac.jp/toda/code/cnf2obdd.html
Bhttp: / /www.cril.univ-artois.fr/kc/eadt.html

https://doi.org/10.24355/dbbs.084-202009161329-0

6.2. Experiment Design 95

ApproxMC [CMV16, CMV13] is an approximate #SAT solver. Their idea revolves
around XOR constraints that each approximately halve the space of satisfying as-
signment. Each variable vy, ..., v, € varsp is added to the XOR constraint at a 50%
chance. Without any loss of generality, let v;, ..., v;1x be the k selected variables.
The resulting constraint v; B v;11 B ... B V11 D vy is satisfied if an odd number of
the k variables is T. This is the case for approximately half of the valid assignments.
This logic can be repeated to split the configuration space in approximately halve
multiple times [BG19]. ApproxMC provides bounds for the confidence ¢ and tolerance
e of for the approximated result. This means that the result for the formula F lies in
the interval [(1+¢) '« #F, (1+¢)*#F] with a probability p > 1—4§ [CMV13]. The
developers strongly recommend to compute an independent set of variables prior to
the computation of the solver. For that task they provide a tool to compute min-
imal independent sets. The computed set need to be saved as the first line of the
DIMACS prior calling ApproxMC. Thus, we integrated the tool in the execution of
our solver. The runtime required for the solver also considers the runtime required
to compute the independent set. For our empirical evaluation, we used ApproxMC
version v3.0.1

ApproxCount [WS05] is an approximate #SAT solver. To approximate the result,
the solver iteratively assigns variables. For each assignment, a sample of satisfying
assignments is computed. This sample is used approximate the number of satisfying
assignments that contain the variable at hand. This is used to compute a multiplier
that indicates the reduction of variability of this assignment. Consider a variable
x that appears in 80% of the solutions in the sample. In this case, the multiplier
for x is % = 1.25. After 7 iterations, the exact model counter Cachet is invoked
on the remaining formula. The developers provide a binary of Cachet in their
project. However, their version does not support BigNums which is required for
our evaluation. Thus, we replaced the Cachet binary with the version we used
for our empirical evaluation. ¢ can be specified by the user. It is also possible to
specify the number of remaining variables vars(F') — i. During our experiments,
we set the number of remaining variables to 1000 if not stated otherwise. Previous
results indicated that feature models with 1000 or fewer features are typically easy
to analyze [STS20]. ApproxCount provides no guarantee for the quality of the result.
However, their empirical evaluation indicates that the solver provides good estimates
in practice [WS05, CMV13]. For our empirical evaluation, we used ApproxCount

version v1.2.17

For uniform random sampling, we also analyze the tool KUS which is the implemen-
tation of Sharma et al. [SGRM18] for their idea which we described in Algorithm 15
in Chapter 4. The tool exploits the properties of a d-DNNF to calculate a user-
specified number of configurations within a single traversal of the d-DNNF. For the
translation to d-DNNF, KUS internally uses d4. The tool also demands a DIMACS
file as input. The authors uploaded the source code at their GitHub repository.'®
We used the currently latest commit 9f769ec.

https://github.com/meelgroup/approxmec
Thttps:/ /www.cs.cornell.edu/ sabhar/
8https://github.com/meelgroup/KUS

https://doi.org/10.24355/dbbs.084-202009161329-0

96 6. Evaluation

Model Counting

102 .

=

o
)
I

100 _

Runtime in Seconds

=

o
L
1

i'
.
1024 ¢F ‘%!

s (.

b d

103 T T T T T T T
0 20 40 60 80 100 120
Model Index

® sharpSAT B sharpCDCL A miniC2D

* countAntom ® c2d + cnf2eadt

V cachet + d4 —— Timeout

A relsat dsharp —— Memory Limit
¢ picosat # CNF20BDD

Figure 6.1: Results Experiment One

6.3 Results

In this section, we provide the results of our empirical evaluation. We separate the
results according to the different experiments specified in Section 6.2.

Experiment 1: Scalability for Feature Models

Figure 6.1 shows the runtime for the twelve solvers for computing the number of valid
configurations of the 131 feature models. Each point on the x-axis corresponds to one
of the feature models. The models are grouped and the following order is equivalent
for every diagram in the evaluation: indices 1-5 are Automotive01-05, index 6 is
BusyBox, 7-122 are CDL models, 123 is BerkeleyDB, 124 is FinancialServices, and
125-131 are KConfig models. The y-axis shows the runtime of the different solvers
in seconds with a logarithmic scale. The red line indicates that a solver hit the
timeout of five minutes. The blue line indicates that a solver passed the memory
limit of eight gigabytes. countAntom is the fastest solver for 116 of the 131 models
and required 39.47 seconds to evaluate 129 of the 131 systems. Every solver failed
to evaluate the missing two systems, namely Automotive05 and Linux. The second
fastest solver is sharpSAT which required 150.28 seconds to evaluate 129 feature
models.

Table 6.4 gives an overview for the results shown in Figure 6.1. For each evaluated
solver, the table provides the absolute number of solved feature models, the percent-
age share of solved models, the number of times where the solver reached the timout

https://doi.org/10.24355/dbbs.084-202009161329-0

6.3. Results 97

Solver Solved | % Solved | Timeout | Memory Limit | Error
PicoSAT 0 0 131 0 0
Relsat 8 6.1 120 0 3
Cachet 125 95.4 6 0 0
ShepCh el 0 0 129 0 2
SharpSAT 129 98.5 2 0 0
CountAntom 129 98.5 2 0 0
c2d 128 97.7 3 0 0
minic2d 127 96.9 2 0 2
dSharp 129 98.5 2 0 0

d4 129 98.5 2 0 0
CNE20BDD 2 1.5 0 128 1
CNE2EADT 8 6.1 123 0 0

Table 6.4: Result Overview Experiment One

of five minutes, the number of times where the solver reached the memory limit, and
the number of times where the solver terminated with an unexpected error. Five
solvers, namely PicoSAT, Relsat, SharpCDCL, CNF20BDD, and CNF2EADT, scaled to
less than 7% of the feature models. PicoSAT and SharpCDCL could not even compute
the number of valid configurations for a single feature model. The remaining seven
solvers each successfully evaluated more than 95% of the feature models. Sharp-
SAT, CountAntom, dSharp, and d4 computed the number of valid configurations for
all models, but Automotive05 and Linux. Both could not be evaluated by any of
the considered solvers. The following five solvers are not considered for the exper-
iments 2-6: PicoSAT, Relsat, SharpCDCL, CNF20BDD, and CNF2EADT. These solvers
are crossed out in Table 6.4.

Figure 6.2 shows the size of the d-DNNF files computed by the three d-DNNF
compilers, namely c2d, dSharp, and d4. Each point on the x-axis corresponds to
one of the 131 models. The y-axis indicates the size of d-DNNF file in kilobytes
with a logarithmic scale. The d-DNNF files created by c2d are the smallest for
111 of the models. dSharp and d4 created the smallest files for 2 and 16 models,
respectively. The ranges of sizes for the d-DNNF files are: 2-21.027 kb (c2d), 3-
152.887 kb (dSharp), and 1-37.253 kb (d4). The medians are 5.751 kb (c2d), 32.460
kb (dSharp), and 11.600kb (d4). The sum of the sizes for all models are 765 mB
(c2d), 4,937 mB (dSharp), and 1,574 mB (d4).

Experiment 2: Scalability for Commonality

Figure 6.3 shows the runtime of both algorithms that use a direct computation for
computing the commonality of features presented in Listing 5.2 and Listing 5.3 in
Chapter 5. The diagram displays the runtime of the seven remaining exact solvers.
Each point on the x-axis corresponds to one of the 131 feature models. The y-axis
indicates the runtime of each solver in seconds with a logarithmic scale. The red line
indicates that a solver hit the timeout. The blue lines indicates that a solver hit the
memory limit. For the naive base algorithm displayed on the left side, every solver
but countAntom reached the timeout for every CDL model. sharpSAT, cachet, d4,

https://doi.org/10.24355/dbbs.084-202009161329-0

98 6. Evaluation

d-DNNF Sizes
105' ° .. [° -... ° o ...
".i.‘~. .°i"-.. ...°..- . 0.0 % o ®e
_ T e AT P ey
Dol IR SIS
£ F TR) °
% @ ‘ , ®) [S J’"
(@)}
91034 W
e Y
s ° °
2 v .
° 102 4
= 10 } :i
C
< o v
N
n 101 n
$
([
10° 5 v
6 2I0 4I0 6I0 8I0 160 150
Model Index
® c2dFileSize e DsharpFilesize V d4FileSize

Figure 6.2: d-DNNF' Sizes of c2d, dSharp, and d4

and dSharp successfully computed the commonalities for the same eleven feature
models. countAntom successfully computed the commonalities for 119 models with
an overall runtime of 14.18 hours (16.01 hours with models for which the solver
hit the timeout). The right diagram shows the adaptation of the base algorithm
presented in Listing 5.3 in Chapter 5. The computations for core, dead, and false-
optional features passed the memory limit for two KConfig models prior to the
invocation of the solver, namely Embtoolkit and Linux. In the diagram, this is
denoted by a hit of the memory limit for every solver. countAntom successfully
evaluated 127 models with an overall runtime of 7.80 hours. The other solvers
successfully evaluated 32 models (sharpSAT), 10 (cachet), 11 (d4), 11 (dSharp), 7
(c2d), and 7 (miniC2D). For both algorithms based on a direct computation, every
solver failed to evaluate Automotive02, Automotive05, and Linux. Overall, the best
performing solver for the algorithm that included propagation of results from other
analyses was faster than the best performing solver for the base algorithm for 126
models and required 7.80 hours for 128 models. The base algorithm required 15.88
hours for 128 models.

Figure 6.4 shows the runtime of the d-DNNF based algorithm with the d-DNNF
compilers c2d and dSharp. dSharp successfully evaluated every model but Auto-
motive05 and Linux within 4.26 hours. c2d additionally failed to compute the com-
monalities of Automotive02 which contains the highest number of features (18,616)
but only required 1.50 hours to evaluate the 128 models.

Figure 6.5 shows a comparison of the runtimes for the best algorithm and solver for
each the direct computation and the d-DNNF based algorithm. The best performing

https://doi.org/10.24355/dbbs.084-202009161329-0

6.3. Results 99

Naive Propagation
103 =
0 [N . I! I ‘ Io L

(]
° o'..-.v.’fqt' o'p‘ W. N ‘-~$ '.'.“.
.

R s 1 - "4
4
%

7 A
10! 5 ’ ' 5 ‘
.

Runtime in Seconds (Logarithmic)

i
“ é
100 4 1 A
¢ '

1071 T T T T T T T T T T T T T T

0 20 40 60 80 100 120 0 20 40 60 80 100 120

Model Index Model Index

® sharpSAT A d4 @ miniC2D ® sharpSAT A d4 ® miniC2D

e countAntom & dsharp —— Timeout e countAntom ¢ dsharp —— Timeout

V cachet W c2d —— Memory Limit V¥ cachet W c2d —— Memory Limit

Figure 6.3: Commonality: Direct Computation

d-DNNF
— ——
. ° . .o'
—_ 2 ' . ° .. ‘ . ‘ . f. e ’ O‘u.‘:
L 10 E , .*. o, .l L] o
£ “ o ' o’ “' o8 .0
- o' .‘“ %% o "‘.":? K4
= °®
5 0.0 g S, % #%.,
g @) oo
2 10! ¢
s i °
<} L ¢
g ¢
0
£ 10°;
() °
£ ¢
* 1071 <
0 20 40 60 80 100 120
Model Index
® c2d e dsharp —— Timeout

Figure 6.4: Commonality: d-DNNF

https://doi.org/10.24355/dbbs.084-202009161329-0

100 6. Evaluation

Direct vs d-DNNF

— ——
L VTV P LT FWE T
o
— 2 .) L
L 10 E ® o e . 7‘) °® ° .
[] » © o) @ s % ° » ©
E o™ e0o e %o o® . ° CDL; ¢ C3<:P(,L‘ °°. <
> o P%poe ® " ¢ e N N ° % 0
— ° (b [[J @ ()O [] > ¢ [] a® © o .
© - e o 0e® o0 % 4 ® o
o [] e 70 o
o 1 . o® o ¢ P
= 10! 4 P
[}
©
g [
O [
3 o°
£ 10°;
(] °
£ %
£ : .®
> @ °
2 >
1071 - ¢
L J
[]
T T T T T T T
0 20 40 60 80 100 120
Model Index
® Fastest Direct e Fastest d-DNNF —— Timeout

Figure 6.5: Commonality: Direct vs d-DNNF

solver for a d-DNNF is faster than the best performing solver for the direct compu-
tation for every but three models for which the d-DNNF-based algorithm required
2.72 seconds and the direct computation 2.11 seconds. In sum, the best performing
solver for each model required 1.50 hours to evaluate 129 models using the d-DNNF.
The best algoritihm and solver for the direct computation required 7.81 hours for
128 models.

Figure 6.6 shows the correlation between the size of the d-DNNF and the runtime of
computing commonalities with our d-DNNF-based implementation for the compilers
c2d and dSharp. The x-axis shows the size of the file in kilobytes with a logarithmic
scale. The y-axis shows the runtime in seconds with a logarithmic scale. The red
line indicates that the algorithm hit the timeout for the model. The algorithm only
failed to compute the commonalities for a feature model if the compiler failed to
create a d-DNNF. After the compiler successfully created a d-DNNF, the procedure
did not hit the timeout for any model. For the smaller models, c2d and dSharp
create d-DNNF's of similar size in which case dSharp has shorter runtimes.

Algorithm | #Fastest | Best Performing Solver (#Instances)
Naive 0 countAntom(108)
Propagation 3 countAntom(116)
d-DNNF 126 c2d(114)

Table 6.5: Result Overview Experiment Two

https://doi.org/10.24355/dbbs.084-202009161329-0

6.3. Results 101

T 1024 LY

© ®

(@)}

3 104 e ¢ °¢e

) [I)

2 ()

o

3 °~

(7]

£ 10°4

g ® e

S

E ‘

1071 4 ¢ ® c2d
dsharp
—— Timeout
10! 102 103 104 10°

Size in Kilobytes (Logarithmic)

Figure 6.6: Commonality: d-DNNF Size in Relation to Runtime

Experiment 3: Scalability for Partial Configurations

Figure 6.7 shows the runtime of the remaining solvers for computing the number
of remaining configurations of a partial configuration. Each point on the x-axis
corresponds to one of the 131 feature models. The y-axis shows the runtime in
seconds with a logarithmic scale. The solvers are differentiated by different colors
and markers. The left diagram shows the results for the computations that use a
direct approach where a #SAT call has been performed for every partial configura-
tion. The right diagram shows the d-DNNF based approach where a d-DNNF was
computed once per feature model and each partial configuration was evaluated with
a query on the d-DNNF. Each solver had ten minutes to compute all 200 partial
configurations per model.

For the direct approach, c2d and cachet evaluated five (3.82%) and seven (9.16%)
feature models within ten minutes, respectively. dSharp evaluated all partial config-
urations for 115 (87.79%) feature models. countAntom and sharpSAT only reached
the timeout for Automotive05 and Linux (solved 98.47%). d4 reached the timeout
on one additional (97.71%) feature model for Automotive02. countAntom was the
fastest solver using the direct approach for 116 feature models. sharpSAT, dSharp,
and cachet were the fastest solvers for 9, 3, and 1 feature model, respectively.

For the approach of d-DNNFs, we consider the cumulative runtime of the transla-
tion to d-DNNF and the queries for the partial configurations. Using dSharp the
approach reached the timeout for two (solved 98.47%) feature models, namely Auto-
motive05 and Linux. With c2d the approach also failed to evaluate the 100 partial
configurations of Automotive02 within ten minutes (solved 97.71%). The approach
with c2d was the fastest one in 115 cases; with dSharp in 14 cases.

https://doi.org/10.24355/dbbs.084-202009161329-0

102 6. Evaluation

Direct Computation d-DNNF

cada ot Ay d
[y .""v’ "' ..A s"" :

102 4

)]

o
£]
ES Ve o, P S
% {wﬁr'\w' o’ ,&-‘."f’.’w‘-’*" % AL aky "'f#ﬁ "‘vﬂ"_" ¥ F R &
4 "
S o .] #ﬁ!ﬂ-‘ HEWY Hqg-l m b
S5 ® sharpSAT " -
§ s ¢ countAntom e f
& Vv cachet
100 - 1
£ A d4 *
GE) ¢ dsharp
b= m c2d + c2d
2 1071 4 miniC2D E dSharp
—— Timeout —— Timeout
0 20 40 60 80 100 120 0 20 40 60 80 100 120
Model Index Model index

Figure 6.7: Partial Configurations: Comparison Solvers

Figure 6.8 shows a comparison of the fastest runtime using the direct and the d-
DNNF-based approach. For both the direct computation and the d-DNNF approach,
at least one solver computed a result for every model except for Linux and Auto-
motive05. Overall, the d-DNNF approach required 34.61 minutes and the direct
computation 61.77 minutes. The d-DNNF-based approach was faster in 126 of the
129 (97,67%) overall solved feature models. In the three instances where an algo-
rithm using a direct computation was faster, the average difference was 1.96 seconds.
Table 6.6 displays an overview of the comparison between the two techniques.

Figure 6.9 shows the correlation between the size of the d-DNNF and the runtime
of evaluating partial configurations with our d-DNNF-based implementation for the
compilers c2d and dSharp. The x-axis shows the size of the file in kilobytes with
a logarithmic scale. The y-axis shows the runtime in seconds with a logarithmic
scale. The red line indicates that the algorithm hit the timeout for the model. The
correlation is similar to the results for commonality shown in Figure 6.6. There is
no model for which c2d and dSharp created a d-DNNF and the algorithm hit the
timeout while running the queries.

Algorithm | #Fastest | Best Performing Solver (#Instances)
Naive 3 CountAntom(116)
d-DNNF 126 c2d(115)

Table 6.6: Result Overview Experiment Three

Experiment 4: Scalability Uniform Random Sampling

Figure 6.10 displays the runtime of the remaining solvers for computing ten uni-
form random configurations using the base implementation Listing 5.5 (left) and
Listing 5.6 (right). Each point on the x-axis corresponds to one of the 131 feature
models. The y-axis shows the required runtime with a logarithmic scale. For the
base algorithm, only sharpSAT solved any CDL feature model. Overall, sharpSAT
successfully performed uniform random sampling for 24 feature models. No solver

https://doi.org/10.24355/dbbs.084-202009161329-0

6.3. Results

103

Direct vs d-DNNF

_. .—
9 1024 ©
€
s
s
(@)}
S
= 10!
(2]
e)
C
o
O
(]
n
£ 1094
]
£
*g .
o o. L8 °
1071 - ©
[]
[]
0 20 40 60 80 100 120
Model Index
® Fastest Direct e Fastest d-DNNF —— Timeout

Figure 6.8: Partial Configurations: Direct vs d-DNNF

G 2 ...o. e ©
.E 10 o. ..°§$.)
= ‘o'?a- 5
g [) 0ge ® & °
:'o, 101 - ® [)
[) o
v .
0 ® .
£ 1004
£ ® e
= .
=} °
o oS
1071 - . e c2d
e dSharp
. Timeout
10t 102 103 104 10°

Figure 6.9: Partial Configurations: Runtime in Relation to d-DNNF' Size

Size in Kilobytes (Logarithmic)

https://doi.org/10.24355/dbbs.084-202009161329-0

104

6. Evaluation

Naive

Propagation

103 4

£ 4 S & .
s |4 » |l i b i
5 A A N ¢
o 2 i |
310 g A ¥ s
0 D
g A ’
A
o
()
A
2 101 4 3 : !
g v
b= |
c °
4
10° 4 4 ‘
0 20 40 60 80 100 120 0 20 40 60 80 100 120
Model Index Model Index
® sharpSAT A d4 miniC2D ® sharpSAT A d4 miniC2D
* countAntom ¢ dsharp —— Timeout countAntom ¢ dsharp —— Timeout
V cachet H c2d —— Memory Limit V cachet H c2d —— Memory Limit

Figure 6.10: Uniform Random Sampling: Direct Computation

successfully evaluated a model outside of those 24 models. sharpSAT and was the
fastest solver for 18 of those. Cachet was the fastest for the remaining six models.
For the adaptation that propagates other analyses results, at least one solver suc-
cessfully performed uniform random sampling for all but four models. The analyses
that compute core, dead, and false-optional features reached the memory limit for
Linux and Embtoolkit in the evaluation of each solver, like for commonality. In
addition, each solver hit the timeout for Automotive02 and Automotive(05. coun-
tAntom successfully evaluated 126 feature models and was the fastest solver for 87
feature models. sharpSAT is the only solver that evaluated a model that was not
evaluated by countAntom (Automotive0l). Overall, sharpSAT evaluated 60 feature
models. The other five solvers evaluated at most ten feature models. sharpSAT,
Cachet, and d4 were the fastest solvers for 36, 2, and 2 feature models, respectively.

Figure 6.11 shows the runtime for computing ten uniform random samples using
d-DNNFs. On the left, the runtimes with c2d and dSharp of our implementation
Listing 5.16 that performs uniform random sampling by repetitively calls partial
configuration queries on the created d-DNNF. On the right, the runtimes of the
uniform random sampling tool KUS is shown. For our implementation, at least one
of c2d and dSharp successfully evaluated 101 models. c2d was faster for 87 models
and dSharp for 14 models. KUS evaluated every model but Linux and Automotive05
within the timeout of 15 minutes and required 3.72 hours for the 129 models.

Figure 6.12 displays a comparison of the fastest solver and algorithm for the two di-
rect computations and the two computations using d-DNNFs. The fastest algorithm
exploiting d-DNNF's evaluated every model but Automotive05 and Linux. For an al-
gorithm that does not use d-DNNF's, no solver successfully evaluated Automotive(2
in addition to Automotive05, and Linux. In sum, the fastest computation using d-
DNNFs required 3.72 hours to evaluate the 129 models. The best performing direct
computations required 24.25 hours for the 128 models.

https://doi.org/10.24355/dbbs.084-202009161329-0

6.3. Results 105

Runtime in Seconds (Logarithmic)

Partial Configuration Queries KUS
() [
S AR G v
() []
L 0 e® %y o ° v VJ v v ‘ v A
2] ¢ i v Yy
10 vv 4 wa’ R A
° v vw Wv ¥'V
% v
107! 4 ® .0 |
' [X1} v
., & v
1004 . R v
: v
® v v
1071 4 . J
0 20 40 60 80 100 120 0 20 40 60 80 100 120
Model Index Model Index
® c2d ® dsharp —— Timeout v KUS —— Timeout

Runtime in Seconds (Logarithmic)

Figure 6.11: Uniform Random Sampling: d-DNNF

Direct vs d-DNNF

B e e an 2 anr a0 L o
(]
et
[]
... . ° %] R o
102 5 - ° . ® (fo® e o ® P
‘.. < e .: (1] °~. ’ ..0'. .:. ‘... .-..:‘ ‘.n ‘:\. °
° en °,° .'.' ‘~¢ o.
° °
[]
101 5 [
¢ °
[]
[J
1004 ° ‘
e® [J
) °.
10—1 .
[]
[]
0 20 40 60 80 100 120
Model Index
® Fastest Direct e Fastest d-DNNF —— Timeout

Figure 6.12: Uniform Random Sampling: Direct vs d-DNNF

https://doi.org/10.24355/dbbs.084-202009161329-0

106 6. Evaluation
103 5
)
€ 102 -
S]
£ °
(@)}
@] °
= . ()
w10t A (] .
2 E ®
S %e¢
8 o e %
£ °
v 10° E o ©®
£ 1] ® @ °
c
>
@
® c2d
1071 ; . e dsharp
] o —— Timeout
10! 102 103 104 10°

Size in Kilobytes (Logarithmic)

Figure 6.13: Uniform Random Sampling: Runtime in Relation to d-DNNF Size

Figure 6.13 shows the correlation between the size of the d-DNNF and the runtime
of uniform random sampling with our d-DNNF based implementation using partial
configuration queries for the compilers c2d and dSharp. The x-axis shows the size
of the file in kilobytes with a logarithmic scale. The y-axis shows the runtime in
seconds with a logarithmic scale. The red line indicates that the algorithm hit
the timeout for the model. Overall, the correlation is similar to the results for
commonality in Figure 6.6 and partial configurations in Figure 6.9. However, for
uniform random sampling, there are models for which c2d or dSharp created a d-
DNNF and the algorithm hit the timeout while running the queries. Overall, the
runtime of the algorithm is higher compared to the other algorithms for our d-DNNF
based algorithm. Table 6.7 gives an overview over the results.

Algorithm #Fastest | Fastest Solver (#Instances)
Naive 0 sharpSAT(18)
Propagation 0 countAntom(87)
d-DNNF Partial Configura- 3 c2d(87)

tion Queries

d-DNNF KUS 126 -

Table 6.7: Result Overview Experiment Four

https://doi.org/10.24355/dbbs.084-202009161329-0

6.3. Results 107

Approximate #SAT

— R =D —

o 102 -
€
s
©
(@]
(]
:l 101 n
(%}
©
C
@]
o
0 %
c 100 .
0}
£
IS
35
[~

10—1 4

0 20 40 60 80 100 120
Model Index
® approxmc —— Timeout —— Error

approxcount

Figure 6.14: Approximate #SAT Solvers

Experiment 5: Approximate #SAT Solvers

Figure 6.14 shows the runtimes of ApproxMC and ApproxCount for estimating the
number of valid configurations for the 131 feature models. Each point on the x-axis
corresponds to one of the models. The y-axis indicates the required runtime with
a logarithmic scale. The red line indicates that a solver hit the timeout. The blue
line indicates that a solver threw an exception.

ApproxMC computed the result for only two feature models with 96 and 76 features
respectively. For these models, the approximate #SAT solver required 1.67 and 1.48
seconds. The computed estimated numbers of satisfying assignments have an offset
of 0.32% and 4.55% from the results computed by the exact #SAT solvers. For
every other model, the solver reached the timeout of five minutes.

ApprozCount successfully evaluated 126 (96.18%) of the feature models. The solver
hit the timeout for Automotive0l, Automotive02, Automotive05, and Linux and
threw an error for the KConfig model uClinux-distribution. For the 126 success-
fully evaluated models the solver required 2.26 hours. For comparison, countAntom
evaluated 129 models within 39.47 seconds and, thus, was around 206 times faster.
Cachet, which is internally used by ApprozCount, required 1.92 hours to evaluate
125 models on its own. For every model with fewer than 1000 features, no esti-
mations are performed and, thus, the result is exact. There are 10 models with
fewer than 1000 features in the benchmark. For every model with more than 1000
features, the number of satisfying assignments estimated by ApproxCount is larger

https://doi.org/10.24355/dbbs.084-202009161329-0

108 6. Evaluation

than the exact result. For the model with the largest difference, the estimated result
is 5.72 * 102 times larger than the exact result. The median is a factor of 165.

6.4 Discussion

In this section, we discuss the research questions RQ)3-5 using the results from our
empirical evaluation. The section is separated in a part for each research question.
Each part is separated in the experiments described in Section 6.2 that are supposed
to partially answer the corresponding research question.

RQ3

In this section, we aim to answer RQ3: For a given #SAT application, is there an
algorithm that scales to industrial product lines?. In Chapter 3, we argued that each
of our considered applications is a use case of one of the following metrics: count-
ing the number of valid configurations, computing the commonalities of features,
counting the number of remaining valid configurations of a partial configuration, or
performing uniform random sampling. Thus, we evaluated at least one algorithm
for each of these metrics. Each sub-research question R(Q)3.1-3./ corresponds to one
of the metrics.

The results of experiment one show that seven #SAT solvers, namely Cachet,
SharpSAT, countAntom, c2d, minic2d, dSharp, and d4, evaluated more than 95% of
the feature models within five minutes per model. sharpSAT, countAntom, dSharp,
and d4 even computed a result for every but two models, namely Linux and Automo-
tive05. Thus, we answer RQ4.1: Does counting the number of valid configurations
scale to industrial product lines? positively, as there are multiple #SAT solvers that
compute a large majority of the product lines within seconds. This reaffirms the re-
sults of our previous work [STS20]. However, no solver scales to every feature model
as Linux and Automotive05 have not been successfully evaluated by any solver.

The results of experiment two show using a d-DNNF query for each feature enables
computing the commonalities of all features within 10 minutes for every model but
Automotive05 and Linux. Thus, we answer our research question R4.2:Does com-
puting commonalities scale to industrial product lines? positively. Our algorithm
that exploits the properties of a d-DNNF was the fastest algorithm in 126 of the 129
evaluated cases which required 1.50 hours for the 129 models with the best perform-
ing solver for each single model. The best performing direct computation required
7.81 hours for 128 models as no solver successfully evaluated Automotive02 in addi-
tion to Automotive05 and Linux. The direction computation re-using results from
core, dead, and false-optional analyses required 7.80 hours compared to the 15.88
hours required by the base algorithm. We conclude that performing those analyses
is worth the effort to reduce the number of required #SAT calls. The d-DNNF based
approach was 6.31 hours faster than the best performing direct computations while
evaluating one additional feature model. Thus, the d-DNNF is our best performing
algorithm for computing commonalities.

The results of experiment three show that there is an algorithm for every industrial
feature model but Linux and Automotive05 that computes the number of valid con-
figurations of 200 partial configurations within 10 minutes. Thus, we answer our

https://doi.org/10.24355/dbbs.084-202009161329-0

6.4. Discussion 109

research question RQ)4.3: Is there an algorithm that scales to computing the num-
ber of remaining valid configurations of a partial configuration? positively. Our
algorithm that exploits the properties of a d-DNNF was faster than the direct com-
putation for 126 of the 129 evaluated feature models, like for commonality. However,
the three models for which the direct computations of commonality was faster than
using d-DNNF's are different from the three models for which the direct computation
for partial configuration was faster. The d-DNNF approach required 34.61 minutes
and was 27.16 minutes fast than the direct computation. Thus, our d-DNNF-based
algorithm performed best for computing the number of remaining valid configura-
tions for partial configurations.

The results of experiment four show that there is an algorithm for every industrial
feature model but Linux and Automotive05 that computes ten uniform random
samples within 15 minutes. Thus, we answer our research question R(Q4.4: Is there
an algorithm that scales to performing uniform random sampling? positively. For
every feature model an algorithm that exploits d-DNNFs was fastest. The tool
KUS implemented by Sharma et al. [SGRM18| that exploits the properties of d-
DNNF's was the fastest algorithm for 126 of the 129 evaluated models. Our d-DNNF
implementation was the fastest for the remaining three feature models. Overall, KUS
performed best for uniform random sampling and a d-DNNF-based algorithm was
the fastest for every single model. In addition, d-DNNF are especially beneficial for
uniform random sampling compared to the other three analyses which matches the
expectation as uniform random sampling for ten configurations requires the highest
number of queries.

For every analysis considered in the empirical evaluation, namely computing the
number of valid configurations of a feature model, the commonality of features, the
number of remaining valid configurations of a partial configuration, we identified
an algorithm that computes a result with at least one solver. Thus, we answer our
research question RQ4: For a given #SAT application, is there an algorithm that
scales to industrial product lines? positively. For every analysis, a d-DNNF-based
algorithm outperformed the algorithms that do not employ knowledge compilation.
Therefore, we argue that using a d-DNNF engine for counting based analyses of
feature models is promising. After computing a d-DNNF once, it can also be used
for multiple different analyses which further reduces the required runtime compared
to our empirical evaluation. We computed the d-DNNFs for a feature model once
for every analysis. The results also indicated that there is a clear correlation be-
tween the size of the d-DNNF and the algorithms that traverse it. This matches
the expectation as every d-DNNF-based algorithm we evaluated has linear runtime
complexity to the number of d-DNNF nodes.

RQ4

In this section, we aim to answer RQ5: For a given algorithm, what is the fastest
off-the-shelf #SAT solver?.

The results of experiment one show that countAntom is the fastest off-the-shelf
#SAT solver for computing the number of valid configurations of a feature model
for each of the 116 CDL models. For the remaining models, countAntom required

https://doi.org/10.24355/dbbs.084-202009161329-0

110 6. Evaluation

more runtime than other solvers. sharpSAT was the fastest for six models, Cachet
for five, d4 for one, and CNF2EADT for one. While countAntom, sharpSAT, Cachet,
MiniC2D, C2D, dSharp, and d4 all evaluated more than 95% of the feature models,
PicoSAT, Relsat, SharpCDCL, CNF20BDD, and CNF2EADT evaluated less than 10%
of the models. While every d-DNNF compiler (d4, dSharp, and c2d) failed for
Automotive05 and Linux, C2D also failed for Automotive02 which contains by far
the most features (18,616). Of the other solvers that evaluated more than 95% of the
feature models, the longest time required to evaluate Automotive02 was 15 seconds.
C2D is also the only d-DNNF that does not decompose formulas dynamically but
creates a decomposition tree prior to the actual compilation. It is reasonable to
assume that creating the decomposition tree does not scale for feature models with
a high number of features. Another observation is that c2d creates the smallest
d-DNNFs regarding file size even though d4 create d-DNNFs that are not smooth
which should reduce the size of a d-DNNF'. Overall, countAntom is the fastest solver
for computing the number of valid configurations. d4 is the fastest d-DNNF compiler
and c2d creates the smallest d-DNNF's.

The results of experiment two show that c2d is faster than dSharp for the algo-
rithm exploiting d-DNNF's for 114 models. dSharp is faster for 15 models. The
results indicate that smaller d-DNNFs reduce the required time for the commonal-
ity queries as c2d creates smaller d-DNNFs than dSharp. For the base algorithm
that uses a direct computation, countAntom is computed the commonalities of 108
CDL models. No other solver successfully evaluated a single CDL model with that
algorithm. Overall, no solver evaluated a model that was not successfully evaluated
by countAntom. This is similar for the adaptation which computes core, dead, and
false-optional features to reduce the number of required #SAT calls. With that algo-
rithm, countAntom evaluated every model but Automotive02, Automotive05, Linux,
and Embtoolkit. The solver that successfully evaluated the second most models is
sharpSAT which evaluated 24 models.

The results of experiment three are similar to the results for experiment two. c2d is
faster for a majority of the models for the d-DNNF based algorithm. countAntom
is the fastest solver for the direct computation for every CDL model, and, thus, for
a majority of the models.

The results of experiment four for our algorithm using d-DNNFs are similar to the
results for experiment three and experiment four. C2D is faster than dSharp for
a majority of the models. For the base algorithm, sharpSAT evaluates the highest
number of feature models (24). dSharp and Cachet evaluated eleven feature models.
countAntom evaluated ten. For the adaptation Listing 5.6, countAntom evaluated
the highest number of feature models 126 followed by sharpSAT which evaluated 60
feature models including the model Automotive0l that was not successfully eval-
uated by countAntom. KUS is the fastest algorithm for uniform random sampling
that we evaluated. Internally, it uses d4 to compile the CNF to d-DNNF but the
difference in the performance results from the time required to sample.

Overall, there is no solver that is superior to the others for all algorithms and
models. However, c2d overall performs better than dsharp for all three d-DNNF
based algorithms. dSharp is only faster for a few models for which both solvers
required a short runtime. This makes sense as in this case the time required for

https://doi.org/10.24355/dbbs.084-202009161329-0

6.5. Threats to Validity 111

the translation to d-DNNF takes a larger share for the overall runtime. For the
translation of smaller models, c2d is slower. For the algorithms based on direct
computations, countAntom performs better overall for the majority of algorithms.
However, for each analysis there are solvers which are faster for some models. For
naive uniform random sampling, sharpSAT and cachet are even faster overall. The
results indicate that sharpSAT and cachet are faster for queries with a short runtime
for all solvers. Our naive algorithm for uniform random sampling invokes many
#SAT calls with formulas that contain a high number of unit clauses which should
be easier for the solvers. We assume that is the reason for the better performance
for sharpSAT and cachet for that algorithm.

RQ5

In this section, we aim to answer RQ6: How fast are approximate #SAT solvers for
analyzing product lines?. The results of experiment five show that both approximate
#SAT solvers ApproxCount and ApproxMC are slower than the best performing ex-
act #SAT solvers. ApproxMC only computed the number of valid configurations for
two feature models. ApproxCount evaluated 125 models within the timeout of five
minutes for each model. However, in sum ApproxCount required 1.92 hours for the
125 models while countAntom evaluated 129 in 39.47 seconds. There is no benefit
in approximating results if the exact solvers are faster. However, we only tested the
approximate #SAT solvers with one parameterization each. We assume that effec-
tive parameters result in faster runtimes but identifying effective parameterizations
is beyond the scope of this thesis.

6.5 Threats to Validity

In this section, we discuss potential threats to the validity of our empirical evaluation.
The threats are separated in internal and external threats.

Internal Validity

Translation to Feature Model: The translation of a configurable system to a
feature model which we neglected in our thesis is a potential threat to the valid-
ity. An incorrect feature model may lead to misleading results for the applications.
The majority of the models (CDL, KConfig, and Automotive(2) was introduced by
Kniippel et al. [KTM*17]. The authors argue that their translations possibly re-
move some cross-tree constraints leading to deviations to the original configurable
system. We translated product lines from our industry partner in a proprietary for-
mat to create Automotive03-05 in our previous work [STS20]. The translation may
also contain some errors but was reviewed several times by our industry partner.
Overall, it is reasonable to assume that the evaluated models contain a few errors
and simplifications compared to the original systems. However, we expect that the
results for the scalability of our algorithms and the considered off-the-shelf #SAT
solvers are still representative for the original systems. We considered a large va-
riety of models overall and multiple for each domain. Thus, we assume that small
errors and simplifications for single models do not result in significant changes in
the scalability of the analyses.

https://doi.org/10.24355/dbbs.084-202009161329-0

112 6. Evaluation

Translation to CNF: In Chapter 2, we discuss that there are translations to
CNF that do not preserve the number of solutions which causes incorrect results
for our analyses. However, the translation provided by FeatureIDE preserves the
number of solutions [MTS*17]. In addition, the performance of #SAT solvers is
dependent on the translation of the propositional formula to CNF [OGB™19]. In
our empirical evaluation, we only considered the translation to CNF used by Fea-
tureIDE [MTS™17]. A different translation technique may change the performance
of the evaluated #SAT calls. However, we expect that the different algorithms profit
similarly for a translation that reduces the required runtime for #SAT solvers.

Computational Bias: In our empirical evaluation, we evaluated each data point
only once due to the limited time and the variety of computationally expensive
experiments. Thus, for a single solver, algorithm, and feature model we cannot make
a statement about the internal error rate. However, we evaluated each combination
of solvers and algorithm for 131 feature models. Additionally, a vast majority of
these models can be separated in groups of models that are similar regarding their
structure and size. We argue that using the results for the entire set of models allows
representative conclusions about the performance of algorithms and solvers despite
we performed the experiments only once.

JVM Warm-Up: For our empirical evaluation, we did not consider a warm-up of
the JVM which potentially has an impact on the runtime of the algorithms. We
decided to not include a warm-up due to the limited time. Otherwise, it would have
been necessary to reduce the number of evaluated algorithms, solvers, or feature
models to finish all experiments within the given time. After the evaluation, we
partially repeated some of the experiments with a warm-up. None of the results
indicated a relevant deviation of the measured runtimes caused by the warm-up.

Solver Invocation: We evaluated each solver with default parameterization if
possible (e.g., PicoSAT requires two additional parameters to count assignments in-
stead of proving satisfiability). Different parameters may improve the runtime of
some solvers and, thus, shift the results in favor of other solvers. However, config-
uring the solver invocations introduces an even higher demand for computational
resources and is out of scope of this thesis.

Variable Ordering: For each feature model, the ordering of the variables in the
DIMACS was equal for every experiment in our evaluation. It is possible that
other variable orderings change the required runtime. However, we performed
some measurements with different variable orderings that indicated there is no
significant difference in performance. It is reasonable to assume, that the small
differences are only caused by computation bias. For a strong conclusion addi-
tional measurements are required though. We expect no significant difference as
the #SAT solvers and d-DNNF compilers internally use heuristics to order vari-
ables [Thu06, SBBT04, SBK05a, BJP00, BSB15, MMBH10, LM17, Dar02].

External Validity

Comparison to Other Algorithms: In our empirical evaluation, we mainly com-
pared own algorithms and adaptations we implemented of algorithms considered in

https://doi.org/10.24355/dbbs.084-202009161329-0

6.6. Summary 113

the literature. An important criterion for the quality of the algorithms is the com-
parison to other algorithms. The expressiveness of our results is weakened by the
fact that we mainly evaluated own implementations even though we implemented
them with the best intentions. We argue that our conclusions are still reasonable:
(1) we identified at least one algorithm that scales to every analysis we considered,
(2) we evaluated the solvers on a variety of algorithms and feature models, and (3)
the d-DNNF compilers created d-DNNFs with a reasonable size for every feature
model that could be evaluated by at least one #SAT solver and allows efficient
queries for every considered algorithm.

Homogeneity of Models: In our empirical evaluation, the majority of feature
models are based on CDL sub-systems. These are similar in size regarding number
of features and number of constraints. Also, the structure of the CDL models is
similar indicated by metrics such as ratio of features that appear in constraints,
the average number of features that appear in a constraint, the average number of
children of a feature, the tree depth, and the clause density. Thus, it is more difficult
to conclude about other feature models. However, besides the CDL models we
also evaluated models from multiple different domains, including operating system,
automotive, and financial services. Therefore, we argue that our evaluation still
allows conclusions for other feature models.

6.6 Summary

In this chapter, we described the evaluation of ten algorithms with twelve exact
#SAT solvers on 131 feature models. The algorithms are used to compute results
for four different analyses, namely the number of valid configurations of a feature
model (one algorithm), the commonality of features (three algorithms), the number
of remaining valid configurations for a partial configuration (two algorithms), and
uniform random sampling (four algorithms). The results are a strong indicator that
running analyses that compute core, dead, and false-optional to reduce the number
of required #SAT calls is worth the effort. For every analysis, an algorithm based
on the exploitation of d-DNNF's required the least runtime to analyze the models.
We identified at least one algorithm that computes a result for every analysis and
each feature model, except Linux and Automotive05. For both models, every solver
and analysis failed. Nevertheless, we conclude that the applications we considered
in Chapter 3 are applicable for industrial feature models.

Some solvers did not scale to evaluating industrial feature model, namely PicoSAT,
Relsat, SharpCDCL, CNF20BDD, and CNF2EADT. For every algorithm based on direct
computation except the base algorithm of uniform random sampling, countAntom
required the least runtime. For the base algorithm of uniform random sampling,
sharpSAT had the best performance. c2d created the smallest d-DNNF files and
performed best for each d-DNNF-based analysis implemented by us. Both evaluated
approximated #SAT solvers required significantly more time to evaluate the feature
models than the fastest exact #SAT solvers.

https://doi.org/10.24355/dbbs.084-202009161329-0

114 6. Evaluation

https://doi.org/10.24355/dbbs.084-202009161329-0

7. Related Work

In this chapter, we present work that is related to ours. First, we describe other
surveys for #SAT applications. Second, we discuss works that proposed solutions
for the applications we considered in this thesis. Third, we discuss the usage of
knowledge compilation for the analysis of product lines. Fourth, we present alterna-
tives to propositional logic for counting the number valid configurations. Fifth, we
discuss the usage of d-DNNF's in other domains than feature-model analysis.

Surveys of #SAT Applications for Product Lines

Heradio et al. [HFACA13] performed a survey on existing work for counting the
number of valid configurations and presented possible applications for estimating the
benefits of product lines. The considered applications are either based on counting
the number of valid configurations or the commonality of features and approximate
the economic benefit of a product-line approach. Fernandez-Amoros et al. [FAGS09]
also consider extracting information from product lines to estimate the benefits of
a product line approach. Hereby, the authors consider the number of valid con-
figurations, the commonality of features, and the homogeneity of a feature model.
The authors also propose algorithms that are independent of off-the-shelf solvers.
However, they did not implement a prototype that could be used for a comparison.
In contrast to our work, the authors of both works [HFACA 13, FAGS09] do not con-
sider any application that does not estimate the economic benefits of a product-line
approach vs standalone products (e.g., detecting design errors). Also, they do not
provide scalable algorithms for feature models with cross-tree constraints.

Kiibler et al. [KZK10], also provide a short survey of two applications of #SAT on
the analysis of configurable systems. The authors consider rating errors of feature
model specializations and measuring the quality of documentation via the number
of valid configurations. They argue that a better product documentation leads to
fewer valid configurations based on their observations with product lines of Mercedes.
Overall, all surveys we are aware of discuss much fewer applications than our work
and are limited in their scope (e.g., only consider economic benefit).

https://doi.org/10.24355/dbbs.084-202009161329-0

116 7. Related Work

Algorithms for the Considered Applications

In this section, we discuss other works that provided solutions for the algorithms
considered in this thesis, namely computing the number of valid configurations,
commonality of features, remaining valid configurations of a partial configuration,
or performing uniform random sampling.

Kiibler et al. [KZK10] compute the number of valid configurations using #SAT for
product lines from the automotive domain. They evaluated Cachet, c2d, and an
own model counter which is not publicly available. Their own model counter is
not based on CNFs and, thus, does not require a prior translation to CNF. The
authors only evaluated the solvers for the task of computing the number of valid
configurations. Additionally, their evaluation is limited to few feature models from
the automotive domain that are not publicly available.

Heradio et al. [HGFACC11] propose an algorithm to compute the number of valid
configurations and commonalities of features. However, they only consider feature
models without cross-tree constraints. Fernandez-Amoros et al. [FAHCC14] also
provide an own tool treeCount that is used to compute the number of valid config-
urations and commonalities. The tool also considers feature models with cross-tree
constraints. The idea is to store all distinct partial assignments that satisfy the
cross-tree constraints. The feature tree is traversed once for each partial assignment
computing the resulting number of valid configurations with respect to the partial
assignment and the feature tree. This was also discussed in Section 4.2. They eval-
uated their tool on the 30 largest models in feature model repository of SPLOT !
whose largest model had 326 features at this time. Furthermore, they generated
models with up-to 800 features using the SPLOT’s generator tool. However, these
models only contained up to two-digit number of constraints. Their empirical eval-
uation showed that their approach performs better on these models with very few
cross-tree constraints than Cachet. Our research for publicly available industrial
models indicates that these typically contain a large number of constraints (up to
11.632 in our evaluation). In our work, we evaluated three different algorithms that
use off-the-shelf #SAT solvers for computing the commonalities on these industrial
models.

We are not aware of any work that specifically computes the number of remaining
valid configurations of a partial configuration. However, performing uniform random
sampling via repeatedly computing the number of remaining valid configurations of
the current partial configuration is considered in the literature [OGB*19].

We discussed the algorithmic details of the following three approaches in Section 4.4.
Oh et al. [OGB™19] proposed an algorithm for uniform random sampling using
the DPLL-based #SAT solver sharpSAT. We also evaluated sharpSAT on uniform
random sampling. For their empirical evaluation, they also considered KConfig
models. In previous work, Oh et al. [OBMS17] use BDDs for uniform random
sampling. However, the authors only evaluate the algorithm on feature models
with fewer than 100 features. In following work, they argue that the approach
using BDDs does not scale to KConfig systems as BusyBox [OGB*19]. Munoz

Thttp://www.splot-research.org/

https://doi.org/10.24355/dbbs.084-202009161329-0

117

et al. [MOP™19] also performed uniform random sampling for feature models that
contain numerical features. Sharma et al. [SGRM18| use d-DNNFs to compute
uniform random samples, as we do in our work. However, the used algorithm vastly
differs as the authors just take a number of desired samples as input and compute
all of them within a single d-DNNF traversal. We also evaluated their approach and
compared it to three other algorithms on our benchmark. Their tool KUS is the best
performing algorithm for performing uniform random sampling in our evaluation.

Knowledge Compilation in Feature Model Analysis

We only consider target languages of knowledge compilation that allow polynomial
time queries for typical feature model analyses, such as the consistency of a feature
model. To the best of our knowledge, d-DNNFs have only been considered for uni-
form random sampling in the scope of feature-model analysis [SGRM18]. Voronov
et al. [VAEH] used the similar format smooth decomposable negation normal form
(DNNF) which is a super-set of d-DNNF that is not necessarily deterministic. The
authors used the properties smooth and decomposable to enumerate valid configu-
rations. They acknowledged that without the deterministic property it is not pos-
sible to compute the number of valid configurations in polynomial time. Kiibler
et al. [KZK10] evaluated the d-DNNF compiler c2d for counting the number of
valid configurations. However, they solely used it as a regular #SAT solver and did
not employ knowledge compilation.

Binary decision diagrams (BDDs) are widely used for the analysis of feature mod-
els [AHCT12, HPMFA 16, MWCCO08, PLP11]. A variety of satisfiability-based anal-
yses have been considered for BDDs such as checking whether a feature model is
void [CW07], finding core and dead features [HPMFA16], finding conditionally core
and dead features [HPMFA™16], interactive configuration support [MWCCO08], and
computing the differences between two versions of a feature model [AHC™12]. Fur-
thermore, BDDs have been used for #SAT applications as computing the number of
valid configurations [BSTCO07], and uniform random sampling [OBMS17]. However,
BDDs grow exponentially in the worst case and multiple authors reported scalability
issues regarding the size of BDDs with larger feature models [BSRC10, OBMS17,
OGB™19, STS20]. The size of a BDD is heavily dependent on variable ordering
and effective ordering heuristics can vastly decrease the size [MWCCO08, BSRC10,
HFACA13]. Even though BDDs are applicable for the analyses considered in this
thesis, there is currently no tool that computes BDDs for the medium or large sized
models in our benchmark.

Non-Propositional Model Counting

SAT is not the only constraint satisfaction problem (CSP) considered for the analysis
of product lines [BSRC10, BTRC05, SSK20, MOP*19]. Benavides et al. [BTRC05]
used constraint programming to compute the number of valid configurations and
the commonality of features. Also, they consider non-functional attributes such as a
price of a feature. These can be used for additional constraints (e.g., the price of all
features included in the configuration may not be higher than 50). This may further
limit the set of valid configurations. However, the authors only consider feature

https://doi.org/10.24355/dbbs.084-202009161329-0

118 7. Related Work

models without cross-tree constraints. Their empirical evaluation only considers
very small feature models (i.e., at most 23 features).

Munoz et al. [MOP*19] also considered feature models with non-functional numeri-
cal features. They compared constraint programming, satisfiability modulo theories
(SMT), and #SAT for counting the number of valid configurations and uniform
random sampling. To encode the numerical features for #SAT, the authors used
bit-blasting which translates an arithmetic formula into a propositional formula. The
resulting formula can then be used by a SAT or #SAT solver. The authors com-
pared sharpSAT [Thu06] (#SAT), z3 [DMBO08] (SMT), and Clafer [JSRM 18] which
internally uses the constraint programming library Choco [JRL0S]. The empirical
results show that sharpSAT with bit-blasting vastly outperformed z3 and Clafer for
model counting and uniform random sampling [MOP*19]. This is interesting for
potential future work that expands the algorithms we considered for non-functional
attributes such as the price for feature.

d-DNNF Exploitation

In this section, we discuss usages of d-DNNFs in domains other than configurable
systems. As we discuss d-DNNF compilers in Section 6.2, we exclude them here.
The three tools c2d [Dar02], dSharp [MMBH10], and d4 [LM17] take a propositional
formula in CNF and translate it to d-DNNF.

Darwiche [Dar01b] proposed several algorithms for d-DNNFs. One of them is count-
ing the number of models under assumptions which exploits the same properties as
our algorithm for computing the number of remaining valid configurations for a
partial configurations. Furthermore, they propose an algorithm that allows count-
ing the number of satisfying assignments when changing a single literal regarding
the current assumption without requiring a new traversal. This requires two initial
traversals for each assumption set to create partial derivatives. These can be used
to change the value of a single variable without re-computing the entire computa-
tion graph. We argue that this technique can be used to compute commonality of
features. However, the authors provide no implementation or a technical description
on how to implement their idea. To the best of our knowledge, their idea has not
been empirically evaluated yet. Nevertheless, evaluating their idea for computing
the commonality of features is interesting for potential future work.

https://doi.org/10.24355/dbbs.084-202009161329-0

8. Thesis Summary

Applying #SAT for the analysis of feature models enables many possible applica-
tions. In this thesis, we presented a survey which consists of applications already
considered literature and our own proposals. Each application is dependent on either
computing the number of valid configurations (1) of a feature model, (2) that contain
a specific feature (i.e., the commonality of that feature), or (3) remaining configura-
tions for a partial configuration (including uniform random sampling). Overall, we
present 20 applications to motivate the usage of #SAT on feature models.

We presented algorithms and optimizations for each of the analyses listed above
and uniform random sampling. The considered ideas consist of suggestions in the
literature and new proposals that aim to reduce the number of required #SAT
calls, accelerate #SAT calls, or both. We also propose algorithms that exploit the
properties of a d-DNNF for each analysis.

For our empirical evaluation, we implemented and analyzed one algorithm for com-
puting the number of valid configurations for a feature model, three algorithms for
computing the commonalities of features, two algorithms for computing the number
of remaining configurations of a partial configuration. For uniform random sam-
pling, we implemented and analyzed three algorithms and additionally analyzed the
tool KUS from Sharma et al. [SGRM18]. For the latter three analyses, we provided
at least one algorithm that is based on exploiting the properties of a d-DNNF. The
results show that the d-DNNF based computation were faster than the other algo-
rithms for every analysis. Thus, we conclude that d-DNNF engines are a promising
tool for counting based analyses of feature models. The results also indicated that
computing core, dead, and false-optional features to reduce the number of required
#SAT calls pays off. For every analysis, at least one algorithm and solver was able
to evaluate the vast majority of models. Thus, we conclude that applications of
#SAT solvers scale to industrial product lines. However, no solvers scales to two
models including Linux.

We evaluated the analyses with twelve exact #SAT solvers. Five of those, namely
PicoSAT, Relsat, SharpCDCL, CNF20BDD, and CNF2EADT, could not even compute

https://doi.org/10.24355/dbbs.084-202009161329-0

120 8. Thesis Summary

the number of valid configurations for 10% of the feature models which we consider
the threshold problem for the other analyses. Overall, countAntom requires the
least time for the analyses that are not based on d-DNNF. However, there are
analyses and feature models for which other solvers are faster. For the d-DNNF
based analyses, we only considered solvers that produce smooth d-DNNFs, namely
c2d and dSharp. c2d is not necessarily faster for creating a d-DNNF but creates
smaller samples. Overall, the d-DNNF based algorithms are faster with c2d. This
is a strong indicator that the additional effort to create smaller d-DNNF's pays off.

For some applications, estimating the number of valid configurations may be suffi-
cient. Furthermore, the exact #SAT solvers do not scale to every feature model.
Thus, we evaluated 2 approximate #SAT solvers, namely ApproxMC and Approx-
Count, in addition to the 12 exact solvers. However, both solvers required sig-
nificantly more time to analyze the feature models compared to the fastest exact
solvers. We did not find benefits in estimating the number of valid configurations
with both approximate #SAT solvers. However, it is possible that finding effective
parameterizations for the solvers may reduce the required runtimes.

Overall, we conclude that (1) applying #SAT to feature models allows a variety
of applications and, thus, is beneficial, (2) there is an algorithm for each #SAT
dependent applications we considered that scales to a vast majority of industrial
feature models, (3) a d-DNNF engine is a promising tool for counting based analyses,
and (4) the performance of the algorithms is heavily dependent on the selection of
the solver.

https://doi.org/10.24355/dbbs.084-202009161329-0

9. Future Work

In this chapter, we discuss open problems and potential future work for applying
#SAT to feature models.

Further Optimize Exploitation of d-DNNF's

We presented algorithms that exploit the properties of a d-DNNF to compute anal-
yses dependent on counting valid configurations in Chapter 4. These can be used to
compute results for every application considered in this thesis. In addition, we show
how to extract other information about the feature model from a d-DNNF (e.g.,
core/dead features and atomic sets). We argue that further research on d-DNNF for
the analysis of feature models may be beneficial. First, the algorithms we present
can still be optimized (e.g., skip unnecessary expensive arithmetic operations). Sec-
ond, we expect that there are d-DNNF queries to allow even more analyses (e.g.,
detecting false-optional features). Third, the d-DNNF compilers translate the CNF
without using any domain knowledge about the feature model. It may be beneficial
to consider a translation that takes the feature into account.

Target Languages for Knowledge Compilation

Several target languages have been considered for the analysis of feature models. The
most prevalent target language are binary decision diagrams [AHC™12, HPMFA™16,
MWCC08, PLP11, MBC09, BSTC07, ACLF13]. Voronov et al. [VAE11] exploit the
properties of a decomposable negation normal form to enumerate valid configura-
tions. Sharma et al. [SGRM18] use d-DNNF's for uniform random sampling. We also
propose several algorithms dependent on d-DNNFs and showed that those perform
well for the analysis of feature models. Darwiche et al. [DM02] discuss a variety of
target languages with different properties. It is reasonable to assume that there are
target languages that yield beneficial properties for the analysis of feature models
that have not been considered yet. Identifying other promising target languages and
examining their efficiency and capabilities on product lines may be beneficial.

https://doi.org/10.24355/dbbs.084-202009161329-0

122 9. Future Work

Hard Feature Models

During our entire empirical evaluation, no #SAT solver, neither exact nor approxi-
mate, was able to evaluate the two feature models Linux and Automotive05. Thus,
the applications considered in this thesis are not applicable to these models which
motivates to identify ideas that are able to approximately evaluate hard models. We
consider the following approaches to estimate a result for the models as future work:
First, one may simplify the feature model by removing constraints until a solver is
able to evaluate the adapted model. Second, we can compute the number of valid
configurations induced by the feature model without cross-tree constraints which is
possible with linear time complexity in the number of features [HGFACCI11]. Then,
domain knowledge (e.g., insights from earlier model versions) can be used for an
educated guess on the limitations imposed by the cross-tree constraints to estimate
a result. Third, the results can be estimated using approximate #SAT solvers pa-
rameterized specifically for the two models.

Parameterizations for Approximate #SAT Solvers

In our empirical evaluation, we considered two approximate #SAT solvers, namely
ApproxMC and ApproxCount. Both solvers performed significantly worse than the
best performing exact #SAT solvers. However, we only considered a single pa-
rameterization for the solvers for the entire evaluation. Adjusting parameters for
approximate #SAT solvers may reduce their runtime and even enable the analysis
of hard feature models, like Linux and Automotive05.

Required Accuracy of Approximated Results

The required accuracy of #SAT results differs for different applications. For exam-
ple, detecting a faulty constraint that reduces the number of valid configurations by
multiple orders of magnitude is easily possible with a deviation of 50% for the com-
puted number of valid configurations. In contrast, for uniform random sampling, a
deviation of 1% may cause not uniformly distributed or even faulty samples for the
proposed algorithms. The examples show that the required accuracy vastly differs
for different applications. To argue about the benefits of approximated results it is
also important to examine the required accuracy for applications.

https://doi.org/10.24355/dbbs.084-202009161329-0

Bibliography

[ACLF13]

[AGHO05]

[AHC*12]

[AHKT16]

[AMSO01]

[AMS+18]

[Anal6]

[AT17]

[Bat05)

Mathieu Acher, Philippe Collet, Philippe Lahire, and Robert B
France. Familiar: A domain-specific language for large scale man-
agement of feature models. Science of Computer Programming,
78(6):657*681, 2013. (cited on Page 121)

Ken Arnold, James Gosling, and David Holmes. The Java program-
ming language. Addison Wesley Professional, 2005. (cited on Page 57)

Mathieu Acher, Patrick Heymans, Philippe Collet, Clément Quin-
ton, Philippe Lahire, and Philippe Merle. Feature model differences.
In International Conference on Advanced Information Systems Engi-
neering, pages 629-645. Springer, 2012. (cited on Page 22, 117, and 121)

Mustafa Al-Hajjaji, Sebastian Krieter, Thomas Thiim, Malte Lochau,
and Gunter Saake. Incling: efficient product-line testing using incre-
mental pairwise sampling. ACM SIGPLAN Notices, 52(3):144-155,
2016. (cited on Page 73)

F Aloul, I Markov, and K Sakallah. Mince: A static global variable-
ordering for sat and bdd. In International Workshop on Logic and
Synthesis, pages 1167-1172, 2001. (cited on Page 38)

lago Abal, Jean Melo, Stefan Stanciulescu, Claus Brabrand, Marcio
Ribeiro, and Andrzej Wasowski. Variability Bugs in Highly Config-
urable Systems: A Qualitative Analysis. 26(3):10:1-10:34, January
2018. (cited on Page 53)

Sofia Ananieva. FEzplaining Defects and Identifying Dependencies in
Interrelated Feature Models. PhD thesis, Institute of Software, 2016.
(cited on Page 15 and 20)

Dimitris Achlioptas and Panos Theodoropoulos. Probabilistic model
counting with short xors. In International Conference on Theory
and Applications of Satisfiability Testing, pages 3—19. Springer, 2017.

(cited on Page 3)

Don Batory. Feature models, grammars, and propositional formulas.
In International Conference on Software Product Lines, pages 7—20.
Springer, 2005. (cited on Page 1, 17, and 135)

https://doi.org/10.24355/dbbs.084-202009161329-0

124

Bibliography

[BBMYO04]

[BDPO3]

[BG19]

[BHvMO9]

[Bie08]

[BJP0O]

[BSB15]

[BSRC10]

[BSTCO7]

[BTRCO5]

[BTS19]

Barry Boehm, A Winsor Brown, Ray Madachy, and Ye Yang. A
software product line life cycle cost estimation model. In Proceedings.
2004 International Symposium on Empirical Software Engineering,

2004. ISESE’04., pages 156-164. IEEE, 2004. (cited on Page 29)

Fahiem Bacchus, Shannon Dalmao, and Toniann Pitassi. Algorithms
and complexity results for# sat and bayesian inference. In 44th An-
nual IEEE Symposium on Foundations of Computer Science, 2003.
Proceedings., pages 340-351. IEEE, 2003. (cited on Page 11)

Michele Boreale and Daniele Gorla. Approximate model counting,
sparse xor constraints and minimum distance. In The Art of Modelling
Computational Systems: A Journey from Logic and Concurrency to
Security and Privacy, pages 363-378. Springer, 2019. (cited on Page 3,
13, and 95)

Armin Biere, Marijn Heule, and Hans van Maaren. Handbook of sat-
1sfiability, volume 185. TOS press, 2009. (cited on Page 5, 11, 12, and 13)

Armin Biere. Picosat essentials. Journal on Satisfiability, Boolean
Modeling and Computation, 4:75-97, 2008. (cited on Page 3, 11, 12, 36,
37, 92, and 136)

Roberto J Bayardo Jr and Joseph Daniel Pehoushek. Counting models
using connected components. In AAAI/IAAI pages 157-162, 2000.
(cited on Page 1, 3, 11, 12, 36, 37, 92, 93, 112, 135, and 136)

Jan Burchard, Tobias Schubert, and Bernd Becker. Laissez-faire
caching for parallel# sat solving. In International Conference on The-
ory and Applications of Satisfiability Testing, pages 46-61. Springer,
2015. (cited on Page 1, 3, 11, 12, 13, 37, 92, 93, 112, 135, and 136)

David Benavides, Sergio Segura, and Antonio Ruiz-Cortés. Auto-
mated analysis of feature models 20 years later: A literature review.
Information Systems, 35(6):615-636, 2010. (cited on Page 1, 2, 5, 13,
14, 15, 16, 17, 20, 23, 31, 117, and 135)

David Benavides, Sergio Segura, Pablo Trinidad, and Antonio Ruiz
Cortés. Fama: Tooling a framework for the automated analysis of
feature models. VaMoS, 2007:01, 2007. (cited on Page 26, 117, and 121)

David Benavides, Pablo Trinidad, and Antonio Ruiz-Cortés. Auto-
mated reasoning on feature models. In International Conference on
Advanced Information Systems Engineering, pages 491-503. Springer,
2005. (cited on Page 1, 21, 117, and 135)

Paul Maximilian Bittner, Thomas Thiim, and Ina Schaefer. Sat en-
codings of the at-most-k constraint. In International Conference on

https://doi.org/10.24355/dbbs.084-202009161329-0

Bibliography

125

[CE11]

[CFM*15]

[ChvT79]

[CKO05a]

[CKO5b]

[CMCO5]

[CMV13]

[CMV16]

[Coh03]

[CW07]

Software Engineering and Formal Methods, pages 127-144. Springer,
2019. (cited on Page 39)

Sheng Chen and Martin Erwig. Optimizing the product derivation
process. In 2011 15th International Software Product Line Confer-
ence, pages 35—44. IEEE, 2011. (cited on Page 26 and 31)

Supratik Chakraborty, Daniel J Fremont, Kuldeep S Meel, Sanjit A
Seshia, and Moshe Y Vardi. On parallel scalable uniform sat witness
generation. In International Conference on Tools and Algorithms for
the Construction and Analysis of Systems, pages 304-319. Springer,
2015. (cited on Page 31)

Vasek Chvatal. A greedy heuristic for the set-covering problem. Math-
ematics of operations research, 4(3):233-235, 1979. (cited on Page 73)

Donald Chai and Andreas Kuehlmann. A fast pseudo-boolean con-
straint solver. IEEFE Transactions on Computer-Aided Design of In-
tegrated Clircuits and Systems, 24(3):305-317, 2005. (cited on Page 51)

Krzysztof Czarnecki and Chang Hwan Peter Kim. Cardinality-based
feature modeling and constraints: A progress report. In International
Workshop on Software Factories, pages 16-20. ACM San Diego, Cal-
ifornia, USA, 2005. (cited on Page 23)

Paul C Clements, John D McGregor, and Sholom G Cohen. The struc-
tured intuitive model for product line economics (simple). Techni-
cal report, CARNEGIE-MELLON UNIV PITTSBURGH PA SOFT-
WARE ENGINEERING INST, 2005. (cited on Page 2, 24, 25, 29, and 30)

Supratik Chakraborty, Kuldeep S Meel, and Moshe Y Vardi. A scal-
able approximate model counter. In International Conference on
Principles and Practice of Constraint Programming, pages 200-216.
Springer, 2013. (cited on Page 95)

Supratik Chakraborty, Kuldeep S Meel, and Moshe Y Vardi. Algorith-
mic improvements in approximate counting for probabilistic inference:
From linear to logarithmic sat calls. Technical report, 2016. (cited
on Page 95)

Sholom Cohen. Predicting when product line investment pays.
Technical report, CARNEGIE-MELLON UNIV PITTSBURGH PA
SOFTWARE ENGINEERING INST, 2003. (cited on Page 29)

Krzysztof Czarnecki and Andrzej Wasowski. Feature diagrams and
logics: There and back again. In 11th International Software Product
Line Conference (SPLC 2007), pages 23-34. IEEE, 2007. (cited on
Page 1, 23, 117, and 135)

https://doi.org/10.24355/dbbs.084-202009161329-0

126

Bibliography

[Dar(1a]

[Dar01b]

[Dar(2]

[Dar04]

[DDMO6]

[DKO5]

[DMO02]

[DMBOS]

[FAGS09]

[FAHCC14]

[feal9]
[GAT*16]

Adnan Darwiche. Decomposable negation normal form. Journal of
the ACM (JACM), 48(4):608-647, 2001. (cited on Page 8 and 35)

Adnan Darwiche. On the tractable counting of theory models and
its application to truth maintenance and belief revision. Journal of
Applied Non-Classical Logics, 11(1-2):11-34, 2001. (cited on Page 118)

Adnan Darwiche. A compiler for deterministic, decomposable nega-
tion normal form. In AAAI/IAAI pages 627634, 2002. (cited on
Page 8,9, 11, 36, 92, 93, 112, and 118)

Adnan Darwiche. New advances in compiling cnf to decomposable
negation normal form. In Proceedings of the 16th European Conference
on Artificial Intelligence, pages 318-322. Citeseer, 2004. (cited on
Page 1, 2, 12, 37, 64, 92, 93, 135, and 136)

Bruno Dutertre and Leonardo De Moura. A fast linear-arithmetic
solver for dpll (t). In International Conference on Computer Aided
Verification, pages 81-94. Springer, 2006. (cited on Page 7)

Vijay Durairaj and Priyank Kalla. Variable ordering for efficient sat
search by analyzing constraint-variable dependencies. In International
Conference on Theory and Applications of Satisfiability Testing, pages
415-422. Springer, 2005. (cited on Page 38)

Adnan Darwiche and Pierre Marquis. A knowledge compilation map.
Journal of Artificial Intelligence Research, 17:229-264, 2002. (cited
on Page 5,6, 7,8, 9,10, 11, 12, 35, and 121)

Leonardo De Moura and Nikolaj Bjgrner. Z3: An efficient smt solver.
In International conference on Tools and Algorithms for the Construc-
tion and Analysis of Systems, pages 337-340. Springer, 2008. (cited
on Page 118)

David Fernandez-Amoros, Ruben Heradio Gil, and Jose Cerrada So-
molinos. Inferring information from feature diagrams to product line
economic models. In Proceedings of the 13th International Software
Product Line Conference, pages 41-50. Carnegie Mellon University,
2009. (cited on Page 2 and 115)

David Fernandez-Amoros, Ruben Heradio, Jose A Cerrada, and Car-
los Cerrada. A scalable approach to exact model and commonality
counting for extended feature models. IEEE Transactions on Soft-
ware Engineering, 40(9):895-910, 2014. (cited on Page 21, 26, 29, 30, 43,
45, and 116)

2019. (cited on Page 3, 57, and 58)

José A Galindo, Mathieu Acher, Juan Manuel Tirado, Cristian Vidal,
Benoit Baudry, and David Benavides. Exploiting the enumeration of

https://doi.org/10.24355/dbbs.084-202009161329-0

Bibliography

127

[GPFW96]

[GSS06]

[HDO3]

[HDO4]

[HFACA13]

[HGFACC11]

[HPMFA*16]

[HR04]

[HSO00]

all feature model configurations: A new perspective with distributed
computing. In Proceedings of the 20th International Systems and Soft-
ware Product Line Conference, pages 74-78. ACM, 2016. (cited on
Page 1 and 135)

Jun Gu, Paul W Purdom, John Franco, and Benjamin W Wah. Algo-
rithms for the satisfiability (sat) problem: A survey. Technical report,
Cincinnati Univ oh Dept of Electrical and Computer Engineering,
1996. (cited on Page 11)

Carla P Gomes, Ashish Sabharwal, and Bart Selman. Model counting:
A new strategy for obtaining good bounds. In AAAI pages 5461,
2006. (cited on Page 3 and 11)

Jinbo Huang and Adnan Darwiche. A structure-based variable or-
dering heuristic for sat. In IJCAI volume 3, pages 1167-1172, 2003.
(cited on Page 37 and 38)

Jinbo Huang and Adnan Darwiche. Using dpll for efficient obdd con-
struction. In International Conference on Theory and Applications of
Satisfiability Testing, pages 157-172. Springer, 2004. (cited on Page 37)

Ruben Heradio, David Fernandez-Amoros, Jose A Cerrada, and Is-
mael Abad. A literature review on feature diagram product counting
and its usage in software product line economic models. Interna-
tional Journal of Software Engineering and Knowledge Engineering,
23(08):1177-1204, 2013. (cited on Page 2, 11, 14, 17, 21, 24, 25, 28, 29, 115,
and 117)

Rubén Heradio-Gil, David Fernandez-Amoros, José Antonio Cerrada,
and Carlos Cerrada. Supporting commonality-based analysis of soft-
ware product lines. IET software, 5(6):496-509, 2011. (cited on Page 2,
19, 20, 21, 28, 29, 116, and 122)

Ruben Heradio, Hector Perez-Morago, David Ferndndez-Amords,
Roberto Bean, Francisco Javier Cabrerizo, Carlos Cerrada, and En-
rique Herrera-Viedma. Binary decision diagram algorithms to perform
hard analysis operations on variability models. In SoMeT, pages 139—
154, 2016. (cited on Page 42, 117, and 121)

Michael Huth and Mark Ryan. Logic in Computer Science: Modelling
and reasoning about systems. Cambridge university press, 2004. (cited
on Page 6, 9, 10, and 11)

Holger H Hoos and Thomas Stiitzle. Local search algorithms for sat:

An empirical evaluation. Journal of Automated Reasoning, 24(4):421—
481, 2000. (cited on Page 10)

https://doi.org/10.24355/dbbs.084-202009161329-0

128

Bibliography

[HSJ*04]

[Joh92]

[JRLOS]

[JSRM*18]

[KKO7]

[KLMT13]

[KMM13]

[KTM*17]

[KTS*20]

[KZK10]

[LGCR15]

Tarik Hadzic, Sathiamoorthy Subbarayan, Rune M Jensen, Henrik R
Andersen, Jesper Mgller, and Henrik Hulgaard. Fast backtrack-free
product configuration using a precompiled solution space representa-
tion. small, 10(1):3, 2004. (cited on Page 9)

David S Johnson. The np-completeness column: an ongoing guide.
Journal of algorithms, 13(3):502-524, 1992. (cited on Page 11 and 13)

Narendra Jussien, Guillaume Rochart, and Xavier Lorca. Choco: an
open source java constraint programming library. 2008. (cited on
Page 118)

Paulius Juodisius, Atrisha Sarkar, Raghava Rao Mukkamala, Michal
Antkiewicz, Krzysztof Czarnecki, and Andrzej Wasowski. Clafer:
Lightweight modeling of structure, behaviour, and variability. arXiv
preprint arXiw:1807.08576, 2018. (cited on Page 118)

Will Klieber and Gihwon Kwon. Efficient c¢nf encoding for selecting
1 from n objects. In Proc. International Workshop on Constraints in
Formal Verification, 2007. (cited on Page 39)

Frédéric Koriche, Jean-Marie Lagniez, Pierre Marquis, and Samuel
Thomas. Knowledge compilation for model counting: Affine decision
trees. In Twenty-Third International Joint Conference on Artificial
Intelligence, 2013. (cited on Page 3, 92, 94, and 136)

Vladimir Klebanov, Norbert Manthey, and Christian Muise. Sat-
based analysis and quantification of information flow in programs.
In International Conference on Quantitative Fvaluation of Systems,
pages 177-192. Springer, 2013. (cited on Page 3, 11, 92, 93, and 136)

Alexander Kniippel, Thomas Thiim, Stephan Mennicke, Jens
Meinicke, and Ina Schaefer. Is there a mismatch between real-world
feature models and product-line research? In Proceedings of the 2017
11th Joint Meeting on Foundations of Software Engineering, pages
291-302. ACM, 2017. (cited on Page 20, 91, 92, and 111)

Sebastian Krieter, Thomas Thiim, Sandro Schulze, Gunter Saake, and
Thomas Leich. Yasa: yet another sampling algorithm. In Proceedings
of the 14th International Working Conference on Variability Mod-
elling of Software-Intensive Systems, pages 1-10, 2020. (cited on
Page 32)

Andreas Kiibler, Christoph Zengler, and Wolfgang Kiichlin. Model

counting in product configuration. arXwv preprint arXiv:1007.1024,
2010. (cited on Page 1, 2, 5, 11, 13, 16, 19, 22, 26, 29, 41, 115, 116, 117,
and 135)

Jia Hui Liang, Vijay Ganesh, Krzysztof Czarnecki, and Venkatesh Ra-
man. Sat-based analysis of large real-world feature models is easy. In

https://doi.org/10.24355/dbbs.084-202009161329-0

Bibliography

129

[Lib00]

[LM17]

IMBCO09]

[MDSD14]

[MFMO04]

[MKR*16]

[MMBH10]

[MMZ*01]

[MOP*19]

Proceedings of the 19th International Conference on Software Product
Line, pages 91-100, 2015. (cited on Page 2)

Paolo Liberatore. On the complexity of choosing the branching literal
in dpll. Artificial intelligence, 116(1-2):315-326, 2000. (cited on Page 6
and 10)

Jean-Marie Lagniez and Pierre Marquis. An improved decision-dnnf
compiler. In IJCAI pages 667673, 2017. (cited on Page 1, 3, 7, 8, 12,
36, 37, 64, 92, 94, 112, 118, 135, and 136)

Marcilio Mendonca, Moises Branco, and Donald Cowan. Splot: soft-
ware product lines online tools. In Proceedings of the 24th ACM SIG-
PLAN conference companion on Object oriented programming sys-
tems languages and applications, pages 761-762. ACM, 2009. (cited
on Page 121)

Raul Mazo, Cosmin Dumitrescu, Camille Salinesi, and Daniel Diaz.
Recommendation heuristics for improving product line configuration
processes. In Recommendation Systems in Software Engineering,
pages 511-537. Springer, 2014. (cited on Page 30 and 31)

Yogesh S Mahajan, Zhaohui Fu, and Sharad Malik. Zchaff2004: An
efficient sat solver. In International Conference on Theory and Appli-
cations of Satisfiability Testing, pages 360-375. Springer, 2004. (cited

on Page 2)

Flavio Medeiros, Christian Késtner, Marcio Ribeiro, Rohit Gheyi,
and Sven Apel. A comparison of 10 sampling algorithms for config-
urable systems. In 2016 IEEE/ACM 38th International Conference
on Software Engineering (ICSE), pages 643-654. IEEE, 2016. (cited
on Page 31)

Christian Muise, Sheila Mcllraith, J Christopher Beck, and Eric Hsu.
Fast d-dnnf compilation with sharpsat. In Workshops at the twenty-
fourth AAAI conference on artificial intelligence, 2010. (cited on
Page 3, 5,9, 12, 36, 37, 64, 92, 94, 112, 118, and 136)

Matthew W Moskewicz, Conor F Madigan, Ying Zhao, Lintao Zhang,
and Sharad Malik. Chaff: Engineering an efficient sat solver. In

Proceedings of the 38th annual Design Automation Conference, pages
530-535, 2001. (cited on Page 37)

Daniel-Jesus Munoz, Jeho Oh, Ménica Pinto, Lidia Fuentes, and Don
Batory. Uniform random sampling product configurations of feature
models that have numerical features. In Proceedings of the 23rd Inter-
national Systems and Software Product Line Conference-Volume A,
page 39. ACM, 2019. (cited on Page 1, 7, 19, 32, 117, 118, 135, and 136)

https://doi.org/10.24355/dbbs.084-202009161329-0

130

Bibliography

[MTS*17]

IMWC09]

[MWCCO8]

[NAAMOS]

[NOTO6]

INWO1]

[OBMS16]

[OBMS17]

(OD15]

[0OGB*19]

Jens Meinicke, Thomas Thiim, Reimar Schréter, Fabian Benduhn,
Thomas Leich, and Gunter Saake. Mastering software variability with
FeatureIDE. Springer, 2017. (cited on Page 92 and 112)

Marcilio Mendonca, Andrzej Wasowski, and Krzysztof Czarnecki.
Sat-based analysis of feature models is easy. In Proceedings of the
18th International Software Product Line Conference, pages 231-240.
Carnegie Mellon University, 2009. (cited on Page 1, 17, and 135)

Marcilio Mendonca, Andrzej Wasowski, Krzysztof Czarnecki, and
Donald Cowan. Efficient compilation techniques for large scale feature
models. In Proceedings of the 7th international conference on Gen-
erative programming and component engineering, pages 13-22. ACM,
2008. (cited on Page 1, 38, 117, 121, and 135)

Jarley Palmeira Nébrega, Eduardo Santana de Almeida, and Silvio
Romero Lemos Meira. Income: Integrated cost model for product
line engineering. In 2008 34th Euromicro Conference Software Engi-
neering and Advanced Applications, pages 27-34. IEEE, 2008. (cited
on Page 29)

Robert Nieuwenhuis, Albert Oliveras, and Cesare Tinelli. Solving sat
and sat modulo theories: From an abstract davis—putnam-logemann—
loveland procedure to dpll (t). Journal of the ACM (JACM),
53(6):9377977, 2006. (cited on Page 5)

Andreas Nonnengart and Christoph Weidenbach. Computing small
clause normal forms. Handbook of automated reasoning, 1(335-367):3,
2001. (cited on Page 37)

Jeho Oh, Don Batory, Margaret Myers, and Norbert Siegmund. Find-
ing product line configurations with high performance by random
sampling. Technical report, Technical Report TR-16-22. University
of Texas at Austin, Department of ..., 2016. (cited on Page 19, 32, 49,
51, 54, and 55)

Jeho Oh, Don Batory, Margaret Myers, and Norbert Siegmund. Find-
ing near-optimal configurations in product lines by random sampling.
In Proceedings of the 2017 11th Joint Meeting on Foundations of Soft-
ware Engineering, pages 61-71. ACM, 2017. (cited on Page 1, 19, 32,
49, 51, 116, and 117)

Umut Oztok and Adnan Darwiche. A top-down compiler for sentential
decision diagrams. In Twenty-Fourth International Joint Conference
on Artificial Intelligence, 2015. (cited on Page 3, 92, 94, and 136)

Jeho Oh, Paul Gazzillo, Don Batory, Marijn Heule, and Maggie My-
ers. Uniform sampling from kconfig feature models. The University of
Texas at Austin, Department of Computer Science, Tech. Rep. TR-
19—02, 2019. (cited on Page 1, 7, 13, 19, 31, 35, 37, 38, 51, 52, 53, 91, 112,
116, 117, 135, and 136)

https://doi.org/10.24355/dbbs.084-202009161329-0

Bibliography

131

[PGS6]

[PHRCO6]

[PLP11]

[PM16]

[PSK*10]

[SAKS16]

[SBB+04]

[SBKO05a)]

[SBKO5b]

[Seg08]

[SGRM18]

David A Plaisted and Steven Greenbaum. A structure-preserving
clause form translation. Journal of Symbolic Computation, 2(3):293—
304, 1986. (cited on Page 13)

Joaquin Pena, Michael G Hinchey, and Antonio Ruiz-Cortés. Building
the core architecture of a multiagent system product line: With an
example from a future nasa mission. 2006. (cited on Page 26)

Richard Pohl, Kim Lauenroth, and Klaus Pohl. A performance com-
parison of contemporary algorithmic approaches for automated anal-
ysis operations on feature models. In Proceedings of the 2011 26th
IEEE/ACM International Conference on Automated Software Engi-
neering, pages 313-322. IEEE Computer Society, 2011. (cited on
Page 1, 2, 13, 14, 19, 117, 121, and 135)

Héctor José Pérez Morago. Bdd algorithms to perform hard analysis
operations on variability models. 2016. (cited on Page 26)

Gilles Perrouin, Sagar Sen, Jacques Klein, Benoit Baudry, and Yves
Le Traon. Automated and scalable t-wise test case generation strate-
gies for software product lines. In 2010 Third international conference
on software testing, verification and validation, pages 459-468. IEEE,
2010. (cited on Page 1 and 135)

Stefan Sobernig, Sven Apel, Sergiy Kolesnikov, and Norbert Sieg-
mund. Quantifying structural attributes of system decompositions in
28 feature-oriented software product lines. Empirical Software Engi-
neering, 21(4):1670*1705, 2016. (cited on Page 1, 13, and 135)

Tian Sang, Fahiem Bacchus, Paul Beame, Henry A Kautz, and To-
niann Pitassi. Combining component caching and clause learning for
effective model counting. SAT, 4:7th, 2004. (cited on Page 36, 92, 93,
and 112)

Tian Sang, Paul Beame, and Henry Kautz. Heuristics for fast exact
model counting. In International Conference on Theory and Applica-
tions of Satisfiability Testing, pages 226-240. Springer, 2005. (cited
on Page 3, 11, 12, 37, 92, 93, 112, and 136)

Tian Sang, Paul Beame, and Henry Kautz. Solving bayesian networks
by weighted model counting. In Proceedings of the Twentieth National
Conference on Artificial Intelligence (AAAI-05), volume 1, pages 475—
482. AAAT Press, 2005. (cited on Page 43)

Sergio Segura. Automated analysis of feature models using atomic
sets. In SPLC (2), pages 201-207, 2008. (cited on Page 1, 17, and 135)

Shubham Sharma, Rahul Gupta, Subhajit Roy, and Kuldeep S Meel.
Knowledge compilation meets uniform sampling. In LPAR, pages
620-636, 2018. (cited on Page 53, 54, 95, 109, 117, 119, and 121)

https://doi.org/10.24355/dbbs.084-202009161329-0

132

Bibliography

[SKT+16]

S503]

[SSK*20]

[STS20]

[TBCO6]

[TBKO9]

[TBW04]

[Thu06]

[Tiu9s)
[TKB+14]

[TKES11]

Reimar Schroter, Sebastian Krieter, Thomas Thiim, Fabian Benduhn,
and Gunter Saake. Feature-model interfaces: the highway to compo-
sitional analyses of highly-configurable systems. In Proceedings of the
38th International Conference on Software Engineering, pages 667—
678. ACM, 2016. (cited on Page 1, 42, and 135)

Joao P Marques Silva and Karem A Sakallah. Grasp—a new search
algorithm for satisfiability. In The Best of ICCAD, pages 73-89.
Springer, 2003. (cited on Page 38)

Joshua Sprey, Chico Sundermann, Sebastian Krieter, Michael Nieke,
Jacopo Mauro, Thomas Thiim, and Ina Schaefer. Smt-based variabil-
ity analyses in featureide. In Proceedings of the 14th International
Working Conference on Variability Modelling of Software-Intensive
Systems, pages 1-9, 2020. (cited on Page 1, 17, 30, 31, and 117)

Chico Sundermann, Thomas Thiim, and Ina Schaefer. Evaluating#
sat solvers on industrial feature models. In Proceedings of the 14th In-
ternational Working Conference on Variability Modelling of Software-
Intensive Systems, pages 1-9, 2020. (cited on Page 1, 3, 19, 22, 24, 29,
35, 39, 49, 68, 92, 95. 108, 111, and 117)

Pablo Trinidad, David Benavides, and Antonio Ruiz Cortés. Isolated
features detection in feature models. In CAiSE Forum, 2006. (cited
on Page 26)

Thomas Thum, Don Batory, and Christian Kastner. Reasoning about
edits to feature models. In 2009 IEEE 31st International Conference
on Software Engineering, pages 254-264. IEEE, 2009. (cited on Page 22
and 40)

Christian Thiffault, Fahiem Bacchus, and Toby Walsh. Solving non-
clausal formulas with dpll search. In International Conference on
Principles and Practice of Constraint Programming, pages 663-678.
Springer, 2004. (cited on Page 6)

Marc Thurley. sharpsat—counting models with advanced component
caching and implicit bep. In International Conference on Theory and
Applications of Satisfiability Testing, pages 424-429. Springer, 2006.
(cited on Page 1, 3, 11, 12, 36, 37, 92, 93, 112, 118, 135, and 136)

Alwen Tiu. Introduction to logic. 1998. (cited on Page 36)

Thomas Thiim, Christian Késtner, Fabian Benduhn, Jens Meinicke,
Gunter Saake, and Thomas Leich. Featureide: An extensible frame-
work for feature-oriented software development. Science of Computer
Programming, 79:70-85, 2014. (cited on Page 73)

Thomas Thum, Christian Kastner, Sebastian Erdweg, and Norbert
Siegmund. Abstract features in feature modeling. In 2011 15th In-
ternational Software Product Line Conference, pages 191-200. IEEE,
2011. (cited on Page 25)

https://doi.org/10.24355/dbbs.084-202009161329-0

Bibliography

133

[TS16]

[Tse83]

[VAE11]

[VAHT*18]

[VD10]

[WBS*10]

[Wel82]

[WJIHSO04]

[WS05]

[ZZMO04]

Takahisa Toda and Takehide Soh. Implementing efficient all solutions
sat solvers. Journal of Experimental Algorithmics (JEA), 21:1-12,
2016. (cited on Page 1, 3, 11, 92, 94, and 136)

Grigori S Tseitin. On the complexity of derivation in propositional
calculus. In Automation of reasoning, pages 466-483. Springer, 1983.
(cited on Page 7, 13, and 37)

Alexey Voronov, Knut Akesson, and Fredrik Ekstedt. Enumeration of
valid partial configurations. In Proceedings of Workshop on Configu-
ration, IJCAI 2011, volume 755, pages 25-31, 2011. (cited on Page 117
and 121)

Mahsa Varshosaz, Mustafa Al-Hajjaji, Thomas Thiim, Tobias Runge,
Mohammad Reza Mousavi, and Ina Schaefer. A Classification of Prod-
uct Sampling for Software Product Lines. In Proceedings of the In-
ternational Software Product Line Conference (SPLC), pages 1-13,
September 2018. (cited on Page 53)

Bart Veer and John Dallaway. The ecos component writer’s guide.
seen Mar, 2010. (cited on Page 92)

Jules White, David Benavides, Douglas C Schmidt, Pablo Trinidad,
Brian Dougherty, and Antonio Ruiz-Cortes. Automated diagnosis
of feature model configurations. Journal of Systems and Software,
83(7)1094*1107, 2010. (cited on Page 1 and 135)

William J Welch. Algorithmic complexity: three np-hard problems
in computational statistics. Journal of Statistical Computation and
Simulation, 15(1):17-25, 1982. (cited on Page 11)

Chao Wang, HoonSang Jin, Gary D Hachtel, and Fabio Somenzi.
Refining the sat decision ordering for bounded model checking. In

Proceedings of the 41st annual Design Automation Conference, pages
535-538, 2004. (cited on Page 38)

Wei Wei and Bart Selman. A new approach to model counting. In
International Conference on Theory and Applications of Satisfiability
Testing, pages 324-339. Springer, 2005. (cited on Page 95)

Wei Zhang, Haiyan Zhao, and Hong Mei. A propositional logic-based
method for verification of feature models. In International Confer-
ence on Formal Engineering Methods, pages 115-130. Springer, 2004.
(cited on Page 17)

https://doi.org/10.24355/dbbs.084-202009161329-0

134 Bibliography

https://doi.org/10.24355/dbbs.084-202009161329-0

Topic Description

Introduction

Product lines represent a family of similar products [BSRC10]. Hereby, the products
are decomposed in smaller subsets, also called features [SAKS16]. A product can
then be derived by a selection of features. Feature models are commonly used to
specify all possible products of a product line. Such models consist of hierarchi-
cal structure of features and propositional cross-tree constraints [BSRC10, CW07,
Bat05].

In general, analyzing a feature model is infeasible manually, as it is difficult to keep
track of all dependencies between features. Therefore, automated support is re-
quired [Bat05]. Analyses considered in the literature typically rely on satisfaction
based solvers like SAT solvers [Bat05, SKT™16, MWC09, PLP11, CW07, PSK*10,
Seg08, GAT*16], CSP solvers [BTRC05, PLP11, Seg08, WBS™10], and binary deci-
sion diagrams [MWCCO08, PLP11, Seg08, GAT*16, CW07]. Another possible type
of solvers, that can be considered for feature model analysis are #SAT solvers which
made vast advances in the last decade [BJP00, Thu06, BSB15, Dar04, LM17]. A
#SAT solver computes the number of valid solutions for a given propositional for-
mula, while a satisfaction based solver computes whether there is at least one solu-
tion.

A feature model can be translated to an equivalent propositional formula [MWC09].
Using such a formula as input for a #SAT solver computes the number of prod-
ucts of the underlying product line. Older #SAT solvers were only capable of
analyzing smaller feature models [PLP11, KZK10]. Due to the recent advances,
#SAT might be suitable to analyze feature models and even enable new analy-
ses. The literature already considers some methods dependent on computing the
number of products (e.g., variability reduction [BTRCO05] and uniform random sam-
pling [OGB*19, MOP*19]).

While it is known that SAT solvers scale for various feature model analyses [MWC09],
research is still required regarding #SAT solvers. The goal of this master’s thesis
is to identify new applications for #SAT solvers and the examine the scalability.
Therefore, we implement and evaluate the runtime and memory usage of the found
applications with different #SAT solvers and input models.

Furthermore, we aim to improve the scalability of the applications using multiple
optimizations. First, we aim to switch solvers depending on the algorithm and
input. Second, our goal is to optimize the algorithms (e.g., by reducing the number

https://doi.org/10.24355/dbbs.084-202009161329-0

136 Topic Description

of required #SAT calls). Current #SAT solvers are not optimized for feature models.
Optimizations that specifically exploit properties of the feature model might improve
the scalability of a #SAT solver. Furthermore, none of the current #SAT solvers
supports incremental queries [Dar04, LM17, MMBH10, BJP00, SBK05a, Thu06,
BSB15, Bie08, KLMT13, KMM13, TS16, OD15]. However, some applications, like
uniform random sampling [OGB™19, MOP™19], require a high number of similar
solver calls. An algorithm that computes such samples might vastly benefit from
an incremental solver. Such optimizations could be realized by a new solver or
optimized input encodings.

Tasks

Mandatory

e Gathering Applications: We aim to examine possible applications of #SAT
solvers for the analysis of feature models. In the first stage, we study appli-
cations considered in the literature. In the second stage, we try to work out
new-found applications.

e Concept: For each new found relevant application, we develop at least one
algorithm to compute the desired result for the application.

e Implementation based on FeatureIDE: We integrate the relevant devel-
oped algorithms corresponding to an application of #SAT solvers into the
feature modelling tool FeaturelDE.

e Evaluation: We evaluate the applications using multiple #SAT solvers re-
garding the runtime and memory usage. For the evaluation, we consider au-
tomatically generated and real-world feature models.

Optional

e Meta-Solver We aim to create a meta-solver that switches solvers depending
on the algorithm and the input.

e Optimize Algorithms We aim to optimize the algorithms regarding runtime
and memory usage.

e Optimize Input Encodings: We aim to improve the scalability of solvers
might be improved without directly changing the solver.

e Create own Optimized #SAT Solver: We aim to create a #SAT solver
that is specifically optimized for feature models. Furthermore, we aim to
support incremental queries.

Supervision

The thesis is supervised by Dr.-Ing. Thomas Thiim, Michael Nieke, and Prof. Dr.-
Ing. Ina Schaefer, Institute of Software Engineering and Automotive Informatics.

https://doi.org/10.24355/dbbs.084-202009161329-0

Hiermit erklare ich, dass ich die vorliegende Arbeit selbstéindig verfasst und keine
anderen als die angegebenen Quellen und Hilfsmittel verwendet habe.

Braunschweig, den 22. Juli 2020

https://doi.org/10.24355/dbbs.084-202009161329-0

	Contents
	1 Introduction
	2 Background
	2.1 SAT
	2.1.1 Forms of Propositional Formulas
	2.1.2 Ways to Solve SAT Problems
	2.1.3 Complexity

	2.2 #SAT
	2.2.1 Ways to Solve #SAT Problems
	2.2.2 Complexity

	2.3 Feature Models
	2.4 Feature Model Analysis

	3 Applications
	3.1 Number of Valid Configurations
	3.2 Commonality
	3.3 Partial Configurations
	3.4 Summary

	4 Algorithms & Optimizations
	4.1 Number of Valid Configurations
	4.2 Commonality
	4.3 Partial Configurations
	4.4 Uniform Random Sampling
	4.5 Summary

	5 Implementation
	5.1 Implementation of Applications
	5.1.1 Algorithm Implementations
	5.1.2 Exploitation of d-DNNFs

	5.2 Integration into FeatureIDE
	5.3 Evaluation Framework
	5.4 Summary

	6 Evaluation
	6.1 Research Questions
	6.2 Experiment Design
	6.2.1 Subject Systems
	6.2.2 #SAT Solvers

	6.3 Results
	6.4 Discussion
	6.5 Threats to Validity
	6.6 Summary

	7 Related Work
	8 Thesis Summary
	9 Future Work
	Bibliography
	Topic Description

