
Master’s �esis

Towards a Universal
Variability Language

Dominik Engelhardt
August 6, 2020

Advisors:

Prof. Dr.-Ing. Ina Schaefer
Institute of So�ware Engineering and Automotive Informatics

TU Braunschweig, Germany

Prof. Dr.-Ing. Thomas Thüm
Institute of So�ware Engineering and Programming Languages

University of Ulm, Germany

1. Introduction
Customers value products tailored to their needs [PBvdL05]. �is is true for both hardware and
so�ware. To achieve this, many automotive companies o�er a wide range of customization
options for their cars. �e Linux kernel is probably the most prominent example of a con�gurable
so�ware product. However, proper management of this variability is not a trivial task [CN01].
�at is why �elds of research have formed around con�gurable hardware and so�ware.

So�ware Product Line Engineering (SPLE) is a comparatively new branch in so�ware engi-
neering to manage variability. It has become more popular in recent years, in both academia
and industry [TAK+14]. It enables the development of variant-rich so�ware systems in reduced
time, cost, and with increased quality [PBvdL05; CN01]. Instead of entire products, individual
characteristics are developed in separate components. �ese characteristics are o�en called
features. From this set of features, the relevant ones for the customer are selected in a con-
�guration step. �en the corresponding components are assembled into the �nished product.
�ese steps are ideally supported by tools allowing e�cient management of the variability and
automatic generation of a product from a set of features.

1.1. Motivation
For this task, there are many tools, in both industry and academia. FeatureIDE [MTS+17],
pure::variants [pur20], Gears [Big20], kcon�g [Zip20], AHEAD [Bat05] are just a few examples.
However, all of these have di�erent approaches, features, models, and formats since no standard
exists yet. �is makes it di�cult to exchange models between tools.

A universal language, which everyone commits to, could be bene�cial for the community
in multiple ways. Communication would be easier when every user and tool uses the same
language. Also, a representation in a familiar standardized language could aid in understanding
an unfamiliar notation that is specialized for a speci�c use case in a new So�ware Product
Line (SPL) tool. As a result, the teaching of variability and SPLE concepts could bene�t from
a common language and would be more consistent between universities since they could all
teach the same language. Analyses that are commonly present in various SPL tools could be
implemented in a separate tool, developing it in a joined e�ort. �e common language as an
interface to this tool could free developers from the need to implement analyses from other
tools again to o�er them in their own tool. �rough comparisons and benchmarks between
tools using a standard set of models, the quality and performance of the di�erent tools might
increase as well. �is is because �xes and performance improvements to the common tool
would bene�t all tools equally.

�e research community around SPLE also sees these bene�ts. �at is why there has been a
previous a�empt to arrive at a common language [HWC12], but it failed due to legal reasons.

2 1.3. Structure of this Thesis

Recently, a new a�empt has been started by the community, identifying and ranking key
requirements for the language [BC19].

While we focus on SPLE in this thesis, the resulting language is more generally applicable
than for modeling so�ware-systems only. �us, it might also be of interest in the �eld of
knowledge-based con�guration. Knowledge-based con�guration is a �eld of study concerned
with customizing a product to meet the individual needs of a customer [Stu97]. A�er the rise of
mass production, the need for more customized products arose. �is is addressed by knowledge-
based con�guration: trying to achieve the same level of e�ciency and cost as mass-produced
goods, but with highly variant products [FHB+14]. As such, the �eld is much older than the
�eld of SPLE with one of the oldest approaches dating back to the early 80s [GK99]. As with
SPLs, the usage of adequate technologies is required to signi�cantly reduce the development
and maintenance costs of such a system [FHB+14].

1.2. Goals and Contribution
�is thesis’s main goal is to provide a proposal for a universal variability language. �e proposal
should aid the community in agreeing on a standardized textual language for variability modeling
and exchange. Either by accepting the proposal as it is or by using it and the considerations
behind it as an input to a �nal standard.

To arrive at such a language, we consider general guidelines for designing Domain-Speci�c
Languages (DSLs), the scenarios and requirements collected by Berger and Collet [BC19], as
well as existing textual languages. Additionally, we prepare a questionnaire for the community
to query their preferences and individual needs. We weigh and discuss these di�erent sources
carefully to derive concepts for a language, consisting of abstract as well as concrete syntax.

To increase usability and acceptance, we develop default tool support. It includes a parser
and a printer as a library. We show the utility of the library by integrating it into FeatureIDE.
By distributing another questionnaire, again targeting the research community around SPLE,
and revisiting the requirements, we evaluate the language.

1.3. Structure of this Thesis
First, we give the required background information regarding variability modeling and DSLs
in Chapter 2, introducing important concepts and design dimensions for variability languages.
In Chapter 3, we consider general guidelines and usage scenarios, analyze existing textual
languages, and present the results of the �rst questionnaire. We use these sources as inputs
for the design decisions for the new language. In Chapter 4, we propose concepts for a new
variability language. We develop tool support around the proposed language in Chapter 5. To
evaluate the language we use another questionnaire to gather feedback from the community
and check qualitative criteria revisiting the requirements in Chapter 6. We discuss related work
in Chapter 7. In Chapter 8, we summarize our work, draw conclusions, and give an outlook on
possible future work.

2. Background
Previously, we introduced our motivation and goals for this thesis, hinting at the possible bene�ts
of SPLE and challenges when designing a DSL. Now we establish the relevant background
for the proposed language, namely SPLs and then DSLs. In Section 2.1 we show the history,
bene�ts, prerequisites, and the most common notation of SPLs, the feature diagram. For DSLs,
we look at the motivation to design them, challenges involved, di�erent categories and types of
DSLs, implementation strategies, and generic design guidelines in Section 2.2.

2.1. So�ware Product Lines
In the last decades, the practice of mass production changed to mass customization, due to the
need to tailor goods to the individual needs of the customers [CN01]. For instance, nowadays,
customers expect to customize their new car to their speci�c needs. To keep the cost bene�ts of
mass production and still o�er some customization, manufacturers turned towards the approach
of a common platform. Products share the platform as a common core and di�er in individualized
extensions which realize variable functionalities [PBvdL05].

An analogy to mass production is a common practice in so�ware engineering. O�en, so�ware
is built and tested on a well-de�ned computing environment (speci�c hardware, operating
system, or framework) and then distributed to an arbitrary number of customers. However,
enabling mass customization is challenging and particular techniques are needed.

One of these techniques is SPLE [PBvdL05]. Here, similar so�ware systems share the same
code base. Variable code is developed in individual modules (features). �is makes them highly
customizable, even though the code is developed only once instead of again for each customer.
Clements and Northrop [CN01] de�ne the term SPL as follows:

A so�ware product-line is a set of so�ware-intensive systems sharing a common,
managed set of features that satisfy the speci�c needs of a particular market segment
or mission and that are developed from a common set of core assets in a prescribed
way.

�e reusable so�ware artifacts that make up the SPL can be combined to form customized
products, preferably in an automated way. �ese derived products are also known as variants.

2.1.1. Possible Benefits of So�ware Product Lines

�e use of SPLs is promising reduced costs, improved quality, reduced time to market, and tailor-
made products [ABK+13]. Figure 2.1 depicts the di�erent relations of cost over time between
traditional methods and SPLE. While there are added upfront complexity and implementation
e�ort involved when incorporating a new product line, the cost per additional variant will be

4 2.1. Software Product Lines

smaller compared to individual implementations from scratch. Hence, a payo� is expected
a�er delivering multiple variations of the product to di�erent customers. Core parts of the new
product do not have to be implemented again. To this end, the risk of introducing new bugs is
minimized and the quality of the system is improved [CN01]. �e reused artifacts are already
production-proven in other variants. �us, they have fewer bugs than unproven new so�ware.
Extensive reuse also enables reduced time to market, since a product can quickly be assembled
based on the needs of the customer.

Number of Products

E�
or

t/c
os

ts

Cra�ing products from scratch

Product-line development

Figure 2.1.: E�ort/costs of cra�ing products individually versus product-line development (adapted
from [ABK+13]).

2.1.2. Dependence on the Domain

To achieve these bene�ts, one has to adhere to several constraints. Most notably the scope has
to be narrowed down to a well-de�ned domain. Apel et al. [ABK+13] de�ne the term domain as

an area of knowledge that is scoped to maximize the satisfaction of the requirements
of its stakeholders, includes a set of concepts and terminology understood by
practitioners in that area, and includes the knowledge of how to build so�ware
systems (or parts of so�ware systems) in that area.

�e analysis of the domain is an integral step to understand the relevant features and their
interdependencies. �e term feature was �rst introduced by Kang et al. [KCH+90] as a “prominent
or distinctive user-visible aspect, quality, or characteristic of a so�ware system or systems”,
but the term is used in a variety of ways throughout the literature [ABK+13]. A more modern
de�nition, trying to incorporate the di�erent aspects of other de�nitions is provided by Apel et
al. [ABK+13]:

A feature is a characteristic or end-user-visible behavior of a so�ware system.
Features are used in product-line engineering to specify and communicate com-

2. Background 5

monalities and di�erences of the products between stakeholders, and to guide
structure, reuse, and variation across all phases of the so�ware life cycle.

2.1.3. Feature Diagrams

�e identi�ed features of the domain can be represented by feature diagrams, �rst introduced
by Kang et al. [KCH+90] as part of the Feature-Oriented Domain Analysis (FODA). �e feature
diagram since has become the most widely used representation to specify variability [BRN+13],
although there is no o�cial speci�cation for its syntax [SHT06]. Still, there is a certain set of
characteristics that are typically supported by tools using feature diagrams.

In Figure 2.2, we give an example feature diagram as it would appear in the variability tool
FeatureIDE. In the following paragraphs, we explain the typical elements based on the example.

Server

File System

NTFS APFS EXT4

Operating System

Windows macOS Debian

Logging

Legend:

Abstract Feature
Concrete Feature
Mandatory
Optional
Or Group
Alternative GroupWindows ⟹ NTFS

macOS ⟹ APFS

Figure 2.2.: Example feature diagram showing a small server.

Feature diagrams structure features of a con�gurable system in a hierarchical tree structure.
A feature is shown in the example as a colored box. We distinguish between abstract and
concrete features. An abstract feature does not have a corresponding implementation. �is can
be used for features that are only meant to be a parent of other features to clarify the structuring,
simplify constraints, or to mark features that still have to be implemented. In Figure 2.2, these
features are �lled with a lighter shade than the concrete counterparts.

Features in the model can have other features as children. �is makes the model more clear
than a �at list of features. �e features that are at the bo�om of the tree and do not have any
other children are called leaf features, while the feature at the very top is called the root feature.
In most tools, only one feature can be a root node of the tree. In Figure 2.2, the feature “Server”
is the root node with the child features File System, Operating System, and Logging. For each
child feature, one can specify whether it should be optional or mandatory. Optional features
have an empty circle at the top, whereas mandatory features have a �lled circle. �is distinction
is important for the con�guration of concrete systems, where optional features can but do not
need to be selected. Mandatory features, on the other hand, always have to be selected for a
valid con�guration.

6 2.2. Domain Specific Languages

Another way to describe dependencies between parent and child features are feature groups.
A set of child features may be contained in an or group or an alternative group. �e or group,
as the logical ‘or’, says that at least one of the child features has to be selected. It is denoted by
a �lled arc in the example. �e alternative group, sometimes called ‘xor’, requires exactly one of
the children to be selected for a product. �e symbol for an alternative group is the empty arc
(cf. Figure 2.2).

In addition to the hierarchical dependencies by groups and optional or mandatory features,
cross-tree dependencies can be expressed by so-called cross-tree constraints. Usually, these
constraints can use propositional logic, so only the features as boolean variables and basic
logical operators are supported. In Figure 2.2, the constraints are listed beneath the tree. For
instance, the constraint Windows ⟹ NTFS requires that whenever the feature Windows is
selected in a con�guration, the feature NTFS also has to be selected for the con�guration to be
valid.

Since feature diagrams are a graphical notation and there is no canonical mapping to the disk,
it is not a suitable exchange format. �us, there are also several textual languages to describe
feature diagrams or do variability modeling in general. We discuss these languages in Chapter 3.

2.2. Domain Specific Languages
Domain-Speci�c Languages (DSLs) are languages that are optimized for a speci�c domain. �is
is contrary to General-Purpose Languages (GPLs), such as common programming languages
or serialization languages. Since DSLs are speci�c to a domain, they are (in the case of pro-
gramming languages) o�en not Turing-complete, so it might not be possible to express every
computable algorithm in the language. �ey are, however, more e�cient than a GPL when
writing a limited set of programs that are relevant to the domain. DSLs trade generality for
expressiveness [MHS05].

2.2.1. Benefits of DSLs Over GPLs

GPLs have to be very general to be applicable to any problem one might encounter. �e o�ered
abstractions are o�en closer to the hardware and general data structures than to the concepts of
the domain. �us, programs wri�en in a GPL can be very verbose and clu�ered with so-called
boilerplate code. DSLs can get rid of the unnecessary clu�er. �ey do this by o�ering a language
construct for each relevant concept of the domain [VBD+13]. �is way the resulting code is
closer to the problem it solves. To introduce a domain element one does not have to mix multiple
low-level constructs from a GPL. Since there is an actual notation for each concept, programs
can be shorter and more readable than their GPL counterpart.

DSLs are more restricted than GPLs. �is might sound disadvantageous at �rst, but when
the language is designed well and the restriction on the set of programs corresponds closely to
the set of programs relevant to the domain, it can be an advantage. Depending on the domain it
might be possible to restrict the language to only allow correct programs [VBD+13]. If this was

2. Background 7

not possible, it might at least exclude whole classes of errors that can be made in GPL programs.
A restricted language with meaningful concepts and constructs is also easier to analyze than

a program in a Turing-complete language [MHS05]. When an analysis is implemented for
speci�c domain concepts, it can simply use those same concepts present in the DSL. In contrast,
in a GPL the analysis �rst has to infer how the programmer has chosen to map the domain
concepts to GPL concepts. Only then can it build an internal representation of the data using
the correct abstractions to �nally conduct the analysis. DSLs are also usually much smaller and
simpler than GPLs [VBD+13]. �at makes them easier to learn, write, and read. O�en, a GPL is
only understood by a few well-trained experts, while DSLs are designed to be understood by all
stakeholders from a speci�c domain.

Since DSLs target only one speci�c domain, the community of users is usually much smaller
and more accessible than for huge GPLs [VBD+13]. �is way, the DSL can be tailored to the
very speci�c needs of that community. It can be evolved, iterated, and customized more quickly
when there is no huge community with programs that use every possible aspect of the language.
Concerns of backward compatibility or complex migrations might not be as important in that
case.

2.2.2. Challenges of DSLs

Of course, DSLs do not come without their own challenges. First, there is the implementation
e�ort. A DSL has to be designed, speci�ed, implemented in some way, and integrated into
existing tools. �is can be especially inconvenient since all the e�ort is required upfront. In
contrast, when starting in a GPL, work on solving a problem can be started right away, which
might feel more productive to the developer.

Another challenge for existing teams is that suddenly an additional language engineering
skill is required. If no one in the team can o�er such a background, it might be necessary to
hire additional experts. Also, this will lead to a split in the team where one part will develop the
language, whereas the other part will use it. �is can always create di�culties [VBD+13].

Using a language workbench (see Section 2.2.4) or implementing editor support for the
language otherwise leads to a certain level of tool lock-in, depending on the technologies used.
�is can be a problem when the used platform becomes unmaintained or is not �exible enough
for a new feature as it can make it di�cult to switch to a di�erent technology. �en the whole
language implementation would have to be repeated.

Acceptance of the language in the user base can be a further challenge [VBD+13]. When a
DSL that looks similar to a programming language is proposed to users that usually do not have
to write programs, this can lead to resistance. �is also applies in the opposite case, when a
graphical notation is imposed on programmers, as they are used to textual notations. However,
even if there is no such obvious mis�t, there are some people that have strong personal opinions
and preferences about how a language should look. Also, introducing a new language means
learning new notations and ways of solving problems, which can be a source of opposition from
people reluctant to change.

Adding a DSL also results in another artifact to maintain and evolve. A language precisely

8 2.2. Domain Specific Languages

tailored to a certain domain will have to be adapted when the domain changes. Otherwise, the
DSL might become a liability when it is suddenly di�cult or even impossible to express certain
domain concepts. When the used technologies change, parts of the language might have to be
migrated or rewri�en. Not only the DSL itself but also the knowledge of developing the DSL
must be preserved. Otherwise, maintaining the DSL will be di�cult, if the developers leave the
team.

�ere is another challenge that Völter et al. call ‘DSL hell’ [VBD+13]. �is can happen when
there is enough expertise in the team to create DSLs, a�er having created a few. When it
becomes easy to create a new DSL, developers might create a DSL for every problem they
encounter, without researching �rst whether there might be existing languages that could be
used for that problem. �is results in many immature DSLs, which tackle similar problems but
are still incompatible with each other.

A�er investing considerable resources into a language, the corresponding infrastructure, and
processes, it can become di�cult to change how to solve problems. When the domain changes or
the previous approach is in some other way no longer applicable, it can be too much of a hurdle
to try something completely new or di�erent out of the box. To this end, the specialization and
e�ciency of the DSL lead to resistance against adapting to new requirements.

With these advantages and challenges at hand, it is impossible to generally say whether to
use DSLs or not. �is decision has to be considered carefully on a per-case basis a�er analyzing
the domain, the requirements, and possible alternatives.

2.2.3. Categorization of DSLs

�ere are many kinds of DSLs. Following, we discuss a few categories in which DSLs can fall
into.

Internal Versus External DSLs

When we talk about DSLs in this thesis, we usually mean external DSLs. �ese are stand-alone
languages coming with their own syntax and tool support. Internal DSLs, in contrast, are DSLs
that are embedded into another general-purpose host language [VBD+13]. �is is possible in
dynamic languages allowing metaprogramming. In addition to a simple API, internal DSLs
aim at providing their own syntax for the added constructs, con�ned by the capabilities of the
host language to allow custom syntaxes. As they are integrated into another language, there is
usually no speci�c IDE support for the resulting constructs.

Language Size

DSLs di�er in the number of language constructs they provide. In general, the number of
supported language constructs is called the size of a language [VBD+13]. �ere are languages
with very few constructs or keywords. Instead, they rely on powerful abstractions to provide
the user with the capabilities needed. Usually, the users can de�ne their own abstractions by
composing the basic concepts. LISP is an example of a small (though not domain-speci�c)

2. Background 9

language. �en, there are languages with many keywords and constructs for very speci�c
things. We call these big languages.

A di�erent approach trying to get both bene�ts of small and big languages by introducing
additional complexity is that of modular languages [VBD+13]. Modularity, here, is not considered
as the ability to express modular programs, but rather a modularity on the language level itself.
A small language core can be extended by language modules adding additional syntax and IDE
support. �is way, one can import only those language features that are needed for the current
�le.

Graphical Versus Textual

When designing a DSL, one can use di�erent syntaxes. Typically, GPLs have only one syntax
that is either graphical or textual. For DSLs, it is also common to have multiple syntaxes for
one language, which can be applied based on preference or concrete use case. �ese syntaxes
can also contain both graphical and textual elements. However, usually one is either graphical
or textual.

Although graphical languages have disadvantages [Pet95], some data that is inherently
graphical (e.g., a �oor plan of a building) can bene�t from a graphical notation. Some constructs,
such as hierarchical statecharts, are hard to represent in a textual notation. Also, graphical
notations are considered more suitable for non-technical people and thus readily applied in
various modeling languages and related DSLs. �e feature diagram as seen in Figure 2.2 is one
such graphical DSL.

Textual DSLs on the other hand are easier to edit using a plain text editor. �ere exist canonical
encodings for textual languages (e.g., ASCII or UTF-8). �us, they can be stored on disk or
exchanged over the network directly, not having to be transformed into another representation
in advance. Also, the theory of parsing textual languages is well understood [WSH13].

Interpreted Versus Compiled

If the language describes something executable (i.e., it has operational semantics), there are
classically two ways this can be realized: compilation or interpretation. In the case of compilation,
there is a program called the compiler that reads programs wri�en in the DSL and produces a
semantically equivalent program. �is resulting program is composed either in another general-
purpose programming language or, more commonly, directly in machine code. Compilation
into machine code is usually the most e�cient way to run the program. �e translation into
executable code, possibly including complex optimizations, has to be performed only once,
while the produced executable can be run many times without overhead.

During interpretation, a program called the interpreter gets both the program expressed in
the DSL and the program’s input data as inputs. It then calls the appropriate functions of the
program’s elements directly, executing the program. �is is o�en slower since the transformation
from language concept to executable code has to be carried out at every execution. However, it is
more �exible, as some information regarding the execution might only be available dynamically

10 2.2. Domain Specific Languages

during runtime and not at compile time. In case the language is used to describe static data
only, without any executable constructs, the distinction between compiled or interpreted is not
applicable.

2.2.4. Implementation of DSLs

In this section, we give an overview of how to implement an external textual DSL, as this is the
kind of DSL we are developing. With implementation, we mean primarily arriving at a parser,
which transforms the concrete text to a representation of the language’s elements in memory.

Brief Overview of Parsing Theory

Compiler and parser theory is a huge research topic on its own. We provide a short overview of
the main concepts and terminology, based on the book by Wilhelm et al. [WSH13].

�e traditional way to parse a textual language is to chain scanner, parser, and name and
type analysis together. �is will transform the text represented in the concrete syntax to a data
structure with elements of the abstract syntax, the Abstract Syntax Tree (AST). First, a scanner
is used to create a token stream from the text. �is token stream is passed to the parser which
creates an initial version of the AST. To resolve references and types, the AST is passed to the
name and type analysis, creating a decorated syntax tree. �is process is visualized in Figure 2.3.

Source Code
as String Scanner Parser Name and Type

Analysis
Decorated

AST

Token
Stream AST

Figure 2.3.: Process of parsing source code to an AST.

�e scanner, also known as the lexer, is usually not wri�en by hand. Instead, it is speci�ed
with regular expressions, which can match inputs such as identi�ers, keywords, or brackets.
Based on these regular expressions, �nite automata can be generated automatically. �ese read
the text and emit corresponding tokens, whenever they reach a �nite state.

�e tokens are the input to the parser. �e parser is speci�ed using grammars containing
production rules. Grammars can be expressed using the Extended Backus-Naur Form (EBNF).
�ere are many types of parsers supporting di�erent classes of grammars and being able to parse
di�erent kinds of languages. Examples include LL and LR-parsing with di�erent lookaheads.
�e �rst ‘L’ in LL and LR denotes that the input is being read from le� to right. �e second
character indicates that the parser constructs the le�most derivation from the production rules
in the case of LL while choosing the rightmost derivation for LR-parsers. We refer the reader to
Wilhelm et al. [WSH13] for the complete parsing theory.

�e parser emits a preliminary AST that is the input to the name and type analysis. It is the
task of the name analysis to connect usages of names to their declarations, considering any
scoping rules. �is information is the precondition for using variables in programs. In case
the language incorporates a static type system, the type analysis determines the type of every

2. Background 11

program element in the AST. �is information is used to ensure conformance to the typing rules
(e.g., compatible types in an assignment). As in the name analysis, the generated information is
a�ached to the elements in the AST, yielding the decorated syntax tree. �is �nal tree can then
be used for further processing steps, as all relevant contextual information is present in the tree.
Examples for these steps include code generation, interpretation of programs, transformation
to other languages, and more advanced analyses.

Projectional Editing as an Alternative

Projectional editing works the other way around as traditional parsing. Instead of reading
text and inferring the AST, the AST is the main artifact and a textual representation of it is
generated (projected), so the editing experience mimics that of textual editing. Any changes
in the editor are changes to the AST �rst, which only a�er projection are re�ected in the text.
�e AST itself is usually persisted in a structural format, such as XML. �e JetBrains Meta
Programming System (MPS) [Jet20] is one example of such a projectional editing approach.

�e advantages of this approach include the possibility to mix graphical, textual, and tabular
representations in one �le and the guarantee that there will never be a representation that
can not be translated into a valid AST. On the downside, editing is only possible with the
projectional editor, leading to a very tight tool lock-in. Also, editing text with the indirection
over the AST and back can lead to unexpected behavior compared to directly editing text.

Modeling and Language Workbenches

Language workbenches are IDEs that focus on quickly and e�ciently creating DSLs and inte-
grating them into an IDE with the usual editing support developers are used to from GPLs. �e
interfaces to integrate syntax highlighting, auto-completion, and other convenience features
into di�erent IDEs are highly speci�c to the individual IDE. �us, language workbenches
usually focus only on one IDE and o�er generating these integrations from a speci�cation that
is preferably as small as possible. As a result, DSL engineering becomes quicker, more accessible
to engineers without an extensive language development background, integrations become
more seamless, and the overall process more feasible.

Although specifying languages is based on grammars, additional extensions are used to
make the speci�cation of editing support and overall generation of the language infrastructure
easier. �is leads to speci�cations that are not usable by other language workbenches or tools
without some migration e�ort. Furthermore, as outlined before, the workbenches focus on one
speci�c IDE. �us, even though it might be possible to use a subset of the generated artifacts
independently, it is at the expense of having no IDE support. To this end, the use of language
workbenches leads to more tool lock-in.

Examples of language workbenches include Xtext [Ecl20], EMFText [HJK+09], and Spoofax [Met20],
which focus on the Eclipse IDE, and MPS [Jet20] as a projectional language workbench generat-
ing an editor in the IntelliJ ecosystem.

3. Requirements for a
Variability Language

�ere are many design decisions to be made when creating a DSL. O�en, there are two opposite
options to choose from and each decision has pros and cons for either side. For some, it can be
useful to consider best practices and design guidelines. For others there is no general answer,
requiring precise knowledge of the target domain, its users, and common use cases to create
a sensible language. However, this precise knowledge is not readily available. As described
in Section 2.1.3, there is no o�cial speci�cation for the syntax of feature models, the most
prominent graphical notation for SPL tools. �us, we examine four sources of information
to gain this knowledge: (1) General design guidelines for DSLs, (2) collected requirements
and usage scenarios by Berger and Collet [BC19], (3) existing textual languages for variability
modeling, and (4) answers to a questionnaire conducted at the MODEVAR 2020 workshop.
We discuss each source individually in Sections 3.1 to 3.4 and give a summary of the derived
requirements for our language in Section 3.5.

3.1. Guidelines for Designing DSLs
To make our DSL design as good as possible, we list guidelines on how to best design DSLs here.
�ese guidelines are based on the work from Karsai et al. [KKP+14]. �ey have experience from
implementing several DSLs and DSL frameworks, as well as having conducted an extensive
literature survey on the topic. �e guidelines are very general, so not all of them apply to our
language. In the following, we discuss the most relevant guidelines we adhered to for this thesis,
grouped by the categories from the paper.

Language Purpose A language can only be of value when it ful�lls the correct purpose. For
this, it is important to know the aim and usage scenarios early and ask numerous questions.
�is we do by the end of Chapter 3, reviewing the collected usage scenarios by Berger and
Collet [BC19], employing a questionnaire to the community, and discussing the results.

Language Realization Karsai et al. [KKP+14] recommend reusing existing languages, their
language de�nitions, and their type systems as much as possible. �is will help to reduce
the e�orts when implementing the language. �is applies overall, be it an implementation
from scratch or using a sophisticated language workbench. Furthermore, it will result in good
practices of other languages to be reused and the resulting language will be familiar to the users
of the already existing languages.

14 3.2. Collected Reqirements

Language Content Which elements a language should contain is highly dependent on its
purpose. Still, there are general guidelines on which elements to consider. �e language should
be kept as simple as possible with a limited set of elements [KKP+14]. �us, only elements that
are necessary for the envisioned usage should be included. �is includes avoiding concepts that
are too general or redundant to other concepts.

Concrete Syntax For the concrete syntax, Karsai et al. again encourage the reuse of existing
notations for domain experts [KKP+14]. Additionally, these notations should be as descriptive
as possible, making them easier to read and remember. It is also important to keep di�erent
elements distinguishable. If multiple di�erent elements look very similar in the code and only
di�er in a single or a few characters, they might easily be mixed up with one another. In contrast
to the previous guideline of avoiding redundancy, a li�le syntactic sugar (i.e., a shorter syntax
for a special case of a more general construct) has the potential to improve readability. However,
it should be used with caution, since too much sugar can hinder exchange and communication.
�is can happen when individual users rely on personal subsets of the notation to describe their
problems. In this scenario, the same model might be represented in very di�erent ways.

A balance has to be found between compactness, which is important for e�ciently writing a
�le by hand, and comprehensibility when reading the �le. However, not all the decisions have
to be enforced in the grammar. �e use of conventions on how to write the language should
also be incorporated. An example of such a convention is to capitalize class names in Java while
using lowercase for variable names, which is not enforced on a grammatical level.

According to Karsai et al. [KKP+14], semantic whitespace (i.e., layout that changes the
meaning of the program) should be avoided, as it requires special caution by the developers to
use consistent indentation. �is is especially a concern because the di�erent kinds of whitespace
are not easily distinguishable in most editors.

Abstract Syntax For the abstract syntax, Karsai et al. recommend aligning it closely with
the concrete syntax [KKP+14]. �is allows for a simpler parser and printer design. Furthermore,
it ensures that problems can be solved with the concrete syntax close to the concepts of the
domain. Also, Karsai et al. [KKP+14] recommend to include a possibility to split documents
into multiple �les by providing a concept of interfaces and modularity. Organizing the �les in a
hierarchy using packages or namespaces and imports allows for be�er separation of concerns,
structure, and collaboration.

3.2. Collected Requirements
In addition to these general guidelines for DSLs, we now look at more speci�c requirements for
our language. As part of the initiative to build a common variability language by product-line
researchers, Berger and Collet [BC19] collected 14 usage scenarios. First, members of the
initiative submi�ed initial scenarios, which were then rated and ranked in a survey and �nally
re�ned to be more clear. Each member rated the scenarios for its usefulness on a scale of very

3. Reqirements for a Variability Language 15

useful, useful, more or less useful, not useful, and not useful at all. We brie�y discuss these
14 scenarios here, as they are an important source of information for the requirements of our
language. We �rst present the scenarios that have been rated as the most useful and progress in
descending order to those that were deemed less useful.

Exchange �is scenario, contributed by Christoph Seidl, describes a bidirectional transfer
between tools. For instance, a feature model could be created in one tool, exported into the
language, then imported into another tool. �ere, specialized analyses could be conducted,
which are not available in the �rst tool.

�e resulting requirements for the language are that it has to be well documented and should
ideally already provides a library containing a parser and a printer, so it can be easily integrated
into di�erent tools. An open question is how to deal with speci�c details of di�erent formats,
such as layout information, descriptions, or references to implementation artifacts. Including a
construct for each possible bit of information would make the language complex and in turn
harder to integrate. Excluding those would lead to a loss of information on export. A solution
could be to make the language extensible with tool-speci�c data. �is is a core concern to be
considered for the language design.

Mapping to Implementation For traceability, it is desirable to have a mapping between
features and other assets. �ese assets could be requirements, other models, implementation
artifacts, tests, or documentation. �omas �üm formulated this scenario to consider the case
when a speci�ed product line is realized bit by bit. �en it would be useful to distinguish features
that have already been implemented from those that are still missing. �is way, unimplemented
features can be excluded in certain analyses (e.g., when counting the number of di�erent possible
con�gurations). As a requirement, it should at least be possible to specify features that are not
yet implemented.

�is distinction can be achieved by a simple �ag or keyword. In the example in Section 2.1.3,
we distinguish these types of features by marking them concrete or abstract. Mappings to other
assets are more complicated. �e most general, but also limited, solution is to provide a reference
to another �le. Implementing more precise and expressive mappings to speci�c constructs of
speci�c artifacts would quickly add complexity, while still being limited to a prede�ned set
of possible targets. However, as this mapping information can be considered a special case of
tool-speci�c data, described in the previous scenario, the same extension mechanism could be a
solution instead.

Benchmarking In this scenario by David Benavides and Mathieu Acher, di�erent tools use
the language to load the same model and execute some tasks on it, so the execution time can
be compared. For this, tool support for benchmarking should be added. It should be possible
to load realistic real-world models into di�erent tools, execute an operation, and measure the
elapsed time.

It is unclear, how tool support for benchmarking is within the scope of the language. �e

16 3.2. Collected Reqirements

language and any tool support have to be designed, so that tools can easily integrate it, possibly
also o�ering an API to create benchmark reports.

Teaching and Learning According to Klaus Schmid and Rick Rabiser, the language should
be presentable with a few slides. It should utilize familiar concepts from computer science and
product-line engineering, so students can already use the language a�er a short introduction.

Schmid and Rabiser list a concrete visual notation that is similar to feature diagrams in
addition to a textual syntax as a requirement. We argue that there is currently no need for
another visual notation, as the feature diagram is already considered the de facto standard [BC19;
ACL+13; CBH11]. When a textual notation is agreed upon and established in the community, it
might be helpful to de�ne a formal mapping between it and the feature diagram. �is way, a
visual notation can be used when teaching, while at the same time providing means to unify
existing approaches that use feature models or similar graphical notations.

Storage �is scenario is contributed by �orsten Berger. E�cient storage and retrieval of
models should be available for variability tools. �is might either be achieved using a textual
syntax or by storing the model in a database. For databases, a schema should be generated
automatically from the language de�nition.

We, however, focus on a textual syntax for storage, as it is easier to exchange and supported on
any platform. Also, tools exist to support versioning, calculating di�erences between versions,
or compression of plain text �les.

Domain Modeling According to �orsten Berger, the language should support the incre-
mental development of models. Using a hierarchy, the model can be made more detailed over
time. It should not force the user to make all the design decisions regarding group membership,
cross-tree constraints, etc., upfront, but also allow for later re�nement.

As feature models are already hierarchical, this scenario is naturally supported by any
language that adheres to this structure, unless it imposes additional constraints on leaf features.
�ese could change to non-leaf features through re�nement and might have to be adapted.
Group membership can be changed quickly by modifying the corresponding keyword.

Analyses David Benavides and Philippe Collet suggest that it should be possible to run
analyses on the model. An example of such an analysis is given as identifying dead features.

We argue that to ful�ll this requirement, there does not have to be speci�c analysis tooling
for the language itself. Tools that already allow the envisioned analyses exist, so as soon as
integrations into these tools are available, their analysis capabilities can be reused. However,
the expressiveness of the language has a great impact on analyzability. �e more expressive a
language is, the more di�cult it is to reduce speci�c analyses to problems for which e�cient
solvers exist (e.g., the satis�ability problem). �is is an important consideration for the language
design.

3. Reqirements for a Variability Language 17

Model Generation �e language should allow for the generation of random model instances
for testing or benchmarking. �ese generated models should have prede�ned properties (e.g.,
the size of the model). �e scenario is speci�ed by David Benavides and José Galindo. One
strategy to implement this might be to create a mapping to a formal language that already has
tool support for instance generation.

�ough it seems to be useful to be able to generate random model instances, this hardly has
an impact on the design of the language. Random instances can be generated for any language,
given proper tool support.

Configuration �is scenario is described by Christoph Seidl and Klaus Schmid. �e language
should support the con�guration activities for created models. Default selections, describing
features that should be preselected when creating a new con�guration, could be de�ned in the
model.

An open question is, whether con�gurations should be persisted within the language itself
or as an external artifact. An argument for mixing speci�cation and con�guration in a single
�le could be that it might be easier to evolve the feature model keeping the con�gurations
consistent. However, as con�gurations are concrete instances of feature models, which are
conceptually very di�erent from the model itself, we favor separating them into external �les.
�erefore, this scenario does not have a great impact on the design of the language itself.

Testing Sampling of di�erent con�gurations to test for feature interactions should be sup-
ported, as stated by José Galindo. For this, features and constraints stored in the language
should be the source of the input data. It is unclear if further testing-related information is to
be stored within the model or in a separate asset.

Apart from testing-related data that might be stored in the model, this scenario has no further
implications for the language design, except for the need to store features and constraints. �us,
it does not have to be considered further when designing the language.

Writing, Reading, and Editing Rick Rabiser and Philippe Collet propose that the language
should be editable in a simple text editor. Editors with auto-completion and other convenience
features should be easy to generate for tool vendors. A challenge would be to achieve this
independently of a speci�c generation technology.

�is scenario concerns mostly the tool support generated for the language and not the
language itself. Hence, we do not need to consider it for the language design.

Decomposition and Composition For very large models with thousands of features it is
impractical to have all the information in a single �le. �us, the language should support some
composition mechanism to still have all the necessary information available for analyses. It
should be a simple mechanism that is easy to implement for tool vendors. �e scenario is
supplied by �omas �üm.

18 3.2. Collected Reqirements

For teaching and researching new methods with very small example models, this scenario
is not relevant. Real-world models, on the other hand, tend to consist of thousands of fea-
tures, making some mechanism for be�er scalability necessary. Composition could be such a
mechanism.

Model Weaving As proposed by �omas �üm, integrations into programming languages
to enable variability at the implementation level should be available. Examples include business
processes or object-oriented design. �is scenario has been consistently ranked as not useful or
not useful at all. �at is why we do not give it much consideration for our language design.

Reverse Engineering andComposition It should be possible to iteratively construct (reverse-
engineer) a variability model in the language from existing systems. Also, the composition of
existing models to derive a new one should be supported.

�is last scenario has been added by Mathieu Acher and Tew�k Ziadi a�er the survey was
conducted, so there is no ranking available from the community. Although this scenario presents
a di�erent angle, the resulting requirements seem very similar to previous scenarios. �e
domain modeling scenario also describes the iterative speci�cation of models. �e composition
of existing models is covered by the scenario on decomposition and composition above.

Summary of the Collected Requirements

�e community has collected and ranked very di�erent scenarios. Each scenario imposes its
own set of requirements. Some of these con�ict with each other. �e scenario asking for
e�cient storage, for instance, might compromise teaching and learning, as well as writing,
reading, and editing the �le in a text editor. E�cient storage requires a small �le size without
many additional characters. In contrast, teaching and learning are likely to bene�t from longer,
more readable keywords. While the community agrees on the importance of some scenarios,
ranking them consistently as either useful or not useful, they disagree on the usefulness of
others. For example, the scenarios on con�guration, testing, and decomposition are ranked
useful by one part of the community, whereas an equal part considers it not useful. We focus
primarily on the scenarios that were ranked most useful consistently by the community and
that are relevant for the language design. �ese include the scenarios on exchange and e�cient
storage, which result in similar requirements. Further, we consider the aspects of teaching and
learning and mapping to implementation, which are also ranked highly. Finally, we consider
decomposition and composition. �ough its usefulness is disputed in the community, we argue
that it is an essential mechanism to enable scalability for real-world models. In Table 3.1, we
give an overview of the usefulness and level of agreement, as ranked by the community, the
relevance for the design of the language, and whether we consider it further.

A general design recommendation given by Berger and Collet [BC19] that is based on a
scenario by �omas �üm, they later removed, is to o�er di�erent language levels. �ese
levels could be aligned with the di�erent solver classes (Boolean Satis�ability Problem (SAT),
Satis�ability Modulo �eories (SMT), . . .). �is way, a simple language could be used for teaching

3. Reqirements for a Variability Language 19

Scenario Usefulness Agreement Relevance Considered
for Design

Exchange useful strong relevant 3

Mapping to Implementation useful varied relevant 3

Benchmarking useful varied not relevant 7

Teaching and Learning useful varied relevant 3

Storage useful varied some 3

Domain modeling midway varied not relevant 7

Analyses midway varied not relevant 7

Model generation midway varied not relevant 7

Con�guration midway disputed depends 7

Testing midway disputed not relevant 7

Decomposition and composition midway disputed relevant 3

Writing, Reading, and Editing not useful varied relevant 7

Model weaving not useful strong relevant 7

Reverse engineering and composition – – not relevant 7

Table 3.1.: Overview of the scenarios and how they meet the criteria used to determine whether they
are considered for the language design. Usefulness and agreement refer to the ranking
of the community. Relevance for design states whether the scenarios result in actionable
requirements for the language itself.

and most projects. For more involved projects with more complex relationships between features,
a language with more sophisticated language features and reduced analyzability capabilities
could be used. For instance, propositional logic may be included in the basic language level, while
support for �rst-order logic may be included in higher language levels. �is recommendation is
further detailed in a separate paper by �üm et al. [TSS19].

3.3. Analysis of Existing Languages
In this section, we examine existing textual variability languages, which have been proposed
in the community, and compare their bene�ts and drawbacks. First, we visualize the di�erent
syntaxes and features of the languages by using the server example from Figure 2.2. �erea�er,
we compare their design decisions.

3.3.1. Brief Overview of Existing Languages

For each existing variability language, we give an overview of the main characteristics, discuss
possible advantages and drawbacks, and show a short code snippet to demonstrate the concrete
syntax. For this, we use the feature model from Figure 2.2. However, not all of the languages can
represent the entire information present in the feature model. Most notably almost no language

20 3.3. Analysis of Existing Languages

supports abstract features. Also, for some languages, the constraints have to be transformed,
because they do not support implications. We try to represent the example as accurately as
possible in each case, to keep the code snippets comparable.

Textual Languages With References for Hierarchy

�e most visually noticeable di�erence between the languages is whether they use references
or nesting to represent the hierarchy of the features. In this section, we show those that use
references and consider the others a�erward. With referencing, the structure is expressed using
references from the parent feature to the child features. �us, not only trees but also more
general graphs can be represented. However, for the representation of feature diagrams, only
simple trees are used.

FDL First, we use the Feature Description Language (FDL) [vDK02] to express the server
example, which we show in Listing 3.1. Every line de�nes a feature with a keyword for the group
type and the corresponding children. If a child is a leaf node, it does not have to be de�ned in a
dedicated line. Referencing it from a parent feature will also de�ne it. �e constraints are listed
separately at the bo�om. Note that the grammar of this language distinguishes leaf features
from other features. Names of leaf features start with a lowercase le�er, while other features use
an uppercase le�er. �is restriction makes it easy to tell from the features name alone whether
it is a leaf or not. However, it also hinders incremental development and re�nement of models,
as adding children to a previous leaf feature suddenly requires renaming it to start with an
uppercase le�er. In turn, the reference in the tree, as well as any cross-tree constraints have to
be updated.

1 Server: all (FileSystem , OperatingSystem , logging?)

2 FileSystem: more-of (ntfs, apfs, ext4)

3 OperatingSystem: one-of (windows, macOS, debian)

4

5 windows requires ntfs

6 macOS requires apfs

Listing 3.1: Server example expressed in the Feature Description Language (FDL).

GUIDSL Grammars �e GUIDSL grammars [Bat05] are structured similarly to FDL. How-
ever, instead of keywords for the di�erent group types, they use symbols, such as ‘|’, ‘+’, or
‘[]’, commonly used when specifying grammars, to describe the tree structure. Listing 3.2
depicts the server example expressed in GUIDSL. We observe that the or group’s speci�cation
in GUIDSL is split between both the direct parent of the children and its parent, indicated with
a ‘+’ sign. �is should be familiar to language engineers working extensively with grammars,
but might be confusing for other users.

3. Reqirements for a Variability Language 21

1 Server: FileSystem+ OperatingSystem [Logging];

2 FileSystem: NTFS | APFS | EXT4;

3 OperatingSystem: Windows | macOS | Debian;

4

5 Windows implies NTFS;

6 macOS implies APFS;

Listing 3.2: Server example expressed in GUIDSL grammars.

FAMILIAR �e FeAture Model scrIpt Language for manIpulation and Automatic Reasoning
(FAMILIAR) [ACL+13] again uses references to represent the hierarchy and symbols similar to
the GUIDSL grammars. In contrast to them, or groups are speci�ed only on the parent level
(see Listing 3.3). �e constraints in FAMILIAR neither support implications, nor a ‘requires’
keyword. �erefore, the constraints from our example have to be transformed into more basic
boolean operators. �is can be less readable than a ‘requires’ keyword for simple constraints,
especially as the pipe operator (‘|’) is overloaded here. In constraints, it denotes an or, whereas
in feature declarations it separates children into an alternative group.

1 FM (

2 Server : FileSystem OperatingSystem [Logging];

3 FileSystem : (NTFS | APFS | EXT4)+;

4 OperatingSystem : (Windows | macOS | Debian);

5

6 (!Windows | NTFS);

7 (!macOS | APFS);

8)

Listing 3.3: Server example expressed in FAMILIAR.

Textual Languages With Nesting for Hierarchy

�e following languages show the other possibility used to denote the hierarchy. With nesting,
child features are located in blocks, which are surrounded by delimiters (usually some kind of
brackets) or indented by whitespace. �is way, the tree structure is clearly visible for small
models, but it is less compact than referencing and might not scale as well for huge models. An
aspect impairing scalability is that the required indentation level might consume considerable
storage space compared with the actual data. Also, the information which elements are siblings
in the tree might be di�cult to grasp without an editor that supports the folding of subtrees.

PyFML PyFML [Azz18] is a textual variability language based on various Python technologies,
hence its name. It uses an array-style approach to specify children. Otherwise, the keywords
are very similar to FDL. See Listing 3.4 for the corresponding code snippet.

We observe that specifying the hierarchy in this way, with nesting and brackets, is less
compact than in the previous languages, which use references to specify the hierarchy. �is

22 3.3. Analysis of Existing Languages

is especially pronounced when using a layout with meaningful indentation and one line per
feature. However, in these small models, as a result, the hierarchy is clearly visible through the
indentation, without the need to trace references through the model.

1 FM = Server (1..1): all [

2 FileSystem (1..1): moreof [

3 NTFS (0..1),

4 APFS (0..1),

5 EXT4 (0..1)

6],

7 OperatingSystem (1..1): oneof [

8 Windows (0..1),

9 macOS (0..1),

10 Debian (0..1)

11],

12 Logging (0..1)

13];

14 Windows implies NTFS;

15 macOS implies APFS;

Listing 3.4: Server example expressed in PyFML.

Clafer Another textual variability language is Clafer [BCW11]. It uses nesting and indentation
to express the hierarchy and omits keywords where it can. �is makes it look similar to code
wri�en in Python. In Clafer, constraints are not speci�ed in a separate list at the end of the �le
but are children of individual constraints. See Listing 3.5 for the example in Clafer. Another
design choice is that the group type is located at the parent, but the keyword is placed in front
of the name of the feature. �is might give the impression that the feature is a group and not
just has a group.

1 Server

2 or FileSystem

3 NTFS

4 APFS

5 EXT4

6 xor OperatingSystem

7 Windows

8 macOS

9 Debian

10 [Windows => NTFS;]

11 [macOS => APFS;]

12 Logging?

Listing 3.5: Server example expressed in Clafer.

3. Reqirements for a Variability Language 23

SXFM �e Simple XML Feature Model (SXFM) [MBC09] uses XML as its overall structure
while incorporating a special DSL inside the tags. See Listing 3.6 for the example. �e actual
DSL uses nesting and is sensitive to indentation. It has very short keywords comprised of a
colon and a single character. SXFM requires IDs in addition to the name for every feature which
then can be used in the constraint part. It has the groups (speci�ed with cardinalities) located
between the parent and the children. SXFM does not support implications, so the constraints
have to be transformed as in FAMILIAR.

1 <feature_model name="FM"><feature_tree >

2 :r Server (id_srv)

3 :m FileSystem (id_fs)

4 :g [1,*]

5 : NTFS (id_ntfs)

6 : APFS (id_apfs)

7 : EXT4 (id_e4)

8 :m OperatingSystem (id_os)

9 :g [1,1]

10 : Windows (id_win)

11 : macOS (id_mac)

12 : Debian (id_deb)

13 :o Logging (id_log)

14 </feature_tree ><constraints >

15 c1: ˜id_win or id_ntfs

16 c2: ˜id_mac or id_apfs

17 </constraints ></feature_model >

Listing 3.6: Server example expressed in the Simple XML Feature Model (SXFM).

It is unclear, how the overall XML structure is an advantage when the actual data is modeled
in its separate DSL. It seems as if one would require an XML library in addition to the parser for
the DSL. �e single-character keywords might be fast to type but impede readability. Further,
the advantage of being fast to type is hampered by the requirement for unique identi�ers in
addition to feature names. �is way, every feature name has to be typed twice, unless shorter
unique IDs, such as incrementing numbers, are used. However, that would considerably decrease
the readability of constraints relying on those IDs for their references.

VSL Another textual approach to variability modeling is the Variability Speci�cation Language
(VSL) [APS+10]. Instead of indentation to express the extent of blocks, it uses parentheses. VSL
also uses cardinalities instead of prede�ned groups that are located between parent and children.
Although cardinalities are more expressive than prede�ned groups, such as or and alternative,
they can also be more di�cult to read at a glance. �e syntax for constraints is also very di�erent
from other approaches before with the implication wri�en as link a = needs => b;. �is
might be unintuitive for users that are familiar with the mathematical notation or the simpli�ed
constraints using keywords such as requires or excludes.

24 3.3. Analysis of Existing Languages

1 featureModel FM {

2 Server! (

3 FileSystem! ([1..*] (

4 NTFS, APFS, EXT4

5)),

6 OperatingSystem! ([1] (

7 Windows, macOS, Debian

8)),

9 Logging?

10);

11 link Windows = needs => NTFS;

12 link macOS = needs => APFS;

13 }

Listing 3.7: Server example expressed in the Variability Speci�cation Language (VSL).

TVL �e Text-based Variability Language (TVL) [CBH11] uses full-length keywords, curly
braces, and nesting to represent feature models (Listing 3.8). Constraints in TVL are not speci�ed
in a separate list at the end of the �le but are children of other features. A convention is to
place a constraint beneath one of the referenced features in the constraint. �is enables be�er
scalability for very large models with many hundred constraints, because the constraints are
located near the involved features, instead of hidden in a long list of constraints. However, for
small models, users might miss the overview of all constraints as a single list at the end of the
�le and would need tool support to provide it.

1 root Server {

2 group allOf {

3 FileSystem {

4 group someOf {NTFS, APFS, EXT4}

5 },

6 OperatingSystem {

7 group oneOf {Windows, macOS, Debian}

8 Windows requires NTFS;

9 macOS requires APFS;

10 },

11 opt Logging

12 }

13 }

Listing 3.8: Server example expressed in the Text-based Variability Language (TVL).

�TVL �e Micro Text-based Variability Language (�TVL) [CMP+10] is based on TVL but aims
to be simpler. �e sole di�erence visible in our example is that simple ‘requires’-constraints can
be speci�ed in a shorter form. �e parent feature can be omi�ed when it is on the le� side of
the constraint. �us, we do not include a dedicated listing for this language.

3. Reqirements for a Variability Language 25

VELVET VELVET [RST+11], see Listing 3.9, is similar to TVL but uses more keywords. At �rst,
it looks similar to a Java program with curly braces and semicolons, although it is not executable,
merely describing feature models. With the most keywords of the languages presented so far, it
is easily understandable, even for novices. However, in the example, the keywords use more
characters than the actual data. �is can make that data di�cult to spot between the keywords.

1 concept Server {

2 mandatory feature FileSystem {

3 someOf { feature NTFS; feature APFS; feature EXT4;}

4 }

5 mandatory feature OperatingSystem {

6 oneOf {feature Windows; feature macOS; feature Debian;}

7 }

8 feature Logging;

9 constraint Windows -> NTFS;

10 constraint macOS -> APFS;

11 }

Listing 3.9: Server example expressed in VELVET.

VM In an industrial project, a variability modeling approach called VM [AAG+19] has been
created. It is speci�cally tailored to the video domain, but it can also be used for more general
variability modeling. In Listing 3.10, we show our running example expressed in this language.
It also uses nesting with curly braces and aims at limiting the number of keywords. As most
languages presented thus far, it stores the constraints in a separate list at the bo�om. However,
it only marks the beginning of a new section with a keyword. �is is a way to save keywords,
especially when there are many constraints in a �le, but still maintaining readability.

1 Relationships:

2 Server {

3 FileSystem { someOf {

4 NTFS APFS EXT4

5 }}

6 OperatingSystem { oneOf {

7 Windows macOS Debian

8 }}

9 ? Logging

10 }

11 Constraints:

12 Windows requires NTFS

13 macOS requires APFS

Listing 3.10: Server example expressed in VM.

26 3.3. Analysis of Existing Languages

IVML �e INDENICA Variability Modeling Language (IVML) [SKE18] aims at being more
similar to programming languages, instead of merely representing feature models. It uses �elds,
assignments, and enumerations to describe both the variability and the con�guration. �us, the
example is implemented in a very di�erent way, see Listing 3.11. �e leaf features are realized
using the values of enumerations. �ese values could then be assigned to the corresponding
�elds when creating concrete con�gurations. Still, the constraints restrict what can be assigned
to those �elds. �ough this language is more expressive than most others, it is also the most
unintuitive to represent plain feature models in. �e tree structure from the feature model is
lost. Instead, there are typed variables for features. Additionally, the constraints over possible
variable assignments require the most characters of all presented examples.

1 project Server {

2 compound Server {

3 enum FileSystem {NTFS, APFS, EXT4};

4 enum OperatingSystem {Windows, macOS, Debian};

5

6 Boolean logging;

7

8 FileSystem fileSystem;

9 OperatingSystem operatingSystem;

10 operatingSystem == Windows implies fileSystem == NTFS;

11 operatingSystem == macOS implies fileSystem == APFS;

12 }

13 }

Listing 3.11: Server example expressed in the INDENICA Variability Modeling Language (IVML).

3.3.2. Comparison of the Presented Languages

A�er introducing various textual variability languages, we now summarize and compare the
di�erent design decisions of the presented languages. For this, we consider mostly the design
of the concrete textual syntax, as a comparison of their di�erent language features has already
been done in ter Beek et al. [tBSE19].

We show an overview of the languages and their design choices in Table 3.2. One can see
that three languages use references to represent the hierarchy, while nine use nesting. �ose
languages that use references, do not have additional blocks to mark. Instead, all the information
regarding a feature is present in a single line. �e other languages use either curly braces,
indentation, parentheses, or square brackets to mark the extent of blocks. Curly braces are most
common with �ve languages using them. Indentation is used in two languages. Parentheses
and square brackets are used by only one language each.

�ree languages only use symbols or single character keywords to be as short as possible.
�e other languages use full-length words as keywords, but vary in how many keywords
per language construct are used. VELVET might be the wordiest language, which even uses

3. Reqirements for a Variability Language 27

Language Hierarchy Blocks Keywords Line Constraint Location
Endings Location of Groups

FDL reference none full new line separate parent
GUIDSL reference none symbols semicolon separate parent1

FAMILIAR reference none symbols semicolon separate parent
PyFML nesting [] full semicolon separate parent
Clafer nesting indentation minimal new line in-line parent
SXFM nesting indentation symbols new line separate between
VSL nesting () minimal semicolon separate between
TVL nesting {} full semicolon in-line between
�TVL nesting {} full semicolon in-line between
VELVET nesting {} full semicolon in-line between
VM nesting {} minimal new line separate between
IVML nesting {} full semicolon in-line n/a

1 for or groups also the parent’s parent

Table 3.2.: Summary of design decisions of the presented languages regarding the concrete syntax.

the keyword ‘feature’ for each feature. Most other languages minimize the use of keywords
by deploying sensible defaults or combining several similar elements under one keyword.
For instance, by having a section for constraints instead of writing ‘constraint’ before each
constraint.

Semicolons are used by eight languages to end lines. Only four languages do not use line
delimiters. In contrast, the distinction between whether to store constraints in a separate list or
as children beneath features is distributed evenly over the languages. Seven languages have a
separate list, while �ve store them as children.

Five languages specify the location of groups or cardinalities at the parent, while six store this
information between the parent and the children. For this, we also count the GUIDSL grammars
as part of the �rst category, where the information about or groups is distributed between both
the parent and the parent’s parent. IVML is excluded here, as it does not have a concept of
groups.

3.4. �estionnaire From the MODEVAR 2020
Workshop

We created a questionnaire that has been conducted at the MODEVAR 2020 Workshop in
Magdeburg, Germany. �is way we could gather the assessments, preferences, and needs of the
individual members of the SPLE community beyond what was covered in the usage scenarios
and the existing languages. �e participants worked in pairs on the questionnaire, so they
could discuss the questions, their preferences, and give well-thought-out answers. We give an

28 3.4. �estionnaire From the MODEVAR 2020 Workshop

overview of the questions we developed in Section 3.4.1 and discuss the results in Section 3.4.2.

3.4.1. Overview of the�estionnaire

�e survey starts with questions concerning the most accessible aspect of the language —
its concrete syntax. �e concrete syntax is what the user has to read and write in the end.
Furthermore, people tend to have strong preferences on certain aspects of the concrete syntax.
�us, when presented with a concrete example, participants can directly grasp what the question
is about and can give their opinion. �is is in contrast to thinking about more abstract topics,
where much more imagination and indirection is required from the participant to obtain an
answer. We choose to start with examples of di�erent decisions for the concrete syntax to ease
into the more abstract questions. �e following sections give an overview of the questions in
the order of appearance in the questionnaire. For reference, we also include the complete list of
questions as they appeared in the questionnaire in the appendix (cf. Appendix A.1).

Since we expected the total number of responses to be small, we wanted to maximize the
qualitative output in addition to the quantitative results. Hence, for each question, we ask for
the reasoning behind the given answers. �is includes providing reasons for their answer as
well as reasons against the other answers. Also, we provide an additional text �eld for comments
for each question and the questionnaire as a whole. Finally, we give participants the option to
provide their names, so we can quote their comments here.

Q1: Keyword Length

Keywords can be long, naming the thing they represent, very short symbols, or single characters.
�e former is easy to understand when read, but might be cumbersome to write without adequate
editor support. Also, it adds visual noise and can make lines unnecessarily long compared to the
actual content the user represents. �is also increases the �le size, although nowadays space
is no longer a huge concern, especially with the ability to compress the �les. Using a symbol
as a keyword is very short and only adds one character to the length of a line or the size of a
�le, but usually does not convey any meaning by itself. A user has to memorize the meaning of
every symbol to quickly edit a �le. �is introduces a steep learning curve that is o�-pu�ing for
novices. It might still be bene�cial for experts, as it enables very fast reading and writing once
accustomed. A third option is a compromise between long and short keywords. Abbreviated
keywords (e.g., “alt” instead of “alternative”) might convey enough meaning for novices to be
able to quickly learn the language, but still be short enough so experts will want to write them.
Which of these options is best for the language is strongly dependent on the envisioned use
cases and the preferences of the users.

Q2: Line Breaks

In many languages, such as Java or C, lines are terminated with a semicolon. Other languages,
such as Python or Bash, do not require such a character. For very long lines that should be split
into multiple lines, this means that an escape character for the line breaks is required. None of

3. Reqirements for a Variability Language 29

those solutions are ideal, as they force the user to either explicitly state their intent to end a
line or to continue a line. We ask which of these approaches the participants prefer.

Q3: Structuring

When expressing information that logically belongs to another element (e.g., a�ributes or
children of features), the beginning and the end of this ‘block’ has to be marked to set it apart
from other elements. �is is assuming it is not done by referencing the element it belongs to.
�ere are di�erent ways to mark these blocks. It can be realized with indentation as in Python
or using special characters to mark the beginning or the end. Java uses curly braces, while LISP
uses parentheses. We ask which of these options should be used.

Q4: Hierarchy

Feature models are inherently hierarchical, so this has to be re�ected in the language. To
represent hierarchies in a textual format, one can use nested blocks to represent children or
use references to represent the hierarchy as a graph (cf. Section 3.3). Both forms have their
advantages and disadvantages. For small models, combining nesting with proper indentation is
an intuitive way to represent hierarchies, as it can be comprehended at a glance. However, this
approach does not scale very well. With bigger models, nesting results in a large amount of
indentation for the deeper levels. �e added whitespace displaces the actual information. To
this end, �les become large and hard to read. Also, when many children appear between two
sibling features in the �le, the information that these elements are indeed siblings, cannot easily
be seen anymore. However, this concern is mitigated by editors that support the folding of
sections with more indentation. References from parents to children scale be�er in this regard
but add their own disadvantages. �ere is added redundancy through the repeated names in
the references, which also introduces a possible source of errors when editing �les manually.
�e tree structure cannot easily be seen. Instead, it has to be reconstructed by tracing through
the references. We ask if the hierarchy should rather be represented using nested blocks or as
references to children.

Q5: Group Membership

All the di�erent languages we introduce in Section 3.3 have support for groups or cardinalities,
so the question arises, where to put the corresponding keyword. In principle, there are three
possibilities: they can be located at the parent, at the children, or in between. At the parent
(the semantic being ‘I have an or group’) is the least �exible, as there is no way to specify on a
per-child basis whether they should be mandatory or optional. More �exible is the speci�cation
at the children, with a semantic of ‘I belong to an or group’, as it allows one to have di�erent
group types beneath the same parent feature. However, this introduces some redundancy and a
possible source for errors, as the same group type has to be repeated for every child. �e most
�exible solution is to have the keyword in between. �is way, one can even have multiple groups
of the same type beneath one parent and eliminate the redundancy of the previous approach.

30 3.4. �estionnaire From the MODEVAR 2020 Workshop

However, depending on whether nesting or referencing is used, this variant introduces another
level of nesting or indirection, so none of the solutions is ideal. Feature diagrams are actually
inconsistent here, as the marker for mandatory or optional is on the child, while the markers
for alternative and or groups are at the parent. If the goal was to be as close to the notation of
feature diagrams as possible, one could adopt this same inconsistency.

When making decisions about the concrete syntax, this o�en has implications on the abstract
syntax, too. However, the following questions are explicitly more abstract, concerning the
scope, expressiveness, and decisions regarding the realization of the language. Although the
overall structure of the abstract syntax can be reused from the de facto standard notation of
feature diagrams, there are still many details to be considered.

Q6: Groups, Cardinality, and Constraints

�e next question concerns the expressive power of groups. More speci�cally, whether groups
are expressive enough or if something more general, such as group cardinalities or constraints
(e.g., at least or at most n elements out of a set of features), is needed. �e groups or and
alternative are special cases of cardinalities [CHE05] and are both simpler and more limited
in their expressiveness than cardinalities. A restriction to groups might be desirable to aid
learnability and analyzability, but might also be too restrictive in some cases.

Q7: Scope

�is question aims at determining, which language features are necessary, nice to have, or just
not needed and too complex. For each of the following items, participants can choose on a scale
between ‘absolutely necessary’ and ‘strongly against’ plus ‘not familiar with the concept’, in
case participants are only familiar with some of the concepts:

Default selections. Features could be marked as default, so they are preselected when
creating a new con�guration in a con�guration editor (cf. Section 3.2).

Abstract features. Features that do not have a mapping to an implementation artifact,
but are intended solely for structuring, could be marked as abstract features in contrast
to regular concrete features (cf. Section 2.1.3).

Save entire con�gurations. In addition to the feature model describing the variability,
entire con�gurations describing instances in the space of variability could be persisted in
the syntax.

Attributes for features. Selections of features are boolean in nature. Some languages,
however, allow for additional a�ributes with di�erent data types, such as integers.

References to other feature models. As a simple mechanism for composition, another
feature model could be referenced and included as a subtree (cf. Section 3.2).

Feature model interfaces. A more sophisticated mechanism for composition, aiming
at enabling be�er scalability, is to use interfaces, similar to interfaces in object-oriented
programming [SKT+16].

3. Reqirements for a Variability Language 31

Extension mechanism for arbitrary data. Tool-speci�c data (e.g., layout information)
or other details in a given notation could be added to a model using a generic extension
mechanism, instead of trying to provide a speci�c syntax for each possible datum.

Q8: Expressiveness of Constraints

�is question is about how much expressive power is required for constraints. Participants
decide whether propositional logic is expressive enough for their purposes or if �rst-order logic
or something even more expressive is needed. Limiting the language to propositional logic
would be a bene�t, as it is the simplest to analyze.

Q9: Separation of Concerns

For each piece of information, we have to decide where it should be stored in the �le. �is could
be in-line, where the feature itself is stored (i.e. as a keyword or in a nested block), or separately.
Separately could be a separate list or section in the same �le or a separate �le entirely. When
the information is stored separately, the link to the corresponding feature or features has to
be established by reference. �is reference can point from the feature to the information or
from the information to the corresponding feature. For instance, constraints are o�en listed
separately in the same �le and point to the features they use. In languages that use references
to represent their hierarchy, the parent feature has pointers to the children, demonstrating the
inverse direction of references. With this question, we determine, how the community would
categorize di�erent kinds of information from the abstract syntax. It would be interesting to
�nd a consistent rule behind the categorization, but there might not be any. �ese are the
di�erent kinds of information we ask participants to categorize:

Hierarchy. How the hierarchical tree structure should be represented.

Abstract feature �ag. Whether the feature has a corresponding implementation (con-
crete) or is only for structuring (abstract).

Constraints. Cross-tree constraints that have to be ful�lled in addition to group mem-
bership or cardinalities.

Default selections. Preselected features in a con�guration editor.

Con�gurations. �e speci�cation of which features are included in a speci�c product.

Arbitrary additional data. Tool-speci�c data (see above).

Q10: Reuse of Existing Formats

To minimize the implementation and integration e�ort, one could use or adapt an existing
serialization format. Examples for these include XML, YAML, JSON, EDN, and OpenDDL.
However, using an o�-the-shelf format has considerable drawbacks. As they are made for
generic data and lack knowledge of the domain, they tend to be more verbose than a DSL. Also,
they have no support for specialized constructs such as constraints, so they would either have

32 3.4. �estionnaire From the MODEVAR 2020 Workshop

to be wri�en as a string or as the AST of the constraint. Neither option is ideal. Still, it is
interesting what the community thinks about reusing existing formats.

Q11: Tool Lock-In

�e �nal question is about the trade-o� between IDE support and tool lock-in. We ask the
participants how much IDE support they want and, in return, how much tool lock-in they are
willing to endure. �e spectrum of possible answers ranges from no tool support and only an
EBNF speci�cation to a projectional editor with maximal tool lock-in.

3.4.2. Results of the�estionnaire

�ere are ten submissions to the questionnaire. As mentioned before, the participants worked
in pairs on the questions, so in total 20 participants worked on the questionnaire. We go over
the questions again, presenting the results as well as commenting on interesting observations.

Q1: Keyword Length

As shown in Figure 3.1, �ve out of ten answers voted for long keywords. Some comments
mentioned that symbols were confusing, readability was a high priority and long keywords
were okay to type with IDE support. Two participants voted for abbreviated keywords and
symbols, respectively. Abbreviated keywords have been called a perfect mix. One participant
was undecided, saying that it depends on the purpose of the language, but either long keywords
or symbols should be used. �is result is consistent with the analyzed existing languages, where
most languages also use long keyword names.

0 1 2 3 4 5

Symbol
Abbreviated

Long

2
2

5

Number of Participants

Figure 3.1.: Voting results on the length of keywords.

Q2: Line Breaks

Whether to end lines with a semicolon or to use line breaks resulted in a tie. Five voted for
semicolons, while the other �ve submissions voted for line breaks, as depicted in Figure 3.2. Line
breaks were said to look cleaner, lines might not get too long and semicolons were meant for
programmers, not for product-line engineers. On the other hand, Gilles Perrouin and Michael
Nieke claim that the backslash that is commonly used to break lines is misleading and potentially
very unintuitive for non-experts. Conversely, most of the existing variability languages use
semicolons to break lines.

3. Reqirements for a Variability Language 33

0 1 2 3 4 5

Empty lines
Line Breaks

Semicolon

1
5
5

Number of Participants

Figure 3.2.: Voting results on whether to end lines with a semicolon or break long lines.

Q3: Structuring

Regarding the structure, indentation was more popular than curly braces with six votes versus
four, see Figure 3.3. �e concept of indentation to structure �les was said to be well-known
to most potential users. One participant suggested that curly braces could be allowed, but not
made mandatory. �is, however, would violate one of the general design guidelines to avoid
redundant concepts. Also, from a parser’s view, this would not solve any issues with ambiguities,
as it must still be possible to parse both concepts unambiguously. Two participants voted for
parenthesis. �e LISP-style was called trivial to parse and easy to edit with the appropriate
editor mode. �is result is in stark contrast with the existing languages, where only two out of
the twelve languages rely on indentation for structuring.

0 1 2 3 4 5 6

Parentheses
Curly Braces

Indentation

2
4

6

Number of Participants

Figure 3.3.: Voting results on which means of structuring to use.

Q4: Hierarchy

Nesting versus references was a close match with �ve submissions in favor of references and
four for nesting. Two submissions pleaded that both should be allowed. Arguments were voiced
in favor of references, claiming be�er scalability and no need for special handling of references
into other models. As a counterargument, the added redundancy when using references was
mentioned. Again, compared to the existing languages, this result is surprising, as there are
only three out of the twelve that use references. Figure 3.4 visualizes the results.

Q5: Group Membership

Figure 3.5 shows that it was quite clear to the community, where to put groups. Only one
submission voted for ‘at the parent’, one suggested in the constraints, two said on the children,

34 3.4. �estionnaire From the MODEVAR 2020 Workshop

0 1 2 3 4 5

Both
Reference

Nesting

2
5

4

Number of Participants

Figure 3.4.: Voting results on how to represent hierarchy.

whereas seven voted for ‘in-between’. With one submission calling for the possibility to have
the group keyword on the same line as the �rst item when using in-between groups.

0 1 2 3 4 5 6 7

In-Between
On Children

At Parent
In Constraints

7
2

1
1

Number of Participants

Figure 3.5.: Voting results on where to locate the group keyword.

Q6: Groups, Cardinality, and Constraints

Many submissions opted for multiple mechanisms to specify the group type of child features, as
shown in Figure 3.6. �us, there are six votes for simple groups, seven votes for cardinalities and
four votes for constraints on at least or at most n features out of a speci�c set. One comment by
Gilles Perrouin and Michael Nieke indicated that the proposed constraints, though interesting,
might be hard to reason about, so they would belong into a higher language level.

0 1 2 3 4 5 6 7

At Least / At Most
Cardinality

Groups

4
7

6

Number of Participants

Figure 3.6.: Voting results on whether groups are expressive enough or if cardinalities or specialized
constraints are required.

Q7: Scope

In this question, the participants voted whether presented language features should be included
in the language or not. Figure 3.7 shows the detailed voting results. �e community tends

3. Reqirements for a Variability Language 35

slightly towards including default selections for con�gurations. Abstract features are wanted
by the community, although one comment noted that it might simply be a special case of
more general a�ributes for features. For the ability to save con�gurations, participants deem
it bene�cial to specify a default way, but not in the main model or the main language. �e
community favors a�ributes for features. References to other models should also be included.
Interfaces, in contrast, were deemed too complex for the language or the concept was not
understood. �is is in line with the state of research on interfaces for feature models, which is
still in a very early stage, where much is yet to be understood and de�ned [SKT+16]. Also, most
submissions voted in favor of an extension mechanism for arbitrary additional (tool-speci�c)
data.

Defa
ult Sel

ect
ion

s

Abst
rac

t Fea
tures

Sav
e Con

�gu
rat

ion
s

A�rib
utes

for
Fea

tures

Refe
ren

ce
Fea

ture
Mod

els

Fea
ture

Mod
el I

nter
fac

es

Exte
nsio

n Mech
an

ism
0

2

4

6

8

1 1
2 2 2

1

3
4

6

3

7

3

0

3
2 2

0 0

4

1
22

1 1 1 1

5

2
1

0

3

0 0 0 00 0
1

0 0

3

0N
um

be
ro

fP
ar

tic
ip

an
ts

Absolutely Necessary Nice to Have Undecided Prefer not Absolutely not Not Familiar

Figure 3.7.: Voting results on which language features should be part of the scope of the language.

Q8: Expressiveness of Constraints

Propositional logic should be included, as nine out of ten submissions voted in favor of it
(Figure 3.8). �is is in line with the �ndings by Knüppel et al. [KTM+17], showing evidence
that simple require and exclude constraints are not expressive enough for real-world models
and that propositional logic is indeed required. �ree submissions also voted for �rst-order
logic. However, the comments say that it is not meant for the basic language level, but should
be available with limited functions in higher levels to be compatible with existing languages.

Q9: Separation of Concerns

For this question, there were di�erent kinds of information, where the community should vote
on whether to specify them in-line, by reference in the same �le, or in separate �les. We show
the whole range of answers in Figure 3.9. In summary: according to the submissions, both
the hierarchy and whether features are abstract should be speci�ed in-line. Constraints were
almost unanimously voted to be put in a separate list within the same �le. �is is consistent

36 3.4. �estionnaire From the MODEVAR 2020 Workshop

0 1 2 3 4 5 6 7 8 9

First-Order Logic

Propositional Logic

3

9

Number of Participants

Figure 3.8.: Voting results on the required expressiveness of constraints.

with existing languages, most of which have a separate list of constraints. �e community was
undecided on the best location of both default selections and additional data. However, entire
con�gurations should be stored in separate �les. One comment suggested that a criterion for
what should be speci�ed at the feature could be whether the information is regarding one or
multiple features. �is would explain why the product-line researchers assign abstract features
to be speci�ed in-line but place constraints in a separate list.

Hier
arc

hy

Abst
rac

t Fea
tures

Con
str

ain
ts

Defa
ult Sel

ect
ion

s

Con
�gu

rat
ion

s

Arbi
tra

ry
Data

0

2

4

6

8 7
6

1 1
0

1
2

0

7

2

0
1

0
1 1

2

6

2
1

3

1

5
4

6

N
um

be
ro

fP
ar

tic
ip

an
ts

In-Line By Reference Separate File Not Sure

Figure 3.9.: Voting results on what to specify in-line, by reference or in separate �les.

Q10: Reusing Existing Formats?

Whether to use an existing format got mixed responses (Figure 3.10). Four submissions were
undecided with one of them tending more towards a no. Another four submissions voted for
yes, although they were split on the format to use. JSON, YAML, XML, and a compromise, such
as SXFM with a DSL inside an XML tag, were suggested. Two submissions voted against using
an existing format, because “we already have that”, probably referring to SXFM or tool-speci�c
formats, such as FeatureIDE’s XML.

3. Reqirements for a Variability Language 37

0 1 2 3 4

Undecided
No
Yes

4
2

4

Number of Participants

Figure 3.10.: Voting results on whether to reuse an existing serialization format.

Q11: Tool Lock-In

Lastly, regarding tool support, no one voted for projectional editors. A compromise between no
and full editor support was the most popular option. Six submissions voted in favor of only
an EBNF speci�cation, seven found a small independent default library valuable, while four
submissions went for the full IDE support and tool lock-in. Figure 3.11 shows the voting results.

0 1 2 3 4 5 6 7

No Preference
Projectional Editor
Editor Integration

Default Library
EBNF

2
0

4
7

6

Number of Participants

Figure 3.11.: Voting results on the level of tool lock-in that is tolerable.

One general observation we made when evaluating the survey was that some participants
seem to envision the language to be similar to a programming language, such as Python or Java.
�ey seem to choose whichever they are most familiar with. In contrast, others seem to have
di�erent stakeholders in mind and deem concepts from programming languages too technical.

3.5. Summary of the Requirements
In this chapter, we looked at general design guidelines for DSLs, the collected requirements
from the community [BC19], existing textual variability languages, and the results from our
questionnaire. Now we summarize the observations and recommendations for our language.

From the 14 collected requirements, we can conclude that exchange, mapping to implementa-
tion, teaching and learning, and storage are the most important scenarios to the community
with actionable requirements. It follows that the language should be simple so it can be easily
integrated into various tools and taught at universities. At the same time, it should be expressive
enough to represent real-world models that can be used for benchmarking and everyday work of
product-line engineers. �ough the importance of decomposition and composition is disputed

38 3.5. Summary of the Reqirements

among the community, we argue that it is an important requirement for scalability to large,
real-world models. �us, we also consider it in the language design.

�e analysis of twelve existing languages showed that there is a vast number of individual
design choices in these languages. Still, every language combines them in a slightly di�erent
way. �ese decisions sometimes seem to be based on preference, while others are born from a
speci�c need for a project. All of the languages have been introduced to the community with a
paper, explaining the reasoning behind the language, but not resulting in widespread acceptance.
By collecting requirements, discussing, and gathering feedback from the whole community,
acceptance might improve. From our questionnaire at the MODEVAR 2020 workshop, we can
deduce that there are some decisions that product-line researchers seem to agree on, but on
others, they are completely divided. Combining and weighing these sources of opinions, we
arrive at the following design decisions that guide the de�nition for our language.

Regarding the concrete syntax of the language:

Full-length keywords are preferred over short symbols.

Indentation is preferred over curly braces.

Both the usual group keywords as well as cardinalities should be available.

It is unclear, whether to use references or nesting to represent the hierarchy.

Regarding the scope:

�e language should support abstract features.

Default selections for con�guration processes should be available.

A�ributes should be present, although without a type system and not within constraints,
to keep the language analyzable with a SAT solver.

�ere should be an extension mechanism for tool-speci�c data.

Simple references need to be supported to enable the decomposition of large models.

Propositional logic should be the expressiveness of constraints.

Regarding the implementation: To enable integration into other tools, both an EBNF spec-
i�cation and a small default library with a parser and a printer should be available. Integration
into editors with syntax highlighting would be nice, but should not add to the size or the
dependencies of the default library.

With these requirements set and an insight into the needs and preferences of the community,
we propose speci�c concepts for a language in Chapter 4, closely adhering to the requirements.
We continue by implementing tool support for the language in Chapter 5, before evaluating the
approach in Chapter 6.

4. Proposal for a
Universal Variability
Language

A�er examining, weighting, and condensing di�erent sources of requirements, we now show
our proposal for a language. �e community was split on whether to use nesting or references
to represent the hierarchy of feature models, with valid and important arguments for both
sides. �us, we present both approaches in two di�erent language concepts. �is way, we can
compare them side by side and see which the community prefers in the evaluation (Chapter 6).

First, we present the characteristics that are common to both language concepts in Section 4.1.
�en, we show the concept that uses nesting to represent the hierarchy in Section 4.2. In
Section 4.3, we show the other concept that uses references. As both concepts share the same
means of decomposition and constraints, we introduce those a�erward in Section 4.4 and
Section 4.5, respectively.

4.1. General Characteristics
Features and their hierarchy are the basic elements in both feature models and all of the presented
languages in Section 3.3. �ereby, they should play a central role in our language as well. �is
is in accordance with the guideline to reuse concepts from other languages whenever viable (cf.
Section 3.1). For readability, we use full-length keywords, but avoid having to write too many
of them, when they can be omi�ed. �is reduces the e�ort of writing out those keywords and
shrinks the �le size for storage. For instance, we do not include a feature keyword that has to
be repeated for every feature. Instead, we opt for the single keyword features that marks the
beginning of the feature section in the �le. In that section, unless some keyword or context
dictates otherwise, every new line will denote a new feature per default.

�e names of features start with a le�er, optionally followed by other le�ers, digits, or
underscores. Additionally, we assume feature names to be unique within a �le, so referencing by
name can be done without ambiguities. We avoid allowing exotic characters, such as whitespace
or other special characters. �is way, identi�ers in our models can safely be converted into
most other formats, although not vice versa. Translating names with exotic characters to our
language can be achieved by creating a�ributes (e.g., a description or a display name, see below).
�e only format of the analyzed existing languages that has more restrictive identi�ers is FDL.
It requires identi�ers of leaf features to start with lowercase le�ers and other feature names
to start with uppercase le�ers (cf. Section 3.3.1). �us, translating identi�ers into FDL would

40 4.1. General Characteristics

require adjusting the case.
Cardinalities are allowed in addition to the usual groups or and alternative. Cardinalities have

been very popular in the �rst questionnaire (cf. Q6 in Section 3.4.2) and allow more �exibility
than groups without introducing much complexity. For the concrete syntax, we reuse the
notation from the UML speci�cation [Obj17, Sec. 7.5.4.1]. �at is [1..*] for the or group and
[1..1] for the alternative group. When lower and upper bounds are equal, as it is the case for
the alternative group, the shorthand [1] can be used.

Since most participants from the �rst questionnaire found abstract and default features as well
as a�ributes and an extension mechanism for arbitrary data useful, we include these features
into the language. However, to avoid complexity we combine all those into the single concept
of a�ributes. A�ributes in our language are, in essence, associative arrays, also known as maps
or dictionaries in programming languages. �ey can be a�ached to any feature and contain
pairs of keys and values. Keys are always identi�ers. Values can have typical primitive data
types, present in most programming languages. �ese consist of booleans, strings, integers,
and �oating-point numbers. For simple aggregate data types, vectors and maps are available.
By convention, the a�ributes “abstract” and “default” can denote abstract and default features,
respectively. In turn, we expect boolean a�ributes to be used o�en, so for boolean a�ributes with
the value “true”, one can omit explicitly stating the value to make the code more concise. Other
use cases for these a�ributes include the speci�cation of constraints, mapping information from
a feature to its implementation, more detailed descriptions of a feature, or any other tool-speci�c
data. �is way, users can choose whether they want to list all the constraints separately at
the end of the �le or beneath corresponding features. For now, a�ributes can only have static
values and can not be used in constraints to keep the language simple to analyze using SAT
solvers, as more powerful SMT solvers are o�en much slower for certain problems [TSS19]. A
type system could be added later for a second language level. With it, one could specify types
(e.g., integers) for speci�c variables in a�ributes, which could then be used in constraints and
initialized during con�guration. �is would only require li�le new concrete syntax to learn but
call for an SMT solver to still analyze the model.

Specifying whole con�gurations is out of scope for this language concept, as the con�guration
process is a second, distinct step from modeling the variability. Also, participants of the
questionnaire agree that it belongs into a separate artifact. �us, we do not include syntax for it.
In the �rst questionnaire, the community was split on whether to include it or not. When one
language for describing variability gains acceptance, a separate language for describing entire
con�gurations that matches the style of the �rst one could still be added. We also do not include
a concept of interfaces between models (cf. [SKT+16]). �is concept was deemed too complex
by the community and the research is only in its early stages. However, we include a concept
for composition and decomposition using references. We describe this concept in Section 4.4.

Constraints support the expressive power of propositional logic. �is is simple enough to be
analyzable with SAT solvers, but complex enough to represent most real-world cases [KTM+17].
Also, this is what has been voted for almost unanimously in the �rst questionnaire. We show
the syntax of constraints in Section 4.5.

4. Proposal for a Universal Variability Language 41

4.2. Language Concept 1: Nested Hierarchy

In addition to the previously described general characteristics, the following design decisions
apply to the �rst language concept: We use nesting and indentation, so we refer to it as the
nesting language concept. Indentation was the most popular option to mark the extent of blocks
in the �rst questionnaire and was said to be well-known by every possible audience. New
lines do not have to be marked specially, as no semicolons are required. �e voting results
in the �rst questionnaire on this point were split half and half (cf. Figure 3.2), so they do not
provide a preference. Semicolons are used in the C-like family of languages, but with nesting
and indentation this language is more similar to Python, so we adhere to its style and omit
semicolons. �is is per the design guideline to reuse existing notations as much as possible, to
not overwhelm experts with new details to learn for the new language (see Section 3.1).

A�ributes can be speci�ed in curly braces and can belong to any feature. Within the curly
braces, pairs of a key and a value can be speci�ed. Values have a syntax that is similar to most
programming languages or textual exchange formats such as JSON.

�e location of groups is between the parent and its children. �is option is the most �exible
and introduces the least amount of redundancy. It is also the most prominent choice of the
existing textual languages, especially when considering those that use nesting, and was voted
for most o�en. We also locate the keywords for mandatory and optional features between the
parent and the children, as opposed to at the children themselves, as it is common in feature
models. �is leads to a more consistent notation and reduces redundancy and �le size, as those
keywords have to be used only once per group. �us, the available group types in this language
concept are optional, mandatory, or, alternative, and cardinalities, as described in the previous
section. One of these options has to be speci�ed for each set of child features, as there is no
implicit default all group as in most other languages. A default group to use, without thinking
about the �nal cardinality, is the optional group. �is design decision simpli�es later re�nement,
as the group type could be changed without modifying the children’s level of indentation. Also,
children can be moved between groups more easily when all groups use the same nesting level.

Listing 4.1 shows the server example from Figure 2.2 represented in the nesting language
concept. �e �le starts with the features keyword. Beneath that, all the features from the
example are speci�ed. �e abstract features have the boolean a�ribute abstract in curly
braces, omi�ing the value true for brevity. To show other possible uses with more a�ributes,
we add two a�ributes to the logging feature that are not present in the feature diagram from
Figure 2.2. �e a�ribute default indicates that con�guration editors should select this feature
per default when starting a new con�guration. �e a�ribute log level demonstrates the use
of a string as the data type. In a separate section, the constraints for the model are listed with
one constraint per line. �ese constraints could also have been added beneath other features as
a�ributes. Even though this way, we introduce two locations to specify constraints, we think
that both are justi�ed. For small models, a short list of constraints at the end of the �le can be
a good overview. For large models with many constraints, however, this list would become
unmanageable. In that case, we argue that placing constraints near their referenced features

42 4.3. Language Concept 2: Referenced Hierarchy

1 features

2 Server {abstract}

3 mandatory

4 FileSystem

5 or

6 NTFS

7 APFS

8 EXT4

9 OperatingSystem {abstract}

10 alternative

11 Windows

12 macOS

13 Debian

14 optional

15 Logging {

16 default,

17 log_level "warn"

18 // Attributes is the extension mechanism

19 // for arbitrary data.

20 }

21

22 constraints

23 Windows => NTFS

24 macOS => APFS

Listing 4.1: Server example represented in the nesting language concept.

can be a be�er alternative. Di�erent rules of placement could be applied, depending on the
project’s needs. One option is to place a constraint beneath one of the features that it references.
Another option is to place it beneath the feature that is deepest in the tree but still has all the
constraint’s referenced features as part of its subtree.

4.3. Language Concept 2: Referenced Hierarchy
�e main di�erence to the previous concept is that we now use references for the hierarchy,
instead of nesting and indentation. We refer to this second language concept as the referencing
language concept. �e concepts regarding a�ributes still apply here, although they have a
di�erent syntax. Curly braces are no longer required to distinguish a�ributes from features.
Instead, a�ributes can be added with indentation in separate lines. �is is similar to the way
child features are speci�ed in the nesting language concept. �is is made possible, because
child features do not need to be speci�ed in an indented block, but are referenced in the same
line as the referencing feature. �us, the indented block can be used for a�ributes instead. In
case there are only one or two short a�ributes, specifying them in separate lines could seem
super�uous. �us, few a�ributes can be appended a�er the referenced children, separated by
commas, resulting in a more compact appearance.

4. Proposal for a Universal Variability Language 43

Line breaks are the same as in the previous language concept. �ey do not have to be marked
explicitly with a semicolon. Instead, each feature speci�cation is expected to start on a new line.

Listing 4.2 shows the code snippet. Again, the �le contains two sections labeled features
and constraints. �e root feature de�nes three children, with an all group. �is is the
default group when no special keyword or cardinality is given, the same as in feature diagrams.
Mandatory features are marked with an exclamation mark. Since it has only one a�ribute
(abstract), it is appended in the same line a�er a comma. Each line re�nes previously de�ned
features, adds children, and a�ributes. For the logging feature, we add the same a�ributes as
before to demonstrate the syntax.

1 features

2 Server: FileSystem! OperatingSystem! Logging, abstract

3 FileSystem: or NTFS APFS EXT4

4 OperatingSystem: alternative Windows macOS Debian, abstract

5 Logging

6 default

7 log_level "warn"

8

9 constraints

10 Windows => NTFS

11 macOS => APFS

Listing 4.2: Server example represented in the referencing language concept.

4.4. Composition Mechanism
Most participants of the questionnaire saw the necessity to split up feature models to cope with
ever-growing real-world models (cf. Figure 3.7). �at is why we include the following system
for decomposition. �e syntax and mechanism for decomposition and referencing is the same
for both language concepts, so we show it only once. It is meant to be simple and familiar, as it
is very similar to Java’s package and import system.

We move the �le system and the operating system from the example model into separate �les
with their own namespaces, so they can be imported and reused from the server or other feature
models in the future. Listing 4.3 shows the corresponding code snippet for the �le system. At the
top of the �le is a namespace speci�cation, which is equivalent to the Java package declaration.
�e namespace identi�er can then be used in other �les to import it. For convenience and
simplicity in small examples, the namespace speci�cation can be omi�ed when it would be the
same as the root feature name. We show this in Listing 4.4.

Imports reference the namespaces, so features from those models can be referenced by writing
namespace.Feature. To avoid having to write fully quali�ed names whenever an imported
feature is used, namespaces can be aliased with the as keyword. Also, with the refer keyword,
speci�c or all features can be referred, so they can be used without any namespace pre�x later.

44 4.4. Composition Mechanism

1 namespace org.featuremodels.FileSystem

2

3 features

4 FileSystem

5 or

6 NTFS

7 APFS

8 EXT4 {default}

Listing 4.3: Example decomposition of the �le system from the server example in the nesting language
concept.

1 // namespace OperatingSystem can be omitted here

2 features

3 OperatingSystem {abstract}

4 alternative

5 Windows

6 macOS

7 Debian {default}

Listing 4.4: Example decomposition of the operating system from the server example in the nesting
language concept.

We show that syntax in Listing 4.5, where we compose the previous two submodels into the
entire server example.

Semantically, referencing a feature from another namespace can be understood as inserting
it and its subtree at the place where it is referenced. �ese semantics are not important for
the syntax itself, but for understanding models and converting or importing them into other
languages or tools that might not support the composition of multiple models. When including
a subtree, any constraints that are involved with something from that subtree (even transitively)
will have to be considered, too.

With this syntax, the question arises whether it should be allowed to include only a subtree
of another model when importing it or if the whole submodel including its root feature must
be referenced. While the former would be more �exible and could even allow reusing parts of
other models, which were not designed for modularity, it also introduces a few caveats. �ese
arise when considering constraints, which exist outside and independent of the feature tree.
As constraints can reference any features in a model, when only a subtree of that model is
referenced somewhere, there could still be constraints that reference other features. When a
constraint uses only features from within that subtree, it is clear that it should also be contained
in the referencing model. However, when it references a feature from the subtree and also
other features, those features would be outside of the feature tree for the referencing model.
�us, these out-of-tree features would not be visible in the normal tree representation, but
would still have to be considered, as they could have an impact on the con�guration space.
Multiple features in the subtree could also be a�ected transitively through a chain of constraints,

4. Proposal for a Universal Variability Language 45

1 imports

2 org.featuremodels.FileSystem as fs // import from namespace

3 OperatingSystem as os refer [Windows, macOS, Debian]

4 // Using refer features can be used without a prefix.

5 // ‘refer all’ is also possible , but may cause name clashes.

6 features

7 Server

8 mandatory

9 fs.FileSystem

10 os.OperatingSystem

11 optional

12 Logging

13

14 constraints

15 Windows => fs.NTFS

16 macOS => fs.APFS

17 Debian => fs.EXT4

Listing 4.5: Example composition of the submodels to construct the entire server.

possibly even including constraints that only consider out-of-tree features. Hence, analyzing
which constraints have to be considered and which are safe to drop is not trivial (cf. [ACL+11;
SKT+16]). When it was allowed to only include subtrees, tools using the language would need
to handle these out-of-tree features to correctly analyze and evaluate constraints. For tools that
natively support similar semantics of multiple models, implementing this might not be very
di�cult. Other tools might support the implementation using hidden features and multiple root
features, but this would come with its own problems and would add considerable complexity
for the implementer. �is would certainly hinder adoption.

An alternative approach is to include any constraints that only include features from the
referenced subtree. �ese constraints are assumed to specify the internal relationships of that
subsystem. Constraints that use at least one other feature could be thought of as describing the
usage of that subtree in the context of the larger system. �is information could be assumed to
be relevant only to that speci�c larger system, so they could be ignored for any other referencing
model. �is way, constraints could be �ltered with a simple predicate that just checks inclusion
in the subtree for each feature that is part of the constraint. While these assumptions might be
accurate for some systems, they certainly do not hold for every system. Since some constraints
that could be important even for the subtree could be dropped, leading to a loss of information,
this is a dangerous assumption to make.

When it is allowed to include only a subtree of an imported model, handling constraints
becomes either very complex or makes assumptions about the structure of the imported model.
�us, we only allow referencing the root feature of a submodel in the feature tree. �is way, the
whole tree and all constraints can be considered, greatly reducing the integration complexity
for tool vendors.

Another decision to make for references is whether it should be allowed to reference the

46 4.5. Syntax of Constraints

same model multiple times under di�erent aliases. �is could be allowed when using the
as keyword. An example use case for this is a system with hardware components that are
instantiated multiple times but con�gured di�erently. �is could be the case in a car that has
multiple di�erent seats or a so�ware-intensive system that runs on multiple di�erent servers.
For instance, a web service could include a submodel of a database and alias it multiple times for
each continent. �en, the refer keyword cannot be used for these namespaces, as there would
be no way to know which of the instances it would refer to in the tree. However, using only
aliasing and not the refer keyword, the translation to feature models without the support for
imports would be straightforward. �rough renaming of the included features by prepending
each feature’s name in the submodel with the alias, every instance of each feature can be
distinguished clearly. In the example, there might be a us.Database and a europe.Database,
with their children also renamed to us.Logging, etc. Allowing multiple instances could mean
additional complexity for tool vendors implementing the language. Still, it could be worthwhile
for the increased �exibility for modeling systems.

4.5. Syntax of Constraints
Constraints are formulas in propositional logic. �is expressiveness was voted for most o�en
(cf. Figure 3.8) and it is usually e�cient to analyze using SAT solvers, although exceptions exist
(cf. [BTS19]). Furthermore, it is expressive enough to represent most real-world cases [KTM+17].
We de�ne the syntax of our formulas in the following way: A formula is either an atomic
formula or a complex formula. Atomic formulas can be true, false, or references to features.
Let F and G be two (not necessarily di�erent) formulas. �en the following constructions are
complex formulas and thus also formulas:

A formula that is wrapped in parentheses

A negated formula: !F

�e conjunction: F & G

�e disjunction: F | G

�e implication: F => G

�e equivalence: F <=> G

Any ambiguities are resolved according to precedence rules. �e precedence rules of the
operators from highest to the lowest are: (), !, &, |, =>, <=>. To illustrate the precedence
rules, consider the example formula !A & B <=> C | D => E without any parentheses. �is
formula is equivalent to ((!A) & B) <=> ((C | D) => E). Even though the representation
with parentheses around every formula reduces the chance of misinterpretation, we still allow
the representation relying on precedence rules. It is shorter and more readable in many cases.

�e reason we choose symbols such as & instead of the keyword and is that they are shorter,
but still convey the meaning. Using & for an and, the pipe symbol | for an or, and the exclamation
mark ! for negation is common practice in most programming languages, so it is familiar to

4. Proposal for a Universal Variability Language 47

many users. Also, it prevents the overloading of the keyword or that is also used for the or
group in the feature tree.

4.6. Summary of the Proposed Concepts
In summary, we present two di�erent concepts for variability languages, a composition mech-
anism, and a syntax for constraints. Common to both languages is the concept of a�ributes
to specify additional data and the e�ort to minimize the number of keywords to write while
still maintaining readability. We describe the common characteristics and reasoning behind the
languages in more detail in Section 4.1. �e �rst language concept uses nesting and indentation
(cf. Section 4.2), while the second adopts references to represent the hierarchy (cf. Section 4.3).
For both languages, we reuse the syntax for references to enable composition (cf. Section 4.4)
and for constraints (cf. Section 4.5), which use propositional logic.

Still le� to present are grammars to formally describe the languages, along with tool support
including parser and printer to ease the integration into existing variability tools. We choose a
suitable implementation technology for tool support, introduce grammars, and describe the
developed tool support in Chapter 5. Also, the approaches need to be evaluated by questioning
the community and revisiting the requirements. We discuss the results of the evaluation in
Chapter 6.

5. Tool Support for UVL
A language without tool support cannot be used in practice. �us, we provide a default library
that can be integrated into existing SPL tools. In this chapter, we elaborate on how we choose
the parser technology for the library (Section 5.1). We present grammars for both language
concepts (Section 5.2) and a default implementation of the parser library (Section 5.3). Finally,
we demonstrate its usability by integrating it into the FeatureIDE tool (Section 5.4).

5.1. Choosing a Parser Library
A vast number of di�erent parser libraries and generators are available to choose from. �ey all
serve the same basic purpose, providing an implementation of a parser for a supplied grammar.
Hence, we have to carefully weigh requirements and criteria to derive a decision. In Section 3.5,
we established that the most important criterion for the tool support is the ease of integration
of a parser and printer into existing variability tools. �us, we focus on providing a small parser
without many dependencies.

Prerequisites for a parser library are that it uses standard EBNF notation or a slight modi�ca-
tion thereof. �is way, the grammar itself can be reused in case the need arises to ever switch
the parser library or implement alternative libraries in other programming languages. �e
parser library should also support free-text parsing instead of generating projectional editors.
To limit the implementation e�ort, also a scanner should be generated or included. �e scanner
should be customizable to allow the handling of indentation-aware languages. �ese factors
already limit the pool of available libraries considerably.

Since most variability tools are wri�en in Java (e.g., pure:variants [pur20], FeatureIDE [MTS+17],
DOPLER [DRG+07], mbeddr [KVR+20], AHEAD [Bat05]), the community would bene�t most
from a library that can be used on the Java Virtual Machine (JVM). Nonetheless, the option
to generate parsers in additional languages could be bene�cial for other tool vendors that do
not use Java. A nice-to-have feature would be the option to provide IDE integration and editor
support. However, this should not be at the expense of making the integration more complex,
requiring more dependencies, and a heavier runtime library.

A lightweight option to provide editor support, without relying on any speci�c IDE could be
the Language Server Protocol (LSP) [Mic20]. It is a protocol that can signi�cantly reduce the
e�ort required to integrate language support into di�erent editors or IDEs [Bün19]. It is widely
supported in all the major IDEs and extensible text editors today. �e editor is an LSP client,
sending the text and information about actions the user performs to the language server. �e
server then answers with information about syntax highlighting, annotations, problems, and
completions.

�ere are not many comparisons of di�erent language workbenches or parser generators

50 5.1. Choosing a Parser Library

available. �is is because comparing these tools meaningfully requires signi�cant e�ort and
even then o�en cannot take into account the various specialties of the di�erent tools. To make
a comparison, a set of prede�ned tasks would have to be solved with di�erent tools. �en the
time it took to implement those solutions as well as the quality of the solutions themselves
would have to be evaluated. To make it comparable, these tasks should be solved by multiple
independent persons or teams. When there are not enough participants, each participant would
have to complete the tasks with multiple di�erent tools. �e order of the tools used has to be
varied for each participant to prevent interference of learning e�ects with the results. Even
with these measures, it would only shed a light on how well these tools are suited to solve a
task initially. �ey could not make accurate predictions on how maintainable the solutions
would be in the long run. �at said, there are papers comparing a few tools for a single problem
(e.g., [CPB+07], [PP08], or [Mer10]), but they generally have very di�erent scopes and criteria.
�is way, they cannot be used to aggregate the data into a good overview of all the di�erent
approaches.

One e�ort trying to overcome these issues existed, namely the language workbench chal-
lenge [BEH+17]. �e idea was that there would be a yearly challenge, language engineers could
solve using di�erent language workbenches. Challenges were held from the year 2011 to 2014
and then once again in 2016, but the project has been discontinued since and the associated
domain has been sold. From these challenges, only the one from the year 2013 was designed in
a way that led to comparable results, which are summarized by Erdweg et al. [EvdSV+15].

In Table 5.1, we give an overview of a selection of parser generators and language workbenches.
ANTLR4 [ANT20b] is one of the most popular parser generators wri�en in Java, but targeting
many other languages besides Java. It provides extensive documentation and a repository with
over 180 example language implementations in the form of ANTLR4 grammars [ANT20a]. It
is a plain parser and scanner generator, generating an adaptive LL(*) parser (cf. [PHF14]). For
the grammar input, it uses its own format that mixes grammar aspects and implementation
aspects. �is way, a parser can be generated from a single input �le, but that �le itself is
speci�c to ANTLR4, although based on EBNF. ANTLR3 is also still a popular option using a
di�erent grammar format that is not compatible with ANTLR4 and generates an LL(*) parser.
Coco/R [MLW18] has a similar approach but can generate parsers in even more languages,
although the available target languages depend on the development platform used. It does not
seem to be maintained and developed as actively as ANTLR4. JavaCC [Jav18] is another similar
option. It can generate code in the three target languages Java, C#, and C++.

A di�erent approach is taken by instaparse [Mar19]. It aims to be the simplest way to build
parsers in Clojure. Clojure is a modern LISP targeting the JVM, so it can both use Java libraries
and provide libraries on its own. Instead of generating static Java code for a given grammar in
advance, it intends to be more dynamic, allowing us to generate that code during runtime. For
this, it uses the dynamic metaprogramming facilities of the host language Clojure. �is way, it
is very �exible and allows to iterate any context-free grammar quickly.

�en there are di�erent language workbenches. Rascal, Spoofax, SugarJ, and Xtext are a
selection of the available options. From those workbenches, SugarJ [EKR+11] supports the

5. Tool Support for UVL 51

Tool IDE support Target Languages LSP Documentation Maintained

ANTLR4 no 8 no good yes
Coco/R no 14 no good 1 yr. ago
JavaCC no 3 no good yes
instaparse no Clojure/JVM no good 1 yr. ago
Rascal yes Java no sparse yes
Spoofax yes Java no good yes
SugarJ yes 3 no sparse 4 yr. ago
Xtext yes Java yes sparse yes

Table 5.1.: Overview of characteristics of selected parser generators and language workbenches.

most target languages but does not seem to be maintained any longer. Rascal [Cen14] is a
metaprogramming language that can be used to specify DSLs, but its documentation is lacking.
Xtext [Ecl20] is probably the most well-known and widely-used language workbench in the
Eclipse ecosystem. A unique feature of it is that it can generate an implementation for the
LSP in addition to the parser and editing facilities for IDEs. Internally it uses ANTLR3 as its
parser generator. Spoofax [Met20] is a well-documented alternative to Xtext with its own parser
generator. It is an academic product that is not used as widely as Xtext.

�e language workbenches are huge frameworks requiring substantial e�ort to familiarize
oneself with their internals to get started and customize their workings beyond simple hello-
world languages. �us, we rather choose one of the smaller, more narrowly focused parser
generators. From these, choosing the best one is not as important as choosing one with a good
�t that can quickly be swapped for another library at a later stage. �e simplest to get started
with and also the most �exible of the presented options seems to be instaparse. So we choose it
for the �rst implementation of a small default library and to iterate the grammars themselves.

5.2. Grammars for the Languages
Listing 5.1 shows a grammar that can be used to parse the language presented in Section 4.2.
It uses an EBNF-like notation. Rules surrounded by angle brackets are hidden, so they are
important for parsing the structure, but no longer in the �nal AST. Strings prepended with a ’#’
are regular expressions, as they would be recognized by the Java regex utilities.

�e language is indentation-aware, which is not directly supported by classical parsers. �us,
the scanner has to be modi�ed to emit indent and dedent tokens whenever a section that is more
or less indented starts. �e exact semantics for this process is as follows: First, we distinguish
between physical and logical lines. Physical lines are actual lines in the text that are separated
by the usual linefeed or carriage return characters. Logical lines can be comprised of multiple
physical lines when they are to be joined implicitly or explicitly. Implicit joins occur within
environments that are surrounded by parentheses, brackets, or curly braces, where spli�ing

52 5.3. UVL Parser Library

long lists of items on to multiple lines is allowed to increase the readability. Explicit joins occur,
whenever a physical line ends with a backslash, mimicking the behavior of languages such
as Python or bash. Second, line comments are ignored by the scanner and do not cause it to
emit any tokens until the end of a physical line is read. �ird, we require a stack storing the
previously encountered levels of indentation. For each new logical line, the level of indentation
is compared to the previous level on the top of the stack. When it is indented more, an indent
token has to be emi�ed and the new level is pushed to the stack. If it is indented less, the level
has to be compared to previously seen levels of indentation, to see which block is continued.
For each level that is popped o� the stack, a dedent token has to be emi�ed, until the matching
level with the same indentation is found on the top of the stack. When no matching level of
indentation can be found, the line is indented to a wrong level. �is is an indentation error, as
it is unclear to which block the code on the line is supposed to belong. Empty lines or lines
that consist only of whitespace characters are ignored for this consideration. Indentation can
consist of spaces or tabs. When a mixture of spaces and tabs is used that makes the comparison
to previous levels ambiguous, it also causes an indentation error.

�e grammar for the referencing language concept is similar in the overall structure and uses
the same rules as the nesting concept for its constraints. One critical di�erence is that it relies
more on line breaks to be unambiguous. Each new feature speci�cation has to start on its own
line, so the parser should not ignore line-breaking characters, as they are explicitly part of the
grammar. All other whitespace between tokens should still be ignored, so the grammar does
not have to declare every position where whitespace could occur explicitly. Listing 5.2 shows
the grammar for the referencing language concept.

5.3. UVL Parser Library
We provide a default implementation for the language in the form of a small parser library.
�e library is released under the MIT license and the source code is available on GitHub.1 It
provides an API to read some text in UVL and return a parsed AST. Furthermore, there is an
implementation of a printer to generate UVL �les programmatically. We implement the library
using the nesting language concept, but the grammar could quickly be swapped out. �is would
require a few internal changes to the way the AST is constructed, but no changes to the external
API should be required.

�e library is designed to require li�le dependencies and can be distributed in a single jar
�le. To parse a text �le, there exists a single static method parse that takes the text as an input,
as well as a �le loader to resolve any imports in the UVL �le. Since the path to project �les or
the way to access them might be di�erent for each consumer of the library, the �le loader is a
callback method that can be implemented in the consuming variability tool. It is expected to
take the namespace identi�er string as an input and return the text of the corresponding �le. For
clients that have no special way of loading �les, a default implementation is supplied that will
load �les relative to a path given as a string to the parse method. When imports are not used

1UVL library on GitHub: https://github.com/neominik/uvl-parser

https://github.com/neominik/uvl-parser

5. Tool Support for UVL 53

at all by the client’s UVL �les, the argument can be omi�ed entirely. We do not recommend
using this arity of the parse function in production, as the parser will probably be unable to �nd
the correct �les to load, in case a UVL �le uses imports. �e return value of the parse function
is either the parsed AST in the form of an object of the class UVLModel or when there were
parse errors, a ParseError. Figure 5.1 shows the structure of the returned AST and ParseError as
a UML class diagram.

Figure 5.1.: UML class diagram of the AST package. For brevity, we show the �elds of the classes only,
although they are private. Access is only possible through ge�ers and se�ers in the JavaBeans
style.

A UVLModel contains the namespace, imports, root features, constraints, and a map with all
features in all submodels, indexed with their namespace-pre�xed name. �is last map can be
used for constant-time resolution of any feature when it is referenced by name, or to retrieve
the set of all the features. Features contain groups, which in turn contain the children of the
features. Groups have a type property, which can hold the values ‘or’, ‘alternative’, ‘optional’,
‘mandatory’, or ‘cardinality’. In the la�er case, the values for the lower and upper bounds have
to be considered. Constraints can be of the types And, Or, Impl, Equiv, Not, or String. �e �rst
four have two children each, a le� one and a right one, while Not has only one child. Strings
are used as literal references to other features and are always the leaf nodes of the constraint’s
AST. Should parsing fail because the provided text did not comply with the UVL grammar, a
ParseError is returned by the parse function. It indicates what went wrong, the location in the

54 5.4. Integration into FeatureIDE

�le, and alternatives the parser would expect at that position.
�e printing functionality of the library is realized in the toString methods of the objects.

Calling toString on any object returned by the parse method or any descendants in the AST
produces the representation of the object in UVL. Only the printed output of the root element
UVLModel produces a complete and valid UVL �le ready for storage or exchange with other
tools.

5.4. Integration into FeatureIDE
To demonstrate the usability of the library, we integrated it into the variability tool FeatureIDE.2

We choose FeatureIDE because is one of the most widely used open-source tools for feature
modeling [BRN+13] and developed in part at our university. In FeatureIDE, the library is
included as a single jar �le. To adhere to the way other exchange formats are implemented, we
create a new format. It calls the parse method of the library and constructs the internal model
representation of FeatureIDE by iterating through the returned AST. Similarly, for printing, we
iterate through the internal model and construct an AST using the classes of the library. Finally,
we call toString once on the root element to produce the text that can then be used to store the
�le.

2�e functionality is scheduled to be released in the next major release (3.7.0 or 4.0.0). Link to the fork with the
corresponding changes on GitHub: https://github.com/neominik/FeatureIDE

https://github.com/neominik/FeatureIDE

5. Tool Support for UVL 55

1 FeatureModel = Ns? Imports? Features? Constraints?

2

3 Ns = <’namespace’> REF

4 Imports = <’imports’> (<indent> Import+ <dedent>)?

5 Import = REF (<’as’> ID)? (<’refer’> Refer)?

6 Refer = (<’[’> (ID <’,’?>)* <’]’>) | ’all’

7

8 Features = <’features’> Children?

9 <Children> = <indent> FeatureSpec+ <dedent>

10 FeatureSpec = REF Attributes? Groups?

11 Attributes = (<’{’> <’}’>) | (<’{’> Attribute (<’,’> Attribute)* <’}’>)

12 Attribute = Key Value?

13 Key = ID

14 Value = Boolean | Number | String | Attributes | Vector | Constraint

15 Boolean = ’true’ | ’false’

16 Number = #’[+-]?(0|[1-9]\d*)(\.\d*)?([eE][+-]?\d+)?’

17 String = #’"(?:[ˆ"\\\n]|\\.)*"’

18 Vector = <’[’> (Value <’,’?>)* <’]’>

19 Groups = <indent> Group* <dedent>

20 Group = (’or’ | ’alternative’ | ’mandatory’ | ’optional’ | Cardinality)

21 Children?

22 Cardinality = <’[’> (int <’..’>)? (int|’*’) <’]’>

23

24 Constraints = <’constraints’> (<indent> Constraint+ <dedent>)?

25 <Constraint> = disj-impl | Equiv

26 Equiv = Constraint <’<=>’> disj-impl

27 <disj-impl> = disj | Impl

28 Impl = disj-impl <’=>’> disj

29 <disj> = conj | Or

30 Or = disj <’|’> conj

31 <conj> = term-not | And

32 And = conj <’&’> term-not

33 <term-not> = term | Not

34 Not = <’!’> term

35 <term> = REF | <’(’> Constraint <’)’>

36

37 indent = ’_INDENT_’

38 dedent = ’_DEDENT_’

39 <strictID> = #’(?!alternative|or|features|constraints|true|false|as

40 |refer)[a-zA-Z][a-zA-Z_0-9]*’

41 <ID> = #’(?!true|false)[a-zA-Z][a-zA-Z_0-9]*’

42 REF = (ID <’.’>)* strictID

43 <int> = #’0|[1-9]\d*’

Listing 5.1: Grammar for the nesting language concept in EBNF-like notation. All whitespace characters
should be ignored automatically.

56 5.4. Integration into FeatureIDE

1 FeatureModel = Ns? Imports? Features Constraints?

2

3 Ns = <’namespace’> REF

4 Imports = <#’\n?imports’> Import*

5 Import = <’\n’> REF (<’as’> As)? (<’refer’> Refer)?

6 As = ID

7 Refer = (<’[’> (ID <’,’?>)* <’]’>) | ’all’

8

9 Features = <#’\n?features’> FeatureSpec*

10 FeatureSpec = <’\n’> strictID Children? Attributes?

11 Children = <’:’> Group? Child*

12 Group = ’or’ | ’alternative’ | Cardinality

13 Cardinality = <’[’> (int <’..’>)? (int|’*’) <’]’>

14 Child = REF ’!’?

15 Attributes = (<’,’> Attribute)+

16 | (<’,’> Attribute)* <indent> (<’\n’> Attribute)* <dedent>

17 Attribute = Key Value?

18 Key = ID

19 Value = Boolean | Number | String | Map | Vector | Constraint

20 Boolean = ’true’ | ’false’

21 Number = #’[+-]?(0|[1-9]\d*)(\.\d*)?([eE][+-]?\d+)?’

22 String = <’"’> #’(?:[ˆ"\\\n]|\\.)*’ <’"’>

23 Map = <’{’> (Attribute <’,’?>)* <’}’>

24 Vector = <’[’> (Value <’,’?>)* <’]’>

25

26 Constraints = <#’\n?constraints’> (<’\n’> Constraint)*

27 Constraint = disj-impl | Equiv

28 Equiv = Constraint <’<=>’> disj-impl

29 <disj-impl> = disj | Impl

30 Impl = disj-impl <’=>’> disj

31 <disj> = conj | Or

32 Or = disj <’|’> conj

33 <conj> = term-not | And

34 And = conj <’&’> term-not

35 <term-not> = term | Not

36 Not = <’!’> term

37 <term> = REF | <’(’> Constraint <’)’>

38

39 indent = ’\n_INDENT_’

40 dedent = ’\n_DEDENT_’

41 strictID = #’(?!alternative|or|features|constraints|true|false)

42 [a-zA-Z][a-zA-Z_0-9]*’

43 ID = #’(?!true|false)[a-zA-Z][a-zA-Z_0-9]*’

44 REF = (ID <’.’>)* strictID

Listing 5.2: Grammar for the referencing language concept in EBNF-like notation. All whitespace char-
acters that are not line breaks should be ignored automatically.

6. Evaluation
A�er proposing two language concepts and developing tool support for the �rst, we evaluate
the language concepts in this chapter. For this, we conduct a second questionnaire (Section 6.1),
revisit the requirements (Section 6.2), and evaluate the scalability of the language (Section 6.3).

6.1. Second�estionnaire
To gather the community’s thoughts and feedback about the proposed language concepts
and determine which one is preferred, we design and conduct a second questionnaire. In
the following section, we describe its structure and questions, before discussing the results
in Section 6.1.2. Due to time restrictions, we cannot conduct this questionnaire at the next
MODEVAR event but have to distribute it via the MODEVAR mailing list. �us, this time
participants work on the questionnaire individually, instead of in pairs. As teaching and
learning are considered relevant and useful (cf. Section 3.2), we also distribute the questionnaire
to students who are currently enrolled in courses on SPLs at TU Braunschweig and University
of Ulm.

6.1.1. Overview of the Second�estionnaire

�e goal of the second questionnaire is to determine the community’s opinion on both language
concepts and which one is preferred by most experts. �e survey starts by introducing the
server example (cf. Figure 2.2) as a feature model. Participants can rely on that representation
as a reference to understand the semantics of the proposed languages. We ask for the size of
the largest variability model the participants have ever worked on and for the size of typical
models. �is is to put the given answers into context.

�en, we present the nesting language concept, similar to our presentation in Section 4.2.
Participants are asked to rate how much they like the concept on a scale from 1 (not at all) to 6
(very much). To get more detailed results on what they like or dislike speci�cally, we ask about
the level of agreement to the following statements:

�e style is good.

It is well suited for teaching and learning.

It is too complex.

It can easily be integrated into my tool.

I can represent my models in this language.

58 6.1. Second�estionnaire

We ask what the participants would change about the language concept and how happy they
would be with the language when those changes were applied. Similarly, we present the refer-
encing concept, as in Section 4.3. To keep the answers for both language concepts comparable,
we ask the same questions about their rating, agreement, and change requests.

As in Section 4.4, we present the composition mechanisms only once for both language
concepts. Here, we ask the same questions as before, with the addition of one further question:
Using namespace aliasing with as, the same feature model could be included multiple times
under di�erent aliases in the same �le. We ask whether the participants deem this functionality
useful and would include it or disallow it. Including it might add more complexity to the
implementations while disallowing it would be more restrictive. �us, we ask for their reasoning
behind the given answer.

A�er introducing both language concepts and the composition mechanism, we ask them to
choose the preferred language concept of the two. We ask for the reasons behind their decision,
as well as any reluctance they might have with their answer. Also, as the goal is to �nd a
language the community can agree on, we ask whether they would still agree to the other
option, should the majority of the community vote for that one. In case they vote for no, we ask
what should be changed in that language to gain their acceptance. Finally, we ask for further
comments, requests, or feedback. For reference, we again include the list of all questions in the
appendix (cf. Appendix A.2).

6.1.2. Results of the Second Community�estionnaire

In this section, we present and discuss the results of the second questionnaire, as answered
by the SPL community. For this, we �rst focus on general observations and the result which
language has been voted for most o�en, before turning to the individual concepts. We discuss
the results of the students’ answers in Section 6.1.3.

General Observations and Language Choice

16 participants submi�ed their answers to the questionnaire. Overall, the nesting language
concept has been voted for more o�en (see Figure 6.1a). Nine participants preferred the nesting
one, while only six voted for the referencing language. However, two participants who voted
for the referencing language said that they do not have a strong preference, but �nd the
standardization more important than the actual syntax. When asked if they would also agree to
the other language, should the majority vote for it, most participants chose yes (see Figure 6.1b).
Only two voted for no. Incidentally, of those two votes, there is one for each language.

Asking for the size of typical models participants work on and the largest models they have
worked on helps to be�er put the answers into context. Especially, when regarding concerns
of scalability for the languages. In Figure 6.2, we show the distribution of their answers. Most
participants typically only work on small models, between ten and a hundred features in size.
None of the participants typically works on models that contain more than ten thousand features.
However, the largest models they have ever worked on are considerably larger than the typical

6. Evaluation 59

10 (62.5%)

Nesting Concept

6 (37.5%)

Referencing Concept

(a) Preferred Language

14 (87.5%)

Yes

2

No (12.5%)

(b) Accept Majority Vote

Figure 6.1.: Voting results on which language concept is preferred (a) and whether participants would
also agree to the other language, should the majority vote for that option (b).

ones for most participants. More than half of the participants have worked on a model that was
larger than ten thousand features.

In the �rst questionnaire, as well as in discussions on the last MODEVAR workshop, most
people argued that the referencing language would be be�er suited for large models. �eir
main argument was that using references for the hierarchy limits the amount of nesting and
indentation. �us, we expected the people voting for the referencing language to work on larger
models than those who vote for the nesting one. However, as shown in Figure 6.3, in our sample,
the opposite seems to be the case. While participants voting for the nesting concept tend to work
on larger models only slightly more o�en, the di�erence is more pronounced in the size of the
largest models. A third of the voters for the referencing concept claims to have never worked on
a model larger than 100 features. In our sample, voters for the nesting concept consistently have
worked on larger models. 70% even have worked on models with more than 10 000 features,
compared to only one-third of the participants voting for the referencing language. However,
with only 16 participants, these statistical considerations might not be representative. Still, in
our sample, participants working on large models vote for the nesting language concept more
o�en, despite alleged scalability issues. �is is evidence that the syntax is less important when
dealing with large models than a mechanism for composition and decomposition.

10 (62.5%)

2

(12.5%)

4 (25%)
10–100
100–1 000
1 000–10 000
>10 000

(a) Typical Models

2
(12.5%)4 (25%)1

(6.3%)

9 (56.3%)

(b) Largest Models

Figure 6.2.: Number of features of (a) typical and (b) largest feature models participants work on.

60 6.1. Second�estionnaire

6 (60%)

1

(10%)

3 (30%)

2 (20%)

1

(10%)

7 (70%)

4 (66.7%)

1

(16.7%)

1

(16.7%)

2 (33.3%)

2 (33.3%)

2 (33.3%)

N
es

tin
g

Co
nc

ep
t

Re
fe

re
nc

in
g

Co
nc

ep
t

N
esting

Concept
Referencing

Concept
Typical Models Largest Models

Typical Models Largest Models

10–100 100–1 000 1 000–10 000 >10 000

Figure 6.3.: Number of features of typical and largest feature models participants work on. Grouped by
their preferred language.

Detailed Results for the Nesting Language Concept

Overall, the nesting language concept is preferred over the referencing one. In Figure 6.4, we
show the participants’ overall contentment with the language colored in blue. Most participants
rated it as �ve out of six, with six being the best grade and one the worst. Only two answers
rated it in the lower half of the spectrum. Additionally, we asked what they would change
about the language and how they would like the language when those changes were applied.
We show those results in red in Figure 6.4. A�er their suggested changes, the overall rating
improved slightly, with now four participants giving the best grade and only one falling in the
lower half with a three out of six.

Two participants suggested that the group keyword should be repeated for each feature,
instead of only once per group. �ey fear that with many features it could become more di�cult
to see which group a speci�c feature belongs to. Rick Rabiser states, “For deeper hierarchies,
indentation alone might not be su�cient – I suggest to allow to (also) use some form of brackets
+ separators, at least for feature groups.” Although introducing additional brackets might help
slightly with keeping an overview, syntax alone can not help much with large models. �at is
why we also introduce a mechanism for the decomposition of large models. At this point in the

6. Evaluation 61

1 2 3 4 5 6very bad very good
0 1 1 2

11

10 0 1 2

9

4

N
um

be
ro

f
Pa

rti
ci

pa
nt

s
before changes
a�er changes

Figure 6.4.: Voting results on how well the nesting language concept is liked before and a�er suggested
changes.

questionnaire, however, participants were not yet introduced to that concept. An argument
against additional brackets is that for the implementation complexity of a parser as well as for
teaching, having multiple syntaxes to specify hierarchies should be avoided.

For more detailed feedback on what participants like or dislike speci�cally, we asked for
their agreement to the statements introduced in Section 6.1.1. We show the results in Figure 6.5.
15 out of 16 participants agree that the style is good. Also, the majority is of the impression
that this language would be well suited for teaching and learning. Most participants strongly
disagree with the language being too complex. Finally, most participants agree that the language
could be integrated easily into their tools and that they could represent their models with it.

�
e sty

le is go
od

It is well
suite

d for

tea
ching an

d lea
rning

It is too
com

ple
x

It can
eas

ily
be

integ
rat

ed
into

my too
l

I can
rep

res
en

t my

mod
els

in
this lan

gu
age

0

5

10

15

1

4

0

8 8

14

7

3 3
5

0

4 3 2 21 0

10

0 10 1 0

3

0

N
um

be
ro

f
Pa

rti
ci

pa
nt

s

I strongly agree I generally agree I somewhat disagree I strongly disagree Not sure

Figure 6.5.: Voting results on the level of agreement to the given statements about the nesting language
concept.

Detailed Results for the Referencing Language Concept

As the referencing concept was preferred less o�en than the nesting one, it is not surprising that
the overall rating is also less positive. In Figure 6.6, we show how well the participants rated

62 6.1. Second�estionnaire

that concept before and a�er their suggestions for improvement. In both cases, the number of
participants is distributed almost equally in both the lower and the upper half of the rating.
�e result is even slightly worse a�er their suggestions for changes. Paul Bi�ner said, “Since
a�ributes belong to a feature and not to that feature’s children, I would like to have the a�ributes
before the colon and not integrated into the list of children. [. . .] But maybe it is su�cient to
use newlines as already supported.” Sebastian Kreiter has a similar opinion: “I would always
put the a�ributes on a separate line as it was done for the feature Logging. �is would get rid
of the confusing comma and avoid that a�ributes are overlooked.” Indeed, it might be confusing
that the a�ributes of the parent appear a�er the list of children in the line. If that list is long,
it might be di�cult to associate the a�ributes to the corresponding feature. A be�er solution
might be to drop this notation or allow a�ributes to appear before the children, as suggested by
the participants. However, a long list of a�ributes should always be speci�ed in separate lines.
Otherwise, the same problem arises in reverse, with the children suddenly being far away from
the parent. Furthermore, Sebastian Kreiter would prefer “to also use the keywords optional and
mandatory in this language rather than ‘!’. �is would make the language more consistent and
easier to read in my eyes.” �is is the same reasoning as in the nesting language concept, only
applied to this one. Grouping optional and mandatory features together in this way would di�er
more from the existing languages, which specify optionality on a per-feature basis. However,
as Sebastian Kreiter said, it would be more consistent, since the group type would be speci�ed
only between the parent and the features, instead of sometimes in-between and other times at
the children.

1 2 3 4 5 6very bad very good

3 2 2 2

6

1
3 3 2 1

5

2N
um

be
ro

f
Pa

rti
ci

pa
nt

s

before changes
a�er changes

Figure 6.6.: Voting results on how well the referencing language concept is liked before and a�er suggested
changes.

Just as the overall satisfaction, the more detailed agreements to the individual statements
are worse than for the nesting concept (see Figure 6.7). �e agreement about good style is only
around half as present as before. Only eight participants agree with the statement, while the
other half disagrees somewhat or strongly. 11 of the 16 participants think that it is not well
suited for teaching and learning, although most still disagree with the statement that it is too
complex. While there is a majority thinking that the language could be integrated into their
tools easily, the level of agreement decreased slightly compared to the nesting concept. Still,
the voting results regarding whether participants can represent their models in the language
are about the same as before. 14 out of 16 agree that they can represent their models in the

6. Evaluation 63

language. �is is not surprising, since both languages have the same language features, only a
di�erent concrete syntax, so the same models can be represented. However, it is reassuring that
this fact also translates to the votes of the community.

�
e sty

le is go
od

It is well
suite

d for

tea
ching an

d lea
rning

It is too
com

ple
x

It can
eas

ily
be

integ
rat

ed
into

my too
l

I can
rep

res
en

t my

mod
els

in
this lan

gu
age

0

5

10

1 1
2

5

77

4

2

5

7

4

9

4

2
1

4

2

7

0
1

0 0
1

4

0

N
um

be
ro

f
Pa

rti
ci

pa
nt

s

I strongly agree I generally agree I somewhat disagree I strongly disagree Not sure

Figure 6.7.: Voting results on the level of agreement to the given statements about the referencing
language concept.

Detailed Results for the Composition Concept

Overall, the composition concept is well received by the community. In Figure 6.8, we show
the rating for the concept. While one participant gave the concept the worst rating, 10 of 16
rated it as good or very good before their suggestions and 11 of 16 a�er their suggestions. �e
most common comment for the concept is that it is too complex. Two participants suggest
removing the refer keyword to make the language simpler and avoid name clashes. �e refer
concept is intended to simplify manually writing UVL �les but adds complex semantics. �ese
make both reading �les and resolving references in the parser more di�cult. We made the same
observation during the implementation of the tool support. �us, we agree that it is a good idea
to drop that concept to simplify the language and the implementation. Consequently, we do not
implement the refer concept in our tool support.

In the detailed rating, we also see that complexity is the most criticized point for the compo-
sition mechanism (see Figure 6.9). 7 of 16 participants agree with the statement that the concept
is too complex, which is almost half of the participants. �e other statements are rated more
positively. 11 of 16 participants agree that the style is good and that the concept is well suited
for teaching and learning. Half of the participants agree that it can be integrated into their tools
easily. 25% disagree and the remaining 25% are not sure. However, 14 of 16 participants agree
that they can represent their models with this concept.

On whether to allow including the same model multiple times with di�erent aliases, 10
of 16 voted to allow multiple instances (see Figure 6.10). Participants who voted in favor of

64 6.1. Second�estionnaire

1 2 3 4 5 6very bad very good

1 0
2 3 4

6

1 0 1
3

7

4

N
um

be
ro

f
Pa

rti
ci

pa
nt

s

before changes
a�er changes

Figure 6.8.: Voting results on how well the composition mechanism is liked before and a�er suggested
changes.

�
e sty

le is go
od

It is well
suite

d for

tea
ching an

d lea
rning

It is too
com

ple
x

It can
eas

ily
be

integ
rat

ed
into

my too
l

I can
rep

res
en

t my

mod
els

in
this lan

gu
age

0

5

10

3 3

1
2

5

8 8

6 6

9

4
3 3 3

11
2

6

1
00 0 0

4

1

N
um

be
ro

f
Pa

rti
ci

pa
nt

s

I strongly agree I generally agree I somewhat disagree I strongly disagree Not sure

Figure 6.9.: Voting results on the level of agreement to the given statements about the composition
mechanism.

multiple-instantiation argue that this language feature has the potential to reduce redundancies
in real-world models. Some participants are actively working with models where this feature is
required. �ey say that there is no high cost for integrating it. In contrast, participants who
vote against it claim that the semantics of multiple instances can be tricky, so they would rather
not allow it. For a parser, disallowing it would require more e�ort than allowing it. However,
from the standpoint of tools using the parser, there might be some analyses that would need to
distinguish di�erent instances explicitly, which could result in more implementation e�ort. Still,
the majority of the participants are in favor, so we recommend including this language feature.

Summary of the Findings from the Second Community�estionnaire

Although 16 participants are not the most accurate representation of the whole SPLE community,
it still represents the part that is most commi�ed to �nding a common language. �is is re�ected
in the result and the comments on whether participants would also agree to the other language,
should the majority vote for that one (cf. Figure 6.1b). Multiple participants commented that

6. Evaluation 65

10 (62.5%)

Allow

6 (37.5%)

Disallow

Figure 6.10.: Voting results on whether participants would allow multiple instantiation using the as
keyword.

�nding a common language is more important than �nding the one with the best �t. With 14 of
16 participants voting for yes and only two voting for no, we are optimistic that the community
will indeed agree to one language. Along with suggestions by the community and our own
experience from implementing the parser library, we drop support for the refer keyword, in
favor of simpler semantics and implementations.

6.1.3. Results of the Student�estionnaire

To determine which language concept is be�er for teaching and learning, we also sent the
same questionnaire to students who are currently hearing an SPL course. As they are computer
scientists who are in the process of learning the concepts of SPLE, they have a unique perspective
on this aspect. We could only reach a few students, so we received only six replies to the
questionnaire. �us, we do not present detailed results of all the questions, as in the previous
section, but focus on the main �ndings instead.

Overall the response is similar to that of the SPL community. Out of the six students, four
prefer the nesting language concept over the referencing one. In turn, the responses for the
nesting concept were mostly positive, while they were mixed for the referencing one. Comments
suggest that participants �nd the referencing notation harder to read than the nesting one.

Regarding teaching and learning, �ve of six students agree that the nesting concept is well
suited. In contrast, for the referencing concept, only two agree, while the other four students
disagree or strongly disagree. Responses for the composition mechanism are mixed. One half
agrees that it is well suited for teaching and learning, while the other half disagrees. However,
all except one student indicated that they only work on small feature models with up to 100
features. In the course, students usually do not work on larger models, so a mechanism for
composition and decomposition might not be important to them. Still, all the students are in
favor of allowing the inclusion of multiple instances of the same model using di�erent aliases.
�ey value the possibilities for reuse that this feature enables.

�e main outcome of this questionnaire is that students prefer the nesting concept and deem
it well suited for teaching and learning. �is is in line with the assessment of the community.

66 6.2. Evaluating Against the Reqirements

6.1.4. Summary of the Findings from the Second�estionnaire

We submi�ed a second questionnaire to both the SPL community and students who are currently
enrolled in a course on SPLs. In both cases, the majority of the participants prefer the nesting
language concept over the referencing one. �e overall rating for it is positive and the more
detailed criteria such as style, teaching and learning, or complexity are well regarded likewise.
�e referencing language concept received worse ratings in every aspect. Hence, we se�le on
the nesting concept to be our proposal for the Universal Variability Language.

From the feedback, we gather that the refer keyword with its semantics is considered too
complex. We made the same observation while implementing the tool support. �us, we drop
the support for it to arrive at a simpler and more consistent language. We show the updated
grammar of the �nal language in Listing A.1.

6.2. Evaluating Against the Requirements
A�er discussing the results of the second questionnaire in the previous section, we turn towards
the collected requirements to evaluate how well the proposed language conforms to them. Since
we se�led on the nesting language concept to be the �nal language, from now on, we limit our
discussions to that one. In the following sections, we revisit the general design guidelines (cf.
Section 3.1) and the collected scenarios (cf. Section 3.2). Finally, we compare our language to
the existing languages in Section 6.2.3.

6.2.1. Evaluating Against the Design Guidelines

In Section 3.1, we present and discuss general design guidelines for designing DSLs. �e main
recommendations Karsai et al. [KKP+14] give are to reuse, simplify, and to be consistent. In
the following sections, we discuss in more detail if and to what extent our language adheres to
those recommendations.

Reuse Karsai et al. [KKP+14] recommend reusing as much as possible from other languages.
�is includes both concrete and abstract syntax. �e idea is to reduce the implementation e�ort,
reuse good practices, and make the new language easy to learn.

Most concepts in UVL are reused from various programming or variability languages. For
the abstract syntax, we reuse the general structure of feature diagrams. �e model is a tree
structure of features, which have groups as children, which in turn have other features as
children. Additionally, there is a list of cross-tree constraints. �is structure will be immediately
familiar to anyone familiar with feature diagrams. �e choice to use nesting and indentation
to represent that structure, without requiring semicolons at the end of the line, is reused from
Clafer (cf. Listing 3.5) or Python. To include other feature models, we incorporate namespaces.
�e semantics of namespaces are inspired by the package and import system used in Java, with
individual segments of the namespace declaration describing the path to the �le containing the
model. �e syntax of a�ributes is inspired by JSON objects and Clojure maps. Keywords that

6. Evaluation 67

are used in the constraints and consist only of a single symbol are inspired by C-like languages,
which use the pipe symbol (‘|’) for an or and the ampersand symbol (‘&’) for an and.

Simplicity We try to keep the language as simple and obvious as possible. When starting
with a simple model, the general structure from feature diagrams can be reused. Only when
additional information needs to be speci�ed, does the user have to learn the single concept of
a�ributes. Since a�ributes are simply key-value pairs, they are a powerful tool with a simple
syntax. If the model then becomes too large to be speci�ed reasonably in a single �le, there will
be one more concept to learn, which is the composition mechanism. Since it is very similar to
Java imports, its syntax and semantics are also familiar and easy to learn.

Consistency In feature diagrams, there is an inconsistency in where group membership is
speci�ed. While or and alternative groups are located at the parent, optional and mandatory
features are speci�ed at the children. We made this consistent in our language by introducing
groups for optional and mandatory features, which can be used the same way as the other
group types. However, one design decision might be called inconsistent: We allow specifying
constraints in two places, although the constraints themselves still have the same syntax. In
a separate list at the end of the �le and within a�ributes. �is way, users can choose the one
that is be�er suited for their models. When the list of constraints is small, the separate list can
give a good overview of all constraints. However, when the list becomes large enough to be
incomprehensible, specifying constraints near involved children as an a�ribute might be more
bene�cial. We estimate that the bene�ts of having these two options for di�erent use cases
outweigh the downsides associated with this inconsistency.

6.2.2. Evaluating Against the Collected Scenarios

In addition to the general guidelines, we discussed and discerned scenarios and requirements by
the SPL community in Section 3.2. In this section, we evaluate how well the language enables
the selected scenarios and ful�lls the resulting requirements.

Exchange �e exchange scenario requires a textual language that is well documented, ex-
tensible, and provides a default library with a parser and a printer. In Section 4.2, we give an
informal description of the language, followed by a formal grammar in Section 5.2. �at serves
as the documentation for the language. We describe the provided default library and its usage
in Section 5.3. Extension of the language with tool-speci�c data is enabled through the a�ribute
system. We demonstrate the feasibility by integrating the library as a further language into the
FeatureIDE tool (cf. Section 5.4).

Mapping to Implementation �e main requirement of this scenario is to mark whether
speci�c features have a corresponding implementation artifact. �is information can then be
used in analyses to exclude features that are only meant for structuring, instead of introducing an
actual feature to the product. �is information can be speci�ed in UVL with a boolean a�ribute,

68 6.2. Evaluating Against the Reqirements

which is usually called abstract. Furthermore, implementation artifacts can be referenced
from other a�ributes, enabling traceability between speci�cation and implementation or other
artifacts, such as requirements or tests.

Teaching and Learning For this scenario, the language should be presentable with a few
slides and reuse concepts that are familiar to computer science students, so they can learn the
language quickly. As described in Section 6.2.1, we reuse many concepts from existing languages.
�e overall syntax is comparable to that of Python, which is familiar to many computer science
students and the structure mostly adheres to that of feature diagrams. �is way, computer
scientists with rudimentary knowledge in the �eld of SPLs should be able to become familiar
with the language quickly.

Storage �is scenario describes the e�cient storage, by the use of a textual syntax. We
analyze the space e�ciency when storing huge models in Section 6.3.3. �e space e�ciency of
UVL is among the best of the compared textual formats.

Decomposition and Composition We provide a simple mechanism for composition and
decomposition that is inspired by the package and import system that is incorporated in Java.
Models can be included in another model as submodels using its namespace or an alias. We
demonstrate that it can be easily integrated into tools by integrating it into FeatureIDE. Tools that
do not support a similar composition mechanism can still use decomposed models by merging
them into a single model and prepending each feature name with the alias it is imported with.

6.2.3. Comparison with Existing Languages

Each language author has reasoning behind their language design. �at is one reason why
Karsai et al. [KKP+14] recommend reusing language features from other languages. In this
section, we put our language into the context of the existing ones. However, comparing multiple
languages is a di�cult task, as design decisions can rarely be considered in isolation. �us, we
focus on the categories we compared in Table 3.2 and a few additional noteworthy features.

UVL uses nesting to represent the hierarchy, indentation to represent blocks, line breaks to
end a line, and full-length keywords, but as few as possible. With these design decisions, it
would be similar to Clafer. However, with the constraint location as either a separate list or
in-line and groups between the parent and its children, it introduces a unique combination
of design decisions that is di�erent from the other languages considered here. Also, Clafer
in particular di�ers signi�cantly in the abstract syntax from UVL, where there is no simple
concept of a feature. Instead, a “Clafer”, which entangles feature and class modeling, is used.
It uni�es notations, but introduces more complexity, reducing analyzability. We reuse the
concept of di�erent sections in the �le from the VM approach (cf. Listing 3.10), indentation
from Clafer or SXFM, and cardinalities from VSL. �ese design choices re�ect the opinions of
the majority of the community, which they expressed in the �rst questionnaire (cf. Section 3.4).
With this combination, we hope that the community can agree to build upon it. We visualize

6. Evaluation 69

the similarities and di�erences from other languages in Table 6.1. For reference, we also include
the referencing language concept in the table.

Language Hierarchy Blocks Keywords Line Constraint Location
Endings Location of Groups

Concept 2 reference indentation minimal new line both parent
FDL reference none full new line separate parent
GUIDSL reference none symbols semicolon separate parent1

FAMILIAR reference none symbols semicolon separate parent
PyFML nesting [] full semicolon separate parent
Clafer nesting indentation minimal new line in-line parent
UVL nesting indentation minimal new line both between
SXFM nesting indentation symbols new line separate between
VSL nesting () minimal semicolon separate between
TVL nesting {} full semicolon in-line between
�TVL nesting {} full semicolon in-line between
VELVET nesting {} full semicolon in-line between
VM nesting {} minimal new line separate between
IVML nesting {} full semicolon in-line n/a

1 for “or” groups also the parent’s parent

Table 6.1.: Summary of how the design decisions of UVL and the referencing language concept regarding
the concrete syntax compare to presented languages. Decisions that are the same as in one of
the concepts are accentuated with the corresponding color.

6.2.4. Summary of the Evaluation Against the Requirements

In the previous sections, we revisited the requirements for the language we determined in
Chapter 3. We can justify each design decision against the general design guidelines from
Section 3.1 and are con�dent that we made reasonable trade-o�s, where necessary. We discussed
how each of the selected scenarios from Section 3.2 can be enabled by our language and which
design decisions lead to the ful�llment of the scenario’s requirements. �e language can be
used to cover each relevant scenario. Finally, we put our language into context with the existing
languages from Section 3.3. Our language features a unique combination of design decisions
that is not yet present in other languages we are aware of. We pick and reuse good practices
from a few of those languages, to arrive at a simple, yet su�ciently expressive and consistent
language.

70 6.3. Evaluating Scalability

6.3. Evaluating Scalability
Lack of scalability is one of the main criticisms of the indentation-based format that came up
in discussions with the community and comments of the questionnaires. In this section, we
analyze what criteria for an approach that “scales” are and how well UVL ful�lls them. For
this, we consider two large real-world models (Section 6.3.1), explore which properties a text
�le must have to be considered “editable”, and check how UVL representations of the example
models ful�ll these properties (Section 6.3.2). Finally, we analyze the space e�ciency of di�erent
languages when storing these models in Section 6.3.3.

6.3.1. Introducing Real-World Models

Knüppel et al. [KTM+17] provide 127 large real-world feature models to be used for various
analyses. For our analyses, we focus on the two largest ones. One is called Automotive02 V4,
which is an obfuscated model from an industrial partner. It has a total of 18,616 features. �e
second model we consider is extracted from the Kcon�g models of an older Linux kernel in
version 2.6.33-rc3. �is model has 6,467 features.

Both models would be impractical to handle in a single �le. �us, they are split into smaller
submodels, which are then composed into the larger model. �e Automotive model consists of
47 submodels, while the Linux kernel is decomposed into 675 submodels. We use these two
models for the following analyses regarding editability and storage space e�ciency.

�e model of the Linux kernel is originally speci�ed in Kcon�g �les. Knüppel et al. [KTM+17]
translated those models to a single large feature model in the FeatureIDE format. To recover the
former separation into submodels, we split the available model along the original Kcon�g �les.
�is step does not require a complete parser for the Kcon�g format, as the overall structure has
been retained in the feature model. �is way, we only have to extract a list of feature names
from each Kcon�g �le. We use those lists to separate the corresponding features from the
feature model into their own submodels. For reference, we provide the code for this separation,
the code for the following analyses, and the used models in a public repository on GitHub.1

6.3.2. Editing Large Models

In this section, we brie�y analyze the characteristics of text editors to derive metrics to measure
if and how well a textual �le can be edited. We use these metrics to check how well the example
models can be edited or, in other words, how well the UVL approach scales to large models.

Properties of an Editable Model

Di�erent text editors provide vastly di�erent editing features that can help with large �les. Such
features can include folding of subtrees, automatic matching of parentheses, editing at multiple
caret positions simultaneously, or a powerful search-and-replace engine.

1https://github.com/neominik/towards-uvl

https://github.com/neominik/towards-uvl

6. Evaluation 71

Assuming an editor without these supporting features, the simplest metric is whether the
whole �le �ts on a single screen. If the model is small enough for that, every part of it can be
seen at the same time, so keeping an overview and editing at any location is simple. Common
computer screens with sizes between 13 and 24 inches diagonally (ca. 33 - 61 cm) can �t roughly
50 to 60 lines on a single page. However, this criterion is quite restrictive and probably unrealistic
for real-world models.

A weaker, but more realistic, criterion would be to require only subtrees a certain level deep
in the hierarchy to �t on a screen. �is would imply that only a subsystem can �t on the screen,
so it can still be edited with ease, while edits that concern features across subtrees would be
more di�cult. A related metric that is easier to measure is the maximum distance of two sibling
features on a certain level. When the distance between two siblings is small enough for the
screen, it implies that the subtree between the siblings also �ts on the screen. An analogy can be
made to recommendations about the sizes of classes and methods in so�ware code. While a class
might not �t on a single screen, a single method certainly should (Martin even recommends
that functions should be no bigger than four lines [Mar08, p. 34]). What is the equivalence of a
method in a feature model? A class consists of methods that describe one functionality. So in a
feature model that consists of subtrees, there should be subtrees at various levels that can be
considered analogous to methods and thus should �t on a single screen. Cross-tree constraints
usually exist in their own list, separate from the context of the tree. Hence, to create or edit
constraints, the involved features have to be known, requiring an overview of the feature tree.
However, new constraints can be created at the end of the list and �nding constraints to edit
can be done by searching for them. �is can be done even in large models, where the criterion
regarding the size of the feature tree does no longer hold, so we do not consider constraints
speci�cally for this analysis.

Another aspect of editability is the amount of indentation that occurs before the actual
content. Assuming 150 characters can �t into a single line, then probably not more than half of
that should consist of whitespace. We assume further a tab size of four spaces. �at would allow
for 18 tabs, before reaching the middle of the line. �is criterion is probably the weakest for
real-world models, as a model with such a deep nesting level would allow for far more features
than could �t on the screen in most cases. However, this is not generally true for unbalanced
trees, so we evaluate the criterion nonetheless.

Analyzing Real-World Models in UVL

Now that we de�ned di�erent metrics to judge the editability of textual �les, we can analyze
the example models expressed in UVL. Without references, so all features in a single �le, 18,616
or even 6,467 features would never �t on a screen. However, this is true for any notation. �is
is why these models are decomposed into submodels. 47 submodels for the Automotive model
and 675 submodels for the Linux kernel.

In Figure 6.11, we show box plots of the number of features per submodel for both Automotive
and Linux models. As these models do not use a�ributes, there is usually only one line per
feature. With this, we can deduce that most models are small enough, so the entire feature tree

72 6.3. Evaluating Scalability

can �t on a screen. �e median model size of Linux submodels is only three features, with the
median for Automotive at 57.5. For Linux, 97% of the submodels have fewer than 60 features.
For Automotive, this percentage is still at 49%. With this criterion alone, we can say that these
real-world models are for the most part still easily editable.

1 3 10 30 100 300 1,000 3,000 10,000

Linux

Automotive
1 2

3
9 19

1 14.25
57.5

268 626

Number of Features (Logarithmic Scale)

Figure 6.11.: Box plot of the number of features per submodel for Automotive and Linux on a logarithmic
scale.

Considering the weaker criterion, the maximum distance between two siblings, the number
of editable models increases signi�cantly. In Figure 6.12, we show box plots of the maximum
distance between siblings on the �rst level in the hierarchy. In the Automotive model, 77% of
the submodels have a maximum sibling distance of fewer than 60 lines in the �le, with the
median at only eleven lines. When considering sibling distances on the second level and below,
this distribution shi�s further. �en, 87% of the models have a maximum sibling distance of
fewer than 60 lines, so the vast majority of the models can still be edited. Linux submodels
are smaller, so the maximum sibling distance is also much smaller for most models. 75% of the
submodels have a maximum sibling distance of zero. �is means that only leaf features have
siblings in those models. Of the 675 submodels, 667 have a maximum sibling distance of less
than 60. �at is more than 98% of the models.

0 1 3 7 20 50 100 300 700 2,000 4,000

Linux

Automotive
0

0

0 3.25
11

44.5 92

Maximum Sibling Distance (Scaled With Arcsinh)

Figure 6.12.: Box plot of the maximum distance (in lines) between two siblings for Automotive and Linux
models.

�e �nal metric we examine is that of the maximum indentation level in the submodels. In
Figure 6.13, we show box plots of this metric for the submodels. All submodels in both example
models have fewer than 18 tabs as their maximum level of indentation. Most submodels in

6. Evaluation 73

Automotive have between 3 and 9 tabs as their maximum indentation level. Linux submodels
are again smaller with typically between 1 and 7 tabs. Even for large models, huge amounts of
indentation are uncommon, as the level of indentation only grows logarithmically with the size
of the model when the tree is mostly balanced. With high branching factors (the Automotive
model has an average branching factor of approx. 10.4, Linux approx. 6.8), these models can �t
many features with reasonable indentation.

0 2 4 6 8 10 12 14 16 18

Linux

Automotive
1 3

3
5 7

3 5
5

7 9

Maximum Indentation Level

Figure 6.13.: Box plots of the maximum level of indentation (tabs) found in the submodels of Automotive
and Linux.

We can conclude that even the largest real-world models can still be edited easily, except for
a few outliers, because they are decomposed into submodels. Due to their size, these models
already come decomposed. Otherwise, they would not be editable in any format. �e majority
of the submodels �t either on the screen entirely or have at least subtrees on the �rst or second
level that do. Only a few outliers exist that would be more di�cult to edit and could bene�t
from further decomposition. �e maximum depth of indentation is small enough to not be a
concern when editing these models.

We recommend that practitioners creating or maintaining large models should be guided by
the design of the models considered here and decompose their models whenever they become
too big. If possible, the number of features per model should be limited to 60. However, if that
is infeasible, we recommend to at least create subtrees that are small enough to �t on a single
screen.

6.3.3. Storage E�iciency

Another metric to consider when evaluating the data format is the �le sizes it creates and how
e�cient the storage is. �is consideration becomes less and less important with advancing
storage capacities, faster Internet access, and advanced compression algorithms. However, it is
still worth exploring brie�y in response to the scenario about e�cient storage (cf. Section 3.2).

To evaluate this metric, we use the same large real-world models from Section 6.3.1 and
convert them into di�erent formats. Initially, the models are available in the internal XML
representation of FeatureIDE. FeatureIDE provides exporters for UVL, SXFM, and GUIDSL
grammars. �ese formats already provide a good diversity in the design space of variability
languages. SXFM uses nesting and indentation, similar to UVL, while the GUIDSL grammars

74 6.3. Evaluating Scalability

use references to represent the hierarchy. �us, we use these formats for the comparison. In
Figure 6.14, we give an overview of the space these formats require when storing the models.
�e results depend heavily on the individual models because di�erent characteristics of a
model result in di�erent e�ciencies in the formats. For instance, FeatureIDE stores constraints
by its AST representation, pre�y-printed with nesting and indentation. For few or simple
constraints, this is not critical. However, for many complex constraints with deeply nested
AST representations, the �le size increases rapidly. �is is especially pronounced for the Linux
model, where the FeatureIDE format uses 90% of the �le size for those constraints. �e SXFM
format is more sensitive to the length of the feature names, as the exporter writes every feature
name twice. Once for the name and once for the unique ID that is required for each feature.
�e �le size could be smaller if the exporter used shorter IDs, but incrementing integers would
decrease the readability of constraints and meaningful short IDs would have to be provided by
a human. �is is the reason for the large �le size of the Automotive model in SXFM, which has
many features with long names, due to the obfuscation of those names.

0 200 400 600 800 1,000 1,200 1,400 1,600 1,800 2,000 2,200 2,400 2,600

UVL

SXFM

GUIDSL

FeatureIDE

UVL

SXFM

GUIDSL

FeatureIDE

Li
nu

x
Au

to
m

ot
iv

e

199 1,174

94 1,180

78 785

92 656

2,233 2,481

266 493

399 547

479 614

975

1,086

707

564

248

227

148

135

Size in kiB

Features
Constraints

Figure 6.14.: Comparison of the �le sizes for di�erent formats. Split into the size for storing features and
constraints.

�e FeatureIDE format consistently produces one of the largest �le sizes. For SXFM it depends
heavily on the model. �e Automotive model has its largest �le size in SXFM, while for the
Linux model it produces the smallest �le. GUIDSL and UVL perform similarly and produce
consistently small �le sizes.

Another measurement to consider for e�cient storage is the time it takes to store and retrieve
models. While reading is very quick for all formats, �nishing well under one second, the case
is di�erent for writing. FeatureIDE, GUIDSL, and UVL perform similar to reading, �nishing
also within well under a second for both models. �e SXFM exporter, however, �rst converts all
constraints into the conjunctive normal form to avoid constructs that are unsupported in SXFM,
such as implications. �is resulted in an export time of 30 minutes for the initial conversion

6. Evaluation 75

from the FeatureIDE representation of the Linux model to SXFM. �e export was performed
with FeatureIDE version 3.6.2 on an AMD Ryzen 5 3600. As we can see, supporting propositional
logic in UVL is not only useful when modeling constraints, but also when storing them, avoiding
expensive transformations.

6.4. Summary of the Evaluation
In this chapter, we evaluated the language concepts from many di�erent angles. We conducted
a second questionnaire, revisited the requirements from Chapter 3, and considered how well
the language is suitable for large scale models.

�e responses from the second questionnaire, which were collected from members of the
SPL community and SPL students, are in favor of the nesting language concept. It is rated
positively, both overall and in more detailed categories such as style, teaching and learning, and
complexity. Since the referencing language concept is preferred by fewer participants and the
feedback for that language is less positive, we se�le on the nesting language concept to become
the base language level of UVL.

We carefully consider the requirements from Chapter 3. �ese include general design guide-
lines, collected scenarios from the community, and a comparison to existing languages. �e
language meets the requirements and enables the scenarios. It makes reasonable trade-o�s
where necessary. Comparison to existing languages shows that it has similarities to many of
the languages, but di�ers at least in a few aspects from each one.

Finally, we investigate how well the language is suitable for large real-world models. We use
models with 18,616 and 6,467 features to evaluate how well they can be edited in a text editor
and how space e�cient they can be stored in UVL. �ese real-world models are composed of
smaller submodels, many of which still �t on a single screen in UVL. For the majority, at least
the subtrees beneath the �rst or second hierarchy level can �t on a screen. We recommend to
keep models small and decompose them when necessary. Ideally, a single model has less than
60 features, although a weaker criterion of having subtrees on the �rst or second hierarchy
level with less than 60 features might still be reasonable. Considering the space e�ciency of the
UVL format, we determine that it consistently produces good results, similar to the GUIDSL
grammars.

For a de�nite assertion of the usability, a large-scale usability study comparing di�erent
modeling languages for speci�c tasks would have to be conducted. We consider this a task for
future work when the community has agreed upon a language.

7. Related Work
In this chapter, we discuss publications related to textual variability languages. First, we present
languages and approaches in chronological order of publication. A�erward, we look at e�orts
to arrive at a common or standardized variability language. Finally, we consider survey papers,
comparing multiple textual notations.

�e �rst a�empt to arrive at a textual notation for the feature diagram proposed by Kang
et al. [KCH+90] is the Feature Description Language (FDL) by van Deursen & Klint [vDK02]
in 2002. �e main goal of FDL is to formalize the notation of feature diagrams by providing a
well-de�ned textual syntax. At the time, the tool support for feature diagrams was still lacking.
�us, van Deursen & Klint also made an e�ort to provide good tool support along with the
language. Another early approach with similar goals are the GUIDSL grammars, published
by Batory [Bat05] in 2005. Batory expresses feature diagrams using grammars and combines
them with propositional formulas. �is approach enables the use of SAT solvers to improve the
existing tool support with analyses and validation of models and con�gurations.

Starting in 2009, many new languages and approaches were proposed in rapid succession.
Mendonça et al. [MBC09] developed the So�ware Product Lines Online Tools (S.P.L.O.T.). It
uses the Simple XML Feature Model (SXFM) as its storage format, which uses XML for the
meta-data and an embedded DSL for the actual features. As part of the Compositional Variability
Management Framework (CVM), Abele et al. [APS+10] introduce the Variability Speci�cation
Language (VSL). It is intended to evaluate research approaches that were developed in multiple
industrial cooperations. At the same time, Boucher et al. [BCF+10] introduce the Text-based
Variability Language (TVL). �e motivation for TVL is to provide a language that supports
large-scale models. To achieve that, it applies mechanisms for modularization of feature models.
Additionally, TVL aims at o�ering a light and comprehensive syntax that can also be used for
the storage of models. Later that year, Clarke et al. [CMP+10] present the Micro Text-based
Variability Language (�TVL) as part of the ABS language. It is supposed to be a simpli�ed version
of TVL. By deliberately focusing on the essential parts of feature modeling, �TVL strives to
simplify the manipulation of feature models. Clafer is proposed by Bąk et al. [BCW11]. Its main
goal is to unify feature modeling and meta-modeling. �is is achieved by combining features
and classes into a single �rst-class concept. Furthermore, they seek to provide a concise concrete
textual syntax. In the same year, Rosenmüller et al. [RST+11] suggest the VELVET language.
�ey observed that in industrial projects, orthogonal aspects of feature models are o�en modeled
independently to avoid scalability problems. �e goal of VELVET is to provide a means to
decompose models in the same way, while also o�ering to compose them again for analyses
concerning the entire model. Additionally, con�gurations are supported. �is way, there is a
consistent language to cover both modeling and managing con�gurations. Inspired by Java,
TVL, Clafer, OCL, UML, and others, Schmid et al. [SKE18] release the INDENICA Variability

78

Modeling Language (IVML) in its �rst version in 2012. Its main focus is to integrate product-
line engineering and model-based development into a single approach. Another language,
FAMILIAR, is released in 2013 by Acher et al. [ACL+13]. It also has the goal to enable large-scale
models. For this, composition and decomposition, reasoning facilities, scripting capabilities,
and modularization mechanisms are provided.

A�er a brief pause of a few years, PyFML by Azzawi [Azz18] appears in 2018. It aims at being
more scalable than feature diagrams and at providing enough expressiveness for dealing with
complex SPLs. �e most recent a�empt at a textual language, we are aware of, is called VM
(Alférez et al. [AAG+19]). In this industrial project, a variability modeling approach speci�c
to the video domain is developed. �e domain’s unique requirements made it necessary to
consider various existing approaches and integrate them into a single tool. Although it was
developed speci�cally for the video domain, its textual language can be used in other domains.

�e languages presented so far all have their own speci�c goals and reasoning or are part of
their own tool suite. However, none of them gained wide adoption across most variability tools.
With our proposal, we try to provide a starting point for a language that could �ll that spot.
We argue that collecting feedback from the community during the development of a language
is a vital component in this process. A previous e�ort to arrive at a standardized language
was the Common Variability Language (CVL) [HMO+08; HWC12]. It was speci�ed using the
Meta-Object Facility (MOF) and was to be hosted at the Object Management Group (OMG)
alongside their other standards. With CVL, one could add variability to other DSLs, providing
means for wide adoption across domains. However, it failed due to legal reasons [BC19]. Also,
the proposed visual notation was lacking in usability as found by Echeverrı́a et al. [EFC+15].
�e CVL documentation is still available as a revised submission to the OMG [Hau12]. Lately,
a new e�ort has been started to arrive at a common language in September 2018 [BC19]. As
described in Section 3.2, in the current stage, scenarios and requirements have been collected
and ranked by the community. As part of this e�ort, �üm et al. [TSS19] make suggestions
regarding the expressiveness of a new language. When expressiveness is too high, adoption
will be hindered by the e�ort to implement and integrate all the features into tools. In contrast,
an expressiveness that is too low does not allow expressing real-world models from various
domains. As a solution, �üm et al. suggest resorting to di�erent language levels. �ey could
coincide with the expressiveness of di�erent classes of solvers. We also acknowledge this
expressiveness trade-o� and propose a �rst, basic level, trying to strike a reasonable balance
between complexity and usefulness.

Eichelberger & Schmid [ES13] compare ten di�erent textual languages. �ey compare capabil-
ities, constraints, con�guration support, scalability, and additional language characteristics. �is
analysis has been updated and re�ned two times ([ES15; tBSE19]), considering new languages
or new developments in already covered ones. Eichelberger & Schmid focus mainly on the
exact feature set and expressiveness of those languages. We compare almost the same set of
languages in our analysis. However, we focus more on the language’s concrete textual syntaxes,
by representing an example model in each of the di�erent languages. �is aspect has, to our
knowledge, not yet explicitly been studied by other surveys.

8. Conclusion and Future
Work

Numerous variability languages and approaches exist in the SPL community. Each one comes
with a slightly di�erent focus, goal, and set of language features. �us, none of them enjoys
wide support across tools, hindering e�ective communication and the exchange of models.
However, a standard data format has many advantages for the community as a whole, including
ease of collaboration, teaching and learning, benchmarking, and reusing analyses from other
tools. In this thesis, we designed a proposal for a language that can be used as a basis to commit
to such a common format. We incorporated extensive feedback from the community, both
before and during the design, to increase the acceptance of the �nal language.

We derived and discerned the relevant requirements by considering four di�erent kinds of
sources. �ese sources are general guidelines on designing DSLs, scenarios that have been
formulated and ranked by the SPL community, existing textual variability languages, and a
questionnaire about the needs and preferences of the individual members of the community.
While some decisions were clear from the requirements, others, such as the question of whether
to use nesting or references to represent the hierarchy, resulted in a tie in the submissions to the
questionnaire. With valid arguments for both approaches, we decided to create two proposals
for a new language, to be examined side by side by the community. Key guiding principles
while designing both languages were simplicity, familiarity, and �exibility. �is way, we aim for
the language to be easy to integrate into tools, natural to learn and teach, and able to express
existing and future models from various approaches.

In a second questionnaire, we presented the two language proposals to receive feedback from
the community and determine the preferred language. With both concrete proposals side by side,
the questionnaire resulted in a clear choice. �e community prefers the language concept that
uses nesting and indentation to represent the hierarchy, which we call the Universal Variability
Language (UVL). �at language is well received, with good ratings overall. Participants can
represent their models in the language and think that it is well suited for teaching and learning.
Re�ection on the requirements shows that the language enables the relevant scenarios and
conforms to general best practices and guidelines. Furthermore, it is well suited for scalability.
�e main factor for this is not the syntax itself, but the composition mechanism. Large-scale
models, such as the Linux kernel, which are decomposed into smaller submodels already, can
be represented with the same decomposition in UVL. �is way, most models are su�ciently
small to be edited comfortably with text editors, even though we expect the majority of the
models to be created as exports from tools.

To enable rapid integration into most of these tools, we provide a small default implementation
that can be used as a Java library. It includes a parser and a printer. We demonstrated the

80

library’s applicability by including it as an additional format into the FeatureIDE tool. For
tools wri�en in other languages than Java, we provide a grammar that can be used to generate
appropriate implementations.

�e next step for the community is to commit to a common language. �ey may use our
language proposal and the results of the questionnaires to guide their decision. We urge
practitioners who are developing variability tools to then integrate support for that language in
their tools. Only with widespread tool support can a language gain adoption.

Additionally, syntax support for textual editors could be developed to ease the direct editing
of models by hand (e.g., when teaching it to students). Ideally, this editing support is not limited
to a single tool but can be used in all major editors and IDEs. To achieve this, the Language
Server Protocol (LSP) could be used.

We focused mainly on the concrete syntax and the scope of the language, as these are the
most critical points for acceptance. For the future, it would be bene�cial to de�ne a formal
semantics for the language. �is way, misunderstandings on how certain language constructs
have to be interpreted can be minimized. However, the existing intuitive understanding of
how to translate the language concepts to feature diagrams might be precise enough in the
beginning.

For this base language level, we traded expressiveness for simplicity and analyzability with
SAT solvers. �ough it is extensible with a�ributes, these cannot be used in constraints and
constraints themselves are limited to propositional logic. For more involved use cases, additional
language levels extending the �rst one (e.g., by providing more powerful constraints) could be
de�ned. With these levels, the language could apply to a wider range of models at the cost of
increased complexity and decreased analyzability.

Finally, while this language focuses on specifying the variability in models, the con�guration
step could also bene�t from a common format. When the community commits to a variability
language, a con�guration language may be de�ned. It could build on the same principles and
results of this language, employing a similar syntax and enabling exchange between tools.

Bibliography
[AAG+19] Mauricio Alférez, Mathieu Acher, José A. Galindo, Benoit Baudry, and David

Benavides. Modeling variability in the video domain: language and experience
report. So�ware �ality Journal, 27(1):307–347, 2019. doi: 10.1007/s11219-
017-9400-8 (Cited on pages 25, 78).

[ABK+13] Sven Apel, Don Batory, Christian Kästner, and Gunter Saake. Feature-Oriented
So�ware Product Lines. Springer, Berlin, Heidelberg, 2013 (Cited on pages 3, 4).

[ACL+11] Mathieu Acher, Philippe Collet, Philippe Lahire, and Robert B. France. Slicing
Feature Models. In IEEE/ACM Int’l Conf. on Automated So�ware Engineering (ASE),
pages 424–427, Washington, DC, USA. IEEE, 2011. isbn: 978-1-4577-1638-6. doi:
10.1109/ASE.2011.6100089 (Cited on page 45).

[ACL+13] Mathieu Acher, Philippe Collet, Philippe Lahire, and Robert B. France. FAMILIAR:
A domain-speci�c language for large scale management of feature models. Science
of Computer Programming (SCP), 78(6):657–681, 2013. doi: 10.1016/j.scico.
2012.12.004 (Cited on pages 16, 21, 78).

[ANT20a] ANTLR. Grammars wri�en for ANTLR v4. GitHub repository, 2020. Available
online at https://github.com/antlr/grammars-v4; visited on June 11th,
2020. (Cited on page 50).

[ANT20b] ANTLR / Terence Parr. ANTLR. Website, 2020. Available online at https://www.
antlr.org; visited on June 11th, 2020. (Cited on page 50).

[APS+10] Andreas Abele, Yiannis Papadopoulos, David Servat, Martin Törngren, and Ma�hias
Weber. �e CVM Framework - A Prototype Tool for Compositional Variability
Management. In Proc. Int’l Workshop on Variability Modelling of So�ware-Intensive
Systems (VaMoS), pages 101–105, January 2010 (Cited on pages 23, 77).

[Azz18] A.F. Al Azzawi. PYFML - A Textual Language for Feature Modeling. Int’l Journal
of So�ware Engineering & Applications, 9(1):41–53, January 2018. issn: 0975-9018.
doi: 10.5121/ijsea.2018.9104 (Cited on pages 21, 78).

[Bat05] Don Batory. Feature Models, Grammars, and Propositional Formulas. In Proc. Int’l
Systems and So�ware Product Line Conf. (SPLC), pages 7–20, Berlin, Heidelberg.
Springer, 2005 (Cited on pages 1, 20, 49, 77).

[BC19] �orsten Berger and Philippe Collet. Usage Scenarios for a Common Feature
Modeling Language. In Proc. Int’l Systems and So�ware Product Line Conf. (SPLC),
volume B of SPLC ’19, pages 174–181, Paris, France. Association for Computing
Machinery, 2019. doi: 10.1145/3307630.3342403 (Cited on pages 2, 13, 14, 16,
18, 37, 78).

https://doi.org/10.1007/s11219-017-9400-8
https://doi.org/10.1007/s11219-017-9400-8
https://doi.org/10.1109/ASE.2011.6100089
https://doi.org/10.1016/j.scico.2012.12.004
https://doi.org/10.1016/j.scico.2012.12.004
https://github.com/antlr/grammars-v4
https://www.antlr.org
https://www.antlr.org
https://doi.org/10.5121/ijsea.2018.9104
https://doi.org/10.1145/3307630.3342403

II Bibliography

[BCF+10] �entin Boucher, Andreas Classen, Paul Faber, and Patrick Heymans. Introducing
TVL, a Text-based Feature Modelling Language. In Proc. Int’l Workshop on Vari-
ability Modelling of So�ware-Intensive Systems (VaMoS), pages 159–162, January
2010 (Cited on page 77).

[BCW11] Kacper Bąk, Krzysztof Czarnecki, and Andrzej Wąsowski. Feature and Meta-
Models in Clafer: Mixed, Specialized, and Coupled. In So�ware Language Engi-
neering, pages 102–122, Berlin, Heidelberg. Springer Berlin Heidelberg, 2011. doi:
10.1007/978-3-642-19440-5_7 (Cited on pages 22, 77).

[BEH+17] Meinte Boersma, Sebastian Erdweg, Angelo Hulshout, Steven Kelly, Tijs van der
Storm, and Markus Völter. Language Workbench Challenge — Comparing Tools
of the Trade. Website, 2017. Archived version available online at http://web.
archive.org/web/20170628212322/http://www.languageworkbenches.

net/; visited on June 11th, 2020. (Cited on page 50).

[Big20] Big Lever So�ware Inc. Gears: A So�ware Product Line Engineering Tool. Website,
2020. Available online at https://www.biglever.com/solution/product.
html; visited on February 26th, 2020. (Cited on page 1).

[BRN+13] �orsten Berger, Ralf Rublack, Divya Nair, Joanne M. Atlee, Martin Becker,
Krzysztof Czarnecki, and Andrzej Wąsowski. A Survey of Variability Modeling
in Industrial Practice. In Proc. Int’l Workshop on Variability Modelling of So�ware-
Intensive Systems (VaMoS), 7:1–7:8, Pisa, Italy. ACM, 2013. isbn: 978-1-4503-1541-8.
doi: 10.1145/2430502.2430513 (Cited on pages 5, 54).

[BTS19] Paul Maximilian Bi�ner, �omas �üm, and Ina Schaefer. SAT Encodings of
the At-Most-k Constraint: A Case Study on Con�guring University Courses. In
So�ware Engineering and Formal Methods, pages 127–144, Oslo, Norway. Springer,
September 2019. doi: 10.1007/978-3-030-30446-1_7 (Cited on page 46).

[Bün19] Hendrik Bünder. Decoupling Language and Editor - �e Impact of the Language
Server Protocol on Textual Domain-Speci�c Languages. In Proc. of the 7th Int’l
Conf. on Model-Driven Engineering and So�ware Development (MODELSWARD
2019), pages 131–142, 2019 (Cited on page 49).

[CBH11] Andreas Classen, �entin Boucher, and Patrick Heymans. A Text-Based Ap-
proach to Feature Modelling: Syntax and Semantics of TVL. Science of Computer
Programming (SCP), 76(12):1130–1143, 2011. Special Issue on So�ware Evolution,
Adaptability and Variability (Cited on pages 16, 24).

[Cen14] Centrum Wiskunde & Informatica. Rascal MPL. Website, 2014. Available online at
https://www.rascal-mpl.org; visited on June 11th, 2020. (Cited on page 51).

[CHE05] Krzysztof Czarnecki, Simon Helsen, and Ulrich Eisenecker. Formalizing Cardinality-
Based Feature Models and �eir Specialization. So�ware Process: Improvement
and Practice, 10(1):7–29, 2005. doi: 10.1002/spip.213 (Cited on page 30).

https://doi.org/10.1007/978-3-642-19440-5_7
http://web.archive.org/web/20170628212322/http://www.languageworkbenches.net/
http://web.archive.org/web/20170628212322/http://www.languageworkbenches.net/
http://web.archive.org/web/20170628212322/http://www.languageworkbenches.net/
https://www.biglever.com/solution/product.html
https://www.biglever.com/solution/product.html
https://doi.org/10.1145/2430502.2430513
https://doi.org/10.1007/978-3-030-30446-1_7
https://www.rascal-mpl.org
https://doi.org/10.1002/spip.213

Bibliography III

[CMP+10] Dave Clarke, Radu Muschevici, José Proença, Ina Schaefer, and Rudolf Schla�e.
Variability Modelling in the ABS Language. In Formal Methods for Components
and Objects, volume 6957, pages 204–224, November 2010. doi: 10.1007/978-3-
642-25271-6_11 (Cited on pages 24, 77).

[CN01] Paul Clements and Linda Northrop. So�ware Product Lines: Practices and Pa�erns.
Addison-Wesley, Boston, MA, USA, 2001. isbn: 0-201-70332-7 (Cited on pages 1,
3, 4).

[CPB+07] Daniela Cruz, Maria João Pereira, Mario Berón, Rúben Fonseca, and Pedro Hen-
riques. Comparing generators for language-based tools. In Proc. of the 1st Conf.
on Compiler, Related Technologies and Applications, pages 27–50. Universidade da
Beira Interior, 2007 (Cited on page 50).

[DRG+07] Deepak Dhungana, Rick Rabiser, Paul Grünbacher, Klaus Lehner, and Christian
Federspiel. DOPLER: An Adaptable Tool Suite for Product Line Engineering. In
Proc. Int’l Systems and So�ware Product Line Conf. (SPLC), pages 151–152. Kindai
Kagaku Sha Co. Ltd., Tokyo, Japan, 2007. isbn: 978-4-7649-0342-5 (Cited on
page 49).

[Ecl20] Eclipse Fondation. Xtext - Language Engineering Made Easy! Website, 2020.
Available online at https://www.eclipse.org/Xtext/; visited on March
12th, 2020. (Cited on pages 11, 51).

[EFC+15] Jorge Echeverrı́a, Jaime Font, Carlos Cetina, and Oscar Pastor. Usability Evaluation
of Variability Modeling by means of Common Variability Language. In Proc. of
the CAiSE 2015 Forum at the 27th Int’l Conf. on Advanced Information Systems
Engineering, pages 105–112, Stockholm, Sweden, June 2015. url: http://ceur-
ws.org/Vol-1367/paper-14 (Cited on page 78).

[EKR+11] Sebastian Erdweg, Lennart C.L. Kats, Tillmann Rendel, Christian Kästner, Klaus
Ostermann, and Eelco Visser. SugarJ: Library-Based Language Extensibility. In
Proc. of the ACM Int’l Conf. on Object Oriented Programming Systems Languages
and Applications, OOPSLA ’11, pages 187–188, Portland, Oregon, USA. Association
for Computing Machinery, 2011. isbn: 9781450309424. doi: 10.1145/2048147.
2048199 (Cited on page 50).

[ES13] Holger Eichelberger and Klaus Schmid. A Systematic Analysis of Textual Vari-
ability Modeling Languages. In Proc. Int’l Systems and So�ware Product Line Conf.
(SPLC), SPLC ’13, pages 12–21, Tokyo, Japan. Association for Computing Machin-
ery, 2013. isbn: 9781450319683. doi: 10.1145/2491627.2491652 (Cited on
page 78).

[ES15] Holger Eichelberger and Klaus Schmid. Mapping the Design Space of Textual
Variability Modeling Languages: A Re�ned Analysis. Int’l J. So�ware Tools for
Technology Transfer (STTT), 17(5):559–584, 2015. issn: 1433-2779. doi: 10.1007/
s10009-014-0362-x (Cited on page 78).

https://doi.org/10.1007/978-3-642-25271-6_11
https://doi.org/10.1007/978-3-642-25271-6_11
https://www.eclipse.org/Xtext/
http://ceur-ws.org/Vol-1367/paper-14
http://ceur-ws.org/Vol-1367/paper-14
https://doi.org/10.1145/2048147.2048199
https://doi.org/10.1145/2048147.2048199
https://doi.org/10.1145/2491627.2491652
https://doi.org/10.1007/s10009-014-0362-x
https://doi.org/10.1007/s10009-014-0362-x

IV Bibliography

[EvdSV+15] Sebastian Erdweg, Tijs van der Storm, Markus Völter, Laurence Tra�, Remi
Bosman, William R. Cook, Albert Gerritsen, Angelo Hulshout, Steven Kelly, Alex
Loh, Gabriël Konat, Pedro J. Molina, Martin Palatnik, Risto Pohjonen, Eugen
Schindler, Klemens Schindler, Riccardo Solmi, Vlad Vergu, Eelco Visser, Kevin
van der Vlist, Guido Wachsmuth, and Jimi van der Woning. Evaluating and
comparing language workbenches: Existing results and benchmarks for the future.
Computer Languages, Systems & Structures, 44:24–47, 2015. issn: 1477-8424. doi:
10.1016/j.cl.2015.08.007. Special issue on the 6th and 7th Int’l Conf. on
So�ware Language Engineering (SLE 2013 and SLE 2014) (Cited on page 50).

[FHB+14] Alexander Felfernig, Lothar Hotz, Claire Bagley, and Juha Tiihonen. Knowledge-
Based Con�guration - From Research to Business Cases. Morgan Kaufmann, Boston,
2014. isbn: 978-0-12-415817-7. doi: 10.1016/B978-0-12-415817-7.00001-3
(Cited on page 2).

[GK99] Andreas Günter and Christian Kühn. Knowledge-Based Con�guration- Survey
and Future Directions. In XPS-99: Knowledge-Based Systems. Survey and Future
Directions, pages 47–66, Berlin, Heidelberg. Springer Berlin Heidelberg, 1999.
isbn: 978-3-540-49149-1 (Cited on page 2).

[Hau12] Øystein Haugen. Common variability language (CVL) - OMG® revised submission,
2012. OMG document ad/2012-08-05 (Cited on page 78).

[HJK+09] Florian Heidenreich, Jendrik Johannes, Sven Karol, Mirko Seifert, and Christian
Wende. Derivation and Re�nement of Textual Syntax for Models. In Model Driven
Architecture - Foundations and Applications, pages 114–129, Berlin, Heidelberg.
Springer Berlin Heidelberg, 2009. isbn: 978-3-642-02674-4 (Cited on page 11).

[HMO+08] Øystein Haugen, Birger Møller-Pedersen, Jon Oldevik, Gøran K. Olsen, and An-
dreas Svendsen. Adding Standardized Variability to Domain Speci�c Languages.
In Proc. Int’l Systems and So�ware Product Line Conf. (SPLC), pages 139–148, 2008
(Cited on page 78).

[HWC12] Øystein Haugen, Andrzej Wąsowski, and Krzysztof Czarnecki. CVL: Common
Variability Language. In Proc. Int’l Systems and So�ware Product Line Conf. (SPLC),
SPLC ’12, pages 266–267, Salvador, Brazil. Association for Computing Machinery,
2012. isbn: 9781450310956. doi: 10.1145/2364412.2364462 (Cited on pages 1,
78).

[Jav18] JavaCC Community. JavaCC — �e most popular parser generator for use with
Java applications. Website, 2018. Available online at https://javacc.org/;
visited on June 11th, 2020. (Cited on page 50).

[Jet20] JetBrains s.r.o. MPS: �e Domain-Speci�c Language Creator by JetBrains. Website,
2020. Available online at https://www.jetbrains.com/mps/; visited on March
11th, 2020. (Cited on page 11).

https://doi.org/10.1016/j.cl.2015.08.007
https://doi.org/10.1016/B978-0-12-415817-7.00001-3
https://doi.org/10.1145/2364412.2364462
https://javacc.org/
https://www.jetbrains.com/mps/

Bibliography V

[KCH+90] Kyo C. Kang, Sholom G. Cohen, James A. Hess, William E. Novak, and A. Spencer
Peterson. Feature-Oriented Domain Analysis (FODA) Feasibility Study. Technical
report CMU/SEI-90-TR-21, So�ware Engineering Institute, 1990 (Cited on pages 4,
5, 77).

[KKP+14] Gabor Karsai, Holger Krahn, Claas Pinkernell, Bernhard Rumpe, Martin Schindler,
and Steven Völkel. Design Guidelines for Domain Speci�c Languages, 2014. arXiv:
1409.2378 [cs.SE] (Cited on pages 13, 14, 66, 68).

[KTM+17] Alexander Knüppel, �omas �üm, Stephan Mennicke, Jens Meinicke, and Ina
Schaefer. Is �ere a Mismatch Between Real-World Feature Models and Product-
Line Research? In Proc. Europ. So�ware Engineering Conf./Foundations of So�ware
Engineering (ESEC/FSE), pages 291–302. ACM, 2017 (Cited on pages 35, 40, 46, 70).

[KVR+20] Bernd Kolb, Markus Völter, Daniel Ratiu, Domenik Pavletic, Kolja Dummann, and
Tamás Szabó. mbeddr - engineering the future of embedded so�ware. Website,
2020. Available online at http://mbeddr.com/team.html; visited on June
11th, 2020. (Cited on page 49).

[Mar08] Robert C. Martin. Clean Code: A Handbook of Agile So�ware Cra�smanship. Pren-
tice Hall PTR, Upper Saddle River, NJ, United States, 1st edition, 2008. isbn:
978-0-13-235088-4 (Cited on page 71).

[Mar19] Mark Engelberg. Engelberg/instaparse. GitHub repository, 2019. Available online
at https://github.com/Engelberg/instaparse; visited on June 11th, 2020.
(Cited on page 50).

[MBC09] Marcı́lio Mendonça, Moises Branco, and Donald Cowan. S.P.L.O.T. - So�ware
Product Lines Online Tools. In Proc. of the ACM Int’l Conf. on Object Oriented
Programming Systems Languages and Applications, OOPSLA ’09, pages 761–762,
October 2009. doi: 10.1145/1639950.1640002 (Cited on pages 23, 77).

[Mer10] Bernhard Merkle. Textual Modeling Tools: Overview and Comparison of Language
Workbenches. In Proc. of the ACM Int’l Conf. on Object Oriented Programming
Systems Languages and Applications, OOPSLA ’10, pages 139–148, Reno/Tahoe,
Nevada, USA. Association for Computing Machinery, 2010. isbn: 9781450302401.
doi: 10.1145/1869542.1869564 (Cited on page 50).

[Met20] MetaBorg. �e Spoofax Language Workbench. Website, 2020. Available online at
https://metaborg.org/; visited on March 12th, 2020. (Cited on pages 11, 51).

[MHS05] Marjan Mernik, Jan Heering, and Anthony Sloane. When and How to Develop
Domain-Speci�c Languages. ACM Comput. Surv., 37:316–, December 2005. doi:
10.1145/1118890.1118892 (Cited on pages 6, 7).

[Mic20] Microso� Corporation. O�cial page for Language Server Protocol. Website, 2020.
Available online at https://microsoft.github.io/language-server-
protocol/; visited on June 11th, 2020. (Cited on page 49).

https://arxiv.org/abs/1409.2378
http://mbeddr.com/team.html
https://github.com/Engelberg/instaparse
https://doi.org/10.1145/1639950.1640002
https://doi.org/10.1145/1869542.1869564
https://metaborg.org/
https://doi.org/10.1145/1118890.1118892
https://microsoft.github.io/language-server-protocol/
https://microsoft.github.io/language-server-protocol/

VI Bibliography

[MLW18] Hanspeter Mössenböck, Markus Löberbauer, and Albrecht Wöß. �e Compiler
Generator Coco/R. Website, 2018. Available online at http://ssw.jku.at/
Coco/; visited on June 11th, 2020. (Cited on page 50).

[MTS+17] Jens Meinicke, �omas �üm, Reimar Schröter, Fabian Benduhn, �omas Leich,
and Gunter Saake. Mastering So�ware Variability with FeatureIDE. Springer, Berlin,
Heidelberg, 2017. isbn: 978-3-319-61442-7. doi: 10.1007/978-3-319-61443-4
(Cited on pages 1, 49).

[Obj17] Object Management Group®. OMG® Uni�ed Modeling Language® (OMG UML®)
Version 2.5.1. Website, 2017. Available online at https://www.omg.org/spec/
UML/2.5.1/; visited on Mai 1st, 2020. (Cited on page 40).

[PBvdL05] Klaus Pohl, Günter Böckle, and Frank J. van der Linden. So�ware Product Line
Engineering: Foundations, Principles and Techniques. Springer, Berlin, Heidelberg,
November 2005 (Cited on pages 1, 3).

[Pet95] Marian Petre. Why Looking Isn’t Always Seeing: Readership Skills and Graphical
Programming. Commun. ACM, 38:33–44, June 1995. doi: 10.1145/203241.
203251 (Cited on page 9).

[PHF14] Terence Parr, Sam Harwell, and Kathleen Fisher. Adaptive LL(*) Parsing: �e
Power of Dynamic Analysis. In Proc. of the ACM Int’l Conf. on Object Oriented
Programming Systems Languages and Applications, OOPSLA ’14, pages 579–
598, Portland, Oregon, USA. Association for Computing Machinery, 2014. isbn:
9781450325851. doi: 10.1145/2660193.2660202 (Cited on page 50).

[PP08] Michael Pfei�er and Josef Pichler. A comparison of tool support for textual
domain-speci�c languages. In Proc. of the 8th OOPSLA Workshop on Domain-
Speci�c Modeling, pages 1–7, 2008 (Cited on page 50).

[pur20] pure::systems. pure::variants. Website, 2020. Available online at https://www.
pure-systems.com/products/pure-variants-9.html; visited on February
26th, 2020. (Cited on pages 1, 49).

[RST+11] Marko Rosenmüller, Norbert Siegmund, �omas �üm, and Gunter Saake. Multi-
Dimensional Variability Modeling. In Proc. Int’l Workshop on Variability Modelling
of So�ware-Intensive Systems (VaMoS), pages 11–22, Namur, Belgium. ACM, Jan-
uary 2011 (Cited on pages 25, 77).

[SHT06] Pierre-Yves Schobbens, Patrick Heymans, and Jean-Christophe Trigaux. Feature
Diagrams: A Survey and a Formal Semantics. In Proc. Int’l Conf. on Requirements
Engineering (RE), pages 136–145, Washington, DC, USA. IEEE, 2006. isbn: 0-7695-
2555-5. doi: 10.1109/RE.2006.23 (Cited on page 5).

[SKE18] Klaus Schmid, Christian Kröher, and Sascha El-Sharkawy. Variability Modeling
with the Integrated Variability Modeling Language (IVML) and EASy-Producer.
In Proc. Int’l Systems and So�ware Product Line Conf. (SPLC), SPLC ’18, page 306,

http://ssw.jku.at/Coco/
http://ssw.jku.at/Coco/
https://doi.org/10.1007/978-3-319-61443-4
https://www.omg.org/spec/UML/2.5.1/
https://www.omg.org/spec/UML/2.5.1/
https://doi.org/10.1145/203241.203251
https://doi.org/10.1145/203241.203251
https://doi.org/10.1145/2660193.2660202
https://www.pure-systems.com/products/pure-variants-9.html
https://www.pure-systems.com/products/pure-variants-9.html
https://doi.org/10.1109/RE.2006.23

Bibliography VII

Gothenburg, Sweden. Association for Computing Machinery, 2018. isbn: 9781450364645.
doi: 10.1145/3233027.3233057 (Cited on pages 26, 77).

[SKT+16] Reimar Schröter, Sebastian Krieter, �omas �üm, Fabian Benduhn, and Gunter
Saake. Feature-Model Interfaces: �e Highway to Compositional Analyses of
Highly-Con�gurable Systems. In Proc. Int’l Conf. on So�ware Engineering (ICSE),
pages 667–678, Austin, Texas. ACM, May 2016. isbn: 978-1-4503-3900-1. doi:
10.1145/2884781.2884823 (Cited on pages 30, 35, 40, 45).

[Stu97] Markus Stumptner. An Overview of Knowledge-Based Con�guration. AI Com-
mun., 10(2):111–125, April 1997. issn: 0921-7126 (Cited on page 2).

[TAK+14] �omas �üm, Sven Apel, Christian Kästner, Ina Schaefer, and Gunter Saake. A
Classi�cation and Survey of Analysis Strategies for So�ware Product Lines. ACM
Computing Surveys, 47(1):6:1–6:45, June 2014. issn: 0360-0300. doi: 10.1145/
2580950 (Cited on page 1).

[tBSE19] Maurice H. ter Beek, Klaus Schmid, and Holger Eichelberger. Textual Variability
Modeling Languages: An Overview and Considerations. In Proc. Int’l Systems
and So�ware Product Line Conf. (SPLC), SPLC ’19, pages 151–157, Paris, France.
Association for Computing Machinery, 2019. isbn: 9781450366687. doi: 10.1145/
3307630.3342398 (Cited on pages 26, 78).

[TSS19] �omas �üm, Christoph Seidl, and Ina Schaefer. On Language Levels for Feature
Modeling Notations. In Proc. Int’l Systems and So�ware Product Line Conf. (SPLC),
SPLC ’19, pages 158–161, Paris, France. Association for Computing Machinery,
2019. isbn: 9781450366687. doi: 10.1145/3307630.3342404 (Cited on pages 19,
40, 78).

[VBD+13] Markus Völter, Sebastian Benz, Christian Dietrich, Birgit Engelmann, Mats He-
lander, Lennart CL Kats, Eelco Visser, and Guido Wachsmuth. DSL Engineering -
Designing, Implementing and Using Domain-Speci�c Languages. 2013. isbn: 978-1-
4812-1858-0. url: https://www.dslbook.org (Cited on pages 6–9).

[vDK02] Arie van Deursen and Paul Klint. Domain-Speci�c Language Design Requires
Feature Descriptions. Computing and Information Technology, 10(1):1–17, 2002.
doi: 10.2498/cit.2002.01.01 (Cited on pages 20, 77).

[WSH13] Reinhard Wilhelm, Helmut Seidl, and Sebastian Hack. Compiler Design: Syntactic
and semantic analysis. Springer, Berlin, November 2013 (Cited on pages 9, 10).

[Zip20] Roman Zippel. KCon�g Documentation. Website, 2020. Available online at https:
//www.kernel.org/doc/Documentation/kbuild/kconfig-language.

txt; visited on February 26th, 2020. (Cited on page 1).

https://doi.org/10.1145/3233027.3233057
https://doi.org/10.1145/2884781.2884823
https://doi.org/10.1145/2580950
https://doi.org/10.1145/2580950
https://doi.org/10.1145/3307630.3342398
https://doi.org/10.1145/3307630.3342398
https://doi.org/10.1145/3307630.3342404
https://www.dslbook.org
https://doi.org/10.2498/cit.2002.01.01
https://www.kernel.org/doc/Documentation/kbuild/kconfig-language.txt
https://www.kernel.org/doc/Documentation/kbuild/kconfig-language.txt
https://www.kernel.org/doc/Documentation/kbuild/kconfig-language.txt

A. Appendix
A.1. First�estionnaire
For reference, we list the questions from the �rst questionnaire here.

Keyword length

1. What kinds of keywords do you prefer? (long, abbreviated, symbols)

2. Why did you choose the previous answer(s)?

3. Why not one of the other answers?

4. If you chose symbols before, what kinds of symbols do you prefer for di�erent language
constructs?

5. Other comments?

Line Breaks

6. How do you prefer to end your lines? (semicolon, line break, other. . .)

7. Why did you choose the previous answer(s)?

8. Why not one of the other answers?

9. Other comments?

Structuring

10. How do you prefer to add structure to �les? (indentation, curly braces, parentheses,
other. . .)

11. Why did you choose the previous answer(s)?

12. Why not one of the other answers?

13. Other comments?

Hierarchy

14. How do you prefer to specify hierarchy? (Embedded by nesting blocks beneath parents,
Reference children from parents without nesting, other. . .)

15. Why did you choose the previous answer(s)?

16. Why not one of the other answers?

17. Other comments?

X A.1. First�estionnaire

Location of Groups

18. Where do you prefer to specify group membership? (At the parent, On the children,
In-between, other. . .)

19. Why did you choose the previous answer(s)?

20. Why not one of the other answers?

21. Other comments?

Groups vs. Cardinality vs. Constraints

22. How much power do you need? What is most intuitive? (Groups, Cardinality, Constraints
on number of children, Constraints at least / at most on sets of features, other. . .)

23. Why did you choose the previous answer(s)?

24. Why not one of the other answers?

25. Other comments?

Scope

26. Which language features should be supported?

Default selections for con�gurations

Abstract features

Save entire con�gurations

A�ributes for features

Reference other feature models

Feature model interfaces

Extension mechanism for arbitrary additional data (e.g., layout information)

27. Why did you choose the previous answer(s)? What are your use-cases for the selected
features?

28. Why not one of the other answers?

29. Other comments?

Constraints

30. How much expressive power do you need for constraints? (Propositional logic (e.g.,
A ⟹ B), First-order logic (e.g., ∀a∃b(IsLeaf(a) ⟹ Siblings(a, b))), other. . .)

31. Why did you choose the previous answer(s)?

32. Why not one of the other answers?

33. Other comments?

A. Appendix XI

Separation of Concerns

34. Which information should be in-line instead of by reference in separate �les/segments?
Mark the ones that should be in-line. (Hierarchy, Abstract feature?, Constraints, Default
selections, Con�gurations, Arbitrary additional data)

35. Why did you choose the previous answer(s)? How do you draw the line?

36. Why not one of the other answers?

37. Other comments?

Use or adapt existing serialization format?

Examples: XML, YAML, JSON, EDN, OpenDDL, . . .
Main advantage: Parsers for these formats already exist for many languages, which is a huge
bene�t.
Drawbacks: As they are made for generic data, they lack support for special constructs like
constraints, making them much more verbose than a specialised DSL.

38. Are you in favour of using an existing format? (yes, no, undecided)

39. Why did you choose the previous answer? If yes, which format would you use?

40. What about the other side? What is the most important argument against it?

41. Other comments?

IDE support

Today we are used to the various comfort features modern IDEs o�er above a plain text-
editor. Stil opting to integrate the language into an existing IDE, probably by using a language
workbench results in a considerable amount of tool lock-in.

42. How much tool lock-in are you prepared to endure?

None, provide an EBNF-spect only for maximum portability

A small default library and parser without external dependencies is �ne

Editor integration for a speci�c IDE/Framework

Use a projectional editor to enable editing in di�erent views, but make editing of
the source basically impossible

I don’t care, as long as I can port it for my tool

43. Why did you choose the previous answer(s)? If tool lock-in, which tool / IDE / Framework
would you prefer?

44. Why not one of the other answers?

45. Other comments?

XII A.2. Second�estionnaire

A.2. Second�estionnaire
For reference, we list the questions from the second community questionnaire here.

Introducing the Server Example

�e graphical representation of feature models is quite consistent between tools. Textual
representations, however, are not. �is example will be the basis for showing the concrete
syntax of the concepts for a textual language. Consider the following example of a con�gurable
server, expressed as a feature model: (Figure 2.2)

1. Seeing that this example model is very small so it will easily �t on a screen in any
representation, what is the size of the largest feature model you have worked with?

2. What is the size of Typical feature models you work with?

Language Concept 1: Nested Hierarchy

Here, we give a short introduction to the nesting language concept, as in Section 4.2.

3. How do you like this language concept?

4. Please indicate your level of agreement to the following statements.

�e style is good

It is well suited for teaching and learning

It is too complex

It can easily be integrated into my tool

I can represent my models in this language

5. What would you change about it? Please elaborate.

6. How happy would you be with this language concept when your changes were applied?

Language Concept 2: Referenced Hierarchy

Here, we give a short introduction to the referencing language concept, as in Section 4.3.

7. How do you like this language concept?

8. Please indicate your level of agreement to the following statements. (same statements as
above)

9. What would you change about it? Please elaborate.

10. How happy would you be with this language concept when your changes were applied?

A. Appendix XIII

Composition Mechanism

Here, we give a short introduction to the composition mechanism, as in Section 4.4.

11. How do you like this concept?

12. Please indicate your level of agreement to the following statements. (same statements as
above)

13. What would you change about it? Please elaborate.

14. How happy would you be with this concept when your changes were applied?

15. Using namespace aliasing with ”as”, the same feature model could be included multiple
times under di�erent names in the same �le. For instance, a car could have multiple
seats with di�erent con�gurations. Would you consider this possibility useful or rather
disallow it?

16. Why did you choose the previous answer? Please elaborate.

Option Choice

Now that we presented the whole picture for both language concepts (including the composition
mechanism), please indicate which of the language concepts you prefer.

17. If you had to choose one of the two presented language concepts, which one would it be?

18. Why did you chose the previous answer?

19. What bothers you about your previous answer?

20. In the event that most members of the community vote for the other language concept,
would you still agree to that one?

21. In case you voted for ”no”, what would need to change for it to gain your acceptance?

XIV A.2. Second�estionnaire

1 FeatureModel = Ns? Imports? Features? Constraints?

2

3 Ns = <’namespace’> REF

4 Imports = <’imports’> (<indent> Import+ <dedent>)?

5 Import = REF (<’as’> ID)?

6

7 Features = <’features’> Children?

8 <Children> = <indent> FeatureSpec+ <dedent>

9 FeatureSpec = REF Attributes? Groups?

10 Attributes = (<’{’> <’}’>) | (<’{’> Attribute (<’,’> Attribute)* <’}’>)

11 Attribute = Key Value?

12 Key = ID

13 Value = Boolean | Number | String | Attributes | Vector | Constraint

14 Boolean = ’true’ | ’false’

15 Number = #’[+-]?(0|[1-9]\d*)(\.\d*)?([eE][+-]?\d+)?’

16 String = #’"(?:[ˆ"\\\n]|\\.)*"’

17 Vector = <’[’> (Value <’,’?>)* <’]’>

18 Groups = <indent> Group* <dedent>

19 Group = (’or’ | ’alternative’ | ’mandatory’ | ’optional’ | Cardinality)

20 Children?

21 Cardinality = <’[’> (int <’..’>)? (int|’*’) <’]’>

22

23 Constraints = <’constraints’> (<indent> Constraint+ <dedent>)?

24 <Constraint> = disj-impl | Equiv

25 Equiv = Constraint <’<=>’> disj-impl

26 <disj-impl> = disj | Impl

27 Impl = disj-impl <’=>’> disj

28 <disj> = conj | Or

29 Or = disj <’|’> conj

30 <conj> = term-not | And

31 And = conj <’&’> term-not

32 <term-not> = term | Not

33 Not = <’!’> term

34 <term> = REF | <’(’> Constraint <’)’>

35

36 indent = ’_INDENT_’

37 dedent = ’_DEDENT_’

38 <strictID> = #’(?!alternative|or|features|constraints|true|false|as

39 |refer)[a-zA-Z][a-zA-Z_0-9]*’

40 <ID> = #’(?!true|false)[a-zA-Z][a-zA-Z_0-9]*’

41 REF = (ID <’.’>)* strictID

42 <int> = #’0|[1-9]\d*’

Listing A.1: Final grammar for the Universal Variability Language (UVL) in EBNF-like notation. All
whitespace characters should be ignored automatically.

	Introduction
	Motivation
	Goals and Contribution
	Structure of this Thesis

	Background
	Software Product Lines
	Possible Benefits of Software Product Lines
	Dependence on the Domain
	Feature Diagrams

	Domain Specific Languages
	Benefits of DSLs Over GPLs
	Challenges of DSLs
	Categorization of DSLs
	Implementation of DSLs

	Requirements for a Variability Language
	Guidelines for Designing DSLs
	Collected Requirements
	Analysis of Existing Languages
	Brief Overview of Existing Languages
	Comparison of the Presented Languages

	Questionnaire From the MODEVAR 2020 Workshop
	Overview of the Questionnaire
	Results of the Questionnaire

	Summary of the Requirements

	Proposal for a Universal Variability Language
	General Characteristics
	Language Concept 1: Nested Hierarchy
	Language Concept 2: Referenced Hierarchy
	Composition Mechanism
	Syntax of Constraints
	Summary of the Proposed Concepts

	Tool Support for UVL
	Choosing a Parser Library
	Grammars for the Languages
	UVL Parser Library
	Integration into FeatureIDE

	Evaluation
	Second Questionnaire
	Overview of the Second Questionnaire
	Results of the Second Community Questionnaire
	Results of the Student Questionnaire
	Summary of the Findings from the Second Questionnaire

	Evaluating Against the Requirements
	Evaluating Against the Design Guidelines
	Evaluating Against the Collected Scenarios
	Comparison with Existing Languages
	Summary of the Evaluation Against the Requirements

	Evaluating Scalability
	Introducing Real-World Models
	Editing Large Models
	Storage Efficiency

	Summary of the Evaluation

	Related Work
	Conclusion and Future Work
	Bibliography
	Appendix
	First Questionnaire
	Second Questionnaire

