TU Braunschweig

Technische

Universitat
Braunschweig

Institut fiir Softwaretechni

KBS
und Fahrzeuginformatik E E

Master’s Thesis

Semi-Automated Inference of
Feature Traceability During
Software Development

Author:

Paul Maximilian Bittner

January 30, 2020

Advisors:

Prof. Dr.-Ing. Ina Schaefer, Prof. Dr. rer. nat. Roland Meyer,
Prof. Dr.-Ing. Thomas Thiim, M.Sc. Tobias Pett,
Dr. Lukas Linsbauer, Prof. Dr. Timo Kehrer

https://doi.org/10.24355/dbbs.084-202002271120-0

https://doi.org/10.24355/dbbs.084-202002271120-0

Bittner, Paul Maximilian:
Semi-Automated Inference of Feature Traceability During Software Development
Master’s Thesis, TU Braunschweig, 2020.

https://doi.org/10.24355/dbbs.084-202002271120-0

https://doi.org/10.24355/dbbs.084-202002271120-0

Abstract

Despite extensive research on software product lines in the last decades, ad-hoc
clone-and-own development is still the dominant way for introducing variability to
software systems. Therefore, the same issues for which software product lines were
developed in the first place are still imminent in clone-and-own development: Fixing
bugs consistently throughout clones and avoiding duplicate implementation effort is
extremely difficult as similarities and differences between variants are unknown.

In order to remedy this, we enhance clone-and-own development with techniques
from product-line engineering for targeted variant synchronisation such that domain
knowledge can be integrated stepwise and without obligation. Contrary to retroac-
tive feature mapping recovery (e.g., mining) techniques, we infer feature-to-code
mappings directly during software development when concrete domain knowledge is
present.

In this thesis, we focus on the first step towards targeted synchronisation between
variants: the recording of feature mappings. By letting developers specify on which
feature they are working on, we derive feature mappings directly during software
development. We ensure syntactic validity of feature mappings and variant synchro-
nisation by implementing disciplined annotations through abstract syntax trees. To
bridge the mismatch between change classification in the implementation and ab-
stract layer, we synthesise semantic edits on abstract syntax trees. We show that our
derivation can be used to reproduce variability-related real-world code changes and
compare it to the feature mapping derivation of the projectional variation control
system VTS by Stanciulescu et al.

https://doi.org/10.24355/dbbs.084-202002271120-0

https://doi.org/10.24355/dbbs.084-202002271120-0

Inhaltsangabe

Trotz umfangreicher Forschung zu Software-Produktlinien in den letzten Jahrzehn-
ten ist Clone-and-Own immer noch der dominierende Ansatz zur Einfiihrung von
Variabilitat in Softwaresystemen. Daher stehen bei Clone-and-Own immer noch die
gleichen Probleme im Vordergrund, fiir die Software-Produktlinien iiberhaupt erst
entwickelt wurden: Die konsistente Behebung von Fehlern in allen Klonen und die
Vermeidung von doppeltem Implementierungsaufwand sind &uflerst schwierig, da
Ahnlichkeiten und Unterschiede zwischen den Varianten unbekannt sind.

Um hier Abhilfe zu schaffen, erweitern wir die Clone-and-Own-Entwicklung mit
Techniken aus der Produktlinien-Entwicklung zur gezielten Synchronisierung von
Varianten, sodass Entwickler ihr Domé&nenwissen schrittweise und unverbindlich
integrieren kénnen. Im Gegensatz zu nachtriglich arbeitenden Feature-Mapping-
Recovery- oder auch Mining-Techniken, leiten wir Zuordungen von Features zu
Quellcode direkt wéhrend der Softwareentwicklung ab, wenn konkretes Doménen-
wissen vorhanden ist.

In dieser Arbeit entwickeln wir den ersten Schritt zur gezielten Synchronisation
von Varianten: die Aufzeichnung von Feature-Mappings. Indem Entwickler spezi-
fizieren an welchem Feature sie arbeiten, leiten wir Feature-Mappings direkt wihrend
der Softwareentwicklung ab. Wir stellen die syntaktische Korrektheit von Feature-
Mappings und der Synchronisation von Varianten sicher, indem wir disziplinierte An-
notationen mithilfe von abstrakten Syntaxbdumen implementieren. Um die Diskre-
panz der Klassifizierung von Anderungen zwischen der Implementierungs- und der
Abstraktionsschicht zu iiberbriicken, synthetisieren wir Semantic Edits auf abstrak-
ten Syntaxbdumen. Wir zeigen, dass unsere Ableitung von Feature-Mappings in der
Lage ist reale Codeéinderungen zu reproduzieren und vergleichen sie mit der Feature-
Mapping-Ableitung des Variationskontrollsystems VTS von Stanciulescu et al.

https://doi.org/10.24355/dbbs.084-202002271120-0

https://doi.org/10.24355/dbbs.084-202002271120-0

Contents

[List of Figures|

[List of Tables|

[List of Code Listings|

1__Introductionl 1
[2° Background| 5
2.1 Software Product Lineslo o0 5
2.1.1 Feature Models 6

[2.1.2 Feature Mappings|. 8

) -and-Ownl L 9

221 Virtual Platform| 0oL 10

[2.2.2 Migration to Software Product Lines| 10

2.3 Notationl 11

[3 Semantic Edits on Abstract Syntax Trees| 13
[3.1 Development Setting|, 14
[3.2 Feature Mapping Representation| 15
[3.2.1 Abstract Syntax Irees as Feature Mapping Targets 16

[3.2.2 Granularity of Annotations on Abstract Syntax Trees 22

[3.3 Differencing of Abstract Syntax Trees 23
[3.3.1 Semantic Edits on Abstract Syntax Trees/. 26

[3.3.2 Deriving Abstract Syntax 'Iree kdit Scripts|] 31

[3.3.3 Semantic Litting of Abstract Syntax Tree Edit Scripts|. 33

[3.4 Summarylo 35

[4 Semi-Automated Feature Mapping Recording Upon Semantic Ed- |
[_its 37
[4.1 Deriving Feature Mappings For Semantic Edits] 38
[4.1.1 Feature Mapping Derivation Algorithm|. 38

[4.1.2 Constraints on Feature Mappings| 42

[4.1.3 Interpretation of Absent Feature Mappings|. 43

[4.1.4 Deriving Feature Mappings Upon Insertions| 44

[4.1.5 Deriving Feature Mappings Upon Deletions| 49

[4.1.6 Deriving Feature Mappings Upon Moves| 54

[4.1.7 Deriving Feature Mappings Upon Updates| o7

https://doi.org/10.24355/dbbs.084-202002271120-0

Contents

[4.2 Using Feature Models for Enhancing Feature Mapping Derivation| . .
[4.3 Using Other Variants for Enhancing Feature Mapping Derivation|

4.4 Known Exploits| o o
[4.5 Summaryl

[Technical Challenges|
[>.1 Handling Redundant Feature Mappings|
[5.2 Setting up the Project Structure Treel.
5.3 Feature Mapping Visualisation|.
[5.4 Lifting Feature Contexts to kdits|
[5.5 Summaryl

(6 Evaluation of Applicability]
[6.1 Research Questions|
(6.2 Study Designl oo
[6.3 Variability-Related Code Editing Patterns|
[6.3.1 Code-Adding Patterns|
[6.3.2 Code-Removing Patterns|
[6.3.3 Annotation-Change Patterns{.
0.4 Discussionlo
6.4.1 RQ 1 - Count of Feature Context Switches|.
[6.4.2 RQ 2 — Feature Context Complexity]
[6.4.5 RQ 3 — Comparison to VI'S|

6.4.3.1 seneral Differences

[6.5 Threats to Validity|,
[6.5.1 Internal Validity|
[6.5.2 External Validity|,

[6.6 Summaryl

[[_Related Work]

[7.2 Variation Control Systems|
[7.3 Feature Mapping Recovery Techniques|
[.4 Clone Management|
[7.5 'Iree Diffing and Semantic Liftingl

8 Conclusion|

9 Future Workl
[10 Task Definition|

[Bibliography|

https://doi.org/10.24355/dbbs.084-202002271120-0

61
63
65
67

69
69
70
71
71
72

73

101
101
102
103
103
104

105

109

113

119

List of Figures

[2.1 Schematic Structure of Software Product-Line Engineering (Adapted |

| From [Thill8[)|. 6

[2.2 Excerpt of the Feature Model of the Marlin Firmwarel 7

[2.3 Example of External Feature Mappings Specified in the Colored In- |
| tegrated Development Environment [KAKOSJ|. 9

[3.1 Overview on Feature Enhanced Clone-and-Own Development Scenario| 15

[3.2 Example of an Abstract Syntax Ireel 18
[3.3 Example Function With Its Corresponding AST| 20
[3.4 Example for Project Structure Tree Derived From File System| 24
[3.5 Insertions in Implementation Artefacts Need Not to Correspond to |
| Sole Insertions (Of Leaf Nodes) in the Abstract Syntax Tree| 27
[3.6 Move of Partial Subtree in Abstract Syntax Tree|. 30

[3.7 Abstract Syntax Tree Differencing Pipeline With Semantic Lifting [KK'T'11] 34

[4.1 Deletion of Unmapped Artefacts Under Feature Context in Software |
| Product-Line Engineeringl 000, 51

[4.2 Deletion of Mapped Artefacts Under Feature Context in Software |
| Product-Line Engineeringl 52

[4.3 Negation Elimination Using Alternative Groups in Feature Models|. . 63

[4.4 Workflow for Partial Feature Mapping Derivation from Variants| . . . 65

[>.1 Scope-Oriented Code Colorisation in BlueJ [Lonl|[. 72

[6.1 Goal Comparison of Our Feature Mapping Derivation for Clone-and- |

[Own Development With VI'S| 77
[6.2 Projectional Product-Line Editing Workflow in VTS [SBWWIG, p. |
325] ... 7

(6.3 Pattern AddIfdef (Adapted From [SBWWI6, p. 327))[. 79

https://doi.org/10.24355/dbbs.084-202002271120-0

List of Figures

(6.4 Workflow for Pattern Addlfdef in V'I'S [SBWWI6, p. 327| 79
(6.5 Pattern AddIfdefElse (Adapted From [SBWWI6L p. 328])[. 80
(6.6 Workflow for Pattern AddlfdefElse in VI'S [SBWWI16, p. 328]| 81
(6.7 Pattern AddIfdefWrapFElse (Adapted From [SBWWI6, p. 328]). . . . 81
(6.8 Workflow for Pattern AddIfdefWrapElse in VTS [SBWWI16| p. 328]| . 82
(6.9 Pattern RemNormalCode (Adapted From [SBWWI6, p. 328])] 83
[6.10 Workflow for Pattern RemNormalCode in VTS [SBWWI6, p. 328]. . 84
[6.11 Pattern Remlfdef (Adapted From [SBWWI6, p. 329]). 84
[6.12 Workflow for Pattern Remlfdef in VI'S [SBWWI16, p. 329 85
[6.13 Pattern WrapCode (Adapted From [SBWWI16, p. 329]) 85
[6.14 Workflow for Pattern WrapCode in VT'S [SBWWI16l p. 329]| 86
[6.15 Pattern UnwrapCode (Adapted From [SBWWI16, p. 329])[. 86
[6.16 Workflow for Pattern UnwrapCode in VTS [SBWWI16| p. 329]| 87
[6.17 Pattern ChangePC (Adapted From [SBWWI6. p. 329])[. 87
[6.18 Pattern MovekElse (Adapted From [SBWWI16, p. 329])] 88
[6.19 Workflow for Pattern MoveElse in VI'S [SBWWI16| p. 330] 89

https://doi.org/10.24355/dbbs.084-202002271120-0

List of Tables

https://doi.org/10.24355/dbbs.084-202002271120-0

[3.1 Feature Mapping Fitness and Propagation of Abstract Syntax Trees |
Node Types| 22

[3.2 Comparison ot Definitions of Common "Iree Operations Throughout |

[the [iteraturel 33
6.1 Appearance Count of Variability-Related Code-Adding Patterns in |

| Marlin [SBWWI6[| 76
[6.2 Variability-Related Code-Adding Patterns| 79
[6.3 Variability-Related Code-Removing Patterns| 83
[6.4 Variability-Related Annotation Change Patterns 85

https://doi.org/10.24355/dbbs.084-202002271120-0

List of Code Listings

[2.1 Example for Preprocessor Statements Used in Marlin Firmware] . . . 8
[3.1 Example for Feature Interactions and Negative Feature Mappings |
[from an Old Version of the Marlin Firmwarel 16
[3.2 Example for Syntax Violating Line-Based Feature Mappings from an |
[OId Version of the Marlin Firmwarel 17
[3.3 Line-Based Mapping of a Feature Interaction Involving the Necessity |
[to Annotate the Parameter Separating Commaj. 19

[3.4 Initialisation Code for the Virtual-Reality Feature in Rendering Frame-

| work From [TSGF19] 21

[4.1 Feature Interactions in Preprocessor-Based Software Product Line| . . 56

https://doi.org/10.24355/dbbs.084-202002271120-0

List of Code Listings

https://doi.org/10.24355/dbbs.084-202002271120-0

1. Introduction

Modern software is often required in form of multiple variants. Naturally, software
development usually starts with just a single variant to reduce complexity and costs
or because the need for future variants is commonly unknown |[AJBT 14, LFLHE15].
When the demand for a new variant emerges, one approach is cloning the whole
software to alter specific parts independently from the previous variant. This ad-hoc
solution is known as clone-and-own [AJB™ 14, DRB*13, RCC13, [SSW15]. However,
propagating changes in clone-and-own development such as bug fixes to other clones
is increasingly difficult and ambiguous for a growing number of software clones.
Developers are usually only familiar with a subset of variants, so it remains unclear
which variants are possible targets for change synchronisation. For the same reason,
it is not obvious in which variants a certain feature is already implemented when
required in a source variant. Thus, loss of software quality, duplicate implementation
effort, and higher maintenance costs are imminent.

Software product lines allow managing variants by mapping implementation arte-
facts to features. Through careful domain engineering, common features between
planned variants are identified in advance. Dedicated generation mechanisms com-
pose feature implementations to target variants of any configuration. That way,
features can be shared and reused across variants [ABKS13], [CE00]. Although prod-
uct lines are a dedicated mechanism for reusing software artefacts between different
software products, they are rarely adopted in practice due to uncertainty on desired
variants at the beginning of development, a high up-front investment, lack of tool
support, and necessary workflow adaptations [DRB*13, RCC13].

As clone-and-own is still the favoured approach for introducing software variabil-
ity [DRB*13, RCC13], lots of research focuses on migrating clone-and-own software
to product lines [KDOT14, [FMS™17, [KFBA09, [LCT3, WSSS16]. Most existing tech-
niques rely on elaborated heuristics to retroactively recover feature mappings, thus
suffering from uncertainty due to potential loss of domain knowledge. Usually, such
migrations require to halt development for an unknown time span. What is more,
lots of legacy applications using the clone-and-own approach bore so many variants
over decades that a migration to a software product line is not only time-intensive

https://doi.org/10.24355/dbbs.084-202002271120-0

2 1. Introduction

and challenging but also not guaranteed to succeed. Feature recovery tools re-
quire numerous developer decisions [FMS™17, [FLLHE15, KDO14, KKK13, LLHE17,
MZB*15, RCC13, ZHP*14] and fully automatic migration techniques [FLLHETS,
LLHEL7, WSSS16, ZHP™ 14| suffer from wunintentional divergence [KKKI13, [SL.14].
Moreover, the necessary domain knowledge for product-line migration is distributed
widely because in clone-and-own development each developer is usually responsible
for a single variant only [AJB™ 14, [DRB™ 13| LnBC16, RCC13| [SSW15].

To address the risks of migration to software product lines, we target the grad-
ual introduction of domain knowledge at will without impairing ongoing software
development. To this end, we aim at synchronising changes between clone-and-
own variants through software product-line technology. Possible target variants for
changes can be identified automatically when it is known to which features an imple-
mentation artefact belongs and which variants implement those features. Therefore,
we introduce the product-line engineering concepts of features and configurations
to clone-and-own development. As our concepts are not strongly tied to the clone-
and-own scenario or any concrete programming language, our insights on recording
feature mappings are also useful for software product-line engineering in general.

In this thesis, we develop the very first step towards feature-driven targeted syn-
chronisation between software clones: recording of feature mappings. As feature
mappings are a basic requirement for the automated synchronisation between vari-
ants, they have to be introduced beforehand. To minimise the effort of specifying
feature mappings, we derive them semi-automatically from implementation artefact
changes. We employ disciplined annotations [KATT09] to ensure syntactical correct
feature mappings, such that removing a feature does not introduce syntax errors.
Therefore, we use an abstract representation of implementation artefacts, so called
Abstract Syntax Trees (ASTs).

We extend existing work on AST-based annotations [KAKO8|] by introducing se-
mantic edits. Developer’s changes to the external representation of implementation
artefacts (i.e. in a text editor) are more coarse-grained and more intricate than sole
node-based ASTs operations. For instance, surrounding existing statements with
a newly inserted condition corresponds to a subtree insertion with attendant tree
restructuring. However, single-node and technical tree operations are widely used in
the literature for tree diff computation [Bil05, PA11, FMB™14, [CRGMW96, [HMOS].
We elaborate on how a technique known as semantic lifting [KKT11] can be adopted

to recover user-level semantic edits from fine-grained technical edit scripts computed
by existing tree differencing algorithms [PA11l, EMB™14, [CRGMW96, [HMOS].

We derive feature mappings upon software changes by incorporating developers’
knowledge on which feature they are currently implementing. As interactions of
features are common in variability enabled software development, developers specify
a propositional formula over the set of features, the so called feature context. During
development, edited software artefacts are assigned to the currently active feature
context. However, it is yet unclear how to deal with already existing mappings or
deletions of artefacts. For instance, it is unknown if a method inserted into a class
with mapping A under feature context B should be assigned to A, B, AA B, or any
other expression. Existing work on this topic [Sonl§| did not consider the structure

https://doi.org/10.24355/dbbs.084-202002271120-0

of implementation artefacts and thus had to rely on unreasonable assumptions about
dependencies between source code lines.

We present an algorithm for deriving feature mappings upon insertions, deletions,
moves, and updates of software artefacts in a reasonable, consistent, and distinct
way. As our main goal is the gradual synchronisation of implementation artefacts
across variants, our derivation resolves ambiguities and inconsistencies stepwise, i.e.,
each time an edit under a specific feature context is made.

The main contributions of this thesis can be summarised as follows:

Semantic Edits on ASTs — Intuitively classified changes of implementation arte-
facts do not need to correspond to alike changes in the corresponding AST.
Therefore, we identify a subset of operations on ASTs corresponding to rea-
sonable (i.e. semantic) edits in the implementation layer.

Consideration of Semantic Lifting on AST Edit Scripts — To express AST
diffs as a series of semantic edits, we elaborate on how semantic lifting can
allow reusing existing tree diffing algorithms.

Semi-Automatic Feature Mapping Derivation — We present an algorithm for
feature mapping derivation from coarse-specified artefact changes by incorpo-
rating the knowledge on which feature or feature interaction developers are
currently working on. Thereby, we especially take care of reasonably treating
existing mappings. We show how the derived feature mappings identify target
variants for change synchronisation.

Null Feature Mappings — Opposed to previous concepts [SBWW16], we specifi-
cally consider the absence of a user-specified feature context. We support cases
in which developers do not have the required domain knowledge and thereby
do not enforce a strict, immediate workflow adaption. Our derivation does not
require a set feature context and preserves existing feature mappings.

Evaluation of Applicability — We evaluate our feature mapping derivation in
the clone-and-own scenario by reproducing real-world variability-related code
changes identified by Stanciulescu et al. [SBWW16]. Thereby, we show that
our derivation can be used to reenact all variability-related code changes in
the history of the printer firmware Marlin [vdZ]. We compare it to the pro-
jectional software product-line variation control system VT'S [SBWW16]. Our
derivation requires slightly simpler user-interactions while being as powerful
in terms of specifying feature mappings.

We start by introducing the concepts of clone-and-own and software product lines
as well as notations we use throughout this thesis in [Chapter 2| In |Chapter 3| we
discuss the advantages and disadvantages of AST-based feature mappings compared
to the straightforward line-based mappings, and formalise disciplined annotations
on ASTs. In[Section 3.3 we introduce semantic edits which ensure that edit opera-
tions in the AST correspond to reasonable changes in the text-based representation.
Further, we elaborate on how semantic lifting enables reusing existing tree-diffing

https://doi.org/10.24355/dbbs.084-202002271120-0

4 1. Introduction

algorithms to compute tree diffs of semantic edits. In [Chapter 4, we develop our
semi-automatic feature mapping derivation during software development. By con-
sidering four types of edits, we show how our derived feature mapping identifies
variants as targets for change synchronisation. We address four important technical
challenges that need to be faced upon implementing our derivation in [Chapter 5| by
discussing possible solutions. We evaluate the applicability of our feature mapping
derivation for targeted synchronisation of clone-and-own variants in [Chapter 6 In
[Chapter 7], we discuss existing work on this topic, how we use it and how it can be
used in the future. We summarise the results of this thesis in Finally,
we give an outlook on potential further research topics in [Chapter 9|

https://doi.org/10.24355/dbbs.084-202002271120-0

2. Background

In this chapter, we summarise background knowledge relevant for this thesis. Each
concept is explained in its own section. We begin with explaining the concept
of software product lines and thereby the meaning of features and configurations,
which we use extensively throughout this thesis, in [Section 2.1 In [Section 2.2|
we explain the widely used clone-and-own approach of variability management in
software development which we aim to improve. To classify the level of adaption
of product-line techniques we refer to the scheme introduced by Antkiewicz et al.
[AJBT14] described in [Section 2.2.1| In |Section 2.2.2| we cover existing approaches
for migrating clone-and-own software to product lines. We introduce notations used
in this thesis in the end in

2.1 Software Product Lines

Large scale software that is available in multiple variants is referred to as a software
product line because it comprises different products in a single code base. In contrast
to usual single system software engineering, product-line engineering is divided into
two phases: domain and application engineering [ABKS13, PBvdL05]. [Figure 2.1]il-
lustrates both phases. In the initiating domain engineering phase, the target domain
is analysed for commonalities and differences. The software requirements are anal-
ysed to distil features which describe individual characteristics visible to the user.
Different combinations of these features (configurations) are designated to form the
final products or variants [ABKS13]. Therefore, features are mapped to implemen-
tation artefacts such that each implementation artefact corresponds to a feature or
a feature interaction. By installing dedicated variation mechanisms, features can
be composed to variants or products [ABKS13, [CEQQ]. For instance, the C/C++
preprocessor is a well known and widely used variation mechanism as it allows in-
or excluding source code lines trough special statements (#ifdef) during compila-
tion depending on pre-defined flags, e.g., the configuration. Application engineering
describes the process of selecting a set of features and deriving its final software prod-
uct either manually or fully automated. In preprocessor-based product lines, this

https://doi.org/10.24355/dbbs.084-202002271120-0

6 2. Background

Feature Model

SPL

Reusable
Implementation
Artefacts

o - L] .
OS5 | Transactions | APl | Basis
L

Domain Eng.

win | [Unix Get | Put | Delete

|

= EN
- [l os
Bm
. Unix
D Direct
] transactions
= [ar1
[cet
Put

[pelete

e8] Basis

Application Eng.

Configuration Generator Final Application

Figure 2.1: Schematic Structure of Software Product-Line Engineering (Adapted
From [Thiilg])

comprises the compilation of the code base with features F in the target configura-
tion being defined as preprocessor statements / flags, e.g., trough #define F. In the
following, we explain the concepts of feature models and feature mappings. Feature
models describe valid configurations of features. Such that the product generator
is able to compose implementation artefacts, it has to know which implementation
artefacts belong to which features, which is described by feature mappings.

2.1.1 Feature Models

In software product lines individual features are composed to variants or products.
Thus, any combination of features results in a different variant. However, not all
combinations may be desired or are technically realisable. For instance, platform
independent software may have to initialise different routines depending on the op-
erating system it runs on. As the operating system does not change during runtime,
such variability checks could be performed pre-emptively to completely exclude un-
used software artefacts. Therefore, feature models are used to not only specify the
features of a software product line but their valid combinations, known as configu-
rations, by embedding the features in a tree hierarchy [Bat05, [CEQ0]. Features can
only be selected in a configuration if their parent features are also selected. That way
dependencies between features can be modelled. Furthermore, child features can be
grouped in special group types, such as alternatives, in whose exactly one child fea-
ture has to be selected, or disjunctions, where at least one child has to be selected.
If certain constraints on configurations cannot be expressed with the tree hierarchy
only, cross-tree constraints can be specified manually. Usually, cross-tree constraints
are specified as a propositional formula over the set of features as the feature model
itself is converted to a propositional formula for analysis purposes [Bat05]. The set
of all possible combinations of features described by a feature model are the config-
urations. Thereby, each configuration corresponds to exactly one unique software
variant as configurations are pairwise disjunct.

https://doi.org/10.24355/dbbs.084-202002271120-0

2.1. Software Product Lines 7

l.’f Automatic Bed Leveling

| _IMENU_ADDAUTOSTART

l ,, Character-based LCDs
o ol Legend:

" _ 12C and Shifi-Register LCDs » Mandat
andatory

|
| Graphical LCDs o aptional

___ ———®\CDTypes A Alternative
~——— OLED Displays Apstract

Concrete
[T Colapsed

" Extensible UI Dispiays

[Graphical TFTs

"0 0ther Controllers

‘."""C.'Ernra Features

|)
||I|I 'i;'-'Bootscreen

[
|| [cuUSTOM_STATUS_SCREEN_IMAGE
[/]

JMK2_MULTIPLEXER

{f/ OPRUSA_MMUZ
CSWITCHING_EXTRUDER

Mariin
CSWITCHING_NOZZLE

O ExtruderParking
' ToolheadSwitching

I}:.-MI)(ING_E}(TF{UDEF{

Figure 2.2: Excerpt of the Feature Model of the Marlin Firmware

Example 2.1.1. shows an excerpt of the feature model of the Marlin
firmware [vdZ]. Numbers behind features indicate the number of child features being
collapsed for a more clear overview. The feature LCD is abstract as it does not occur
in the implementation, i.e., no software artefacts are mapped to it. Nevertheless, as
each LCD screen has a specific type which has to be known for its runtime setup,
the feature LCDTypes has to be chosen, when an LCD screen is present, i.e., feature
LCD is present. Thus, feature LCDTypes is mandatory. As the LCD screen has
one but not more than one type, exactly one actual type has to be chosen, thus
forming an alternative group. Again, the concrete LCD screen types are grouped
by categories Character-based LCDs, I2C and Shift-Register LCDs, Graphical
LCDs, for convenience but without any implementation effects.

Some software artefacts may be part of every software variant. Such features are
referred to as core features. Features are core features if they are a mandatory fea-
ture below the root feature or if they are a mandatory child of another core feature.
Complementary, dead features are those features that cannot be part of any vari-
ant. Features being dead is usually an indication for ill-formed constraints as dead
features to do not contribute to any variant. If dead features exhibit actual imple-
mentation artefacts, those artefacts do not serve any purpose for variant generation.

https://doi.org/10.24355/dbbs.084-202002271120-0

© 00 ~J O Tl Wi

el T e
Tl W N~ O

8 2. Background

#if HAS_GAMES

#include "game.h"

int MarlinGame::score;

uint8_t MarlinGame::game_state;
millis_t MarlinGame::next_frame;
MarlinGameData marlin_game_data;
bool MarlinGame::game_frame () {

// code for rendering a game’s frame

}

#endif // HAS_GAMES

Listing 2.1: Example for Preprocessor Statements Used in Marlin Firmware

2.1.2 Feature Mappings

For assigning features to implementation artefacts, two distinct approaches are in
use: the annotative and the compositional approach [KAKO§|]. Depending on the
shape of feature mappings, different generators are necessary.

In the annotative approach, features are usually implemented in a single code base
and annotated with their corresponding feature or feature interaction. Annota-
tions can either be specified internally or externally [KAKOS]. Internal annotations
are located directly inside the implementation artefact. A common mechanism for
internal annotations are the #if, #ifdef, and #endif statements of the C/C++
preprocessor. Common software product lines using preprocessor annotations are
the Linux Kernel [Tor] and the Marlin Firmware [vdZ] for 3D printers. Both use the
C preprocessor, a built-in language in C/C++, to conditionally include or exclude
certain parts of the source code during compilation. As an example, |Listing 2.1
shows an excerpt of an implementation for games inside Marlin that can be played
on the 3D printers screen. The game code is only included to the software if the
preprocessor macro HAS_GAMES is set to value other than 0. Thus, depending on the
printers specifications, games can either be en- or disabled. External annotations are
specified in the representation layer and stored aside of the actual implementation
artefact. For example, in the Colored Integrated Development Environment (CIDE)
by Késtner et al. [KAKOS] features are assigned colours as shown in , only
visible in dedicated editors for source code.

In compositional approaches, features are implemented as distinct modules that ex-
tend a common base software [KAKO§|. To compose those features, dedicated soft-
ware architectures like frameworks [JE88], component technologies [SGMO02|, or spe-
cialised languages like aspects [KLM™T97], or feature-oriented programming [BSR04]
are required. Next to dedicated plug-in based frameworks, dedicated research fo-
cuses on other modular ways for feature specification and composition. In feature

https://doi.org/10.24355/dbbs.084-202002271120-0

2.2. Clone-and-Own 9

& ColoredIDE - Stack.java - Eclipse SDK i IEllll
File Edit Source Refactor Mavigate Search Project Colors Run Window Help
- Cl Sl -0- -l &) G-« -5 5 |1@ Coloredipe 2
Y w Y
m BB stackjava 2 FH Lock.java | = O = astview 2 =0
Skack, = mport java.io. PrintStream; H .dd C d - -
@@l‘i‘b public class Stack { EX|&C:>|
B 83 {default package)
m Lock.java public Stack(int maxSize, |, L) <=-=4>
= p elementData = mew Object[maxSize]; =
lﬂ IRE System Library ! [l variable binding: log
private int size = 0; ‘ Feature Code ‘
private Object[] elementData;
public boolean pushi{Object o) { -+ EXTRA_DIMENSIONS: 'O =
Lock lock = lockil: / Featu res - THROWN_EXCEPTIONS (0)
if {lock == muall) | EI--BQD\"
A B Block [128, 73] -
» Al | »

f B
Problems Preview\n'iew!@ Feature Interactions £3 g =08

B- Allinteractions (1)
-- Interactions by Feature (2)
1| | _;I - All derivatives (3)

| o® Stack.java - Stack J| 15M+F31M |@J

Figure 2.3: Example of External Feature Mappings Specified in the Colored Inte-
grated Development Environment [KAKOS)]

oriented programming [Pre97], roles are the primary development artefact. Roles
are parts of classes implementing exactly one feature in that class. By composing
different roles according to the configurations, the final class is generated, imple-
menting said configuration. Thus, each feature is implemented in several roles as
there is possibly more than one class implementing a feature. In aspect oriented
programming [KLM*97|, a core software is extended by so called aspects. The core
software is exactly that part of the entire software being present in every variant (i.e.
belonging to core features). Aspects refine the core software with externally specified
code by locating areas to extend through regular expressions, so called pointcuts.
To obtain the final variant, the aspects corresponding to the features selected in the
configuration are weaved into the core software.

2.2 Clone-and-Own

Managing software variability in a large scale is yet difficult and often requires cus-
tom solutions. Different approaches to describe the commonly orthogonal differences
between software variants have shown useful in research and industrial projects. The
straightforward approach of copying the entire source code to alter specific parts is
known as clone-and-own and allows arbitrarily fine-grained adjustments. The over-
head of employing dedicated variability managing solutions, such as conditional
compilation, component- or plugin-based architectures, is omitted by introducing a
source code clone for each variant. As no initial costs arise and no prior knowledge
and planning are necessary, clone-and-own is willingly used if it is unknown which

and how many variants will be needed in the future [DRB*13 RCCT3].

However, for larger amounts of variants, maintaining updates, such as bug-fixes,
between them becomes increasingly complicated and tedious as it is often unknown

https://doi.org/10.24355/dbbs.084-202002271120-0

10 2. Background

which clones should be affected by changes. For the same reason it is often unclear
to developers that certain features they implement may already exist in other clones
resulting in duplicate effort and costs. Furthermore, with an increasing number
of clones, migrating the software to a more controlled management environment
becomes increasingly challenging, time-consuming, and thus more expensive. As
the introduction of just a single variant does not justify such a migration of the
whole software, it gets postponed usually.

2.2.1 Virtual Platform

Antkiewicz et al. [AJBT14] introduced a classification scheme to describe the contin-
uum between ad-hoc clone-and-own (L0), where the different software variants are
first-class development artefacts, and pure product-line engineering (L6), where the
software’s features are target for development instead of the final products. The clas-
sification consists of seven levels L0 - L6 in total. Each level adds another variability
management mechanism to the previous level.

Level LO comprises pure clone-and-own software development. In that sense, no
domain knowledge is made explicitly. Thus, it is unknown how variants were cloned
and how they evolved. Level L1 is known as Clone-and-Own with Provenance and
keeps track of variant changes and points in time when new clones emerge. Usually,
version control systems are used to record the cloning process as they explicitly allow
cloning, known as branching and forking, and enable fast navigation between those
branches. Furthermore, version control systems, such as git, SVN, Mercurial, Subver-
sion, and Perforce Heliz are in wide use for single system engineering [CWO98| [T1ic82]
as they not only allow clone-and-own development but team collaboration and to
back up the source code, too. Due to their wide acceptance and ad-hoc applicability,
the hurdle for introducing those tools to development in the first place is marginal.
Level L2 is described as Clone-and-Own with Features where features are identified
as development artefacts across the clones. It is the first step to exploiting domain
knowledge for clone synchronisation as features are synchronised between clones.
To further reduce the effort for cloning, Level L3 Clone-and-Own with Configura-
tion identifies the features implemented in a variant by assigning a configuration to
each variant. Each clone itself may contain variability mechanisms for deselecting
features it contains. Thereby, multiple variants can be cloned by choosing a subset
of the features of an existing clone. With Level L4 Clone-and-Own with a Feature
Model, a single global feature model is introduced to describe the variability across
all clones. It contains all implemented features as well as global constraints of them
leading to the existing clones. Level L5, Product-Line Engineering with an Integrated
Platform and Clone-and-Own describes actual software product-line engineering but
application engineering is not automated. A manual post-processing is necessary to
compose the features to a final product. The final level, L6 Product-Line Engineering
with a Fully Integrated Platform, fully automates software product-line engineering

as explained in [Section 2.1

We refer to this scheme throughout the thesis for context clarification.

2.2.2 Migration to Software Product Lines

To open product-line development to existing software, many research projects fo-
cus on extracting features from existing code [KDOT4, [FMST17, [KEBAQ9, LCI13|,

https://doi.org/10.24355/dbbs.084-202002271120-0

2.3. Notation 11

WSSS16]. Generally, there are three strategies for implementing a software product
line [ABKS13, Kru02, [PBvdL05]:

Proactive — Implementing software product lines from scratch without any prior
artefacts is referred to as the proactive strategy. It can be used when (nearly)
no existing implementation is present. Therefore, extensive expertise and a
complete analysis of the domain are necessary.

Reactive — The reactive strategy can be seen as a soft and less risky version of the
proactive strategy and is analogous to extreme programming. Development
starts with a small amount of variants to which incrementally new variants
are added over time. The reactive strategy is useful when it is not clear at
beginning of development which and how many variants are needed. Though,
later refactorings of the product line may be necessary to adapt to unexpected
changes.

Extractive — Migrating existing software variants to a single software product line
is known as the extractive strategy as variability information is extracted
retroactively. This strategy is useful for already existing traditional software
projects but very challenging for tools and developers as the whole software
has to be restructured.

The most commonly used strategy is the extractive strategy [BRNT13]. Migrating
existing software to a product line consists of two major phases [MZB™15]. First,
variability information needs to be extracted. This step is known as variability min-
ing or family mining [KDO14, WSSS16] and focuses on recovering feature mappings
as well as synthesising a feature model [MAal 18| describing the detected variability.
Second, features need to be extracted and composed to the final product line with
a convenient mechanism [FMS*17, [KEBAQ9, [LC13]. This is done either seamless,
also referred to as big bang migration, or stepwise [FMST17].

We target to enhance clone-and-own development and not to migrate it to a software
product line. Nevertheless, the recording of feature mappings and thereby stepwise
synchronisation of implementation artefact between clones can be used for a later
migration, if so wished.

2.3 Notation

In this section, we introduce names and notations we use along this thesis. Let P(X)
denote the power set of a set X.

Definition 2.1 (Propositional Formula Space). Let the set of all formulas in propo-
sitional calculus over a given set of variables X be denoted as B(X). Let B =
Ux B(X) denote the set of all propositional formulas over all sets of variables X.
Note that {false, true} C B(0) C B(X) C B for any set of variables X # ().

An assignment to propositional formulas B (X) over variables X is a subset of
the variables A C X, containing exactly those variables that are assigned to true,

https://doi.org/10.24355/dbbs.084-202002271120-0

12 2. Background

whereas all missing variables X \ A are assigned to false. If an assignment A satisfies
a formula ¢, i.e., ¢ evaluates to true under A, we write eval(A, @), which itself is a
propositional predicate and thereby a propositional formula. Hence, we deliberately
use it as such.

The set of features in the current feature model is referred to as F. Feature models
are explained in detail in on Page[l As we assign features to previously
unmapped implementation artefacts gradually, we also need to support an undefined
feature mapping. Hence, we introduce null as a possible value for specific proposi-
tional variables. If nullis a possible value, we explicitly mention it. In ternary logic,
null is interpreted as an unknown or maybe state. However, in our case null does not
represent an unknown state but the absence of a feature mapping. Therefore, we
define it to be the neutral element for all operations in propositional calculus, i.e.,
e Anull = @, oV null .= ¢, 7 null := null, ¢ = null := true, null = ¢ := false, and
eval(A, null) == true for ¢ € B(X), arbitrary set of variables X, and an assignment
A. Nevertheless, we explicitly mention possible null values and handle these cases
with care, e.g., by checking for its presence.

https://doi.org/10.24355/dbbs.084-202002271120-0

3. Semantic Edits on Abstract
Syntax Trees

In this chapter, we show how to represent feature mappings in a syntax preserving
way. Therefore, we use an abstract representation of implementation artefacts to
obtain knowledge on their hierarchical structure. To distinguish the types of changes
developers make, we show how to compute differences between artefact versions on
the abstract representation layer. Using semantic lifting on those differences, we are
able to reflect the developer’s intentions on changes more accurately.

Intuitively classified changes on implementation artefacts do not need to correspond
to alike changes in the abstract representation. Depending on its content, inserting a
line of source code can result in various changes in the Abstract Syntax Tree (AST),
that we use as abstract representation for feature mappings. Therefore, we intro-
duce definitions for semantic edits, i.e., operations on ASTs representing intuitive
operations in their corresponding implementation artefact. However, existing tree
differencing algorithms use technical, tree-oriented (i.e., low-level) operations to ex-
press tree diffs. Thus, classifying changes in the abstract representation the same
way as developers would intuitively classify them in the implementation layer is still
an open topic. Semantic lifting, a technique know from model-driven software de-
velopment [KKTT1], can be used to detect semantic edits in series of low-level edits.
It has not been applied to AST diffs yet.

In the following, we first establish our assumptions on the clone-and-own scenario in
and how product-line techniques are integrated in concrete. Second, we
discuss on how to represent feature mappings in [Section 3.2] Third, we elaborate on
how changes in implementation artefacts play out in their abstract representation
in Thereby, we introduce semantic edits on ASTs and how existing
tree differencing algorithms could be used to derive semantic tree diffs, i.e., diffs of
semantic edits. Finally, we summarise this chapter in [Section 3.4]

https://doi.org/10.24355/dbbs.084-202002271120-0

14 3. Semantic Edits on Abstract Syntax Trees

3.1 Development Setting

To enrich clone-and-own development with product-line techniques, we make the
following assumptions:

1. Software clones originate from each other, e.g., by branching in a version con-
trol system. Thus, they all have commonalities and deliberately introduced dif-
ferences. This corresponds to the usual definition of clone-and-own |AJBT14,
DRB™13, RCC13| [SSW15]. Though, we do not require knowledge on how
clones emerged from each other.

2. Developers agree on a common domain of features they target to implement
or have already implemented. Such domain knowledge is commonly already
given in documentations [RC13] or other departments, such as the sales depart-
ment [LLHEI7]. Optionally, a single global feature model is given to describe
constraints on the features shared across all variants. It is not required but
enables us to further reason about valid feature mappings. In the following,
we do not need to distinguish between cases with and without a feature model
as we can construct a basic feature model just containing the features without
any constraints. Thus, if no feature model is given, whenever we refer to the
global feature model from now on, we refer to the constraintless model, where
all features are optional children under a single abstract base feature.

3. It is known which features are implemented in which variant, i.e., configura-
tions are given for each of them, as assumed by others [FLLHE15, [LFLHET5,
LLHEIT]. These configurations conform to the optional global feature model
to ensure valid implementations. We assume these configurations to be con-
stant because a change in a configuration can be achieved by introducing a new
clone. Furthermore, from a technical point of view, as variants are supposed to
differ but also have commonalities as they belong to the same software, those
differences and commonalities can be identified as features that may or may
not be implemented in a certain variant. Differing implementations of features
between variants can be expressed by introducing sub-features describing the
differences or could be identified as feature interactions.

4. Usually, developers know on which feature or feature interaction they are work-
ing on. As developers need an intention on what to achieve when programming
and software teams often use some sort of task documentation, such as issue
trackers or ticketing systems, we assess this assumption to be reasonable, as
in other research [JBACTS, [KDO14, DRB*13].

gives an overview on our assumptions by summarising the clone-and-
own scenario we target. Features are illustrated by coloured boxes. Each variant is
identified by the set of features it implements, depicted by a unique configuration.
The set of available features is denoted by a single global feature model. Optionally,
it can be enriched by constraints on feature composition. Here, the orange feature
is a core feature because it is the root in the feature model. Hence, it is contained
in every variant.

https://doi.org/10.24355/dbbs.084-202002271120-0

3.2. Feature Mapping Representation 15

8
&
= i Feature Model
>

b L T
w B x
LE) x x P b 4
8 X x ®

® x

Figure 3.1: Overview on Feature Enhanced Clone-and-Own Development Scenario

Our assumptions are general enough to target multiple levels of clone-and-own de-
velopment and any inclusion degree towards product-line engineering. Formally, we
target clone-and-own development starting from level L2 up to level L4 if a feature
model is given according to the scheme by Antkiewicz et al. [AJBT14], described in

section 2.2.1] Clone-and-own development where features are identified as develop-
ment artefacts is referred to as L2.

Version control systems, such as git, Mercurial, or SVN are not a requirement for
us although we have to reason about software changes, known as diffs. Our concept
is largely orthogonal to version control systems, thus supporting any of them used
currently for software development. Version control systems could ease the imple-
mentation of targeted synchronisation between variants but are out of scope of this
thesis.

3.2 Feature Mapping Representation

Feature mappings, also known as feature traces, are mappings from features to
their implementation artefacts, such as source code. They identify artefacts as
the implementation of a certain feature. By composing those artefacts, different
program variants are obtained. Thus, mapped artefacts must be removable from the
overall program’s implementation without invalidating the program. Dependencies
between features can be expressed through combinations of them, so called feature
interactions, or explicit constraints given in a feature model. In the following, we
explain how we represent feature mappings and why:.

Software artefacts cannot only belong to single features but feature interactions or
even negations of features. As an example, consider [Listing 3.1l If both features
FAN_SOFT_PWM and FAN_MIN_PWM are active, the speed of the printers fan fanSpeed-
SoftPwm is calculated differently than in the absence of feature FAN_MIN_PWM. Con-
sequently, lines 3 to 6 are mapped to both features described by the formula

FAN_SOFT_PWM A FAN_MIN_PWM.
Accordingly, Line 8 is mapped to

FAN_SOFT_PWM A —FAN_MIN_PWM.

https://doi.org/10.24355/dbbs.084-202002271120-0

© 00 ~J O Tl Wi

—_
i)

16 3. Semantic Edits on Abstract Syntax Trees

#ifdef FAN_SOFT_PWM
#ifdef FAN_MIN_PWM
fanSpeedSoftPwm = (tail_fan_speed == 0) 7
0 : ((tail_fan_speed < FAN_MIN_PWM) 7
FAN_MIN_PWM
tail_fan_speed);
#else
fanSpeedSoftPwm = tail_fan_speed;
#endif // FAN_MIN_PWM
#else
// other cases

Listing 3.1: Example for Feature Interactions and Negative Feature Mappings from
an Old Version of the Marlin Firmware

Therefore, we allow arbitrary propositional formulas over features as feature map-
pings. From now on, if we use the term feature mapping, we refer to such formulas
instead of single features. Notice that feature FAN_MIN_PWM is a numerical feature
in [Listing 3.1] as its value is used in lines 5 and 6. For now, we only support boolean
features. Some usages of numerical features, such as presence checks (Line 3), can
be reduced to boolean features, though.

As we want to trace features in software clones but not extract them, we use the
annotative approach for feature mapping specification. Software artefacts can be an-
notated either internally or externally. Internal annotations are specified in the im-
plementation layer, e.g., with preprocessor macros. Contrary, external annotations
are specified in the representation layer (i.e., the file editor) and stored externally.
They can be visualised by assigning colours to them, such as in CIDE [KAKOS].
As we do not map features to implementation artefacts directly but to an abstract
representation of them, as explained in [Section 3.2.1, we have to specify mappings
externally.

3.2.1 Abstract Syntax Trees as Feature Mapping Targets

Inspired by preprocessor annotations, the straightforward approach for specifying
feature mappings in text files, such as source code, is the line-based mapping. Im-
plementation artefacts are referenced by storing offset and length of their occurrence
inside the documents containing them. Although this method is transparent and in-
tuitive, it has several issues, especially regarding implementation artefacts exhibit-
ing syntax such as source code. First, line-based mappings are not stable against
changes. Changing a document outside of an appropriate development environment
likely invalidates all mappings behind the location changes were made. Second,
syntax-violating annotations are possible as shown in[Listing 3.2 In Line 7, a closing
bracket is wrongly mapped to —AUTO_FILAMENT_CHANGE (highlighted in red) leading
to a syntactically invalid program for variants where feature AUTO_FILAMENT _CHANGE
is not present. Third, and most important, line-based mappings allow no reasoning
about the structure of implementation artefacts. Detecting dependencies between
artefacts is essential for a sophisticated derivation of feature mappings.

https://doi.org/10.24355/dbbs.084-202002271120-0

© 00 ~J O Tl Wi

—_ = = =
W N — O

3.2. Feature Mapping Representation 17

while (!lcd_clicked()) {
#ifndef AUTO_FILAMENT_CHANGE
if (+#+cnt == 0) lcd_quick_feedback();
manage_heater ();
manage_inactivity (true);
lcd_update ();
+
#else
current_position[E_AXIS]+=/* [...] */;
plan_buffer_line(/* [...] */);
st_synchronize ();
#endif
} // while(!lcd_clicked)

Listing 3.2: Example for Syntax Violating Line-Based Feature Mappings from an
Old Version of the Marlin Firmware

To overcome the limitations of the line-based approach, we map features to nodes
of an AST as done before in the literature [KAKO0S]. ASTs are trees describing
the syntactic structure of an implementation artefact and are constructed from the
grammar of the artefact’s language [ALSUO06]. In particular, ASTs find usage in
compilers for processing source code. As an example, shows how an

AST represents the syntactical structure of a program fragment, thus revealing the
program’s hierarchy. Each syntactical element in has a corresponding
node in the AST in [Figure 3.2b As a fallback, if the implementation artefact does
not follow a certain syntax, i.e., no grammar is available, line breaks can be identified
to separate elements. Thus, line-based mappings can be expressed as ASTs.

While ASTs ensure syntactic validity, they also require it because they cannot be
parsed if the program is not syntactically correct. Hence, only changes leading from
a syntactically valid state to another syntactically valid state can be considered. As
syntactical correctness of a program is also the goal of developers we do not regard
this to be a major disadvantage.

Therefore, we further assume that for any change we consider for our later feature
mapping derivation, both versions of the artefact, old and new, are in a syntactically
correct state. For now, our derivation of feature mappings from artefact changes is
not tied to any specific stage in development, such as the commit stage known
from version control systems. Theoretically, our feature mapping derivation can be
applied at any time as long as the program can be parsed to an AST.

Using ASTs as feature mapping targets has further advantages in the clone-and-own
scenario. As clones are supposed to have differences, independence from code style
and order is a convenient property of ASTs. For example, if the order of two function
definitions in a source code file is swapped, the AST would remain isomorphic be-
cause only the order of nodes representing those function definitions would change.
Furthermore, developers do not have to bother annotating syntactical elements, such
as commas, because these are not included in ASTs. Consider [Listing 3.3 showing
function foo with two differently mapped parameters. The comma separating both

https://doi.org/10.24355/dbbs.084-202002271120-0

18 3. Semantic Edits on Abstract Syntax Trees

void f(int x) {
if (x <= 0) {
return;
}
print("x is positive");

}
(a) Example Java / C++ / C# code

MethodDeclaration
name=f

Parameters m
FunctionCall
’m unctionCa

name=print

Expression @ock Parameters

StringLiteral
LowerEquals ’ReturnStatement‘ o & iy
value="x is positive
VariableRef IntLiteral
name=x value=0

(b) AST of (a)

Figure 3.2: Example of an Abstract Syntax Tree: Each element in the source code
(a) has a corresponding node in the tree, constructed according to the language’s
grammar rules. The parameter node’s children are omitted.

https://doi.org/10.24355/dbbs.084-202002271120-0

3.2. Feature Mapping Representation 19

void foo(
#ifdef A
int parameterOfFeatureAl
#ifdef B
#endif
#endif
#ifdef B
int parameterOfFeatureB
#endif

)

Listing 3.3: Line-Based Mapping of a Feature Interaction Involving the Necessity to
Annotate the Parameter Separating Comma

features has to be annotated with both features to prevent syntax errors. With
AST-based annotations, it is sufficient to only annotate the parameters. Addition-
ally, the function definitions do not have to be split artificially into multiple lines to
allow the mapping definition.

To ensure syntactic validity of variants, only AST nodes should be assignable to
features whose deletion does not invalidate the AST[] We refer to such nodes as
syntactically optional nodes. For instance, entire functions or enclosing scopes such
as conditions are optional. In contrast, method declarations always require a return
type node as their child, and conditions always consist of an expression and a state-
ment block. Hence, these specific child nodes are not syntactically optional as they
are always required for their parent’s definition. Therefore, we refer to them as syn-
tactically mandatory nodes. As in CIDE [KAKOS|, syntactically mandatory nodes
cannot be mapped to features on their own because removing them invalidates the
AST.

Definition 3.1 (Syntactical Fixture). An AST node is considered syntactically
mandatory, if it is a mandatory part of its parent’s definition. Removing it with
or without its children leads to a syntactically invalid AST. Otherwise, the node is
considered syntactically optional. In essence: Removing a syntactically mandatory
node invalidates its parent’s definition.

We refer to nodes being assignable to features as feature mapping fit. In that way,
syntactically mandatory nodes are not feature mapping fit because they cannot be
assigned to features. In contrast, syntactically optional nodes are feature mapping fit
because they can be assigned to features. For now, we only consider the hierarchical
structure of an AST for syntactical fixture and no further criteria, such as define-
before-use for functions and variables.

As ASTs unveil the hierarchical structure of a program, they allow reasoning on
membership of syntactical elements. Artefacts being syntactically dependent on
their enclosing structure, such as class or method definitions, can only be present

1Deletion in terms of just the single node or even the entire subtree rooted in that node.

https://doi.org/10.24355/dbbs.084-202002271120-0

20 3. Semantic Edits on Abstract Syntax Trees

Func. Def!
name=foo
Parameters Statements
void foo () { [
bar () ; Func. Call?
i target=Dbar
(a) Implementation of Function foo (b) AST of Function foo

Figure 3.3: Example Function With Its Corresponding AST

in a variant if the enclosing structure is present. To express this dependency, we
propagate feature mappings on AST nodes to all their child nodes as children can
only be present when their parent node is present. We refer to this concept as
propagation of feature mappings in the AST.

Example 3.2.1 (Tree Propagation). The function call to bar in cannot
exist in the program without the enclosing function definition scope of foo as a
syntax error would be imminent otherwise. Therefore, the function definition has
to be present in each variant with the call to bar. As shown in [Figure 3.3D] this
membership is directly reflected in the program’s AST. The function call to bar,
Node 2, is a descendant of Node 1, the definition of function foo. Thus, Node 2 can
inherit the mapping of Node 1 by concatenating it to its own mapping. For example,
if A, B € B are the mappings the developer has given to Nodes 1 and 2 respectively,
then Node 2 would actually have to be mapped to AA B to not violate the program’s
syntax. A possible simplification could be made using the global feature model: If
B = A, then just B as the mapping for Node 2 would be sufficient because the
feature model already ensures the necessary inheritance.

Exceptions to the feature mapping propagation are given by embracing scopes whose
included statements are not necessarily dependent on them. In particular, not all
nodes in the AST are necessarily dependent on all ancestor nodes, i.e., parents,
parents of parents, and so on. We refer to nodes that are not mandatory for their
children as hierarchically optional as deleting and replacing them with their children
does not invalidate the AST. Hence, we do not propagate their feature mapping to
their children. Contrary, we refer to all other node types as hierarchically mandatory.

Example 3.2.2 (Tree Propagation Exception). Consider the code snippet shown
in [Listing 3.4] It shows code from a virtual reality capable rendering framework
being able to run in desktop or virtual reality mode [TSGT19]. Virtual reality is
only available if the physical devices are present and software libraries installed,
indicated by the guard WITH_OPENVR. The software should still be able to run in
desktop mode (e.g., for debugging purposes) if the requirements for virtual reality
are met. Hence, the desktop setup in Line 9 is independent of the virtual reality
feature and thus should not inherit the feature mapping WITH_OPENVR of its enclosing
else branch.

https://doi.org/10.24355/dbbs.084-202002271120-0

© 00 ~J O Tl Wi

10

3.2. Feature Mapping Representation 21

bool isVR = false;

#ifdef WITH_OPENVR
isVR = settings.getBoolOrDefault("isVR", false);
if (isVR) {
/* virtual reality setup x*/
} else {
#endif
/* desktop setup */
#ifdef WITH_OPENVR
b
#endif
);

Listing 3.4: Initialisation Code for the Virtual-Reality Feature in Rendering Frame-
work From [TSGT19]

As for conditions (if), we consider other embracing statements as hierarchically
optional, such as manual scopes ({ }) and loops (while, for, repeat). However, some
enclosing scopes have to be treated with care. Some of them, such as for loops,
resource handling scopes (using, with), and even conditions (if) can declare variables
used by the enclosed statements, rendering them mandatory indeed. Furthermore,
depending on the target language, exception handling (#ry) may or may not be
optional. Fortunately, ASTs allow detection of variable declarations in expressions
of scopes by searching it in the corresponding subtree.

Definition 3.2 (Hierarchical Fixture). An AST node is considered hierarchically
mandatory, if removing it, such that its children take its place, leads to a syntac-
tically invalid AST. Otherwise, the node is considered hierarchically optional. Re-
mowving the entire subtree can still be possible in both cases. In essence: Removing a
hierarchically mandatory node orphans all its descendants (children, grandchildren,
etc.) in the textual representation.

To clarify the relationship between the properties hierarchically mandatory, syn-
tactically mandatory, and their optional counterpart, summarises their
possible combinations. AST nodes only propagate their feature mapping, if they
can have a feature mapping, i.e., are syntactically optional. For instance, removing
an entire class or function does not invalidate an AST. However, syntactically op-
tional nodes that are hierarchically optional do not propagate their feature mapping,
as they can be removed from the tree while their children are kept. The only nodes
in this category are the enclosing scopes, such as conditions and loops, as explained
before.

However, in the clone-and-own scenario, mapping the mandatory return type of
functions can be useful, as return types can differ across software clones. Though,
such mappings of mandatory nodes have to be treated with care, as they need a valid
mapping for each possible configuration, such that an instance of the mandatory
node is available for each clone. When a new clone is introduced, a return type could

https://doi.org/10.24355/dbbs.084-202002271120-0

22 3. Semantic Edits on Abstract Syntax Trees

AST hierarchically
node is optional mandatory
Fitness yes Fitness yes
Té Propagation Propagation yes
%‘ Examples non-defining Examples function definition,
% enclosing scopes class definition
.'é Fitness Fitness
g %“ Propagation Propagation
ig Examples block nodes below | Examples block node
g enclosing scopes, of function
return types

Table 3.1: Overview on Feature Mapping Fitness and Propagation of Abstract Syn-
tax Tree Node Types

be recommended from existing clones according to the new clones configuration. We
do not consider such exception in detail furthermore but as they are orthogonal to
our feature mapping requirements we could still integrate such cases later.

3.2.2 Granularity of Annotations on Abstract Syntax Trees

Upon annotating ASTs, an important question is the granularity of feature map-
pings. Different software projects may require different levels of granularity. For
instance, frequently used preprocessor annotations even allow annotating parts of
names. Annotating source code with preprocessor statements in a maintainable
and readable fashion is denominated as disciplined annotations [KATT09, LKAT1].
Annotations are considered disciplined if deletion of annotated artefacts does not
invalidate a program’s syntax. Thus, disciplined annotations are a subset of all pos-
sible annotations. As our classification in syntactically optional and syntactically
mandatory AST nodes ensures syntactic validity upon removing annotated nodes,
our feature mappings are also disciplined annotations.

By annotating the rules of a language’s grammar with variability information, ASTs
can be constructed in any desired granularity and thus allow feature mappings in any
granularity. Apel et al. [AKL13] introduced this approach and used it on stripped
down ASTSs tracing a single feature throughout a whole software project, so called
Feature Structure Trees (FSTs). Thus, granularity of feature mappings can be seen
as a parameter adjustable to any project’s needs. Detecting a suitable level of gran-
ularity for an individual software project however requires careful analysis and anno-
tation of the grammar which is a complicated, error-prone, and time-consuming task.
Furthermore, disciplined annotations already restrict the granularity to more-coarse
grained structures. For this thesis, we consider grammars of common programming
languages (e.g., Java, C#, C++, Python, etc.) as a basis for AST construction.

https://doi.org/10.24355/dbbs.084-202002271120-0

3.3. Differencing of Abstract Syntax Trees 23

Similar to FSTs, we also need to represent a whole software project in a single tree
to be able to detect moves of artefacts. For instance, during refactoring it is com-
mon for developers to move certain functions or classes to different locations, e.g.,
files or packages. Thus, we create a single large project structure tree reflecting the
structure of artefacts in an entire variant. In clone-and-own development, each vari-
ant corresponds to exactly one project structure tree. As shown in [Figure 3.4} the
project structure tree consists of directory and file nodesﬂ called project structure
nodes. Each file node has the ASTs of the implementation artefact it contains as its
child. As removing an entire directory or file from the project does not invalidate the
syntax of the program, project structure nodes are syntactically optional. However,
removing such a file node while keeping its child AST, invalidates the tree because
implementations are bound to files containing them. Therefore, file nodes are hier-
archically mandatory. Although removing directory nodes while keeping the child
file nodes does not invalidate the project structure tree, we also consider it as hier-
archically mandatory for consistency and the opportunity to assign whole software
modules to a single feature. Consequently, according to project structure
nodes are feature mapping fit, i.e., can be assigned to features, and propagate these
mappings to their children. As project structure nodes do not require exceptions
or extensions to our AST-based feature mappings, we consider them to be part of
our ASTs. From now on, when referring to ASTs this implicitly includes the whole
project structure tree.

3.3 Differencing of Abstract Syntax Trees

To derive feature mappings upon software changes, we first have to identify how
software artefacts can be changed and how these changes are represented in the
corresponding AST. This enables us to incorporate the types of edits developers
make during programming. Our goal thereby is, to reflect the developer’s intent
on changes more accurately when deriving feature-mappings in a satisfying semi-
automated fashion.

We distinguish four types of changes: insertion, deletion, update, and move. To
avoid disambiguities, we refer to these types as edit operations and to concrete
applications of them as edits. Although any changes on artefacts can be expressed
with insertions and deletions only, being able to classify changes as updates or moves
allows substantially more accurate reasoning on edits. For instance, if we would
only consider insertions and deletions, renaming a class would require to delete and
reinsert an entire subtree in the AST, as the children of the class node cannot exist
without it as it is hierarchically mandatory. Such coarse-grained change definitions
are inadequate for reasonable change analysis.

To formally define edit operations on ASTSs, we first give a formal definition of ASTs
on which we operate.

Definition 3.3 (Set of Artefacts). Let A be the universe of all software artefacts.
It is a set containing all possible source code lines, AST nodes and other artefacts
belonging to software project.

2Depending on the target language and project setup these could also be considered to be
module or package nodes.

https://doi.org/10.24355/dbbs.084-202002271120-0

24 3. Semantic Edits on Abstract Syntax Trees

property
event
n o Cloneh
- Entity.h
n - EntityManager.h
o EntityManagerView.h
n - ForwardDeclarations.h
n o Property.h
n - Propertyfnnotations.h
n o PropertyDependencies.h
n - PropertyFactory.h
o PrototypeEntityPrefab.h

(a) Project Layout in File System

Directory —
name=event
File AST

name=Clone.h

Directory File
name=property name=Entity.h L
File

AST

name=EntityManager.h

Figure 3.4: Example for Project Structure Tree Derived From File System

Definition 3.4 (Set of Abstract Syntax Tree Nodes). Let h C A be the universe of
all AST nodes. It is a set containing all possible AST nodes of any AST. Therefore,
the nodes of a concrete AST are always a subset of M.

We use these two definitions to classify software artefacts as such.
Definition 3.5 (Abstract Syntax Tree). An AST is a labeled ordered directed acyclic
graph T = (V, E,r, 1,5, L) with:

e nodesV C M. We abbreviatev € T for any nodev € V. A node can potentially
be part of multiple ASTs, for instance the old and new version of an AST before
and after a change by the developer.

e root node r € V.. We write root(T) :=r.

e parent-child relationship E € V x V. A node p € V is considered to be the
parent of node v € V, if and only if (p,v) € E, denoted by parent;(v) = p.
FEach node has exactly one parent except for the root:

YVoeV.v#r< IpeV. p=parenty(v)

https://doi.org/10.24355/dbbs.084-202002271120-0

3.3. Differencing of Abstract Syntax Trees 25

e index function I : V — N ordering the children of a node. FEach node gets
an index that indicates its location under its parent node from left to right.
Thereby, indices between children of the same node are unique because they
define a total order on those children. The root node is the only node without
an index.

e set X of node types according to the underlying grammar rules, such as Method-
Declaration, Class, or Condttion.

e label function L : V — ¥ x String assigning each node a type and a value. For
instance, the AST node v representing the function declaration foo would have
type and label L(v) = (FunctionDeclaration, foo).

Let childr(v,i) be the i-th child of node v in the tree T, i.e., the node ¢ for which
v = parenty(c) and I(c) = i. The transitive closure of E on a node v € V' delivers
all its descendants, denoted by childy(v). Thus, for any tree T = (V,E,r, I,%, L),
let tree(v) = ({v} U childp(v), E,v,I,%, L) denote the subtree rooted in v € V.
For any subtree S of tree T we write S C T. From our definitions follows that
tree(v) C T for each v € T and T = tree(root(T")).

Definition 3.6 (Set of all Abstract Syntax Trees). Let M denote the set of all
ASTs, i.e., any AST T is an element of this set T C .

Definition 3.7 (Edits on Abstract Syntax Trees). An edit e is an instance of an
edit operation, transforming an AST Ty to another AST Ty. We write Ty < Tb.

Such an edit can be arbitrarily complex and may itself consist of several smaller
edits as we show in the following sections.

To ensure syntactical correctness of a program upon feature removal we follow the
paradigm of disciplined annotations as explained in Therefore, we
allow feature mappings for syntactically optional AST nodes only. For instance, such
nodes are structures, such as enclosing scopes (if, while, for), or function or class
definitions. We refer to such nodes as feature mapping fit. However, some feature
mapping fit nodes may still be mandatory for their children. For instance, the
statements within a function definition cannot exist without the function definition
scope. Thus, children of such hierarchically mandatory nodes should receive their
parents mapping to express this dependency. An overview to these classification is
given in on Page 221 We define propositional predicates for identification
of feature mapping fit and propagating node types:

Definition 3.8 (Feature Mapping Fitness). For an AST with alphabet ¥, let the
propositional predicate Fit : ¥ — {false, true} C B(0) denote the fitness of node
types for feature mappings, i.e., if they are assignable to features as shown in

on Page 23

Definition 3.9 (Feature Mapping Propagation). For an AST with alphabet %, let
the propositional predicate Propagates : ¥ — {false, true} C B(0) denote if a node

type propagates its feature mappings to its children as shown in on Page
22

https://doi.org/10.24355/dbbs.084-202002271120-0

26 3. Semantic Edits on Abstract Syntax Trees

As a shorthand, we also write Propagates(a) for Propagates(t) where ¢ € ¥ is the
type of node a € M. Nodes can only propagate their feature mapping, if they have
one. Therefore, propagating nodes must be feature mapping fit:

Vo € ¥. Propagates(o) = Fit(o). (3.1)

For further use, let WtT(a) := p denote the nearest ancestor p € T of anodea € T
in the tree T with = Propagates(p). If no such ancestor exists, parent;(a) = ¢,
where € € A denotes an undefined value, such as NULL does for many programming
languages.

In the following, we first describe how edits on source code are represented on the
AST layer and thereby define the different edit operations formally. Second, we elab-
orate on how edits can be identified on AST differences (diffs), i.e., which sequence
of edits transforms a given AST into another one. Third, we argue how semantic
lifting can be used to detect user-level edits in a set of fine-grained low-level edits
on ASTs.

3.3.1 Semantic Edits on Abstract Syntax Trees

Editing software artefacts in their text-based representation leads to corresponding
transformations on their ASTs. While developers pursue a certain intent with their
changes, neither text-based nor AST-based representations of the edits need to reflect
these intents in an intuitive or understandable way. Thus, if developers would classify
a change they made as an insertion, we want to recognise it as such on the ASTs.
We refer to such edits as semantic edits as they do not only encode syntactical
changes but reflect the developer’s intent. In the following, we derive our definitions
of semantic edit operations on ASTs from a reasonable intuition on edits in the
text-based representation:

Insert Some node types cannot exist without certain children they require for their
definition. For example, conditions always require an expression and a block
node as their children and binary expressions always require exactly two subex-
pressionsﬂ as shown in . Inserting the Condition node together
with its children Expression and Block has to be considered as an atomic
operation, as it would result in ill-formed intermediate ASTs otherwise. For
that reason, we allow the insertion of whole subtrees at once:

insertyee : M x M x M xN-=h, (3.2)

where insertie.(T,U,p,i) = T" adds the tree U € T as the i-th child of p € T,
such that U C T". Existing children of p with index greater than i are shifted
to the right, i.e., their index is increased by 1. Inserting single leaves to the
tree can also be expressed with insert,.. because a single node is also a tree.
Nevertheless, for later reference, we introduce insert,,qo to explicitly refer to
nsert.e with just a single node.

3Such constraints directly emerge from a language’s grammar and thus are language dependent.
However, most conceptual constraints are similar between programming languages.

https://doi.org/10.24355/dbbs.084-202002271120-0

3.3. Differencing of Abstract Syntax Trees 27

if (baz) {
foo(bar); foo(bar + 1);
}
(a) Call foo (b) Call foo with Insertion of a Condi-

tion and an Increment in the Argument

FunctionCall Condition

value=foo
Parameters Expression @)ﬂ
VariabloRef VariableRef | | FunctionCall
value=baz value=foo
value=bar

(c) AST of (a) Parameters

Binary AddExpression
VariableRef Literal
value=Dbar value=1

(d) AST of (b): Nodes added to the orig-
inal AST (c) are marked green.

Figure 3.5: Insertions in Implementation Artefacts Need Not to Correspond to Sole
Insertions (Of Leaf Nodes) in the AST: An enclosing condition as well as an incre-
ment to the parameter are inserted into an existing code fragment (a) leading to a
new fragment (c). Although only code insertions were performed, the AST (b) got
re-rooted and split in the middle.

https://doi.org/10.24355/dbbs.084-202002271120-0

28

3. Semantic Edits on Abstract Syntax Trees

Furthermore, insertions in implementation artefacts need not to correspond to
subtree insertions in ASTs only. As an example, shows how pure
insertions in implementation artefacts result in structural changes beyond tree
insertion in the AST. The code is changed to and
thereby transforms the corresponding AST from [Figure 3.5¢| to [Figure 3.5d|
Accordingly, insertions in implementation artefacts allow new nodes to replace
existing nodes. In our example, the BinaryAddExpression replaces the origi-
nal variable reference to bar. The Condition node replaces the FunctionCall
node and relocates it even further down the hierarchy. Moreover, there could
be more children next to FunctionCall, e.g., other statements that have to be
moved to the Block node’s children. To detect artefact insertion more accu-
rately, we consider the above described replacement and adoption of existing
nodes:

insertpartial : A xh xhxNxNxNxh-—h", (3.3)

where insertyaia (1, U, p, 1, j, k,u) with i < j replaces the children of node
p € T in range i to j with the new subtree U ¢ T, then located at index i.
The replaced children are added as children of u € U at index k.

For our later feature mapping derivation, we consider both insert;. and
INSETTpartial aS INsertions.

Delete Deletions on implementation artefacts are not restricted to AST leaf nodes,

as for instance the deletion of an enclosing scope. Furthermore, depending on
the granularity of ASTs, different implementation artefacts are represented as
leaf nodes. Therefore, we allow deleting any syntactically optional non-root
node instead of just leaves:

deletenoqe : h° x M=, (3.4)

where deletepoae(T,v) deletes node v € T with v # root(T) and = Fit(v).
The children of v are inserted as children of parent;(v) in the place v was
before. However, not all nodes can be deleted on their own as they may be
syntactically mandatory, such as block and expression of conditions. Hence,
removing a set of nodes in syntax preserving fashion is needed.

Removing entire methods, classes, or scopes can be expressed through consec-
utive delete,oq. edits. However, these have to be ordered to avoid unnecessary
or even impossible child rearranging. Therefore, we define a second delete
operation, deleting a whole subtree with syntactically optional root:

deleteyes : M x =M, (3.5)
where deleteyee(T, 1) deletes the whole subtree rooted in r € T with r #
root(T) and = Fit(r), i.e., r is syntactically optional.

Nevertheless, there are still cases of deletions in the source code that can nei-
ther be expressed with a single delete,oqe nor deleteie.. Consider the inversion

of the insertions shown in [Figure 3.5l Removing the condition from [3.5D] re-
sults in the deletion of the partial subtree rooted in the Condition node. As

this is the inverse operation of the above described inserty,.tia we define

deletepariiar = ' x h x P(h) =", (3.6)

https://doi.org/10.24355/dbbs.084-202002271120-0

3.3. Differencing of Abstract Syntax Trees 29

where deletepartial (T, 7, {v1, ..., v;}) deletes the subtree rooted in r € T but
without the subtrees rooted in descendants v; € childy(r), i € {1,...,k}. The
descendants are delegated to parent;(r) in the place r was before. Note that
r can also be the root of T. In this case exactly one descendant has to be
saved from deletion, i.e., kK = 1, as there has to be a root and there cannot
be more than one root. In contrast to deletenoge and deleteyartial, the root r
does not need to be syntactically optional as saving the children {vy, ..., vy}
can lead to a valid AST again. As an example, consider [Figure 3.6 where the
BinaryAnd is moved. Although the BinaryAnd is not syntactically optional
here as it is required by the above expression, it can be deleted in terms of
deletepartial because Literal with name b fills in the emerging gap.

For our later feature mapping derivation, we consider delete,oqe, deleteiee, and
deletepartial as deletions.

Update Some changes on implementation artefacts do not change the AST’s struc-
ture. For example, renaming a function or changing its return type does neither
affect the function’s structure nor the elements it contains. We refer to such
edits as updates. Both, type and value of a node can be changed:

update : M x th x (X x String) — M, (3.7)

where update((V, E,r,I,3,L),v,(t,s)) = (V, E,r, I,%, L) updates node v € V/
to have type t and value s:

,) (#s), v=uw,
Liw) = {L(w), else.

Updates can be expressed through inserting and deleting the corresponding
subtree. Though, our goal is to reflect the developers intentions as accurately
as possible. Considering updates as self-contained operations avoids obfus-
cated diffs and instead leads to more clear change descriptions. Furthermore,
it allows us to incorporate existing feature mappings of updated nodes that
would get lost when representing the update with a deletion and insertion.
Detecting renamings as such could enable more reasonable variant synchro-
nisation as the renaming could be consistently performed in target variants
instead of synchronising single occurrences of changes each.

Move Each implementation artefact has a corresponding subtree in the AST of the
program it is contained in. For example, a method definition is represented by
the AST subtree rooted in its corresponding MethodDefinition node. There-
fore, whenever an implementation artefact is moved in a syntax preserving
fashion, its subtree is moved in the AST. Moving a subtree thereby means to
remove it from the tree and insert it again as the child of another node. We
define

MOVeee . M X M x M x N—=h' (3.8)

where moveye (T, v, p, i) removes the subtree rooted in v € T" and inserts it as
the i-th child of p € T'.

https://doi.org/10.24355/dbbs.084-202002271120-0

3. Semantic Edits on Abstract Syntax Trees

if (a) {

return b && c;

}

(a) Initial Condition

Condition
Expression | | Statements
Literal Return

value=a ‘
Expression
BinaryAnd

Literal Literal
value=b | | value=c

(c) AST of Condition (a)

if (a && c) {
return b;

b

(b) Condition With Moved Binary-
And Expression

Condition
Expression Statements
Binar‘yAnd Ret‘urn
Literal Literal Expn‘ession

value=a | | value=c ‘

Literal
value=b

(d) AST of Condition (b)

Figure 3.6: Move of Partial Subtree in AST

https://doi.org/10.24355/dbbs.084-202002271120-0

3.3. Differencing of Abstract Syntax Trees 31

However, in more advanced cases, subtrees can be split such that they are
only partially removed while leaving children behind. Consider, [Figure 3.6,
Moving the code fragment "&& c” is represented as removing a partial subtree
like deleteparial does and reinserting it in the way insertpatia does. Hence, let

Movepartial : M X M x M X N x Nx NxP(h) x h—h", (3.9)

where movepartial (1, v, p, 1, j, k, L,u) = insertyaeia(17, V', p, i, 7, k, u) describes
the move of the partial subtree V' rooted in v € T whereby V' is exactly the
subtree deleted by deleteyartia (T, v, L) = T".

Moves can be expressed through inserting and deleting the corresponding (par-
tial) subtree, i.e., through deleteyartiar and insertyatia. Considering moves as
self-contained operations however, allows the conservation of existing mappings
which would get lost during deletions and reinsertions. Thus, when identifying
text operations as reasonable moves in the AST, the original feature mappings
of moved nodes can be kept or updated.

For our later feature mapping derivation, we consider both mowvey e and
MOVepartial &S MOVES.

To reflect developers’ intentions on code changes in even more detail, more semantic
edit operations could be considered. The update edit operation for example only
works for single nodes so far and does not reflect coherent changes in multiple lo-
cations, such as refactoring the class name across the entire code base. Detecting
renaming of structures could ease variant synchronisation, as such a renaming op-
eration could be executed on target variants instead of synchronising a set of local
updates. This would circumnavigate the problem that not all updates may have a
target in other variants and that some locations in the target variants would not get
updated because they do not have a counterpart in the source variant.

3.3.2 Deriving Abstract Syntax Tree Edit Scripts

During software development, implementation artefacts evolve, originating in a se-
quence of versions. The differences between two versions can be expressed as a series
of changes which transform an artefact to its new version. In the literature, such
sequences of edits are referred to as edit scripts [Bil05, FMB™ 14, [CRGMWO96]. To
detect the semantic edits applied to artefacts, we need to recover edit scripts on
ASTs.

Definition 3.10. An edit script & transforming an AST T to another AST T is a
sequence of edits (e, ey, ..., e,), such that T =% Ty = ... 2% T'. As an edit script

itself is an edit, we also write T KNS

Recovering edit scripts is a well researched topic [Bil05, [PATTL [FMB™ 14, [CRGMW96),
HMO08]. Commonly, two steps are involved in edit script computation:

1. Match Detection: To detect similarities between both trees, a matching is
computed. A match consists of exactly two nodes of different trees, where
both nodes are considered to be equal. Each node is part of at most one
match. A matching the set of all such matches for two trees.

https://doi.org/10.24355/dbbs.084-202002271120-0

32 3. Semantic Edits on Abstract Syntax Trees

2. Differencing: An edit script is deduced using the matching from the previous
step. For unmatched nodes, no similar node in the other tree could be found.
These nodes are considered to emerge from edits. Unmatched nodes in the
source tree are usually considered to be deleted as they do not occur in the
target tree. Correspondingly, unmatched nodes in the target tree are usually
considered to be inserted. Advanced heuristics are used for detecting moves
and updates on unmatched nodes. The computed edit script depends on the
matching quality.

To compute optimal edit scripts, the different edit operations are assigned a cost.
For example, deletion and insertion could be considered more expensive than an
update because changing a node’s label may be more likely than removing it and
inserting an altered version of it.

Throughout the literature, different definitions for the edit operations exist. We com-
pare existing definitions of the algorithms LaDiff by Chawathe et al. [CRGMW96],
Diff/TS by Hashimoto and Mori [HMOS|, RTED by Pawlik and Augsten [PA11],
GumTree by Falleri et al. [FMB™14] and the definitions by Bille, he used in his
survey [Bil05] in on Page Across the five considered works, different
definitions for the four basic operations are present. Insertions in terms of insert; c.
Or insertpartial are used across all methods but on single nodes instead of whole
subtrees. As GumTree enhances the matching of LaDiff but uses it for edit script
computation both have the exact same definitions. They define delete as the dele-
tion of a leaf node, whereas Bille’s definitions and Diff/TS allow deletion of any
non-root node, delegating its children to its former parent, as our deleteyoqe does.
As for insertions, none of them allows deleting an entire subtree at once. The move
operation is only considered in three works and is the same as ours for two of them.
The rather uncommon definition of the move operation by Diff/TS is the same as
OUr' MOVEpartial (and inspired our definition of movepaia). Whereas we assign type
and value to each AST node, these are usually referred to as label and value in the
literature. Bille’s definitions, Diff/ TS, and RTED only assign a single label to each
node, which is equivalent to having label and value, in theory. LaDiff and GumTree
assign label and value to each node but allow updating values only. They consider,
the node type (i.e., its label) to be constant.

More work focuses on improving the GumTree algorithm. Matsumoto et al. improve
the matching phase with pre-processed line-based diffs to identify unchanged lines
in advance [MHK19]. Dotzler and Philippsen introduce five different optimisations
usable for various tree differencing algorithms but directly compare it to GumTree
only [DP16].

To reuse existing tree differencing algorithms, we need to detect more sophisticated
user-level edits in the mostly technically motivated edit scripts they compute. In the
following section, we show how semantic lifting could be used to recover edits match-
ing our definitions from low-level edit scripts, computed by existing algorithms. This
enables us to classify types edits more accurately to better reflect developers’ inten-
tions.

https://doi.org/10.24355/dbbs.084-202002271120-0

3.3. Differencing of Abstract Syntax Trees 33
Work Insert Delete Move Update
LaDiff by Chawathe Mnsertyode deletepoge MOVEiree value only
et al. [CRGMW90] on leaves
Bille’s definitions inSerlpartial & deletenode - nodes have
[Bil05] single node label only
Diff /TS by Hashimoto | insertyartial @ deletenode MOVepartial NOdes have
and Mori [HMOS] single node label only
RTED by Pawlik msertyode deletepoge - nodes have
and Augsten [PA1I] label only
GumTree by Falleri 1MnSsertyode deleteoge MOVEee value only
et al. [FMBT14] on leaves
Definitions (insertyode,) deletenode, MOVEyee, update
we desire insertiee, deletesee, MOVEpartial

insertpartial deletepartial

Table 3.2: Comparison of Definitions of Common Tree Operations Throughout the
Literature: A dash (-) indicates that an operation is not considered in the corre-
sponding work. If the literature’s definitions match ours or are weaker, we describe
them with our definitions.

3.3.3 Semantic Lifting of Abstract Syntax Tree Edit Scripts

The edit operations used in the literature are very fine-grained and designed accord-
ing to the internal software representation as ASTs. However, developers work with
and are accustomed to external representations, such as text or models. Thereby,
the conceptual edits they make follow a certain intent and thus are usually more
coarse-grained as discussed in the previous sections. Hence, edit scripts recovered by
existing tree or model diffing tools rarely present changes in an understandable or
intuitve way. Instead, semantic edits are decomposed to numerous low-level changes.

Detecting coarse-grained conceptual edits in low-level edit scripts was first addressed
by Kehrer et al. and referred to as semantic lifting [KKT11]. [Figure 3.7 shows
how state-of-the-art edit script detection algorithms are extended by the semantic
lifting post-processing. After an edit script of low-level tree operations is computed,
semantic lifting identifies user-level edit operations developers are able to use in that
edit script.

Semantically lifting an edit script means to partition an edit script into disjoint sub-
sets of low-level edits implementing a larger semantic edit operation. Such subsets
are referred to as semantic change sets [KKT11]. Semantic change sets have to be
disjoint as each low-level tree edit results from exactly one user-level operation on
the source code.

https://doi.org/10.24355/dbbs.084-202002271120-0

34 3. Semantic Edits on Abstract Syntax Trees

Corres- Low-Level User-Level

ondences Edit Script i Edit Script
Matching P Differencing P SE?EEZC P

Figure 3.7: Abstract Syntax Tree Differencing Pipeline With Semantic Lift-
ing [KKTT11]: By extending the state-of-the-art pipeline for edit script recovery
with semantic lifting, low-level changes are grouped to operations users work with.

Definition 3.11 (Semantic Change Sets). For an edit script & = (ey,...,e,) a

sequence S = (S1,...,8m), m < n with s; C {e1,...,e,}, i € {1,...,m} is a
sequence of semantic change sets, if and only if s;Ns; =0 foralll <i<j<m
and Uieqr. my 8i = {€1,.. .. ex}. The edils contained in a semantic change set are

ordered implicitly by their indez.

Kehrer et al. match pre-defined patterns against edit scripts to identify semantic
change sets [KKTII]. First, a pattern that is to be recognised in the edit script is
defined. Afterwards, according to the patterns, the low-level changes are grouped
to semantic change sets. An operation handling exactly those two steps for a single
specified semantic edit, is referred to as a change set recognition rule.

Existing work on semantic lifting is focused on model-driven software develop-
ment [KKT11], [KKOS12, bKLW12] or even business process modelling [NMLTO08].
In model-driven software development, models (usually represented as UML class
diagrams), are primary development artefacts. These models exhibit a graph struc-
ture, wherefore they can be interpreted as abstract syntax graphs similar to ASTs
for source code. As abstract syntax graphs are a more general concept than ASTs,
concepts from semantic lifting on them could be reused. In the model-driven soft-
ware development context, semantic change set rules are derived automatically from
their corresponding graph transformation rule being available to the user in their
model representation, e.g., a graphical editor.

To our knowledge, no work exists on semantic lifting of AST edit scripts. Thus,
semantic change set rules for ASTs have to be identified yet. Rules from the model-
driven software development context cannot be reused because change set rule spec-
ification strongly depends on the underlying data, e.g., model or AST. Hence, we
derived an initial subset on edit operations that we consider semantically reasonable
in the last section. However, those operations cannot be translated automatically
to semantic change set rules as for model editing.

Definition 3.12 (Semantic Edit Scripts). An edit script & is considered semantic
edit script, if and only if it at least contains a single semantic edit.

Further challenges for semantic lifting are the potential arbitrary order of commu-
tative edits as well as incompleteness of edit scripts. For instance, a deletion and an
insertion forming a move could be separated from each other by an arbitrary amount
of other independent intermediate edits in-between them in the edit script to lift.
Thus, semantic lifting has to detect the commutativity of certain edits. The same
scenario can be used to explain the problem of incomplete edit scripts. Removing a

https://doi.org/10.24355/dbbs.084-202002271120-0

3.4. Summary 35

function from the code base is considered a deletion upon tree diffing and semantic
lifting. If however the function is reinserted again after change analysis, neither tree
diffing nor semantic lifting are able to detect that operation as a move but only
as an insertion because the function’s deletion was already handled during the last
diffing. Thus, a mechanism for consistent backwards-compatible semantic lifting is
necessary. A possible approach could be the retrospective consideration of the entire
history of changes. Semantic lifting on ASTs exceeds the scope of this thesis. We

elaborate further on it in [Chapter 9|

3.4 Summary

In this chapter, we introduced semantic edits on ASTs. First, we identified ASTs as
reasonable feature mapping targets to implement disciplined annotations [KATT09).
To conform to the intentions of developers on edits more accurately, we introduced
semantic edits. We explained why existing work on tree differencing itself is insuffi-
cient for semantic change detection. Semantic lifting could detect semantic changes
in low-level tree diffs produced by existing algorithms.

Our insights are relevant for user-oriented tree differencing and thereby software
(product-line) development in general as our assumptions on clone-and-own, intro-
duced in [Section 3.1} are reasonable and universal enough. First, we assume clones
to originate from each other, i.e., that they have commonalities and deliberately
introduced differences. Second, developers agree on a common domain of features
they target to implement. Third, it is known which features are implemented in
which variant. It is not necessary that this knowledge is given by a single developer.
Fourth, during development, developers typically know which feature or feature in-
teraction they are currently working on.

To support feature interactions, we use propositional formulas for feature mappings
instead of sole features. As opposed to line-based feature mappings, ASTs allows
reasoning on an syntactic structure of artefacts. This bears several advantages but
mainly preserving syntactic validity upon feature composition, also known as disci-
plined annotations [KAT™09]. We ensure syntactic validity by propagating feature
mappings of AST nodes to all descendants in the hierarchy depending on certain
properties of that node. Therefore, we formally summarised existing AST-based
feature mappings by Késtner et al. [KAKOS].

For our later feature mapping derivation upon edits of implementation artefacts,
we investigated how changes in source code affect the AST. Thereby, we synthe-
sised semantic edits, eight edit operations on ASTs that coincide with semantically
reasonable edits in the textual representation of software artefacts. We classify our
eight semantic edits as either insertion, deletion, move, or update for our following
feature mapping derivation.

We have shown that existing work on tree differencing does not consider semantic
edits yet but instead computes edit scripts of low-level technical operations on trees.
We elaborated how a technique known as semantic lifting, first used in model-driven
software development [KKTT11], can be partially reused for semantic diffing on trees
in general. As developing semantic lifting is out of scope of this thesis, we will work

in this topic in the future as stated in

https://doi.org/10.24355/dbbs.084-202002271120-0

36 3. Semantic Edits on Abstract Syntax Trees

In the next chapter, we show how feature mappings can be derived upon tree edit
operations. For each type of edit (i.e., insertion, deletion, move, and update) we
individually develop a function, deriving the mappings of an edited AST from its
existing mappings and developer’s domain knowledge.

https://doi.org/10.24355/dbbs.084-202002271120-0

4. Semi-Automated Feature
Mapping Recording Upon
Semantic Edits

In this chapter, we introduce our approach for recording feature mappings during
software development in a semi-automated fashion. Therefore, we use the abstract
representation of implementation artefacts introduced in the last chapter to obtain
knowledge on their hierarchical structure. By incorporating the developer’s domain
knowledge on edited features, we derive the feature mapping of an artefact’s new
version upon semantic edits. Thereby, we distinguish between the intuitive high-
level changes insertion, deletion, move, and update to comply developers’ intentions
in a reasonable way.

During software development, i.e., when editing any kind of software artefact, de-
velopers specify on which feature(s) they are working on as a propositional formula
called the feature context. All artefact changes should belong to the currently active
feature context. We investigate how to deal with changes to already mapped arte-
facts under a given feature context. Depending on the type of change, e.g., insertions
or deletions, developers could express different intentions with their feature context
and even children in the implementation hierarchy could be influenced.

In [Section 4.1 we formally introduce feature context, feature mappings, and our
algorithm for feature mapping derivation from semantic edit scripts on ASTs. After
illustrating general constraints on feature mappings, we deduce our semi-automatic
derivation of feature mappings during software development, especially taking care
of changes to already mapped artefacts. In [Section 4.2 we show how to involve
the global feature model for derivation and simplification of feature mappings. In
[Section 4.3] we give an outlook how other variants can be incorporated for obtaining
knowledge on feature mapping derivation. We present two artificial exploits in
that allow mapping features arbitrarily from a single source variant only and
may prove useful in the future. Finally, we summarise this chapter in [Section 4.5

https://doi.org/10.24355/dbbs.084-202002271120-0

38 4. Semi-Automated Feature Mapping Recording Upon Semantic Edits

4.1 Deriving Feature Mappings For Semantic Ed-
its

Depending on the software development approach and the chosen representation of

feature mappings, they can be specified at different points in time. For product-

line engineering, features are explicitly or implicitly mapped to software artefacts

right from the beginning of software development. In approaches, where features are

identified later as first-class artefacts to develop, such mappings have to be recovered
retroactively in a development-freezing migration phase.

We support ongoing software development of clone-and-own systems up to software
product lines as developers can specify feature mappings during their usual program-
ming activity. Opposed to other approaches, such as Ecco [LLHEL7, [FLLHE15] and
VTS [SBWW16], software artefacts are mapped to features or their interactions di-
rectly while editing them instead when committing changes to variation or version
control systems. Thereby, we enable flexibly changing the feature context during de-
velopment in contrast to the transaction based VT'S and ECCO. To specify a feature
context, edits have to be made in an IDE. However, we still support development
outside of an IDE when no feature context has to be specified while preserving
and incorporating existing feature mappings. Thus, we do not alter developer’s
accustomed versioning workflow but enhance text editing by optional feature map-
ping specification possibilities that are comparably laborious to writing preprocessor
mMacros.

In the following, we first introduce our algorithm for semi-automated feature map-
ping derivation during software development. Second, we depict general constraints
that apply to all feature mappings. Third, we discuss why the absence feature map-
pings or the feature context is an issue and how it can be interpreted. Afterwards,
we introduce our typed functions for deriving feature mappings upon edits: Finsert,
F deletes ¥ update; and F ove. We present each edit operation in its own section in
which we also clarify which variants need to be synchronised and how.

4.1.1 Feature Mapping Derivation Algorithm

To incorporate the domain knowledge of developers during editing, we introduce the
feature context, a propositional formula over the set of features. Developers depict
the feature or feature interaction they are currently working on by specifying the
corresponding feature context explicitly. We can use the feature context to derive
the mapping of the currently edited artefact, as we represent feature mappings as
propositional formulas, too. To derive the feature mapping from one artefact’s
version to another, each edit is associated to a feature context:

Definition 4.1 (Feature Context). For an edit script & = (eq, ..., e,), let FC(e;) €
B(F) U {null} denote the feature context over features F assigned to each semantic
edit e; with i € {1,...,n}.

To edits outside of an IDE and to not enforce domain knowledge specification (e.g.,
when it is not present), the feature context is deliberately allowed to be unspecified
(i.e., set to null).

https://doi.org/10.24355/dbbs.084-202002271120-0

4.1. Deriving Feature Mappings For Semantic Edits 39

To make use of feature mappings for targeted synchronisation between variants, each
variant is identified by the set of features it implements, its configuration:

Definition 4.2 (Variants). Let V C P(A) denote the software variants of a clone-
and-own project, where P denotes the power set as defined in [Section 2.3

Definition 4.3 (Configurations). Let C : V +— P(F) be the configuration, i.e., the
set of chosen features, of a given variant.

Correspondingly, F'\ C(V) contains all features that are deselected in variant V.
Thus, configurations of variants are not partial, i.e., the selection state of all features
is known and given by their in- or exclusion in / from the configuration.

As explained in the previous chapter, we assign features to nodes of ASTs. To
guarantee disciplined annotations, i.e., syntactical correctness upon arbitrary feature
composition and removal, only syntactically optional nodes, defined in[Definition 3.1],
can be mapped to features. We refer to such nodes as feature mapping fit denoted
by the predicate Fit introduced in [Definition 3.8 To be able to express feature
interactions, we allow any propositional formula for feature mappings. As artefacts
can be unmapped, especially at the beginning of development, we also allow the
absence of a mapping, represented by the value null, as a possible value:

Definition 4.4 (Feature Mapping). For a set of features F, let F : h— B(F) U
{null} be the feature mapping of an AST node. Only nodes that are feature mapping
fit can be assigned a feature mapping, i.e., = Fit(a) = F(a) = null.

For each implementation artefact a € A, its mapping is given by its corresponding
AST node. For practical reasons, the domain of function F should be restricted to
the artefacts present in the variants V.

To model hierarchical dependencies between implementation artefacts, such as con-
tainment of method definitions inside a class, AST nodes propagate their feature
mapping if they have one. Thus, any hierarchically mandatory node (see
on Page propagates its mapping as it is a mandatory element in the
hierarchy for its descendants. This gives us the actual presence condition of an
artefact:

Definition 4.5 (Propagated Feature Mapping). For an AST T and set of features
F,let F*:h — B(F)U{null} be the presence condition of an AST node, i.e., the
mapping that is propagated to it by its ancestors.

Formally, F*(a) = F(a) A F*(parenty(a)) with F*(root(T)) = F(root(T)) and
F*(e) == F(g) = true (cf. [Definition 4.5 on Page[39).

As defined in [Section 2.3 the propositional value null is treated as the neutral
element in operations. Thus, if a node a does not have a mapping (i.e., F(a) =
null), it neither invalidates nor contributes to its presence condition because F(a) A
F*(parentp(a)) = null N F*(parenty(a)) = F*(parentp(a)). For the same reason,
a node mapped to null null also does not influence the presence conditions of its
descendants.

https://doi.org/10.24355/dbbs.084-202002271120-0

40 4. Semi-Automated Feature Mapping Recording Upon Semantic Edits

When editing an unmapped artefact under a specific feature context ¢, one would
expect that artefact to be mapped to ¢ afterwards. However, a distinction between
the kind of change performed has to be made because a deletion under ¢ likely
indicates that this deletion should be performed in all variants satisfying . Thus,
the deleted artefact is not part of those variants anymore and has to be mapped to
= as it can only be present in variants not satisfying ¢ afterwards.

Our approach for semi-automatic feature mapping derivation takes the old and new
version of an implementation artefact a,g, @new € A together with the feature
mapping F effective before the edit and feature context FC specified by the user to
compute the new mapping F':

L%$<aold>anewa-/T--wF'C) :-F/' (41)

Our feature mapping derivation is defined in [Algorithm 4.1l In the beginning, it
parses both artefact versions a,y and a,e, to ASTs to compute an initial edit script
& in Line |3 transforming the 7,4 to T,.,. Next, we derive a semantic edit script
& by lifting & to user-level edits. In the fifth step, we lift the raw feature contexts
FC specified by the developer during changing a,q to ape, to the semantic edits.
Therefore, we have to find a way for sophisticated feature context recording such
that feature contexts can be mapped to semantic edits in a reasonable way. We
investigate on function lift in [Chapter 5 It is important to consider that the feature
context FC(é;) of a semantic edit é; can be undefined, i.e., FC(¢é;) = null. Beginning
with Line [§ we iteratively deduce the new mapping for each single semantic edit.
By applying ¢é; to the tree T;_; in Line @, we obtain the next tree é;(T;_1) = T;
such that in the end T,, is equal to the AST T,,., of the new artefact a,.,. With
four dedicated derivation functions .#; each edit is handled corresponding to its
type t € {insert, delete, update, move}. Each derivation function % iysert, 7 delete,
F update; and F pove takes

e the AST T;_; before the edit,

e the AST T; after the edit,

e edited AST nodes A C T;_1UT;,

e old feature mapping F' defined on Tj_;,

e and feature context FC(é;)

to derive the next feature mapping for 7;. Here, the semantic edit ¢é; itself needs not
to be considered in detail anymore as we handled its type by choosing a specialised
derivation function .%; and collecting the involved nodes in the set A. The set of
involved nodes A depending on the edit type is constructed as follows:

Insertion A := T;\ T;,_; contains exactly the nodes inserted to the tree of which
none was present before the edit.

Deletion A =T, ;\ T; contains exactly the nodes removed from the tree of which
none is present after the edit, i.e., in the new tree.

https://doi.org/10.24355/dbbs.084-202002271120-0

4.1. Deriving Feature Mappings For Semantic Edits 41

Algorithm 4.1 Feature Mapping Derivation .#

Input: @y, Gnew € A; old feature mapping F; feature context FC
Output: F/

Tog < parseAST (apq)

Thew < parseAST (apew)

& <« computeEditScript(Toa, Thew)

&= (€1,...,6€,) < semanticLifting(T 4, &)

~

FC « lift(FC, &)

To < Toa
F «F
forie{l,...,n} do
T; < é(Ti-1)
10: A < AST nodes involved in ¢;
11: t < type of €; € {insert, delete, update, move}
122 F + FUT,1,T;, A, F',FC(E))
13: end for

14: assert 1T, = T},

15: return F’

Update A contains all nodes whose type or value has changed.

Move To conform to any move operation, A contains the nodes of the partial ASTs
that got moved.

Due to the feature mapping propagation throughout the AST, feature mappings are
adjusted for syntactical correctness implicitly, for instance when moving a method
to another class. Therefore, our edit operations do not have to decompose existent
mappings to reassemble them because hierarchical inclusion is guaranteed automati-
cally. This is possible because the actual presence condition F*(a) is decoupled from
the feature mappings F(a) of single nodes a. Thus, each edit operation can focus
on deriving knowledge of mappings of single artefacts by incorporating the feature
context.

Our algorithm is independent from concrete tree differencing algorithms and seman-
tic lifting implementations, used in Line [3land [4 It only relies on the classification
of edits as either insertion, deletion, update, or move, and on the involved nodes A.
Nevertheless, even tree differencing algorithms not supporting certain edit opera-
tions (e.g., RTED that does not consider moves as summarised in [Table 3.2)), can be
used with condoning a loss in accuracy. Thus, our algorithm can reuse any existing
tree differencing algorithm for low-level edit scripts. Semantic lifting is optional as
it only refines the edit script.

https://doi.org/10.24355/dbbs.084-202002271120-0

42 4. Semi-Automated Feature Mapping Recording Upon Semantic Edits

4.1.2 Constraints on Feature Mappings

Independently of how feature mappings are specified or (semi-) automatically de-
rived, some constraints apply to all of them. These prevent malformed or contradict-
ing feature mappings leading to defective variants or inconsistent behaviour, e.g.,
bugs. Thus, for any feature mapping and feature context over a set of features, the
following constraints have to be met:

Intra Variant Compliance — Each variant V' is identified by its configuration
C(V) that describes which features are implemented in V' and which are not.
Thus, if an artefact is present in a variant it belongs to features selected in that
variant’s configuration[l] Therefore, the configurations C(V) of all variants
V' containing a (i.e., a € V) have to satisfy its presence condition F*(a).
Otherwise, a could not be part of those variants:

=W eV.VaeV. SAT(F (@A N\ A N\ -
JEC(V) fER\C(V)

As we identify assignments to propositional formulas as sets of variables (as
defined in , configurations themselves can also be seen as assign-
ments of features. In that sense, they assign each feature f the value true
or false depending on its presence in said configuration, i.e., f € C(V) for a
variant V. Thus, F*(a) has to evaluate to true under the assignment C(V)
and no real satisfiability checks are necessary. We write:

= VYV eV.Vae V. eval(C(V), F*(a)). (4.2)

Furthermore, feature mappings should comply the global feature model. Per
assumption, configurations of variants are already created according to the
global feature model as stated in [Section 3.1 All feature mappings satisfied by
a variant’s configuration thereby are implicitly conforming the feature model.

Inter Variant Compliance — Our goal is the incremental synchronisation between
variants. During clone-and-own development, variants deliberately must not
be synchronised at all. Hence, we do only (and we can only) enforce variant
synchronisation for already mapped artefacts. Thus, for each artefact a € A
having a feature mapping (i.e. F*(a) # null) the variants satisfying its map-
ping also contain a:

Vae A. F*(a) # null = (VW € V. eval(C(V),F*(a)) = a€V). (4.3)

Thus, our constraint enforces a consistent implementation of features across
variants step by step.

Both constraints are required for consistent and valid feature mappings across vari-
ants. Which variants need to be synchronised depends on the type of edit and our
newly derived feature mapping. If an artefact is assigned a new feature mapping,
it should be contained in all variants satisfying this new mapping. Vice versa, it

ITechnically, an artefact can also belong to an unselected feature if its mapping is negative.

https://doi.org/10.24355/dbbs.084-202002271120-0

4.1. Deriving Feature Mappings For Semantic Edits 43

should not be contained in variants anymore satisfying the old mapping but not the
new one. Thus, if a variant satisfied the old mapping but not the new mapping, the
corresponding artefact needs to be deleted from it.

For each type of edit we cover in detail which variants need to be synchronised and
how. Therefore, we do not have to consider intra and inter variant compliance for our
following derivation of feature mapping as both constraints are resolved during the
subsequent synchronisation step. Nevertheless, as feature mappings identify target
variants to synchronise we derive new feature mappings such that they conform to
both constraints in a reasonable and meaningful way.

4.1.3 Interpretation of Absent Feature Mappings

As we notably support ongoing development on previously unmanaged clone-and-
own software, artefacts can be unmapped. Such null-mappings represent the ab-
sence of a feature mapping and contain no information. Unmapped artefacts can
be present in any variant and initially, all artefacts are unmapped. We denote the
null-mapping with null as usual in programming languages.

It is important to consider, how such absent or null-mappings should be interpreted.
We identified two possible interpretations for an empty feature context FC(e) = null
for an edit e: don’t know and don’t care.

The don’t know interpretation conforms the case of developers not knowing on which
feature they are working on. In [Section 3.1, we assumed that developers typically
know on which feature they are working. As a fallback however, we support the
rarer case of developers not knowing the feature they are working on. For instance,
if developers have to change roles such that they have to work on source code they
do not know, they might not be able to specify the feature context. If we interpret
the absence of a feature context as don’t know, derived mappings of edited artefacts
become uncertain because we do not know how the edit affects existing mappings.
This could even require to erase (i.e., set to null) existing mappings when mapped
artefacts are edited because we do not know if the edited artefact still belongs to its
former feature.

In contrast, the don’t care interpretation states that developers do not care to which
feature the currently edited artefact belongs to. Again, developers do not provide
any domain knowledge but ensure to not invalidate existing mappings. For instance,
developers could omit the feature context when an artefact is already mapped, i.e.,
the feature context would be the same as the mapping of the edited artefact. Thus,
we can and have to use existing mappings for feature mapping derivation.

We stick to the don’t care interpretation as our main goal is the successive syn-
chronisation between variants. By keeping existing mappings as is, we avoid the
introduction of uncertainties and inconsistencies opposed to the don’t know inter-
pretation which may erase existent mappings in the edited variant due to uncertainty
on edits. Even if developers do not know on which feature they are working on, ex-
isting mappings may still remain valid as other developers specified them so earlier.

https://doi.org/10.24355/dbbs.084-202002271120-0

44 4. Semi-Automated Feature Mapping Recording Upon Semantic Edits

4.1.4 Deriving Feature Mappings Upon Insertions

In this section, we formally define our feature mapping derivation function % 4 for
artefact insertions. Therefore, we consider the feature context o, old AST T;_, new
AST T;, and the set of inserted nodes A, as defined in [Section 4.1] For our derivation
of feature mappings it is not important how exactly elements got inserted, as long
as edits were considered as an insertion during the semantic lifting phase depicted in
[Chapter 3 However, we make one assumption for insertions: Whenever the parent
of an already existing node changes, that parent is one of the inserted nodes and the
previous parent is still an ancestor:

VaeTi_y: parenty (a)# parenty (a)
= parenty,(a) € AN a € childy, (parenty, (a)). (4.4)

In particular, this means that existing nodes cannot be relocated arbitrarily upon
insertions but only below new nodes. This constraints also covers changes to the
root of a tree. If a node a € T;_; was the root but is no more (i.e., root(T;_;) = a #
root(T;)), then its new parent has to be one of the new nodes. As desired, the other
case of a € T;_; becoming the root (i.e., root(T;_1) # a = root(T};)), is implicitly
prohibited because its new parent would have to be an inserted node but a does not
have a parent.

First, we have to warrant inserted artefacts to be mapped such that their pres-
ence in the edited variant is ensured. Otherwise, the new mapping could violate
the configuration of the edited variant. This could even result in the necessity to
remove the currently edited artefact although it was just inserted (or affected by
the insertion of another artefact). Considering the feature context ¢ describing
the feature or feature interaction developers are working on, the inserted artefact
should be present in all variants satisfying . In particular, the currently edit vari-
ant satisfies ¢ as we assumed in [Section 4.1.2] Therefore, the new feature mapping
Finsert (Ti—1, Tiy A, F,¢)(a) of a newly inserted artefact a € A should be satisfied in
all variants in which the feature context ¢ is satisfied:

Va € Ao E Finsert(Tio1, Tis A, F0)(a). (4.5)

We refer to this constraint as no guesses as it preserves a reasonable behaviour
by disallowing arbitrarily strong or unrelated feature mappings, such as the trivial
mapping false. Thereby, no guesses ensures the feature mapping being satisfied in a
variant whenever the feature context is. Note that we still allow the actual presence
condition Fiygert(Ti—1, T3, A, F,¢)*(a) to be different, i.e., there may be variants
satisfying o but not the actual presence condition Fipsert(Ti—1, T3, A, F, ¢)*(a) of an
inserted artefact a € A. In that case, a is actually part of a feature interaction which
is only partially described partially by .

Second, we need to ensure the incorporation of the feature context reflecting the de-
veloper’s domain knowledge. Whenever the presence condition of a newly inserted
artefact is satisfied by a variant’s configuration, the feature context should also be
satisfied. Otherwise, there may be configurations for which the presence condition
is satisfied but not the feature context. Then, variants could be identified as syn-
chronisation targets that are incompatible to the specified feature context. Hence,

https://doi.org/10.24355/dbbs.084-202002271120-0

4.1. Deriving Feature Mappings For Semantic Edits 45

the presence condition Fiysers(Ti-1, T3, A, F, p)*(a) of the new artefacts A should be
as least as strong as the feature context:

Va € A. Finsers(Ti—1, T3, A, Fo0) (a) E . (4.6)

We refer to this constraint as intention insurance as it ensures the incorporation
of the developers intention expressed by the feature context. It disallows arbitrar-
ily weak feature mappings, such as the trivial mapping true, saying an artefact
is part of every variant, when a feature context is specified. Note that we rea-
son about the actual presence condition Ziygert(Ti-1, T3, A, F,@)* rather than just
Finsers(Ti—1, Ti, A, F,) to not enforce unnecessary redundancies when already its
hierarchically mandatory parent nodes satisty intention insurance.

Third, we have to ensure feature mappings of existing artefacts to remain con-
stant. As insert operations may change the structure of existing nodes, such as the
insertyaial €dit operation (introduced in does, even old nodes may
be affected by insertions. Typically, such changes cannot affect the presence condi-
tion of an existing artefact because therefore an hierarchically mandatory ancestor
would have to be removed or added. Removing an hierarchically mandatory parent
would invalidate an AST, and adding one would mean that the AST was invalid
before. However, they may be special cases where an hierarchically mandatory can
be added. For instance, a field of a class could be enclosed by a method and turned
into a local Variableﬂ Another example would be syntactic dependencies that can
only be detected with dependency analyses on the AST. For instance, in some pro-
gramming languages, variables can be defined inside expressions of conditions or
loops and be used inside that scopes (e.g., if (bool b = ...) { print(b); }).
Such a scope may has to propagate its mapping to its children, although those were
independent of that scope before. We will investigate further classification of AST
nodes in the future and discuss it again in For now, as we do not want
to exclude such cases straight away, we allow the feature context to augment the
presence conditions of existing artefacts:

IZ Ya S ﬂ_l. f(a) - yinsert(ﬂ—lajjiu A,f, 80)((1) (47)
VAN (.F*((l> Ny = ymsert(ﬂ_l,ﬂ,A,F, ¢)*(a>)
N Finsert(Tim1, T, A, F 0)" (@) = F'(a)).

We refer to this constraint as inviolacy of the living as it ensures feature mappings of
existing artefacts to remain unchanged and their presence conditions to be changed
only by augmenting them with the feature context at most. Sontag et al. already
empirically identified that for two formulas X,Y € B, the constraints X AY |=
F and F' = Y to shrink the space of possible solutions for F' € B to just two
formulas [Sonl8]. When considering all 16 possible boolean combinations (e.g., A,
V, @) of X and Y, the constraints restrict those to only FF =Y and FF = X A Y.
Every other combination, such as X & Y or X V Y, violate at least one of the
constraints. Applying X AY | F to all 16 possible combinations eliminates half
of those such that eight possible combinations remain [Sonl8, p. 27]. Applying

2This may require additional type changes of the nodes (e.g., from Field to LocalVariable)
but that depends on the target languages grammar.

https://doi.org/10.24355/dbbs.084-202002271120-0

46 4. Semi-Automated Feature Mapping Recording Upon Semantic Edits

F' = B to the remaining combinations restricts those to only the two formulas Y
and X AY [Sonl8, p. 27]. By substituting X = ¢ and Y = F*(a) for an artefact
a € T;_1, we obtain only two possible values for Z,gert (Ti-1, T3, A, F, ¢)*(a), namely
F*(a) and F*(a) A ¢ as desired.

By combining no guesses (Constraint and intention insurance (Constraint ,
we see that assigning the feature context ¢ satisfies both constraints. However,
to avoid redundancies in the first place, we can just assign the mapping true to
an inserted node, if it has a propagating (i.e., hierarchically mandatory) parent
satisfying intention insurance already. Furthermore, as existing nodes should not
be affected by the insertion, their mapping should not change:

true, F*(parenty,(a)) = ¢, a € A,
Finsent(Tio1, T, A, Fo0)(a) = < o, Fr(parenty,(a)) = o, a € A, (4.8)
Fl(a), else.

In the following, we will show that feature mappings derived with % ,e satisfy our
constraints no guesses, intention insurance, and inviolacy of the living.

Theorem 4.1. Feature mappings derived upon insertions with Finsert Satisfy both,
no guesses and intention insurance.

Proof. As both constraints apply to newly inserted nodes only, let a € A be an
arbitrary but fixed node inserted to the tree. By definition, there are two possible
values for a derived by Fisert(Tio1, T;, A, F, ©):

1. If .F*(th (a)) E ¢, the node a will be mapped to true. As ¢ = true is a
tautology for any feature context ¢, no guesses is satisfied. Furthermore,

Finsert(Ti—1, Ti, A, F, 0)*(a) = true A F*(parenty, (a))
— F*(parenty, (a))
.

Thus, intention insurance is satisfied.

2. If]-"*(th(&)) ¥~ ¢, the node a will be mapped to ¢. As ¢ = ¢ is a
tautology for any feature context ¢, no guesses is satisfied. Furthermore,

Finsert(Ti_1, Ty A, F,0)*(a) = o A F*(parenty (a))
= .

Thus, intention insurance is satisfied.

In all possible cases (1 and 2), both constraints are satisfied. As a € A was cho-
sen arbitrarily, both constraints are satisfied for all inserted nodes a € A. Thus
no guesses and intention insurance are satisfied for feature mappings derived with
cgsinsert- O

https://doi.org/10.24355/dbbs.084-202002271120-0

4.1. Deriving Feature Mappings For Semantic Edits 47

Theorem 4.2. Feature mappings derived upon insertions with Finsert Satisfy invi-
olacy of the living.

Proof. Let a € T;_; be an arbitrary but fixed node present before the insertion. By
definition:

Finsers(Ti—1, Ti, A, FL0)(a) = F(a). (referred to as (*))

Thus, the explicit mapping of a does not change. The presence condition of a may
or may not change:

1. cgzinsertcri—lajjiu"47-F.7 QO)*(CL> :.F*(CL)Z
Then

Fia) N = Finsert(Ti-1, T3, A, F,)" (a)
(é)]-"*(a) A = F*(a) (referred to as (**))
is a tautology. Further
F insert(Ti-1, T3, A, F, 0)"(a) = F*(a)
Y Fa) = F(a) (referred to as (%))

is also a tautology. By combining (*), (**), and (***), we see that inviolacy
of the living is satisfied.

2. yinsert(ﬂ—h(rzﬁAwra QO)*(CL) #‘F*(a)

The presence condition of a can be changed in four ways:

(i) The feature mapping of a changes, i.e., Fisert(Ti1,T5, A, F,p)(a) #
F(a). This is not the case because of (*).

(ii) The feature mapping of a propagating ancestor changes, i.e., there is at
least one node p € T;_; N T; with Propagates(p) = true, a € childy, (p),
and F(p) # Finsert(Ti-1, T3, A, F,)(p). By definition of F e, map-
pings do change only for nodes in A, i.e.,

f(p) 7é ﬁinsert(ﬂ—laj—;)Avf7 (,0)(]7) <:>p € A

This is a contradiction to p € T;_;. Hence, this case can also not occur.

(iii) One or more new propagating nodes P C T; \ T;_1, P # () became an-
cestors of a. Let ancestorsp(n) = {a € T | n € childy(a)} be the
ancestors of a node n in tree T. Because of Assumption [£.4] the pre-
vious parents of the children of the nodes P are still ancestors of those
children and thereby ancestors of a. Hence, we know that all ances-
tors of a in the old tree T;_; are still present in the new tree T;, i.e.
ancestorsy,(a) = ancestorst_, (a) U P. Therefore,

Finsert(Ti—1, T, A, FL0)"(a) = Fr(a) A N\ Fp).

peP

https://doi.org/10.24355/dbbs.084-202002271120-0

48

4. Semi-Automated Feature Mapping Recording Upon Semantic Edits

By Assumption 4.4, P C A because all children of nodes P got their
parent changed as P C T; \ T;_1. Thus, Vp € P we know

tg&insert(ﬂ—l;jﬂiaAa ‘/__.a @)(p) = true
or ginsert(ﬂ—lyﬂaAa‘Fa @)(p> = Q.

And thereby,

ginsert(ﬂflaT%’Aufv QO)*(CL) = f*(a)
or yinsert(ﬂ—laﬂaAaJra QO)*(CL)]:*(Cl) /\(20

Both cases satisfy

f*(a) A\ 2 }: ﬁinsert(ﬂ—laﬂ7A7f7 90)*(0’)
and yinsert(ﬂflaﬂaAa‘Fa QO)*(G)):./T"*(CL)

Combined with (*), we see that inviolacy of the living is satisfied.

One or more propagating ancestors P C T;_; \ T; of a got removed. Let
p € P an arbitrary but fixed of those removed nodes and ¢ € T;_; be an
arbitrary but fixed child of p, i.e., parent;, (c) = p. As p is not present
in the new tree T; anymore and p = parent;, (c),

parenty, (c) # parentr, (c).

By Assumption [4.4] we know then

c € childy, (parenty, (c))
= c & childy,(p).
This, however, is a contradiction to p € P because P C T;_; \ T; and

thereby p ¢ T;. As p and ¢ were chosen arbitrarily, there cannot be
propagating ancestors of a being removed.

As the new presence condition Zjyert(Ti—1, T;, A, F, ©)*(a) of a satisfies invi-
olacy of the living for all possible cases (i.e., for , F insert Satisfies inviolacy
of the living when Finsert(Ti-1, Ti, A, F,)" (a) # F(a).

As F insers satisfies inviolacy of the living for an arbitrarily but fixed chosen a € T;

in both cases (|1} and , it satisfies inviolacy of the living. O

We now can derive feature mappings upon insertion of artefacts. We proved that our
derivation %t behaves as desired: It incorporates the feature context, such that
variants are identified as synchronisation targets in a reasonable way, and it does
not infer unrelated features to presence conditions. Moreover, the feature mappings
of already existing nodes do not change and their presence conditions can only be
augmented by the feature context (if a new ancestor is inserted).

https://doi.org/10.24355/dbbs.084-202002271120-0

4.1. Deriving Feature Mappings For Semantic Edits 49

4.1.5 Deriving Feature Mappings Upon Deletions

In our enhanced clone-and-own scenario, the deletion of an artefact a € A should be
propagated to all variants that are not supposed to contain a anymore. Therefore,
we have to derive a new feature mapping % gelete(Ti—1, 13, A, F, ¢)(a) identifying
those variants. Depending on the presence of a mapping F*(a) for a before the
deletion (i.e., F*(a) # null) and the presence of a feature context (i.e., ¢ # null)
a new feature mapping can be derived with different meaning. Although removed
artefacts are not present in the resulting tree 7}, we still assign feature mappings to
them for change synchronisation and to introduce the mapping to variants in which
the artefact might not get deleted.

If deleted artefacts a € A do not have an explicit mapping (i.e., F(a) = null), they
could still have a presence condition F*(a). Depending on the feature context, re-
moving an unmapped method from a mapped class could mean that this method
has to be deleted from all variants containing that class. Hence, we always con-
sider the actual presence condition of artefacts for mapping derivation, to identify
synchronisation targets correctly.

Not only the old feature mapping of a deleted artefact but also the feature context
can be undefined. Thus, we distinguish between its absence ¢ = null and its presence

© # null.

Deletions Without Feature Context

As defined earlier, we stick to the don’t care interpretation for an empty feature
context. In that sense, if no feature context is specified, we propagate the deletion
of an artefact to all other variants containing it, i.e., satisfying its presence condition.

If both, the feature context is absent and the deleted artefact a € A does not have
a former mapping (i.e., F*(a) = null), the developer has not provided any domain
knowledge to us. Nevertheless, before the deletion, a was present in the edited
variant. Thus, its variant’s configuration had to be a satisfying assignment for its
unknown mapping F(a). Otherwise, a could not have been part of its variant V. So,
although we do not know F(a), we do know that its variant’s configuration satisfies
F(a). Contrary, a is not present in the current variant after the deletion. Therefore,
its new feature mapping is not allowed to be satisfied because a would be part of
that variant otherwise. Using the knowledge of configurations of variants this way,
could be used to find assignments for F(a) that either satisfy it or do not. These
assignments could be used to synthesise a partial mapping for a, even though no
domain knowledge was provided. We elaborate further on this in on
Page [63]

For now, we do not have any knowledge about the feature mapping of a as the
developer did not specify a feature context. Thus, when the existing mapping F*(a)
as well as the feature context ¢ are undefined, we do not derive any mapping:

F qetete(Ti—1, T, A, F, @) (a) = null, if o = null= F*(a). (4.9)

We could assign the complete negated current variant’s configuration as the new
feature mapping, but it would be too specific as it does not identify other possible

https://doi.org/10.24355/dbbs.084-202002271120-0

50 4. Semi-Automated Feature Mapping Recording Upon Semantic Edits

target variants. Besides its technical impracticality, we suspect such huge feature
mapping formulas to be unintuitive and counter-productive.

As we assume configurations of variants to be constant as stated in[Section 3.1}, entire
features themselves cannot be added to or removed from Variantsﬂ Thus, deleting
an artefact a € A cannot indicate the deletion of the entire feature F*(a) which
would result in a configuration change. Hence, if a € A has a presence condition
(i.e. F*(a) # null), removing a must mean that a does not belong to the feature
F*(a) anymore. So, its new presence condition 7 gelete(Ti-1, T3, A, F, p)*(a) cannot
be satisfied in variants containing a hitherto:

Va € A. F*(a) # null = (F*(a) = = Facete(Ti-1, 11, A, F, 0)*(a)). (4.10)

Thus, for any deleted node with a feature mapping, its mapping cannot stay the
same. We refer to this constraint as configuration sentinel as it ensures that con-
figurations are constant, i.e., deleting an artefact cannot indicate a configuration
change but a change in the implementation of a feature. If a gets reinserted, config-
uration sentinel must not hold, as a is present again in the current variant. However,
such an operation would be identified as a move operation during semantic lifting
instead of a deletion. Therefore, we assume configuration sentinel to be satisfied.

When a feature mapping is present, F*(a) # null, we assume that it is already
synchronised across variants because of our inter variant compliance constraint de-
scribed in on Page According to our configuration sentinel con-
straint, deleting the mapped artefact a means, that it does not belong to its former
feature mapping F*(a) anymore. To synchronise all existing implementations of
F*(a) across variants, a has to be deleted from all implementations of F*(a), i.e.
exactly from those variants whose configuration satisfies F*(a). Furthermore, as all
variants satisfying F*(a) also contain a, due to our inter variant compliance con-
straint again, the remaining variants not satisfying F*(a) do not contain a before
the edit. Certainly, these variants should contain a after the edit neither:

Va € A. F*(a) # null |= (ﬂ F(a) = =~ F getete(Ti-1, T3, A, F, @)*(a)). (4.11)

We refer to this constraint as no spawn because it ensures that deleted artefacts will
not be inserted into other variants if the developer did not specify so explicitly. In
that case, however, the developer would have specified a feature context.

By combining the constraints configuration sentinel (Constraint [4.10) and no spawn
(Constraint [4.11)) we obtain:

Va € A. F*(a) # null = = F qaete(Ti-1, Ti, A, F L 0)*(a). (4.12)

Thus, for any assignment, the new presence condition Z gejete(Ti-1, T3, 4, F, ¢)*(a)
has to evaluate to false. The only propositional formula that evaluates to false for
any assignment of variables is false itself. Hence, we define:

Faetete(Ti—1, i, A, F @) (a) = false, if o = null # F*(a). (4.13)

3Instead of changing a configuration, we would create a new variant with the new configuration.
This new variant however could then just be cloned from the initial variant whose configuration
should be changed.

https://doi.org/10.24355/dbbs.084-202002271120-0

4.1. Deriving Feature Mappings For Semantic Edits 51

#ifdef FANCY
fancycase ();

#else
generalcase () ; generalcase () ;
#endif
(a) Initial Version (b) Revised Version With Specialised

Handling for feature FANCY

Figure 4.1: Deletion of Unmapped Artefacts Under Feature Context FANCY in Soft-
ware Product-Line Engineering: The code on the left is changed to the right version.
We investigate how such a change would play out in clone-and-own development.

We can still identify the variants to which the deletion should be propagated. These
are exactly those variants Vi,4e € V containing a before the deletion, i.e., for
which eval(C(Vigrget), F(a)) = true but do not so afterwards, i.e., eval(C(Viarget),
F qetete(Ti-1, Ti, A, F,0)*(a)) = false, as no variant can.

Deletions With Feature Context

With the feature context ¢ developers specify the feature or feature interaction they
are currently working on. When they delete an artefact a € A, they indicate that a
does not belong to that feature context anymore. Then, a has to be deleted in any
variant satisfying ¢. Hence, a needs a presence condition that ensures its absence
in any variant satisfying :

Va € A. Zaeete(Tio1, Tiy A, Fo0) (a) |E . (4.14)

We refer to this constraint as intention insurance as for its counterpart for insertions
because it serves the same purpose of ensuring the incorporation of the feature
context.

As opposed to the already synchronised state described in the previous subsection,
here a should not be deleted in all variants but instead may deliberately be kept:

Example 4.1.1. Consider [Figure 4.1l It shows the introduction of new code and
feature mappings in a preprocessor-based product line. Thereby, the unmapped
code (a) on the left side is changed and annotated leading to the code fragment
(b) on the right side. In our clone-and-own scenario, introducing such a special
case in a variant containing the feature FANCY would require to first delete the
generalcase() call, and second to insert the statement fancycase () under feature
context FANCY. Important to notice is that the statement generalcase() is not
supposed to get deleted in all variants but instead only in those not containing
feature FANCY. Thereby, the original statement generalcase() gets a new mapping,
namely —FANCY, as shown by the #else branch in [Figure 4.15] This example also
shows the necessity of specifying the feature context FANCY not only before inserting
fancycase () but already upon deletion of generalcase(). (Detecting replacements

as such with missing feature contexts will be discussed in on Page[109])

https://doi.org/10.24355/dbbs.084-202002271120-0

52 4. Semi-Automated Feature Mapping Recording Upon Semantic Edits

#ifdef FANCY
fancycase ();

#ifdef ORDINARY #elif ORDINARY
generalcase (); generalcase () ;
#endif #endif
(a) Initial Version (b) Revised Version With Specialised

Handling for feature FANCY

Figure 4.2: Deletion of Mapped Artefacts Under Feature Context FANCY in Soft-
ware Product-Line Engineering: The code on the left is changed to the right version
and is similar to that shown in but this time the original code on the left
side already has a feature mapping.

Although Constraint does not enforce — ¢ as the direct mapping of the deleted
artefact a € A, [Example 4.1.1] frugally illustrates its reasonability. By incorporating
the presence of a in other variants and their satisfaction of =y, we could possibly
derive more knowledge on the actual mapping of a. We discuss on this possibility in
[Section 4.3] For now, if no original feature mapping is present for deleted artefacts
a € A, we assign the negated feature context to them:

ﬁdelete(T‘i—bT’ia Aw’rv 90)(60 =Ty, if 2 7& null =]:*<a) (415)

As for deletions without feature context, target variants for synchronisation are those
variants satisfying the old feature mapping but not the new one. If no old feature
mapping is present, these are exactly those variants V' satisfying the feature context
because

—eval(C(V), Z detete(Ti-1, T3, A, F, 0)"(a))
= —eval(C(V), Z getete(Ti-1, Tis A, F) (a) A F qetete(Ti-1, Tiy A, F, @)*(ﬁre\ntT(a))
= —eval(C(V), 7o A F*(mtT(a))
= =eval(C(V), 7 ¢ A null)
= —eval(C(V), = ¢)
= eval(C(V), o).

Finally, we consider the last possible case, namely the deletion of a mapped artefact
a € A with F*(a) # null under a given feature context ¢ # null. Therefore, we
consider our previous example again but with the original artefact being mapped:

Example 4.1.2. shows the same example as the previous but
this time, the original code has a feature mapping, namely to feature ORDINARY.

The example shows that deleting a mapped artefact a must not mean that its al-
ready existing mapping F(a) should be ignored. Instead, by introducing an #elif
statement, the original mapping is now enhanced to —=FANCY A ORDINARY. Notice
that if no new statement such as fancycase() is inserted, deleting a statement still
indicates it to not belong to the feature context.

https://doi.org/10.24355/dbbs.084-202002271120-0

4.1. Deriving Feature Mappings For Semantic Edits 53

The practical [Example 4.1.2| depicts that deletions under a feature context do not
have to imply the existing feature mapping F(a) to be negated or ignored. Thus,
enhancing a mapping by — ¢ does not imply the negation of F(a) as illustrated by
the example. Instead, we keep the existing mapping:

Faetete(Ti—1, Ti, A, Fo0)(a) == F(a) A =, if © # null # F*(a). (4.16)

Bringing it All Together

As all cases of presence and absence of initial feature mapping F*(a) and feature con-
text ¢ are covered, we merge the individual definitions given in Equations [£.9] [4.13],
and to our final function for feature mapping derivation upon deletions:

(null, © = null\NF*(a) = null,a € A,
false, © = null\NF*(a) # null,a € A,
F qetete(Ti-1, Ti, A, Fo) (a) = -, © # null\NF*(a) = null,a € A,
Fla) A=, ©# null\NF*(a) # null,a € A,
| F(a), a¢ A.
false, © = null\NF*(a) # null,a € A,
= Fla) A=, ¢ # nullV F*(a) = null,a € A,
Fl(a), a¢ A
(4.17)

If the feature context ¢ is the same as the deleted artefact’s mapping F(a), the
deleted artefact should be deleted in all variants implementing F(a) such as for ¢ =
null A F*(a) # null. This is indeed the case because .7 gejete(Ti-1, T3, A, F,) (a) =
Fla) AN =@ = p A= = false for ¢ = F(a) # null.

In the following, we prove that Z gelete (11, 13, A, F, ©) meets both constraints, con-
figuration sentinel (Constraint 4.10)) and no spawn (Constraint , when no fea-
ture context is specified. If a feature context is specified, both constraints do not

apply.

Theorem 4.3. Z qoiee(Ti-1, T3, A, F, p)* conforms to the constraints configuration
sentinel and no spawn for any feature context p # null.

Proof. Let ¢ = null. We prove the satisfaction of both constraints simultaneously
for an arbitrarily deleted artefact a € A. Therefore, it is sufficient to prove the
satisfaction of their conjunction given in Constraint

F(a) # null = = Z qeete(Ti-1, T3, A, F, 0)" (a).

https://doi.org/10.24355/dbbs.084-202002271120-0

54 4. Semi-Automated Feature Mapping Recording Upon Semantic Edits

Let F*(a) # null. As no feature context is specified, .7 gelete(Ti-1, T3, A, F,) (a) =

false by definition. Because of [Definition 4.5| its propagated mapping is defined as
follows:

ﬁdelete(iri—la T‘iv Aa f? 90)*<(1) = 32delete(T‘i—17 T’ia A7 F? (10) (a)
A ﬁdelete(iri—la Ea A,]:7 @)*(Wtﬂ(a))

= false
A <gsdelete(j—‘i—ly Ea Aa 'Fv @)*(mf’ﬂ (CL))
= false.

Thus, =% qetete(Ti-1, Ti, A, F, p)*(a) = — false = true. Thereby, Constraint is
satisfied. Hence, both, configuration sentinel and no spawn, are satisfied for any
previous feature mapping F*(a) # null when no feature context is specified. H

In the case of presence of a feature context, intention insurance (Constraint |4.14])
has to be satisfied:

Theorem 4.4. Z qe1ot0(Ti—1, T3, A, F,)* conforms to intention insurance for any
feature context p # null.

Proof. For any deleted artefact a € A and feature context ¢ # null, the derived
mapping is defined as F gerete(Ti-1, T3y A, F, ©)(a) = F(a) A = . Again, because of
Definition 4.5] its propagated mapping is defined as follows:

ydelete(nfhﬂ?A’-F? @)*(G) = ydelete(ﬂflyTia A F, go)(a)
A F qctere(Tim1, Tiy A, F, @) (parenty, (a))
=F(@) A=y
A F qatete(Tim1, Ti, A, F, o) (parenty, (a))
F e

Thus, intention insurance is satisfied for any deleted artefact a € A. m

We now can derive feature mappings upon deletions such that deletions of artefacts
can be synchronised between variants reasonably. Depending on the feature context
being specified, developers can either delete artefacts from the entire project or
just from a certain set of variants. If a feature context is specified, we proved
our derivation .7 geete t0 ensure deleted artefact to be removed from all variants
implementing the feature context.

4.1.6 Deriving Feature Mappings Upon Moves

Depending on the feature context ¢ and a former mapping F, we derive the new
mapping # nove- As for deletions, we consider each case emerging from the presence

of an old mapping F(a) = null respective the feature context ¢ ~ null.

Opposed to inserting or deleting, moving artefacts does not change the set of nodes
of an AST. Each moved artefact a € A is present in the currently edited variant

https://doi.org/10.24355/dbbs.084-202002271120-0

4.1. Deriving Feature Mappings For Semantic Edits 55

V € V before and after the edit. As also every other artefact is present in the
current variant before and after the edit, new feature mappings of all nodes must be
satisfied in the current variant V' € V:

E Va € T;. eval(C(V), F*(a)) A eval(C(V), Fmove(Ti—1, T3y A, F,)" (a)). (4.18)

To conform to developers’ intentions, our derived mapping should be predictable
and not produce surprising or confusing results. When developers do not specify a
feature context, we have no indication on their intention. We stick to the don’t care
interpretation for absent feature mappings because we do not want to introduce un-
certainties and thereby being counterproductive to our goal of synchronising variants
successively, as stated in on Page Thus, if a moved artefact has
an explicit mapping F(a) and no feature context is specified, we keep that mapping
which also satisfies Constraint .18}

Va € A. Fruove(Tio1, Ty A, FL @) (a) = Fla), if ¢ = null. (4.19)

Moving implementation artefacts to other scopes does not violate syntactic con-
straints because syntactical correctness of mappings is preserved by the AST feature
mapping propagation. For instance, the AST propagation automatically produces
the syntax preserving presence condition F; A F,, when moving a statement s with
F(s) = Fy from one method mypeing to another method Mmoo With F(meeer) = Fo.
Note that thereby also inherited mappings of the previous outer scope F(mporing)
are removed implicitly from the presence condition of s. Thus, presence conditions
are automatically adjusted by our AST propagation when extracting and relocating
artefacts.

Moves can not only be performed for single nodes but also for entire subtrees (e.g.,
as MOVeee OF MOVepartial 0, defined in on Page . The nodes in
a subtree may exhibit various different feature mappings. We have no evidence to
overwrite these mappings with the feature context ¢ as they may contain essential
interactions. Consider [Listing 4.1l Moving the method ThreadSleep should not
invalidate the mappings of usleep and Sleep, just as it would not in product-line
development. Removing the feature mappings PAX_0S_LINUXVPAX_0S_ANDROID and
PAX_0S_WIN would even destroy the syntactic validity of the program. Thus, only
the root node (i.e., ThreadSleep) should be augmented with the feature context (.
However, root nodes do not always have to be propagating nodes, i.e., Propagates(r)
could be false for a root node r € A. To ensure the subtree getting augmented by
the feature context, the feature context ¢ with ¢ # null has to be assigned to each
moved node a € A that

e has no moved ancestors that can propagate ¢ to a:

—dp € A. Propagates(p) A a € childy, (p), (4.20)

e and does not have a propagating ancestor already satisfying ¢ (as for F et):

F*(parenty, (a)) ¥~ . (4.21)

https://doi.org/10.24355/dbbs.084-202002271120-0

~N O UL W N

56 4. Semi-Automated Feature Mapping Recording Upon Semantic Edits

void ThreadSleep(unsigned int milliseconds) {

#if defined (PAX_OS_LINUX) || defined(PAX_OS_ANDROID)
usleep(milliseconds * 1000);

#elif defined(PAX_OS_WIN)
Sleep(milliseconds);

#endif

}

Listing 4.1: Feature Interactions in Preprocessor-Based Software Product Line

Furthermore, unmoved artefacts should not have their feature mapping changed
because these artefacts are not edited directly by the developer:

va S irz \ A Lgfmove(j—ji—la E> A7F> @)(a) = ./T"((l) (422)

This does not mean that their presence condition cannot change. As illustrated by
the extensively restructurings during moveparia, unmoved nodes may be relocated
below moved partial subtrees.

Combining Equation [4.19, Constraint [4.20] Constraint and Equation [4.22] we
obtain our feature mapping derivation upon moves:

Fla) Ny, ¢ F# nulla€ A,}—*(Mtn(a)) = o,
and —dp € A. Propagates(p)

or P
</move(zﬁz—ly,-z—‘u147~F'a 90)(0’) T Aa € Chlld}l(p),
Fl(a), else.

(4.23)
Notably, Z move(Ti—1, T3, A, F,) reasonably produces the same mapping when ¢ =

null or ¢ = F(a).

It is important to consider that while Constraint holds for the edited variant,
this must not be the case for other variants if new and old mapping differ. When
the mapping of a moved artefact changes, there may be variants in which the new
mapping is satisfied but the previous mapping was not. Then, the moved artefact
needs to be inserted into that variant. Formally, for a moved artefact a € A, consider
the following two sets:

Vins ={V €V | meval(C(V), F*(a)) A eval(C(V),
Vi ={V €V | eval(C(V),F*(a)) N —eval(C(V),

ymove(j—’i—la 7_;'7 Aa F? 90)*(@))}7
ﬁmove(ﬂ—la T%, A, F? QO)*(CL))}
For both sets of variants either the old or the new mapping is not satisfied. Thus,
there are variants in which a move cannot be reproduced as such. Instead, a has
to be inserted into the variants V;,, because its new feature mapping is satisfied by
their configurations but it is not contained in those variants so far. Contrary, the

variants Vg contain a indeed but do not satisfy the new feature mapping anymore.
Thus, a has to be deleted from them.

https://doi.org/10.24355/dbbs.084-202002271120-0

4.1. Deriving Feature Mappings For Semantic Edits 57

4.1.7 Deriving Feature Mappings Upon Updates

Our update allows an AST node to change its name or type. We consider type
changes to be rare as they are not considered in the literature as shown in
on Page [33] Usually, type changes are supported by a deletion followed by an
insertion, i.e., replacing an existing construct. This is because arbitrary type changes
require lots of additional fixes. For instance, the type MethodDeclaration of a node
cannot be changed suddenly to ClassDefinition without invalidating its children
(as they are syntactically mandatory). As many types require specific (syntactically
mandatory) child nodes (e.g., an expression and a block for conditions), changing
a type is usually impossible without invalidating the AST in general. However,
for specific types and languages type changes can be reasonable and preserve the
well-formedness of an AST. For example, changing an interface to an abstract
class in Java can be necessary when further functionality is needed. So, when a
type change occurs, it either invalidates the AST or it is performed after necessary
refactorings, such as removing non-declaration statements from a method that is
about to become a class definition. This ordering of changes does not need to be
preserved by developers but may be established during semantic lifting. Hence, we
support changing the type of nodes, when its child nodes are not invalidated, i.e., the
AST is well-formed afterwards. Otherwise, this edit is perhaps better represented
as a deletion followed by an insertion, i.e., replacing an existing construct. Thus, we
assume the structure of the AST to remain unchanged during updates.

Renaming an AST node, i.e., changing its value, can never lead to changes in the
AST as such a change is purely semantical. However, during edit script recovery
renamings have to be treated with care. Consider renaming a function call foo()
to bar (). We cannot know if the function foo was renamed or if the call to it was
replaced with a call to another function bar. The first case would be an update
edit, whereas the second should be identified as a deletion followed by an insertion.
Such semantic checks would need to be made explicitly. Here existing research on
variability mining [KEBAQ9, XXJ12, RC13, DRGP13, [AGA13, KGP13, [KDO14,
WKP15], using type checks and even ontological heuristics to resolve exactly such
dependencies among other things, can be beneficial. As the integration of such tools
is out of scope of this thesis, we recap on this idea in the future work chapter in

An advantage of considering updates explicitly is that existing feature mappings of
edited nodes can be considered, as opposed to replacements (i.e., a deletion followed
by an insertion). When a node a € A is updated, we have to ensure that this update
is synchronised to all variants in which the edited node a is present. However,
updating a node could only be desired for the feature described by the feature
context . With a special feature context, a subset of all variants containing a can
be identified to refine an implementation of F(a) for a specific feature interaction
incorporating . Thus, we propagate the update to all variants satisfying the feature
context and the previous presence condition of the node:

Va € A. F*(a) A ¢ = Fupdate(Tiz1, Ti, A, F,) (a). (4.24)

We refer to this constraint as legacy preservation because it ensures the new feature
mapping to incorporate the feature context and the previous feature mapping to

https://doi.org/10.24355/dbbs.084-202002271120-0

58 4. Semi-Automated Feature Mapping Recording Upon Semantic Edits

disallow arbitrary strong or unrelated feature mappings. This constraint still allows
the synchronisation of the update to all variants containing a when ¢ = F(a) or
¢ = true. Note that legacy preservation extends the constraint no guesses for
insertions with the existing feature mapping F(a).

Similar to insertions, the constraints intention insurance and inviolacy of the living
have to be preserved as we will explain in the following. Intention insurance states
that the feature context is satisfied in all variants that satisfy the presence condition
of an edited artefact. Otherwise, variants could be identified as synchronisation tar-
gets that are incompatible to the specified feature context. Therefore, also intention
msurance is required:

Va € A. F wpaate(Tiz1, Ti, A, FLo0) () = . (4.25)

Existing nodes should not be remapped if their type or name remains unchanged,
i.e., inviolacy of the living should be satisfied for all a € T; \ A analogous to inser-
tions. Such nodes can still be affected by feature mapping changes of their ancestors,
though (e.g., when the name of a class and its feature mapping are changed, methods
also inherit the changed feature mapping). Thus, when the feature mapping of an
ancestor is changed, its old mapping may be overwritten, wherefore we cannot as-
sume Finsert(Li—1, T3, A, F,)" (a) = F*(a) as for insertions. Nevertheless, changes
in presence conditions should be limited to the feature context and the existing
presence condition to prevent arbitrary and unrelated mappings:

): VCL S 7—‘1 \ A F(CL) = <gsupdate(j—%—la CZ_;E Aa f? 90) (CL) (426)
A (F*(a) A = Fupaate(Tim1, T;, A, F,) (a)).

To conform the constraints, we change the feature mapping of updated nodes only.
As for insertions, we do not have to assign the feature context explicitly to a node if
its already satisfied by at least one of its hierarchically mandatory parents to avoid
redundancies:

o, # null, F*(parenty,(a)) - ¢, a € A,
Fla), ¢ # null, F*(parenty,(a)) = ¢, a € A,
F(a), ¢ =nulla€ A,

Fl(a), else.

Lg.updaute(jﬁifla E7 A7 -Fv @) (CL) =

_ e o # null, F*(parenty, () [~ ¢, a € A,
B F(a), else.
(4.27)

If only nodes belonging to a common feature f are moved and the feature context
is set to f, # update Will reasonably derive the same feature mapping as before.

Assigning just the new feature context ¢ instead of keeping the existing feature
mapping by assigning F(a) A ¢ to updated nodes is a design decision justified by its
flexibility. As the feature context is an arbitrary formula it can also be set to F(a)A¢

https://doi.org/10.24355/dbbs.084-202002271120-0

4.1. Deriving Feature Mappings For Semantic Edits 59

to obtain the desired interaction. Furthermore, overwriting the existing feature
mapping would not be possible otherwise (i.e., changing a feature mapping entirely).
As assigning the feature context only is more consistent concerning the derivation
upon insertions, we suppose this behaviour to be more reasonable for developers.
However, opposed to insertions, we keep the existing mapping if no feature context is
specified because we have no indication that the updated node should not belong to
its feature anymore. Here, considering updates as an individual operation (instead of
replacements) during edit script computation pays off as existing feature mappings
would be lost otherwise.

In the following, we show that our feature mapping derivation upon updates % pdate
satisfies our imposed constraints legacy preservation (Constraint , 1ntention
insurance (Constraint [4.25)), and inviolacy of the living (Constraint |4.26]).

Theorem 4.5. Feature mappings derived with F ypaate satisfy legacy preservation

(Constraint and intention insurance (Constraint[{.25).

Proof. As both constraints apply to newly inserted nodes only, let a € A be an
arbitrary but fixed updated node. By definition, there are two possible values for a
derived by Z upaate(Ti-1, T;, A, F, @):

L. If p # null\ F* (Mtﬂ(a)) K~ ¢, the node a will be mapped to ¢. Because

Fla)he =
is indeed a tautology, legacy preservation is satisfied. Furthermore,

F wpanie(Ti-1, i, A, F, 0)*(a) = o A F*(parenty, (a))
= e

Thus, intention insurance is satisfied.

2. If o = null v }'*(Wtfi(a)) = ¢, the feature mapping of node a will remain
unchanged, i.e., Z wpdate(Ti-1, T3, A, F, p)(a) = F(a). Because

F(a) Ao k= Fla)
is indeed a tautology, legacy preservation is satisfied. Furthermore,
Z wpaste(Ti-1, T A, F)" (a) = Fla) A F* (parenty, (a))
=
for f*(mtri(a)) = ¢ or ¢ = null (as defined in on Page .

Thus, intention insurance is satisfied.

In all possible cases (1 and 2), both constraints are satisfied. As a € A was chosen
arbitrarily, both constraints are satisfied for all updated nodes a € A. Thus legacy
preservation and intention insurance are satisfied for feature mappings derived with
cgsupdate' O

https://doi.org/10.24355/dbbs.084-202002271120-0

60 4. Semi-Automated Feature Mapping Recording Upon Semantic Edits

Theorem 4.6. Feature mappings derived with F paate satisfy inviolacy of the living

(Constraint [4.26]).

Proof. Let a € T; \ A be an arbitrary but fixed node that was not edited. By
definition,

Fupdate(Ti—1, T3, A, F,p)(a) = Fla). (referred to as (*))

By assumption, the structure of tree does not change (cf., begin of this section).
Thus,

ancestorsr,_, (a) = ancestorsy,(a). (referred to as (**))

(See Step in proof of [Theorem 4.2|on Page |47| for formal definition of ancestorsr).

The new presence condition of a either is the same as before, or it changed when
the feature mapping of an ancestor changed:

L. If Fupdate(Tiz1, T, A, F,p)*(a) = F*(a), then
f*<a> A 2): Lg.update(jvifly711'7147‘/_:7 90)*(@)

Combined with (*), we see that inviolacy of the living is satisfied.

2. Fupdate(Tim1, T, A, F,)" (a) # F*(a), then at least one of the propagating
ancestors of a got its mapping changed, i.e., there must be a set of nodes

P = {p € ancestorsy,(a) | F(p) # Fupdate(Ti-1, Ti, A, F,0)(a) } # 0,

where a@mﬂa) = {n € ancestorsr(a)) | Propagates(n) = true} denotes
exactly those ancestors that propagate their feature mapping. By definition
of .7 update, We know that

Vp c P gupdate(ﬂ—laﬂ7A7F7 @)(p) =@

and
¥p' € ancestorsy, (a) \ P. F upaste(Tie1, Tos A, FL0) (1) = F(p):
We can derive
F update(Tim1, Tiy A, F o 0) (a)
= 9updato(Ti—1,Ti,A=]:7 @)(a) A]:*(th(a>
= F(a) A /\ F update(Ti-1, T3, A, F, 0) (p)

—

pEancestorst, (a)

= F(a) A (N Fwpaate(Ti1, To A, F,0) ()

peP
AN P T T A F) 0)
p/ €ancestorsr, (a)\P
= Fla)ApA A F(p') (because of P # ()
p'€ancestorsr, (a)\ P
= Fla) NN /\ F). (because of (**))

p’Ean@rsTi_l (a)\P

https://doi.org/10.24355/dbbs.084-202002271120-0

4.2. Using Feature Models for Enhancing Feature Mapping Derivation 61

As (ancestorsy,_(a) \ P) C ancestorsy,_,(a), all feature mappings F(p') are
clauses in the conjunction F*(a). As also F(a) is part of F(a)* by definition,
we know that

Flay=Fanr N\ F0)

p'€ancestorst; , (a)\P

and therefore

Fa)No = Fla) NpA /\ Fp).

p’Gan?e—sE)rsTi_l (a)\P
By substitution we obtain
F*(a) = yupdate(ﬂflyifia Aw/—:a 90)*(01)

Combined with (*), we see that inviolacy of the living is satisfied.

In all possible cases (1 and 2), inviolacy of the living is satisfied. As a € T; \ A was
chosen arbitrarily, inviolacy of the living is satisfied for all non-updated nodes. Thus
inviolacy of the living is satisfied for feature mappings derived with % date- n

We now can derive feature mappings upon updates of artefacts. We proved that our
derivation .# ,pdate behaves as desired: It incorporates the feature context, such that
variants are identified as synchronisation targets in a reasonable way, and it does
not infer unrelated features to presence conditions. The feature mapping of already
existing nodes remains unchanged and their presence condition is only changed if
an ancestor of them got updated.

4.2 Using Feature Models for Enhancing Feature
Mapping Derivation

Incorporating constraints on valid feature configurations given by a feature model
introduces tighter restrictions but also opportunities. First, those constraints could
render feature mappings invalid as they may break constraints. This may affect
derived mappings during edits as well as the propagated feature mappings in the
AST. In this section, we show that our derivations as well as propagated feature
mappings in the AST always conform to the feature model. Second, feature model
constraints enable simplifying existent mappings as they may unveil redundancies in
mappings. Furthermore, embedding a feature model to clone-and-own development
enables us to reuse product-line research.

Given a feature model, we have to ensure all derived and propagated feature map-
pings to conform to it if their corresponding artefacts are intended to be kept in the
code base. If a mapping violates the feature model, there is no configuration satis-
fying it. Thus, there are no variants able to contain the mapped artefact. However,
artefacts are meant to exist in certain variants, besides deliberate exceptions such

as false upon certain deletions described in [Section 4.1.5, Per assumption, exist-
ing mappings and the feature context do not violate the feature model as stated in

https://doi.org/10.24355/dbbs.084-202002271120-0

62 4. Semi-Automated Feature Mapping Recording Upon Semantic Edits

Though, we do not assure the same for derived and propagated map-
pings explicitly yet. The derivations .Finsert, Z update; ad F move, are quite similar
as they assign either the feature context, the old mapping, a combination of both, or
true to artefacts. Hence, mappings derived with these three derivations satisfy any
feature model as all their possible values do. The feature mapping derivation for
deletions . gelete, however, combines feature context ¢ and existing mapping F(a)
to F(a) A =y if ¢ # null. Even negating ¢ can violate the feature model already,
for instance if ¢ is a core feature. This is not an issue, though. Mappings of deleted
artefacts violating the feature model just mean that the deleted artefact cannot be
present in any variant anymore (just as for false, which is also a possible value of
Z dgelete) Which does not contradict any assumptions nor intentions of us or develop-
ers. In this case, the feature mapping can be simplified to false. To avoid surprises,
such automations should be communicated to developers, though.

Presence conditions of artefacts obtained by feature mapping propagation in the
AST can never violate the feature model because the configurations of variants
already conform to the constraints of a possible feature model.

Theorem 4.7. Presence conditions obtained from feature mapping propagation in-
side ASTs always conform to their configuration and the global feature model.

Proof. Each variant implements exactly one configuration of features. By assump-
tion, these configurations are valid considering the feature model (cf., [Section 3.1)).
Due to our intra variant compliance constraint, feature mappings are valid according
to their configurations. Hence, feature mappings are valid considering the feature
model, too. Thus, for any two feature mappings A and B valid in a certain con-
figuration C, we know |= eval(C, A) and |= eval(C, B). This leads to = eval(C,
AN B). If AN B would violate the feature model, so would C. As C' does not
violate the feature model, A A B does neither. Hence, A A B is valid regarding the
feature model. As the feature mapping of each node in the same AST conforms
its current variant’s configuration, conjuncting them also does. As conjunction is
the only operation performed during AST feature mapping propagation, the AST
feature mapping propagation can never violate the feature model. O

Furthermore, feature models can help in simplifying feature mappings. Gener-
ally speaking, for any partial configuration of a feature model, features that have
to be de-/selected to complete the configuration can be detected, as already re-
searched [KTST18]. Feature mappings can be considered as such partial configu-
rations for which mandatory (must select), forbidden (cannot select), and possible
(at least / most k out of these) features can be computed. There are several ways
for incorporating feature models to simplify mappings [vRGA™15] which we would
like to investigate further in the future. In the following, we elaborate on two in-
stances of such simplifications: detecting redundancies and resolving negations with
alternatives in feature mappings.

Redundancies occur if mappings contain expressions that become mandatory con-
cerning the feature model when the rest of the mapping is satisfied. For instance,
feature B is redundant in mapping AA B when A = B is a constraint in the feature
model. Then, if A is selected, A A B is always true because of the modus ponens

https://doi.org/10.24355/dbbs.084-202002271120-0

4.3. Using Other Variants for Enhancing Feature Mapping Derivation 63

A BvC(C

Figure 4.3: Negation Elimination Using Alternative Groups in Feature Models

axiom, i.e., (AA (A = B)) = B. However, simplifying feature mappings auto-
matically can result in unwanted behaviour when the feature model evolves. If the
constraint A = B is removed from the feature model, simplified feature mappings
may no longer be correct and thus introduce variability bugs.

With the help of alternative constraints, negative mappings could be resolved if so
wished. By excluding features from an alternative through a negative mapping,
only one of the remaining features can be selected. Let (fi,..., f,) be the features
of an alternative, which means exactly one of them has to be selected. Given a
mapping F(a) = —f;, i € {1,...,n} of an artefact a, then —f; & Vje{l,...,n}\{i} fi-
Thus, F'(a) = vje{l,...,n}\{i} f; is also a valid mapping for a. This can especially be
useful if n = 2 because then only one feature remains as a positive mapping target.
However, as for redundancy detection, evolving the feature model can invalidate
simplified mappings, for instance by adding a new feature f,.; to the alternative
group. Then \/._ L) fj is not equivalent to —f; anymore as the feature f,; is
missing now. shows an example for negation elimination: Features A, B,
and C' are in an alternative group. Considering this feature model, the formula —A
is equivalent to BV C'.

4.3 Using Other Variants for Enhancing Feature
Mapping Derivation

Independent from the feature context specified by developers, the variants with the
configuration they implement are already given. Thus, even when no feature context
and no feature mapping are given, we still know the configuration of the currently
edited variant. For instance, when deleting an unmapped artefact without a feature
context (null) we still know that it cannot belong to the current variant anymore
and thus its mapping has to evaluate to false in the current variant’s configuration

as explained in [Section 4.1.5]

This enables us to derive partial knowledge on feature mappings. Partial feature
mappings could serve as initial mappings or could be used to simplify mappings
such as feature models do. Furthermore, depending on the number of given config-
urations, developers could specify feature mappings and context as a list of features
instead of feature formulas such as in CIDE [KAKOS| but without the necessity to
explicit specify negations. In the following we give an outlook on how other variants
can be used for deriving partial knowledge on feature mappings. As details on this
topic are out of scope of this thesis we consider them to be a potential future work,

discussed in [Chapter 9|

https://doi.org/10.24355/dbbs.084-202002271120-0

64 4. Semi-Automated Feature Mapping Recording Upon Semantic Edits

Definition 4.6 (Partial Feature Mapping). We consider Fpatiai(a) to be a partial
feature mapping of an artefact a € A, if and only if F(a) = Fpartia(@), such that for
all existing variants V € V of the current project = eval(C(V'), Fpartiat(a)) < a € V.

The presence of artefacts in variants tells us which configurations have to satisfy the
feature mapping and which do not. Let Vi,...,V, € V be the variants in clone-and-
own development. Let a € A be present in at least one variant, i.e., a € V; for at
least one j € {1,...,n}. To derive a partial mapping for Fpamia(a), we differentiate
between those variants V, containing a, and those variants V5 not containing a, such
that V, U V; = V. As variants V € V, contain a, their configurations C(V') have
to be satisfying assignments for F(a). Respectively, all configurations of variants in
Vs do not satisfy F(a). The remaining configurations V; are those not associated
to any variant (i.e., implicitly given by the feature model). We do not know which
of these should contain the investigated artefact and which should not. Hence, we
call these concealed assignments.

The assignments given by the variants V,, V;, and V-, can be synthesised to a propo-
sitional formula « for which we know that F(a) = =, thus being a partial feature
mapping. The well-known Quine-McCluskey algorithm [Cur62] computes a disjunc-
tive minimal form (DMF), the shortest form of a disjunctive normal form (DNF),
according to the given assignments. Multiple solutions, i.e., feature mappings are
possible. Each of those solutions is a valid partial feature mapping. As the results
are DNF's, even a single clause of those is already a potential valid feature mapping.
These candidates could be ranked depending on how many of the assignments V,
and V; evaluate as expected. For instance, for a candidate mapping x € B we could
compute a rank by counting the number of correct assignments:
> vey, eval(C(V), k) = true + >y, eval(C(V), k) = false

rank(k) = 4.28
() ‘Va|+|V5,| ()

Thus, we can obtain a partial feature mapping Fpaia(a) = v for any artefact
a € A. In the future, we will investigate other research on formula recovery and
synthesis. Mendonga et al. [MAaL18] even reverse engineer entire feature models by
first recovering a formula, and second recovering the structure of the feature model.

Example 4.3.1. shows the feature mapping deduction from variants
exemplarily. To compute a partial feature mapping, the inspected artefact int
MisterX is first located in all variants. Second, depending on its presence in a
variant, the configurations are identified as satisfying or unsatisfying assignments
for F(int MisterX). Their disjunction thereby is a possible feature mapping when
considering the hitherto available variants only. Simplifying this disjunction yields
possible feature mappings. In this case, the green feature remained as possible
mapping only because it is present in exactly those variants containing int MisterX
and the remaining features are partially included or excluded in these variants (as
can be seen when comparing configurations ¢, and cs).

Furthermore, variant knowledge could be used to simplify feature context specifi-

cation. By our and other’s experience, specification of an entire feature formula is
error-prone similar more interlace preprocessor annotations. To address this issue,

https://doi.org/10.24355/dbbs.084-202002271120-0

4.4. Known Exploits 65

int MisterX;
locate

Variants

xAKRKK
XX
x

XX

simplify N

Figure 4.4: Workflow for Partial Feature Mapping Derivation from Variants

the feature context as well as the presented feature mappings could be simplified to
lists of features, as done in ECCO [LELHI6]. Such a list thereby contains exactly
those features present in literals in the original feature formula. By restricting the
partial feature mapping recovery explained in the last paragraph to such a subset
of features, the derived partial mapping’s accuracy can be increased because un-
involved variables can be discarded from the assignments V,, V;, and V; directly.
Hence, it is irrelevant if a feature in the feature context list is part of negative or
positive literals.

4.4 Known Exploits

In this section, we present two elementary exploits that in conjunction with our
future variant synchronisation, enable developers to edit all variants of a clone-
and-own project in a synchronised way from any single variant only. By editing a
single variant, we can insert any artefact to all variants satisfying its target feature
mapping. These exploits are not intended to be used by developers but show that
our derivation is powerful enough to reproduce any synchronised code changes from
a theoretical point of view. To fully reenact these exploits, we require a method
for synchronising variants which is subject to future work and further discussed in

We begin by introducing a method to queue the insertion of artefacts under any
feature contexts into variants satisfying that context from any source variant in
[Algorithm 4.2l We refer to this procedure as Artefact Shipping as it broadcasts
the insertion of an artefact. If the edited source variant’s configuration satisfies
the target feature mapping ¢, we can just insert the artefact a under that feature
context ¢ as expected. If however, the source variant’s configuration does not satisfy
v, inserting a under feature context true and deleting it under — ¢ afterwards, will
yield to the artefact being mapped to true A== = @ by .Z gelete- Depending on the
future variant synchronisation, this change will be synchronised to other variants,
such that a is present in exactly those variants satisfying ¢.

https://doi.org/10.24355/dbbs.084-202002271120-0

66 4. Semi-Automated Feature Mapping Recording Upon Semantic Edits

Algorithm 4.2 Artefact Shipping — Procedure for Inserting Artefacts to Entire
Product Line by Editing Any Single Variant Only

Given: artefact a € A to insert,
arbitrary source variant V € V,
desired feature mapping ¢ for a

if eval(C(V),) then
insert a under feature context ¢ in V
else
insert a under feature context null or true in V

delete a under feature context — ¢ from V
end if

Algorithm 4.3 Artefact Annihilation — Procedure for Deleting Artefacts from En-
tire Product Line by Editing Any Single Variant Only

Given: artefact a € A to delete from all variants,
arbitrary source variant V € V

1. if a ¢ V then

2: insert a under feature context true in V

3: else if F(a) = null then

4: manually change F(a) to true > e.g., be deleting and reinserting it under
feature context true

5: end if

6: delete a under feature context true from V'

To be able reproduce any code changes in a synchronised way from a single variant,
we need a procedure for deleting artefacts next to insertions. [Algorithm 4.3| shows
how an artefact can be deleted from all clones, even from a variant that does contain
that artefact. We refer to this procedure as Artefact Annihilation as an artefact gets
removed from the entire project. To reproduce this exploit, the artefact to delete
a € A has to be present in our source variant and has to be mapped to true. To
achieve this, we insert a under feature context true if it is not present in our variant
yet. Otherwise, we have to manually set its mapping to true if a is not mapped
yet. This could be done by deleting and reinserting it under feature context true for
instance. Afterwards, deleting a under feature context true will herald its deletion
from every variant as its new feature mapping is set to false by 7 gelete-

Using both exploits in conjunction allows synchronising artefacts with any feature
context upon variants by first deleting it with Artefact Annihilation and inserting
them correctly with Artefact Shipping. While these exploits are of no direct use for
developers themselves, they may prove useful for future automatism. For instance,
changing the presence condition of a feature mapping manually (i.e., through a
user interface and without performing edits), requires to update its presence or

https://doi.org/10.24355/dbbs.084-202002271120-0

4.5. Summary 67

absence in all variants depending on its new mapping. We will discuss further uses

in [Chapter 9,

4.5 Summary

In this chapter, we developed our method for feature mapping derivation upon ed-
its on ASTs. As we designed our algorithm to reasonably infer mappings upon
edits intuitively classified as insertion, deletion, move, or update, our derivation is
independent from actual tree changes. To incorporate their domain knowledge, de-
veloper’s can specify a propositional formula, called feature context, identifying the
feature or feature interaction they are currently working on.

To ensure stepwise synchronisation between software clones, we introduced the two
constraints intra and inter variant compliance. Intra variant compliance requires
feature mappings to be valid in all variants the corresponding artefact is contained
in. Thus, a variant’s configuration has to be a satisfying assignment for each feature
mapping present in that variant. Inter variant compliance requires each mapped
artefact to be present in exactly those variants whose configurations are satisfying
assignments for their mapping. This enforces the synchronisation of mapped soft-
ware artefacts across variants. Thereby, whenever a feature mapping is introduced
the corresponding artefact is queued for synchronisation.

Identifying synchronisation targets for software changes is done with according fea-
ture mappings. To ensure reasonable synchronisation, we distinguish four types of
edits: insertion, deletion, move, and update. Thereby, we have shown, how domain
knowledge can be preserved upon absence of the feature context and the feature
context can be incorporated when it is specified.

We showed that our derivations and the AST propagation always conform to the
global feature model. Further, we gave an outlook on feature models can be used to
simplify existent mappings. As configurations are specified according to the feature
model, propagated mappings in the AST and our derived mapping functions also
do. We further presented two artificial exploits which enable inferring any feature
mapping to all artefacts in a synchronised fashion from editing just a single variant.
While these exploits are not intended to reflect the workflow developers should use,
they are interesting from a theoretical point of view. In the future, we will investi-
gate if they may be helpful to implement automatisms for repairing wrong feature
mappings. We also have shown how knowledge of variants and their configurations
can be used for enhancing feature mapping derivation. Given a mechanism to lo-
cate artefacts in variants, we are able to compute partial feature mappings from
the configurations of the variants containing or not containing an artefact. Further-
more, this partial feature mapping derivation can be used to simplify feature context
specification to just a list of features.

Our feature mapping derivation upon edits on ASTs enables developers to record
feature mappings during their usual programming workflow by specifying the feature
they are currently working on. Opposed to existing research, specifying the feature
context is optional to impair development by a minimal amount only. When no
feature context is specified, our derivation preserves existing mappings and is able

https://doi.org/10.24355/dbbs.084-202002271120-0

68 4. Semi-Automated Feature Mapping Recording Upon Semantic Edits

to even derive further mappings for some edits. By annotating nodes in the AST, as
developed in |Chapter 3, our derivation is able to consider hierarchical dependencies
to further simplify derived mappings. Our algorithm is not only useful for clone-
and-own development but any software development technique that requires feature
mappings. Furthermore, it is independent from the actual tree diffing algorithm
used for edit script computation. Optionally, semantic lifting can be employed to
our algorithm to refine low-level tree edits to user-level edit scripts.

https://doi.org/10.24355/dbbs.084-202002271120-0

5. Technical Challenges

Implementing our conceptual feature mapping derivation imposes several techni-
cal challenges. In this chapter, we address those challenges or design decisions by
proposing possible solutions. We identified four challenges to be of primary rele-
vance for the implementation of our feature mapping derivation. We omit further
conceptual or technical problems concerning synchronisation of variants or actual
clone-and-own development, as these exceed the scope of this thesis. We present
the challenges in chronological order considering their appearance in the previous
[Chapter 3| and [Chapter 4] because there are no dependencies between them.

We start by introducing the challenge of handling redundant feature mappings in
which can appear due to feature mapping propagation in the AST. In
[Section 5.2 we propose different ways for setting up the project structure tree neces-
sary to detect inter-file moves of artefacts and simplify feature mapping specification.
We continue with our choice for visualising feature mappings in [Section 5.3] Closing
with [Section 5.4 we show how the lift function used in [Algorithm 4.1] on Page

can be defined to assign feature contexts to the semantic edits the user made.

5.1 Handling Redundant Feature Mappings
As introduced in we map features to nodes of an AST instead of the

artefact itself. Nodes inside the tree may be assigned any propositional formula as
their feature mapping. When propagating feature mappings down the AST, this can
lead to redundant terms in presence conditions. For instance, a method mapped to
feature A A B inside a class mapped to A yields the redundant presence condition
AN AN B for the method. This redundancies may disturb development workflow
as dealing with them can become confusing and tedious. For instance, we suppose
that our feature mapping could produce unintended results if it is not made clear in
the development environment (e.g., the IDE) that an artefact is mapped the same
as its parent which could be invisible when both artefacts are visualised by the same
colour.

For an AST node a € T € M" with a # root(T) and its nearest propagating ancestor
p = parentyp(a), we differentiate between two kinds of redundancy:

https://doi.org/10.24355/dbbs.084-202002271120-0

70 5. Technical Challenges

e F(a) = F(p): This is exactly the constraint whose satisfaction we enforce with
AST propagation, namely that the hierarchically mandatory parent of a node
is present when the node itself is present. If, however, this constraint is already
satisfied before propagation, propagating the mappings is unnecessary and only
infers redundancies to F*(a). Detecting the redundant sub-expression in F(a)
that leads to F(a) = F(p) being a tautology is subject to future work and is
addressed by existing research on presence condition simplification [vRGA™15].

e F(p) = F(a): In this case, the feature mapping F(a) of a is redundant because
a is always present when its parent is selected, no matter what the actual
mapping of a looks like. Hence, we can simplify the mapping of a to true (or
null) such that it inherits the feature mapping of its parent.

Recommending possible further, more sophisticated simplifications of feature map-
pings in general is useful but out of scope of this thesis.

5.2 Setting up the Project Structure Tree

In [Section 3.2.2] we introduced project structure trees to detect inter-file moves.
Such trees describe the structure of the entire software variant and group all ASTs.
An example for a project structure tree derived directly from the directory structure
on disk is shown in [Figure 3.4 We identified three ways to create a project structure

tree for a variant in general:

1. Technical Project Structure Tree: The project structure tree could be defined
with a pure technical motivation and be hidden from developers. For instance,
the ASTs of all source code files could be grouped under a single central root
node such that inter-file moves can be detected but no further information
is held in the project structure tree. This is perhaps the most easy version
of a project structure tree to implement and can be adapted to any further
technical requirements.

2. Directory Structure: As in our example, the project structure can be a re-
flection of the hierarchical file structure of the project. Mostly, a project’s
semantic modules (e.g., packages in Java) are aligned according to the file
structure but that does not necessarily need to be the case (e.g., namespaces
in C++).

3. Build Hierarchy: To detect modules and dependencies between modules at
a semantic level, build files (e.g., pom.xml for Maven, or CMakeLists.txt for
CMake) could be parsed to obtain a project’s structure. This is the most
difficult, error-prone, and laborious strategy for constructing a project struc-
ture tree and can become arbitrarily intricate for big software projects using
multiple languages or build systems. However, it bears the potential of consid-
ering further (dis-) similarities between clones for even more accurate variant
synchronisation.

We consider investigating the concrete benefits of each approach to be out of scope of
this thesis. To implement the derivation proposed in this thesis, creating a stream-
lined ghost project structure tree, is sufficient.

https://doi.org/10.24355/dbbs.084-202002271120-0

5.3. Feature Mapping Visualisation 71

5.3 Feature Mapping Visualisation

Feature mappings can be visualised in several ways. Depending on chosen im-
plementation approach for features (i.e., annotative or compositional), different
visualisations may be adequate. For instance, in preprocessor-based or tag-and-
prune [BCH™10, HBC™12] product lines feature mappings are directly represented
by textual elements whereas in component- or plugin-based architectures mappings
are visible in the project’s structure.

As our feature mappings are stored externally and corresponding artefacts can be
scattered arbitrarily across the software, we need to find a way for feature mapping
visualisation in the editor. Existing tools handling feature mappings that way, such
as CIDE [KAKOS]|, paint the source code lines of mapped artefacts as shown in
Colours are assigned to each feature and feature interactions are visualised
by mixing colours.

To also visualise feature mapping propagation throughout the AST, we advocate
the colourisation of entire blocks of a node as done in the Java IDE BlueJ [Lon)|.
BlueJ visualises a program’s hierarchical structure by highlighting scopes by their
type, as illustrated in to simplify programming and especially support
beginners in programming. For each code element it is obviously discernible to which
outer scopes it belongs. For example, the function call toppings.add(topping) in
Line 20 is nested in a condition (blue) in a method (yellow) in a class (green). We
recommend adapting this visualisation method but colour scopes not by their type
but according to their feature mapping. For AST nodes that do not propagate their
mapping, not the entire scope but only its begin (header and opening bracket) and
end (closing bracket) could be coloured. This way, the colour sequence to the left of a
line always shows the entire propagated feature mapping F*(a) of the corresponding
artefact a.

5.4 Lifting Feature Contexts to Edits

For our feature mapping derivation algorithm we have to map the feature context
recorded by the developer to the edits in the edit script. This process is depicted by
the lift function in [Algorithm 4.1 on Page [41] First, we have to find a suitable way
for recording the feature context during development. Second, we have to assign
these contexts to the tree edits correctly.

We can achieve this by running our feature mapping derivation whenever the feature
context changes. However, this requires the context to be only changeable when a
valid AST can be constructed from the edited artefact. The (graphical) user interface
for feature context specification would have to be disabled when the program is not
in a syntactically valid state which can become confusing and tedious for developers.

Another idea to solve this problem is to record artefact edits directly in an IDE, such
that edits scripts are recorded on the fly instead of recovering them retroactively
with tree diffing algorithms. Though, this would require software edits to always be
made in the IDE and would not be robust against external changes. Furthermore,
it imposes technical challenges on how to process text changes.

https://doi.org/10.24355/dbbs.084-202002271120-0

72 5. Technical Challenges

HE=S

6 * Impeccable implementation of delicious pizza.
EIE Y

g public class Pizza

9

{
18 private List<Topping> toppings;
11 private boolean baked;
12
13 public Pizza() {
14 this.baked = false;
15 this.toppings = new ArrayList<=>();
16 }
17
18 public void add(Topping topping) {
19 if (!'baked) {
28 toppings.add(topping);
21 }
22 }
23
24 public void bake() {
25 if (!'baked) {
26 for (Topping t : toppings) {
27 t.bake();
28 }
29
38 baked = true;
31 }
32 }
33 }

Figure 5.1: Scope-Oriented Code Colorisation in BlueJ [Lon]

5.5 Summary

In this chapter, we addressed four major technical challenges for implementing our
feature mapping derivation for the targeted synchronisation of variants.

First, we identified two kinds of redundant feature mappings with respect to the
feature mapping propagation in ASTs. We showed how one type of redundancy
can be resolved and pointed out essential other research which enables resolving the
other type in a future work. Second, we proposed three methods for setting up the
project structure tree of a variant and pointed out their advantages and disadvan-
tages: a technical motivated tree, a reflection of the directory structure, and a tree
reflecting the build hierarchy of the variant to reflect its semantic structure. Third,
we motivated why a scope-oriented code colourisation as implemented in the Java
IDE BlueJ [Lon| reasonably resolves problems in visualising feature interactions and
is suitable for visualising AST-based feature mappings. Fourth, we shortly contem-
plated two ways for mapping user-recorded feature contexts to the edits recovered
during tree diffing.

https://doi.org/10.24355/dbbs.084-202002271120-0

6. Evaluation of Applicability

In this chapter, we analyse how our feature mapping derivation supports real soft-
ware development. We show which feature context has to be specified to infer de-
sired feature mappings upon code changes. Therefore, we replay existing variability-
related code change patterns extracted from a preprocessor-based software product
line with a long development history. Every code changes until a certain release is
classified by at least one pattern. As a baseline, we compare our derivation with the
projectional product-line editor VTS by Stanciulescu et al. [SBWW16] that enables
variational edits on (partial) variants related to our targeted clone-and-own scenario.

Therefore, we use the variability-related code change patterns identified by Stanci-
ulescu et al. [SBWWT16]. They analysed the history of an open-source preprocessor-
based software product line and thereby extracted all code changes of code affected
by variability-related preprocessor. To classify all these variability changes, Stanci-
ulescu et al. identified a common set of change patterns. The detected patterns were
cross-validated against another product line to exhaust possible variability changes.

We first formulate our research questions in [Section 6.1, In [Section 6.2] we describe
the study design of Stanciulescu et al. for variability change pattern detection. We
inspect all identified variability-related code editing patterns in [Section 6.3 In [Sec-|
tion 6.4] we answer our research questions. We discuss possible threats to validity
of our analysis with respect to the set of code change patterns identified by Stanci-

ulescu et al. [SBWWI6] in [Section 6.5, We summarise the chapter in [Section 6.6}

6.1 Research Questions

For our evaluation, we investigate the following three research questions to check
applicability of our feature mapping derivation for real software development. We
do so by replaying variability-related code change patterns with our feature mapping
derivation algorithm with proper feature contexts. We elaborate on our study design
in detail in Section 6.2

https://doi.org/10.24355/dbbs.084-202002271120-0

74 6. Evaluation of Applicability

Research Question 1 — How often do developers have to switch the
feature context?

With this research question we want to determine to which degree the specification
of the feature context is impairing the usual programming workflow. Therefore, we
investigate how often the feature context has to be switched to accomplish certain
changes in variability, i.e., the feature mappings. For each variability-related code
change pattern, we determine how often the feature context has to be switched and
the number of different variants to edit.

Research Question 2 — How complex has the feature context to be in
comparison to the desired feature mapping?

The more constraints we impose on how feature mappings can be derived, the more
complex individual feature contexts might have to be. As our feature context is a
propositional formula that has to be specified by the user, we want this task to be as
easy as possible. Therefore, we investigate how complex the feature context has to
be for the considered code change patterns in comparison to the desired mapping.

Research Question 3 — How does our feature mapping derivation com-
pete with the projectional editor VTS by Stanciulescu et al. considering
the previous two research questions?

Stanciulescu et al. identified variability-related source code editing patterns to eval-
uate their projectional C preprocessor software product-line variation control system
VTS [SBWWI16]. With VTS, (partial) variants are checked out by specifying a pro-
jection, a propositional formula over the set of features. These projected variants
are then edited and checked in again to a central black box repository containing the
entire product line. Similar to our feature context, VTS requires users to specify an
ambition upon check-ins. As we evaluate our feature mapping derivation along the
patterns identified by Stanciulescu et al., we can directly compare the complexity of
our feature context with concepts of the projection and ambition in V'TS.

6.2 Study Design

For our evaluation, we reuse the variability-related change patterns from the study
conducted by Stanciulescu et al. for evaluation of their projectional software product-
line editor VTS [SBWW16]. They analysed the history of an open-source software
product line for variability-related code changes. Stanciulescu et al. described these
changes with a set of common patterns they manually derived. For the rest of
the chapter, we always refer to said paper when referring to the work of Stanci-
ulescu et al. [SBWW16].

The subject system of the study by Stanciulescu et al. is the 3D printer firmware
Marlin [vdZ]. Marlin is an open-source software product line written in C++ using
the conditional compilation provided by the C preprocessor for variability man-
agement. Feature mappings are given by #ifdef, #if, and corresponding further
macros annotating lines of code. In 2011, Marlin originated as a mixture of the exist-
ing projects Sprinter, also a firmware for 3D printers, and Grbl, a firmware for CNC

https://doi.org/10.24355/dbbs.084-202002271120-0

6.2. Study Design 75

machines. For their study, they cloned the MarlmDevﬂ repository from GitHub and
checked out the development branch with the HEAD pointing to commit 3cfeldcel.
This version of Marlin has about 40,000 lines of code and more than 140 features in
187 source files (without the additional library files for Arduino support). Nowadays,
the repository MarlinDev is archived but development is continued in the repository

Marlin?

To identify variability-related code editing patterns, Stanciulescu et al. analysed
all individual patches extracted from Marlin’s commit history. They split each of
the 3747 commits (without merge commits) into a patch per changed file excluding
files being added, removed, or renamed. For each of the resulting 5640 patches,
Stanciulescu et al. adopted a three stage process for pattern identification:

1. Randomly extract 50 commits that add or remove #ifdef directives by using
grep: Each patch is inspected manually to recognise patterns.

2. Create regular expressions to represent each recognised pattern: These regular
expressions are matched automatically against the pool of patches.

3. Repeat until all patches are classified: For unmatched patches, regular ex-
pressions are added and the classification is re-evaluated until each patch is
classified by at least one pattern. Patches may belong to multiple patterns.

In , we present an extended overview by Stanciulescu et al. [SBWWI6,
p. 327 ff.] on the code-change patterns. The number of patches matching a given
pattern, amongst possible other patterns, is given in the #Multi column. The #Only
column denotes the number of patterns that exactly match only the corresponding
pattern. We added the Uniqueness column giving the percentage of patches that
could be captured by this pattern only (i.e., 100 - #Only / #Multi). Each pattern
is examined in detail in [Section 6.3

To cross-validate the distilled patterns, Stanciulescu et al. ran their classifier on
the Busybox project. They cloned the Git repositoryﬂ at commit a83e3ae, contain-
ing about 175,000 lines of code from 13,700 commits (excluding merge commits)
translatable to 34,018 patches.

Although the patterns identified by Stanciulescu et al. describe variability introduced
to a preprocessor software product line, they are still valid for reasoning on our
clone-and-own scenario: A possible edit in a product line always corresponds to
projected edits in said product line’s variants. Thus, the variability-related change
patterns identified by Stanciulescu et al. correspond to edits in variants obtained
from (partial) configuration of features (i.e., preprocessor definitions). In our clone-
and-own scenario, we consider clones to be specific variants of a common software
product as described in [Section 3.1} Similarly to Stanciulescu et al., we use the
patterns to reason about the corresponding projectional edit in a variant. Moreover,
our feature mapping derivation is not dependent on AST's as feature mapping target.

thttps://github.com/MarlinFirmware /MarlinDev
2https://github.com /MarlinFirmware/Marlin
3https://git.busybox.net /busybox

https://doi.org/10.24355/dbbs.084-202002271120-0

76 6. Evaluation of Applicability

Name #Multi #Only Uniqueness

in %
AddIfdef 969 129 13,31
AddIfdef* 424 32 7,55
AddIfdefElse 271 4 1,48
AddIfdefWrapElse 43 17 39,53
AddIfdefWrapThen 13 3 23,08
AddNormalCode 4683 871 18,60
AddAnnotation 293 12 4,10
RemNormalCode 3932 209 5,32
Remlfdef 534 24 4,49
RemAnnotation 228 2 0,88
WrapCode 7 29 37,66
UnwrapCode 12 2 16,67
ChangePC 225 74 32,89
MoveElse 5 2 40,00

Table 6.1: Overview of Identified Variability-Related Code Editing Patterns and
Their Occurrence Count in Marlin’s Commit History as Determined by Stanci-
ulescu et al. [SBWWI6]

Hence, the line-based mappings given by the preprocessor annotations and distilled
to edit patterns are no obstacle.

Stanciulescu et al. identified these patterns to validate their own projectional vari-
ation control system VTS [SBWWI16]. VTS allows editing preprocessor-based soft-
ware product lines such that developers can work on partially preprocessed variants
instead of the entire product line at once. depicts the differences and
commonalities between our feature mapping derivation for clone-and-own develop-
ment and VTS. Whereas we want to enhance clone-and-own with concepts from
product-line engineering, VTS projects the product line to a (partial) clone to sim-
plify product-line editing. They refer to it as projectional editing’] After editing,
the projected variant has to be reintegrated into the product line. This step is quite
similar to our derivation because feature mappings have to be derived from code
changes and a user-defined ambition or feature context, respectively.

Figure 6.2 gives a detailed overview of the workflow in VTS. The product line is
stored in a central black box repository . With the get function developers can re-
trieve a view v of the product line. Therefore, developers have to specify a projection
p, a propositional formula over the set of features describing the partial configuration
of features they want to edit. VTS generates the view v of r by iterating over all
boolean preprocessor annotations. It omits annotated code if its presence condition
contradicts the projection (also considering #if and #else blocks individually). If
neither the #if block nor its alternative #else block contradicts the projection,

4Originally, projectional editing refers to dedicated and specialised editors that present users
a view or projection of the actual artefact to edit (e.g., modifying the AST in a graphical editor
instead of the textual representation of source code). Contrary, Stanciulescu et al. classify their
partial pre-compilation as projectional editing which is not to be confused with its original meaning.

https://doi.org/10.24355/dbbs.084-202002271120-0

6.3. Variability-Related Code Editing Patterns 77

Ours VTS

Software

Product Line

synchronise
towards

reintegrate

Clones

Figure 6.1: Goal Comparison of Our Feature Mapping Derivation for Clone-and-
Own Development With VTS

derived edit

~

put(p, p, 7, v) (3) put(p,a,r,v")

get(pAa,r’)

(1) get(p,)

Q=33

~

(Spininlninluleiy

(2) actual edit

Figure 6.2: Projectional Product-Line Editing Workflow in VTS [SBWW16, p. 325]

both remain in the view. Developers can submit their edited version v’ of the view v
back to the repository r with the put function, leading to a new repository revision
r’. To reintegrate changes, an ambition a has to be specified for the put function.
An ambition is a propositional formula over the set of features describing which
feature or feature interaction was edited, similar to our feature context. Because
no edit in a view projected by p can affect code outside of that view, the entire
edit is mapped to p A a internally. To obtain a more compact representation of the
edit and avoid redundancy, Stanciulescu et al. apply several minimisation rules to
the inferred preprocessor directive p A a. The dashed lines in indicate
the idempotency of the put and get function following each other: Applying a get
immediately after a put operation or a put immediately after a get operation does
not change the original repository and the view respectively.

6.3 Variability-Related Code Editing Patterns

In this section, we examine all variability-related code editing patterns identified by
Stanciulescu et al. [SBWWI6]. These patterns are the kinds of edits, our feature
mapping derivation needs to support. For clarity, we adopt their classification of

https://doi.org/10.24355/dbbs.084-202002271120-0

78 6. Evaluation of Applicability

the 14 patterns into the three categories: Code-Adding Patterns, Code-Removing
Patterns, and Annotation-Change Pattemsﬂ These categories apply to software
product-line development and thereby must not necessarily correspond to the same
edit operations in variant (i.e., clone-and-own) development. We show how each
pattern can be described by edit operations in one or more variants supervised by
our derivation. If multiple possibilities for reproducing a pattern in our clone-and-
own scenario exist, we present the simplest one we could identify in terms of number
of edits and divergence of the feature context from the desired feature mapping.

Furthermore, we compare our derivation to the projectional variation control system
VTS by Stanciulescu et al. [SBWW16].

We also present a projectional workflow in VTS for each pattern as a baseline for
our derivation. As a fallback, it is always (i.e., for each pattern) possible in VTS
to use the projection true and edit the whole product line at once. However, this is
not the goal of VTS and is also not applicable to our clone-and-own scenario.

To visualise each pattern we use the unified diff notation. Added lines are labeled
with a plus (+). Removed lines are labeled with a minus (-). Lines without marker
remain unchanged. Just as Stanciulescu et al., we omit further meta information as
it is neither relevant nor useful for pattern representation.

We begin with code-adding patterns in and continue with the code-

removing patterns in [Section 6.3.2l The remaining annotation-change patterns are
examined in [Section 6.3.3]

6.3.1 Code-Adding Patterns

We first cover those patterns related to insertions of code with or without adherent
feature mappings into a software product line. In [Table 6.2 we show an overview
of code insertion patterns. The column projection denotes the projections necessary
for reproducing the corresponding pattern in VT'S by Stanciulescu et al. [SBWW16].
Similarly, the ambition column denotes the necessary ambition for the edit in VTS.
Analogous to projection and ambition, the column feature context contains the fea-
ture contexts that have to specified in our derivation to reproduce the pattern.
The literal U is a shorthand for a frequently used feature in the following patterns.
Pattern AddIfdef™ requires more sophisticated conditions ¢;, i € {1,...,n} and
©;, 1 € {1,...,7} that are explained in detail in the corresponding section. The
number j € N, with 7 < n, denotes the number of individual projections, ambi-
tions, and feature contexts that are necessary to reproduce the pattern AddIfdef™.
Thereby, true’ for the projection indicates that the projection has to be true for all j
commits. The #commits indicates how many complete edit cycles consisting of re-
trieving a view with get, editing it, and submitting it with put back to the repository
are necessary in VTS to reproduce a pattern. If multiple commits are necessary, all
corresponding projections and ambitions are given in the corresponding order. In
column #variants to edit we indicate how many variants have to be edited in our

5In the original paper, Annotation-Change Patterns were referred to as Other Patterns. As all
these other patterns are related to changes in presence conditions and not code, we use a more
precise name.

https://doi.org/10.24355/dbbs.084-202002271120-0

6.3. Variability-Related Code Editing Patterns 79

VTS our derivation

Target . 5 .053 §0 2 3 § S §
Pattern Name feature g § g 5 § 55 §‘ I

mapping S g S g 8§ 9;2 © g5

Q @ H © S ~ 5

AddIfdef U true U 1|U 1 Finsert
AddIfdef® Cly... Cp | truel P1yee 5 P VRRZE ®; <7 nX Finsert
AddIfdefElse U,-U true,~U U,=U 2| U-U 22X Finsert
AddIfdefWrapElse | U, U true U 1|U 1 Zaeete; Finsert
AddIfdefWrapThen | U, =U true -U 1| -U 1 Zdeletes F insert
AddNormalCode true or U | true or U true 1| true or U 1 Finsert
AddAnnotation - — not applicable —

Table 6.2: Variability-Related Code-Adding Patterns

clone-and-own scenario. In the last column, necessary derivations, we list the indi-
vidual derivation functions involved when applying our derivation algorithm given
in [Algorithm 4.1|

Pattern 1 — AddIfdef

The first editing pattern covers the insertion of code with a surrounding preprocessor
annotation:

+ #ifdef ULTRA_LCD
+ lcd_setalertstatuspgm(lcd_msg);
+ #endif

Figure 6.3: Pattern AddIfdef (Adapted From [SBWWIG, p. 327))

The code is added with a feature mapping. In this example, the inserted code line
is mapped to ULTRA_LCD. In the following, we use the abbreviations lcd for the code
in the second line and U for the feature ULTRA_LCD. This pattern can be reproduced
in any clone whose configuration is a satisfying assignment for the #ifdef condition
¢ (e.g., o = U). In such a clone, inserting code under feature context ¢ would
reproduce this pattern. Our algorithm derives the mapping with .%;,.¢ and thereby
assigns @ to the inserted code fragment as described by this pattern.

Stanciulescu et al. suggest to check out the partial variant given by the trivial pro-
jection true (i.e., the whole product line) in VT'S. The line of code lcd is added and
checked in under the ambition U:

r=1 r’ = U{lcd, 1)
get(true, r) | put(true, U,r,v")
v =19 ’U/ = led

actual edit

Figure 6.4: Workflow for Pattern AddIfdef in VTS [SBWW1I6, p. 327

https://doi.org/10.24355/dbbs.084-202002271120-0

80 6. Evaluation of Applicability

To simplify the visualisation of the workflow in VTS, Stanciulescu et al. assume
starting with an empty repository r = ¢ for reproducing AddIfdef and all following
patterns as shown above in [Figure 6.4 The notation U(lcd,) describes code led
being active when feature U is chosen and the previous repository content ¢ (i.e.,
nothing) to be present elsewise (i.e., on =U).

Pattern 2 — AddIfdef™

This pattern]| groups multiple applications of the previous AddIfdef with conditions
Cly...,Cn, n > 2. As before, such an edit is possible with successive insertions of
source code artefacts under corresponding feature contexts. As not all conditions
have to be pairwise disjunct (i.e., ¢; # ¢j, i,j € {i,...,n}, i < j), the feature
context has to be changed at most n times. Thus, we have to repeat pattern AddIfdef
J times with contexts ¢,...,¢; and j < n, such that for each unique condition
¢k, k € {1,...,n} there is exactly one feature context ¢, = ¢, k' € {1,...,j}
and each feature context corresponds to one of the initial conditions. In the worst
case, all j feature contexts pairwise contradict each other, or are exclusive to a
unique existing clone each (e.g., when there are not enough different configurations
implemented as clones). Then, a different variant for each feature context would
have to be edited. In the best case, all j feature contexts are valid for a single
implemented variant in which all edits can be made at once.

Similarly, this pattern can be reproduced in VTS by multiple applications of the
AddlIfdef pattern. For each of the unique conditions ¢, .. ., ¢; one checkout/checkin
sequence is necessary. Alternatively, all annotations could be integrated manually
into the entire product line at once with projection and ambition set to true.

Pattern 3 — AddIfdefElse

Similar to AddIfdef, code surrounded by an #ifdef is added but extended by a
following #else statement:

+ #ifdef ULTRA_LCD

+ lcd_setalertstatuspgm(lcd_msg);
+ #else

+ alertstatuspgm(msg);

+ #endif

Figure 6.5: Pattern AddIfdefElse (Adapted From [SBWWI16| p. 328])

In the following, we abbreviate the code fragment alertstatuspgm(msg); with
alert. The two inserted code fragments have the feature mappings F(led) = U
and F(alert) = =~U. We cannot reproduce this pattern directly in a single variant
because both feature mappings are alternative (i.e., mutual exclusive). Each line
has to be added in a variant whose configuration satisfies the respective feature

In the original paper, this pattern was referred to as AddIfDef*. We quantify the count of
applications of the AddIfdef pattern by n to be able to reason on this pattern more accurately.

https://doi.org/10.24355/dbbs.084-202002271120-0

6.3. Variability-Related Code Editing Patterns 81

mapping. The same as for AddIfdef, each code fragment has to be inserted with a
corresponding feature context such that %, Will be used to assign the feature
context as mapping. Notably, the second code fragment alert has to be inserted
under feature context —U. We do not consider the lack of direct replicability of
this pattern to be a disadvantage. Both lines of code are never supposed to appear
simultaneously in a single variant and clones are intended to be variants instead of
a whole software product line.

In VTS, this pattern can most simply be reproduced by checking out a view with
projection true, adding the entire block (with preprocessor annotations) directly,
and checking it in with the ambition true. A projectional workflow requires one edit
per branch (i.e., two). First, lcd is added with ambition U. In a second commit,
alert is added with ambition —U.

L U(led,) U(lcd, alert)
get(true,r) get(—U,rsa)
/
put(true, U, r1,v]) put(=U, =U,r2, v5)
‘ actual edit led ‘ actual edit alert

Figure 6.6: Workflow for Pattern AddIfdefElse in VTS [SBWWI6, p. 328]

Pattern 4 — AddIfdefWrapElse

The following pattern introduces a feature mapping to a formerly unmapped artefact
by surrounding it with an #else branch of a new preprocessor condition:

+ #ifdef ULTRA_LCD
+ lcd_setalertstatuspgm(lcd_msg);
+ #else
alertstatuspgm(msg) ;
+ #endif

Figure 6.7: Pattern AddIfdefWrapElse (Adapted From [SBWWI6, p. 328])

To reproduce this pattern we have to edit a variant V' that implements feature U (i.e.,
eval(C(V),U) = true) and is not supposed to contain alert anymore. By deleting
alert under feature context U it will be mapped to =U by % qelete. Afterwards, the
new code lcd can be inserted under the same feature context U to map it to the
same with % ngert-

In VTS, alert can be removed from the product line (i.e., with projection true) and

replaced with lcd. Submitting it to the repository under ambition U will mark the
replacement only valid for variants containing feature U:

https://doi.org/10.24355/dbbs.084-202002271120-0

82 6. Evaluation of Applicability

r = alert r’ = U{lcd, alert)
get(true, r) put(true, U,r,v")
v = alert v =lcd

actual edit

Figure 6.8: Workflow for Pattern AddIfdefWrapElse in VTS [SBWW16, p. 328]

Pattern 5 — AddIfdefWrapThen

The reciprocal case of AddIfdefWrapElse is the AddIfdefWrap Then pattern in which
a code fragment gets annotated while also adding an #else case:

+ #ifdef ULTRA_LCD
lcd_setalertstatuspgm(lcd_msg);

+ #else

+ alertstatuspgm(msg);

+ #endif

Similarly, this pattern can be reproduced the same way as AddIfdefWrapFElse but
with the inverse feature context —U (instead of U). In a variant containing the
code led and satisfying —U, deleting lcd under feature context —U will let % gelete
determine ——U = U as the new mapping. Subsequently, alert has to be inserted
under the same feature context —U.

The workflow for VTS stays the same as for pattern AddIfdefWrapElse but with the
ambition negated to —U.

Pattern 6 — AddNormalCode

This patterns comprises the insertion of code without any associated feature map-
ping (i.e., under no feature context). The inserted code is either non-variational

(1):
+ lcd_setalertstatuspgm(lcd_msg);

or is supposed to exist under certain already formulated presence condition (2):

#ifdef ULTRA_LCD
+ lcd_setalertstatuspgm(lcd_msg);
#endif

Non-variational code is supposed to be contained in every variant. To reproduce
case (1), the code fragment can be inserted with feature context true so that its
insertion will be synchronised to every other variant.

To reproduce case (2), the new code has to be inserted under feature context U just
as for the AddIfdef pattern. When an outer scope is already mapped to U (e.g., a
class or method), the new code can even be inserted without any feature context

https://doi.org/10.24355/dbbs.084-202002271120-0

6.3. Variability-Related Code Editing Patterns 83

VTS our derivation
< % % %
Target g .é@ 5 o & § >.§
Pattern Name feature S @G g ;§ § 55 § g
: > I~ S o S P\ -
mapping | 2 E £ |9 wS 58
RemNormalCode | false U U 1 | true (or null) 1 Zdelete
Remlfdef false, false | U,-U U,-~U <2 | true or null <2 (2X) Z gelete
RemAnnotation | — — not applicable —

Table 6.3: Variability-Related Code-Removing Patterns

(i.e., null our true). It will inherit the outer scope mapping due to feature mapping
propagation in the AST.

In VTS, reproducing case (1) (i.e., non-variational code) is done with projection
and ambition both being true in a single check-in check-out cycle because the non-
variational code has to be present in every variant. For case (2), a view with the
projection being the presence condition (e.g., U in this case) has to be checked out.
The code lcd can then be inserted and and checked in with the ambition true.

Pattern 7 — AddAnnotation

In this pattern, whitespace changes (e.g., adding a comment) occur in annotations
or single preprocessor statements are added to the code. This usually happens
when syntactically ill-formed annotations are repaired (e.g., adding a missing #en-
dif). Depending on the chosen representation of feature mappings, ill-formed fea-
ture mappings may be warded in the first place (e.g., when using colours). As we
allow synchronisation between variants for well-formed mappings only, we do not
consider this case further.

Similarly, this pattern is not applicable in VTS, too. In VTS, only views containing
well-formed preprocessor annotations can be checked in.
6.3.2 Code-Removing Patterns

In this section, we cover code editing patterns in which code with or without adherent
feature mappings gets removed from a software product line. We give an overview
of these patterns in similar to the code-adding patterns.

Pattern 8 — RemNormalCode

This pattern depicts the removal of a code fragment, regardless of whether it is
annotated (i.e., mapped to a feature) or not:

#ifdef ULTRA_LCD
- lcd_setalertstatuspgm(lcd_msg);
alertstatuspgm(msg) ;
#endif

Figure 6.9: Pattern RemNormalCode (Adapted From [SBWW16, p. 328])

https://doi.org/10.24355/dbbs.084-202002271120-0

84 6. Evaluation of Applicability

As artefacts are removed from the entire software product line this way, they also
have to disappear from each variant containing them. Deleting lcd under feature
context true (or even null if F(led) # null) will yield its removal in every variant
because of

F qelete(- - -)(led) = F(led) N = true
= F(lcd) A false
= false.

In VTS, this pattern can be reproduced by retrieving the projection U, deleting code
led, and check it in under the same ambition U:

r = U(lcd - alert,) "= Ulalert,)

ﬁ
I

get(U,) put(U, U, 7, v")

alert

= lcd - alert
v ca - aer actual edit

Figure 6.10: Workflow for Pattern RemNormalCode in VTS [SBWW16, p. 328]

The dot - denotes the concatenation of two code fragments (i.e., both code fragments
follow each other in the document).

Pattern 9 — RemlIfdef

This pattern comprises the removal of entire preprocessor conditions. It covers
annotations with and without adherent #else branch.

#ifdef ULTRA_LCD

- lcd_setalertstatuspgm(lcd_msg);
- #else

- alertstatuspgm(msg) ;

- #endif

Figure 6.11: Pattern Remlfdef (Adapted From [SBWWI6, p. 329])

We can reproduce this pattern by deleting the source code fragments from variants
containing them. As both cases are mutually exclusive, we have to edit a different
variant for each branch, as for AddIfdefElse in In this pattern, the
artefacts get removed from the entire software product line and thereby should no
longer exist in any variant, such as for the previous RemNormalCode pattern. As
the artefacts already have a feature mapping, deleting them without any feature
context (i.e., null) is sufficient because .Z geete Will evaluate to false and thereby
herald their deletion from every variant. As well, the feature context can be set to
the feature mapping itself to achieve the same result.

https://doi.org/10.24355/dbbs.084-202002271120-0

6.3. Variability-Related Code Editing Patterns 85

VTS our derivation
<) %
Target S .05‘) § o & § 5.5
Pattern Name | feature ;Jc? § g § § g & § ;c;
: S) IS P\ SN
mapping § 5 i < 9 % o 5 bé
WrapCode U true -U 1| -U 1 Felete
UnwrapCode | true U U 1| true 1 Finsert
ChangePC ©q iy, true oy, TPy 2 | null, <2 Faeletes F insert
MoveElse U -U,U U, U 2 | null,U 2 F eletes F insert

Table 6.4: Variability-Related Annotation-Change Patterns

For VTS, this pattern is dual to AddIfdefFElse in [Section 6.3.1] In that sense, it can
be reproduced with two consecutive edits, each corresponding to insertion of the
code belonging to one of the branches:

Ul{led, alert) Ui, alert) L

get(U,r1) get(=U,rz)
put(U, U, r1,v)) put(=U, =U, o, v5)
led L alert L

actual edit actual edit

Figure 6.12: Workflow for Pattern Remlfdef in VTS [SBWWI6, p. 329]

Pattern 10 — RemAnnotation

Dual to pattern AddAnnotation in this pattern occurs when single
annotations are removed. This either repairs or yields to syntactically ill-formed

preprocessor annotations. As before, we do not consider ill-formed annotations as
we do not synchronise them and avoid them with a proper representation right away.
The same is true for VTS, which does not support ill-formed annotations either.

6.3.3 Annotation-Change Patterns

We complete the pattern examination with the remaining four patterns that are
not associated to code changes but annotation changes. In we give an
overview of the patterns as in the previous sections.

Pattern 11 — WrapCode

In this pattern, previously unmapped code gets annotated by surrounding it with
an #ifdef and closing #endif statement:

+ #ifdef ULTRA_LCD
lcd_setalertstatuspgm(lcd_msg);
+ #endif

Figure 6.13: Pattern WrapCode (Adapted From [SBWWI6, p. 329])

To reproduce this pattern, we have to remove the code fragment from those variants
that should not contain it anymore. Therefore, we have to delete 1cd under feature

https://doi.org/10.24355/dbbs.084-202002271120-0

86 6. Evaluation of Applicability

context ¢ = —U from a variant V' containing it, i.e., with eval(C(V),¢) = true.
Then, Z gelete Will assign F(lcd) A == = ¢ = U to lcd because its previous
mapping F(lcd) is either null or true. Deleting lcd under context ¢ = —U is
reasonable because it indicates that 1cd does not belong to ~U anymore and thus
to U.

As this pattern changes the feature mapping of an artefact from true or null to a
more concrete mapping, we consider this pattern to be a special case of the pattern
ChangePC, introduced later in this section. This pattern also covers the case of the
code fragment being mapped to true beforehand (instead of null).

This pattern can be reproduced similarly in VTS as shown below in [Figure 6.14] The
code lcd that should be wrapped has to be removed from all variants not satisfying
its new feature mapping. Therefore, the entire product line is checked out with the
trivial projection true and the code removed. Submitting the results under ambition
—U indicates the changes being exclusive to those variants satisfying —U only. Other
variants remain thus unchanged.

r = lcd r’" = U{lcd, 1)
get(true,r) put(true, ~U, r,v")
v = lcd v =

actual edit

Figure 6.14: Workflow for Pattern WrapCode in VTS [SBWW16, p. 329]

Pattern 12 — UnwrapCode

Dual to the previous pattern WrapCode, preprocessor annotations surrounding arte-
facts are removed in this pattern:

- #ifdef ULTRA_LCD
lcd_setalertstatuspgm(lcd_msg);
- #endif

Figure 6.15: Pattern UnwrapCode (Adapted From [SBWWTI6L p. 329])

The new feature mapping of the artefact is true (but its actual presence condition
might depend on further outer scope annotations), meaning that it has to be present
in every variant. Therefore, we have to insert 1cd into every variant that satisfies its
new presence condition and does not contain it yet. We can achieve this by inserting
lcd under feature context ¢ = true such that 1cd will be mapped to true by % insert-

With convenient tool support, we could also allow feature context ¢ = =U. Upon
synchronisation, the new feature mapping U (derived with .#,sert) has to be merged
with the current mapping F(1cd) = U to the desired feature mapping true.

We deliberately disallow removing feature mappings entirely (i.e., setting them to
null) because we aim to improve consistency and synchronisation between clones

https://doi.org/10.24355/dbbs.084-202002271120-0

6.3. Variability-Related Code Editing Patterns 87

trough a growing amount of mapped artefacts. Instead, whenever a feature mapping
has to be removed because it is not (or no longer) correct, it can be changed instead.
Therefore, we consider this pattern to be a special case of the following pattern
ChangePC.

Stanciulescu et al. admit that "this pattern is not very amenable to [their] projec-
tional editing model”in VTS [SBWW16, p. 329]. As for our clone-and-own scenario,
the code to unwrap has to be inserted to each variant not containing it yet. There-
fore, the view with the projection being the negated feature mapping —U has to be
checked out. The code lcd has to be inserted and checked in with the ambition being
the same as the projection. The resulting choice in the product line U(led, led) (i.e.,
choose lcd when U is satisfied or led when it is not) is simplified by the implemented
minimisation rules to just led in the new revision r':

r = U(lcd,) r’ =lecd
get(ﬁU, r) pUt(_'Ua_‘Ua Tavl)
v =1 v = led

actual edit

Figure 6.16: Workflow for Pattern UnwrapCode in VTS [SBWWI6, p. 329]

As projection and ambition are reasonable but not very intuitive, Stanciulescu et al.
suggest a non-projectional workflow here [SBWW16|, p. 329]. When obtaining the
entire product line with projection true, the preprocessor annotations can be re-
moved manually and checked in again with the ambition ¢rue. This also avoids
the need to exactly duplicate the code lcd but forfeits the benefits of projectional
editing.

Pattern 13 — ChangePC

This patterns captures cases where the presence condition of a preprocessor anno-
tation is changed:

- #ifdef ULTRA_LCD
+ #if ULTRALCD && ULTIPANEL
lcd_setalertstatuspgm(lcd_msg) ;
#endif

Figure 6.17: Pattern ChangePC (Adapted From [SBWW16, p. 329])

Here, not only the feature ULTIPANEL was added to the condition but also UL-
TRA_LCD was renamed to ULTRALCD. Reproducing this pattern with our derivation
mechanism depends on our synchronisation mechanism (cf., [Chapter 9). We re-
fer to the previous annotation ULTRA_LCD as ¢; and to the new annotation UL-

TRALCD && ULTIPANEL as ¢,. Currently, we have to delete the affected code entirely
(i.e., removing it under feature context ¢y, = null or ¢, = ¢, such that Z gelete

https://doi.org/10.24355/dbbs.084-202002271120-0

88 6. Evaluation of Applicability

will assign false as its feature mapping) and reinsert it under the new condition
Pins = P9 = ULTRALCD && ULTIPANEL.

Changing the feature mapping F(a) of an artefact a € A to F'(a) requires the
following subsequent variant synchronisation:

e In variants V satisfying the old mapping F(a) but not the new one F'(a) (i.e.,
eval(C(V), F(a)) = true and eval(C(V), F'(a)) = false), the artefact a has to

be removed.

e In variants V satisfying the new mapping F'(a) but not the old one F(a) (i.e.,
eval(C(V), F(a)) = false and eval(C(V'), F'(a)) = true), the artefact a has to
be inserted.

In VTS, this pattern can be reproduced similarly. By applying both previous pat-
terns, UnwrapCode followed by WrapCode, the old annotation (e.g., U) can be re-
moved and replaced in a second commit cycle with the new presence condition (e.g.,
ULTRALCD && ULTIPANEL). This workflow is also examined in the similar pattern
MovekFElse, illustrated in the next subsection. Stanciulescu et al. admit that this
pattern is “perhaps better supported without a projectional edit” [SBWWI16, p. 329
by checking out the entire product line with projection true and changing the pre-
processor annotation manually. The edited variant can then be checked in again
with ambition true.

As we store feature mappings offline (i.e., not explicitly in the text but separately),
renaming features can be done centrally (e.g., in the global feature model). However,
the features have to be renamed in all files containing meta information of feature
mappings. To avoid this error-prone task, we suggest identifying features by unique
indexes instead by their name. And index-to-name mapping can be stored in a
central global register together with the feature model.

Pattern 14 — MowveFElse

In this pattern, code is moved from one branch of a condition to another one by
moving an #else statement.

#ifdef ULTRA_LCD
lcd_setalertstatuspgm(lcd_msg);
- #else
alertstatuspgm(msg) ;
+ #else
cleanup(msg) ;
#endif

Figure 6.18: Pattern MoveElse (Adapted From [SBWWI6, p. 329])

This (rare) pattern is not very amenable to our derivation. Because old and new
mapping of the affected artefact alert are mutual exclusive, we have to edit two

https://doi.org/10.24355/dbbs.084-202002271120-0

6.4. Discussion 89

variants (i.e., one satisfying the old and one satisfying the new feature mapping).
First, we have to remove alert entirely such that it is not present in any variant
anymore. Similar to pattern ChangePC, this can be done by deleting alert under
feature context ¢,,; = true such that .Z geete maps it to false. Second, we have
to insert alert again under the feature context U such that it is mapped to U by
Finsert- Otherwise, this pattern can also be reproduced inversely by first inserting
it to each variant according to pattern UnwrapCode, and second deleting it from all
original variants (i.e., those satisfying =U) under feature context ¢}, = =U. It is
then mapped to F(alert) A =, = true A==U = U by Z qelete-

In VTS, this pattern can be reproduced the same as the previous pattern ChangePC.
First, alert has to be removed entirely (i.e., from the partial variant projected by
—U). Afterwards, alert has to be reinserted under the opposite presence condition
U. In the following workflow overview, the three code lines from the above example
are abbreviated by their initial letters [, a, and ¢, respectively:

Ull,a-c) U(l,c) U(l-a,c)
get(~U,r1) get(U,r2)
put(U,U,rz,v5)
put(—|U7—\U,r1,v1)
a-c . c [. l-a
actual edit actual edit

Figure 6.19: Workflow for Pattern MoveElse in VTS [SBWW16| p. 330]

6.4 Discussion

In this section, we answer our research questions formulated in based on
our study conducted in the previous section. We discuss each question separately.
Therefore, we refer to our results summarised in [Table 6.2] [Table 6.3], and
throughout this section. Thereby, we do not consider the patterns AddAnnotation
and RemAnnotation because both are neither applicable with our derivation nor
with VT'S by Stanciulescu et al. [SBWWI16]. Both patterns capture whitespace
changes, and introducing or repairing ill-formed preprocessor annotations neither of
which are recognised, supported, or necessary for both our derivation and VTS.

6.4.1 RQ 1 — Count of Feature Context Switches

Our first research question is: How often do developers have to switch the feature
context? With this question we want to investigate to which extent the specification
of feature contexts impairs the usual programming workflow developers are accus-
tomed to. To answer this question, we listed all unique feature contexts necessary
to reproduce each pattern in for each variability-related code change
pattern identified by Stanciulescu et al. [SBWWI16]. We compare the amount of
necessary feature contexts with the amount of unique desired mappings for each
pattern. Further, we consider the number of unique variants (i.e., clones) that have
to be edited. Editing multiple variants is necessary when multiple desired feature
mappings contradict each other or no variant exists implementing all contexts at
once.

https://doi.org/10.24355/dbbs.084-202002271120-0

90 6. Evaluation of Applicability

We begin by inspecting patterns related to pure insertions. An overview of these
patterns can be found in [Table 6.2l The patterns AddNormalCode, AddIfdefElse,
AddlIfdef, and its repetition AddIfdef™ cover pure insertions of new code with (or
without) desired feature mappings as indicated by the involved derivations column.
AddNormalCode and AddIfdef require editing a single variant with a single feature
context only. Considering the n-fold repetition AddIfdef™ of pattern AddIfdef sep-
arately is useful as it illustrates the opportunity to reuse the same feature context
when it is required multiple times. Some of the desired feature mappings cq,..., ¢,
may be equal and can be inferred with a single switch of the feature context only.
However, this does not mean that developers will always perform edits such that
they have to switch the feature context as rarely as possible. As finding solutions to
(technical) problems and experimenting thereby are also part of programming, the
actual number of context switches might be even higher than n, just as preprocessor
annotations can switch multiple times during a single programming session.

Furthermore, AddIfdef™ shows the potential smaller amount of variants that have
to be edited. If multiple different feature contexts are all valid for a single vari-
ant’s configuration, all edits can be made in that variant. The same conclusions
as for AddIfdef™ apply to repetitions of AddNormalCode. AddlIfdefElse introduces
two contradicting feature mappings due to the #else statement. Thus, we have
to edit two variants with the respective feature context (i.e., the condition and its
negation). As variants of product lines always implement a specific unique configu-
ration each, a single variant can never implement contradicting features or feature
interactions. Hence, we already reached the minimum number of variants to edit for
AddIfdefElse without using artificial exploits as explained in [Section 4.4 As the fea-
ture contexts equal the desired feature mapping for each pure insertion pattern (i.e.,
AddNormalCode, AddlfdefElse, Addlfdef, and AddIfdef™), also their count equals.
Except for AddIfdef™ for which potentially fewer context switches are necessary,
the necessary amount of different feature contexts is the same as for preprocessor
annotations to reproduce the patterns.

The code replacement patterns AddIfdefWrapFElse and AddIfdefWrap Then, also sum-
marised in [Table 6.2, both require to delete an artefact and insert another one. Both
patterns can be reproduced in a single variant by replacing an artefact. Here, two
new feature mappings can be inferred with specifying just a single feature context.
This is possible because this feature context is interpreted in a different way by each
of the two consecutive different edits. Furthermore, both patterns can reproduced
within just a single variant.

The two code-removing patterns RemNormalCode and Remlfdef summarised in
both potentially allow the feature context to be empty. For reproducing
Remlfdef, the feature context can always be undefined (i.e., null). Thus, switching
the context is necessary at most one time, namely when already another context is set
that has to be reset manually. For reproducing RemNormalCode, the feature context
can be undefined if the artefact to delete already has a feature mapping, otherwise it
has to be true. Analogously to Remlifdef, RemNormalCode also requires switching
the feature context thereby at most one time for each variant. As this pattern covers
removing #ifdef with or without subsequent #else, one or two variants have to be

https://doi.org/10.24355/dbbs.084-202002271120-0

6.4. Discussion 91

edited. As for pattern AddIfdefElse, two variants have to be edited if an #else block
is present because both annotations are contradictory.

Finally, we consider the remaining four annotation-change patterns summarised in
[Table 6.4 Both, WrapCode (i.e., adding an annotation) and UnwrapCode (i.e.,
removing an annotation) require a single edit under a single feature context in a
single variant. As MowveFElse is a special case of ChangePC, we do not consider
it by itself in detail. It only requires editing two different variants as again two
contradicting feature mappings are involved. In ChangePC', the feature mapping
of an artefact is changed to another arbitrary formula. Reproducing this pattern
requires to delete the artefact and reinsert it with the feature context being the
new mapping. As no context (i.e., null) has to be specified for the first step, the
context has to be switched at most two times in total, similar to the code-removing
patterns RemNormalCode and Remlifdef. If a variant exists whose configuration
satisfies both, old and new mapping, all necessary edits can be made in just that
single variant. If no such variant exists, we need to edit two variants. This can
happen especially when both mappings are contradictory, as in MoveFlse. We aim
to provide custom utilities to allow intuitive manual changes of feature mappings
because deleting and reinserting an artefact to remap it, is an artificial procedure in
programming.

In general, we consider editing multiple variants at once to be unlikely for clone-and-
own development. Patterns such as AddIfdefElse are natural for software product-
line engineering but ineligible for variant-focused development due to their con-
tradicting mappings. Empirical evidence for our hypothesis is given by the case
study on Marlin performed by Stanciulescu et al. [SBWWI16] and summarised in
Inserting or deleting artefacts with two contradicting feature mappings
at once (AddIfdefElse, Remlfdef, MoveElse) is generally a more scarce edit than
editing just a single mapping (AddIfdef, AddNormalCode, RemNormalCode) even
in product-line development. Only 1.48% of all patches classified by AddIfdefElse
could only be classified as such and the same is true for only 4.49% for pattern
Remlfdef, which probably still contains patches without conflicting feature map-
pings. The pattern MoveFElse is very rare at all.

We assume that it is more intuitive and natural for variant-oriented development
(such as clone-and-own) to focus on implementing features that are present rather
than solutions for absent features (i.e., negations of features). Usually, different de-
velopers are responsible for individual clones [AJBT14, [DRB*13, LnBC16, RCC13],
SSW15| rather than features. In that sense, each developer is primarily (but not
exclusively) interested in developing his own variant rather than the others. Hence,
we suppose patterns with inherent negated feature mappings to be implemented in
clone-and-own development simply with different features. The following code snip-
pet shows an example of an adapted version of AddIfdefElse that we suppose to be
more likely and intuitive for clone-and-own development:

https://doi.org/10.24355/dbbs.084-202002271120-0

92 6. Evaluation of Applicability

+

#ifdef ULTRA_LCD
lcd_setalertstatuspgm(lcd_msg);
#endif

+ +

+

#ifdef ALERT
alertstatuspgm(msg) ;
#endif

+ +

Both features ULTRA_LCD and ALERT may still be exclusive to each other and thereby
preserve the semantics of AddIfdefElse. This contradiction can either be defined
explicitly in the feature model or implicitly through the set of actually implemented
configurations (e.g., both features are never present in the same variant at the same
time). In that case, the first three lines belonging to feature ULTRA_LCD would be
implemented in another variant than the other three lines mapped to ALERT.

In conclusion, we see that a minimal amount of feature context switches is necessary
to reproduce the patterns. For all patterns except ChangePC and MowveFElse, the
count of necessary different feature contexts is equal or even smaller than the num-
ber of different target feature mappings. Our specialised derivation functions for
different types of edits even allow inferring two desired feature mappings with just a
single feature context for some patterns. Reproducing MoveElse and ChangePC' is
not amenable to our derivation because deriving feature mappings without edits is
out of scope of our derivation. We also minimise the amount of different variants to
edit as only multiple variants have to be edited for contradicting feature mappings
or when no variants implement different (non-alternative) features at the same time.

6.4.2 RQ 2 — Feature Context Complexity

Our second research question is: How complex has the feature context to be in com-
parison to the desired feature mapping? We want the feature context specification
to be as intuitive for the user as possible. This does not only increase its acceptance
for workflow integration but also reduces the chance for ill-formed specifications.
As for our first research question, we consider all unique feature contexts necessary
to reproduce each pattern in for each variability-related code change
pattern identified by Stanciulescu et al. [SBWWT6].

All of the patterns AddNormalCode, AddIfdefElse, AddNormalCode, AddIfdef, and
its repetition AddIfdef™ can be reproduced in our clone-and-own by setting the fea-
ture context to exactly the desired feature mapping for the artefact to edit. These
are the patterns related to pure insertion (i.e., without further changes such as for
replacements) of artefacts. We hypothesise the feature context to not impair de-
velopment more than specifying preprocessor annotations for code insertions due to
the formulas being identical. For the same reason, we consider the application of
our feature context for code insertions in real software development to be compre-
hensible for developers in general. Potential initial unfamiliarity and hurdles due to
the accessibility of the feature context in an IDE may arise but are not related to
the patterns themselves but the feature context adaption in general.

https://doi.org/10.24355/dbbs.084-202002271120-0

6.4. Discussion 93

For the code replacement patterns AddIfdefWrapElse and AddIfdefWrapThen, two
new feature mappings can be inferred with specifying just a single feature con-
text. The inserted artefact is mapped to the feature context ¢, while the re-
placed artefact is mapped to the negated feature context — . We hypothesise
this to be intuitive as the old artefact does not belong to feature ¢ anymore and
the new artefact replaces it. However, we suppose distinguishing the patterns
AddIfdefWrapElse and AddIfdefWrapThen to be potentially confusing for develop-
ers. While we assume replacing existing code to be intuitive, getting the negation
correct when reproducing AddIfdefWrapThen can become intricate. We hypothe-
sise pattern AddIfdefWrap Then (requiring the negated feature context) to be rather
rare in clone-and-own development and that instead AddIfdefWrapFElse is used with
another convenient feature instead because AddIfdefWrapFElse covers the case of re-
placing a formerly general solution (e.g., artefact) with a special case for a specific
feature. In contrast, a formerly general solution is identified to be actually a special
case when pattern AddIfdefWrapThen is applied which indicates the detection of er-
roneous design or a bug. Our hypothesis is further substantiated by the occurrences
of the patterns in product-line development given in as determined for
Marlin by Stanciulescu et al. [SBWWI16]. The pattern AddIfdefWrapFElse is about
three times more frequent than AddIfdefWrap Then in terms of overall matching pat-
terns (#Multi) and nearly 6 times more frequent for exact classification of patches

(#Only).

Removing mapped artefacts entirely is especially easy with our derivation. For
both RemNormalCode and Remlfdef, true is always a possible feature context to
choose. For Remlfdef, even null is always a possible feature context. When the
deleted artefact is already mapped, nullis also a valid feature context for reproducing
RemNormalCode. However, no feature context other than true or null is allowed to
be specified because the deleted artefact would be mapped to =A A —~B, where A is
its old mapping and B the feature context. Specifying the feature context correctly
here, might become confusing.

Reproducing the annotation-change patterns summarised in is more intri-
cate than the previous ones. To assign a feature mapping to a previously unmapped
artefact for pattern WrapCode (i.e., mapped to true or null before), we have to re-
move it from all variants that are not allowed to contain it for a given target feature
mapping m. We can achieve this by deleting the artefact with the feature context
being the negated target feature mapping —m. Although these steps are reason-
able from a logical perspective, we suppose them to be unintuitive when it comes
to actual software development. Especially, the necessity to edit another variant to
change a feature mapping of an artefact being present in a source variant can be
confusing. Dedicated tool support, can enable changing feature mappings manually.
Contrary, we consider reproducing UnwrapCode to be very amenable to our work-
flow and to occur as an occasional side effect during clone-and-own development.
Inserting the target artefact under the desired new feature mapping (e.g., true in
this case) is sufficient. Nevertheless, a mechanism for manual mapping changes is
adequate here, too. As for the previous RQ 1, MoveFElse is again a special case of
ChangePC' as shown in [Table 6.4, Whereas MoveElse handles a mapping change
from the concrete features —U to U only, ChangePC covers arbitrary changes of

https://doi.org/10.24355/dbbs.084-202002271120-0

94 6. Evaluation of Applicability

feature mappings. We can reproduce ChangePC' in two steps: First, we have to
delete the affected artefacts from all variants. Therefore, no feature context is nec-
essary at all (i.e., null is sufficient but true also works). Second, the artefact has
to be reinserted under the new presence condition. Although this workflow is not
very pleasant to software development, we suppose this to be the easiest workflow
possible when using our derivation because it only only springs into action upon
edits that have to be introduced artificially here.

The most common change patterns by far are AddNormalCode and RemNormalCode
according to [Table 6.1 For reproducing both patterns, it is often unnecessary to
specify any feature context at all due to our AST propagation introduced in
[ter 3] When artefacts are inserted into a propagating scope (e.g., a class or function
definition) that already has the desired mapping, no feature context has to be spec-
ified for AddNormalCode. The same applies for pattern RemNormalCode. Thus,
setting the feature context to null is valid to reproduce both patterns when applied
inside appropriate scopes.

6.4.3 RQ 3 — Comparison to VTS

Our third and last research question is: How does our feature mapping derivation
compete with the projectional editor VTS by Stanciulescu et al. considering the pre-
vious two research questions? We compare our derivation with VTS because both
methods exhibit a derivation for feature mappings from a user-specified formula (i.e.,
feature context and ambition). First, we discuss the general differences and com-
monalities of VT'S with or derivation. Second, we examine the differences between
ambition and feature context in-depth for each code change pattern. Third, we con-
clude our results and address problems and notes pointed out by Stanciulescu et al.
in their discussion [SBWW16].

6.4.3.1 General Differences

We begin by identifying general commonalities and differences in our feature map-
ping derivation and that from VTS. Both derivations are based upon an intention
specified by developers upon edits they make: These are the feature context in our
derivation and the ambition in VTS. Albeit this similarity, VTS and our clone-and-
own enhancement have different motivations and therefore different goals as shown
in on Page 77, Whereas we want to enhance clone-and-own development
with product-line concepts to better trace commonalities and differences of vari-
ants, Stanciulescu et al. constructed VTS to ease software product-line development.
Therefore, VTS allows developers to edit views (i.e., partial variants) instead of the
whole product line at once. Upon reintegration to the central product-line reposi-
tory, the changes in the partial variant are assigned a feature mapping depending on
the edit and the specified ambition. To retrieve a view with VTS, a propositional
formula, the projection, has to be specified. Albeit, our derivation does not exhibit a
similar concept explicitly, a suitable projection is chosen implicitly for some patterns
by selecting convenient clones to edit.

One important difference between VT'S and our derivation is the handling of absent
feature mappings. As VTS is a product-line editor, feature mappings are always

https://doi.org/10.24355/dbbs.084-202002271120-0

6.4. Discussion 95

given. If no mapping is defined explicitly for an artefact (i.e., it is not surrounded
by preprocessor annotations), then it is mapped to true because it is always present.
In contrast, we work on clones without any initial domain knowledge. Therefore,
not a single artefact is mapped to a feature before adopting our derivation to clone-
and-own software (i.e. all mappings are null). Thus, we explicitly deal with absent
feature mappings while VTS does not.

Furthermore, our derivation relies on the crucial but still missing subsequent syn-
chronisation of variant for reproducing some of the code change patterns. Whereas
VTS synchronises the edits to the repository with the put function, we do not have
a concept for synchronising variants yet. Synchronising artefact edits with adherent
(new or changed) feature mappings is out of scope of this thesis but an important
necessary future work. Nevertheless, we have thoroughly taken care of inferring
feature mappings that correctly describe the presence (or absence) of artefacts in
variants when reproducing the patterns. It is yet an open topic though, how to
merge different feature mappings specified differently across variants.

6.4.3.2 Ambition vs. Feature Context

In the following, we compare the ambition of VTS with our feature context. There-
fore, we summarise and reflect which propositional formulas have to specified for the
user for both systems for each code editing pattern.

To reproduce code-adding patterns summarised in[Table 6.2 VT'S almost exclusively
requires the projection to be true. Only for AddIfdefElse and AddNormalCode dif-
ferent projections are necessary. For adding the #else block in AddIfdefElse the
projection =U has to be used. Inserting code into an annotated block (case (2) of
AddNormalCode) can be done with the projection being that annotation. Using the
projection true discards the benefits of projectional editing. The entire product line
is checked out from the central repository and has to be edited at once. Contrary,
in clone-and-own development as we target it, one always has to work with variants
(i.e., projections). This requires to choose suitable variants for implementing spe-
cific features manually. We do not consider this to be an issue, as developers agreed
on the features implemented in a (or their) variant [FLLHE1S, [LFLHE15, LLHELT]
according to our assumptions in [Section 3.1} Hence, developers know whether they
can implement a requested feature in their variant or not. Managing change or
feature requests is already common in industry and implemented for example via
ticketing systems or issues (e.g., on GitHulf) [JBAC15, KDO14, DRB*13].

Our feature contexts equal the ambitions of VTS for all code-adding patterns ex-
cept AddNormalCode. Therefore, both methods exhibit the same complexity for
developers to specify their intention. Instead of specifying an ambition for pattern
AddNormalCode in VTS, a projection of the feature to extend can be edited. This
role-switch of projection and ambition could potentially become confusing for devel-
opers but also bears the opportunity for editing a projection instead of the entire
product line as necessary for the other patterns. Furthermore, the same amount of
variants has to be edited for all code-adding patterns except AddIfdef™ for which
editing potentially fewer variants can be sufficient.

TAll issues in Marlin opened before January 17, 2020: https://github.com/MarlinFirmware/
Marlin/issues?uti8=%E2%9C%93&q=is%3 Aissue+created %3A %3C2020-01- 17+

https://doi.org/10.24355/dbbs.084-202002271120-0

https://github.com/MarlinFirmware/Marlin/issues?utf8=%E2%9C%93&q=is%3Aissue+created%3A%3C2020-01-17+
https://github.com/MarlinFirmware/Marlin/issues?utf8=%E2%9C%93&q=is%3Aissue+created%3A%3C2020-01-17+

96 6. Evaluation of Applicability

The code-removing patterns summarised in are reproduced in VTS differ-
ently than with our derivation. For RemNormalCode and Remlfdef projections and
ambitions are the same in VTS: Both describe the feature or feature interaction from
which artefacts should be deleted. The feature context in our derivation has to be
true or null to reproduce those patterns and thereby is independent from the actual
feature. Thus, our derivation is able to produce the desired results even without
requiring a feature context upon deletions. To avoid confusion on when the feature
context is allowed to be omitted and when not, we recommend to set it to true for
deletions.

The annotation-change patterns summarised in are intricate for both VT'S
and our derivation. Especially ChangePC, the most general of the four patterns,
is not amenable to both workflows. Using projections to reproduce this pattern in
VTS only obfuscates the actual task, while our derivation is not applicable without
artificial non-operational code changes. For VTS, Stanciulescu et al. suggest using
a non-projectional edit [SBWWI6|, p. 329]. The only advantage of our derivation
for this pattern are the more simple feature contexts (null instead of — ¢, and ¢,
instead of = y,) and the potential to reproduce the pattern in just a single variant if
its configuration satisfies source and target feature mapping. Similar to ChangePC,
the pattern MoveFlse is also poorly supported by both VTS and our derivation.
WrapCode as well as UnwrapCode require the ambition to be a negation, whereas
our feature context is only a negation for WrapCode. Stanciulescu et al. recom-
mend implementing more specialised operations for UnwrapCode and MoveFElse in
a text editor or IDE [SBWW16| p. 331] as we also planned to do as future work in
Section 6.4.11

In general, ambition and feature context are nearly the same for code-adding patterns
but differ greatly for code-removing and annotation-change patterns. Especially for
code removing patterns, we do not require negations and need less negations for
annotation-change patterns. Explicitly considering an absent feature context is an
advantage of our derivation that allows edits to be reasonably mapped even without
a feature context being specified for some patterns. Furthermore, the feature- and
annotation-independent feature context true is often viable. To render the context
being true reasonable to developers, true could serve as a default feature context.
Moreover, reproducing the patterns with our derivation always requires editing at
most the same amount of variants (or views respectively) as VTS needs.

6.4.3.3 Conclusions

Although reproducing some patterns required yet unintuitive solutions, our deriva-
tion is able to reproduce all of the presented patterns. Reasonably, Stanciulescu et al.
point out that "the edit patterns should not be seen as the edit operations a devel-
oper would use when using a variation control system” [SBWWI16, p. 331]. Sim-
ilarly, we suggest the same for clone-and-own development: While most patterns
describe reasonable code changes for software development in general, some of them
are only suitable for product-line engineering directly. However, support for pat-
tern ChangePC and thereby the other annotation-change patterns is a mandatory
requirement for repairing wrong feature mappings or just updating them. There-
fore, another dedicated mechanism is required that is perhaps best supported as an
explicit functionality in an IDE.

https://doi.org/10.24355/dbbs.084-202002271120-0

6.4. Discussion 97

We suppose specifying a feature context to be rather intuitive in general, especially
for insertions, but agree with Stanciulescu et al. who claim that some mental effort
is required in understanding what projection, ambition, and thereby also feature
context mean [SBWWT6, p. 331]. In their experience though, applying projection
and ambition correctly was straightforward most of the time but not when multiple
commits were necessary [SBWWI16, p. 331]. In the clone-and-own scenario, the
amount of edits can potentially be smaller than the number of necessary commits
in VTS because we can switch the feature context without requiring a separate
synchronisation step beforehand. Confusion may arise when deleting artefacts with
our derivation. Developers have to differentiate whether they want to replace an
artefact in their clone, or want to delete it from the entire software (i.e., all clones).
As in both cases, a single variant is edited only, we admit this distinction to be
potentially confusing despite it being necessary and reasonable from a technical
point of view.

The inspected patterns do not cover moves of artefacts because the alignment (e.g.,
order of lines of code) of artefacts is not considered. Therefore, we did not require
our derivations Z yove and % pdate to reproduce any of the patterns. However,
we do not consider this to be crucial as both behave similar to %t With the
difference that they can incorporate the old feature mapping of an artefact (i.e., the
mapping before the edit) which is not present for insertions. Hence, we suppose
that some patterns could even be reproduced in more simple ways when considering
the alignment of artefacts. For example, pattern ChangePC could be reproduced
with a single update operation if the affected line of code is updated instead of just
remapped.

As views in VTS are generated by discarding all preprocessor annotations contra-
dicting the specified projection, many orthogonal features still remain in the view
although they are unrelated to the feature of interest. For instance, a view obtained
with the projection A, where A is a feature, still contains code belonging to unre-
lated features (e.g., B, C, ...) if there are no constraints between those features. As
clones are implementations of configurations of a feature model in our targeted clone-
and-own scenario, these clones can also be considered as views. Thereby, clones are
likely to contain less code than views obtained in VTS because their configuration
explicitly deselects certain features that may be unrelated to the feature context.

Finally, we address a limitation of VT'S presented by Stanciulescu et al. themselves
stated as future work: "How to handle the cases when an ambition is weaker than
the projection?” [SBWW16l, p. 331]. In VTS, the ambition always has to be stronger
than the projection as the projection itself is always part of the ambition internally
as described in [Section 6.2] For VTS, a weaker ambition could be desirable when
an edit should not be executed on the edited view but affect other variants as well,
for example when fixing a bug. This directly matches our targeted clone-and-own
scenario. As in our scenario, the feature context (equivalent to ambition) is always
weaker than the configuration (equivalent to the projection) we directly address
this question. The motivation described by Stanciulescu et al. directly matches our
clone-and-own scenario.

https://doi.org/10.24355/dbbs.084-202002271120-0

98 6. Evaluation of Applicability

6.5 Threats to Validity

In this section, we depict possible threats to validity of our study. As we reuse the
study by Stanciulescu et al. [SBWW16| for detection of variability-related code edit-
ing patterns in software product-line development, we inherit their possible threats
to validity. In the following, we distinguish between threats to internal and external
validity.

6.5.1 Internal Validity

We may have introduced a bias in considering variability-related code editing pat-
terns not from clone-and-own but from software product-line development. Nev-
ertheless, as we consider clones to be variants, which in turn are projections of a
product line, we claim the considered edit patterns to be superset of variability-

related editing patterns in variants as already discussed in [Section 6.2]

We further inherit the following threats to internal validity from reusing the study
by Stanciulescu et al. [SBWW16]. They admit that they “might have introduced bias
when identifying the edit operations” [SBWWI16, p. 331]. Bias could be introduced
from the procedure of identifying the patterns and from subject system Marlin.
To guarantee completeness of patterns for edits in Marlin’s history up to a certain
commit, all of the 5,640 patches until then were analysed in a systematic way.
Iteratively, all patches were analysed and validated to be captured by at least one
pattern. Stanciulescu et al. cross-checked the patterns with 34,018 patches from
Busybox, another preprocessor-based software product line. In Busybox, 99.27%
of the patches could be classified by at least one of the identified patterns. The
examined version of Marlin contains about 40,000 lines of code with over 140 features
in 187 source files developed in 3,747 commits by about 49 developers, rendering it
a viable candidate for analysis. Busybox has about 175,000 lines of code emerged
from 13,700 commits at the investigated commit wherefore we consider it to be a
convenient control project.

6.5.2 External Validity

One major threat to the external validity of our result is the yet missing concept
on how to synchronise feature mappings across variants which is out of scope of
this thesis. Synchronising newly introduced feature mappings (changing a mapping
of an artefact previously mapped to null) is unproblematic if the mapped artefact
is already present in the variants to synchronise. However, reproducing some pat-
terns relies on a proper synchronisation of different mappings for the same artefact
specified in different variants. For instance, the mappings true and U have to be
updated or merged to true as necessary for pattern UnwrapCode in [Section 6.3.3]
Whenever synchronisation is an issue for reproducing patterns, we explicitly men-
tion that. Further, we focused on choosing reasonable mapping deductions for the
future variant synchronisation.

A further yet implicit assumption is that upon pattern reproduction, our derivation
algorithm always detects insertions and deletions of code fragments correctly as such.
Since edit classification in our algorithm is extensible, we could always choose to im-
plement the same change classification as Stanciulescu et al. for VT'S [SBWW16] to

https://doi.org/10.24355/dbbs.084-202002271120-0

6.6. Summary 99

obtain the same line-based diffs. Using line-based diffs is possible for our derivation
because they can be represented as ASTs of depth 1 in which all lines are represented
by top-level nodes.

We further inherit the following threats to external validity from reusing the study by
Stanciulescu et al. [SBWW16]. First, Stanciulescu et al. claim the identified patterns
to be general enough because some of them were already identified the same in
previous work [DvDP16l [TBACTS, [PGT™13|. By composing the identified patterns,
users can edit code the same way as in a default editing model as assumed by
Stanciulescu et al. [SBWW16| p- 331]. Potentially more complex patterns might stay
undetected but were not necessary for the two large projects Marlin and Busybox.

6.6 Summary

In this chapter, we evaluated the applicability of our feature mapping derivation for
real-world software development. Therefore, we showed how code changes in the
history of the product line Marlin can be reproduced in our clone-and-own scenario
with adherent feature mapping changes when using our derivation. We answered
three research questions concerning the count of necessary feature context switches,
the complexity of the feature context, and the comparison to the feature mapping
derivation in VTS by Stanciulescu et al. [SBWW16] when reproducing these changes.

To replay variability-related real-world code changes, we reused the study conducted
by Stanciulescu et al. [SBWW16]. They identified a set of variability-related code
change patterns for preprocessor-based software product lines that are able to de-
scribe all code changes in the history of the printer firmware Marlin [vdZ] up to
a certain commit. They used these patterns to evaluate their own projectional
product-line editor VT'S. These patterns can be roughly classified in patterns adding
code, removing code, or patterns that solely change annotations (i.e., feature map-
pings). By projecting these patterns to our clone-and-own scenario, we obtained a
superset of possible variability operations for it.

Important to mention is that synchronising variants is yet an open topic and a
necessary future work. Without it, we indeed obtain correct feature mappings but
are not able to synchronise them to other variants. This is in turn required to
reproduce some of the patterns and to make use of our derivation in general. We

will discuss this further in [Chapter 9}

We showed that all variability-related code editing patterns can be reproduced with
our feature mapping derivation in our targeted clone-and-own scenario. While not
all patterns are amenable to our workflow, most of them require simple feature
contexts (in terms deviation from the desired mapping) and a minimal amount
of different variants to edit. We identified some patterns to be reproducible even
without specifying a feature context (i.e., setting it to null) or setting it just to true.
To change feature mappings themselves, artificial non-operational code changes have
to be made such that our derivation can spring in to action. When implementing
our derivation, a mechanism for directly changing a mapping without code changes
is required.

As Stanciulescu et al. already pointed out, it is yet important to consider that the
patterns do not reflect the edit operations a developer would use in other scenarios,

https://doi.org/10.24355/dbbs.084-202002271120-0

100 6. Evaluation of Applicability

such as projectional editing or clone-and-own [SBWWI6, p. 331]. We found our
derivation to be as powerful as the feature mapping derivation of V'S by Stanci-
ulescu et al. [SBWW16], while requiring slightly more simple feature contexts. In
general, both methods bear the same complexity exhibit analogous workflows for
most of the patterns.

https://doi.org/10.24355/dbbs.084-202002271120-0

7. Related Work

In this chapter, we give an overview on relevant other research for this thesis. Our
feature mapping derivations is settled in-between software product-line research and
clone-and-own software development. As the latter is more an observable phe-
nomenon than an actual research topic we do not examine it further in this chapter.
This thesis is part of the VariantSync project. Previous work on semi-automated
feature mapping derivation on line-based mappings [Sonl8] assumes that each line’s
mapping depends on the mapping of the previous line although there is no evidence
for this assumption as shown in on Page [I7 In the future, we will
extend other preliminary work on variant synchronisation [Pfol5] in the prototype
tool [PTST16] for line-based feature mappings.

We begin with summarising state-of-the-art in software product-line research in
ftion 7.1l In|Section 7.2}, we give an overview on variation control system. Afterwards,
we sum up techniques for recovering feature mappings from existing code in
ftion 7.3\ In [Section 7.4 we picture other clone management techniques. We end by

summarising existing work on tree differencing in [Section 7.5|

7.1 Software Product Lines

As opposed to ad-hoc programming, software product-line engineering distinguishes
between domain and application engineering [ABKS13, PBvdL05]. In domain engi-
neering, a set of desired features of the software is identified. These features are the
main development artefacts, instead of variants like in clone-and-own. In application
engineering, these features are composed to variants by a dedicated variation mecha-
nism, such as preprocessors or with plugin architectures [ABKS13|, [CEQQ, [SvGB05].
Variability models, such as feature models, can be used to describe features and their
valid combinations [CE00, Bat05]. We use feature models to describe all possible
variants. Although only a subset of those is actually implemented in our clone-and-
own scenario, the feature model thereby describes valid interactions between features
and which future variants can emerge and which cannot. For implementing small
partial prototypes of our work, we used the FeatureIDE library [KPK™17] that allows

https://doi.org/10.24355/dbbs.084-202002271120-0

102 7. Related Work

expressing formulas of propositional calculus as well as describing feature models.
Additionally, we used the graphical editors of the FeatureIDE plugin [MTS™17] for
the Eclipse IDE [W™04] to create feature modelsfor our small prototypes.

Generally, there are two ways for specifying feature to code mappings necessary for
application engineering: the compositional and the annotative approach [KAKOS].
The compositional approach aims at modularising the software to make it extensi-
ble [GYKO0I1]. Existing implementations thereof are component technologies [wGMO02]
or specialised architectures such as aspects [KLM7T97], frameworks [JE8S|, mixin lay-
ers [SB02J, multi-dimensional separation of concerns [TOHS99], or AHEAD [BSR04].
Feature mappings are specified by implementing each feature and each feature inter-
action in a separate module. In contrast, the annotative approach traces features by
annotating the source code of a single (monolithic) code base, also known as 150%
model.

Feature mappings that do not violate syntax are known as disciplined annotations
(i.e., composing the mapped implementation artefacts can never lead to syntacti-
cally ill-formed artefacts for any variant). Experiments conducted to determine the
necessity of discipline [LKAT1, MRB™17, [SLSA13] reveal the benefits for such con-
straints in industrial practice. We implemented disciplined annotations via abstract
syntax trees as done in CIDE [KAKOS8] by Kéastner et al. CIDE is a plugin for
Eclipse that allows mapping Java code to features manually. Its name stems from
it visualising feature mappings by colouring the affected code fragments.

7.2 Variation Control Systems

Variation control systems [LBG17, LELH16, SBWW16] and filtered SPLs [SW16]
are hybrid variability managing solutions dealing with variability on the level of
features but allow editing software product lines by editing (partial) variants of
them. Usually, a projection of the product line is checked out from a central repos-
itory, edited, and re-integrated with an analogous workflow to version control sys-
tems, such as SVN or Git. Conradi and Westfechtel proposed matrices to manage
to organise the version space instead of parallel branches in version control sys-
tems [CWO8]. We extensively inspected the projectional product-line editor VTS by
Stanciulescu et al. [SBWWI6] and compared it to our approach in [Chapter 6] Upon
checkout, a partial variant is obtained by specifying a projection, a propositional
formula specifying the feature to edit. Similar to our feature context, developers
have to specify an ambition (also a propositional formula over the set of features)
to describe the feature they worked on. However, the ambition has to be specified
at commit, while our feature context is be specified while editing. Thereby, we
enable flexibly changing the feature context fast in contrast to transaction based
solutions [LELHI6, SBWW16]. Although feature context specification requires an
IDE, we still support development outside of an IDE when no feature context has
to be specified while preserving and incorporating existing feature mappings.

ECCO by Linsbauer et al. [FLLHE1S, [LLHE17] stores the software in a central
repository and lets users receive and submit variants. Upon commits, developers
have to specify on which features they worked on. ECCO derives feature map-
pings from the variants developers submit and and refines those heuristically along

https://doi.org/10.24355/dbbs.084-202002271120-0

7.3. Feature Mapping Recovery Techniques 103

multiple commit cycles. In contrast, our approach uses an explicit mapping where
developers have full control over feature locations as in CIDE [KAKOS8] or Fea-
tureMapper [HKWO0S§]. Both tools enable mapping source code artefacts to features.
FeatureMapper allows feature expressions for mappings — as we do — and operates
model-driven, such that not source code but model elements of the target program
are annotated. Furthermore, ECCO resolves feature location uncertainty in a lazy
manner, i.e., not before its necessary. As we want to be able to propagate code and
mapping changes along variants at any time, we cannot afford uncertainty of feature
locations. Instead, we resolve uncertainties at commit stage as these would spread
across all variants and merges into the edited variant would be hindered.

7.3 Feature Mapping Recovery Techniques

Feature mapping recovery techniques [XXJ12, RC13, DRGP13|, [AGA13, IKGP13|,
WEKP15]. retroactively detect feature mappings in existing software. Thereby, they
can be useful for our clone-and-own enhancement for identifying initial feature map-
pings in clones and a later migration to a software product line. Roughly, two steps
are involved in migrating existing code to a software product line as classified by
Martinez et al. [MZB™15]: variability or family mining [KDO14, WSSST6] (i.e., de-
tecting variability), and the actual migration into an integrated platform [FMST17,
KFBAQ09, LC13|. Variability mining tools, such as LEADT by Késtner et al. [KDO14]
analyse semantic dependencies of program elements to identify relationships between
features. Developers have to specify initial seeds (i.e., manually map some of the
artefacts). Through type-checks (e.g., detecting references of mapped code to un-
mapped functions or classes), neighbourhood analysis (e.g., statements belonging to
the same function), and ontological analysis (i.e., checking for similarity in names),
dependencies between program elements can be reverse-engineered to dependen-
cies in features. Whereas feature recovery tools in general require numerous devel-
oper decisions [FMS™17, [FLLHETS, KDO14, KKK13, LLHEL7, MZB*15, RCC13,
ZHP™14], fully automatic techniques [FLLHE1S, LLHE17, WSSS16l, ZHP™14] suffer
from unintentional divergence [KKK13, [SL14]. The actual migration can either be
done stepwise (i.e., as a series of variant-preserving refactorings [FMST17]) or in a
single step, usually referred to as big-bang migration.

To avoid the uncertainties on recovered feature mappings of variability mining tech-
niques, we enable developers to gradually introduce feature mappings at will without
impairing ongoing software development. Thereby, we also address the risks of mi-
grations to software product lines as feature mappings can be introduced at any
speed developers prefer.

7.4 Clone Management

Existing work on clone management typically considers clones as a small-scale phe-
nomenon [Kos07, [RBS13]. Clone detection can be used as a preparatory step for
product-line migration [MKB09, RCC13], described in the last section. However,
they are not sufficient for managing large-scale synchronisation, maintenance, and
evolution of variants as we target. Lague et al. proactively prevent cloning of soft-
ware with integrated editing support [LPM7T97]. Ducasse et al. eliminate clones

https://doi.org/10.24355/dbbs.084-202002271120-0

104 7. Related Work

retroactively through refactorings [DRG99]. While both techniques are well suited
for single variant development, they can hardly be applied to multiple clones. Tech-
niques for tracking the cloning history (i.e., when a clone emerged and how) and for
synchronising them [dZv09, DER10, NNPT12, [TBG04] suffer from the same limi-
tation. They depict clones on a small scale, such as a few program statements or
single methods. Other approaches such as computer-aided clone-and-own by Lapena
et al. [LnBC16] rank existing artefacts according to their relevance for a new variant
according to natural language requirements. Rubin et al. partially address vari-
ant synchronisation [RCC13| by discussing the applicability of a set of operators to
propagate features between clones upon derivation of new variants. They do not
provide a concrete implementation of those however. Annotating the version his-
tory with variability information is proposed by Schmorleitz and Lammel [SL16] to
propagate changes from one variant to another by document patching. However,
they do not address change propagation failures that can occur due to conflicting
changes in multiple variants, technical failures, or missing context for integration of
changes into another variant. Furthermore, multiple occurrences of the same failure
must be solved individually with the help of the developer for each affected variant.
The potential of embedded annotations for change propagation between clones —
and thereby the potential usability of the concepts developed in this thesis — was
evaluated by Ji et al. [JBACT5].

Opposed to the discussed works, we enhance large-scale clone-and-own development
proactively and thereby deliberately consider managing multiple clones at once. As
we want to impair developers’ habits and workflows by a minimal amount only, we
do neither prevent cloning nor eliminate clones. Instead, we want to support a more
synchronised way of clone-and-own development and even target to enhance the
generation of new clones.

7.5 Tree Diffing and Semantic Lifting

To implement disciplined annotations we map features directly to the AST of source
code. As we derive feature mappings from edits, we developed a notion of semantic
edits on AST in [Chapter 3| Therefore, we studied the literature for tree matching
and diffing, summarised in on Page 33 In on Page 23], we give
a detailed comparison of the algorithms LaDiff by Chawathe et al. [CRGMW96],
Diff/TS by Hashimoto and Mori [HMO0S], RTED by Pawlik and Augsten [PAII],
GumTree by Falleri et al. [FMB™14] and the definitions by Bille [Bil05]. To detect
user-level changes in the technical edit scripts computed by these algorithms, we
transferred the idea of semantic lifting by Kehrer et al. [KKT11l, [KKT13] to tree
diffs and aim to derive an algorithm for it in the future. Kehrer et al. use semantic
lifting on edits on abstract syntax graphs in the context of model-driven software
development [KKT1I, [KKOS12] exhibiting several similarities to tree diffing.

https://doi.org/10.24355/dbbs.084-202002271120-0

8. Conclusion

Despite extensive research on software product lines, managing variability in soft-
ware engineering by cloning and altering software is still common practice. Avoiding
duplicate implementation effort and fixing bugs consistently throughout all clones,
still remain fundamental problems in many software projects. To address these
problems, we enhance clone-and-own development with product-line concepts. By
identifying each clone with the unique configuration of features it implements and
knowing which concrete software artefacts implement those features, we enable syn-
chronising variants successively. Thereby, developers are able to incorporate domain
knowledge during programming but without obligation to only impair their devel-
opment workflow by a minimal amount.

In this thesis, we proposed the first step towards semi-automated synchronisation
of clones: the recording of feature mappings during software development. Opposed
to variability mining techniques which try to recover those mappings retroactively,
recording feature mappings immediately delivers more accurate results. Moreover,
we do not require a complete feature mapping of all artefacts in all variants but
rather support developers to infer feature mappings incrementally during their usual
programming workflow. Thus, our approach can even be used for a slow migration
towards software product lines.

To guarantee syntactical correctness upon variant synchronisation and future variant
generation, we map features to nodes in ASTs instead of lines in text documents,
similar to Késtner et al. [KAKO0S]. AST nodes propagate their mapping to their
children to express syntactical dependencies, such as fields and methods requiring
their enclosing class definition. We carefully defined which nodes can be mapped
to features and which ones are allowed to propagate their mapping to guarantee
syntactic validity with the least amount of restrictions.

In order to be able to derive feature mappings from code changes, we classified
eight tree operations, the semantic edits, to describe changes between two ASTs.
Dedicated semantic edits are necessary because, intuitively, classified changes on
implementation artefacts do not need to correspond to alike changes in the AST.

https://doi.org/10.24355/dbbs.084-202002271120-0

106 8. Conclusion

Depending on its content, inserting a line of source code can even result in restructur-
ings. We showed that existing tree diffing algorithms do not detect such semantic
edit operations but only technical tree-oriented low-level changes. Therefore, we
discussed on how semantic lifting [KKT11], a technique known from model-driven
software development, can detect semantic edits in low-level edit scripts computed
by state-of-the-art tree diffing algorithms.

We developed an algorithm for deriving feature mappings upon code changes by
incorporating developers domain knowledge in form of a propositional formula over
the set of features, called the feature context. Depending on developers’ edits and
feature context, we assign feature mappings to the edited artefacts. We developed
an individual feature mapping derivation for each edit type (i.e., insertion, deletion,
update, and move) and proved that they fulfil certain constraints to avoid surprising,
incomprehensible, or unintuitive results.

Opposed to previous research, we notably consider the absence of a feature context
(i.e., setting it to null). Thus, edits outside of an IDE are supported and developers
do not have to specify the feature they are working on when they do not know it.
Our derivations do not require the feature context to be specified and preserve exist-
ing mappings. We also gave an outlook on how artefact detection across variants can
help to determine partial feature mappings for artefacts depending on the configu-
rations of clones. Furthermore, we showed that our AST propagation and feature
mapping derivation always conforms with the feature model. We demonstrated how
a global feature model could be used to simplify feature mappings and indicated
potential risks thereof.

We evaluated our feature mapping derivation by replaying variability-related code
editing patterns, extracted from a software product line, in the clone-and-own sce-
nario we target. Therefore, we used the code editing patterns identified by Stanci-
ulescu et al. [SBWW16], who investigated all commits in the history of the product
line Marlin [vdZ]. We compared our method with the projectional product-line vari-
ation control system VTS by Stanciulescu et al. [SBWWI16] that, similarly to our
derivation, exhibits a feature mapping derivation from a user-specified formula. We
showed that we can reproduce every pattern with our feature mapping derivation in
clone-and-own development when no ill-formed feature mappings are present. We
avoid ill-formed mappings in the first place by using ASTs.

In detail, we investigated the amount of necessary feature context switches, the fea-
ture context complexity, and differences to its equivalent in VT'S when reproducing
the patterns. We found our feature mapping derivation to require a minimal amount
of context switches for code insertion and deletion patterns with respect to the tar-
get feature mapping and VTS. Specifying the feature context is straightforward for
code-insertion patterns and almost always equal to the target feature mapping of the
edited artefact. For code-removing patterns, the feature context true, or even null
in some cases, is sufficient. While our feature contexts are slightly more convenient
(considering desired feature mappings) than the ambitions in VTS necessary for re-
producing patterns concerning solely changing feature mappings, both methods are
not very amenable to these patterns. As our derivation acts on code changes, it can-
not be used to statically change feature mappings without artificial code changes,
such as removing and reinserting an artefact. As for VTS, an additional mechanism

https://doi.org/10.24355/dbbs.084-202002271120-0

107

for manual feature mapping changes would be reasonable as commits classified by
such patterns can often be found in the history of Marlin.

We can imagine our derivation being especially helpful in industrial practice when
combined with an issue or ticketing system in which individual tasks are assigned
to developers. While bugfixes cannot be traced immediately, tickets requesting ex-
tensions, changes, or new functionality are usually associated to certain features.
When starting to work on a ticket or issue, developers could set the feature context
to exactly that feature and start working on their variant.

https://doi.org/10.24355/dbbs.084-202002271120-0

108 8. Conclusion

https://doi.org/10.24355/dbbs.084-202002271120-0

9. Future Work

Finally, we summarise possible future work to extend and continue the work of this
thesis. In the following, we depict each future work separately.

Variant Synchronisation

Synchronising edits and feature mappings between clones is essential for clone-and-
own enhancement. We plan to extend existing work based on patches and line-
based feature mappings [PTST16]. Important for variant synchronisation is resolving
merge conflicts: When feature mappings of the same artefact are changed simulta-
neously in different variants, we have to choose which feature mapping is the correct
one, or if both have to be merged somehow.

Semantic Lifting on ASTSs

Lifting technical low-level edit scripts describing changes between two trees to user-
level edit script is still an open topic. In [Chapter 3| we discussed the necessity of
semantic lifting to reasonably detect user made changes to implementation artefacts
in-depth. Existing work only recovers low-level edit scripts that do not properly

reflect developers intents as shown in [Section 3.3|

Dependency Detection of AST Nodes

So far, we designate nodes in the AST to propagate their feature mapping to their
children when they are hierarchically mandatory (i.e., they cannot be removed with-
out invalidating their children). Contrary, we do not let hierarchically optional nodes
propagate their mapping. This may however be reasonable, when for instance a
variable is defined in the expression of a condition (e.g., if (bool b = input()) {
print(b); }) and used inside that condition. Therefore, further analyses to detect
such dependencies are necessary.

https://doi.org/10.24355/dbbs.084-202002271120-0

110 9. Future Work

Feature Context Backpropagation During Semantic Lifting

To correctly adapt intentions and expectations of developers, it could be useful
to retroactively assign feature contexts to edits for which no feature context was
specified. Consider [Example 4.1.1)on Page |51l Two edits are necessary to reproduce
the inspected code editing example correctly. Both have to be executed under the
same feature context. When users forget to set the feature context for the first edit,
this can either be intentional or by mistake. Possible ways to detect this issue and
provide tool support for it could be desirable.

Repair Wrong Feature Mappings

We did not yet discuss the robustness of our concept against accidentally wrong
feature contexts or mappings. If developers make edits under a wrong feature con-
text that has to be changed later, wrong edits may already be synchronised wrongly
to other variants. A mechanism for undoing synchronisations could prevent harm-
ful bug spread. Changing feature mappings locally and retroactively should be
straightforward but also requires further utility such that no artificial code changes

are necessary as discussed in [Section 6.4] Here the exploits presented in [Section 4.4

could prove useful when used by an automatism.

Explanations on Derivations

Providing feedback on more intricate derivations such as % geete could be helpful.
Although we designed our feature mapping derivation to be as intuitive as possible,
there might still occur confusing or incomprehensible cases. Developers could then
request explanations on derivations if the feature mapping derivation does not act in
a comprehensible way. In[Section 4.2] we discussed benefits and issues for our feature
mapping derivation imposed by constraints on possible configurations and feature
mappings of the global feature model. Our derivation .% geete may produce feature
mappings violating the feature model. This is not an issue, as this simply means,
that a deleted artefact has to be deleted from every variant. Thus, its mapping can
be simplified to false. However, this should be communicated or explained to the
user to avoid unintentional or unintuitive behaviour. Therefore, existing work on
explanations on feature model defects could potentially be reused [Giinl7].

Enhancing Updates

Our notion of updates on AST nodes, introduced in [Section 3.3.1] is yet rather primi-
tive. We consider only changing a single node’s type or value as an update. Thereby,
our notion of updates does not reflect coherent changes in multiple locations, such
as refactoring the class name across the entire code base. Differentiating this edit
from replacing an artefact with another one is ambiguous, too. Detecting renam-
ing of structures would enable a correct synchronisation across variants, as such a
renaming operation could be executed on target variants instead of synchronising a
set of local updates. This would circumnavigate the problem that not all updates
may have a target in other variants and that some locations in the target variants
would not get updated because they do not have a counterpart in the source variant.

https://doi.org/10.24355/dbbs.084-202002271120-0

111

Metric for Artefact Equivalence

To synchronise artefacts and feature mappings between variants we need a notion
of when artefacts are considered to be equal. Equivalence of artefacts is dependent
on their data (e.g., text) and their location. For text documents, locations can be
identified by file name and line number. Alternatively, as we already use ASTs as
feature mapping targets, we can reuse those to describe locations of artefacts. In
contrast to an identification with line numbers, ASTs enable an order independent
comparison of artefacts. For instance, methods defined in class can have arbitrary
order in different variants but can still be considered equal if their name and content
is identical.

Numerical Feature Support

In preprocessor-based software product lines, such as Marlin [vdZ] investigated in
Chapter 6] many numerical features can be found. Usually features are two-valued,
i.e., the are either selected or deselected. Unlike these, numerical features are identi-
fied by integer or float values. These features are often checked for certain values or
bounds in preprocessor #ifdef statements and thereby form a boolean expression
again (e.g., intensity > 3). In that sense, numerical features could be supported
by considering only the logical expressions they are contained in. Elsewise, first-
order logic is required to incorporate numerical values correctly. Therefore, existing
work on extended feature models [BSRC10] could become useful as these are feature
models extended by first-order logic.

Literal List Feature Context

Instead of specifying a propositional formula, feature contexts could be specified as
a list of literals as done in CIDE [KAKOg| or ECCO [FLLHE15]. In both methods, a
list of those features implemented by the current artefact or edit is specified. While
literals are allowed to be negated in ECCO, this is not the case for CIDE. By using
the knowledge on configurations of variants, we can derive partial feature mappings
as shown in on Page [63] By considering only those literals specified in
the feature context list for partial feature mapping deduction, we could derive the
actual feature mappings with a certain imprecision as we verified in a small idealised
test environment. The question whether such a feature context simplification pays
off, and how we can avoid or handle produced imprecision, is subject to future work.

Feature Mapping Simplification

By detecting redundancies due to the AST propagation (investigated in
on Page or considering constraints of the global feature model, feature mappings
can be simplified. By using existing research on feature models [vRGAT15] and
decision propagation [KTST18|, we could automatically simplify feature mappings
or recommend their simplification to developers. However, if the feature model
evolves, simplified feature mappings may no longer be correct and thus introduce
variability bugs.

https://doi.org/10.24355/dbbs.084-202002271120-0

112 9. Future Work

https://doi.org/10.24355/dbbs.084-202002271120-0

Semi-Automated Inference of Feature Traceability During
Software Development

Master Thesis - Task Definition

30.07.2019

Student: Paul Maximilian Bittner
Supervisors: Ina Schaefer, Thomas Thiim, Tobias Pett 30.07.2019

1 Introduction

Modern software is often required in multiple variants. Naturally software development starts
with just a single variant to reduce complexity and costs and because future variants are com-
monly unknown [1, 2]. When the need for a new variant emerges, the whole software is cloned
to alter specific parts independently from the previous variant. This ad-hoc solution is known
as clone-and-own [1, 3, 4, 5]. However, with growing number of variants clone-and-own becomes
infeasible because synchronising changes between variants becomes confusing and tedious.

Software product lines allow managing variants by mapping implementation artefacts to
features. These features are shared and reused across variants [6, 7]. However, this design
requires dedicated tool support, workflow adaptations and time for careful domain engineering
and thus is only used rarely in practice. Furthermore, with growing number of variants, a
later migration from clone-and-own to a software product line becomes increasingly difficult
and time-consuming. Hence, it is bears high risks and costs.

Therefore, a novel hybrid approach proposed in the research project VariantSync aims at
synchronising clone-and-own variants with software product line technology [8]. The domain
knowledge about features should be used such that each variant comprises a unique configu-
ration of a common feature model. Software artefacts such as source code are annotated with
their corresponding feature or feature interaction. Based on this information, changes can be
propagated automatically.

The first step towards this automation is the introduction of feature traceability via source
code annotation. During development these mappings have to updated as the code changes
to allow variant synchronisation. It is yet unclear how, if, and how far code insertions and
deletions can be safely mapped to features without requiring the developers expertise. Thus,
beside manual source code annotation with features, we develop methods for inferring feature
mappings from artefact changes. In addition to previous line-based approaches, we investigate
the possibility of using knowledge about syntax and semantics of the edited source code file.
Furthermore, we will evaluate if the configuration of a variant can be used as a source of
information. For example only features that appear in such a configuration are viable in a
feature context.

https://doi.org/10.24355/dbbs.084-202002271120-0

114 10. Task Definition
2 Research

The VariantSync project is settled in-between software product line research and clone-and-own
software development. As the latter is more an observable phenomenon than an actual research
topic it is not examined further.

As opposed to clone-and-own, Software Product Line Engineering (SPLE) distinguishes be-
tween domain and application engineering [6, 9]. Therefore, variants are analysed to detect
common features beforehand. These features are the main development artefacts, instead of
variants like in clone-and-own. Afterwards, these features are composed to variants by a dedi-
cated variation mechanism, e.g., preprocessor annotations or plugins [6, 7, 10]. Typically, feature
models are used to describe features and their valid combinations [7, 11]. In VariantSync, these
feature models are reused to describe all possible variants, although only a subset of these are
implemented. For our feature mapping we use the features given in a common feature model
for all variants. Furthermore, we aim to use the feature model for analysis purposes.

Other hybrid variability managing approaches, such as Ecco [12], identify feature mappings
implicitly and heuristically and refine those along multiple changes in variants. Here, the re-
sponsibility for correct feature mappings is shifted from the developer to an automation system.
In contrast, our approach uses an explicit mapping where developers have full control over fea-
ture locations as in CIDE [13]. Furthermore, Ecco resolves feature location uncertainty in a lazy
manner, i.e., not before its necessary. As we want to be able to propagate code and mapping
changes along variants at any time, we cannot afford uncertainty of feature locations. Instead,
we resolve uncertainties at commit stage as these would spread across all variants and merges
into the edited variant would be hindered.

Correct feature mappings that do not violate syntax and semantics are known as disciplined
annotations. Experiments conducted to determine the necessity of discipline [14, 15, 16] can
reveal the benefits for such constraints.

Feature mapping recovery techniques [17, 18, 19, 20, 21, 22, 23|. are useful for a migration
of a clone-and-own software system to a system managed by VariantSync or even a software
product line. For this work, which focuses on the ongoing development with such a managed
system, these methods could help at feature mapping deduction from artefact changes.

3 Concept

Besides technical challenges, mapping artefacts to features should be as easy as possible for the
developer. This can become especially intricate for feature interactions. Here, propositional
formulas over the set of features are necessary rather than single features. Therefore, we want
to (semi-) automatically deduce such feature formulas from artefact changes in a way that is
intuitive and comprehensible for the developer. Furthermore, development could become faster
and safer if developers would only have to specify feature (not feature formulas) mappings.
Hence, we want to derive feature formula mappings from feature mappings by using domain
specific knowledge of the edited artefacts:

1. Derive a translation from feature mappings and domain-specific knowledge to feature
formula mappings for source code if possible. (SHOULD)

2. Develop a heuristic for (semi-) automating feature formula mapping from artefact changes.
(SHOULD)

https://doi.org/10.24355/dbbs.084-202002271120-0

115

4 Implementation

Straightforward line- or symbol-based mappings do not make use of knowledge about the an-
notated artefacts structure. For example, source code can be annotated such that syntax or
semantic would be violated when a feature gets added or removed in another variant. Fur-
thermore, mapped feature formulas should not evaluate to false under the current variants
configuration. It must not be possible to annotate artefacts with such feature formulas as this
would conflict the variant itself.

The VariantSync software should be as reusable and extensible as possible. Therefore, its
functionality will be delivered as a Java library that can be used to implement tool-specific
annotation editors.

Together with the aforementioned tasks, all conceptual tasks given in Section 3 MUST be
implemented in the VariantSync software:

1. Refine and extend the existing VariantSync framework capabilities of line-based feature
context mappings to allow manual and explicit mapping. This is necessary as a fall-back
when an automatic mapping inference fails. (MUST)

2. Feature context mappings should be stable against external code changes. If a document
gets changed outside of our mapping tool, the mappings should be preserved as accurately
as possible. (CAN)

3. Prevent syntactically illegal feature mappings: Removing a feature must leave the program
in a syntactically valid state. (CAN)

4. Prevent semantically illegal feature mappings: Removing a feature must leave the program
in a semantically valid state.(CAN)

5. Prevent false feature contexts. (MUST)

6. Implement the translation from feature mappings and domain-specific knowledge to fea-
ture formula mappings for source code. (SHOULD)

7. Implement the heuristic for (semi-) automating feature formula mapping from artefact
changes. (SHOULD)

5 Evaluation

In the following we describe how concept and implementation will be evaluated. To measure
correctness and usability of both our feature-to-feature-formula translation and our heuristic,
we need ground truth data. Therefore a real product line will be used as these already provide
mappings involving feature interactions, for example with preprocessor annotations.

1. If we find an exact translation from feature mappings and domain knowledge to feature
formula mappings as described in Section 3, it should be correct by construction. We
will verify this by mapping the product lines source code to single features in our tool.
If our tools translation of this mapping matches the original product line’s mapping, our
derivation works as intended. (MUST)

2. To measure the usability and efficiency of our heuristic for feature mapping support during
development, two groups of students or developers could fulfil the same programming task.
One group would use our assistance tool, whereas the second does not. Thereby, we would
want to answer the following questions: Does the supporting heuristic behave as expected?
Is it helpful or does it hinder users? (CAN)

https://doi.org/10.24355/dbbs.084-202002271120-0

116 10. Task Definition

5.1 Research Questions

As part of the evaluation the following research questions should be answered.

RQ 1: How far can we statically deduce feature formula mappings from feature
mappings for source code? (Must)

The tedious and error-prone task of specifying feature formulas could be simplified to a certain
degree or if these could be derived from more intuitive sole feature mappings.

RQ 2: To which degree can dynamic feature formula mapping deduction from
artefact changes be automated? (Should)

The more precise and self-contained our feature formula deduction is, the more work and re-
sponsibility is drawn from the developer. At best, feature context mappings could be deduced
without the developers interaction for smaller changes. However, even partially automated
methods could support developers greatly.

References

[1] M. Antkiewicz, W. Ji, T. Berger, K. Czarnecki, T. Schmorleiz, R. Lammel, S. Stanciulescu,
A. Wasowski, and 1. Schaefer, “Flexible Product Line Engineering with a Virtual Platform,”
pp. 532-535, 2014.

[2] L. Linsbauer, S. Fischer, R. E. Lopez-Herrejon, and A. Egyed, “Using traceability for
incremental construction and evolution of software product portfolios,” pp. 57-60, 2015.

[3] Y. Dubinsky, J. Rubin, T. Berger, S. Duszynski, M. Becker, and K. Czarnecki, “An Ex-
ploratory Study of Cloning in Industrial Software Product Lines,” pp. 25-34, 2013.

[4] J. Rubin, K. Czarnecki, and M. Chechik, “Managing Cloned Variants: A Framework and
Experience,” pp. 101-110, 2013.

[5] S. Stanciulescu, S. Schulze, and A. Wasowski, “Forked and Integrated Variants in an Open-
Source Firmware Project,” pp. 151-160, Sept. 2015.

[6] S. Apel, D. Batory, C. Késtner, and G. Saake, Feature-Oriented Software Product Lines.
2013.

[7] K. Czarnecki and U. Eisenecker, Generative Programming: Methods, Tools, and Applica-
tions. 2000.

[8] T. Pfofe, T. Thiim, S. Schulze, W. Fenske, and I. Schaefer, “Synchronizing Software Vari-
ants with VariantSync,” pp. 329-332, Sept. 2016.

[9] K. Pohl, G. Bockle, and F. J. van der Linden, Software Product Line Engineering: Foun-
dations, Principles and Techniques. Sept. 2005.

[10] M. Svahnberg, J. van Gurp, and J. Bosch, “A Taxonomy of Variability Realization Tech-
niques: Research Articles,” vol. 35, pp. 705-754, July 2005.

[11] D. Batory, “Feature Models, Grammars, and Propositional Formulas,” pp. 7-20, 2005.

https://doi.org/10.24355/dbbs.084-202002271120-0

117

[12]

[16]

[17]

[18]

[19]

[20]

[21]

22]

[23]

L. Linsbauer, A. Egyed, and R. E. Lopez-Herrejon, “A Variability Aware Configuration
Management and Revision Control Platform,” in Proceedings of the 38th International Con-
ference on Software Engineering Companion, ICSE 16, (New York, NY, USA), pp. 803
806, ACM, 2016.

C. Késtner, S. Apel, and M. Kuhlemann, “Granularity in Software Product Lines,” in
ICSE, (NY), pp. 311-320, ACM, May 2008.

J. Liebig, C. Késtner, and S. Apel, “Analyzing the Discipline of Preprocessor Annotations
in 30 Million Lines of C Code,” in Proceedings of the Tenth International Conference on
Aspect-oriented Software Development, AOSD ’11, (New York, NY, USA), pp. 191-202,
ACM, 2011.

R. Malaquias, M. Ribeiro, R. Bonifacio, E. Monteiro, F. Medeiros, A. Garcia, and R. Gheyi,
“The discipline of preprocessor-based annotations - does #ifdef tag n’t #endif matter,”
in 2017 IEEE/ACM 25th International Conference on Program Comprehension (ICPC),
pp. 297-307, May 2017.

S. Schulze, J. Liebig, J. Siegmund, and S. Apel, “Does the Discipline of Preprocessor
Annotations Matter?: A Controlled Experiment,” SIGPLAN Not., vol. 49, pp. 65-74, Oct.
2013.

R. Koschke, P. Frenzel, A. P. Breu, and K. Angstmann, “Extending the Reflexion Method
for Consolidating Software Variants into Product Lines,” vol. 17, pp. 331-366, Dec. 2009.

Y. Xue, Z. Xing, and S. Jarzabek, “Feature Location in a Collection of Product Variants,”
pp. 145-154, 2012.

J. Rubin and M. Chechik, “A Survey of Feature Location Techniques,” in Domain FEngi-
neering: Product Lines, Languages, and Conceptual Models (1. Reinhartz-Berger, A. Sturm,
T. Clark, S. Cohen, and J. Bettin, eds.), pp. 29-58, 2013.

B. Dit, M. Revelle, M. Gethers, and D. Poshyvanyk, “Feature Location in Source Code: A
Taxonomy and Survey,” vol. 25, no. 1, pp. 53-95, 2013.

N. Ali, Y.-G. Gueheneuc, and G. Antoniol, “Trustrace: Mining Software Repositories to
Improve the Accuracy of Requirement Traceability Links,” vol. 39, pp. 725-741, May 2013.

H. Kagdi, M. Gethers, and D. Poshyvanyk, “Integrating Conceptual and Logical Couplings
for Change Impact Analysis in Software,” vol. 18, no. 5, pp. 933-969, 2013.

C. Kastner, A. Dreiling, and K. Ostermann, “Variability Mining: Consistent Semiautomatic
Detection of Product-Line Features,” vol. 40, pp. 67-82, Jan. 2014.

https://doi.org/10.24355/dbbs.084-202002271120-0

118 10. Task Definition

https://doi.org/10.24355/dbbs.084-202002271120-0

Bibliography

[ABKS13]

[AGA13)

[AJB+14]

[AKL13]

[ALSUOG6]

[Bat05]

[BCH*10]

[Bil05]

[bKLW12]

Sven Apel, Don Batory, Christian Késtner, and Gunter Saake.
Feature-Oriented Software Product Lines. 2013. (cited on Page

and

Nasir Ali, Yann-Gael Gueheneuc, and Giuliano Antoniol. Trustrace:
Mining Software Repositories to Improve the Accuracy of Require-
ment Traceability Links. 39(5):7257741, May 2013. (cited on l’ag()
and [103

MichalAntkiewicz, Wenbin Ji, Thorsten Berger, Krzysztof Czarnecki,
Thomas Schmorleiz, Ralf Lammel, Stefan Stanciulescu, Andrzej Wa-
sowski, and Ina Schaefer. Flexible Product Line Engineering with a
Virtual Platform. pages 532-535, 2014. (cited on Pagel[l]

and [91

Sven Apel, Christian Késtner, and Christian Lengauer. Language-
Independent and Automated Software Composition: The Feature-
House Experience. 39(1):63-79, January 2013. (cited on Page

Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman.
Compilers: Principles, Techniques, and Tools (2nd Edition). 2006.

(cited on Page

Don Batory. Feature Models, Grammars, and Propositional Formulas.
pages 7-20, 2005. (cited on Page [o]and

Quentin Boucher, Andreas Classen, Patrick Heymans, Arnaud Bour-
doux, and Laurent Demonceau. Tag and Prune: A Pragmatic Ap-
proach to Software Product Line Implementation. pages 333-336,
2010. (cited on l)age

Philip Bille. A Survey on Tree Edit Distance and Related Problems.
Theoretical computer science, 337(1-3):217-239, 2005. (cited on Page|?)
, and

A. ben Fadhel, M. Kessentini, P. Langer, and M. Wimmer. Search-
based detection of high-level model changes. In 2012 28th IEEE In-
ternational Conference on Software Maintenance (ICSM), pages 212—
221, Sep. 2012. (cited on l’age

https://doi.org/10.24355/dbbs.084-202002271120-0

120

Bibliography

[BRN*13]

[BSRO4]

[BSRC10]

[CE00]

[CRGMW6]

[Cur62]

[CWOS]

[DER10]

[DP16]

[DRB*13]

[DRGYY]

Thorsten Berger, Ralf Rublack, Divya Nair, Joanne M. Atlee, Martin
Becker, Krzysztof Czarnecki, and Andrzej Wasowski. A Survey of
Variability Modeling in Industrial Practice. pages 7:1-7:8, 2013. (cited
on l)ago

Don Batory, Jacob N. Sarvela, and Axel Rauschmayer. Scaling Step-
Wise Refinement. 30(6):355-371, 2004. (cited on Pngo and

David Benavides, Sergio Segura, and Antonio Ruiz-Cortés. Auto-
mated Analysis of Feature Models 20 Years Later: A Literature Re-
view. Information Systems, 35(6):615-708, 2010. (cited on Page [111]

Krzysztof Czarnecki and Ulrich Eisenecker. Generative Programming:
Methods, Tools, and Applications. 2000. (cited on Page and

Sudarshan S. Chawathe, Anand Rajaraman, Hector Garcia-Molina,
and Jennifer Widom. Change Detection in Hierarchically Structured
Information. In Proceedings of the 1996 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’96, pages 493-504,

New York, NY, USA, 1996. ACM. (cited on l)zlg() and

H. Allen Curtis. "Chapter 2.3. McCluskey’s Method”. In A New
Approach to The Design of Switching Circuits. The Bell Laboratories
Series, pages 90-160. D. van Nostrand Company, Inc, 1962. (cited on

Page

Reidar Conradi and Bernhard Westfechtel. Version Models for Soft-
ware Configuration Management. 30(2):232-282, June 1998. (cited

on Page [10] and [102))

Ekwa Duala-Ekoko and Martin P. Robillard. Clone region descriptors:
Representing and tracking duplication in source code. ACM Trans.
Softw. Eng. Methodol., 20(1), July 2010. (cited on P;Lg(‘,m

Georg Dotzler and Michael Philippsen. Move-optimized source code
tree differencing. In 2016 31st IEEE/ACM International Conference
on Automated Software Engineering (ASE), pages 660-671. IEEE,
2016. (cited on Page

Yael Dubinsky, Julia Rubin, Thorsten Berger, Slawomir Duszynski,
Martin Becker, and Krzysztof Czarnecki. An Exploratory Study of
Cloning in Industrial Software Product Lines. pages 25-34, 2013.

(cited on Page and

Stéphane Ducasse, Matthias Rieger, and Georges Golomingi. Tool
support for refactoring duplicated oo code. In Proceedings of
the ECOOP’99 Workshop on FExperiences in Object-Oriented Re-
Engineering. Citeseer, 1999. (cited on Page [104

https://doi.org/10.24355/dbbs.084-202002271120-0

Bibliography

121

[DRGP13]

[DvDP16]

[dZv09]

[FLLHE15]

[FMB™*14]

[FMS+17]

[Giinl7]

[GYKO1]

[HBC*12]

[HKWO8]

[HMOS]

Bogdan Dit, Meghan Revelle, Malcom Gethers, and Denys Poshy-
vanyk. Feature Location in Source Code: A Taxonomy and Survey.
25(1)253*95, 2013. (cited on Page |57 and)

Nicolas Dintzner, Arie van Deursen, and Martin Pinzger. FEVER:
Extracting Feature-Oriented Changes from Commits. pages 85-96,
2016. (cited on Page

M. de Wit, A. Zaidman, and A. van Deursen. Managing code clones
using dynamic change tracking and resolution. In 2009 IEEE Inter-
national Conference on Software Maintenance, pages 169-178, Sep.

2009. (cited on Page[104))

Stefan Fischer, Lukas Linsbauer, Roberto E. Lopez-Herrejon, and
Alexander Egyed. The ECCO Tool: Extraction and Composition
for Clone-and-Own. pages 665—668, 2015. (cited on Page
zm(l

Jean-Rémy Falleri, Floréal Morandat, Xavier Blanc, Matias Martinez,
and Martin Monperrus. Fine-grained and accurate source code differ-
encing. In ACM/IEEE International Conference on Automated Soft-
ware Engineering, ASE 1}, Vasteras, Sweden - September 15 - 19,

2014, pages 313-324, 2014. (cited on Page zmd

Wolfram Fenske, Jens Meinicke, Sandro Schulze, Steffen Schulze, and
Gunter Saake. Variant-Preserving Refactorings for Migrating Cloned

Products to a Product Line. pages 316-326, 2017. (cited on Page[l]
. and

Timo Giinther. Explaining Satisfiability Queries for Software Product
Lines. Master’s thesis, Braunschweig, 2017. (cited on Page [L10)

William G. Griswold, Jimmy J. Yuan, and Yoshikiyo Kato. Exploiting
the map metaphor in a tool for software evolution. In Proceedings of
the 23rd International Conference on Software Engineering, ICSE "01,
page 265274, USA, 2001. IEEE Computer Society. (cited on Page[102)

Patrick Heymans, Quentin Boucher, Andreas Classen, Arnaud Bour-
doux, and Laurent Demonceau. A Code Tagging Approach to Soft-
ware Product Line Development. 14:553-566, 2012. (cited on Page[7])

Florian Heidenreich, Jan Kopcsek, and Christian Wende. Fea-
tureMapper: Mapping Features to Models. pages 943-944, May 2008.
Informal demonstration paper. (cited on Page

M. Hashimoto and A. Mori. Diff/TS: A Tool for Fine-Grained Struc-
tural Change Analysis. In 2008 15th Working Conference on Reverse

Engineering, pages 279-288, Oct 2008. (cited on Page
and [104

https://doi.org/10.24355/dbbs.084-202002271120-0

122

Bibliography

[JBAC15]

[JFSS]

[KAKOS]

[KAT*09)

[KDO14]

[KFBA09)

[KGP13)

[KKK13]

[KKOS12]

[KKT11]

Wenbin Ji, Thorsten Berger, Michal Antkiewicz, and Krzysztof Czar-
necki. Maintaining Feature Traceability with Embedded Annotations.

pages 61-70, 2015. (cited on Page and [104))

Ralph E Johnson and Brian Foote. Designing reusable classes. Journal
of object-oriented programming, 1(2):22-35, 1988. (cited on Page
and [102

Christian Késtner, Sven Apel, and Martin Kuhlemann. Granularity
in Software Product Lines. In ICSE, pages 311-320, NY, May 2008.

ACM. (cited on Page , , and

Christian Késtner, Sven Apel, Salvador Trujillo, Martin Kuhlemann,
and Don Batory. Guaranteeing syntactic correctness for all product
line variants: A language-independent approach. In Manuel Oriol and
Bertrand Meyer, editors, Objects, Components, Models and Patterns,
pages 175-194, Berlin, Heidelberg, 2009. Springer Berlin Heidelberg.

(cited on Page and)

Christian Késtner, Alexander Dreiling, and Klaus Ostermann. Vari-
ability Mining: Consistent Semiautomatic Detection of Product-Line

Features. 40(1):67-82, January 2014. (cited on Page

95 and [103])

Rainer Koschke, Pierre Frenzel, Andreas P. Breu, and Karsten Angst-
mann. Extending the Reflexion Method for Consolidating Software
Variants into Product Lines. 17(4):331-366, December 2009. (cited

on Page and

Huzefa Kagdi, Malcom Gethers, and Denys Poshyvanyk. Integrat-
ing Conceptual and Logical Couplings for Change Impact Analysis in
Software. 18(5):933*969, 2013. (cited on Pag(‘zuld

Benjamin Klatt, Martin Kiister, and Klaus Krogmann. A Graph-
Based Analysis Concept to Derive a Variation Point Design from
Product Copies. pages 1-8, March 2013. (cited on Page [2| and [103))

T. Kehrer, U. Kelter, M. Ohrndorf, and T. Sollbach. Understanding
model evolution through semantically lifting model differences with
silift. In 2012 28th IEEFE International Conference on Software Main-
tenance (ICSM), pages 638—641, Sep. 2012. (cited on l)ag(,‘and 104))

Timo Kehrer, Udo Kelter, and Gabriele Taentzer. A Rule-based Ap-
proach to the Semantic Lifting of Model Differences in the Context
of Model Versioning. In Proceedings of the 2011 26th IEEE/ACM In-
ternational Conference on Automated Software Engineering, ASE '11,
pages 163-172, Washington, DC, USA, 2011. IEEE Computer Society.

(cited on Page , and

https://doi.org/10.24355/dbbs.084-202002271120-0

Bibliography

123

[KKT13]

[KLM*97]

[Kos07]

[KPK+17]

[Kru02]

[KTST18]

[LBG17]

[LC13]

[LELH16]

[LFLHE15]

T. Kehrer, U. Kelter, and G. Taentzer. Consistency-preserving edit
scripts in model versioning. In 2013 28th IEEE/ACM International
Conference on Automated Software Engineering (ASE), pages 191—
201, Nov 2013. (cited on Page[104

Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda,
Cristina Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-
Oriented Programming. pages 220242, 1997. (cited on Page
zuld

Rainer Koschke. Survey of Research on Software Clones. In Rainer
Koschke, Ettore Merlo, and Andrew Walenstein, editors, Dupli-
cation, Redundancy, and Similarity in Software, number 06301 in
Dagstuhl Seminar Proceedings, Dagstuhl, Germany, 2007. Interna-
tionales Begegnungs- und Forschungszentrum fiir Informatik (IBFT),
Schloss Dagstuhl, Germany. (cited on Page [L03)

Sebastian Krieter, Marcus Pinnecke, Jacob Kriiger, Joshua Sprey,
Christopher Sontag, Thomas Thiim, Thomas Leich, and Gunter
Saake. FeatureIDE: Empowering Third-Party Developers. pages 42—
45, 2017. (cited on Page M)

Charles W. Krueger. Easing the Transition to Software Mass Cus-
tomization. pages 282-293, 2002. (cited on Page[L1)

Sebastian Krieter, Thomas Thiim, Sandro Schulze, Reimar Schroter,
and Gunter Saake. Propagating Configuration Decisions with Modal
Implication Graphs. pages 898-909, May 2018. (cited on Page m
an(l

Lukas Linsbauer, Thorsten Berger, and Paul Griinbacher. A classi-
fication of variation control systems. pages 49-62, 2017. (cited on

Page)

Miguel A. Laguna and Yania Crespo. A Systematic Mapping Study on
Software Product Line Evolution: From Legacy System Reengineer-
ing to Product Line Refactoring. Science of Computer Programming,

78(8):1010-1034, August 2013. (cited on l’ngem . E and

Lukas Linsbauer, Alexander Egyed, and Roberto Erick Lopez-
Herrejon. A Variability Aware Configuration Management and Revi-
sion Control Platform. In Proceedings of the 38th International Con-
ference on Software Engineering Companion, ICSE 16, pages 803—
806, New York, NY, USA, 2016. ACM. (cited on Page and

Lukas Linsbauer, Stefan Fischer, Roberto E. Lopez-Herrejon, and
Alexander Egyed. Using traceability for incremental construction and
evolution of software product portfolios. pages 57-60, 2015. (cited on

Page and

https://doi.org/10.24355/dbbs.084-202002271120-0

124

Bibliography

[LKA11]

[LLHE17]

[LnBC16]

[Lon]

[LPM*+97]

[MAaL18]

IMHK19]

[IMKBOY]

[MRB*17]

[MTS*17]

Jorg Liebig, Christian Késtner, and Sven Apel. Analyzing the Disci-
pline of Preprocessor Annotations in 30 Million Lines of C Code. In
Proceedings of the Tenth International Conference on Aspect-oriented
Software Development, AOSD ’11, pages 191-202, New York, NY,
USA, 2011. ACM. (cited on Pag(\zmd

Lukas Linsbauer, Roberto Erick Lopez-Herrejon, and Alexander
Egyed. Variability Extraction and Modeling for Product Variants.

16(4):117971 199, October 2017. (cited on Png(\ , zlnd

Raul Lapena, Manuel Ballarin, and Carlos Cetina. Towards Clone-
and-Own Support: Locating Relevant Methods in Legacy Products.
pages 194-203, 2016. (cited on Page and

King’s College London. Bluej IDE. https://www.bluej.org/. Accessed
at January 06, 2020. (cited on Page , ;m(l

B. Lague, D. Proulx, J. Mayrand, E. M. Merlo, and J. Hudepohl.
Assessing the benefits of incorporating function clone detection in a
development process. In 1997 Proceedings International Conference
on Software Maintenance, pages 314-321, Oct 1997. (cited on Page[10]]

Willian D. F. Mendonga, Wesley K. G. Assuncao, and Lukas Lins-
bauer. Multi-objective optimization for reverse engineering of apo-
games feature models. In Proceedings of the 22nd International Sys-
tems and Software Product Line Conference - Volume 1, SPLC 18,
page 279-283, New York, NY, USA, 2018. Association for Computing

Machinery. (cited on Page |11 and)

Junnosuke Matsumoto, Yoshiki Higo, and Shinji Kusumoto. Beyond
GumTree: A Hybrid Approach to Generate Edit Scripts. In Proceed-
ings of the 16th International Conference on Mining Software Repos-
itories, MSR 19, pages 550-554, Piscataway, NJ, USA, 2019. IEEE
Press. (cited on Page

Thilo Mende, Rainer Koschke, and Felix Beckwermert. An Evalua-
tion of Code Similarity Identification for the Grow-and-Prune Model.
21(2):143-169, March 2009. (cited on Page m

R. Malaquias, M. Ribeiro, R. Bonifacio, E. Monteiro, F. Medeiros,
A. Garcia, and R. Gheyi. The Discipline of Preprocessor-Based An-
notations - Does #ifdef TAG n't #endif Matter. In 2017 IEEE/ACM
25th International Conference on Program Comprehension (ICPC),
pages 297-307, May 2017. (cited on Pngem

Jens Meinicke, Thomas Thiim, Reimar Schroter, Fabian Benduhn,
Thomas Leich, and Gunter Saake. Mastering Software Variability
with FeatureIDE. 2017. (cited on Page[102

https://doi.org/10.24355/dbbs.084-202002271120-0

https://www.bluej.org/

Bibliography

125

[MZB+15]

[NMLTOS]

[NNP+12]

[PA11]

[PBvdL05]

[Pfol5)

[PGT+13]

[Pre97]

[PTST16]

[RBS13]

[RC13]

[RCC13]

Jabier Martinez, Tewfik Ziadi, Tegawendé F. Bissyandé, Jacques
Klein, and Yves Le Traon. Bottom-Up Adoption of Software Prod-
uct Lines: A Generic and Extensible Approach. pages 101-110, 2015.

(cited on Page and [103))

A. D. Nicola, T. D. Mascio, M. Lezoche, and F. Tagliano. Semantic
Lifting of Business Process Models. In 2008 12th Enterprise Dis-

tributed Object Computing Conference Workshops, pages 120-126,
Sep. 2008. (cited on Pago

Hoan Anh Nguyen, Tung Thanh Nguyen, Nam H. Pham, Jafar Al-
Kofahi, and Tien N. Nguyen. Clone Management for Evolving Soft-
ware. 38(5):1008-1026, September 2012. (cited on Page

Mateusz Pawlik and Nikolaus Augsten. RTED: A Robust Algorithm
for the Tree Edit Distance. Proc. VLDB Endow., 5(4):334-345, De-

cember 2011. (cited on Page , and

Klaus Pohl, Giinter Bockle, and Frank J. van der Linden. Software
Product Line Engineering: Foundations, Principles and Techniques.

September 2005. (cited on l)ag() , and

Tristan Pfofe. Automating the Synchronization of Software Variants.
Master’s thesis, Magdeburg, 2015. (cited on Page

Leonardo Passos, Jianmei Guo, Leopoldo Teixeira, Krzysztof Czar-
necki, Andrzej Wasowski, and Paulo Borba. Coevolution of Variability
Models and Related Artifacts: A Case Study from the Linux Kernel.
pages 91-100, 2013. (cited on l’age

Christian Prehofer. Feature-Oriented Programming: A Fresh Look at
Objects. pages 419-443, 1997. (cited on Page[)

Tristan Pfofe, Thomas Thiim, Sandro Schulze, Wolfram Fenske, and
Ina Schaefer. Synchronizing Software Variants with VariantSync.
pages 329-332, September 2016. (cited on Page [L01] and

Dhavleesh Rattan, Rajesh Bhatia, and Maninder Singh. Software
Clone Detection: A Systematic Review. Information and Software
Technology, 55(7):1165-1199, 2013. (cited on Pag(‘,

Julia Rubin and Marsha Chechik. A Survey of Feature Location Tech-
niques. In Iris Reinhartz-Berger, Arnon Sturm, Tony Clark, Sholom
Cohen, and Jorn Bettin, editors, Domain Engineering: Product Lines,
Languages, and Conceptual Models, pages 29-58. 2013. (cited on

Page and

Julia Rubin, Krzysztof Czarnecki, and Marsha Chechik. Managing
Cloned Variants: A Framework and Experience. pages 101-110, 2013.

(cited on Page and

https://doi.org/10.24355/dbbs.084-202002271120-0

126

Bibliography

[SB02]

[SBWW16]

[SGMO02]

[SL14]

[SL16]

[SLSA13]

[Son18|

[SSW15]

[SvGBO05]

[SW16]

[TBGO04]

Yannis Smaragdakis and Don Batory. Mixin Layers: An
Object-Oriented Implementation Technique for Refinements and
Collaboration-Based Designs. 11(2):215-255, April 2002. (cited on

Page [102))

Stefan Stanciulescu, Thorsten Berger, Eric Walkingshaw, and Andrzej
Wasowski. Concepts, Operations, and Feasibility of a Projection-
Based Variation Control System. pages 323-333, October 2016. (cited

on Page B 5 3. (3. (0 [0 [[0 600) 2 65 6 5% 60 6 53 50 7
B3 B3 73) 73 B9 B9 (100} [0} nd [0

Clemens Szyperski, Dominik Gruntz, and Stephan Murer. Component
software: beyond object-oriented programming. Pearson Education,
2002. (cited on Page

Thomas Schmorleiz and Ralf Ladmmel. Similarity Management via
History Annotation. pages 45-48. Dipartimento di Informatica Uni-
versita degli Studi dell’Aquila, L’Aquila, Italy, July 2014. (cited on
Page [2| and

Thomas Schmorleiz and Ralf Lammel. Similarity Management of
"Cloned and Owned’ Variants. pages 1466-1471, 2016. (cited on

Page [[07)

Sandro Schulze, Jorg Liebig, Janet Siegmund, and Sven Apel. Does
the Discipline of Preprocessor Annotations Matter?: A Controlled
Experiment. SIGPLAN Not., 49(3):65-74, October 2013. (cited on

Page [102))

Christopher Sontag. Recording Feature Mappings During Evolution
of Cloned Variants. Master’s thesis, Braunschweig, 2018. (cited on

Page and

Stefan Stanciulescu, Sandro Schulze, and Andrzej Wasowski. Forked
and Integrated Variants in an Open-Source Firmware Project. pages

151-160, September 2015. (cited on Page and

Mikael Svahnberg, Jilles van Gurp, and Jan Bosch. A Taxonomy of
Variability Realization Techniques: Research Articles. 35(8):705-754,
July 2005. (cited on Page M)

Felix Schwéger]l and Bernhard Westfechtel. SuperMod: Tool Support
for Collaborative Filtered Model-Driven Software Product Line Engi-
neering. In Proceedings of the 31st IEEE/ACM International Confer-
ence on Automated Software Engineering, ASE 2016, page 822-827,
New York, NY, USA, 2016. Association for Computing Machinery.
(cited on Page [L02)

Michael Toomim, Andrew Begel, and Susan L. Graham. Managing
Duplicated Code with Linked Editing. pages 173-180, 2004. (cited

on Page [104])

https://doi.org/10.24355/dbbs.084-202002271120-0

Bibliography

127

[Thiil§]

[Tic82]

[TOHS9Y]

[Tor]

[TSG*19]

[vdZ]

[VRGA*15]

(W+04]

[wGMO02]

[WKP15]

[WSSS16]

[XXJ12]

[ZHP*14]

Thomas Thiim. Lecture Notes — Software-Produktlinien: Konzepte
& Implementierung, April 2018. (cited on Page and [f)

Walter F. Tichy. Design, implementation, and evaluation of a revision
control system. In Proceedings of the 6th International Conference on
Software Engineering, ICSE 82, page 5867, Washington, DC, USA,
1982. IEEE Computer Society Press. (cited on Page[L0)

Peri Tarr, Harold Ossher, William Harrison, and Stanley M. Sutton,
Jr. N Degrees of Separation: Multi-Dimensional Separation of Con-
cerns. pages 107-119, 1999. (cited on Page [102)

Linus Torvalds. Linux Operating System. www.kernel.org. Accessed
at December 02, 2019. (cited on Page

Jan-Philipp Tauscher, Fabian Wolf Schottky, Steve Grogorick,
Paul Maximilian Bittner, Maryam Mustafa, and Marcus Magnor. Im-
mersive EEG: Evaluating Electroencephalography in Virtual Reality.
In Proc. IEEE Virtual Reality (VR) Workshop, pages 1794-1800, Mar
2019. PerGraVAR. (cited on Page ,[20] and[21

Erik van der Zalm. Marlin Firmware. http://marlinfw.org/. Accessed

at December 02, 2019. (cited on Page . . nnd)

Alexander von Rhein, Alexander Grebhahn, Sven Apel, Norbert Sieg-
mund, Dirk Beyer, and Thorsten Berger. Presence-Condition Simpli-
fication in Highly Configurable Systems. pages 178-188, 2015. (cited

on Page and [L11))

J Wiegand et al. Eclipse: A platform for integrating development
tools. IBM Systems Journal, 43(2):371-383, 2004. (cited on Page[102))

Szyperski, Clemens with Gruntz, Dominik and Murer, Stephan. Com-
ponent Software — Beyond Object-Oriented Programming. Addison-
Wesley, 2002. (cited on Page

Jens H. Weber, Anita Katahoire, and Morgan Price. Uncovering Vari-
ability Models for Software Ecosystems from Multi-Repository Struc-
tures. pages 103:103-103:108, 2015. (cited on Page [57 and [103

David Wille, Sandro Schulze, Christoph Seidl, and Ina Schae-
fer. Custom-Tailored Variability Mining for Block-Based Languages.
pages 271-282, March 2016. (cited on P;lge . and

Yinxing Xue, Zhenchang Xing, and Stan Jarzabek. Feature Location
in a Collection of Product Variants. pages 145-154, 2012. (cited on

Page b7 and)
Tewfik Ziadi, Christopher Henard, Mike Papadakis, Mikal Ziane,
and Yves Le Traon. Towards a Language-Independent Approach for

Reverse-Engineering of Software Product Lines. pages 10641071,
2014. (cited on Page 2] and [103

https://doi.org/10.24355/dbbs.084-202002271120-0

www.kernel.org
http://marlinfw.org/

128 Bibliography

https://doi.org/10.24355/dbbs.084-202002271120-0

Hiermit erklare ich, dass ich die vorliegende Arbeit selbstéindig verfasst und keine
anderen als die angegebenen Quellen und Hilfsmittel verwendet habe.

Braunschweig, den 29. Januar 2020

https://doi.org/10.24355/dbbs.084-202002271120-0

	Contents
	List of Figures
	List of Tables
	List of Code Listings
	1 Introduction
	2 Background
	2.1 Software Product Lines
	2.1.1 Feature Models
	2.1.2 Feature Mappings

	2.2 Clone-and-Own
	2.2.1 Virtual Platform
	2.2.2 Migration to Software Product Lines

	2.3 Notation

	3 Semantic Edits on Abstract Syntax Trees
	3.1 Development Setting
	3.2 Feature Mapping Representation
	3.2.1 Abstract Syntax Trees as Feature Mapping Targets
	3.2.2 Granularity of Annotations on Abstract Syntax Trees

	3.3 Differencing of Abstract Syntax Trees
	3.3.1 Semantic Edits on Abstract Syntax Trees
	3.3.2 Deriving Abstract Syntax Tree Edit Scripts
	3.3.3 Semantic Lifting of Abstract Syntax Tree Edit Scripts

	3.4 Summary

	4 Semi-Automated Feature Mapping Recording Upon Semantic Edits
	4.1 Deriving Feature Mappings For Semantic Edits
	4.1.1 Feature Mapping Derivation Algorithm
	4.1.2 Constraints on Feature Mappings
	4.1.3 Interpretation of Absent Feature Mappings
	4.1.4 Deriving Feature Mappings Upon Insertions
	4.1.5 Deriving Feature Mappings Upon Deletions
	4.1.6 Deriving Feature Mappings Upon Moves
	4.1.7 Deriving Feature Mappings Upon Updates

	4.2 Using Feature Models for Enhancing Feature Mapping Derivation
	4.3 Using Other Variants for Enhancing Feature Mapping Derivation
	4.4 Known Exploits
	4.5 Summary

	5 Technical Challenges
	5.1 Handling Redundant Feature Mappings
	5.2 Setting up the Project Structure Tree
	5.3 Feature Mapping Visualisation
	5.4 Lifting Feature Contexts to Edits
	5.5 Summary

	6 Evaluation of Applicability
	6.1 Research Questions
	6.2 Study Design
	6.3 Variability-Related Code Editing Patterns
	6.3.1 Code-Adding Patterns
	6.3.2 Code-Removing Patterns
	6.3.3 Annotation-Change Patterns

	6.4 Discussion
	6.4.1 RQ 1 – Count of Feature Context Switches
	6.4.2 RQ 2 – Feature Context Complexity
	6.4.3 RQ 3 – Comparison to VTS
	6.4.3.1 General Differences
	6.4.3.2 Ambition vs. Feature Context
	6.4.3.3 Conclusions

	6.5 Threats to Validity
	6.5.1 Internal Validity
	6.5.2 External Validity

	6.6 Summary

	7 Related Work
	7.1 Software Product Lines
	7.2 Variation Control Systems
	7.3 Feature Mapping Recovery Techniques
	7.4 Clone Management
	7.5 Tree Diffing and Semantic Lifting

	8 Conclusion
	9 Future Work
	10 Task Definition
	Bibliography

