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missing for many use cases of localization. The program of the 4th Expert Talk
on Localization covers a variety of different aspects from technologies such as
FMCW radar and LiDAR, to smartphone and ultra-wideband based systems,
and localization hardware.

The 4th Expert Talk on Localization offers a platform to discuss recent results
of research and development work and share ideas and opinions. The event brings
together researchers from academia and industry and offers a broad range of
contributions in this challenging area including complete localization systems
and demonstrations.
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event.
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A Practical Toolbox for Getting Started
with mmWave FMCW Radar Sensors

Manfred Constapel∗, Marco Cimdins∗ and Horst Hellbrück∗†
∗ Technische Hochschule Lübeck, Germany

Department of Electrical Engineering and Computer Science
Email: {manfred.constapel, marco.cimdins, horst.hellbrueck}@th-luebeck.de

† University of Luebeck, Germany,
Institute of Telematics

Abstract—In this paper, we sum up our experience gathered
working with mmWave FMCW radar sensors for localization
problems. We give a glimpse of the foundations of radar that
is necessary to understand the benefit and advantages of this
technology. Moreover, we introduce our open-source software
toolbox pymmw based on Python for Texas Instruments IWR1443
ES2.0 EVM sensors to provide students and researchers easy
access to those radar sensors. In doing so, one can jump right
into sensing with mmWave FMCW radar from a practical
point of view and start doing experiments and developing own
applications. Finally, pymmw is used for data acquisition of a
scene illuminated by three virtual radars in three different states
of occupancy showing the potential of mmWave FMCW radar
for indoor and distance-based localization applications.

Index Terms—radar, sensing, fmcw, mmwave, localization

I. INTRODUCTION & RADAR PRINCIPLES

In this paper, we introduce the open-source software toolbox
pymmw in order to get the reader started with mmWave FMCW
(frequency modulated continuous wave) radars for indoor local-
ization. Recently, commercial off-the-shelf mmWave FMCW
radar sensors are available for less than 500 Euro, therefore
become interesting for a wide range of applications such as
indoor localization and tracking.

mmWave is the band of spectrum between 30 GHz and
300 GHz. This technology is insensitive against environmental
influences such as smoke, fog, rain, bad light, and extreme
temperatures. FMCW mmWave radar can do range measure-
ments with high accuracy (less than 1 mm) and detect very fine
motions while it can penetrate through materials like plastic,
fabric, and drywall.

Commonly FMCW radars use some form of linear frequency
modulation, e.g. sawtooth. The continuous transmission of the
signal often is organized into loops (or packets). Each loop
consists of a series of linearly frequency modulated fragments,
called chirps, which swipe the bandwidth B in the time interval
T , which is often referred to as the Coherent Processing Interval
(CPI), with slope m as shown in Figure 1. The transmitted chirp
(TX) gets reflected off a target, and a time-delayed version of
the chirp (RX) is received by the radar. The round-trip time
of the chirp corresponds to the distance to the target, which
can not be measured directly, instead, the received chirp is
mixed, hence multiplied, with the signal being transmitted
yielding the frequency difference fB . The frequency difference

fB over time constitutes a frequency tone, which reveals after
transformation to the frequency domain by Discrete Fourier
Transform (DFT), e.g. utilizing the Fast Fourier Transform
(FFT), a beat frequency, thus a peak in the frequency spectrum.
The peak corresponds to the distance of the target at a given
maximum range Rmax.

For the sake of simplicity, and due to the focus on distance-
based localization, this paper is confined to distance estimation
only. Thus, velocity and angle estimations are not considered,
which can be assumed being subsequent processing steps of
range estimation. Nevertheless, mmWave FMCW radar is in
general very capable of doing high-precision radial velocity
measurements by exposing Doppler shifts [1], and, utilizing
and virtually combining an array of RX and TX antennas in a
MIMO configuration [2], able to estimate the angle of arrival
in elevation and azimuth via beamforming techniques.
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Fig. 1: Relationship between frames, loops, and chirps (upper
half) and processing steps commonly used in FMCW radar
(lower half)
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II. RELATED WORK & FURTHER READING

This section provides a few references for further reading
and more in-depth information for research.

[3] gives a classical overview of the radar data processing
pipeline. It covers signal models, sampling, waveforms, Doppler
and detection processing as well as beamforming. [4] reveals
details about the techniques used for radar systems with dis-
tributed antennas, hence defining MIMO as a distributed system,
from different angles of view: localization, adaptive signal
design, and space-time coding. [5] provides a comprehensive
theoretical and analytical background in reasonable depth to
modern radars. It starts with different variants of the radar
equation and ends up with several loss factors that should
be kept into account while estimating ranges with radar. [6]
focuses on signal processing, in particular on the difference
frequency signal (DFS) for short-range FMCW applications
in industrial environments. [7] describes methods for filtering,
e.g. with Kalman filters, and tracking of multiple moving and
maneuvering targets one would expect to see in air surveillance
applications. Furthermore, it evaluates aspects of the radar data
processing pipeline and introduces simulation concepts for
radar data processing. [8] captures a large variety of indoor
monitoring applications for daily living utilizing FMCW radar
and CSI- or RSSI-based DFL systems. It focuses on monitoring
and classification of motion activities of humans at home for
elderly monitoring or in hospitals for vital signs monitoring.
[9] describes the principle of a circuit for a constant false alarm
rate (CFAR). CFAR schemes vary the detection threshold as a
function of the sensed environment to detect targets.

III. GETTING STARTED

In this section, the ingredients needed to immediately jump
into experimenting with mmWave FMCW radar sensors are
briefly introduced.

1) mmWave Sensor: In essence, the IWR1443BOOST eval-
uation board from Texas Instruments [10] provides everything
needed to start developing radar applications on a low-power
ARM Cortex-R4F processor. It provides plenty of interfaces
as well as onboard emulation for programming and debugging.
The device got a small form factor and operates at 76 GHz to
81 GHz while having low power requirements - consumption
is regularly less than 0.5A of DC current. It can get up
to, depending on the RF frontend configuration, 12 virtual
antennas (3 TX × 4 RX) for aperture, which provides a
reasonable resolution in azimuth and elevation for various
indoor monitoring and tracking applications.

2) mmWave SDK: The mmWave software development kits
(mmWave SDKs) contain firmware for the Radar Subsystem
(RadarSS or BSS) and Master Subsystem (MSS) - called Labs
or Demos respectively - of supported mmWave FMCW radar
devices from Texas Instruments. mmWave SDKs come in
two flavors supporting different devices: IWR for industrial
applications and AWR for automotive applications. They are
updated frequently, while the number of contained Demos and
Labs increases, and more and more mmWave radar sensor
EVMs become supported.
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Fig. 2: Building blocks of pymmw

3) mmWave Toolbox: pymmw1 acts as a host for various
applications, e.g. I/Q Plot and Range FFT, which can be
categorized into plots (visualization) and data aquisition (cap-
ture). For both, visualization and capturing applications, data is
captured exclusively via two UART channels from a supported
MSS except for the captureDemo, which performs a direct
L3 memory read via the SPI, GPIO and RS233 capabilities
of a FTDI chip of the onboard XDS110 debugger utilizing
the Debug Server Scripting (DSS) library bundled in Code
Composer Studio (CCS). In pymmw - at this point in time -
four MSS for the Texas Instruments IWR1443 ES2.0 evaluation
board from SDK 1.2.0.5 and SDK 1.1.0.2 are supported.
Applications in pymmw are imported dynamically, and while
running multiple applications in parallel, they are executed in
different processes using pipes for interprocess communication
(IPC). Hence, being in a separate process, an application does
not affect other applications in execution to a great extent, i.e.
complex post-processing can be done alongside a visualization
with costly rendering threads in pseudo-realtime.

IV. EXAMPLE APPLICATION

In this section, the potential of the mmWave radar in a simple
indoor localization scenario is briefly shown by an example
application, aiming to detect and localize targets within an area
of interest or scene respectively. The example is inspired by an
application that is driven by a device-free-localization system
[11] developed in our institute.

Three mmWave radars [10] are placed in a triangular pattern
at 1.37 m in height in an indoor corridor as shown in Figure 3.
The task is to observe the area of interest in order to sense the
presence of a target and estimate its position.

Approximately 500 measurements, i.e. Range FFTs, are taken
with pymmw from each radar fixed at locations R1, R2 and R3

illuminating the scene at three different states of occupancy: 1)
idle, hence no target is located in the scene, 2) an octahedral
corner reflector - composed of 12 isosceles triangles covered

1M. Constapel, ”Pythonic mmWave Toolbox for TI’s IWR Radar Sensors”,
https://github.com/m6c7l/pymmw, 2019.
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Fig. 3: Indoor measurement setup with radar locations R1 to
R3 and corresponding distances d1 to d3 to target location p

with aluminum foil, 7 cm in length at side edges - is placed
at the position p, and 3) an adult is standing at the position p.
The radars are equipped with the mmwDemo MSS firmware
of SDK 1.2.0.5 and are configured to transmit in temporally
separated slots to avoid interference with other radars.

The most important RF configuration parameters applied to
all radars are depict in Table I.

TABLE I: Radar RF configuration for scene illumination

Parameter Value Parameter Value

f0 77 GHz Pframe 100 ms
m 50 MHz/µs #chirps/frame 32
B 3.6 GHz #loops/frame 16

#RX 4 #samples/chirp 144
#TXφ 2 Rmax 480 cm
#TXθ 0 ∆R 4.2 cm

From the measurements of the idle state the mean value ridle
is estimated in order to remove clutter in the measurements of
the other states having a target, either a reflector or an adult,
placed the scene. For the detection of both, reflector and adult, a
very simple peak detection algorithm is used that determines the
absolute maximum in the Range FFT of a given measurement
series. The principle idea is to calculate the difference ∆r
between the idle state and observation ∆r = rtarget − ridle and
find the peak that correlates to the obstacles r̂ = arg max(∆r).

After the peak detection, the Euclidean distance between
the ground truth distance r and the distance at the peak of
the difference r̂ is calculated in order to estimate µerror and
σerror.

TABLE II: Results regarding reliability of the simple peak
detection algorithm in the Range FFTs

Reflector Adult

R1 R2 R3 R1 R2 R3
µerror [cm] 0.02 4.32 0.19 7.67 22.65 78.70
σerror [cm] 0.00 0.00 0.00 3.75 66.70 110.21

The results are shown in Table II. The mean as well as the
standard deviation for the reflector are less than 4 cm, which
is a great result for device-free indoor localization systems.
The result for the adult shows the potential of mmWave radar
for localization by an offset of approximately 8 cm and a

deviation of about 4 cm for R1. The results for R2 and R3 are
worse, however, this is quiete likely due to the simple peak
detection algorithm we employed averaging noisy peaks which
are not related to the adult. Furthermore, in comparison to the
adult, the reflector provides a huge increase in the effective
radar cross section (RCS) at a relatively small space. Therefore,
considerable amounts of energy get reflected off from a virtually
single point, thus the received signal is less noisy.

V. CONCLUSION & FUTURE WORK

This paper provide a quick start guide for mmWave FMCW
radar sensors. It illustrates details about the foundations of
radar that is necessary for creating distance-based localization
applications. The open-source software toolbox pymmw based
on Python provides students and researchers easy access to
Texas Instruments IWR1443 ES2.0 EVM sensors and enables
them getting started immediately. To demonstrate the ease of
use and to show the potential of mmWave FMCW radar for
indoor localization applications, pymmw is used in an example
application involving three radars and three states of occupancy
for capturing data for post-processing purpose.

In the future, support for more mmWave radar sensors and
the attachable DCA1000EVM capture card will be added, to
enable easy high-speed capturing of radar cube data (RDC)
in pseudo-realtime via Ethernet with pymmw in order to
employ machine learning techniques and methods of artificial
intelligence for more advanced detection algorithms and filters.
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Architecture to Detect, Track, and Classify Objects
using LiDAR Measurements in Highway Scenarios

Mathias Pelka∗
∗Ibeo Automotive Systems GmbH, Germany

Reference and Tools
Email: mathias.pelka@ibeo-as.com

Abstract—Self-driving cars require a holistic perception of
their environment. To achieve this requirement, a plethora of
sensor technologies exists e.g. RGB-camera, ultra-sonic and
radar. Those sensor technologies have different range, as well as
resolution and behave differently with varying weather conditions.
Another technology is Light Detection and Ranging (LiDAR),
which enables precise distance measurements. In combination
with RGB-cameras, ultra-sonic, and radar, LiDAR closes the gap
to enable the holistic perception of the environment.

Due to limited experience with LiDAR sensors, there is a lack
of understanding how to detect, track, and classify objects (e.g.
cars, guardrails) using LiDAR data. In this paper, we propose an
architecture to detect, track, and classify objects based on LiDAR
measurements in highway scenarios. We evaluate our architecture
using preliminary sensor data obtained from a setup including
six Ibeo Lux sensors and additional a roof mounted Velodyne
HDL-64E.

Index Terms—LiDAR, object tracking, self-driving cars, au-
tonomous cars.

I. INTRODUCTION AND RELATED WORK

Light Detection and Ranging (LiDAR) originated shortly
after the invention of the LASER. Early applications includes
meteorology or surveying [1]. LiDAR allows accurate distance
measurements (e.g. accuracy is below 0.1 m for the Ibeo Lux)
between a LiDAR emitter and a reflector [2]. Multiple LiDAR
measurements shape a point cloud, as shown in Figure 1. The
figure shows a scan from six Ibeo Lux LiDAR sensors as well
as a scan of a Velodyne HDL-64E mounted on a car (VW
Passat) in a highway scenario [2], [3]. For simplicity, the figure
shows the region of interest in front of the car. Some structures
are recognizable. We aim to detect, track, and classify those
structures.

The scan is usually centered around the ego vehicle which
contains the recording devices. The six Lux sensors are
mounted around the bumper of the car and provide 360 degrees
field of vision. In contrast to radar, LiDAR provides a higher-
density point cloud, however it is more susceptible to weather.
Compared to a RGB-camera, LiDAR provides also the distance
towards an object.

Recent advances allow LiDAR to be used in cars, indicating
a mature sensor technology. Liu et al. [4] described the
measurement principle and provided a survey of different
LiDAR sensors in. Object tracking using LiDAR was discussed
by Fürstenberg in [5].

Object tracking for automotive applications is usually divided
into two categories: online and offline. Online processing is

employed for example in high level driving functions including
emergency brake assist or adaptive cruise control. Additionally,
online processing serves as an input for self-driving cars. Such
applications require real-time processing, consequently limiting
the complexity of the algorithms. An Ibeo Lux LiDAR sensor
has an update rate of 25 Hz, resulting in a required processing
time smaller than 40 ms [2]. Furthermore, often more than one
LiDAR sensor is employed, leading to large amounts of data.
In such cases, search algorithms are expensive and real-time
capable tracking algorithms are required.

Offline processing is usually used to verify the performance
of online algorithms. This is called reference. Offline processing
requires large amount of data and does not need real-time
capabilities. In offline processing, advanced processing is
possible. This, for instance, includes tracking objects backward
in time, particularly useful when only sparse LiDAR point
information is available.

Fig. 1: Point cloud with six Ibeo Lux sensors and a roof
mounted Velodyne HDL-64E. The region of interest is in front
of the car.

In this paper, we discuss the relevant steps to detect, track,
and classify objects based on LiDAR point cloud data in an
online application for a highway scenario. The steps include
ground detection, clustering, detecting best seeds (starting
points for the tracking), association and Kalman-Filtering, ego
motion compensation, and classification. This paper does not
explain further concepts like lane detection or path planning.

The paper is structured as follows: We propose an archi-
tecture in Section II and discuss the parts of the architecture.
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We show preliminary evaluation results in Section III using
real-world data. Finally, we summarize our work in Section IV.

II. ARCHITECTURE

In this section we present an architecture to detect, track,
and classify objects in a highway scenario. The input for this
architecture is the LiDAR point cloud, and the output are
tracked objects. The architecture is shown in Figure 2 and is
divided roughly in preprocessing and the tracking part.

Preprocessing
Tracking

Lidar Pointcloud

Step 1
Ground Detection

Step 2
Clustering

Step 3
Finding Seeds

Step 4
Association and

Kalman-Filtering

Step 5
Egomotion

Compensation

Step 6
Classification

Tracked Object

Fig. 2: Architecture to detect, track, and classify objects.

In the following subsections, we explain each block in detail.

A. Ground Detection

The ground detection is the first step in LiDAR point cloud
processing and part of the preprocessing. Different techniques
for ground detection are available. Ground detection labels all
ground points in the point cloud as ground and consequently
removes them from further processing. Ground points are
included in almost every LiDAR point cloud, since they
constitute the dominant plane in highway scenarios.

A simple and computationally expensive method is fitting
a plane with a principle component analysis of all LiDAR
points. However, this approach is not very robust, because
objects, including cars or trees, will disturb the calculation. In
order to remedy this, another approach is applied, where local
samples of LiDAR points are taken, a plane fitted, and the
plane normal vector is stored. By repeating this process and
choosing different points, we determine the dominant normal
vector, which is the usually the ground plane. This requires a
lot of points in to be ground points. While in highway scenarios
this is usually the case, in city scenarios or parking garages
this may pose a problem. Here, the assumption may not be
valid any longer.

In a typical scan, roughly 50 % of all points are part of the
ground plane, greatly reducing the amount of data.

B. Clustering

The next step is to determine isolated objects in the point
cloud. This is done using clustering or segmentation algorithms.

Computation of clusters involves a distance function, which
provides a measure of how far LiDAR points are apart of each
other.

Standard clustering algorithms are employed for this step,
including Density-Based Spatial Clustering of Applications
with Noise (DBSCAN). The algorithm finds isolated clusters
and requires no prior information, e.g. how many clusters are in
the point cloud. Other properties of DBSCAN includes almost
determinism, meaning it is independent on the processing order
of LiDAR points. Furthermore, DBSCAN handles a variety
of distance functions (e.g. Euclidean Distance, Manhattan
Distance) to compute the distance between LiDAR points and
DBSCAN has linear complexity and is therefore suited for
online applications in self-driving cars [6].

The combination of ground detection and clustering is usually
called preprocessing. Both are required in order to detect,
track, and classify object. The result of ground detection and
clustering is shown in Figure 3. Each cluster has a different
color. The largest cluster is the ground which contains roughly
50 % of all LiDAR points.

Fig. 3: Results of the preprocessing including ground detection
and clustering. Each cluster has a different color. The largest
cluster is the ground plane (shown in light red).

In Figure 3 three structures are visible, similar to Figure 1.
A large object in front of the ego vehicle and two smaller
objects, the structures have been correctly clustered.

C. Finding Seeds

The next step is to detect suitable seeds from the clusters.
Those seeds are the starting point for the tracking. A cluster
is not per se a good starting point for tracking and heuristics
show that remote objects only consists of very few LiDAR
data points. Those remote objects are hard to detect again,
indicating bad seeds respectively clusters. Objects close to the
ego vehicle are preferred; however, we like to detect objects not
only close to the vehicle but within a certain distance. Further,
clusters that are separated (i.e. clusters that do not have other
clusters in their vicinity) are also preferred as starting points.
The reason is, that clusters in a crowded vicinity (i.e. close to
the ego vehicle) tend to occlude other objects. Consequently,
we compute for each cluster a score, called cluster quality.
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The higher the score, the more we are sure, that the cluster is
a good seed.

If a seed is found to be suitable, we start tracking and create
a tracked object. For each tracked object, we store the position,
velocity, acceleration, and the heading.

D. Association and Kalman-Filtering

In the first tracking step of the tracked object, we aim to
find clusters in the LiDAR point cloud, that match the tracked
object. For that, we first predict the tracked object using a
motion model (e.g. free mass with constant acceleration or a
unicycle model) to the timestamp of the next LiDAR point
cloud. We then associate a cluster which is in the vicinity of
that tracked object and compute a measurement from it. Based
on the prediction, we aim to predict the expected measurement
and compare it with the actual measurement during the update
step. For this, we employ an unscented Kalman-Filter (UKF)
which is able to track non-linear movement of objects [7], [8].

In our implementation, the UKF also tracks the size of the
object represented as a bounding box. Additionally, we store
the covariance of the state.

E. Egomotion compensation

Since the tracked object moves relative to the ego vehicle,
the motion of the ego vehicle (i.e., egomotion) has to be
compensated [5]. For this, the complete ego motion between
two points in time is required. The ego motion stores the change
of translation and rotation. The change in position is a vector
∆r = [∆x,∆y,∆z]T . The rotation matrix is denoted as R. If
the tracked object position is r, the ego motion compensation
is written as

rnew = R
(
rold + ∆r

)
. (1)

F. Classification

In order to optimally track an object, some additional
information has proven beneficial. For instance, a car moves
differently than a pedestrian. A pedestrian moves more in the
sense of a free mass, rather than a car, which has certain
restrictions in terms of motion. For instance, a car cannot turn
on the spot, while a pedestrian can.

Different approaches for classification exist. Neural networks
are popular, however, they require intensive training. Another
approach based on Dempster-Shafer belief propagation was
proposed by Magnier et al. [9]. A very simple approach is a
decision tree, which is able to classify object, using velocity
and the size of the bounding box.

After classification, the tracking process continues until no
further associations have been found. In such cases, the UKF
predicts the object while a confidence metric decreases. If the
confidence becomes too low, the object tracking stops and the
tracked object is stored.

III. PRELIMINARY RESULTS

We show preliminary results in this section. The data was
recorded using a VW Passat with six Ibeo Lux LiDAR sensors
mounted around the bumper and a Velodyne HDL-64E mounted

on the roof. A visualization of the data is shown in Figure 4.
It shows a similar scenario as shown in Figure 1 and Figure 3.
This time, objects have been tracked (a truck and two cars) in
front of the ego vehicle.

Fig. 4: Visualiazation of preliminary results

As this is still a work in progress, no key performance
indicators (KPI) have been calculated. Examples for KPIs
include accuracy, precision and the elements of a confusion
matrix.

IV. CONCLUSION

In this paper, we proposed an architecture to detect, track,
and classify objects using LiDAR measurement in a highway
scenario. We have discussed the required steps to detect an
object, using ground detection and clustering and discussed
an approach for object tracking using Kalman filtering in
combination with a decision tree to classify objects.

In future work we continue to develop this approach to enable
reference object tracking. Furthermore, we aim to include key
performance indicators (KPI) calculation and compare this
approach against other state-of-the-art algorithms. This enables
other researchers to evaluate their algorithms and to calculate
performance metrics or key performance indicators.
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Abstract—GNSS hardware can only be used outdoors as
reception is strongly attenuated by buildings. We present a cost-
effective way to build a GNSS repeater that can be used to
test GNSS hardware indoors. Its design comprises two GNSS
antennas and four extra passive components. We evaluate the
performance of the circuit and show that it can be used to relay
GPS, GLONASS, and Galileo signals to a GNSS receiver with
its antenna being indoors, close to the GNSS repeater.

I. INTRODUCTION

Global Navigation Satellite Systems (GNSSs) can hardly
be used indoors, as the required satellite signals are attenu-
ated by the building structure. Especially when implementing
applications that need a GNSS signal to function properly,
this becomes an obstacle for developers. There are two viable
options: to test and debug the application outdoors or attach a
GNSS antenna with a long cable, so that the antenna can be
placed outdoors while the device remains indoors as depicted
in Figure 1 (top). However, this is not possible for all devices.
Highly integrated electronics like smartphones or wireless
sensor nodes might not allow to attach an external antenna.

Vector signal generators can be used to generate arbitrary
GNSS signals to simulate arbitrary locations. Such devices
however are very expensive. This cost can be reduced by using
a Software Defined Radio (SDR). For development it is often
sufficient to use the actual signals available at the developer’s
location. These signals only need to be available indoors by
relaying them. Commercial GNSS repeaters are available that
allow relaying of GNSS signals. They can be used as shown
in Figure 1 (bottom) and can be used with devices, that cannot
be attached to the outdoor antenna directly.

In this paper, we show how we implemented a simple and
low-cost GNSS repeater that picks up the signals outdoors
via one antenna and reradiates the signal indoors via a sec-
ond antenna. It can be build from readily available low-cost
components and requires no particular knowledge about high
frequency circuit design.

II. RELATED WORK

GNSS repeaters are used to enable the use of GNSS de-
vices for Indoor Positioning Systems (IPSs). To facilitate this,
multiple repeaters are placed at different locations, reradiating
satellite signals. The signals of these so called pseudolites are
used by a mobile device for localization. However, special

GNSS	Repeater GNSS	Receiver

GNSS	Receiver

Outdoor Indoor

Figure 1. System overview. Top: Direct connection of the GNSS receiver to
an outdoor antenna. Bottom: The GNSS repeater is attached to an outdoor
antenna and relays the signal to the GNSS receiver.

algorithms or modifications to the GNSS receiver are needed
for successful localization.

Jardak and Samama present an IPS based on Global Posi-
tioning System (GPS) repeaters [1]. They use a single external
antenna to relay the GPS signal to multiple indoor antennas
that reradiate the signal. To avoid interference between the
different antennas, they transmit in a round-robin schedule.
To allow localization, the GPS receiver needs to be modified.
However, as their system is only tested in simulations, the
paper does not disclose how the GPS repeater would be
implemented.

Riwa et al. use pseudolites that reradiate a GPS signal to
locate a robot indoors [2]. To facilitate localization of the
robot, a special GPS algorithm is implemented as SDR. A
commercial GPS repeater is used in their experiments.

Özsoy et al. present a 2D IPS that uses multiple GPS
repeaters [3]. The system uses a standard GPS receiver.
However, its received raw data is processed on a computer to
allow localization. As the repeaters will introduce additional
delays to the signals, the positioning engine inside the GPS
receiver returns erroneous results. They use specially designed
directional antennas to radiate the GPS signal indoors. The
antennas are attached to specially designed Low Noise Am-
plifiers (LNAs).
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Figure 2. Circuit diagram of the GNSS repeater.

III. HARDWARE DESIGN

The hardware of our GNSS repeater design mainly consists
of two antennas. One receives the signals outdoors, while
the other reradiates the signals indoors. The outdoor antenna
is active. It contains an LNA, which amplifies the received
signal. This ensures that the signal is strong enough for another
(active) GNSS antenna to pick it up after being reradiated by
the passive antenna, see Figure 1. It is crucial to use a passive
antenna at the output of the repeater, as the LNA in an active
antenna would not allow transmission of a signal.

To amplify the incoming signal, the LNA needs to be
powered by a DC power source. Power is supplied directly via
the coaxial cable. Most consumer GNSS antennas are actively
powered by the attached receiver. Here we use an ANN-MS-
0-005-0 [4] antenna by u-blox. According to its data sheet it
requires 2.7-5.5 V operating voltage. The main purpose of the
circuit shown in Figure 2 is to supply this operating voltage.
Further, it blocks the DC voltage from entering the passive
antenna that reradiates the signal via a decoupling capacitor.
This is needed, as some passive antennas are designed to be
a short circuit for DC signals.

The circuit is adopted from the u-blox hardware integration
manual [5]. Instead of attaching a GNSS receiver directly, a
second antenna reradiates the received signal.

IV. EVALUATION

The performance of the GNSS repeater is evaluated re-
garding different performance metrics and compared with a
reference setup. We evaluate the Time to First Fix (TTFF),
Carrier-to-Noise-Density Ratio (C/N0) and number of satel-
lites used. As GNSS receiver we use a u-blox NEO-M8Q [6]
connected via USB to a computer. It is configured to use GPS,
GLONASS and Galileo satellites and reports its status at a
frequency of 1 Hz.

A. Experimental Setup

We used two experimental setups to evaluate the repeater’s
performance, as shown in Figure 1. In both setups, the active
GNSS antenna was positioned outside a window of our office

Table I
TIME TO FIRST FIX

min. [s] max. [s] median [s]

with repeater 22 68 33
direct connection 28 89 36.5

building. Its integrated 5 m coaxial cable were run through the
frame of the closed window into the building. The antenna
had only limited Line-of-Sight (LOS) to the sky, as multiple
buildings blocked the lower elevation angles and our own
building blocked half the sky. All measurements were obtained
in overcast weather conditions without rain.

In the first setup, we connected the GNSS receiver directly
to the outdoor antenna. This setup is referred to as the direct
setup. It serves as reference for the performance of the GNSS
receiver in the evaluation environment.

In the second setup, we placed the (active) antenna of the
GNSS receiver on a desk with 1 m distance to the next window.
The receiver was again connected via 5 m of coaxial cable. It
was unable get a fix, as the GNSS signals were attenuated by
the building. The sending antenna of the repeater was placed
in close proximity (5 cm) to the antenna of the receiver. The
outdoor antenna was connected to the repeater. This setup is
referred to as the repeater setup as shown in Figure 1 (bottom).

B. Time to First Fix

We compared the TTFF of both setups. We measured the
time between the issuing of a cold start command to the GNSS
receiver and the first 3D fix for GPS. This experiment was
repeated 10 times in both setups. Table I shows the results.
The median TTFF is comparable for both setups. Occasionally,
the GNSS receiver requires more time to get a fix. However,
this is not caused by the repeater device.

C. Receiver Performance over Time

We sampled GNSS data from the receiver for one hour with
both setups as satellite positions and thus performance vary
over time. This results in 3600 samples for each setup.

Figure 3 shows that the number of satellites used for
positioning by the GNSS receiver is similar in both setups.
The number of satellites increases in the first 15 minutes, as
the receiver learns more satellite positions and starts receiving
on the respective channels. We were able to receive signals
from all tested GNSS systems (GPS, GLONASS, and Galileo)
in both setups.

We also investigated the Carrier-to-Noise-Density Ratio
(C/N0) of both setups. As the repeater introduces a more
complex signal path and additional amplification, it might
also introduce additional noise to the system which might
reduce performance. Figure 4 shows the C/N0 over time
for both systems. Again, the performance for both setups is
comparable.
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Figure 3. Number of used satellites over time.
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Figure 4. Carrier-to-Noise-Density Ratio (C/N0) over time.

V. LIMITATIONS

As the GNSS signal is repeated from an outdoor antenna,
the location inside the building cannot be determined with this
setup. Instead, the location of the outdoor antenna is reported,
independently of the position of the GNSS receiver. Further,
as the signal path is longer, the time information will be late.
However, as the signal is not digitally processed, but only
forwarded from one antenna to the other in the analog domain,
this time offset is negligible.

The maximum distance between the GNSS repeater and the
receiver’s antenna is limited. In our setup, the receiver was able
to get a fix at up to 50 cm distance between the passive antenna
of the repeater and the antenna of the GNSS receiver. This
distance is limited by the amplification of the active outdoor
antenna and losses in the repeater hardware and coaxial cables.

VI. CONCLUSION

We presented a low-cost GNSS repeater that can be built
with readily available components. It does not require special
parts other than one active and one passive GNSS antenna.
Our evaluation shows that performance is comparable to using
the outdoor antenna directly with a GNSS receiver. The
repeater can be used to supply GNSS signals to devices inside
buildings, where satellite reception is otherwise not possible.
This allows to test and evaluate applications indoors which
need a GNSS signal for proper operation.
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Abstract—Nowadays, there are a variety of different indoor
positioning systems employing diverse techniques. Besides inertial
navigation, most systems are based on ranging. For instance,
techniques utilizing the Received Signal Strength (RSS), phase-
difference, time of flight or time of arrival usually convert this
information to distances, where trilateration is used to calculate
the position. In contrast, approaches utilizing the Angle of Arrival
(AoA) are commonly overlooked in literature. Within this paper,
we present the hardware design for building such a system and
give an outlook towards the algorithms to determine of the AoA.
Preliminary measurements show the operability of the system.

Keywords—Localization, Positioning, Angle of Arrival

I. INTRODUCTION

Modern hardware platforms are typically advertised by
means of new localization features. For outdoor applications,
customers expect an integration of the Global Positioning
System (GPS), which is a low-cost readily available solution.
For indoor, there exist a multitude of isolated techniques
ranging from cheap and inaccurate RSS-based variants with
errors up to 30 m [1] to proprietary approaches like Frequency
Modulated Continuous Wave- (FMCW) radar, exhibiting errors
well below 1 m. Furthermore, there are already commercial
off-the-shelf Integrated Circuit (IC). Offering decimetre accu-
racy, the Decawave DW1000 enables the setup of an Ultra-
WideBand- (UWB) radar [2]. An alternative with comparable
accuracy and costs is phase-based ranging by means of the
Atmel AT86RF233 IC [3]. These indoor approaches have in
common that the measured quantity is converted to ranges by
means of a channel model. Afterwards, the position is obtained
with the help of some form of trilateration, e.g. least squares.
In contrast to these ranging-based variants, there are techniques
employing the angle of incidence, where the final position is
determined by triangulation. In hybrid systems, this provides
another quantity which can be used to improve the positioning
estimate from classical ranging-based techniques.

In this paper, the hardware design for an AoA positioning
system is introduced by employing off-the-shelf components,
with the overall goal to reduce time to market. Another require-
ment on the system is to be prepared for hybrid localization in
future releases. The rest of this paper is organized as follows.
In section II, related research is shortly introduced. This is
followed by the general principle in section III. We present
the hardware design in section IV. Preliminary results are
illustrated in section V. The last section concludes the paper.

II. RELATED WORK

AoA systems can broadly be classified into beam former
and subspace-based techniques. Beam former steer and shape
the beam, e.g. by utilizing antenna characteristics or by em-
ploying digital orientation within multiple antenna designs. In
contrast, subspace-based algorithms subdivide the covariance
matrix of the received signal into a signal and noise space
by singular value decomposition. An orthogonal categorization
is the classification into parametric and spectral algorithms.
Parametric approaches directly determine the angle of inci-
dence, e.g. by solving equation systems. In contrast, spectral
techniques calculate a spectrum, showing power, amplitude or
signal strengths as a function of the angle of incidence, where
peaks determine the angle estimate [4]. Below, we introduce
one variant from each of these 2× 2 categories.

The reference signal method, presented in detail in section
III, is a parametric beam former. It determines the angle by
measuring the phase of the incident signal on every antenna in
relation to a local reference. Beneficial is the low complexity,
however the signal shape must be known, only one sender
can be identified and the method is prone to time-dependent
frequency drifts. Bartlett is a classical spectral beam former,
where the main lobe of the antenna is digitally moved back
and forth to record a spectrum. It has low complexity and no a-
priori knowledge about the signal characteristics is necessary.
However, the resolution depends on the antenna configuration
[5]. ESPRIT [6] is a parametric subspace-based approach
consisting of multiple antennas. A prerequisite is a constant
distance between adjacent antenna elements, thus ideally the
incident signal exhibits the same timely displacement between
adjacent antenna elements. ESPRIT firstly determines the
covariance matrix and calculates the signal and noise space
in a second step. Afterwards, the distance can be calculated
directly. MUSIC, which is a spectral subspace-based approach,
is similar to ESPRIT in its first steps, but determines a
spectrum in its final phase instead [4], [6]. Beneficial is its high
resolution, its independence on the shape of the incident signal
and the recognition of multiple senders. However, the amount
of senders must be known a-priori, the computing complexity
is high and there are strong requirements concerning the
equivalence in the multiple receiving paths.

III. DETERMINING THE ANGLE OF ARRIVAL

Below, we present the general principle for determining
the angle of arrival. Let A be a sending node, transmitting a
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Fig. 1. Receiving path

sinusoidal signal (index: hf) with frequency fhf,A

shf,A,A→B(t) = Ahf,A(t)︸ ︷︷ ︸
:=1

sin (2πfhf,At+ ϕhf,A) (1)

where without loss of generality it is assumed Ahf,A(t) = 1.
Let B be a two-antenna receiving node, where the antennas
are separated by a distance a, as shown in Fig. 2. The above
signal received at the first antenna (index: B1) reads

shf,B1,A→B(t) = sin
(

2πfhf,A

[
t− d1

c

]
+ ϕhf,A

)
(2)

Considering Fig. 2, the signal travels an additional distance
∆d to the second antenna

∆d = d sin(α) (3)

which is equivalent to an additional propagation time ∆d/c.
Thus, we have for the received signal at antenna 2 (index: B2)

shf,B2,A→B(t) = sin
(

2πfhf,A

[
t− d1

c
− ∆d

c

]
+ ϕhf,A

)
(4)

For simplicity we assume that both signals are down-converted
by means of the same local oscillator (index: lo)

slo,B(t) = sin (2πflo,Bt+ ϕlo,B) (5)

as illustrated in Fig. 1. Analogous to [3], these down-converted
signals (index: if) read

sif,B1,A→B(t)

= sin
(

2πfif,Bt−2πfhf,A

[
d1
c

]
+ϕhf,A−ϕlo,B+

π

2

)

sif,B2,A→B(t)

= sin
(

2πfif,Bt−2πfhf,A

[
d1
c

+
∆d

c

]
+ϕhf,A−ϕlo,B+

π

2

)

(6)
where fif,B := fhf,A − flo,B. Afterwards, these signals are
compared to a local reference sref,B(t) with equal frequency

sref,B(t) = sin
(

2πfref,Bt+ ϕref,B

)
; fref,B := fif,B (7)

to obtain phase differences ∆φBi,A→B to antenna i (i = 1, 2)
[7]. Doing so, we have

∆φB1,A→B =−2πfhf,A

[
d1
c

]
+ϕhf,A−ϕlo,B+

π

2
−ϕref,B

∆φB2,A→B =−2πfhf,A

[
d1
c

+
∆d

c

]
+ϕhf,A−ϕlo,B+

π

2
−ϕref,B

(8)

α

·

a

∆d
Wave frontIncoming HF signalD

irection
of

propagation

Antenna 1 Antenna 2

Fig. 2. Wave front of HF signal

Subtracting these phase differences, we obtain a formula for
the incident angle α

∆φB1,A→B −∆φB2,A→B = 2πfhf,A
∆d

c
= 2πfhf,A

d sin(α)

c
(9)

where eq. (3) was used. Reordering, we have

sin(α) =
c (∆φB1,A→B −∆φB2,A→B)

2π fhf,A d
(10)

Above, we assumed that both signals are down-converted by
means of the same local oscillator and evaluated with respect
to the same reference. It is only mentioned in passing, that
both assumptions are not essential and could be discarded in
a productive system.

IV. HARDWARE DESIGN

Below, we present the hardware, where we limit ourselves
to the design of the Printed Circuit Board (PCB), which is
shown in Fig. 3. On the long back side, there are SMA
connectors for four 2.4 GHz antennas, where each is controlled
by a single RF transceiver. Here, we employ the Atmel
AT86RF215. These are placed close to these connectors, where
the length of the wires between antenna and transceiver are
kept equal for all IC. Moreover, at each transverse side, there
is an additional SMA connector for 0.9 GHz communication,
respectively. The system is controlled by a Lattice iCE40HX8K
Field Programmable Gate Array (FPGA), which is responsible
for parallel configurating the RF transceiver via the Serial Pe-
ripheral Interface (SPI). In turn, the transceiver generate Low
Voltage Differential Signaling (LVDS) data at 128 MBit/s,
being converted by LVDS converters to single-ended signals.
The FPGA either stores the data stream within an 16 MBit
SRAM or directly transfers it to a host via Universal Serial
Bus (USB) 3.0. The distance between the USB entities and
the 2.4 GHz nets are selected as far away as possible to avoid
coupling into these high frequency nets. For configuration and
debugging, the PCB contains five switches, eight LED and
an eight pin General Purpose Input Output (GPIO) header.
The FPGA can either be configured via SPI, a separate flash
memory or a programming interface. The PCB described so
far is a stand-alone solution. However, it can easily be included
within our hybrid positioning system [2], [3], by assembling
the 100 pin connectors on the front side, which are left empty
in Fig. 3. The PCB is supplied by 5 V Direct Current (DC),
either from USB or from the 100 pin connectors. This is
converted to 3.3 V, 2.5 V, 1.2 V level for the FPGA. These
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DC-DC converters are also placed far away from the high
frequency nets. In the following paragraphs, we present the
layout regarding two critical design parameters.

Fig. 3. Printed Circuit Board

A. Antenna distance

For determining the AoA, we employ the MUSIC algo-
rithm [8]. The influence of antenna spacing a on the accuracy
is analysed in [9]. It is shown that the error decreases with
increasing a. [10] argues that the optimal distance is close to
0.5 λ and that ambiguities arise for a > 0.6 λ. Hence, a should
fulfil 0.5 λ ≤ a ≤ 0.6 λ. In this work, we select a := 0.5 λ. [11]
recommends dimensioning the antenna distance for the highest
possible frequency, which is 2483.5 MHz for the AT86RF215.
In doing so, we have a = 0.5 λ = 0.5 c/f = 6.04 cm.

B. Clock generation

The transceivers operate with 26 MHz clock. For determin-
ing the AoA, the phase relations of these IC are required. To
alleviate frequency drifts between the transceiver, these are
connected to the same clock. We used a voltage controlled
temperature compensated crystal oscillator, which is placed
in the centre of the transceiver. We carefully designed the
distances between crystal and all transceiver to be almost
equally long. In doing so, the overall clock net length must
be minimized to reduce capacitive load to obtain a pure clock.

V. EXPERIMENTS

In Fig. 4b we present the first preliminary results for a
17 m×12 m university hall, shown in Fig. 4. The hall contains
pillars, stairs and metallic handrails in the line of sight, hence
multi-path is supposed to happen. The receiver is held at a
constant position, indicated by the diamond. In contrast, the
sender is placed at 64 different positions, characterized by the
circles. A very coarse metric is used, where the blue colour
indicates differences below 10◦ between the true and measured
incident angle. All other measurement points are coloured red.
As can be seen, there are many blue points close to the receiver.
In contrast, for positions where the signals travel through the
metallic handrails, the measurements are worse. Nevertheless,
it can be seen that the system is operable.

(a) Outline (b) Measurements

Fig. 4. Experiment in university hall

VI. SUMMARY AND OUTLOOK

This paper presented the hardware design for an AoA-
based positioning system. Besides introducing the general
principle together with related work, special emphasis is put
on the selection and collaboration of the hardware components
for the embedded system. The core is a FPGA, on the one
hand being responsible for controlling four RF IC. On the
other hand, it sends the measurement data via an USB 3.0 to
a host PC, where the angle is calculated by means of a Python
script. Finally, the first measurements are presented showing
good results in sophisticated multi-path environments.
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Abstract—In these times, when everyone wants to do as much
work as possible in the least amount of time, it is important
to make the workflow as efficient as possible. Spending an
unnecessary amount of time looking for things is therefore contra
productive. Using the library HafenCity University Hamburg
(HCU) as an example, this paper shows how the time required to
find a book can be reduced by introducing an indoor navigation
system for that purpose.
Acceleration sensors are used to realize a step counter. In
combination with gyroscope data a dead reckoning can be
carried out. The height information is derived of barometric
measurements. For additional support, routing graphs are
used to constrain the walking direction. With this setup and
the additional topological we achieve deviations between last
estimated to wanted position less than two meters.

Index Terms—indoor navigation, indoor localization, dead
reckoning, routing, topological support

I. INTRODUCTION

There are many technologies to track people in indoor
environments. Infrastructure-based technologies, such as
fingerprinting with WLAN APs or Bluetooth beacons, but also
those that do not require additional external hardware, such as
inertial measurement technology.
Infrastructure-based technologies have the disadvantage that,
on the one hand, costs are incurred for hardware and and on
the other hand an own development must be adapted in such
a way that the normal user can handle the product untrained.
The advantage here is that the achievable accuracies remain
the same under optimal conditions.
The advantage of inertial measurement technology is that it
can be used out-of-the-box. However, due to the quality of the
sensors used and the possible low robustness of the algorithms,
time-dependent errors can occur. The biggest advantage for
the broad use of such a system is that there is a multi-
sensor system which almost every user already knows: the
smartphone.
It combines measurement technology for tracking the position
as well as all other, even if possibly limited, advantages of
modern computers in a portable, handy device. This feature
makes it possible to realize even complex applications that
combine different disciplines.
Such a complex application is also represented by the
presented project. In the library of the HCU an indoor
navigation system is to be made available, which is to lead
the user to the desired book. This is necessary because the
library’s stock have been brought together from three different

old stocks, thus creating an inhomogeneous signature pattern.
In addition, the locations of the shelves of the books are only
indicated for each floor, so that on the one hand the entire
floor often has to be searched for the correct shelf and on the
other hand the indication of the signature area on the shelf
makes recognition even more difficult.
In the following Section II related works are shown.
Afterwards in Section III the application with regard to
localization is described. In Section IV first results are shown,
whereupon in Section V a summary and an outlook into the
following work is given.

II. RELATED WORK

There are different approaches to enable an indoor
navigation system via smartphone. Without further support by
other sensors dead reckoning (DR) is usually used by means
of step counters from accelerations and integrated rotation rate
as in [1] and [2] and partly in [3].
To minimize the inaccuracies of the sensor drift, [1] and [2]
use particle filters. In [1] topological information, like the
distance of a particle to a routing graph, is used to weight
the particles. The particles in [2] are scattered over the whole
area and disappear after passing a wall.
The accuracy of particle filters strongly depends on the
number of particles used. Due to the restricted performance
of smartphones, however, this is limited, so that a sufficiently
accurate position estimate can no longer be achieved at
runtime.
Another possibility is, as in [3], to integrate acceleration twice
to distances. Here the DR by smartphone is supported by using
a Smartwatch attached to the ankle of a foot. It must be taken
into account that the drift caused by the sensor noise increases
significantly with time advances due to integration. This is
particularly the case with double integration. Here, corrections
are made using zero velocity update (ZUPT) when the foot is
at a standstill.
An additional support by further devices, which have to be
located at other places of the body, is not reasonable, because
this would have to be provided by the library and furthermore
this does not allow an intuitive use of the application.
Accordingly, no ZUPTs can be applied, because in the use-
case the user won’t hold the smartphone that still that they
could be calculated, and double integration would lead to
significant errors after a very short time.
The position can also be supported by external sensors. This
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happens in [2] where magnetic fields are used to further weight
the particles of the filter based on the received magnetic field
strength. This greatly shortens the time it takes to estimate the
position.
Since no new sensors are to be installed in the library, this is
out of the question.

III. SYSTEM SETUP

For a navigation system used to find rooms, an accuracy of 5
m is sufficient. In this case, this is not accurate enough, as the
individual shelves are approximately 0.5 m apart. The goal is
to stand with an accuracy of less than 2 m in front of the shelf.
Since the shelves themselves have printed information on the
signature area, this is sufficient. Any remaining errors can be
detected by the user himself. Reaching the correct side of the
shelf is an extended goal. Here the user should be guided into
the corridors and stand in front of the correct side of the shelf
(see Fig. 1).
The inertial navigation using smartphones is realized by the
inertial measuring unit (IMU) (accelerometer, gyroscope) and
a barometer. As already mentioned in Section II, a DR with
a step counter and integration of the rotation angle is usually
realized. This is also the case in this project. The step counter
is an implementation according to [1].
In order to obtain a correct trajectory, the translation must be
determined. On the one hand, a fixed value could be assumed
(mean step length) on the other hand a step length estimation
could be performed. For this purpose the step length estimation
according to [4] by Weinberg with the formula (1) can be used.
K is a factor that remains constant and results in a different
step length based on the variation of the accelerations in the
maximum and minimum amplitude (Amax and Amin) during
the step. K results from the ratio between the real distance
and the estimated distance of the step length estimator.

li = K ∗ 4
√
Amax −Amin (1)

A variation of this is given in [5] by Ho, Truong and Jeong,
where the same formula is used, but the K factor for each
step is estimated. They estimate the K factor by applying
a polynomial function seen in equation (2) with the average
velocity vstep during a step. However, they use a smoothed
signal from the accelerometer so that the constant of 0.68
they found for the polynomial does not apply to unsmoothed
signals.

Ki = 0.68− 0.37 ∗ vstep + 0.15 ∗ v2step (2)

Another possibility is shown in [6] by Kim et al.. In formula
(3) the absolute sum of the accelerations ΣA in respect to total
samples N during a step is used instead of the minima and
maxima.

li = K ∗ 3

√
ΣA

N
(3)

The height information for the assignment of the correct floor
is obtained using the general barometric height formula (4) by

[7], where p(h) is the air pressure measured by the barometer,
so that a 2D+1D trajectory can now be formed.

hb =
288.15K − 288.15K ∗ 5.255

√
p(h)

1013.25hPa

0.0065K
m

(4)

The orientation as well as the positions are supported with the
help of a routing graph. The algorithm in 1 changes the current
orientation of the smartphone Ψ to the orientation of the graph
^P if the distance between the routing graph is less than 0.3
m and the absolute difference between both orientations is less
than 7.5°. In addition, the position is set to the base point on
the graph. Thus the user moves on the graph. If the difference
between ^P and Ψ is greater than 7.5° the graph is left.
Another topological support is done if the position of the

Algorithm 1 Snap Position to Graph

if P (x, y), BP (x, y) < 0.3m then
if |Ψ− ^graph| < 7.5◦ then

Ψ← ^graph

P ← BP
end if

end if

smartphone is within a predefined polygon. This marks the
area of a staircase and the step length is set to the step
width of a staircase step. This way one can maintain an
approximated correct position, since the step length algorithms
do not calculate this correctly for stairs. If no barometer is
present in a smartphone, this information can also be used to
artificially change the height by one stair step height.

IV. EXPERIMENTAL RESULTS

In order to determine the achievable results of the step
length estimator presented in the previous Section, a test route
was carried out in the HCU building. The distance covered was
about 49 m. The tests was done with six different persons, but
with the same smartphone. First of all the K factor had to
be determined. This was done by comparing the estimated
distance of each algorithm to the ground truth. Afterwards an
average value for the factor was calculated and included to
the algorithms, except for the mean value (0.75 m) and the
estimator of Ho, Truang and Jeong. As the formula (2) is
used for smoothed accelerations, we decreased the constants
iteratively to get the best for unsmoothed signals. Based on
this we decided to decrease it to 0.61. After recalculating the
different distances an average of the difference between ground
truth and the different distances of the persons could be made.
The results can be seen in TABLE I.
There is basically no big difference between the algorithm

by Weinberg and the one by Kim et al. As the algorithm of
Kim et al. has a greater maximum deviation, we chose the
Weinberg method. The possibility to estimate the K factor
with (2) seems to be to inaccurate, as its deviation to the
truth is more than 20 % but as mentioned in Section III this
estimator expects a filtered signal according to [5], which
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TABLE I: Results of the tests for the different step length
estimator with six different Persons (P1-P6). Values are the
absolute difference to the ground truth in percent

P Weinberg [%] Kim [%] Ho [%] mean [%]
P1 7.0 5.7 12.9 11.7
P2 5.8 2.7 28.0 13.1
P3 8.0 5.5 32.9 17.9
P4 5.8 8.6 15.7 0.5
P5 0.3 8.1 26.5 20.9
P6 2.7 3.5 21.1 1.5
Mean 4.9 5.7 22.8 10.9

wasn’t done in this case. The method by applying a mean
step length turns out to be better than that, but compared to
the estimators of Weinberg and Kim et al. it performs worse
than them.
Eventually the K factor (for the Weinberg method) was taken
into the account for the following tests. The whole system was
tested in the library of the HCU. The starting point of the test
was on the ground floor of the library in front of the stairs and
the destination was a shelf on the 1st floor. This route was run
13 times and the difference between target and actual position
was calculated. The results are shown in Fig. 1. There the
blue crosses represent the last estimated position of the tests,
the red cross the end node to be reached, the red rectangle the
corresponding shelf and the green line the approximate course
of the different tests. In the Fig. 1 it can be seen that the results

Fig. 1: Results of the position estimated in the library

are all scattered in the range of maximum 2 m around the true
position and are also rather southwest. This indicates that the
step counter counts too few steps. The mean deviation is 1.35
± 0.5 m. This is a accuracy of 4 % of traveled distance.

V. CONCLUSION AND OUTLOOK

Since the stock of the library was merged of three different
old ones, the book signatures are inhomogeneous. This and the
inaccurate description of the location (only to the floor), lead
to a unnecessary big time to find a book searched. Because
of that this paper presents an application and the algorithms
used to navigate trough the library in order to lead the way to
the book looked for.
In general other works show, that results with an accuracy

of 2-5 m is achievable, but in this particular case a higher
accuracy was required. In order to achieve this, we added
topological support by taking the routing graph into account.
To overcome the problem if there is no barometer present in a
smartphone, a topological support can be used to define areas
where height changes are possible like on stairs. However,
this hasn’t been compared to the barometric height estimation,
which is planned for the next investigations. Further we
investigated different step estimators to improve the accuracy
of the translation between two positions. In the past we used a
mean step length, which worked fine, if one user would use the
application, but since the application is meant to be usable to
everyone this would turn out to be a big error source. Because
of the results in Section IV we decided to use the the method
of Weinberg, but we will do further investigate the algorithm
of Ho, Truong and Jeong, because according to their work,
the results should perform better.
The requirement of less than two meters is satisfied as the
experimental results are within this range. Nevertheless the
last estimated position don’t match the requirement to stand
before the correct side of the shelf. This seems to be due to
to less recognized steps, so the step counters parameters have
to be tweaked.
Another possibility to overcome these last deviation is to
implement more sensors. For example, the camera could be
used to identify the shelf in front of which the users are
located, and and give feedback if the user has to go further.
Also it may be worth to implement the camera as a source of
position estimation doing structure from motion.
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Abstract—Recently, ultra-wide band transceiver systems have
provided data transfer, timestamps and channel impulse response
measurements to the user. The interpretation of the timestamps
and the channel impulse response, however, is difficult and
not intuitive. In simple scenarios, line of sight and non-line
of sight pulses can be distinguished easily, which simplifies the
reconstruction. For more complex scenarios, the interpretation
remains difficult and is still an unsolved problem. In this paper,
we investigate the channel impulse response measurements of the
DecaWave DW1000 ultra-wide band transceiver and model the
expected results for simple scenarios based on information pro-
vided from the transceiver data sheet. We will show that we are
able to predict the measurement results of the transceiver with
acceptable accuracy by applying the model above in experiments.

Index Terms—channel impulse response, ultra-wide band,
channel estimation, internet of things

I. INTRODUCTION AND RELATED WORK

For the Internet of Things (IoT), ultra-wide band (UWB)
communication is a promising alternative compared to existing
narrow-band or spread spectrum solutions. In contrast to
other IEEE 802.15.x solutions, UWB is very resilient against
multipath propagation [1]. The reason is that due to large
bandwidth, symbols are much shorter compared to a smaller
bandwidth. Consequently, individual path components due to
reflections do not overlap and this reduces the effects of inter
symbol interference. Combining the short pulses with high
speed clocks and time measurement units, the transceiver
provides precise time-of-flight measurements, which are applied
in various localization systems, like [2] and [3].

For spread spectrum technologies, pilot symbols are sent to
estimate the current multipath channel in an OFDM System in
[4], which is also an option for UWB systems. In [5], Zhou et.
al. apply a stochastic approach to predict the current channel
impulse responses (CIR) in a high-speed railway. In [6] and
[7], the authors show how to generate keys for security and
private transmissions from CIR measurements. Additionally,
the channel information is an important optimization criterion
during the installation of wireless communication systems
[8]. In summary, the CIR serves various purposes in different
application fields.

Consequently, we investigate CIRs as a feature of an UWB
transceiver which is called CIR data. The CIR data from
the transceiver is a result of the transmitted signal, which is
affected by the wireless channel and its corresponding multipath

spreading, as well as some signal processing performed by the
hardware.

The contributions of the paper are:
• We develop a generalized model for wireless UWB

propagation.
• We propose a new estimation of the CIR data called the

forward method.
• We evaluate the approach with measurements.
The rest of the paper is organized as follows. Section II

introduces our generalized model for the wireless UWB
propagation. Our main contribution, the estimation of the CIR
data, called the forward method, is proposed in Section III.
Section IV provides a comparison of the estimated received
signal with measurements. Section V concludes the paper and
gives an outlook on future work.

II. MODEL FOR UWB SIGNAL PROPAGATION

This section introduces the transmission characteristics of
wireless UWB transceivers and shows how the received signal
is affected by multipath propagation.

Assume the signal x(t) is transmitted wirelessly by a
tag in a given room geometry. The signal y(t), which is
received by the anchor, is a superposition of multiple noisy and
power-distinct copies of the transmitted signal, depending on
the corresponding multipath propagation of the transmission
channel. If the transmission channel is linear and time-invariant
(LTI) and includes noise, the received signal y(t) can be
described by:

y(t) = x(t) ∗ h(t) + w(t), (1)

where w(t) ∼ N (0, σ2
n) is additive white gaussian noise.

The CIR h(t) is assumed to be a superposition of N time-
shifted dirac-pulses δ with individual receive power values
PRx. Each of the N pulses is a single path of the multipath
propagation:

h(t) =
N−1∑

i=0

PRx,i · δ(t− τi), (2)

where τi is the time shift of the signal of the i-th path.
In our investigation, the transmitted signal x(t) is from an

IEEE 802.15.4 compliant DecaWave DW1000 coherent UWB
transceiver [9]. The CIR measurements of the transceiver are
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presented in Section IV. Figure 1 shows the amplitude spectrum
X(f) of the transceiver from the datasheet, as well as the
reconstructed corresponding transmitted signal x(t) in the time
domain.
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Fig. 1: Transmitted signal in frequency (top) and time domain
(bottom)

The signal x(t) is similar to the expected root-raised cosine
reference pulse specified in the IEEE standard. Therefore,
we model the transmitted signal x(t) from the DecaWave
transceiver as a pulse shape given in Figure 1.

The received signal y(t) is processed by the hardware;
mainly down-mixing and subsequently filtering. This results
in a baseband signal yCIR(t), which is the signal provided
by the transceiver hardware. Since this is the signal used to
evaluate our predicted CIR, we will call it the CIR data.

III. FORWARD METHOD FOR ESTIMATION OF THE CIR DATA

After introducing the shape of the transmitted signal x(t)
and the incurrence of the corresponding CIR data yCIR(t) in
the last section, this section will show the forward method to
predict this signal. Figure 2 shows a block diagram outlining
the signal processing.

Fig. 2: Block diagram of the forward method

As shown in (2), the CIR h(t) is modeled as a series of
dirac pulses of varying magnitude. These pulses may be either
positive or negative, depending on the individual paths of the
signals. The phase of the complex transmission waves, and
therefore the sign of the pulse, results from three factors: the
phase offset at transmitter side, the phase based on the path
length and a phase shift by π for each reflection at an obstacle.

An estimation of a CIR h′(t) must be created. Ideally, this
could be derived from the geometry of the room. In this case,
h′(t) was created with knowledge of the optimal result. The
estimated received signal y′(t) is calculated by convolving
the reference pulse x(t) with h′(t). In this case, we assume
a noise-free transmission with w(t) = 0. Figure 3 shows an
exemplary CIR h′(t), as well as its corresponding received
signal y′(t) in the time domain.

Fig. 3: Convolution of an exemplary CIR h′(t) with reference
pulse x(t) to estimate y′(t)

To calculate the estimation of the CIR data, y′(t) is down-
converted to the baseband. In the next step, a low-pass filter
eliminates irrelevant signal components from the baseband
signal. This results in an estimation for the CIR data y′CIR(t),
which is compared to yCIR(t) measured by the transceiver
hardware in the next section.

IV. COMPARISON BETWEEN CIR DATA AND ITS
PREDICTION

The last sections described the CIR data yCIR(t) and its
estimation y′CIR(t). After introducing the measurement setup
in this section, we will compare these two signals.

We performed measurements in an obstacle-free space
outside of a building to minimize the number of signal paths.
The DecaWave transceivers were at a height of 1.35m each
and 3m apart. When expecting a line-of sight (LOS) peak at
0 ns, the ground reflection is predicted to arrive approx. 3 ns
later because the path is approx. 1 m longer. The modeled CIR
is the one illustrated in Figure 3 with Peak 1 being the LOS
and Peak 3 the expected ground reflection. Figure 3 shows
additional peaks that we needed to add to model the measured
signal correctly. Peak 2 is a path component that arrives 1 ns
after the LOS which we always measure and do not have an
explanation for. The path length is just 30 cm longer than the
LOS path. Peaks 4 and 5 might arise from additional paths
created by the measurement equipment, like the screen of the
laptop, and need further investigations.

The transmission is configured to a center frequency
of fc = 3993.6 MHz and a corresponding bandwidth of
499.2MHz and the measurement was captured 176 times.
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Fig. 4: Three measurements with complex components and
magnitudes

Before examining the result of the convolution, we investi-
gate the CIR data yCIR(t). The sampling rate of the signal is
998 MHz. Figure 4 shows a selection of three measurements of
the same set up, each shifted to align at t = 0 ns. Since yCIR(t)
includes phase and magnitude, each measurement provides real
and imaginary components. To smooth the signal, a spline fit
has been applied to each component. The plot at the bottom of
the figure shows the absolute value of all three measurements.

Although the real and imaginary components of the signal
change significantly from measurement to measurement, the
magnitudes are nearly indistinguishable. The changes for the
real and imaginary components result from varying phase
offsets between the transmitter oscillator that creates x(t) and
the receiver oscillator. Since the offsets are unknown, the
magnitude of the measurements is the simplest way to compare
the measured signal to the estimated signal.
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Fig. 5: Comparison of the CIR data yCIR(t) with its estimation
y′CIR(t)

Figure 5 shows a comparison between a single measurement
of the CIR data yCIR(t) and the corresponding estimation
y′CIR(t) resulting from the estimated CIR h′(t).

The measurement data and the result of our estimation align
very well. The shape and values of the measurements and
estimation are very close as shown in Figure 5. The first peak

is the line of sight peak. The second peak shows the first
reflection. It supports the accuracy of this prediction.

V. CONCLUSION AND FUTURE WORK

In this paper, we have proposed a forward method for an
estimation of the CIR data yCIR(t). For this, we modeled
the wireless UWB transmission and applied it to a baseband
signal derived from the datasheet of a transceiver, based on
a simulated CIR. Comparing the superimposed measurement
data with our estimation depicts the accuracy of this prediction.
The shape and values of the measurements and estimation are
very close.

For the future, we will investigate the phase – real and
imaginary part of the measurements – in more detail. We expect
to retrieve additional information which means more details
from the path components by these complex measurements
compared to the analysis of the magnitudes in the investigation
in this paper. Also, the estimation of the CIR h′(t) itself is
important. An improved model for the multipath propagation
results in a more realistic behavior, which supports the
prediction. As an implementation, we will apply the forward
model and the measured CIR data in a single anchor localization
system.
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