Cocycles, radicals and splitting fields of twisted group algebras

Hans Opolka
TU Braunschweig
Universitätsplatz 2
D-38106 Braunschweig
e-mail: h.opolka@tu-bs.de

Abstract: For a field \(k \) of characteristic 0, a finite group \(G \) and a central 2-cocycle \(f: G \times G \to k^* \) denote by \((k, G, f) \) the corresponding twisted group algebra. The purpose of this note is to show that a certain radical extension of \(k \), which is constructed from \(f \), is a splitting field of \((k, G, f) \), and to illustrate this result by an example which is related to Gauss sums.

Key words: Semisimple algebras, splitting fields

MSC classification 2010: 16K20, 16S35, 20C25

For basic definitions and results about group cohomology and twisted group algebras resp. about general finite dimensional associative algebras which will be used in this note see e.g. [Y], [CO] resp. [BR], [CR]. For the case of the ordinary group algebra \(f = 1 \) we also refer to [SE] and [LA], XVIII.

Let \(k \) be a field of characteristic 0, let \(C \) be an algebraic closure of \(k \), let \(G \) be a finite group, let \(f: G \times G \to k^* \) be a central 2-cocycle and denote by \((k, G, f) \) the corresponding twisted group algebra. As is well known it is semisimple. Consider the function \(a_f: G \to k^* \) defined by

\[a_f(x) := \prod_{i=1}^{m(x)} f(x, x^i), \quad x \in G, \]

where \(m(x) \) denotes the order of an element \(x \in G \). For every \(x \in G \) fix the set of all roots \(\alpha_f(x) \in C \) of \(a_f(x) \) of order dividing \(m(x) \) and denote by \(L/k \) the subextension of \(C/k \) which is obtained from \(k \) by adjoining to \(k \) all \(\alpha_f(x), x \in G \). The main result of this note is as follows

(1) Theorem The field \(L \) is a splitting field of \((k, G, f) \)

We note that this result, applied to \(k = \mathbb{Q} \) and \(f = 1 \), contains the well known result of R. Brauer, see e.g. [SE], 12.3 or [LA], XVIII, §11, Thm. 17, according to which the field extension of \(\mathbb{Q} \) which is obtained from \(\mathbb{Q} \) by adjoining to \(\mathbb{Q} \) a primitive \(m \)-th root of unity
\[\zeta \in \mathbb{C}, \text{ where } m \text{ is the exponent of } G, \text{ is a splitting field of the ordinary group algebra } \mathbb{Q}[G] = (\mathbb{Q}, G, 1). \]

In the proof of (1) we will use some results on representations of twisted group algebras. The first is the twisted version of the reciprocity law (1.12) in [O1] in terms of characters:

Let \(f, f' : G \times G \to k^* \) be central 2-cocycles, let \(H \leq G \) be a subgroup, let \(\chi \) be a \(k - f \) -character of \(G \), i.e. the character of a representation of \((k, G, f)\), viewed as a function \(\chi : G \to k \), and let \(\gamma \) be a \(k - f' \) -character of \(H \). Then

\[(2) \quad \chi \cdot \text{Ind}_{H}^{G}(\gamma)|_H = \text{Ind}_{H}^{G}((\chi|_H \cdot \gamma)|_H)_{f,f'} \cdot \]

Here \(\text{Ind}_{H}^{G}(\theta)|_H \) denotes the \(k - t \) - character of \(G \) which is induced by the \(k - t \) - character \(\theta \) of \(H \) with respect to the central 2-cocycle \(t : G \times G \to k^* \), i.e.

\[\text{Ind}_{H}^{G}(\theta)|_H(x) = \frac{1}{|H|} \cdot \sum_{g \in G} \frac{t(g,x)t(gx,g^{-1})}{t(g,g^{-1})} \theta^*(gxg^{-1}), \quad x \in G, \]

where \(\theta^*(z) = \theta(z) \) for \(z \in H \) and \(\theta^*(z) = 0 \) for \(z \in G \setminus H \).

Denote by \(W_k \) the group of roots of unity in \(k \). It is well known, see e.g. [O1], (1.2) and (1.4), that there is a subgroup \(F \) of \(k^* \) and an isomorphism

\[H^2(G, k^*) \cong H^2_{\text{abel}}(G/G', F) \times H^2(G, W_k); \]

here \(G' \) denotes the commutator subgroup of \(G \), cohomology is taken with respect to the trivial group action and \(H^2_{\text{abel}}(G/G', F) \) denotes the subgroup of cocycle classes which can be represented by symmetric cocycles. Hence, up to equivalence of cocycles, we may and do assume that there is a central symmetric cocycle \(s' : G/G' \times G/G' \to F \) and a central cocycle \(t : G \times G \to W_k \) such that \(f = s \cdot t \) where \(s = \text{inf}_{G}^{G}(s') \). Now Schur’s lemma implies there is a function \(\alpha : G \to C^* \) such that \(s = \delta \alpha \cdot t \) (coboundary over \(C \)) and therefore \(f = \delta \alpha \cdot t \). It follows that for every (simple) \(C - f \) - character \(\chi : G \to C \) there is a (simple) \(C - t \) - character \(\psi : G \to C \) such that \(\chi = \alpha \cdot \psi \) and such that \(\psi \) belongs to a \(C - t \) - representation of \(G \) which can be lifted to a linear representation \(D \) of a finite central group extension \(1 \to Z \to E \to G \to 1 \) which is defined by \(t \). If \(D \) is induced by a representation \(D_0 \) of a subgroup \(H_0 \leq E \) such that \(Z \leq H_0 \), then \(\psi \) is induced by a \(C - t \) - character \(\psi_0 \) of the subgroup \(H := H_0/Z \leq G \) with respect to \(t \), and the degree of \(\psi_0 \) is the degree of \(D_0 \). If \(G \) is nilpotent, then \(E \) is nilpotent. Assume that \(\chi \) is simple. Then \(\psi \) is simple. Since finite nilpotent groups are monomial there is a subgroup \(H \leq G \) and a function \(\beta : H \to C^* \) such that \(\delta \beta = t|_{H} \cdot H \) and \(\psi = \text{Ind}_{H}^{G}(\beta)|_H \). Hence from (2) we obtain

\[\chi = \alpha \cdot \psi = \text{Ind}_{H}^{G}((\alpha|_H \cdot \beta)|_H). \]

This proves the following lemma.
(3) Lemma If G is nilpotent then every simple $C - f -$ character χ of G is monomial, i.e. there is a subgroup $H \leq G$ and also a function $h : H \to C^*$ such that $\delta h = f|_{H \times H}$ and $\chi = Ind_H^G(h)_f$.

We note

$$y(x)^{m(x)} = \prod_{i=1}^{m(x)} f(x, x^i) = a_f(x)$$

for all $x \in H$ where $m(x)$ is the order of x. Hence $Ind_H^G(h)_f$ is the $C - f -$character of a representation of G which is realizable in the subfield $L = k(\sqrt[1]{a_f(x)} : x \in G)$ of C. Using Brauer’s induction theorem [BT] or [SE], §10, Thm. 19 or [LA], XVIII, § 10, Thm. 15, and the twisted form (2) of the reciprocity law, a twisted form of Brauer’s induction theorem was obtained in [O1], p. 584, and combining this result with (3) we obtain the following proposition.

(4) Proposition For every $C - f -$ character χ of G there are nilpotent subgroups H_1, \ldots, H_r of G and functions $\gamma_1 : H_1 \to C^*, \ldots, \gamma_r : H_r \to C^*$ such that the coboundary $\delta \gamma_i$ is the restriction of f to $H_i \times H_i$ for all $i = 1, \ldots, r$ and such that there are integers n_1, \ldots, n_r with the property

$$\chi = \sum_{i=1}^r n_i Ind_{H_i}^G(\gamma_i)_f$$

We add that every $Ind_{H_i}^G(\gamma_i)_f$ is the character of a $C - f -$representation of G which is realizable over the field L. In order to complete the proof of (1) one argues as in the proof of the linear case $f = 1$, comp. e.g. [LA], XVIII, § 10, proof of Thm. 17: Decompose every $Ind_{H_i}^G(\gamma_i)_f$ in (4) as a sum of simple characters of $C - f -$representations of G which are realizable over L to obtain an expression of χ as a linear combination with nonnegative integer coefficients of simple characters which belong to simple representations of (C, G, f) which are realizable over L. This shows that χ itself belongs to a representation of (C, G, f) which is realizable over L and therefore completes the proof of (1).

Finally we discuss an example. The basic construction is taken from [O2], § 4; it makes use of relations between central 2-cocycles and bimultiplicative pairings which are explained in [Y], §2, and of elementary facts about Gauss sums. Let m be a positive integer > 1 and let $W_m = \langle e^{2\pi i/m} \rangle \leq C^*$ be the group of roots of unity of order m in C. Assume that A is a finite abelian group of exponent m and that $t : A \times A \to W_m$ is a central 2-cocycle such that the associated symplectic pairing $\omega_t : A \times A \to W_m$, $\omega_t(x, y) := t(x, y)/(t(y, x)$ for all $x, y \in A$, which is defined e.g. in [Y], §2, 2.1, (7), is nondegenerate. Le h denote a positive integer such that there is an epimorphism $G(\mathbb{Q}(e^{2\pi i/h})/\mathbb{Q}) \to A$. For every character χ of
A, viewed as a character of $G(\mathbb{Q}(e^{2\pi i/h})/\mathbb{Q})$, denote by $\tau(\chi)$ the corresponding Gauss sum, i.e.

$$\tau(\chi) := \sum_{a \mod f(\chi)} \chi(a)e^{2\pi i a / f(\chi)}$$

where $f(\chi)$ is the conductor of χ; for the terminology and elementary results on Gauss sums which are used here compare [LE], § 2. For every $x \in A$ let χ_x denote the character of A defined by $\chi_x(y) := \omega_t(x,y)$, $y \in A$, viewed as a character of $G(\mathbb{Q}(e^{2\pi i/h})/\mathbb{Q})$. Put $k := \mathbb{Q}(e^{2\pi i/m})$. Then $f: A \times A \to k^*$ defined by

$$f(x,y) := t(x,y)\tau(\chi_x)\tau(\chi_y)/\tau(\chi_x\chi_y), \ x,y \in A,$$

is a central 2-cocycle. Now we assume that the central 2-cocycle $t: A \times A \to \mu_m$ is a bimultiplicative pairing; see [Y], § 2, Thm. 2.2. Then the function $a_f: A \to k^*$ defined above is given by

$$a_f(x) = t(x,x)^{\frac{m(x)(m(x)+1)}{2}} \tau(\chi_x)^{m(x)}, \ x \in A.$$

We have $\varepsilon(x) := t(x,x)^{\frac{m(x)(m(x)+1)}{2}} \in \{\pm 1\}$ for all $x \in A$, and $\alpha_f(x) = \frac{m(x)}{\sqrt{\varepsilon(x)}} \cdot \tau(\chi_x), \ x \in A$, is a root in \mathbb{C} of order dividing $m(x)$ of $a_f(x)$. Hence the splitting field L of the twisted group algebra (k, A, f) from (1) is given by

$$L = k(\sqrt[\varepsilon(x)]{\sqrt{\varepsilon(x)}} \cdot \tau(\chi_x): x \in A).$$

Denote by l the lcm of h and m. Since $\tau(\chi_x) \in \mathbb{Q}(e^{2\pi i/l})$ for every $x \in A$ we have $L \subset \mathbb{Q}(e^{\pi i/l})$. Especially $\mathbb{Q}(e^{\pi i/l})$ is a splitting field of the twisted group algebra (k, A, f).

References

[O2] H. Opolka: Cocycles, Galois theory and automorphic forms, parshin70.mi.ras.ru/materials.html
