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Abstract

Software product lines are able to describe multiple products sharing a common base
of features and are commonly described as feature models. For complex software
product lines, automatic analyses are required to ensure validity and to improve the
interactive configuration process. Modern SAT solvers are vital components for the
validation process of feature models. The increasing variability of software product
lines implies the need to use more expressive solvers like SMT solvers. To assist the
development of feature modeling tools, we compare SAT and SMT solvers for the
automated analysis of feature models. During this thesis, we create an abstract data
type to formally define analyses for feature model defects and their explanations. The
result show that SAT solvers are more efficient at detecting the defects, while SMT
solvers can find explanations for them multiple times faster. Feature models can be
further expanded by attaching attributes to features. Such attributes may contain a
numerical value. Additionally, one attribute can be defined for multiple features. In
this thesis, we aim to support the interactive configuration process, by providing the
range of the sum of values for an attribute. Such ranges depend on the remaining
choices in a configuration of the product line. We provide an exact computation
using SMT and an approximation using an heuristic. The evaluation results show
that an SMT solver is not suitable for supporting interactive configuration. However,
the approximated ranges of the provided heuristic were very close to the exact ones.
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1. Introduction

The high demand for custom software, beginning in the early 90s, lead the software
industry to change the way software is developed. Companies were in need of
efficient software with special requirements that were not provided by mass-produced
software. Instead of focusing on generalized one-size-fits-all solutions and standard
software, a new development approach was needed that offers diversity and fulfills the
requirements of every customer while benefiting from mass production [ABKS13].

Software product lines realize the concept of mass customization to account the
needs of a single customer while maintaining an efficient production and has therefore
gained interest in the software industry [ABKSI3]. A common way to display
software product lines are feature models [BSRC10, BRNT13]. A feature model
contains the information about different features of a software product line and the
relationship between them [BSRC10]. Apel et al. define a feature as “a characteristic
or end-user-visible behavior of a software system” [ABKS13]. As core elements
for the software, the features are designed to be as independent and reusable as
possible to create a configuration by combining them. Every feature model has
a diagram which structures the features in a hierarchical order allowing us to
display cross-tree-constraints which describe relations of features that are not directly
connected [BSRC10]. Such constraints can significantly damage the consistency of the
feature model, and therefore automated analyses are needed [ABKS13]. The process
of the analysis is straightforward. The feature model is translated to propositional
logic and the task of finding an assignment that fulfills the structural and the cross-tree
constraints is typically delegated to a SAT solver [MWC09]. The analysis can detect
multiple defects and therefore helps in validating the feature model [Bat05, EPAHO09].

To further optimize the selection of configurations it is possible to add extra informa-
tion to the features. The additional information is called a feature attribute [CHEQ5].
Feature models that contain features with attributes are called extended feature
models [BSRC10]. As an example, the price for each feature can be assigned directly
as an attribute.

Usually the customer does not have the overview of all the features that are provided.
Therefore, the customer starts by selecting the most relevant features that are
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2 1. Introduction

important for him. Such selection is called partial configuration. As part of our
work, we want to automatically calculate the ranges of feature attributes for a given
partial configuration. The calculation of the ranges provides the customer with
information. As an example, we can calculate the maximum and minimum price
which can be reached by selecting the remaining features. With the calculation the
customer directly sees the impact on the price range when selecting a new feature.

For the computation of feature attribute ranges the given structure for SAT solvers is
too restrictive because the computation of non-Boolean attributes requires non-
Boolean variables and arithmetic operations which are not supported by SAT
solvers [RMH12]. In our work, we will focus on solving ranges for attributes with
the help of an SMT solver, which solves formulas in first-order logic including the
needs to construct queries for the attribute ranges [RMH12].

SMT solvers are superior to SAT solvers regarding functionality. Thus, it is also
possible for SMT solvers to solve propositional formulas. The SMT solvers were
improving significantly in the last two decades, making them a promising alternative
to SAT solvers [BSST09]. As part of our work, we want to know whether SMT solvers
are also superior regarding efficiency by comparing SMT solvers with SAT solvers on
analyzing feature models. The feature model analysis consists of multiple analyses,
one for each kind of defect. When both kinds of solvers have different advantages for
the various analyses, it is also interesting to determine the most suitable solver for
each analysis. Further, if the combination of SAT solvers and SMT solvers, could
improve the overall performance of the analysis.

Goal of this Thesis

The goal of this thesis is to further expand the possibilities of extended feature
models and help developers to decide between SAT and SMT solvers while working
with feature modeling tools. This will be achieved in the following steps:

First, we want to evaluate the efficiency and possibilities of SAT and SMT solvers,
regarding their usage for the automated feature model analysis. In many cases
developers have to choose the most suitable solver for their feature modeling tool.
For example, checking the validity of a configuration is a relevant problem for feature
modeling. To help with this decision, we aim to answer the following questions. Are
SMT solvers superior to SAT solvers regarding their efficiency for the automated
analysis of feature models? Does a combination of both kind of solvers improve the
overall process?

Afterward, we want to allow the computation of attribute ranges for a partial
configuration. These ranges result from the leftover choices. Let us take a look at an
example to understand the benefit of it. The considered feature model describes the
components of a car. A customer thinks about including wheels of a specific type
but is not sure whether this will automatically exceed his budget. Computing the
ranges shows whether there is a product containing his included wheel type within
its budget. Unfortunately, every car with his desired wheel type is too expensive.
Therefore, he is interested in which types allow him to freely decide on the other
components. This requires multiple computations of ranges, as he needs one for each
wheel type. This use-case demands a short runtime to ensure fluent work. In order
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to fully satisfy the requirements following from the example, two different kinds
of computations are needed. First, there has to be an efficient way to always get
correct results. Additionally, as determining exact ranges might not scale, we need
an accurate estimation for on-the-fly computations. The exact computation will be
performed by an SMT solver. However, we aim to use an heuristic to get a close
estimation. In both cases, the scalability of the found solutions will be a crucial

property.

Structure of the Thesis

This thesis is structured as follows. In Chapter 2, we give insight into the essential
background of this thesis, mainly consisting of feature modeling and satisfiability of
logical expressions. This is supposed to specify the state-of-the-art for both topics
and enable the reader to comprehend the following chapters. In Chapter 3, we
discuss the conceptual development of creating an abstract data type for SAT and
SMT solvers. Additionally, with the help of the abstract data type, we formally
define an analysis for each feature model defect. In Chapter 4, we describe the
conceptual development of correctly computing and approximating attribute ranges
of a partial configuration. In Chapter 5, we describe the implementation of both
concepts, which will be added to the feature modeling tool FEATUREIDE [MTS*17].
In Chapter 6, we evaluate the implemented solvers by performing all analyses defined
in the concept for both kinds of solvers. To ensure efficiency and correctness of
the implemented attribute range computations, we then evaluate them, by using
re-engineered publicly available industrial product configurators as feature models
Chapter 7. In the remaining chapters, we discuss related work, come to a conclusion,
and propose possible future work.
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2. Background

This chapter gives an introduction to the required background and terminology to
comprehend the following chapters. In Section 2.1, we explain the fundamentals of
feature modeling. Afterward, we introduce the SAT and SMT problem and show the
different tools to solve them in Section 2.2.

2.1 Feature Modeling

A software product line describes a set of products sharing a base of reusable software
parts, called features. Features are distinguishable characteristics of a product
line [KOD13]. The goal is to develop each of the features once and reuse them for
different products. Each product is one specific selection of features of a product
line [ABKS13]. For example, a family of cars could be described by a product line,
with features describing properties of the car (e.g., the type of the engine).

Software product lines provide a form of mass customization, as a wide variety of
products typically results from a product line, without the need of developing each
one from the scratch [ABKS13]. Mass customization allows low development costs,
while still fulfilling individual needs. In particular, customization is important in
smaller market segments and resource-constrained environments [ABKS13].

2.1.1 Feature Models

A feature model represents features of a product line and their relations. It is used
to visualize and analyze the variability of the product line. Such a model efficiently
defines possible combinations of the features. For our definition of feature models,
we adapted the definition provided by Kniippel et al. [KTM™*17a].

Definition 2.1 (Feature Model). A feature model M is given by a 6-tuple M =
(N, 7w, A\, 11, W) where :

o N is the set of features.

https://doi.org/10.24355/dbbs.084-201807060926-0



6 2. Background

r s the root feature of the model.

w: N {0,1} indicates that a feature f € N is either mandatory (w(f) =1)
or optional (w(f) =0).

e \: N — N XN is a function representing the relationship between a feature
and its child features. A(f) = (n,m) implies that at least n and at most m
children have to be included.

IT € N X N indicates the parents for each feature as if (f,g) € II, fis the
parent of g.

U C Propy is the set of additional propositional formulas. We define Propy
as the set of propositional formulas that can be built by using set of literals N.

A feature model can also be described using a conjunctive normal form. During this
thesis, we reference this as C'N F;.

Feature Diagram

A feature diagram is a graphical documentation of a feature model, which is structured
as a tree model [ABKS13]. Each node of the tree references a feature of the model.
The edges describe relations between them, with the help of the following types:

Optional: The inclusion of the parent does not force the inclusion of an optional
child.

Mandatory: The inclusion of the parent demands the inclusion of all its mandatory
children.

And: Any number of children can be included (A(feature) = (0,n)). The children
of an And-relation can be Optional or Mandatory.

Or: At least one of the children has to be included, if the parent is included
(A(feature) = (1,n)).

Alternative: Exactly one child has to be included, if the parent is included
(A(feature) = (1,1)).

The given example in Figure 2.1 shows a feature diagram that describes components
of a car, using every introduced relation. However, not every relation between
features can be expressed in a tree structure, as there might be dependencies between
different subtrees. This can be solved by using cross-tree constraints [ABKS13].

A cross-tree constraint is a propositional formula that can be added to the depen-
dencies given by the tree of a feature model. The overall formula is built by a
conjunction of the constraints [ABKS13]. In our example, the additional constraint
Diesel = —Petrol is given.

https://doi.org/10.24355/dbbs.084-201807060926-0



2.1. Feature Modeling 7

Legend:

./ Mandator
Car y

O/ Optional
/N /‘\ Or
A Alternative

Engine Type Radio

Petrol | | Diesel | | Electric | = Gearstick | | Automatic | Bluetooth | | AUX

Diesel = =Petrol

Figure 2.1: Example feature diagram of a car

Configuration

A configuration allows the developer to create specific products of a feature model
by choosing the features that should be included. Additionally, a feature can be
excluded. Therefore, each configuration of a feature model is defined by two sets.
The first set contains all the selected the second one all unselected features.

Definition 2.2 (Configuration). A configuration is a 3-tuple C = (M, S,U) where:

e M is the corresponding feature model.
e S C Ny, is the set of selected features.
o U C Ny, is the set of unselected features.

e SNU =1

Both pictures in Figure 2.2 show a valid configuration of our example feature diagram,
representing a specific car with an electric engine, automatic handling and a radio
with bluetooth. However, the right one shows additional information, like unselected
features (denoted by the red minus) and the parent-children relationship of features
in the feature diagram.

Definition 2.3 (Valid Configuration). A configuration C' = (M, S,U) with M =
(N, 7w, \, 11, W) is called valid, when the propositional formula

CNFM/\/\S/\/\_"LL

seSs uelU

18 satisfiable. Equivalent, a configuration is valid when the following properties are
given:

e Fvery feature f € N with w(f) =1 and (e € S, f) €Il isin S.

https://doi.org/10.24355/dbbs.084-201807060926-0



8 2. Background

v [m] Car w Car
v [m] Engine w . Engine
[ ] Petrol AD Petrol
[] Diesel A [ ] Diesel

Electric A [ Electric
v (] T:.rp-&q w o Type
) Ao NP
~ [m] Radio A
W < o Radio
Bluetooth

o] Bluetooth
|:| AUX
o [] aux

Figure 2.2: Example of a regular and an extended configuration for the car feature
model

o For every feature f € N with A(f) = (n,m), the number of included children
15 between n and m.

e Fuvery formula ¢ € U is satisfied.

Sometimes it might be important to consider a subset of the product line. This can
be achieved by using a partial configuration, which does not the specify the selection
status of every feature.

Definition 2.4 (Partial Configuration). A partial configuration C = (M,S,U) is a
configuration with S\JU # Ny [BSRC10].

Definition 2.5 (Full Configuration). A full configuration C' = (M, S,U) is a config-
uration with SUU = Ny [BSRC10].

2.1.2 Extended Feature Models

Feature models can be expanded by attaching additional properties to features.
These properties are called in feature attributes. Models containing features with
attributes are referenced as extended (might also be called advanced or attributed)
feature models [BSRC10].

Currently, there is no consensus on the structure of feature attributes. However,
most agree the properties of an attribute should at least include a name, a domain
and a value [BSRC10]. In the literature, the following domains of attributes are
considered: R, N, boolean values, and enumerates [WDS09, CSHL13]. Additionally,
the domains can either be finite or infinite [KOD13]. During this thesis, we consider
the following domains for our attributes: R, N, boolean values and strings.

Let us take a look at an example of the usage of feature attributes. We consider the
feature Flectric of our example model in Figure 2.1. In addition to the dependencies
in the tree, we want to capture the price and the power of our engine. To do so, we
attach the following attributes:
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2.2. Satisfiablility of Logical Expressions 9

e Name: Price
— Value: 1200
— Unit: €

e Name: Power

— Value : 120
— Unit : kW

Attaching such attributes to features allows access to additional information and
further comparisons. Furthermore, the model analysis can be expanded to consider
attributes (e.g. setting a maximum overall price).

Definition 2.6. We assume X is the set of all characters. An extended feature
model is a S-tuple E = (M, A, ) with:

o M is a feature model.
o A is the set of attributes.

o Ty f € Ny — RU{true, false} UX* is a function that returns the value of
an attribute attached f. 7 (f) = 0 indicates that att is not attached to f.

2.2 Satisfiablility of Logical Expressions

In this section, we explain the satisfiability of logical expressions. In Section 2.2.1,
we introduce the satisfiability problem and the tools to solve them. Afterward, in
Section 2.2.2, we introduce the satisfiability modulo theories problem and the tools
to solve them.

2.2.1 Boolean Satisfiability

Boolean satisfiability handles propositional expression, also called formulas, and asks
whether a given formula is satisfiable. The formulas consist of boolean variables
which can be set to either true or false. The variables are connected by different
connectors. If it is possible to assign the values {true, false} to the variables, such
that the propositional formula evaluates to true, then the formula is satisfiable.

The SAT problem gets a formula in conjunctive normal form as input and decides
whether the formula is satisfiable. The conjunctive normal form is a conjunction
of multiple clauses. A clause is a disjunction of multiple literals, and a literal is a
variable or a negated variable. Having that in mind the following definition originates:

Definition 2.7 (CNF). We assume that oy ... 04, for nym € N are variables.
Let Ay ... A, be clauses with the literals A; = \/ «y.. Then the CNF is defined as

k=1
followed:
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10 2. Background

The challenge is now to find an assignment such that every clause will be evaluated
to true, which causes the CNF to be true. If there exists no satisfying assignment,
then the CNF is unsatisfiable.

Example 2.1. Let «, 3,7 be variables. The following formulas are in CNF.

(@Vy)A(mavyVp) (2.1)
(maV BV —y)A(—maVy)ANaA-p (2.2)

The CNF 2.1 is satisfiable because the assignment o = true, 3 = true,y = true
evaluates every clause to true and therefore evaluates the CNF to true. The CNF
2.2 is not satisfiable because the third and fourth clauses o N\ = evaluate a to true
and B to false. Now, it is impossible to evaluate the first two clauses to true. Hence,
CNF 2.2 is unsatisfiable.

Through a process called clausification, it is possible to transform every propositional
formula into a CNF and therefore to a SAT problem [CESS08]. The SAT problem
is NP-hard and therefore hard to solve on average [CESS08]. As the first NP-hard
problem discovered, it gained a lot of attraction from researchers, and was about 20
years ago primarily a theoretical subject. However, that changed based on the fact
that ways were found to model some real-world problems to propositional formulas.
They can then be solved by SAT solving engines [CESS08]. One of the first big
tasks for SAT problems were verification tools, and they are still the most important
subject of interest [CESS08].

Tools or engines that can solve SAT problems are called SAT solvers. Such SAT
solvers are vital components for verification tools [CESS08]|. For example, they are
used to verify hardware systems.

SAT solvers use different techniques to solve SAT problems. One is called boolean
constraint propagation. Boolean constraint propagation can be used if there are
already values assigned to variables. Then, every clause will be investigated to see if
all literals except one, are false. Afterward, we can assign the value true to the last
remaining literal [CESS08].

Example 2.2 (Boolean Constraint Propagation).
(aV=B)A(yVB) (2.3)

We have the partial assignment o = false and the other variables are unknown. Then
by investigating the first clause, we can assign the value false to 8. By using the new
propagated value for B, we can assign the value true to 7.

The development of SAT solvers and their efficiency is defined by the following
significant steps. At first, the SAT solvers used a simple but complete backtracking
algorithm [CESS08]. The next big algorithm is called Davis-Putnam-Logemann-
Loveland, in short DPLL, which is an evolved backtracking algorithm by combining it
with boolean constraint propagation [CESS08]. Modern SAT solvers use an improved
and refined DPLL algorithm that is referenced as conflict driven SAT solving. The
conflict driven SAT solving is not entirely recursive anymore and can learn new

clauses [CESS08].
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Unsatisfiable Core

A subset of clauses from a formula in CNF, that makes the formula unsatisfiable, is
called the unsatisfiable core [DHN0G]. The unsatisfiable core is called minimal when
removing one clause would make the formula satisfiable [DHNO6]. For one formula
multiple unsatisfiable cores can exist [DHNOG6].

Example 2.3 (Unsatisfiable Core). The following formula is unsatisfiable:

(aV BV =) A(=0Ve)A(eV ) A—eA (- V —a)

An unsatisfiable core is {(—6 V €), (€V ), (—e)}. If we remove any of the three
clauses the formula would be satisfiable. Thus, the unsatisfiable core is minimal.

2.2.2 Satisifability Modulo Theory

The massive attraction to SAT solvers made it possible to solve a problem with hun-
dreds of thousand variables [DMB11]. However, sometimes applications or problems
need more expressive logic such as first-order logic [BSST09]. Generally, first-order
logic formulas can not be solved directly because operations are undefined [BSS*09].

Example 2.4. The following formula is in first-order logic:

a<(B+1) (2.4)

Operations in first-order logic are generally not defined. In contrast, we aim to
determine if there exist any functions (for example <, +), such that the formula
18 satisfiable. But instead, most applications are interested whether the formula is
satisfiable by handling the operations < as the known order over integer and + as the
addition of integers [BSST09]. Such formulas in first-order logic, where the operation
is fized, are called background theories [BSST09].

The background theories can be seen as a fragment of the first-order logic where the
operations are already defined. Problems that consist of first-order logic with respect
to background theories and are interested whether the given formula is satisfiable,
are called satisfiability modulo theories (SMT). There exist background theories for
integer types, real types, data structures, arithmetic operations and more [BSS*09].

To solve SMT problems, the eager approach is to transform the first-order formula
directly to propositional logic and solve the resulting formula with the help of SAT
solvers [BSST09]. Modern engines are a combination of SAT solvers for solving
propositional logic and specific theorem solvers one for each background theory.
Tools or engines that solve SMT problems are called SMT solvers. The increasing
performance of SAT solvers and the interest in the specific theorem solvers lead to an
increased performance for SMT solver over the last two decades [BSST09]. The better
performance and technological advances of applications made the SMT solvers a vital
component for software and hardware verification, type inference, static program
analysis, test-case generation, scheduling, planning and graph problems [DMB11].
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3. Unification of SAT and SMT
Solvers for the Software
Product Line Analysis

3.1 Motivating Example

The introduction of cross-tree constraints for feature models expands the variability
but can lead to inconsistencies [ABKS13]. In this section, we show the different
inconsistencies, also called defects, and the approach used in [BSRC10] to automate
the feature model analysis. Figure 3.1 shows a simplified software product line for a

car which contains different defects. The feature model is a modified version adapted
from [KAT16a].

Car
Carbody ' Radio Gearbox | GearboxTest
Ports Navigation | @ Bluetooth | @ Manual | . Automatic
USB CD DigitalCards GPSAntenna Legend:
/O\ ¢ Mandatory
J" Optional
Europe USA A Or
A\ Alternative
Navigation = USB o Ezztéﬂfgature
0 Europe = Gearbox A False-optional feature

@ GPSAntenna = USB ©@ Redundant constraint
A Constraint is tautology

@ Carbody A Gearbox
Carbody = Automatic A “Bluetooth
A Carbody v ~Carbody

Figure 3.1: Feature model with visualized inconsistencies, adapted from [KKAT16a]

The feature model in Figure 3.1 contains seven inconsistencies of four different types.
The first type is a dead feature which is not part of any valid product of the feature
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14 3. Unification of SAT and SM'T Solvers for the Software Product Line Analysis

model [ABKS13, BSRC10]. The feature model in Figure 3.1 contains the two dead
features Bluetooth and Manual. Both are dead because of the last constraint Carbody
= Automatic N\ = Bluetooth. Carbody is a core feature and implies that Automatic is
always selected, preventing the alternative Manual to be selected. Thus, Manual is
dead. Carbody also implies that Bluetooth cannot be selected making it dead as well.
Dead features are severe defects because the feature is unusable.

The next type is a feature that is marked as optional but is always selected when
their parent is selected [ABKS13, BSRC10]. Such a feature is called false-optional
features. The only false-optional feature in Figure 3.1 is the feature Automatic
because it is implied by the core feature Carbody, making Automatic occur in every
product. False-optional features are not as severe as dead features, but at least smelly

because they prevent us from selecting some feature combinations in the feature
model [MTS*17].

Another type of an inconsistency is the redundant constraint which is a constraint
that is already modeled in another way [ABKS13, BSRC10]. The feature model
in Figure 3.1 contains three redundant constraints. The first constraint Furope =
Gearbox is redundant because the feature Gearbor is a core feature. The second
constraint GPSAntenna = USB is redundant because of the constraint Navigation
= USB. If we want to select GPSAntenna, we need to select the parent feature
Navigation as well, which already implies USB. Therefore, the implication from
GPSAntenna to USB is redundant. The fourth constraint in Figure 3.1 Carbody A
Gearboz is redundant because Carbody and Gearbor are both modeled as mandatory
and are children of the root feature. Redundant constraints do not change the validity
of the configurations [MTS™17]. They bloat the feature model and can be removed
for the sake of brevity [MTS17].

The next type is a tautological constraint. A Tautological constraints is always
satisfied. The last constraint in Figure 3.1 Carbody V —Carbody is a tautology.
Tautological constraints do not affect the validity of the feature model. Removing
the constraints is the best way to prevent the feature model from becoming more
complex because of tautological constraints [MTS™17].

Now we know all inconsistencies of the feature model in Figure 3.1, but there is still an
important type of inconsistency, the void feature model. A feature model is void when
it contains no valid product, making the feature model entirely unusable [BSRC10].

The manual detection of inconsistencies is hard, time-consuming, and for large feature
models infeasible [BSRC10]. An automated analysis is needed to verify the feature
model and to warn the user about inconsistencies [ABKS13]. It is not only possible
to show which defects exist, but also which circumstances lead to them. The infor-
mation that shows us why a particular defect appears is called ezplanation [Giinl7].
Explanations can detect the actuators of a particular defect [Giinl7] and assist us in
fixing the defect. As an example, the explanation for the dead feature Bluetooth is
shown in Figure 3.2. Without any effort, we can see that Bluetooth is dead because
of the last constraint and that Carbody is mandatory. Therefore, we can fix the
defect by removing the last constraint or setting Carbody to optional.

There are several approaches to analyze feature models automatically. These ap-
proaches are based on propositional logic, description logic, or constraint program-
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Car Legend:

¢ Mandatory
- & Optional
Carbody | Radio Gearbox | | GearboxTest = A Or

/O\ A Alternative

F
Ports Navigation @ Bluetooth @ Manual | 4. Automatic o Deeaattg:‘(;ature

/A\ O/ \' A False-optional feature

- @ Redundant constraint
USB | CD DigitalCards GPSAntenna A Constraint is tautology

/O\ Bluetooth is defect
Europe || USA because of the highlighted dependencies:
likely cause unlikely cause

Navigation = USB
@ Europe = Gearbox
0 GPSAntenna = USB
@ Carbody A Gearbox
| Carbody = Automatic A =Bluetoothf
A Carbody v ~Carbody

Figure 3.2: Feature model with an explanation for the dead feature Bluetooth

ming [BRCTS06]. In our case, we use propositional logic by transforming the feature
model’s structure and constraints to propositional logic. As a requirement for the
automated analysis, we need the complete feature model in propositional logic. In
2002, Mannion connected feature models with propositional logic by proposing rules
to transform a feature model into propositional logic [Man02]. Therefore, we fulfilled
the requirement of having the feature model’s structure and constraints in propo-
sitional logic. To finally automate the feature model analysis, two components are
needed.

We need specific analyses, one for each kind of inconsistency. The second component
is a SAT solver to perform the analyses depending on propositional expressions.
However, SAT solvers are not the only solvers that can solve propositional ex-
pressions. The significant increase in performance of SMT solvers in the last two
decades [DMB11] makes the SMT solver a promising candidate for the automated
analysis. Additionally, the SMT solvers also provide more functionality giving us the
essentials to compute attribute ranges. Therefore, we are interested in SMT solvers
performing the automated analysis of feature models and computing explanations of
defects. Furthermore, we aim to compare both kinds of solvers on these tasks.

SAT and SMT solvers have different implementations making it costly to write an
analysis for every solver. By introducing an abstract data type, representing SAT or
SMT solvers, it is possible to hide the different implementations. With the help of
the abstract data type it is possible to formally define the different analyses.

3.2 Abstract Data Type for the Software Product
Line Analysis

In this section, we propose a concept for an abstract data type for SAT and SMT
solvers which is defined by a standard set of operations. The data type is used to
write general analyses for SAT and SMT solvers and to replace existing or add new
solvers easily. Additionally, the access to the native solvers is still possible and can
be used to write an analysis with solver specific operations.
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The data type makes it also possible to evaluate different SAT and SMT solvers that
share the same fundamental operations. This results in an evaluation which not only
depends on solving the problem but also on the workload of creating or altering a
solver. Editing the solver’s internal formula is also an essential aspect because many
analyses depend on changes of the formula.

Every solver gets a SAT or SMT problem on creation which is not modifiable. That
allows us to work with multiple solvers on the same problem without making the
problem inconsistent. We decided to do that because we need to translate the
feature model into the conjunctive normal form before giving it to the solver. This
translation is costly and time-consuming. Therefore, multiple transformations should
be prevented. The idea is to transform the feature model into the conjunctive normal
form only once and give it to the multiple solvers as input.

Definition 3.1 (IncrementalSolver). CNFy is the set of all propositional formulas
in conjunctive normal form that can be build using the set of literals N. We assume
that P represents the set of all clauses. The abstract data type IncrementalSolver
1s defined as follows:

Signature:

it : CNF — IncrementalSolver

push : IncrementalSolver X P — IncrementalSolver

pop : IncrementalSolver — P

1sSatisfiable : IncrementalSolver — N

Axioms:

Al: Vs : IncrementalSolver,Vp: P : pop(push(s,p)) =p

A2: Vs : IncrementalSolver,Vc: CNF : pop(init(c)) =0

Asserts:

RI: VZiJj : N,Z %] . lz 7A lj

R2: V1 : N :1 is positive V [ is negative

Now, we explain the different signatures for the abstract data type. The init function
allows us to create a solver by giving a propositional formula in conjunctive normal
form as input. push and pop allow us to modify the solver by adding or removing
clauses. isSatisfiable checks whether the internal formula is satisfiable and returns
a set of literals when the formula is satisfiable, otherwise . The set contains all
literals with their assignments. The axiom A1 defines the last-in-first-out behavior
for the push and pop functions. Next, A2 defines that it is not possible to modify

the formula given on init. R1 and R2 assert that no duplicate literals exist in a
solution and that a literal is either positive or negative.

With the abstract data type, we define general analyses for the inconsistencies of
feature models. The general analyses can be used to evaluate both types of solvers.
The use of both for the analyses is an exciting task because it can help to choose the
most suitable solver for each general analysis.
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3.3 Feature Model Analyses

In this section, we present the different analyses in detail. As part of our thesis,
we aim to evaluate analyses for the void feature model, core and dead features,
false-optional features, redundant constraints, and tautological constraints.

3.3.1 Void Feature Model Analysis

At the beginning of this chapter, we already faced various inconsistencies. Now, we
formally define the inconsistencies and detailed analyses with the help of the abstract
data type IncrementalSolver. We start with the most significant analysis, the void
feature model analysis.

Definition 3.2 (Void Feature Model). A feature model which contains no valid
product is void [BSRC10]. Assume that FM is a feature model.

void(FM) := init(C N Fryy).isSatis fiable() = ()

The procedure of the detailed analysis for the void feature model is depicted in
Figure 3.3. The void feature model analysis returns a satisfying assignment for every
variable if the feature model is not void.

S.isSatisfiable()

©—> 5= mit(CNFFM) Return AC N :| :
Return 0

Figure 3.3: The procedure of the void feature model analysis

3.3.2 Core and Dead Feature Analysis

The most severe inconsistency besides the void feature model is the dead feature
because it means that a part of the feature model cannot be used. The core features
are the exact opposite of dead features because they appear in every solution. Thus,
they are not defects but finding them gives us the knowledge which features should be
prioritized in the development of the software product line [BSRC10]. The analyses
for dead and core features are almost identical. Therefore, we write one analysis for
both of them. We also present three different types of analyses. The first is a general
analysis for all solvers without any optimizations. The analysis is based on the
core and dead features definition [BSRC10, KAT16b]. Kiichlin and Kaiser proposed
optimizations for SAT solving algorithms that depend on filtering already known
literals and modifying the literal selection strategy of a solver [KK01]. Janota, adapted
both techniques in his work [Jan10] to refine his SAT solving environment. Janota,
Kiichlin, and Kaiser concluded that the proposed optimizations significantly improve
the SAT solving process [KKO01, Jan10]. Therefore, we adapted the optimizations for
the use within the core and dead feature analysis. We created an optimized analysis
that uses only the filtering technique. Afterward, we created an analysis that uses
both optimizations. Before we explain the analyses in detail, we define the core and
dead features as follows:

https://doi.org/10.24355/dbbs.084-201807060926-0



18 3. Unification of SAT and SM'T Solvers for the Software Product Line Analysis

Definition 3.3 (Core Feature). A core feature is a feature which is part of every
product of the feature model [KAT16b, BSRC10]. Assume that FM is a feature model
and f € Npy is a feature.

core(f) := init(CN Fpyr).push(—f).isSatis fiable() = ()

Definition 3.4 (Dead Feature). A dead feature is a feature which is not part of
any product of the feature model [KAT16b, BSRC10]. Assume that FM is a feature
model and f € Ngyr is a feature.

dead(f) := init(CN Frpr).push(f).isSatis fiable() = ()

Now, we present the three different analyses in detail. The first one is the unoptimized
analysis depicted in Figure 3.4. The core features are detected by iterating every
feature and assuming it to be false. If the formula is unsatisfiable, it is clear that the
feature is a core feature. The procedure is almost the same for dead features. Instead
of assuming the feature to be false, the feature are assumed to be true [KAT16a].

The second analysis is an improved version of the first one. We apply the filtering
introduced by Kiichlin, Kaiser, and Janota [KKO01, Jan10] to reduce the number of
iterations at least by half. At the beginning, a satisfying assignment is calculated
and saved in a list. If the value of a feature is true, we know that the feature is a
potential core feature and definitely not dead. In contrast, if the value of a feature is
false, we know that the feature is a potential dead feature and definitely not a core
feature. Thus, we only need to check features with the value true whether they are
core features and features with the value false whether they are dead features. When
a feature is identified as neither dead nor core, then it means the internal formula of
the solver is satisfiable, and a solution can be retrieved. Now, we can compare the
first solution with the new solution. If the values of a feature are different, we know
that the feature is neither dead nor core, and set the value of the feature to IGNORE.
Features marked as IGNORFE will be skipped. The procedure for the analysis using
the filtering is depicted in Figure 3.5.

For the next analysis, we apply the filtering and the modification of the literal
selection strategy, proposed by Kiichlin, Kaiser, and Janota [KKO01, Jan10]. It is
possible to retrieve two solutions at the beginning, by varying the selection strategy.
SAT solvers use a backtracking algorithm to calculate a satisfying assignment. To
do so, they need to assume literals to be either true or false. The SAT solver uses
the selection strategy to decide between true and false. If the selection strategy is
POSITIVE, the solver always assumes a literal to be text. To the contrary, when
the selection strategy is NEGATIVE, the solver always assumes a literal to be false.
Now, both solutions are compared, and features with different values are set to
IGNORE. With the help of the two fundamentally different selection strategies, there
is a high chance that features, which are neither core nor dead, have different values
leading to a lot of features which can be ignored. Afterward, the analysis behaves
like the analysis that uses only filtering. The procedure for the analysis using both
optimizations is depicted in Figure 3.6.
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Q_.‘ S = init(CNFrpr) | Reset the itera‘gor Return all memorized @
v for the featureList dead and core features

| featureList = Nppy Yes

Take next feature f € [ No

featureList
Take next feature f € All features iterated?
featureList *

* All features iterated? S.push(f) S.pop()
S.push(—f) S.pop() #0 L)
1] Memorize f as
#0 L) dead feature
1] Memorize f as
core feature S.isSatisfiable()

S.isSatisfiable()

Figure 3.4: The procedure of the unoptimized core and dead feature analysis

|
Memorize f as||Memorize f as
Q—D{ S = init(CNFpr) | core feature dead feature
v Ignore f7 S.isSatisfiable()

assignment =

S.isSatis fiable()

v

Take next feature f €
assignment

Value of f in assignment?

assignmentT = S.isSatis fiable()
fi € assignment and t; € assignmentT
All features iterated? Vie{l...n}: fi=IGNORE if f; # t;

Return all core _@ /K
and dead features D

Figure 3.5: The procedure of the core and dead feature analysis using filtering

3.3.3 False-Optional Feature Analysis

This section is about false-optional features and their analyses. The first one is
an unoptimized analysis, which calculates the false-optional features like they are
defined by Kowal et al. [KAT16b]. Next, we extend the analysis by applying the
filtering proposed by Kiichlin, Kaiser, and Janota [KK01, Jan10]. Furthermore, we
combine the filtering with the modification of the literal selection strategy proposed
by by Kiichlin, Kaiser, and Janota [KKO01, Jan10].

Definition 3.5 (False-Optional Feature). A false-optional feature is modeled as
optional in the feature model but in fact, is always selected when its parent is
selected [KAT16b, BSRC10]. We assume that FM is a feature model and f € Nppy,
is a feature with w(f) = 0. The feature p € F'Ngys is the parent of the feature f.

falseOptional(f) := init(C N Frpr).push(p).push(—f).isSatis fiable() =

Now, we explain three different analyses and highlight their improvements. The
unoptimized analysis is depicted in Figure 3.7. At first, we retrieve every potential
false-optional feature. Then, for every potential false-optional feature, we push their
negation and their parent to the solver. If the resulting formula is unsatisfiable, the
potential false-optional feature is, in fact, false-optional because no case exists such
that the parent is selected, but the child feature is not [KAT16a].
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Set selection strategy | gl assignment =
O——{ S = init(CNFya) || to POSITIVE S.isSatis fiable()

assignmentN EG = g Set selection strategy
- S.isSatis fiable() to NEGATIVE
fi € assignment,
n; € assignmentNEG), < | |
Vie{l...n}: Memorize f as||Memorize f as
fi = IGNORE if f; #n; core feature dead feature

Ignore f? S.isSatisfiable()

Value of f in assignment?

Take next feature f

i assignmentT = S.isSatis fiable()
from assignment

fi € assignment and t; € assignmentT

All features iterated?

Yes
Return all core @
and dead features

Figure 3.6: The procedure of the core and dead feature analysis using filtering and
different selection strategies

A

We optimize the first analysis by applying the filtering proposed by Kiichlin, Kaiser,
and Janota [KKO01, Jan10]. This can be achieved by saving multiple solutions and
checking that the potential false-optional feature and his parent have the same value
in every solution before pushing it to the solver. The optimized version is depicted
in Figure 3.8. At the beginning, a solution is retrieved by S.isSatisfiable() and
added to the solutions. If the potentially false-optional feature, which is currently
checked, is not false-optional, then another solution can be retrieved and added to
the solutions. With the help of the saved solutions, we can skip every potential
false-optional feature which has a different value than his parent.

By modifying the selection strategy at the beginning, we can already retrieve a
solution and add it to the solver [KKO01, Jan10]. The solution is retrieved with the
selection strategy set to RANDOM. If the strategy is set to RANDOM, it is more
likely that a feature and his parent have different values. The resulting analysis is
depicted in Figure 3.9.

Get all potential false- Take next potential Get parent
optional features and save —# false-optional feature from If P _.I S.push(p) I_.I S.push(=f) |
them in pFAList f €pFAList -
No S.isSatisfiable?
— i Yes
S = Z’VLZt(CNFF]Lj) | S.pop() H S.pop()
Return ' all  memoized All possible feature iterated? Memorize f is
false-optional features false-optional.

Figure 3.7: The procedure of the unoptimized false-optional feature analysis

3.3.4 Redundant Constraint Analysis

The next inconsistency that we faced in our feature model in Figure 3.1 was a
redundant constraint. Such redundant constraints are pieces of information which
are already modeled in another way through the structure of the feature model or
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Value of p and f identical in all solutions?

Get all potential false- Take mnext potential false- S.push(p)
optional features and save - optional feature f € pFAList > Yos S.push(=f)
them in pFA List and parent p of f )

S.isSatisfiable?

[ is  false-

Yes .
optional.

Memorize

@_ Return all memoized
false-optional features
All potential features iterated?

#0
S = i?lit(CNFFM) anq ) <—© S.pop() solutions.add(S.isSatis fiable()) |
solutions.add(S.isSatis fiable()) S.pop()

Figure 3.8: The procedure of the false-optional feature analysis using filtering

Value of p and f identical in all solutions?

Get all potential false- Take next potential false- Yes S.push(p)
optional features and save [ optional feature f € pFAList > - S.push(=f)
them in pFAList and parent p of f
. S.isSatisfiable?
Return  all  memoized Yes f s false-
@ false-optional features optional.
Memorize

All potential features iterated?

solutions.add( le] Set selection strat-
S.isSatis fiable()) egy to RANDOM

S = ant(CNFFAw)

5.pop() solutions.add(S.isSatis fiable()) |
S.pop()

Figure 3.9: The procedure of the false-optional feature analysis using filtering and a
different selection strategy

other constraints. Redundant constraints are not grave defects and only increase the
effort to maintain the feature model [BSRC10].

Definition 3.6 (Redundant Constraint). A cross-tree constraint is redundant when
its semantic information was already modeled in another way [vdMLO0JJ. FM is
a feature model and c; € Wiy FM; is the feature model without the cross tree
constraint c;. The definition for redundant constraints given by Kowal et al. is not
suitable for the data type IncrementalSolver [KAT16b]. Therefore, we need to
convert the definition to a form, which can be expressed by the IncrementalSolver.

redundant(c;) = TAUT(FM; < FM; Ac;) [KAT16b]
ﬁSAT(_'((FM] = FM] A Cj) V (FM] Nc; = FM])))
SAT(~(FM; = FM; Acj) N—(=(FM; Acj)V FM;))
(=
(=

SAT(~(=FM'V (FM' Acj)))
SAT(=(=FM'V ¢;))
~SAT(FM' A —c;)

The resulting definition for redundant constraints coincides with the results from
Giinther [Gin17]. Now, we can adapt the definition for the IncrementalSolver. We
cannot push the constraint directly to the IncrementalSolver because a cross-tree
constraint can contain multiple clauses. Therefore, we need to push all clauses from
the constraint. Let ky ...k, be the clauses of CNF-.,.

redundant(c;) := init(CN Fpyy,).push(ky). .. .. push(k,).isSatis fiable() = ()

The analysis for the redundant constraints is the most complex analysis. We begin
with a solver which has only the feature model’s structure in CNF as a problem.

https://doi.org/10.24355/dbbs.084-201807060926-0



22 3. Unification of SAT and SM'T Solvers for the Software Product Line Analysis

Then all constraints are saved as a list. Next, we push all constraints to the solver.
Only the constraint we will check is removed from the solver which is a problem
because the IncrementalSolver provides no random access to the pushed clauses.
Therefore, we need to pop all pushed constraints till we reach the constraint we want
to check. Afterward, we need to push the constraints back to the solver. For every
clause of our constraint, we push the negated formula to the solver. If the solver’s
internal formula is unsatisfiable, the constraint is marked as REDUNDANT and not
pushed back to the solver to prevent redundancies in the opposite direction. If the
constraint is not redundant, it is pushed back to the solver, and the next constraint
can be checked. An optimized version can be achieved by sorting the list with the
constraints at the start by their number of clauses in ascending order. The chance of
a constraint to be redundant is higher for small constraints than for large constraints
because large constrains contain multiple clauses which all need to be redundant to
make the constraint redundant. For a better performance, we do not begin with
the first constraint, instead, we start with the last constraint to minimize the effort
to remove the overlying constraints in every iteration. The detailed procedure is
depicted in Figure 3.10.

Sort -
X St Take next constraint
Q’( S = init(CN Fpar) |_. cList =Upy - ZC < c}fz{st. I ¢ € cList from the ¢; = S.pop()
decending to their push(c) N .
end of cList Save ¢
number of clauses o 5 LG
N G =c in pList
All constraints iterated? o
Return all S ‘
@4— memorized
redundant S.push(c) Vey € pList :
constraints S.push(cy)
Memorize ¢ as re- ‘
Constraint c is not re- | | dundant and re-
dundant move ¢ from cList Get all clauses
K from —¢;
S.isSatisfiable() *
Vk; € K : Vk; € K :
S.pop() S.push(ki)

Figure 3.10: Procedure of the redundant constraint analysis with optimizations

3.3.5 Tautological Constraint Analysis

The last defect we saw in Figure 3.1 is the tautological constraint. If a constraint is
a tautology, it can be decided without the context of the feature model and is always
satisfied. Therefore, the constraint does not improve the variability of the feature
model and should always be removed.

Definition 3.7 (Tautological Constraint). A constraint is a tautology if it is always
satisfied [BSRC10]. We assume that FM is a feature model and ¢ € Wpy is a
constraint.

taut(c) := init(CNF..).isSatis fiable() = ()

The analysis for tautological constraints is depicted in Figure 3.11. The detection
of tautological constraints is quite simple. At first, we retrieve a list containing
all constraints from the feature model. Now, we check every constraint separately.
We start by transforming the negated constraint —¢ into the conjunctive normal
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form CNF... Next, we create an IncrementalSolver with C'NF_. as input. If the
IncrementalSolver returns unsatisfiable, then the constraint c is a tautology because
there is no satisfying assignment such that the negated constraint is satisfiable.

- Take next constraint CNF-, = Negate ¢ and —
clList = Vrum |_. ¢ € cList ™ transform into CNF _.| S = init(ONF-.) |

TNO S.isSatisfiable()

Return all memo- | Yes

. . I -¢ <

rized constraints P}
Memorize ¢ as

All constraints iterated?

tautology

Figure 3.11: Procedure of the tautological constraint analysis

3.4 Automated Feature Model Anaysis

Now, with the help of the abstract data type IncrementalSolver and the analyses
for the various inconsistencies, we can automate the feature model analysis. At
first, we transform the current feature model’s structure into the conjunctive normal
form with its constraints C'N Fry; and again without constraints C'N Fry. The
first analysis checks whether the feature model is not void. After that, the four
analyses for core and dead features, false-optional features, redundant constraints,
and tautological constraints are performed. The results can be used to warn the user
about the inconsistencies like shown in Figure 3.1. The procedure for the automated
analysis is depicted in Figure 3.12.

void?

Create CNFpps ] 0
and CN Fpay —DI void = VoidFeatureModelAnalysis(CN Fpyr) | > ‘

#0 Return feature
|:1 coreDeadF = CoreDeadFeatureAnalysis(CN Fryr) model void

falseOptionalF = FalseOptionalFeatureAnalysis(CN Fp A;l}:l

Return coreDeadF,
falseOptional F,
redundantC and
tautologicalC

|:1 redundantC = RedundantConstraint Analysis(C'N Fgpy)

tautologicalC = TautologicalConstraintCanalysis(C'N Fgyy) I—.

Figure 3.12: Procedure of the automated feature model analysis

3.5 IncrementalSolver Extension for Explanations

Currently, the data type IncrementalSolver cannot explain defects. Therefore,
we need an extension to do that. With our extension, it will then be possible to
calculate the explanations. Explanations are nothing else than the unsatisfiable
core of an unsatisfiable formula. The unsatisfiable core is the set of clauses that
causes the current formula in conjunctive normal normal for to be unsatisfiable.
Therefore, we extend our data type IncrementalSolver with a function to calculate
the unsatisfiable core.
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Extension 3.1. We extend the data type IncrementalSolver.
Signature:
unsatCore : IncrementalSolver — CN Fr)s

Assert:

R3: ¥m : IncrementalSolver : m.isSatis fiable()

0 : maunsatCore() # ()
R4: Vm : IncrementalSolver : m.isSatisfiable() # 0 : m.unsatCore() = ()

The function unsatCore retrieves the unsatisfiable core for the solver’s current formula.
The asserts R3 and R4 define that the unsatisfiable core can only be retrieved when
the current formula of a solver is unsatisfiable. With the help of the extension, it
is now possible to find explanations for core features, dead features, false-optional
features, and redundant constraints. To do so, we only need to extend the defined
analyses by calling unsatCore every time we detect a defect. The received unsatisfiable
core is then the explanation for the particular defect.

3.6 Summary

We began by introducing the different inconsistencies that can appear when dealing
with cross-tree constraints on feature models. We concluded that the detection of
such defects by hand is infeasible. Therefore, we introduced the automated analysis
on feature models which can detect such inconsistencies. Such an automated analysis
is commonly performed by a SAT solver. We motivated the detection of defects using
an SMT solver because of the significant improvements of SMT solvers. Additionally,
we motivated the comparison of both types of solvers on the automated analysis of
feature models. We concluded that the comparison requires a standard data type
that can be used to evaluate both types of solvers. Therefore, we created the abstract
data type IncrementalSolver which is defined over a common set of operations.
Afterward, we formally defined every defect which was introduced at the beginning
of the chapter with the help of the IncrementalSolver. We used the definitions to
present an analysis for each kind of defect in detail. We adapted the optimizations
proposed by Kiichlin, Kaiser, and Janota [KKO01, Jan10] to improve some analyses.
We used the multiple analyses to describe the complete procedure of an automated
analysis of a feature model. Next, we were also interested whether SMT solvers can
compete with SAT solvers on finding explanations for the defined defects. Therefore,
we created an extension for the IncrementalSolver with the functionality needed
to find explanations.
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4. Computing Attribute Ranges of
Partial Configurations

In this section, we describe our concept for the computation of the ranges of a
numerical attribute for a partial configurations. First, we show the relevance of those
computations. Afterward, we discuss our proposal to the task, which is separated
into an approximate and an exact computation.

4.1 Motivating Example

Sandwich

Bread Cheese Meat Vegetables

A /A AN

Full Grain | Flatbread | Toast  Gouda | Cheddar | Cream Cheese | Salami | Ham | | Chicken Breast | Cucumber = Tomatoes @ Lettuce

/b\ Legend:

Sprinkled | | Slice ¢ Mandatory
lof Optional
A or

A Alternative

Feature

Figure 4.1: Motivating example of a feature model representing a sandwich

The given feature model in Figure 4.1 represents a family of sandwiches. A customer
is able to retrieve the possible combinations of ingredients for his order from this
model. However, other properties of the ingredients may be relevant for our customer
as well. Additional properties might consist of the data available in Table 4.1. Using
the attribute table, the customer is also able to calculate the price and calories for
each sandwich and can account whether an ingredient is organic. Even though the
model is relatively small (19 features), calculating the overall price or calories for
multiple sandwich variants manually can take a considerable amount of time, as
there are still 2,808 possible configurations.
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26 4. Computing Attribute Ranges of Partial Configurations

Feature Name Price ($) | Calories (kcal) | Organic food
Full Grain 1,99 203 v
Flatbread 1,49 50 -
Toast 1,79 313 -
Gouda Sprinkled | 0,69 70 v
Gouda Slice 0,49 72 v
Cheddar 0,69 81 -
Cream Cheese 0,59 52 -
Salami 1,29 116 v
Ham 0,99 92 -
Chicken Breast 1,39 56 v
Cucumber 0,29 2 v
Tomatoes 0,39 3 v
Lettuce 0,19 2 v

Table 4.1: Attributes attached to features of the Sandwich model

A customer would profit from automatic computations on the numerical attributes.
First, we could compute the price of a specific sandwich, which results from the
sum of prices of the selected ingredients. However, we are interested in another
more complex computation an undecided customer profits from. Our goal is to
acquire the minimal and maximal possible price and amount of calories given a few
chosen ingredients. We call this the computation of attribute ranges given a partial
configuration. An example in our model might be calculating the calorie ranges of
the sandwich family with full grain bread and ham. Now, we explain the complexity
of this problem.

Computing a possible maximal or minimal sum of a numerical attribute is complex
because of the exponential growth of the number of configurations per feature. For a
feature model M, calculating the sum of the attribute values needs O(|Ny|) time,
as in the worst case mu(f) for every f € N, has to be added to the sum. The
amount of configurations is 21! (one binary decision per feature) in the worst case.
Therefore, brute-forcing a solution needs O(|N,,| * 2¥=!) time. Let us now define
the computation of attribute ranges given a partial configuration more formally.

4.2 The Problem

In this section, we formally define the algorithmic problem of our computations.

The input of our problem is defined as a numerical attribute att and a configuration
C' = (M,S,U), where M is an extended feature model, S are the selected, and U the
unselected features. Additionally, we define Val as the set of all valid configurations
of M. For the remainder of this chapter, we assume every value 7., (f) is in R.

Our goal is now to compute the minimum, which results from the subset T of features
forming a valid configuration. Additionally, 7" has to include all selected and exclude
all unselected features and imply the smallest sum ), ;. Tau(2).
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Min(att) = mau(t) with

teT

T:{TlgNM|CZ:(M,T;,UZ)EV(ZZ,T;QUZQ,S\T;ZQ,

VT (Z%tt(t) < Z Tane(t')) }

teTh t'eT;

T; N U = () ensures that no T; contains unselected features. S\ T; = ) ensures that
every selected feature is included in each T;. Additionally, we aim to compute the
maximum, which is similarly defined as the minimum, but ), ;. 7 (t) has to be the
largest sum.

T:{TIgNM‘Cl:<M7T’uUz)EV@Z?EQU:(ZLS\TIL:@?

VT - (Zﬂatt(t) > Z 7Tatt<t/))}

tET1 t’GTi

4.3 Computing Attribute Ranges using SMT

In this section, we explain and discuss the computation of our problem using an
SMT solver, which is able to optimize variables. The main task is to map our input
into a formula in first-order logic, which can be used to optimize for a given variable
by an SMT solver.

For the sake of clarity, we split our overall formula ~ into four different parts and
explain them separately. The parts consist of a formula representing the dependencies
of the feature model, (partial) configuration, and the optimization for our attribute.

First, we need to capture the logical constraints of the feature model M itself. These
are given by the C'N F).

To express the sets S and U of our configuration C' = (M, S,U), we create literals s;
for every s; € S and —wu; for every u; € U. By conjuncting the created literals to our
formula v, we ensure that the selected features are included and unselected ones are
excluded.

At last, we build the part of the formula representing the attributes. The idea here
is to create a variable atts.q; for every instance of the attribute in the feature model
and optimize their sum. We define the formulas we add in the following way:

(feat = attfeqr = mar(feat)) and

(—feat = attseqt = 0)
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28 4. Computing Attribute Ranges of Partial Configurations

This works as follows, the inclusion of feat sets attfeq to ma(feat), increasing the
attribute sum by its value in the process. Otherwise its value has no impact on the
range.

We add these formulas for every feature with the attribute attached to it. Additionally,
we define Ny, ,, as the set only containing features which have our attribute attached.
Now, we add our variable we are optimizing for, which represents the sum of our
attributes values. Formally, we define the sum as:

sum = Z atty

feNMatt

Again, we conjunct the formula for the attribute and their sum to v. Now, we define
the overall formula.

CNFyANsgANsg Ao NSy A—up A—ug A -+ A —u,A
(fi = atty, = mu(f1)) A (0fi = atty, =0) A+ A
(fu = atty, = mau(fx)) A (0 fe = atty, = 0)A

(sum = atty, + atty, + - -+ atty,)

(4.1)

The resulting formula Equation 4.1 is in first-order logic, because it only contains
propositional expressions and equality formulas. As our next step, we show that
every satisfying assignment of Equation 4.1 is a valid configuration and the implied
sum is correct.

Correctness

In this paragraph, we show that the result given by the SMT solver with our mapped
first-order logic formula Equation 4.1 is correct. To achieve this, two requirements
need to be fulfilled. First, the full configuration which includes the features whose
attribute values build our minimal/maximal sum and excludes the others, has to be
valid. Second, the optimized variable sum has to be equal to the sum of the attribute
values of the selected features. Additionally, sum has to be minimal/maximal, but
this is up to the solver and not part of this thesis.

Theorem 4.1. Fvery satisfying assignment for our formula Equation J.1 represents
a valid configuration.

Proof. Let C = (M, S, U) be the configuration representing our satisfying assignment.
We assume that C' is not valid. It follows that, the formula CNEFy A si A+ A s, A
—ug A - A, with s; € .S and u; € U is not satisfied. Therefore, Equation 4.1 is
not satisfied and our assumption leads to a contradiction. O

Now, we show that, given a valid full configuration of an extended feature model,
sum is equal to the sum of the attribute values of the selected features.
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Theorem 4.2. For every valid full configuration C = (M, S,U) with M =
(N, r,w, \,II, W), A, 7) being an extended feature model the following holds:

sum = Z%tt(f)-

Proof. By definition, the following is given:

sum = atty, + atty, + - - - + atty, with k = |N|

alls — Tatt (fi) if f, €98
70 if f,eU

This implies:

k
sum = atty, + atty, + - +atty, = atty, =
=1

> atty+ Y atty =

fes feu

D marlf)+Y 0=

fes feu
Zﬂ-att(f>
fes

Example

To further improve the understanding of our computation using SMT we map our
example Figure 4.1 into an instance of Equation 4.1. In our scenario the customer is
deciding on his sandwich. He has an appetite for ham and also has not eaten full grain
bread in a long amount of time. Therefore, his sandwich definitely includes both.
However, he is allergic to tomatoes. Now, he wants to know the minimal and maximal
possible calories of a sandwich that has full grain bread, ham, and no tomatoes. As
a result, the partial configuration Csunawich = (Msandwich, Ssandwich, Usandwicn) With
Ssandwich = {Full Grain, Ham} and Usepawicn = {Tomatoes} and the attribute
calories (cal) form our input.
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First, we want to create the conjunctive normal form of our sandwich feature model.

Sandwich

A(Vegetables V ~Cucumber) A (Vegetables V —=Tomatoes)
N(Vegetables V = Lettuce)

A(Cheese V ~Gouda) A (Cheese V =Cheddar) N (Cheese V =Cream C.)
A(Bread V = Full Grain) A (Bread V = Flatbread) A (Bread V —Toast)
A(Full Grain V —Flatbread) A (Full Grain vV —=Toast) A\ (Flatbread V —Toast)
N(Meat V —Salami) A (Meat V —Ham) A (Meat \V =Chicken B.)
A(Salami Vv Ham V Chicken B.V ~Meat)

A(Sandwich V = Bread) A (Sandwich \V ~Cheese)

A(Sandwich V = Meat) A (Sandwich V =V egetables)

A(Bread V =Sandwich) N\ (Gouda vV =Sprinkled) A (Gouda V —Slice)
A(Sprinkled v Slice V =Gouda) N (=Sprinkled V =Slice)

Next, we conjunct our selected and unselected features as literals to the formula:

Full Grain AN Ham N =T omatoes

For our last step, we conjunct our attribute terms starting with implications repre-
senting the calories of each feature:

>

(Full Grain = cal pyy Graim = 203) A (= Full Grain = cal pyy Graim = 0)
(Flatbread = calpiatpread = 50) A (—Flatbread = cal piagpread = 0)
(Toast = calroest = 313) A (—Toast = calroass = 0)

(Sprinkled = calsprinkiea = 70) A (=Sprinkled = calsprinkiea = 0)
(Slice = calgjice = 72)) N (mSlice = calgpice = 0)

(Cheddar = calcpeddar = 81)) A (mCheddar = calcpeqdar = 0)
(Cream C. = calcreamc. = 52)) A (=Cream C. = calcreame. = 0)
)

)

)

)

)

)

> > > > > > >

(Salami = calggiami = 116)) A (=Salami = calggiami = 0
(Ham = calgam = 92)) A (-Ham = calpygm =0
(Chicken B. = calchicken 5. = 56)) A (mChicken B. = calchicken . = 0

(Cucumber = calcyeumper = 2)) A (mCucumber = cal cyeumper = 0

> > > >

(Tomatoes = calromatoes = 3)) N (mTomatoes = calromatoes = 0
=2

(Lettuce = calperpuce )) A (= Lettuce = calpetpuce = 0)A
and the overall sum of calories:

SUMyeql = CalFull Grain + CalFlatbread + CalToast + -+ CalLettuce

The formula resulting from the conjunction of our parts can be used to compute
the minimum and maximum by optimizing for sum., with an SMT solver. For the
record, in this case our calories range is: min(cal) = 295 and maz(cal) = 676.
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Discussion of the Solution

As we were able to map our algorithmic problem into a first-order logic formula, it is
indeed possible to compute ranges of numerical attributes for partial configurations
using an SMT solver. However, even though the solver always returns exact results,
optimizing variables is a complex task to solve. Our formula shows linear growth
with the occurrence of our attribute, as for every occurrence two implications are
added. Additionally, the number of clauses of our C'NFg)s is bounded by O(n?)
with n = |Npy|. Each clause of C'N Fryy contains up to n literals [TBK09].

Let us consider a new example, our customer enjoyed his sandwich and now moves
on to an even more difficult decision. He has to decide on a new car and instead of
19 features the car’s feature model consists of 1,000 features. As a reminder this
model allows for up to 2! configurations. Our customer is very undecided, he is
still considering four different engines, six fittings, eight seat types, and three air
conditioning systems. For his research, he does not need exact prices but he wants to
know an approximate influence on the price for every component he is undecided on.
For every calculation using SMT, multiple SAT requests are performed. Therefore,
the computation using an SMT solver might become too costly for large feature
models.

To ensure the possibility of computing several ranges in a short amount of time, we
provide an heuristic to our algorithmic problem, which only approximates the ranges
but should return a solution in linear time.

4.4 Computing Attribute Ranges using an Heuris-
tic

In this section, we discuss our computation of attribute ranges with an heuristic. In
this case, the focus is on performance instead of exact results. For the computation,
we propose a recursive algorithm, that returns correct results for feature models
without cross-tree constraints and estimations for models containing them.

The idea is to recursively calculate the overall attribute value of a sub-tree and add
favorable or mandatory ones. By favorable we mean positive values for the maximum
or negative values for the minimum. For example, a sub-tree whose overall value
is negative would be favorable when computing the minimum. A sub-tree being
mandatory can result from the tree structure (e.g. w(rootsuy_ire.) = 1) or the selected
features.

During this the following case distinction, we call the configuration, inducing our
maximum or minimum respectively, the target configuration. Now, we want to obtain
rules on which sub-tree we add to our target configuration. These rules depend on
the relationship between the parent and its children. We now formulate our rules
for the And-, Or-, and Alternative-relation, which build the fundamentals for our
algorithms Minimal Estimation Algorithm and Maximal Estimation Algorithm:

e Alternative-relation
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4. Computing Attribute Ranges of Partial Configurations

In this case, we choose to add exactly one of the children to the target configu-
ration. If there is a child f € S, we always add this one. Otherwise we include
f ¢ U with the highest or lowest overall sub-tree value for the maximum and
minimum, respectively.

And-relation

First, all features f with f € S or w(f) = 1 are added. Afterward, we add all
children whose overall sub-tree value is negative and which are not in U for
the computation of our minimum. For the maximum, we include all children
whose overall sub-tree value is positive and which are not in U.

Or-relation

First, we add all features f with f € S. Afterward, we add all children whose
overall sub-tree value is negative and which are not in U for the computation of
our minimum. For the maximum, we include all children whose overall sub-tree
value is positive and which are not in U. However, if no child was included
by these rules the child with the highest or lowest overall sub-tree value that
is not in U has to be added to the product for the maximum and minimum,
respectively.

Now, we analyze our the correctness of our heuristic.
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Algorithm 1 Minimum Estimation Algorithm

1:
2
3
4
5:
6
7
8

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:

21:
22:

23:
24:
25:
26:
27:
28:
29:
30:

31:
32:

procedure GETSUBTREEMINIMUM (FEATURE)
min = Tu( feature)
if not hasChildren then return min
if isAnd then
for all children do
if child € U then
continue
if w(child) = 1 or getSubtreeMinimum(child) < 0 or child € S
then
min+ = getSubtree Minimum(child)
if isOr then
numberO fUnselected = 0
unaddedV alues = ()
for all children do
if child € U then
increment numberO fUnselected
continue
if child € S or getSubtree Minimum(child) < 0 then
min+ = getSubtree Minimum(child)
else
unaddedV alues = unaddedV alues U getSubtree Minimum/(child)
if |unaddedV alues| + numberO fUnselected = |children| then
min+ = min{value| value € unaddedV alues}
if isAlternative then
values = ()
for all children do
if child € U then
continue
if child € S then return min+ = getSubtree Minimum/(child)
else
values = values U getSubtree Minimum(child)
min+ = min{value| value € values}
return min

33: procedure INITIALISATION

34:

min = getSubtree Minimum(ryy)

Correctness

In this paragraph, we analyze our computation using the presented estimation algo-
rithms. During the analysis, we prove the correctness of the algorithm regarding our
goal to calculate the minimum/maximum of a variable without cross-tree constraints.
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Algorithm 2 Maximum Estimation Algorithm

1: procedure GETSUBTREEMAXIMUM (FEATURE)

2 max = Ty feature)

3 if not hasChildren then return max

4 if isAnd then

5: for all children do

6 if child € U then

7 continue

8 if w(child) = 1 or getSubtreeMaximum(child) > 0 or child € S

then

9: maz+ = getSubtree Mazimum/(child)

10: if isOr then
11: numberO fUnselected = 0
12: unaddedV alues = ()

13: for all children do

14: if child € U then

15: increment numberO fUnselected
16: continue
17: if child € S or 7y (child) > 0 then

18: max+ = getSubtreeMazimum(child)

19: else
20: unaddedV alues = unaddedV alues U getSubtree M aximum(child)
21: if |unaddedV alues| + numberO fUnselected = |children| then
22: maz+ = mazx{value| value € unaddedV alues}
23: if isAlternative then
24: values = ()
25: for all children do
26: if child € U then
27: continue
28: if child € S then return min+ = getSubtreeMaximum(child)
29: else
30: values = values U getSubtree M aximum(child)
31: max+ = mazx{value| value € values}
32: return max
33: procedure INITIALISATION
34: max = getSubtree M azimum(ryy)

Definition 4.1. A full configuration C; = (M, S;,Uy) extends the configuration
C = (M, S,U) when the following properties are given:

e SCS5
.UgUt

Prior to proving the correctness of the result of both algorithms, we formally define
our feature model My_y that is not considering cross-tree constraints.
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Definition 4.2. Given a feature model M = (N,r,w, \, 11, V), we get My—y =
(N, 7r,w, \,I1,0) as our alternative feature model that only considers the tree structure.

Theorem 4.3. Given a valid configuration C' = (M, A, 7),S,U) with M =
(N, r,w, \,T1, V) as input, the full configuration Cresuy = (My=p, A, ), Sresutt, Uresuit),
representing the result of the maximum estimation algorithm extends the configuration

C" = ((My=p, A, 7),S,U) with My—g = (N, r,w, \, 11, ¥y = 0) and is valid.
Proof. The Theorem 4.3 is equivalent to the fulfilment of the following properties:

1. Every feature f with w(f) =1 and (e € Syesuir, f) € I is in Syesunr

2. For every feature f € N with A(f) = (a,b) is the number of its included
children between a and b

3. Every formula F' € Uy is satisfied
4. S g Sresult
5. U g Uresult

The properties 1.-3. are given by the definition of a valid configuration and 4./5. by
the definition of Clgy; extends C’. Therefore, proving every one of these statements
proves the theorem. For this proof, we use /Ny to denote the set of children of feature
f in Mg_y. Additionally, (1) denotes the first line of the Maximum Estimation
Algorithm.

1. For every feature f € Syesur getSubtreeMaximum(f) is executed. Therefore,
every mandatory child ¢ € Ny is included by definition of the algorithm, as long
as ¢ with w(c) = 1 is not in U (8). However, this would lead to a contradiction
with the assumption of C’ being valid.

2. There are three cases for A in feature models representing the And-, Alternative
and Or-relation. Without loss of generality, we assume f € N is an arbitrary
feature. The idea of the proof for this statement is to show that for each input
feature f of getSubtreeMaximum(f) the number of children that are included
lies within the boundaries of A(f).

A(f) = (0,n) (And-relation) with n = |Ny| is fulfilled for every possible
inclusion of children.

The Alternative-relation is represented by A(f) = (1,1). We show that get-
SubtreeMaximum(f) always includes exactly one child feature ¢ € Ny for every
f with A(f) = (1,1). There are two possible cases. If a child ¢ € Ny is in
S the algorithm immediately stops iterating over the children and includes ¢
(28). Otherwise, the child with the maximal sub-tree value is added, as long as
Ny Z U (31). However, Ny C U contradicts the assumption of C" being valid.
Following from this, in both cases exactly one child is included.

The Or-relation is represented by A(f) = (1,n) witn n = |N|. We show that
getSubtreeMaximum(f) always includes at least one child feature ¢ € Ny for
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every f with A(f) = (1,n), with n = |N|. We assume no child was added
during the iteration over the children (13-20). This implies |unaddedV alues| +
numberO fUnselected = |children|. As C' is valid, there has to be at least
one child not in U. Therefore, unaddedV alues can not be empty and at least
one child feature is included (21,22).

3. As Uy = () this holds trivially.

4. For the And-(8) and Or-relation(17) every feature f € S is included. Regarding
the alternative relation, it is necessary to show that only one of the children
can be in S. This is implied by the validity of C’. Therefore, every feature
f € S is included in Cy (28).

5. The algorithm skips every feature f € U for every relation type (6, 14, 26).

O

Theorem 4.4. Given a valid configuration C = (M, A, ), S,U) with M =
(N, ryw, \, 11, V) as input, the full configuration Cresur = (My=g, A, ), Sresut, Uresuit),
representing the result of the minimum estimation algorithm extends the configuration

C' = ((My—p, A, 7),S,U) with Mg—y = (N, r,w, \, 11, ¥y = 0) and is valid.

The proof for the Minimum Estimation Algorithm is analogous. Now, we show that
given a configuration C' = (M, S,U) and an attribute aft as input the maximum
estimation algorithm will return the maximal possible sum of 7., (f) for ¢’ =
(My_y,S,U) and att.

Theorem 4.5. Given a valid configuration C = ((M, A, ), S,U) with M =

(N, r,w, \,IL, W) and a numerical attribute att € A as input, the full configura-
tion Cresur = (My=p, A, ), Sresuit, Uresuit), representing the result of the maximum
estimation algorithm, has the following property:

Z Watt(f) > Z Watt(f/)

feSresult flesi

for every valid C; = ((My—g, A, ), S;, U;) that extends C' = ((My=p, A, 7),S,U).

Proof. We prove this statement by a contradiction. We assume there is a full configu-
ration C, = (My—g, Sq, U,) that extends C’ with Zf’esa Tatt(f') > Zfesmu” Tatt(f)-
Without loss of generality, f € N with f & S,NS,esurr and f € Sy US,esuir 18 a feature
whose inclusion (if f ¢ Syesut) or exclusion (if f € Syesu) increases our sum. Such a
feature always exists, as we demanded ) /g Tau(f') to be strictly higher than our
sum. Furthermore, we know f ¢ U and f ¢ S, as f ¢ U contradicts f € S, U Sresunt
and f ¢ S contradicts f ¢ S, N Sresur- We now show that every case of a case
distinction over the relationship types (And, Or, Alternative) of the feature f’s
parent leads to a contradiction. It is worth noting that the actual value of a sub-tree
only depends on the sub-tree itself, because Wy, = 0. For our cases, we define the
set Niiplings;, C IV as the children of our feature f’s parent and Nyeectane = N \ U.
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1. And-relation

Without loss of generality, we assume w(f) = 0. We have two cases f € S, and
f & Sa
f € Sy = getSubtreeValue(f) > 0= f € Sresun

f ¢S, = getSubtreeValue(f) <0 = f & Scsun
The first case contradicts f & S, N Syesur and the second one f € S, U Spegu-

2. Or-relation
We have two cases f € S, and f & S:

f € S, = getSubtreeValue(f) >0
V=39 € Npeigbors; N Nsclectable : getSubtreeValue(g) > getSubtreeValue(f)
= f € Sresult

f ¢ S, = getSubtreeValue(f) <0
V3g € Nucighbors; N Nselectable * getSubtreeValue(g) > getSubtreeV alue(f)

= f ¢ Sresult
The first case contradicts f & S, N Speswe and the second one f € S, U Spesuir-

3. Alternative-relation

Without loss of generality, we assume g € Npeighvors ;18 the second feature with
g & SaN Sresur and g € S, U Spesur- We have two cases f € S, and f ¢ S,:

f €S, = getSubtreeValue(f) > getSubtreeValue(g) = f € Sresut
f & S, = getSubtreeValue(g) > getSubtreeValue(f) = g & Sresunt

The first case contradicts f & S, N Syesur and the second one f € S, U Spegur-

As every case leads to a contradiction, C, cannot exist. Therefore,
> fes,uon, Tart(f) is indeed our desired maximum. O

Theorem 4.6. Given a valid configuration C = (M, A, ), S,U) with M =
(N,r,w, \,ILL W) and a numerical attribute att € A as input, the full configura-
tion Cresur = (My=g, A, ), Sresuits Uresuit), representing the result of the minimum
estimation algorithm, has the following property:

Z Watt(f) > Z Watt(f/)

fesresult flesi
for every valid C; = ((My—gy, A, ), S;, U;) that extends C" = ((My—p, A, ), S,U).

The proof for the minimum is analogous to the proof for the maximum. As we have
shown the correctness, we now discuss the relevance of our result.

The estimation results bound the actual minimum and maximum, because the
sets N; C N that leave C satisfied are a subset of the sets N/ C N that leave
C' satisfied. So the following always holds true: Minesiimated < MiNezaer and
Maz.siimated > Maxezqer. Therefore, the approximation is conservative. Furthermore,
the estimations have a linear runtime. We will further analyze the runtime in
Chapter 7.
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4.5 Summary

In this chapter, we presented a formal definition of the algorithmic problem of
computing attribute ranges for partial configurations. Additionally, we described
two methods for the computation of attribute ranges and showed their correctness.

We discussed the calculation of the minimum and maximum with the help of an
SMT solver. The main task is mapping the problem into a first-order logic formula,
which represents the C'NF' of a feature model, the selected and unselected features,
the attribute values, and the sum of all attribute values. This sum is the numerical
variable the SMT solver is supposed to optimize. However, the optimization of a
variable using SMT is a complex task and we expected a long runtime for feature
models with a large number of features. Therefore, we proposed an heuristic, that
approximates the range.

The heuristic approximates attribute ranges by not considering cross-tree constraints
of the feature model. We proposed two algorithms, one for computing the minimum
and one for computing the maximum. These algorithms conservatively approximate
the ranges in linear time.
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5. Implementation into
FeaturelDE

In this chapter, we describe how we implemented the proposed concepts from Chap-
ter 3 and Chapter 4. We implement both concepts into the framework FEATUREIDE
which is introduced in Section 5.1. In Section 5.2, we start with the implemen-
tation of a general data structure which represents the input for a solver. Next,
we describe how we implemented the abstract solver type IncrementalSolver into
FEATUREIDE and which solvers we add in Section 5.3. Section 5.5 describes the
default statistics for configurations and the view to display them. Then, Section 5.6
describes the additional statistics regarding feature attributes, also including the
implementation of the attribute range computation.

In Chapter 3, we discuss the comparison of SAT and SMT solvers on the task
of the automated analysis of feature models. We proposed the concept for the
IncrementalSolver, an abstract data type to compare both kinds of solvers on
that task. Now, we are interested whether SMT solvers are superior to SAT solvers
regarding efficiency. Therefore, we defined general analyses with the help of the
abstract data type to benchmark SAT and SMT solvers. Additionally, we provided
two methods capable of computing attribute ranges for partial configurations in
Chapter 4. We decided to implement these into an existing feature modeling tool.
Using this implementation, we aim to compare our heuristic, consisting of the
estimation algorithms for the minimum and maximum, to a computation of attribute
ranges using an SMT solver. Furthermore, we aim to compare SAT and SMT solvers
on the task of automated analysis of feature models.

5.1 Building on Existing Tools

In this section, we are going to introduce the framework FEATUREIDE and present the
different solvers we implemented into it. FEATUREIDE is an integrated development
environment based on ECLIPSE that assists the user in developing software product
lines. It consists of multiple plug-ins and provides a variety of different tools like
a graphical feature model editor, configuration editor, and the support of different
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composers. FEATUREIDE is an open source project written in JAvA.! Thus, JAVA
is the programming language that we used to implement our thesis.

We chose FEATUREIDE because it is one of the most used open-source solutions
and it provides a certain level of abstraction, which gives us the ability to create our
own feature model and configuration formats which can still be used with the editors
provided by FEATUREIDE [BRN'13]. By implementing our feature attributes with
the help of the interface provided by FEATUREIDE, we greatly benefit from the rich
functionality of FEATUREIDE. Our implementation of feature attributes and their
user interface is modeled as an additional plug-in. If a user wants the functionality
of the attributes he only needs to install that plug-in. The source code for this thesis
is available on Github.?

The feature model editor provided by FEATUREIDE can automatically analyze the
feature model. FEATUREIDE uses the SAT solver SAT4J to automatically detect the
defects explained in Section 3.3. By replacing the static implementation of the SAT4J
solver with the abstract data type IncrementalSolver proposed in Section 3.2,
FEATUREIDE gains the ability to easily replace solvers used for any analysis. For our
thesis, we reimplemented SAT4J and implemented the SMT solver API JAVASMT
for comparison.

SAT4J is an open-source library which can be accessed easily, is written entirely in
JAVA, provides SAT solving technologies, and is reusable [Ber|. A native implemen-
tation for SAT4J was already present in FEATUREIDE. Therefore, we decided to
adapt the implementation to the IncrementalSolver data type.

For the SMT solvers we decided to use the solver APT JAVASMT because it provides
multiple solvers at once and is entirely written in JAVA. JAVASMT is an open-source
library which communicates with the native solvers directly [KFB16]. The different
solvers and their supported theorems and functions are shown in Table 5.1. The
biggest difference between both solvers is that SAT4J is a native SAT solver and
has many optimization options. In contrast, JAVASMT handles the communication
to five different native SMT solvers and does only provide restricted optimization
options. The differences and similarities of JAVASMT and SAT4J are summarized in
Table 5.2.

5.2 Data Structure for Formulas

Addressing multiple solvers with the help of an interface requires a standard data
structure that represents formulas. FEATUREIDE uses PROP4J to represent a feature
model in conjunctive normal form. PROP41J is a library that makes it easier to create
propositional expressions. To calculate feature attribute ranges we decided to extend
Pror4J by making it possible to create restricted first-order logic expressions.

Propr4J allows the creation of nodes which represent variables, called Literal, or
boolean operations. The nodes can also transform themselves into conjunctive normal
form which saves us the effort to write an algorithm for the transformation. The

Thttps://github.com/FeatureIDE /FeatureIDE
Zhttps://github.com/Subaro/BachelorThesis_Sprey_Sundermann
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5

7
Q B % )
: 55t
Solver: N O = c% rf
, Integer v v v v/
£ Rational v vV / /-
§ Array v v v
ﬁ Bitvector v v /S - -
Float - v /S - -
Unsat Core v v /S /-
Partial Models v - - -/
% Assumptions v v /v 7/
£ Quantifiers v - - -/
g Interpolation v v v vV /
= Optimization v v - - -
Incremental Solving v v v vV
SMT-LIB2 v v v vV /

Table 5.1: The native solvers supported by JAVASMT and their functionality, adapted
from [KEFBI16]

class diagram of the relevant PROP4J nodes is shown in Figure 5.1. For the sake of
clarity, other nodes were omitted. The different nodes that PROP4J provides and
their functionality is shown in Table 5.3.

These nodes allows us to model any propositional expression needed to represent
feature models and their constraints. However, the computation of attribute ranges
requires more nodes to model restricted first-order expressions.

The class diagram for the PROP4J extension is shown in Figure 5.2. We extended
the nodes to model atomic formulas. An atomic formula consists of two terms and
evaluates to a boolean value based on a given operation. A term is a variable, a
constant, or a function. As an example the formula integerVariable > 334 is an

Aspect SAT4J) | JAVASMT
Solves SAT v
Solves SMT -

JAVA 4
Optimization options | v/
Native v
Multiple Solver -
Memory header -
Can explain defects | v

NSSNSS

(restricted)

SSSN

Table 5.2: Comparison of the functionality of SAT4J and JAVASMT
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org.prop4j
Node
+toRegularCNF(): Node
I I I I I I
And Not Or Equals Implies Literal

Figure 5.1: The original state of PROP4J

atomic formula that consist of a variable of the type Integer and 334 which is
a constant of the type Integer. Both terms are connected by the relation >. A
detailed explanation for the new nodes is given in Table 5.4.

Term represents the terms of atomic formulas and they evaluate to a numerical value
instead of a boolean value. There are three types of terms: Variable, Constant,
and Function. Constant is used to create constants for the formulas. The second
type, Variable, is used to create variables for the formulas which are identified by
a String. They represent numerical variables instead of boolean variables. The
last type called Function represents functions over numerical values like addition,
subtraction and more. To ensure type safety, we created the class Datatype to
identify the current type for a specific variable or constant. As seen in Figure 5.2,
we implemented the types Long and Double. With the new nodes it is now possible
to model restricted first-order logic formulas which can be evaluated using an SMT
solver. However, the nodes from PROP4J cannot be used as an input for our abstract
data type IncrementalSolver because for the usage of explanations, we need a
specific mapping from the clauses and variables into integers and the other way
around which is not provided. Thus, we need a new data structure which contains
the required mappings.

As proposed in Section 3.2, every solver receives an unmodifiable problem. That
unmodifiable problem is designed to be as reusable as possible to prevent multiple
creations of the same problem. The problem is designed to be a SAT or an SMT
problem. The architecture is shown in Figure 5.3. The ISolverProblem is a JAVA
interface providing methods that every problem either SMT or SAT need to support.
All problems contain a Node which is the root node for the conjunctive normal form.
For the explanations of defects, a specific mapping from clause and variable into
integer is needed. Therefore, every problem provides the mapping.

ISmtProblem and ISatProblem are sub interfaces to the ISolverProblem used to
identify the current problem either as a SAT or SMT problem and helps to prevent
the creation of SAT solvers with SMT problems. The specific implementation for
the SAT problem is SatProblem and for the SMT problem is SmtProblem. Every
problem can be created by giving a Node as input. For SatProblem, the given node
needs to be in conjunctive normal form. For SmtProblem, the Node needs to consist
of conjunctions of clauses and AtomicFormula. After an ISolverProblem is created,
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Node Description

Node Is an abstract class and provides functionality to transform the formula
into conjunctive normal form and presets that every node can have
multiple Nodes as children. The following implemented nodes exist

Literal Represents a boolean variable which can be either positive or negative
and is identified by an Object.

Not Represents the logical negation — and evaluates to true when the child
evaluates to false.

And Represents the logical conjunction A and evaluates to true when all the
children evaluate to true.

Or Represents the logical disjunction V and evaluates to true when at least
one child evaluates to true.

Equals  Represent the logical equality = and evaluates to true when all children
evaluate to the same value.

Implies Represents the logical implication = and evaluates to true if the left
child evaluates false or the right child evaluates true.

Table 5.3: PrROP4J nodes for propositional formulas and their functionality

it cannot be changed, making it possible to take the same problem for all analyses
without making it inconsistent. However, most of them need to change the current
formula. Therefore, we implement the IncrementalSolver which can push and pop
additional clauses to the internal formula without making the problem inconsistent.

5.3 Implementing the Abstract Data Type Incre-
mentalSolver

We implemented the abstract data type IncrementalSolver as a JAVA interface.
The interface allows us to add or remove solvers, modify the internal formula, generate
unsatisfiable cores, and optimize variables. The class diagram in Figure 5.4 shows
the architecture of the solver interface with the extensions explained in Chapter 3.
The interface ISolver provides us all necessary operations for the abstract data type
IncrementalSolver defined in Section 3.2. Every solver also needs a mapping from
clauses into integer and back to provide indexes even for clauses which were pushed
to the solver and are not part of the ISolverProblem. It is also possible to set
configurations for the specific solver by calling the provided setConfiguration(...)
method. SMT and SAT solvers are realized into the new sub interfaces ISatSolver
and ISmtSolver. These are used to prevent analyses using the wrong type of solver.
As an example, the analyses for attribute ranges cannot be solved by ISatSolver
permitting only ISmtSolver for the calculation of attribute ranges.

The extension of the solver interface to find explanations for feature model inconsis-
tencies is modeled as an additional interface IMusExtractor. The interface provides
the functionality to calculate the unsatisfiable core of a solver’s internal formula.
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Node Description

AtomicFormula Is the abstract class for the new nodes presetting that every
atomic formula has two terms.

LessThan Evaluates to true when the value of the left term is less than
the value of the right term.

LessEqual Evaluates to true when the value of the left term is less equal
the value of the right term.

GreaterThannd FEvaluates to true when the value of the left term is greater than
the value of the right term.

GreaterEqual  Evaluates to true when the value of the left term is greater equal
the value of the right term.

Equal Evaluates to true when the value of the left term is equal the
value of the right term.

Table 5.4: PrROP4J nodes for restricted first-order formulas and their functionality

Giinther proposed a concept of finding explanations for feature model inconsistencies
which he also implemented in FEATUREIDE [Giin17]. We made his implementa-
tion compatible with our solver interface for finding and evaluating explanations.
I0ptimizaionSolver realizes the second extension to solve optimization problems.
Solvers, which implement this interface can evaluate the minimum and maximum
value of a given numeric variable, making it possible to calculate the ranges for our
attributes.

All the provided interfaces grant a certain level of abstraction, making it possible
to separate the usability of the solver interface with different implementations for
the solvers. Therefore, it is possible to add every solver to the interface. As part of
our thesis, we implemented the solver SAT4J and the solver API JAVASMT. For
JAVASMT, two implementations are needed. The first is handled as a pure SAT
solver used only for solving SAT problems. The other one is the implementation for
solving SMT.

It is quite simple to add new solvers. Solvers that are used to solve SAT problems need
to implement the ISatSolver interface or to extend the AbstractSatSolver. In
contrast, solvers only used to solve SMT problems need to implement the ISmtSolver
interface or extend the AbstractSmtSolver class. If a solver is supposed to solve
SAT and SMT, like JAVASMT, we need to create both implementations.

Implementation of Sat4j
The package org.prop4j.impl.sat4j contains the concrete implementations for
SAT4J. The Sat4jSatSolver is a pure SAT solver and inherits AbstractSat-

Solver. By extending the Sat4jSatSolver with the IMusExtractor in the class
Sat4jSatMusExtractor, SAT4J enables the retrieval of unsatisfiable cores.
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org.prop4j.nodes

Node

+toRegularCNF(): Node

A

AtomicFormula And Not Or Equals Implies Literal
-leftChild: Term
-rightChild:Term
LessThan GreaterThan LessEqual GreaterEqual Equal
__| Variable<T extends Datatype> Long
D
Term et Constant<T extends Datatype> Datatype ouble

L_| Function

Figure 5.2: Extension of PROP4J that we implemented to build restricted first-order
expressions

Implementation of JavaSMT

JAVASMT provides multiple solvers to use. You can easily choose between the
different solvers. Changes to already instantiated ISolver instances are possible
with the help of the setConfiguration(...) method. We realized the SAT solver
implementation of JAVASMT in JavaSmtSatSolver. The implementation prevents
the solver from getting an ISmtProblem as an input and therefore from facing SMT
problems. By extending the JavaSmtSatSolver with the IMusExtractor in the
class JavaSmtSatMusSolver, we provided the functionality to calculate unsatisfiable
cores. Optimizing non-boolean variables is not possible with SAT solving. So we
had to create the JavaSmtSolver, which extends the AbstractSmtSolver, making
it possible to solve SMT problems. By also implementing the I0ptimizationSolver
interface we gave JavaSmtSolver the ability to optimize variables.

We decided to split the SAT and SMT solver implementation for JAVASMT'. Therefore,
we can evaluate the JavaSmtSatSolver on the automated analysis of feature models,
while the JavaSmtSolver is used for the evaluation of computing attribute ranges
for parital configurations. Both Sat4jSatSolver and JavaSmtSatSolver are later
used for the feature model inconsistency analyses because they only depend on
SAT. Their extensions Sat4jSatMusSolver and JavaSmtSatMusSolver are used
for find explanations with the architecture given by Giinther [Giinl7]. The solver
JavaSmtSolver can optimize variables and is therefore used to calculate the feature
attribute ranges.
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org.prop4j.solver org.prop4j.solver.impl
<<interface>> <cinterface>> SmtProblem
ISolverProblem ISmtProblem Ky
#root: Node

#varTolnt: Map<Object, Integer>

. . #intToVar: Object[]
+getN.umberOfVar|abI?s()4 |n? . <t #clauseToInt:JMap<Node, Integer>
+getSignedindexOfVariable(Literal): int "
+getindexOfVariable(Object): int #intToClause: Nodel]
+getVariableOfindex(int): Object SmtProblem(cnf: Node)
+getClauses(): Node[]
+getindexOfClause(Node): int
+getClauseOfindex(int): Node ISatProblem

+getRoot(): Node

<<interface>>

SatProblem

rrrrrrrrrrrrrrrrrrrrrrrrrrrrr N #root: Node

#varTolnt: Map<Object, Integer>
#intToVar: Object(]

#clauseTolnt: Map<Node, Integer>
#intToClause: Node[]
SatProblem(cnf: Node)

Figure 5.3: Class diagram for the SAT and SMT problems

Implementation of Analyses

Now, we present our implementation for the analyses and show how the analy-
ses and solvers are created. For the creation of analyses and solvers, a factory
pattern [GHJV95] is used which helps us to switch between multiple factories eas-
ily. Every analysis is created in a factory class. On creation, a new solver is
instantiated providing the functionality to decide on a different solver for every
analysis. We implemented the two factories JavaSmtSolverAnalysisFactory and
Sat4jSolverAnalysisFactory. With the help of the factory pattern, the addition
of a new analysis is straightforward, and the substitutability of the different factories
makes it easy to add new solvers. Next, we explain the architecture used for the
analyses in Figure 5.5.

Every analysis needs to implement the ISolverAnalysis<T> interface. Because of
the interface, it is possible to hide the different implementations for the analyses. The
generic type T determines the result or return value of the analysis. The next class
GeneralSolverAnalysis<T> is a subclass of LongRunningMethod<T>, provided by
FEATUREIDE, that allows us to run every analysis in a separate thread [KPK™17].
GeneralSolverAnalysis also implements ISolverAnalysis which makes it possible
to write general analyses for ISolver. AbstractSmtSolverAnalysis<T> is the
specification of GeneralSolverAnalysis to create analyses only for ISmtSolver.
AbstractSatSolverAnalysis<T> is the specification of GeneralSolverAnalysis to
create analyses only for ISatSolver.

General Analyses

Comparing JAVASMT and SAT4J requires analyses which can be performed by SAT
and SMT solvers. Therefore almost every analysis proposed in the concept is realized
as a subclass of GeneralSolverAnalysis. All general analyses are in the package
org.prop4j.analyses.impl.general. The following analyses were implemented:

SatisfiabilityAnalysis checks whether the solver’s internal formula is satisfiable.
The analysis returns an array of indices representing the satisfying assignment. If the
analysis returns null, then the model is unsatisfiable. The SatisfiabilityAnalysis,
therefore, represent our feature model void analysis shown in Figure 3.3.
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org.prop4j.solver

<<abstract>> <<interface>> <<interface>>
AbstractSatSolver ISolver AbstractSmtSolver
— -problem: ISatProblem +isSatisfiable(): SatResult -problem: ISmtProblem
+AbstractSatSolver(ISatProblem) +setConfiguration(Map<String, Object>): List<String> +AbstractSmtSolver(ISmtProblem)
+AbstractSatSolver(ISatProblem, Map<String, Object>) +setConfiguration(String, Object): boolean +AbstractSmtSolver(ISmtProblem, Map<String, Object>)
+getProblem(): ISatProblem +pop(): Node +getProblem(): ISmtProblem
+setConfiguration(Map<String, Object>): List<String> +pop(int): List<Node> +setConfiguration(Map<String, Object>): List<String>
T +push(Node): int T Iy
T +push(Node ...): int ‘f 777777
! +getSolution(): Object[]
\7 +findSolution(): Object[] \7
<<interface>> +getProblem(): ISolverProblem <<interface>>
+getindexOfClause(Node): int
ISatSolver +getClauseOfindex(int): Node ISmtSolver
rrrrrrrrrrrrrrrrrrrrrrrrrrrrr +getClauses(): Node[]
I [
<<interface>> <<interface>>
IMusExtractor |0ptimizationSolver
777777 |
+getMinimalUnsatisfiableSubset(): Set<Node> minimum(Object): Object |
+getMinimalUnsatisfiableSubsetindexes(): Set<Integer> maximum(Object): Object |
+getAllMinimalUnsatisfiableSubset(): List<Set<Node>> minAndMax(Object): Object[] }
+getAllMinimalUnsatisfiableSubsetindexes(): List<Set<Integer>> |
|
[ !
: ]
.propaj.solver.impl.j t !
org.prop4j.solver.impl.sat4j : ©Org-propaj.solver.impljavasm }
: I
|| | Sat4jSatSolver |4 Sat4jSatMusSolver | | _ _ __ __ , JavaSmtSatSolver | JavaSmtSatMusSolver JavaSmtSolver
|
[ I — fommmmmm— oo T

Figure 5.4: Class diagram for the solver interface

CoreDeadAnalysis computes every core and dead feature and returns them as list
of indexes. Every feature is mapped into a unique index inside the ISolverProblem.
If the list contains the positive index of a feature, then it is a core feature. In
contrast, if the list contains the negative index of a feature, then it is a dead feature.
The class UnoptimizedCoreDeadAnalysis is the representation of the unoptimized
analysis shown in Figure 3.4. CoreDeadAnalysis does optimizations for the general
analysis as shown in Figure 3.5. Even further optimizations for the SAT4J analysis
in Figure 3.6 are made in the Sat4jCoreDeadAnalysis.

UnoptimizedImplicationAnalysis calculates the false-optional features without
optimizations shown in Figure 3.7 and returns them as a list. Applying some
optimizations leads to the optimized general analysis shown in Figure 3.8 which is
implemented in the class ImplicationAnalysis. The false-optional features also
have a SAT4J optimized analysis shown in Figure 3.9 which is implemented in the
class Sat4jImplicationAnalysis.

RedundantConstraintAnalysis implements the analysis shown in Figure 3.10 and
returns a list of constraints which are redundant.

TautologicalConstraintAnalysis implements the analysis shown in Figure 3.11
and returns a list of constraints which are tautologies.

The package org.prop4j.analyses.impl.smt contains the analyses used to calcu-
late ranges of an attribute using an SMT solver. The analysis FeatureAttributeMax-
imumAnalysis return the maximum value of a variable. The analysis FeatureAt-
tributeMinimumAnalysis return the minimum value of a variable.
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de.ovgu.featureide.core.job

<<interface>>

LongRunningMethod<T>

org.prop4j.analyses.impl.smt

FeatureAttributeMaximumAnalysis

A
I
+execute(IMonitor): T | . L. .
A ) | FeatureAttributeMinimumAnalysis
I
I
org.prop4j.analyses “
1 V
<<interfacess <<abstract>> AbtsractSmtSolverAnalysis<T>
GeneralSolverAnalysis<T>
ISolverAnalysis<T> 4 AbstractSmtSolverAnalysis(ISmtSolver)

+analyze(IMonitor)

+getSolver():ISolver

+GeneralSolverAnalysis(ISolver)
+execute(IMonitor) : T
+analyze(IMonitor) : T
+getSolver():ISolver

AbtsractSatSolverAnalysis<T>

AbstractSatSolverAnalysis(ISatSolver)

A

org.prop4j.analyses.impl.general

ValidAnalysis | | CoreDeadAnalysis

ImplicationAnalysis

org.prop4j.analyses.impl.sat4j

<<abstract>>

AbstractSat4JAnalysis<T>

Unoptimized Versions:
UnoptimizedCoreDeadAnalysis
UnoptimizedIimplicationAnaylsis

RedundantConstraintAnalysis

+AbstractSat4JAnalysis(Sat4jSatSolver)

Sat4)JCoreDeadAnalysis

TautologicalConstraintAnalyis

Sat4JImplicationAnalysis

Figure 5.5: Class diagram for the analyses
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5.4 Feature Attributes

This section describes the implementation of feature attributes in FEATUREIDE.
First, we take a look at the implementation of our attribute structure. Afterward,
we discuss the integration into the structure of FEATUREIDE. Then, we present our
user interface.

<<Interface>>

IFeatureAttribute

+getValue(): Object

+setValue(Object)
+addRecursiveAttributes(IFeature)
+removeRecursiveAttributes(IFeature)
+isHeadOfRecursiveAttribute(): Boolean
+cloneAtt(IFeature feature)

L

<<Abstract>>
FeatureAttribute

-name: String
-feature: IFeature
-unit: String
-recursive: boolean
-configurable: boolean

T

StringFeatureAttribute

BooleanFeatureAttribute

LongFeatureAttribute

DoubleFeatureAttribute

-value: String

-value: Boolean

-value: Long

-value: Double

+getValue(): String
+setValue(Object)

+getValue(): Boolean
+setValue(Object)

+getValue(): Long
+setValue(Object)

+getValue(): Double
+setValue(Object)

Figure 5.6: Attribute implementation into FEATUREIDE

Figure 5.6 shows how we implemented the attributes. Now, we want to define each
of the shown classes more precisely.

IFeatureAttribute is the interface used for our attributes. It handles the commu-
nication with FEATUREIDE without requiring to specify a type. Furthermore, it
defines mandatory functions for each attribute type to implement. These conventions
regarding functions also allow the simple addition of new types.

FeatureAttribute is an abstract class inherited by each instance of an attribute.
Every attribute is identified by its variable name and the feature holding it. Ad-
ditionally, an attribute contains a unit and two indicators that show whether the
attribute is recursive and/or configurable. If a FeatureAttribute is recursive,
all of its feature’s descendants hold an instance of it. configurable indicates that
the value can also be changed for each configuration.

StringFeatureAttribute is an instance of a FeatureAttribute whose value is a
String. A use-case for this type might be attaching an URL to each feature of the
model.
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BooleanFeatureAttribute is an instance of a FeatureAttribute whose value is a
Boolean. For example, this type can be used to indicate whether a component of a
sandwich is organic.

LongFeatureAttribute is an instance of a FeatureAttribute whose value is a Long.
Using this type a developer could add the amount of RAM needed for a specific
software fragment to run.

DoubleFeatureAttribute is an instance of a FeatureAttribute whose value is a
Double. An example for the usage of this type is the attachment of a price to each
feature.

Now, we specify and explain the properties of a FeatureAttribute in more detail.
Afterward, the reader will be able to understand the functionality of our attribute
design.

The string name is the primary identifier of an attribute. While the attribute name
has to be unique within the attribute list of a single feature, different features can
hold attributes with the same name.

Every specific attribute belongs to exactly one feature. This feature is referenced by
the IFeature feature. A pair of the variables name and feature uniquely identifies
one attribute instance.

An attribute’s value is an extension of Object that differs for each attribute type.
value does not have to be specified, meaning it is either an instance of the Object-
extension according to the attribute type or null.

The unit given as a String can be used to further describe an attribute. For
example, you could specify that a price is given in €. This variable does not have to
be specified. In this case it is an empty String.

If an attribute is set to recursive, a copy with the value set to null, is added to ev-
ery descendant of feature. The recursively implemented function addRecursiveAt-
tributes (IFeature) realizes this by adding the copy to every child of its input. We
call the attribute that was originally set to recursive the head of this recursive attribute.
If we change a property of our head attribute other than value , the other recursive
attributes will be updated in the same way. Note that these properties can only be
edited at the head of our attribute. Changing recursive of our head to false or
deleting the attribute leads to the removal of all descendant attributes with the same
name. This functionality is realized by removeRecursiveAttributes(IFeature),
which works similar to addRecursiveAttributes(IFeature), but instead of adding
a copy it, removes the recursive attribute.

The value of an attribute that is configurable, can not only be adjusted in the
feature model but also for each configuration. In this case, the user can decide on a
default value in the feature model editor. However, the value can still be adjusted in
the configuration editor. Following from this, there can be multiple values for one
attribute in different configurations. We now specify the integration of our feature
attributes into FEATUREIDE.
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Integration into FeatureIDE

FEATUREIDE provides multiple interfaces to create a custom feature model and
configuration format. The architecture for the extended feature model is shown in
Figure 5.7. FEATUREIDE provides the interfaces IFeature and IFeatureModel.
Both interfaces are used to encapsulate the specific implementations from the usage
within the framework.

de.ovgu.featureide.fm.core.base

<<interface>> <<interface>> <<interface>>
IFeature <l| IFeatureModel IFeatureModelFactory
|
: A r[> +createConstraint(IFeatureModel, Node): IConstraint
| | | +createFeature(IFeatureModel, String): IFeature
| | : +createSelectableFeature(IFeature): SelectableFeature
: : | +createFeatureModel(): IFeatureModel
de.ovgu.featureide.fm.core.base.impl | | : A
' ' T
| 1 : 1
<<abstract>> !
I | FeatureModel : DefaultFeatureModelFactory
AFeature - |
A : +id: String
| +createConstraint(IFeatureModel, Node): IConstraint
| +createFeature(IFeatureModel, String): Feature
: +createSelectableFeature(IFeature): SelectableFeature
Feature 1 | +createFeatureModel(): FeatureModel
|
|
I
|
T
|
de.ovgu.featureide.fm.attributes.base.impl |
t
|
|
ExtendedFeature ExtendedFeatureModel |, |ExtendedFeatureModelFactory
|
#attributes: List<IFeatureAttribute> : +id: String
+getAttributes(): List<IFeatureAttribute> — L +createConstraint(IFeatureModel, Node): IConstraint
+addAttribute(IFeatureAttribute) +createFeature(IFeatureModel, String): ExtendedFeature
+removeAttribute(IFeatureAttribute) +createSelectableFeature(IFeature):
+setAttributes(List<IFeatureAttribute>) ExtendedSelectableFeature
+isContainingAttribute(IFeatureAttribute) +createFeatureModel(): ExtendedFeatureModel

Figure 5.7: Architecture of the extended feature model implemented into FEA-
TUREIDE

AFeature is the abstract class for all features and implements the interface IFeature.
It is used by FEATUREIDE features to save properties. Feature is the concrete
implementation of a regular feature. A Feature cannot save the attributes we
described earlier. Hence, we created the subclass ExtendedFeature that manages
the attributes.

FeatureModel represents a feature model and implements the interface IFeature-
Model. It manages the features, constraints, and the structure of the model. We
implemented ExtendedFeatureModel as subclass of the FeatureModel. In FEA-
TUREIDE, the feature model, features, constraints, and other elements for the feature
model editor are created through a factory. The interface IFeatureModelFactory
specifies a method for each element that handles their creation. We implemented
the ExtendedFeatureModelFactory that implements IFeatureModelFactory. It
creates an ExtendedFeature instead of a Feature and an ExtendedFeatureModel
instead of a FeatureModel. FEATUREIDE uses the class XmlFeatureModelFormat
to read feature models from XML files and to write feature models into XML files.
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If FEATUREIDE reads a feature model from a specific format, it uses the IFeature-
ModelFactory assigned to the format to create the specific elements. By creating an
own format for extended feature models it is possible to assign the ExtendedFea-
tureModelFactory to the format. The architecture for the extended feature model
format is shown in Figure 5.8.

de.ovgu.featureide.fm.core.io.xml | de.ovgu.featureide.fm.attributes.format
XmlIFeatureModelFormat XmlExtendedFeatureModelFormat
+supportsContent(CharSequence): Boolean +supportsContent(CharSequence): Boolean
de.ovgu.featureide.fm.base.impl | a”ignled to de.ovgu.featureide.fm.attributes.base.impl asiigned to
I I
DefaultFeatureModelFactory ExtendedFeatureModelFactory
+id: String +id: String
+createConstraint(IFeatureModel, Node): IConstraint +createConstraint(IFeatureModel, Node): IConstraint
+createFeature(IFeatureModel, String): Feature +createFeature(IFeatureModel, String): ExtendedFeature
+createSelectableFeature(IFeature): SelectableFeature +createSelectableFeature(IFeature):
+createFeatureModel(): FeatureModel ExtendedSelectableFeature
+createFeatureModel(): ExtendedFeatureModel

Figure 5.8: Architecture of the extended feature model format implemented into
FEATUREIDE

We adapted XmlFeatureModelFormat in the class XmlExtendedFeatureModelFor-
mat and extended it to read and write extended feature models which include the read-
ing and persistent saving of the attributes and all their properties. Examples for the
XML format used by FEATUREIDE and for our extended XML format are shown in
Listing A.1 and Listing A.2. We assigned the ExtendedFeatureModelFactory to the
XMLExtendedFeatureModelFormat. Next, we registered the ExtendedFeatureMod-
elFactory through the extension point de.ovgu.featureide.fm.core.FMFactory
provided by FEATUREIDE. Additionally, we registered the Xml1ExtendedFeature-
ModelFormat through the extension point de.ovgu.featureide.fm.core.FMFormat
provided by FEATUREIDE. If we open a file through the feature model editor, the
content is given to every format that is currently registered. Each format decides
whether the content is acceptable by validating it through the method support-
sContent (CharSequence). If a format accepts the content, the feature model editor
generates the elements of the feature model through the assigned IFeatureMod-
elFactory.

Figure 5.9 shows the realization of configurable feature attributes in FEATUREIDE.
We implemented the functionality required for these within the classes ExtendedSe-
lectableFeature and XMLExtendedConfFormat.

SelectableFeature represents features for configurations in FEATUREIDE. Each
instance of a SelectableFeature is identified by an IFeature. Additionally, it
contains three instances of Selection, which indicate the status of the Selectable-
Feature in the configuration.

ExtendedSelectableFeature contains an additional Map<String,String> of the
attributes whose value in the corresponding configuration is different to the default
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value set in the feature model. This map can be obtained with getConfigurableAt-
tributes(). Whenever the value of an attribute is changed in the configuration
editor, addConfigurableAttribute(String, String) adds an entry, containing
the name and value of the attribute, to the feature.

XMLConfFormat enables the persistent storage of a configuration. The relevant data
can be obtained from a XML file with readDocument (Document, List<Problem>)
and saved in a XML file with writeDocument (Document). However, not every
IConfigurationFormat is supported by this format. Therefore, supportsCon-
tent (CharSequence) only returns true if the CharSequence contains the root ele-
ment <configuration>.

XMLExtendedConfFormat is responsible for handling XML files representing configu-
rations with attributes. This functionality is realized by readDocument (Document,
List<Problem>) and writeDocument (Document). These functions extend the cor-
responding functions of XMLConfFormat with support of XML content representing
attributes.

SelectableFeature

-manual: Selection
-automatic: Selection
-recommended: Selection
-feature: IFeature

-name: String

+getSelection(): Selection
+getAutomatic(): Selection
+getManual(): Selection
+setAutomatic(Selection)
+setManual(Selection)
+getFeature(): IFeature
+getName(): String

XMLConfFormat

Configuration

+id: String

~features: List<SelectableFeature>
#featureModel: IFeatureModel

+cloneProperties(SelectableFeature)

ExtendedSelectableFeature

+getFeatureModel(): IFeatureModel
+getFeatures(): List<SelectableFeature>
+getSelectedFeatures(): List<IFeature>
+getUnselectedFeature(): List<IFeature>
+getUndefinedSelectedFeatures():List<IF
eature>

#readDocument(Document,
List<Problem>)
#writeDocument(Document)
+supportsContent(CharSequence):
boolean

+getinstance(): XM LConfFormat

v

<<interface>>

IConfigurationFormat

A
[
1

XMLExtendedConfFormat

+id: String

#readDocument(Document,
List<Problem>)

-Map<String,String> configurableAttributes #writeDocument(Document)
+getConfigurableAttributes: Map<String,String> +supportsContent(CharSequence):
+addConfigurableAttribute(String, String) boolean
+cloneProperties(SelectableFeature) +getinstance(): XMLExtendedConfFormat

Figure 5.9: Feature attribute view while filtering the feature Toast

User Interface

Now, we are going to explain how we implemented the graphical user interface for
the attributes. The interface helps the user to manage attributes which include the
addition, deletion, and edit of attributes for extended feature models. The final user
interface is shown in Figure 5.10. It shows the modified attributes for the feature
of the feature model in Figure 4.1. The interface also provides a filter to display
only features of interest and their attributes. An example of the filter is shown in
Figure 5.11, where the feature Toast is currently filtered. The green entries are the
selected features and their attributes. The ancestors of the selected features are
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Icon Description

Identifies the entry as a feature.
@  Identifies the entry as an attribute.

©  Identifies the entry as an recursive attribute.
= Collapse all features except the root feature.

+ Expands all features.

¢ Activates/deactivates the filter to show only features which are currently

selected in the FeatureDiagramEditor

Table 5.5: Description for the different icons used in the feature attribute view

¥ Sandwich Model : "B HFeature Attributes :
= ¥ Adjust Model to Editor Size | Setlay | Element Type  Value Unit Recursive Configureable
~ B sandwich
@ Calories long ® ®
Sandwich Legend: @ price double 12220 = O
. h . ® héla:jdal?w @ Organic Food boolean false ® =
Bread Cheese Meat Vegelables |4 OE ona » = Bread : .
3 NN o [ s =
alories ong
Gglda Cheddar Cream Cheese ) Collapsed : @ boolean é EI
* Price double = —
B Gouda
B Cheddar
Cream Cheese
> B peat
L4 > > VEQEI*B

Feature Diagram Feature Order Source

Figure 5.10: Sandwich feature model in the feature diagram editor provided by
FEATUREIDE on the left and in the feature attribute view on the right.

colored gray. We explain the different icons that appear in the user interface in
Table 5.5.

We implemented a view to display the attributes of the currently selected feature
model. A view is a graphical component of the ECLIPSE framework. The creation and
extension of views are simple while still benefiting from the rich functionality provided
by EcLIPSE. The architecture for the attribute view is depicted in Figure 5.13.

ViewPart is an abstract class provided by ECLIPSE that needs to be extended by
every view. It manages the complete life-cycle for us and provides us with many
helpful extensions. We realize the view as the class FeatureAttributeView which
is a subclass of ViewPart. Now, we will briefly list the requirements for the view:

e R(: The view works only with extended feature models or extended configura-
tions.

e R1: The feature and their attributes are shown as a tree.

e R2: The view contains six columns for the name, the type, the value, the unit,
recursive, and configurable.

e R3: It should be possible to add and delete attributes with the help of a
context menu.
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* Sandwich Model : 5 HFeature Attributes
= ¥ Adjust Model to Editor Size | Set lay | Element Type  Value Unit Recursive Configureable
~ B sandwich
v Bheese &
Sandwich Legend: © Calories long ) &
. . gla:jdal?ry ® OrganicFood  boolean = -
s . * Optiona € pri ) ]
Bread | Cheese |[Meat| Vegetables | & or . Price double =
[ 3 [ .. Altemnative v Bpeat - - 9
Concrete @ Calories long ) !
Gouda Cheddar Cream Cheese . " —
@ [ Collapsed * Organic Food boolean X L
© Price double X (W
< >

Feature Diagram Feature Order Source

Figure 5.11: Sandwich feature model in the feature diagram editor provided by
FEATUREIDE where the features Cheese and Meat are currently selected. On the
right side is the attribute view with an activated filter for the features selected in
the feature diagram editor.

e R4: Columns for name, value, unit, recursive, and configurable can be edited.
e R5: Editing or adding of invalid attributes should be prevented.
e R6: Features can be collapsed to clear the view.

e R7: Features can be filtered to display only features of interest and their
attributes.

e RS&: If configuration is open, show only configurable attributes and disable edit
support except for the value column.

e R9: The features and their attributes are colored the same as in the feature
model editor or in the configuration editor.

To further describe our view we need to introduce the FeatureModelEditor and Con-
figurationEditor which are provided by FEATUREIDE. The FeatureModelEditor
contains the FeatureDiagramEditor which allows the user to edit the feature model
using a graphical interface. Our view can detect when an instance of the FeatureDi-
agramEditor is opened or in focus and retrieves the currently linked feature model.
If the feature model is an instance of an ExtendedFeatureModel, then our view will
display the attributes. Furthermore, if the feature model is not an extended feature
model, then the user will be notified that only extended feature models support
attributes. This behavior fulfills the requirement R(0. If a ConfigurationEditor
from FEATUREIDE is opened, a different behavior applies which will be explained
later in this section.

The features and their attributes are displayed as a tree. The class TreeViewer is
provided by ECLIPSE and allows us to display a tree with multiple columns inside
our view. The elements that should be displayed are defined inside the Feature-
AttributeContentProvider. Inside the content provider, we can determine which
elements are shown and how many children an element has. The input for the content
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¢ ExtendedConf... & ™ " HFeature Attributes
valid. 144 possible configuratio Element Type Value Unit Recursive Configureable
v [m] Sandwich ~ B sandwich
v [m] Bread @ Calories long X ®
] Full Grain ~ E4 Bread - -
| © Calories  long 75 b =
n ~ Bl Gain - -
[m] Cheese @ Calories long 203 & &
v [ et Cheese - -
| Salami ~ H peat 5
] Ham " Calories long 20 =
| Chicken Breast ~ B salami - -
[ Vegetables “ Calories long 116 & i

Configuration| "

Figure 5.12: Configuration for the Sandwich in the configuration editor provided
by FEATUREIDE on the left side. On the right side is the attribute view that
displays only configurable attributes of features that are currently selected in the
configuration.

de.ovgu.featureide.fm.attributes.view |

FeatureAttributeViewSelectionFilter | | FeatureAttributeContentProvider

ExtendedFeatureModel FeatureAttributeView I
org.eclipse.ui.part
de.ovgu.featureide.fm.attributes.view.labelprovider —— \vi
ViewPart
de.ovgu.featureide.fm.attributes.view.editingsupports ——

Figure 5.13: Class diagram for the architecture of the feature attribute view

provider is the currently selected feature model. We display all features and their
attributes and preserve the tree structure used by the FeatureDiagramEditor. We
implemented the FeatureAttributeLabelProvider that manages the information
which are displayed in the view. In the label provider, we defined for every feature and
his attributes that they take the same background color as the feature in the feature
model editor. Additionally, we can expand and collapse features of the tree structure
using the TreeViewer which provides that functionality natively. After collapsing a
feature, its attributes and child features are omitted. Through the TreeViewer it
is also possible to define multiple columns for our view. We add the six columns
mentioned in the requirements to the view. All the described functionality fulfill the
requirements R1, R2, R6, and RY.

Our view can display the feature model structure and the attributes for every feature.
Now, we need operations to create and delete attributes. The actions can be added
through the IMenuManager which is supported by the TreeViewer and allows us to
create a context menu easily. By right-clicking a feature, a context menu appears
containing actions to add an attribute of the type String, Boolean, Long, or Double.
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Performing the operation creates an attribute with a unique name and the desired
type and assigns it to the selected feature. The attributes can be removed in the
same way. We just need to right-click an attribute, and a context menu containing a
remove operation appears. The deletion of recursive attributes is only possible when
the recursive head feature is removed, otherwise the delete action is not available.
With the help of the context menu, the requirement RS is fulfilled.

The created attributes do not contain any values yet. Therefore, we needed to provide
a way to edit the features. It is possible to edit the attributes through the editing
support of each column. Editing support is a functionality provided by ECLIPSE to
edit the entry of the currently selected cell. By creating a custom editing support for
each column, we can verify the provided values. With that verification, it is possible to
prevent inconsistent attributes, like two attributes with the same name assigned to the
same feature, or assignments of invalid values to an attribute. Additionally, we verify
that attributes of the same name, assigned to different features, have the same type.
The editing support for recursive needed extended verification because it also adds
attributes to the child features. Therefore, it is only permitted to create a recursive
attribute if the descendants of the recursive attribute do not contain attributes of
the same name. With the editing support and the verification of the attributes, the
requirements R4 and RS are fulfilled. The editing support for all columns are inside
the package de.ovgu.featureide.fm.attributes.view.editingsupports.

Next, we implemented a toggleable filter to show only the features and attributes of the
features which are currently selected in the FeatureDiagramEditor. This allows us
to overview the attributes even for large feature models, and makes it possible to show
only the features of interest. The filter FeatureAttributeViewSelectionFilter
extends the class ViewerFilter which is provided by ECLIPSE and enables us to
efficiently filter the tree by providing only the features of interest. The features of
interest can be obtained easily through a selection listener that is registered to the
FeatureDiagramEditor. Thus, the requirement R7 is fulfilled.

Furthermore, we implemented a special interaction between the view and the Config-
urationEditor from FEATUREIDE. Now, only attributes that fulfill the following
two requirements will be shown: First, the feature of an attribute needs to be
selected in the ConfigurationEditor. Second, the attribute needs to be marked as
configurable. It is only permitted to change the value of the configurable attributes.
The editing support for the other columns is disabled. The values for the configurable
attributes are not saved inside the feature model but they are saved inside the specific
configuration instead. Hence, requirement RS is fulfilled.
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5.5 Statistics for Configurations

This section describes the implementation of statistics regarding the configuration in
FEATUREIDE. These statistics consist of a few simple properties like the amount of
selected features and the attribute range computations. First, we describe the view
displaying our statistics. Afterward, we specify the different entries in more detail.
However, the main focus is on the range computations.

ConfigurationOutlineProvider

V V
ConfigurationTreeContentProvider ConfigurationLabelProvider
-config: Configuration +getText(Object): String
-getExtensionEntries(): List<OutlineEntry> +getimage(Object): Image
+getElements(Object): Object[]
+getChildren(Object): Object][]

<<interface>>

[OutlineEntry

Figure 5.14: Class diagram for the configuration outline

Figure 5.14 gives an overview of our views architecture. The view is implemented
as an outline, which shows specific information of an editor. Outline and editor are
viewable at the same time, enabling a better workflow. The class ConfigurationQut-
lineProvider extends OutlineProvider from FEATUREIDE and mainly consists of
one ConfigurationTreeContentProvider and one ConfigurationLabelProvider.
The content provider extends FEATUREIDE’s OutlineTreeContentProvider and
is responsible for handling the content of our outline view. Each entry of the outline
view is an instance of an IOQutlineEntry. The label provider is responsible for
displaying the statistics. It provides the displayed labels and images of the outline.
Now, we further describe the details of our providers.

The ConfigurationTreeContentProvider defines which entries are to be added.
Starting with the top-level elements which are defined by getElements(). This
function returns an array Object[] containing all top level entries. These consist of
the ConfigurationOutlineStandardBundle, which contains five properties of the
configuration. Additional instances of I0utlineEntry can be added via an ECLIPSE
EXTENSION POINT, which is provided by ECLIPSE and can be used to attach
extensions. getExtensionEntries() isresponsible for collecting all added extensions.
Additionally, children can be added to each entry by getChildren(Object) which
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usually takes an I0utlineEntry as input (another possible entry is a String, which
is then used as the label of this entry). The definition of their children is up to each
entry instance.

The ConfigurationLabelProvider determines the string and image displayed for
each entry of the outline. getText(0Object) returns the label for a given IOutli-
neEntry and getImage (Object) an image. Both the label and the image are defined
by the I0utlineEntry itself. It is worth noting, that the image is optional as null
is a legal return value for the method. In this case, only the label of the given entry
is displayed. As our next step, we specify our entry interface.

Configuration Outline Entries

In this paragraph, we define I0utlineEntry more precisely. The interface is used to
formulate conventions for entries and allows simple extensions of the outline. The
possibility of extending is necessary, as FEATUREIDE is not always delivered with
attributes. Therefore, the statistics regarding attributes are added via an extension
point. Additionally, other statistic extensions can be added easily. First, we describe
the architecture of the interface. Then, we present different instances of the interface.

<<interface>>

IOutlineEntry

+getLabel(): String

+getLabellmage(): Image

+getChildren(): List<lOutlineEntry>
+supportsType(Object element): boolean
+setConfig(Configuration)
+handleDoubleClick()

Figure 5.15: Class diagram for the outline entry interface

Figure 5.15 shows the class diagram of our interface. getLabel() and getLabelIm-
age () define the displayed information and are used by the ConfigurationLabel-
Provider. The function getChildren() can be used to attach additional entries
to the IOutlineEntry and return them. An instance of IO0utlineEntry might not
be suitable for every input element. In this case, the addition of the entry can be
prevented with the help of supportsType(Object), which indicates whether a given
type is supported. Additionally, the configuration, referenced by each entry, can be
defined with setConfig(Configuration). handleDoubleClick is called whenever
an entry is double clicked. The resulting behavior can be defined for each entry.

Figure 5.16 shows an example of the configuration outline displaying our default
entries for two different configurations of our sandwich feature model. For every
configuration, the view displays the number of selected, manually selected, unselected,
manually unselected, and undecided features. Now, we describe the instances of
I0utlineEntry which are added to the outline by default and provide the shown
statistics.
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Figure 5.16: Example of the attribute entry statistics for the displayed configuration
of a sandwich
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SelectedFeatureCount
Computation

-config: Configuration

<<interface>>

— =~ |OutlineEntry

UnselectedFeatureCount
Computation

-config: Configuration

UndecidedFeatureCountComputatio
n

-config: Configuration

i

ManuallySelectedFeatureCountCo ConfigurationOutlineStandardBundle

mputation

-config: Configuration

-config: Configuration

ManuallyUnselectedFeatureCountC
omputation

-config: Configuration

Figure 5.17: Class diagram for the default outline entries

ConfigurationOutlineStandardBundle is our only default top-level entry. It
functions as the header of our configuration properties. Its getChildren()-
function returns the other instances of I0utlineEntry given in Figure 5.17.

SelectedFeatureCountComputation counts the number of currently selected
features in the given config.

UnselectedFeatureCountComputation counts the number of currently unse-
lected features.

UndecidedFeatureCountComputation computes the number of features that
are neither selected nor unselected.

ManuallySelectedFeatureCountComputation calculates the number of fea-
tures that were manually selected in the configuration editor.

ManuallyUnselectedFeatureCountComputation calculates the number of fea-
tures that were manually unselected.
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As the next step, we specify the additional extension point containing our attribute
computations.

5.6 Attribute Entry Extension

This section describes the configuration outline entry displaying computations regard-
ing the attributes of an ExtendedFeatureModel. This entry is supposed to be added
to the outline for every attribute in the model. Figure 5.18 shows the architecture of
this extension. Now, we briefly define the contained classes.

vy - - \
i |
<<interface>> CountAttributeComputation I
IOutlineEntry :
-config: Configuration |
A -attribute: IFeatureAttribute |
|
| I
I I
I I
| AttributeMaximumEntry |
|
: -config: Configuration 1|
| -attribute: IFeatureAttribute |
| |
| |
1 |
|
AttributeEntry AttributeMinimumEntry |
Jd
-config: Configuration -config: Configuration
-attribute: IFeatureAttribute -attribute: IFeatureAttribute

Figure 5.18: Architecture of the attribute outline entry

AttributeEntry is our top-level entry for attributes. Such an entry is created for each
attribute in the feature model and functions as the header for our computations. Its
label references the attribute’s name. The function supportsType(Object) returns
true, when the underlying feature model, which can be obtained through conf, is
extended.

CountAttributeComputation counts the number of occurrences of the corresponding
attribute. This entry is supported by every attribute type.

AttributeMaximumEntry and AttributeMinimumEntry display the possible maxi-
mum and minimum for the overall sum of the corresponding attribute respectively.
On initialization, the approximated value is shown. However, the user can de-
cide to compute the exact value with SMT and display it by double clicking the
entry. Using this implementation, the user is always able to see approximated
values and can obtain exact values on demand. This replacement is realized by
handleDoubleClick(). Both entries are supported by LongFeatureAttribute and
DoubleFeatureAttribute.

Figure 5.19 shows an example of our attribute entry. It represents our sandwich
example while also including customer’s wishes. The attribute ranges are still in
their default state. Therefore, the displayed values are approximated.
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Figure 5.19: Example of attribute entry statistics for the displayed configuration of
a sandwich

FeaturelDEOutIinE ey -+ B~ = 8 FeatureIDEOutIine oy -l Fm B = B8
Configuration statistics
W Attribute statistics W
w (@ Price (double)
MNumber of occurences: 251
Minimal sum of value: 32577.4 (est)

Maximal surm of value: 46713.9 (est)

Configuration statistics
Attribute statistics
s (@ Price (double)
Mumber of occurences: 251
Minimal sum of value: 32577.4

Maximal sum of value: 46651.8

Figure 5.20: Example of the range computation with approximated on the left and
exact values on the right side

Figure 5.20 shows the process of computing exact values with SMT for a double
attribute. First, the approximated values are displayed. After right-clicking both en-
tries, the exact range is shown. In the next step, the classes enabling computation of
attribute ranges are described in more detail, starting with SmtAttributeRangesCom-
putation.

Figure 5.21 shows the implementation of the outline entry that displays the maximal
attribute value. Each AttributeMaximumEntry contains one SmtMaximumComputa-
tion, which computes the maximum with SMT, and one EstimatedMaximumCom-
putation, which approximates the maximum using the estimation algorithm. On
initialization, getLabel () returns the result computed by getEstimatedMaximum().
However, double clicking the entry triggers handleDoubleClick (), which sets the
returned label to the return value of getExactMaximum().

Figure 5.22 shows the implementation of the outline entry that displays the minimal
attribute value. Each AttributeMinimumEntry contains one SmtMinimumComputa-
tion, which computes the minimum with SMT, and EstimatedMinimumComputation,
which approximates the minimum using the estimation algorithm. On initialization,
getLabel() returns the result computed by getEstimatedMinimum(). However,
double clicking the entry triggers handleDoubleClick(), which sets the returned
label to the return value of getExactMinimum().
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AttributeMaximumEntry

-config: Configuration
-attribute: IFeatureAttribute
-result: Double

+getLabel(): String
+supportsType(Object): boolean
+handleDoubleClick()

SmtMaximumComputation

EstimatedMaximumComputation

-config: Configuration
-attribute: IFeatureAttribute

-config: Configuration
-attribute: IFeatureAttribute

-getExactMaximum(): Object
-buildFormula(): Node
-buildAttributeNode(IFeatureAttribute):

+getEstimatedMaximum(): Object
-getSubtreeValue(IFeature): double
-getMaxValue(List<Double>): double

Node
-buildSumNode(): Node

Figure 5.21: Outline entry responsible for computing the maximal sum of the
attributes values

Now, we specify the implementation of the computations necessary for our outline
entries. First, we describe the classes computing the ranges using SMT. Afterward,
the classes which are responsible for the approximation are defined.

5.6.1 Compute Ranges using SMT

In this section, we extensively discuss the implemented solution for solving our
algorithmic problem of computing attribute ranges using SMT, which was con-
ceptually discussed in Section 4.3. The main topic to consider here is the class
SmtAttributeRangesComputation.

Figure 5.23 represents the abstract class SmtAttributeRangesComputation. Every
instance is defined by its input configuration config and the numerical attribute
attribute to optimize for. Additionally, this class defines the shared methods
between SmtMaximumComputation and SmtMinimumComputation.

buildAttributeNode (IFeatureAttribute) creates our formulas representing the
attributes in the formula. Given an IFeatureAttribute owned by a feature it
returns the node (feat = attseq, = w(feat)) A (—feat = attseq = 0).

buildSumNode () builds our Node representing the sum variable we are optimizing
for. It sets the variable equal to the sum of all attribute-variables created by
buildAttributeNode ().

buildFormula() combines our different formulas to the target first-order logic formula
consisting of the conjunctive normal form representing the feature model and its
constraints, the literals representing selected and unselected features, the different
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AttributeMinimumEntry

-config: Configuration
-attribute: IFeatureAttribute
-result: Double

+getLabel(): String
+supportsType(Object): boolean
+handleDoubleClick()

SmtMinimumComputation EstimatedMinimumComputation
-config: Configuration -config: Configuration
-attribute: IFeatureAttribute -attribute: IFeatureAttribute
-getExactMinimum(): Object +getEstimatedMinimum(): Object
-buildFormula(): Node -getSubtreeValue(IFeature): double
-buildAttributeNode(IFeatureAttribute): -getMinValue(List<Double>): double
Node
-buildSumNode(): Node

Figure 5.22: Outline entry that is responsible for computing the minimal sum of the
attributes values

attribute nodes given by buildAttributeNode (IFeatureAttribute), and the sum
node given by getSumNode (). In the end, a conjunction of all the part nodes will be
returned to be used in our analysis.

Both, SmtMaximumComputation and SmtMinimumComputation use the same formula
returned by buildFormula. Additionally, both create an SmtProblem with the re-
turned formula and all the variables, consisting of the literals appearing in the
entire formula, at the start of getExactMaximum() and getExactMinimum(). How-
ever, different analyses are used. SmtMaximumComputation uses the FeatureAt-
tributeMaximumAnalysis and SmtMinimumComputation the FeatureAttributeM-
inimumAnalysis. The exact attribute ranges consist of the return values of the
analyze ()-function of both analyses.

Next, we specify EstimatedMinimumComputation and EstimatedMaximumComputa-
tion, representing our approximated attribute sum ranges.

5.6.2 Estimation Algorithm

In this section, we describe the implementation of the approximated attribute ranges
given a partial configuration. First, we discuss the basics of the implementation
that are used for the minimum and the maximum. Afterward, we specify the unique
aspects of both implementations.

Both classes are identified by a given Configuration and an IFeatureAttribute.
Additionally, both are only usable for numerical attributes.

EstimatedMinimumComputation calculates the estimated minimum of our attribute
value sum for a given configuration. getSubtreeMinimum(ExtendedFeature) is the
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<<Abstract>>

SmtAttributeRangeComputation

-config: Configuration

-attribute: IFeatureAttribute

#buildFormula: Node

#buildSumNode(): Node
#buildAttributeNode(IFeatureAttribute): Node

i

SmtMaximumComputation SmtMinimumComputation

+getExactMaximum(): Object +getExactMinimum(): Object

Figure 5.23: Class diagram for the range computation using SMT

EstimatedMinimumComputation EstimatedMaximumComputation
-config: Configuration -config: Configuration
-attribute: IFeatureAttribute -attribute IFeatureAttribute
+getEstimatedMinimum(): Object +getEstimatedMaximum(): Object
-getSubtreeMinimum(ExtendedFeature): -getSubtreeMaximum (ExtendedFeature):
Object Object
-getMinValue(List<Double>): Double -getMaxValue(List<Double>): Double

Figure 5.24: Class diagram for the range computation using the estimation algorithm

implemented equivalent of getSubtreeMinimum(Feature) of our minimal estimation
algorithm 1 in Section 4.4. It is a recursive function that computes the minimal
possible value for the sub-tree whose root is the input feature. Now, to acquire
the result for the entire model getSubtreeMinimum(rz,) has to be called, which
happens in getEstimatedMinimum(). Calling this function, with the root of the
feature model as input, returns our approximated minimal sum which is then added
to the label of AttributeMinimumEntry.

EstimatedMaximumComputation computes the estimated maximal sum of our at-
tributes values for a given configuration. getSubtreeMaximum(ExtendedFeature)
is the equivalent to getSubtreeMazimum(Feature) from our algorithm 2 in Section 4.4.
The function recursively computes the maximal possible sum of attribute values for
the sub-tree whose root is given by our input ExtendedFeature. To acquire the over-
all maximal value sum, getSubtreeMaximum(7rys) has to be called, which happens
in getEstimated (). The value returned by this call is our approximated maximal
sum and is added to the label at the initialization of AttributeMaximumEntry.
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5.7 Summary

We began by introducing the framework FEATUREIDE and the solvers that we were
going to implement. Afterward, we introduced PROP4J which can be used easily to
build propositional formulas. We extended PROP4J to create restricted first-order
expressions and described the extension in detail. We concluded that PROP4J is
not a suitable input for the solver type IncrementalSolver because misses the
functionality needed to find explanations.

Therefore, we implemented the data structure ISolverProblem representing an
unmodifiable SAT or SMT problem that uses the PROP4J extension internally with
no access from the outside. It also provides the mapping which is necessary to find
explanations. Next, we implemented the abstract data type IncrementalSolver
as a JAVA interface. We described the architecture of the interface in detail and
described how to add new solvers. Furthermore, we implemented SAT4J and the
JAVASMT solvers as an SAT solver to compare their efficiency on the automated
analysis on feature models. Additionally, we implemented the JAVASMT solvers as
SMT solvers which can be used to evaluate the efficiency for the feature attribute
range computations. Last but not least, we created a factory for SAT4J and a factory
for JAVASMT. Every factory controls the instantiation of the various analyses and
the solvers by giving an ISolverProblem as input.

The other important topic we implemented are configuration statistics, including our
computations of attribute ranges. We realized the statistics by creating an outline
containing different properties of a configuration. I0utlineEntry is the interface for
these properties. Additionally, we separated the statistics into calculations regarding
the selection and computations regarding feature attributes. The ranges of the sum
of an attribute’s values are described by an entry for the minimum and maximum,
respectively. These entries are defined by the configuration and one corresponding
attribute and contain one exact and one approximated computation. In the default
state, the outline displays approximated values computed by the heuristic. However,
after a double click on the respective entry the exact value is computed with an SMT
solver.
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6. Evaluation of Sat4J and
JavaSMT on SAT-based Tasks

The automated analysis is a vital component for modern SPLs tools. The most
common tool to perform the automated analysis are SAT solvers because they are
very efficient. The increasing attraction and performance for SMT solves made
us interested whether SMT solvers are superior to SAT solvers in performing the
automated analysis of feature models. Therefore, we created the abstract data type
IncrementalSolver to compare both kinds of solvers regarding their efficiency to
perform the various analyses. We implemented the abstract data type Incremen-
talSolver and the analyses into the framework FEATUREIDE. Now, we want to
evaluate our implementation by comparing the SAT4J solver with the different solvers
provided by JAVASMT. We begin by introducing the research questions for this
thesis in Section 6.1. In Section 6.2, we define the setup for the evaluation including
the used computer environment, the used models, and the solvers used to evaluate
the data. Afterward, in Section 6.3, we compare the various solvers on the automated
feature model analysis and their results. In Section 6.4, we compare the various
solvers in finding explanation for the defects presented in Section 3.3. In Section 6.5
we summarize the process of the evaluation and answer the research questions with
the conclusions made from the previous sections.

6.1 Research Questions

The abstract data type IncrementalSolver was implemented in the open-source
framework FEATUREIDE in Chapter 5. With the help of the implementation, we
evaluate the following research questions.

e RQ1: Are SMT solvers superior to SAT solvers regarding efficiency?

e RQ2: Do the enhancements introduced in Section 3.3.2 impact the efficiency
of the core and dead feature analysis?
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e RQ3: Do the enhancements introduced in Section 3.3.3 impact the efficiency
of the false-optional features analysis?

e R(Q)4: What are the most suitable solvers for each specific analysis and do their
combination speed up the whole process?

e R(@Q5: Which is the most suitable solver for finding explanations?

e RQG6: Is it possible to find explanations for defects on-the-fly? on-the-fly means
that the explanation can be found withing 200 ms.

6.2 Evaluation Setup

In this section, we clarify the most critical aspects of the evaluation of the solvers.

Evaluated Solvers

We implemented the SAT solver SAT4J! and the SMT solver API JAVASMT into
FEATUREIDE. Hence, we evaluate SAT4J and the solvers PRINCESS?, SMTINTER-
rPoL?, and Z3* provided by JAVASMT. PRINCESS and SMTINTERPOL are both
JAvA-based solvers and can be installed by adding a reference to the specific libraries.
For the usage of Z3, we needed to build the binaries and a static library for the use
within JAVASMT. We skip the solver MATSAT5 and the extension OPTIMATSAT
from JAVASMT. For the evaluation of finding explanations, we also need to skip
PRINCESS because it does not currently support computations of the unsatisfiable
core. Hence, we only evaluate SAT4J, SMTINTERPOL, and Z3 on finding explanations.

Evaluated Feature Models

For this chapter, we name feature models between 1,000-5,000 features medium-sized
feature models and feature models with more than 5,000 features large feature models.
In this chapter, we evaluate 116 medium-sized feature models. The 116 medium-sized
feature models are real models and are based on different variability languages.
There exist models for KCONFIG and the component definition language(CDL).
KCONFIG is used in some software projects and was primarily designed for the
configuration management of the Linux kernel [KTM*17b]. CDL is designed for
a specific embedded system, where every model represents a configuration for a
hardware system [KTMT*17b]. Both languages are different to the format used
by FEATUREIDE. Kniippel et al. created an algorithm to convert both languages
to the FEATUREIDE format [KTMT*17b]. Therefore, we evaluate all CDL and
KcoNFIG feature models mentioned by Kniippel et al. except the feature model for
Linux [KTM*17b]. All 116 medium-sized feature models contain between 1,000-1,500
features and between 600-1,000 constraints.

Yhttp: //www.satdj.org/
2http://www.philipp.ruemmer.org/princess.shtml
3https://ultimate.informatik.uni-freiburg.de /smtinterpol /
4https://github.com/Z3Prover/z3
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Additionally, we evaluate four snapshots of the large industrial feature model automo-
tive provided by the partners of FEATUREIDE. The feature models contain between
14,000-18,500 features and between 666—1,300 constraints. Hence, all automotive
feature models are large feature models. We also measured the number of clauses
of the conjunctive normal form to further compare the complexity of medium-sized
feature models and large feature models. We measured 3,068 clauses on average
for the medium-sized feature models. In contrast, we measured 319,599 clauses on
average for large feature models. Thus, the large feature models are far more complex
and harder to solve than the medium-sized feature models.

To summarize, we evaluate 120 feature models. We have 116 medium-sized feature
models and four large feature models.
Solving Environment

All analyses are computed on the same computer with the following specifications.

e OS: Windows 10, 64-bit system architecture
e CPU: AMD Ryzen 7 1700X, 8x3.4GHz
e RAM: 8 GB DDR4-RAM, 2400 MHz, Ballistix Sport LT

Our implementation into FEATUREIDE is forked of the version FEATUREIDE 3.5
and is available on Github.” As for ECLIPSE, we used the ECLIPSE Oxygen June
2017 build. We installed JAVA 1.7 on the machine and installed the following versions
of JAVASMT and the versions for the different solvers:

JAVASMT': Version: 1.0.1-219-g535f988
SAT4J: Version 2.3.5.v20130525

Z3: Version 4.6.0

PRINCESS: Binary release 2018-01-17

SMTINTERPOL: Version 2.5

6.3 Efficiency of SAT and SMT on the Feature
Model Analysis

In this section, we evaluate the solvers on the task of the automated analysis of
feature models. For the procedure, we compare the four implemented solvers for every
analysis regarding the total runtime. The results for medium-sized feature models
are shown as box plots that contain the total runtime of every solver. Additionally,
we show the percentage of every solver operation as bar diagrams separately. The
results for large feature models are shown in scatter plots containing the total runtime
of every solver for the four large feature models. The percentages of every solver
operation is displayed as bar diagrams separately. We begin with the analysis to
check if a given feature model is void.

Shttps://github.com/Subaro/BachelorThesis_Sprey_Sundermann
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Void Feature Model Analysis

The results of the void feature model analysis are shown in Figure 6.1. We can see
that the computation time for medium-sized feature models of each solver is almost
the same and that all SM'T solvers have outliers. We can also see that the creation
of the SMT solvers is more costly than the SAT solvers creation. Additionally, the
results for the large feature models show that the SAT solver is faster and the effort
to create the SMT solvers rise.

The void feature model analysis is the most straightforward analysis. Therefore, we
do not expect a significant difference in the runtime for all solvers. Surprisingly, we
conclude from the results that the SAT solver is faster than the SMT solvers for the
void feature model analysis. The gap between the SAT solver and the SMT solvers
is getting bigger especially for larger feature models. Additionally, we conclude that
the effort to create SMT solver is higher than the effort to create SAT solvers. SAT4J
accepts the input as a set of integers. The conversion from the Prop4J nodes to
the integer is fast. In contrast, the conversion from the nodes to the specific input
required for JAVASMT is slower. Hence, the instantiation time for the SMT solvers
is higher. For large feature models, the SAT solver performs the analysis at least 34
times faster than the other solvers. Even if we ignore the effort for the instantiation,
the SAT solver is still faster than all SMT solvers.

Core and Dead Feature Analysis

We evaluate the unoptimized, optimized, and SAT4J optimized versions of the core
and dead feature analysis. The results of the unoptimized version are shown in
Figure 6.2. We see that the unoptimized version depends almost only on checking
satisfiability. The results show that the SAT solver is faster than the SMT solvers
for both medium-sized and large feature models.

The unoptimized analysis iterates all features at least two times and does a satis-
fiability check for every iteration. The SAT solver performs the analysis for large
feature models at least ten times faster than the SMT solvers. Hence, we conclude
that the SAT solver is faster than the SMT solvers for the unoptimized core and
dead feature analysis.

Next, we evaluate the analyses that support the filtering introduced in Section 3.3.2.
The results of the analysis that uses filtering is shown in Figure 6.2. We see that
the SAT solver can solve the analysis multiple times faster than the SMT solvers.
The difference between the percentages of the solvers differ greatly between SAT and
SMT. The SAT solver depends almost only on the satisfiability checks. In contrast,
most of the time for SMT solvers is occupied by other operations of the analysis.

With the help of the filtering, introduced in Section 3.3.2, the effort for the analysis
should be reduced theoretically at least by half. The optimization reduces the solving
time for the SAT solver as assumed but does not enhance the solving process for
SMT solvers. In contrast, the solving time increases for the SMT solvers. The cause
for the long solving times has two reasons. First, the SMT solvers do provide an
efficient way to retrieve a satisfying assignment. Second, a satisfying assignment
of the SMT solvers is only available in the data structure provided by JAVASMT.
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Figure 6.1: Results of the void feature model analysis. (a) and (c) show the total
runtime of every solver. (b) and (d) show the percentages for the analysis steps of
every solver

Therefore, we need to convert the satisfying assignment to the data structure used
for the general analysis. Both reasons cover almost 100% of the percentages of the
other analysis step. We conclude from the observations that the SAT solver is faster
than the SMT solvers for the filtered core and dead feature analysis. Additionally,
we conclude that the optimization impacts the performance for SAT solver positively
and for the SMT solvers negatively. In future, it is possible to implement and to
evaluate the optimization as a specific analysis for the SMT solver which can natively
work with the data structure provided by JAVASMT. Hence, a conversion for the
satisfying assignment will no longer be needed.

Last but not least, we evaluate the analysis that uses both filtering and a modified
selection strategy introduced in Section 3.3.2. The analysis can only be performed on
the SAT solver because the SMT solvers do not provide the functionality to modify
the selection strategy. Therefore, instead of comparing the solvers, we compare the
different versions of the core and dead feature analysis. The results are shown in
Figure 6.4. For medium-sized feature models, we see that the solving time improves
with each optimization. For large feature models, the filtering also increases the
performance. In contrast, the filtering and the modified selection strategy only
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Figure 6.2: Results of the unoptimized core and dead feature analysis. (a) and (c)
show the total runtime of every solver. (b) and (d) show the percentages for the
analysis steps of every solver

improves the performance for the smallest automotive feature model. For the other
models, the performance is the same or even worse.

The results are surprising because the analysis also does filtering and should at least
be as fast as the analysis with only filtering. Hence, the modification of the selection
strategy is not an improvement for large feature models. In contrast, it makes the
process slower. We conclude that the modification of the selection strategy improves
the performance only for medium-sized or smaller feature models and that the SAT
solver is the most suitable solver for the core and dead feature analysis that uses
both optimizations.

False-Optional Feature Analysis

We evaluate the unoptimized, optimized, and SAT4J optimized versions of the false-
optional feature analysis. We begin with the unoptimized analysis. The results
are shown in Figure 6.5. We see that the unoptimized analysis depends only on
satisfiability checks. Additionally, we see that the SAT solver is faster than the SMT
solvers for both medium-sized and large feature models.

https://doi.org/10.24355/dbbs.084-201807060926-0



6.3. Efficiency of SAT and SMT on the Feature Model Analysis 75
Optimized Core and Dead Optimized Core and Dead
H Sat4) @ SMTInterpol O Princess 073 M init push+pop isSatisfiable Other
14 100%
12 $ R 80%
10
m % 60%
£ 8
£ 6 40%
4 20%
2 0%
0 — Sat4)  SMTInterpol Princess 73
(a) Medium-sized feature models (b) Medium-sized feature models
Optimized Core and Dead Optimized Core and Dead
e Sat4) SMTInterpol Princess Z3 M init push+pop isSatisfiable Other
>0 100%
40
c 80%
€ 30
£ 60%
o 20
E 40%
10
0 [ L] (N ] 20%
14,000 16,000 18,000 0%
Number of features Sat4) SMTInterpol Princess Z3

(c) Large feature models

(d) Large feature models
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The difference in performance is increasing with the size of the feature model.
Therefore, we can conclude that the SAT solver is faster than the SMT solvers for
the unoptimized false-optional feature analysis.

Now, we evaluate the false-optional analysis that is optimized with the filtering
introduced in Section 3.3.3. The results for the analysis are shown in Figure 6.6. We
see that the SAT solver is faster than the SMT solvers for both medium-sized and
large feature models. As the bar diagrams show, the Other analysis step is the most
costliest part of the analysis for the SMT solvers. In contrast, most of the analysis
for the SAT solver is occupied by satisfiability checks.

The filtering for the false-optional feature analysis leads to the same problem for
SMT solvers that we faced in the filtered core and dead feature analysis. We conclude
with the help of the results that the most effort of the analysis is done by the filtering
itself and leads to faster results for the SAT solver of both medium-sized and large
feature models. In contrast, the optimization increases the solving time for the SMT
solvers because we also need to convert the solutions to the data structure defined by
the analysis. Nonetheless, if we ignore the conversion of the data structure, then the
optimization can significantly improve the performance of the analysis also for the
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(c) show the total runtime of every solver. (b) and (d) show the percentages for the
analysis steps of every solver

SMT solvers. In future, it is possible to create a specific analysis that can natively
work with the structure provided by JAVASMT.

Last but not least, we evaluate the analysis that uses both filtering and a modified
selection strategy introduced in Section 3.3.3. The analysis can only be performed on
the SAT solver because the SMT solvers do not provide the functionality to modify
the selection strategy. Therefore, instead of comparing the solvers, we compare the
different versions of the false-optional feature analysis. The results are shown in
Figure 6.7. We see for medium-sized and large feature models that every optimization
can significantly improve the performance of the analysis.

We conclude from the results, that the optimizations improve the solving process
significantly. The improvement also scales for large feature models allowing us to
perform the false-optional analysis with the SAT solver in less than half a second for
feature models with up to 18000 features. We also conclude that the SAT solver is
the most suitable solver for the false-optional feature analysis.

Redundant Constraint Analysis

Next, we evaluate the redundant constraint analysis. The results for the analysis is
shown in Figure 6.8. We see that the SMT solvers are faster for medium-sized feature
models. For large feature models the SAT solver is faster than the SMT solvers. The
percentages for the SAT solver and the SMT solvers differ greatly. While the analysis
heavily depends on satisfiability checks for the SMT solvers, it is greatly influenced
by the push and pop operations for the SAT solver.

The redundant constraint analysis is one of the most interesting analyses because
it heavily depends on the push and pop operations. These operations are natively
supported by SMT solver but not by SAT solvers. Therefore, we expect the SAT
solver to be slower than the SMT solvers because we needed to implement the same
behavior, especially for the SAT solver. As expected, the SMT solvers are faster
than the SAT solver for medium-sized feature models. The effort of the push and
pop operations slows the SAT solver down. Surprisingly, at some point, the SAT
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Figure 6.5: Results of the unoptimized false-optional feature analysis. (a) and (c)
show the total runtime of every solver. (b) and (d) show the percentages for the
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solver catches up to the SMT solvers and becomes faster in solving the analysis. The
difference in efficiency can be seen in the results for large feature models. Although
that the SAT solver does not support the push and pop operations natively, it is faster
than the SMT solvers for large feature models. Hence, we conclude for the redundant
constraint analysis that the SMT solvesr are more suitable for medium-sized or
smaller feature models while the SAT solver is more suitable for large feature models.
In future, it is possible to optimize the push and pop operations of the SAT solver.
They are very slow because the removal of a clause from the internal formula is
very slow for the SAT solver. Kanning created a method to optimize the removal of
clauses for the SAT solver [Kan17]. Implementing that method into our prototype
can optimize the performance of the redundant constraint analysis for the SAT solver.

Tautological Constraint Analysis

We evaluate the analysis for tautological constraints. The results for the analysis are
shown in Figure 6.9. We see that the analysis heavily depends on the creation of the
solvers and that the SAT solver is faster than the SMT solvers.

The analysis theoretically consists heavily of the creation of solvers and satisfiability
checks. Hence, we expect the SAT solver to be faster than the SMT solver. As
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Figure 6.6: Results of the optimized false-optional feature analysis. (a) and (c) show
the total runtime of every solver. (b) and (d) show the percentages for the analysis
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expected the SAT solver is faster than the solvers from SMT. If we look at the
distributions, we see that the SMT solver are heavily busy to create the solvers
instead of solving. Therefore, we conclude that the SAT solver is the most suitable
solver for the tautological analysis.

6.4 Explanations for the Feature Model Analysis

In this section, we evaluate explanations for dead features, false-optional features,
and redundant constraints. Explanations for tautological constraints do not make
sense because the constraint itself would always be the explanation. We ran-
domly choose five of the 116 medium-sized feature models. The feature models
are {aaed2000, adderlI,viper, phycore229zx, ocelot}. A list containing the name,
number of feature, and number of constraints for all 120 feature models can be
found in Table A.1. The solver used to find the explanations is created separately
in the beginning and the instantiation is not considered in the evaluation for the
explanations. After we detected the defects, we automatically measured the total
runtime for a solver to find their explanations. The results are shown as box plot
containing the runtime of every solver for medium-sized feature models and as scatter
plot for large feature models. We begin with the explanations for dead features.
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analysis steps of every solver

Explanations for Dead Features

The results for the evaluated explanations for dead features are shown in Figure 6.10.
We see that all solver can find explanations faster than 3.5 milliseconds for medium-
sized feature models and faster than 2 seconds for large feature models. The SMT
solver SMTINTERPOL is the fastest solver for both medium-sized and large feature
models.

Surprisingly, SMTINTERPOL and Z3 are both faster than SAT4J for large feature
models. The difference between the fastest SMT solver and the SAT solver is 400 ms
on average. This is a decisive advantage for the explanation because the explanations
are generated on demand and should be as fast as possible. Hence, we conclude that
SMTINTERPOL is the most suitable solver to find explanations for dead features.
The performance with SMTINTERPOL is below 30 ms on average, even for large
feature models. Therefore, it is acceptable to find the explanations for dead features
on-the-fly.

Explanations for False-Optional Features

For the false-optional features, we measure the time needed to find explanations for
them. The results for the explanations are shown in Figure 6.11. All solvers can find
explanations faster than 3.5 ms for medium-sized feature models and faster than
two seconds for large feature models. We observe that SMTINTERPOL is the fastest
solver.

SMTINTERPOL is faster for medium-sized and large feature models. Hence, SMTIN-
TERPOL is the most suitable solver in finding explanations for false-optional features.
We conclude with an average runtime below 31 ms with SMTINTERPOL for large
feature models that we can find the explanations for false-optional features on-the-fly.

Explanations for Redundant Constraints

We evaluate the explanations for redundant constraints. The results for the expla-
nations are shown in Figure 6.12. SMTINTERPOL is the fastest solver for both,
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Figure 6.8: Results of the redundant constraint analysis. (a) and (c) show the total
runtime of every solver. (b) and (d) show the percentages for the analysis steps of
every solver

medium-sized and large feature models. All explanations are found in less than two
seconds.

For both, medium-sized and large feature models, we can conclude that SMTIN-
TERPOL is the fastest and most suitable solver in finding explanations for redundant
constraints. The average runtime of SMTINTERPOL is about 49 ms. Therefore, we
conclude that we can find the explanations for redundant constraints on-the-fly.

6.5 Summary

To answer the research questions, defined in Section 6.1, we summarize the conclusions
gained from the evaluation. At first, we will answer whether SM'T solvers are superior
to SAT solvers regarding efficiency (RQ1). We concluded for all analyses, except
for the redundant constraints analysis, that the SAT solver is faster than the SMT
solvers. For the redundant constraint analysis, the SAT solver is slowed down because
he does not support the push and pop operations natively. Therefore, all SMT solvers
are faster than the SAT solver for medium-sized feature models. For large feature
models, the SAT solver became faster than the SMT solvers because the push and
pop operations are less important for large feature models. Hence, the SMT solvers
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Figure 6.9: Results of the tautological constraint analysis. (a) and (c) show the total
runtime of every solver. (b) and (d) show the percentages for the analysis steps of
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are not superior to SAT solvers regarding efficiency for the automated analysis of
feature models. In contrast, we concluded that SMTINTERPOL is a lot faster than
the SAT solver in finding explanations for any defect. Therefore, we can conclude that
the SMT solvers are not superior to SAT solvers in general but there are problems
where SMT solvers are more efficient than SAT solvers.

Next, we will answer whether the enhancements introduced in Section 3.3.2 impact
the efficiency of the core and dead feature analysis (RQ2). We concluded that the
optimization of filtering greatly improves the core and dead feature analysis. In
contrast, the combination of both filtering and modifying the selection strategy is
only acceptable for medium-sized feature model. For larger feature models, the
combination leads to longer solving times. Therefore, we can conclude that the
filtering impacts the analysis positively, while the modification of the selection
strategy impacts the analysis negatively.

For the core and dead feature analysis, we will answer whether the enhancements
introduced in Section 3.3.3 impact their efficiency (RQ3). We concluded that the
both optimizations greatly improve the false-optional feature analysis. Therefore,
both optimizations impact the analysis positively.
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Now, we want to summarize the most suitable solvers for each analysis and determine
whether their combination could speed up the whole process (RQ4). We concluded
that the SAT solver is the most suitable solver for all analyses, except for the
redundant constraint analysis for medium-sized features. The most suitable solver for
the redundant constraint analysis for medium-sized feature models is SMTINTERPOL.
If we combine both solvers on the task of the automated analysis of feature models,
we can slightly improve the overall process. The slight improvement of the process
does not compensate the effort to implement the SMT solver.

Next, we determine the most suitable solver for finding explanations for defects RQ5).
We concluded that SMTINTERPOL is the most suitable solver for finding explana-
tions for dead features, false-optional features, and redundant constraints because
SMTINTERPOL could find the explanations several times faster than the other
solvers.

Last but not least, we will answer whether it is acceptable to find explanations
for defects on-the-fly (RQ6). We concluded that only SMTINTERPOL can find
explanations for all kinds of defects with a runtime less than 200ms, even for large
feature models. Therefore, we determine with the help of SMTINTERPOL that we
can find explanations for all kinds of defect on-the-fly.
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7. Evaluation of the Attribute
Range Computation

In this chapter, we evaluate the implementation of computing attribute ranges
described in Section 5.5. The goal of this evaluation is to determine whether the
implementations specified in Section 5.6 are usable for computing attribute ranges
for partial configurations of feature models. These implementations consist of
the computation with an SMT solver (Section 5.6.1) and the approximation with
our heuristic (Section 5.6.2). For the usability, we demand the time required for
one computation to be suitable for on-the-fly computations. Therefore, a single
computation should not exceed one second. The evaluation depends on the runtime
of the computation using an SMT solver and using the heuristic. Additionally, we
determine the quality of the approximated result by its difference to the exact result
provided by the SMT solver.

This chapter is structured as follows: In Section 7.2, we define the feature models
used for the evaluation and the process of re-engineering them from configurators
used in the industry. The technical setup used during the evaluation is described in
Section 7.3. In Section 7.4, we analyze the run-time for both kinds of computations.
In Section 7.5, we present the difference between approximated and exact results and
conclude about the estimation algorithm’s usability.

7.1 Research Questions

This section specifies the scientific questions this evaluation is supposed to answer.
These questions are separated by the method of computing the attribute ranges.
RQ1 references the computation using SMT described in Section 4.3 and RQ2 the
approximation using the heuristic described in Section 4.4.

e RQ1.1: Is the computation using SMT feasible for calculating attribute ranges
of partial configurations on-the-fly?
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e R(QI1.2: How much time is spent on the computation of minimum and maximum
of a range?

e RQ2.1: Is the computation using the heuristic feasible for calculating attribute
ranges of partial configurations on-the-fly?

e RQ2.2: How close is the approximated minimum and maximum using the
estimation algorithm to the exact results?

7.2 Creating the Models

In this section, we specify the engineering of the models used for our evaluation. The
goal was to create examples that represent existing configurators to show the usability
of the software in realistic use cases. First, we specify the type of configurators
suitable for a conversion to a feature model. Afterward, the re-engineering process is
described. In the end, the three re-engineered models used for the evaluation are
presented.

The behavior of configurators we considered to use for the evaluation is now described.
Most importantly, there has to be at least one numerical value that is defined
for a majority of features. This value is required, as we optimize for its sum.
Additionally, this value has to be static for every feature during the configuration
process. This way the corresponding attribute can be modeled as non-configurable
and our implementation of the range computation does not support configurable
attribute values. Another important aspect is the comprehensibility of constraints,
as we can only model properties of the configurator that are detectable.

Every feature model is re-engineered by trial and error. During this process, we have
two main strategies. We start by selecting few features of the configurator to detect
possible implications. For example, selecting a large power adapter might force us
to pick one of the cases with a lot of storage. After finding such an implication, we
add an according constraint to our feature model. The other strategy is to select as
many features as possible. This way, we aim to detect exclusions, as picking a new
feature that is not selectable any more results in a displayed conflict. For example, we
include every multimedia hardware enhancement and then try to generate conflicts
by including different software options. Here, we try to build enough products to
include every pair of two features at least once. By using both strategies, we aim to
detect the majority of constraints. However, we might overlook a few.

Now, we specify the necessary steps to re-engineer a configurator as a feature model
in FEATUREIDE. First, every top-level category of the configurator is added as
a child feature of the models root. Afterward, the elements of each category are
inserted as children of the corresponding feature. Next, we want to determine the
relationships between category features and their children. If exactly one element
can be included per category, we create an Alternative-relation. Another case is
the necessity of including one element but it is possible to select multiple. This
implies an Or-relation. In the remaining cases, we use an And-relation. Besides
the features and the parent-children relationships, the mandatory statuses of each
feature are fundamental for the re-engineering of configurators. Most of the time,
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certain categories and/or elements are necessary to include. In this case, we set the
corresponding feature to mandatory. Otherwise, its status is set to optional.

Next, we want to create the constraints that are impossible to define within the
structure of the feature model tree. Whenever the configurator indicates that the
inclusion of an element leads to an invalid product, because of a previous inclusion
of another element, we create an according constraint. After this step, the resulting
feature model represents the product line of the configurator. Additionally, the value
we are interested in has to be added to the feature model. To achieve this, we create
a feature attribute and attach it to every feature of the model. Now, we set the
attributes value of every feature to match the value of the corresponding configurator
element. The resulting extended feature model can be used to optimize the sum of
our attribute values. Now, we present the configurators we re-engineered.

Our first model represents the configurator of a Brompton bike.! This configurator
is quite simple as it has only 54 features and no cross-tree constraints. The attribute
we optimize for is the price of each component.

The second model represents the configurator of a VW Golf Trendline.? Using this
configurator, the customer is able to create a specific car of the Golf Trendline family.
Each feature has a price, which is the attribute we are optimizing for. The model
consists of exact 250 features and 50 constraints.

Last but not least, the third model represents the configurator of the PC Richmond
F.3 For this configurator, we detected 376 features and 12 constraints. Therefore, it
is our largest model. It is worth noting, that every relation between a category and
its elements were modeled using Alternative-relations. The attribute we optimize for
is the price.

7.3 Evaluation Setup

In this section, we specify the technical setup used during the evaluation and describe
the process of evaluating the range computations. To compute our ranges we added
our implementation into a fork of FEATUREIDE version 3.5.* Additionally, we used
the SMT solver Z3. We were unable to compile the JAVA binaries for MATHSAT,
which prevented us from using the other solvers implemented in Chapter 5 that
support optimization of numerical variables.

e OS: Windows 10 64-bit
e CPU: Intel Core 15-6500, 4x3.2GHz

e RAM: 2x 8,0 GB DDR4-RAM, 2133 MHz

Thttps: //www.brompton.com/Build-your-Brompton

Zhttps:/ /www.volkswagen.de/app/konfigurator /vw-de/de/der-golf/30315/38150/trendline?
page=engine

3https://www.computerwerk.de/Extreme-PC/Extreme-Gaming-PC-Richmond-F::
2836.html1?XTCsid=7b4qggh0fi2irghg7evociqdp2

4https://github.com/Subaro/BachelorThesis_Sprey_Sundermann
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e JavAa: 1.8

e 7Z3: 46.0

For each model, we are interested in the efficiency of computing attribute ranges
using an SMT solver and using the heuristic and in the quality of the approximated
values. However, we expect the results to vary for different configurations. To achieve
representative measurements, we consider configurations provided by two different
methods. First, we try to emulate configurations at the start of a configuration
process. We aim to represent scenarios similar to our example in Section 4.1, in
which just a few features are included. To achieve this, we create valid configurations
with only one random feature selected. Our other method for creating configurations
represents the end of a configuration process, where a lot of features are already
selected. These types of configurations are acquired by randomly deciding on the
inclusion of each feature. However, the resulting configuration has to be valid.

The following procedure is performed for all three models we engineered in Section 7.2.
First, we generate our configurations which consist of 50 random and 15 with one
random feature selected. Afterward, we calculate the ranges for each configuration
using the Z3 solver and the heuristic and track the respective results and the runtimes.

7.4 Evaluation of Efficiency

This section describes the evaluation regarding the runtime of the computation using
an SMT solver and the heuristic. We aim to answer, whether the Z3 solver and the
heuristic are usable for on-the-fly computations(RQ1.1,RQ2.1). First, we specify the
results we are interested in. Then, we analyze the measured results.

For all the created configurations, we track the time needed for initializing the SMT
solver, computing the minimum using the solver and the heuristic, and computing
the maximum using the solver and the heuristic. After measuring the described data
for every configuration run, we want to obtain the following values for each data set:

1. The overall run-time for calculating ranges using SMT, which is the sum of
the required time to create the SMT-problem, calculate the minimum, and
calculate the maximum. These values are used to answer RQ1.1.

2. The run-time distribution of creating the formula and calculating the minimum
and maximum using SMT. This is used to answer RQ1.2.

3. The overall run-time for approximating the attribute ranges using our heuristic.
This is supposed to answer RQ2.1.
7.4.1 Runtime of Computing Attribute Ranges

In this section, we analyze the time required to compute attribute ranges of a
partial configuration. For each model, we tracked the runtime to compute ranges for
configurations at the start of the configuration process(one random feature selected)

https://doi.org/10.24355/dbbs.084-201807060926-0



7.4. Evaluation of Efficiency 89

and configurations the end of the configuration process (random). The results are
used to answer RQ1.1, RQ2.1.

Figure 7.1 shows the runtime of computing the attribute ranges for our feature model
representing the bike. The time required for computing the approximated value does
never exceed one millisecond in both states of the configuration process. On the
other side, calculating the ranges using the SMT solver never exceeds half a second.
However, the higher effort to calculate ranges of configurations with only one feature
selected is already noticeable, as most runtimes of the computations for the start of
the configuration progress lie between 75-150 ms and between 20-50 ms for the end
of the configuration progress.

In general, we consider a runtime of less than one second as suitable for on-the-fly
computations. Therefore, for the feature model representing the bike configurator
the computation using the SMT solver and using our heuristic are suitable for both
states of the configuration process for on-the-fly computations.

Runtime Start of Configuration Process Runtime End of Configuration Process
[l 73 H Heuristic M 73 M Heuristic
300 200
o
250
150
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g 200 g
£ 150 5 100
£ g .
= 100 = .
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0 0

(a) At the start of the configuration process (b) At the end of the configuration process

Figure 7.1: Runtime of the computation using Z3 and the heuristic for the bike
feature model

Figure 7.2 shows the time required to compute the attribute ranges of our car feature
model using the SMT solver and the heuristic. Even though the runtime for SMT is
significantly higher than for the bike product line, approximating the value still does
not exceed one millisecond. The runtime of computing the attribute ranges using the
SMT solver even exceeds 20 minutes in one case. Additionally, the difference between
the time required to compute ranges at the start and at the end of the configuration
process is immense, as the median of the latter is around 250 milliseconds while the
runtime median at the start of the process is about 15 minutes.

The measured runtimes for computing the attribute ranges at the start of the
configuration process for the car feature model are too high to consider them suitable
for on-the-fly computations. Therefore, we conclude that an approximation is
necessary. Additionally, the required time to approximate the ranges with our
heuristic implies the usability of it. At the end of the configuration process, there
a fewer possible products resulting from the leftover choices. This explains the
difference in computing ranges at the start and at the end of the configuration
process. As only 1 out of 50 configurations representing the end of the configuration
process exceeded, we consider the SMT solver to be suitable for these configurations.
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Runtime Start of Configuration Process Runtime End of Configuration Process
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(a) At the start of the configuration process (b) At the end of the configuration process

Figure 7.2: Runtime of computing attribute ranges using Z3 and the heuristic for
the car feature model

Figure 7.3 displays the runtime of computing attribute ranges for the feature model
representing the PC configurator. For this model, the heuristic had two outliers
requiring 16 milliseconds to compute the attribute ranges. All other measured
run-times of the heuristic did not exceed one millisecond. The time required to
compute exact values with the SMT solver further increased, compared to the car
model, for the computations at the start of the configuration process, displayed
in 7.2a. For these configurations, we decided to include a timeout after one hour.
Every measured time for the configurations representing the start of the configuration
process exceeded this timeout. Furthermore, we attempted to compute the attribute
ranges without a timeout three times. In all three attempts, the computation was
interrupted by an out-of-memory exception after 10-15 hours, even though the entire
RAM (16 GB) was available. However, the necessary time to compute ranges for
configurations at the end of a configuration process is shorter than for the car feature
model.

The results, regarding the time required to compute attribute ranges for the partial
configurations of the PC feature model, imply similar conclusions as the measurements
for the car feature model. Computing ranges at the start of the configuration process
with the SMT solver is definitely not suitable for the on-the-fly computations, as
we could not acquire results for the maximum at all. However, the heuristic still
almost instantly delivers results. For configurations representing the end of the
configuration progress, the computation using the SMT solver is suitable for on-the-
fly computations, as the run-time does not exceed 0.2 seconds.

Figure 7.4 shows a comparison of the required time to compute the attribute ranges
for each model with the SMT solver. For every feature model, the time required to
compute attribute ranges at the start of the configuration process is greater. This
discrepancy is significant for the car and PC models. While the results for the start
of the configuration process could not even be acquired within one hour for the PC
feature model, the largest amount of time spent to compute ranges at the end of the
configuration process does not reach three seconds. Another thing to notice, is that
the runtime of the computation for the PC is much greater than the computation for
the car in 7.4a but, noticeably shorter in 7.4b.
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(a) At the start of the configuration progress (b) At the end of the configuration progress

Figure 7.3: Runtime of computing attribute ranges using Z3 and the heuristic for
the PC feature model

Even though all of our three feature models are comparatively small (far below 1,000
features each), the computation using the SMT solver is not suitable for the car and
PC models (RQ1.1). Therefore, the heuristic is definitely necessary to obtain results
on-the-fly (RQ2.1). Furthermore, the measured runtimes of the approximation imply
that the estimation algorithm is definitely suitable for on-the-fly computations, which
answers RQ)2.2.
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(a) At the start of the configuration process (b) At the end of the configuration progress

Figure 7.4: Runtime comparison of the computation of attribute ranges using Z3 for
the three feature models

7.4.2 Distribution of the Runtime Needed for Computing
Attribute Ranges with an SMT Solver

In this section, we analyze the runtime of the three necessary steps to compute
attribute ranges with the SMT solver separately. The three steps consist of the
initialization, calculating the minimum, and calculating the maximum. During the
initialization, the formula is built, the SMT problem is created and configured, and
the analysis is instantiated. We are interested in these results, because there might
be scenarios in which only the minimum or the maximum is requested. We aim
to answer whether its advantageous to only compute the requested minimum or
maximum respectively in these scenarios (RQ1.2).
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The distribution of the runtime of calculating attribute ranges with the Z3 solver
for the bike feature model is shown in Figure 7.5. In both cases, 7.5a and 7.5b, the
amount of time required for the initialization is similar (the median for computations
at the start of configurations is 16 seconds for computations at the end 17 seconds).
In 7.5a the longer time required to compute the maximum than to compute the
minimum is noticeable. In 7.5b, both computations take a similar short amount of
time, while the highest proportion of the run-time is spent for the initialization.

The initialization is very similar in the different states of the configuration process, as
the formula only differs in the literals added for the selected and unselected features.
This explains the similar runtimes of the initializations in 7.5a and 7.5b. Additionally,
for our bike model we can observe that the initialization requires a big proportion of
the overall runtime.

Runtime Distribution Start of Configuration Runtime Distribution End of Configuration Process
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(a) At the start of the configuration process (b) At the end of the configuration process

Figure 7.5: Required time for each step of the attribute range computation using 73
for our bike feature model

Figure 7.6 show the proportion of the required steps to compute attribute ranges
for the car feature model using the SMT solver. Especially for the computations
at the start of the configuration process, the computation of the maximum takes
much longer (median: 15.15 minutes) than computing the minimum (median: 0.218
seconds) or initializing (median: 0.028 seconds). Additionally, the initialization only
needs slightly longer than the initialization for the bike feature model, while the time
required to compute the minimum took about ten times longer on average at the
start of the configuration process.

The most outstanding observation is the difference in time required to compute the
maximum and the minimum. For the car feature model, it is much easier to compute
the minimum. Therefore, if you are only interested in the minimum, calculating
the ranges is a huge overhead. Additionally, we conclude that the effort for the
initialization does not increase as much as the computations for larger feature models.

The distribution of the time required to compute attribute ranges for the PC feature
model is displayed in Figure 7.7. The measured proportions at the start of the
configuration process are similar to the measurements for the car feature model.
For both models, the computation of the maximum takes significantly longer than
computing the maximum or the initialization. However, acquiring the ranges at
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Figure 7.6: Required time for each step of the attribute range computation using 73
for our car feature model

the end of the configuration process took significantly less time. Additionally, the
time needed for the initialization increased noticeably (from 0.028 seconds of the car
model to 0.293 seconds as the median).

For the PC feature model, we come to similar conclusions as for the car. If a user is
only interested in the minimum, computing the ranges is unnecessary and too costly.
Every relation in the PC feature model is modeled as alternative. An Alternative-
relation requires a larger propositional formula than an And- or Or-relation [BSRC10].
Additionally, the PC feature model has the highest amount of features. These two
properties explain the longer time for the initialization.
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(a) At the start of the configuration process (b) At the end of the configuration process

Figure 7.7: Required time for each step of the attribute range computation using 73
for our PC feature model

Based on the results of this section, we now answer our research question RQ1.2.
Especially, for the car and PC feature model, there is a huge difference between
the time required to compute the minimum and maximum with the SMT solver.
Therefore, the possibility of computing the range separately, leads to much shorter
runtimes, when you are only interested in the minimum.
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7.5 FEvaluation of Precision

In this section, we analyze the quality of result given by our heuristic to find an
answer for RQ)2.2. We determine the quality by the percentage difference between
the exact result given by the SMT solver and the approximated result.

Figure 7.8 shows the percentage difference between the exact results given by the
SMT solver and the approximated values given by our heuristic for the bike feature
model. For every measured configuration, the approximated values are equal to the
exact values.

The bike feature model only contains tree constraints. Therefore, the results from
this measurement support our claim that the heuristic is always correct for feature
models without cross-tree constraints.

Start of Configuration Process End of Configuration Process
B Minimum Difference B Maximum Difference B Minimum Difference ™ Maximum Difference
1.0% 1.0%
0.8% 0.8%
0.6% 0.6%
0.4% 0.4%
0.2% 0.2%
0.0% 0.0% —e—————

(a) At the start of the configuration process (b) At the end of the configuration process

Figure 7.8: Percentage difference between exact and approximated values for our
bike feature model

Figure 7.9 show the percentage difference between the exact results given by the
SMT solver and the approximated values given by our heuristic for the car feature
model. For every measured configuration, the exact and approximated minimum are
equal. The percentage difference between maximal values given by the SMT solver
and the heuristic never exceed 2%. In the maximal percentage difference the results
were 50,774.60 for the exact value and 5,1762.60 for the approximation (ca. 1.91%
difference in this case). Additionally, the approximated value for the maximum was
exact in 6 out of the 65 measured configurations. Another thing to note for the
computed maxima is that every approximated value is at least as large as the exact
one.

The main conclusion of the measured percentage differences between minimum and
maximum for the car feature model is that the approximated result are really close to
the exact values. Therefore, the heuristic is usable for computations for this model.
Additionally, the results support our claim in Section 4.4 that the approximation is
conservative, as every approximated maximum and minimum is higher and smaller
respectively than the exact counterpart.

The percentage difference between the results for the PC feature model given by the
SMT solver and given by our heuristic is displayed in Figure 7.10. As we could not
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(a) At the end of the configuration process (b) At the start of the configuration process

Figure 7.9: Percentage difference between exact and approximated values for our car
feature model

measure exact values for configurations with one feature selected of the PC feature
model, only the percentage difference between exact and approximated ranges for
random configuration is shown in 7.10b. For every measured configuration, the
approximated minimum is equal to the exact one. The approximated maximums are
exact in 48 out of 50 measured configurations. In the other two configurations the
percentage differences were around 0.175% and 0.215%.

The measured differences were even lower than for the car feature model, as even the
majority of maximum was exact. This follows from the lower amount of cross-tree
constraints.
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Figure 7.10: Percentage difference between exact and approximated values for our
PC feature model

With the measured results from this section, we answer the research question RQ2.2.
For the evaluated feature models, our approximation is always very close to the exact
value. Overall, even though approximating optimized attribute sums for other types
of feature model may be off by a larger margin, the estimation algorithm is usable
for quick results.
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7.6 Summary

In this section, we summarize the conclusions we came to during this evaluation. In
particular, we address our research questions given in Section 7.1.

First, we discuss the usability of the given SMT solver Z3 for on-the-fly computations
of attribute ranges (RQ1.1). Even though we only evaluated small feature models (54,
250, and 376 features), the two models with 250 and 376 features had a huge difference
to our demanded time of one second required for one computation. For the PC
feature model with 376 features and 12 constraints, we were not even able to acquire
a single result within one hour. Therefore, we argue that the computation of attribute
ranges using the SMT solver is not feasible for on-the-fly results. Additionally, we
conclude that the approximation using our heuristic is necessary to ensure results
on-the-fly.

Next, we analyze the time that is spent on the computation of the minimum and
maximum separately (RQ1.2). With this question, we aim to answer whether its
highly advantageous to compute only one side of a range, if you are only interested
in one. There are two main factors to consider for this research question. First, the
difference of time required for the computation between the minimum and maximum.
Second, the necessary time for the initialization. Especially, for the car and PC
feature models, we observed a high discrepancy between the time required to compute
the maximum and minimum. In the PC feature model, we could not obtain a single
result for the maximum within one hour of computing. However, the computation of
the minimum never exceeded two seconds. The initialization only exceeded a runtime
of one second in one case. Following from these observations, we conclude that if
you are only interested in the minimum, computing it separately is advantageous for
our models.

As we concluded that the SMT solver is not suitable for on-the-fly computations
of attribute ranges and an approximation is required, we are now interested in the
runtime of our heuristic to answer R(Q2.1. The measured runtimes for the heuristic
show the usability, as only in 2 out of 195 cases the required time to compute
approximated ranges exceeded 2 milliseconds (16 milliseconds in both outliers).
Therefore, every computation of the heuristic is far below a runtime of one second.

For the next question (RQ2.2), we analyzed the difference between the approximated
result given by our heuristic and the exact ones computed by the SMT solver. The
goal of this is to determine the quality of our approximations. First, we observed that
for every configuration our approximation was conservative, as every approximated
maximum was at least as high as the actual and every approximated minimum was
even equal to the exact minimum. Furthermore, the highest difference between
an approximated and an exact maximum was ca. 1.91%. For the inclusion of less
features, its less likely to violate a cross-tree constraint. This explains The closer
proximity of the minimum results. Overall, we conclude that the results of our
heuristic are so close to the actual ranges that the approximation is a good indicator
for the minimum and maximum regarding our feature models.
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8. Related Work

In this chapter, we compare works similar to our topic. First, we present similar
publications and compare these to our result.

Comparison of SAT and SMT Solvers for Software Product Lines

The work from Michel et al. presents an approach to automate the configuration
process for software product lines with the help of an SMT solver [MHGH12]. They
created a process to translate a given feature diagram into the input of their SM'T
solver STP. STP is a state-of-the-art SMT solver that supports background theorems
for bit-vectors and arrays. They translate their feature diagram using the background
theorems for bit-vectors and arrays and compare the results between the SMT solver
STP and CRYPTOMINISAT [Kul09], STP’s default backend SAT solver. Unlike
our work, Michel et al. translate their feature diagram into first-order logic using
only the background theorems for bit-vectors and arrays. Our input into the SMT
solvers is entirely in propositional logic for the automated analysis of feature models.
Additionally, we compared separated solvers instead of comparing the SMT solver
with its backend SAT solver. We concluded that the native SAT solver SAT4J is more
efficient than every compared SMT solver from JAVASMT. In contrast, Michel et al.
concluded from their relatively simple examples that STP is approximately twice as
fast as CRYPTOMINISAT. If the examples get more complicated, they expect an
even larger margin between both solvers.

Feature Model Analysis

Now, we discuss the work from Benavides et al. [BSRC10]. They present the state-
of-the-art for the automated analysis of feature models by summarizing the various
analyses that are available for them. In their work, they summarize 30 analyses for
feature models. They categorize the proposals for the different analyses based on
the notation of feature models. The proposals are grouped by basic, cardinality-
based, and extended feature models. Additionally, the analyses are classified into
propositional logic, constraint programming, description logic, and the category
others. The analyses we evaluated during our thesis are only a small subset of all
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analyses. They depend on propositional logic and we used SAT and SMT solvers to
perform them. But SAT and SMT solvers are not the only tools for propositional
logic based feature model analysis. Benavides et al. show that other tools like Alloy,
BDD solver, and SMV can also be used. Furthermore, they give an overview about
the tools used for the constraint programming based analyses.

Related Work regarding the Optimization of Feature Attributes

Benavides et al. also offered automated analyses on extended feature models, including
the optimization of numerical attributes [BTRCO05]. Their optimization takes an
extended feature model and an objective function, which may include attribute values,
as input. Then, the feature model is mapped into a constraint satisfaction problem.
The implemented computation uses a CSP solver. Benavides et al.’s optimization
differs from our result in several aspects. We support the configuration process
by computing the ranges for partial configurations, instead of optimizing once for
the feature model itself. Additionally, we offer an approximation to obtain results
on-the-fly. Furthermore, instead of using CSP, we use SMT to optimize feature
attributes.

White et al. optimized resources in feature models, which work similar to feature
attributes [WDS09]. Instead of acquiring exact results their implementation used
filtered cartesian flattening, which approximates the maximized or minimized value
of a resource in polynomial time. Additionally, constraints on other resources are
possible. For example, it is possible to maximize variable A while B can be at most
100. The main difference between White et al.’s and our [WDS09] is that we provide
support during the configuration process. Additionally, we offer flexible switching
between exact and approximated results. [results vergleiche/
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9. Conclusion

In this thesis, we wanted to improve the interactive configuration process by cal-
culating ranges for feature model attributes. The calculation of these ranges is
not possible for SAT solvers because it is currently impossible to express numerical
attributes with propositional logic. Therefore, we decided to use an SMT solver
which is capable of optimizing numerical variables. Furthermore, we were interested
whether SMT solvers are superior to SAT solvers regarding the automated analysis
of feature models.

We created the abstract data type IncrementalSolver and used it to formally define
analyses for feature model inconsistencies to compare SAT with SMT solvers. By
proposing multiple enhancements for some of the analyses, we wanted to optimize
their performance. Also, with the help of the abstract data type, we formally defined
the analysis of finding explanations for feature model defects to further compare
both kinds of solvers.

The evaluation for the comparison of SAT and SMT solvers shows, that SAT solvers
are more efficient than SMT solvers for every analysis except for the redundant
constraint analysis. Furthermore, SMT solvers are more efficient than SAT solvers at
finding explanations for feature model defects. Additionally, we concluded that three
out of four optimizations greatly improve the performance of the respective analysis.

We realized the computation of attribute ranges for partial configurations with an
SMT solver, by creating a first-order logic formula, representing the configuration
and the sum of the attributes values. Furthermore, we implemented an heuristic
which conservatively approximates the ranges in linear time.

The evaluation for the computation of attribute ranges shows that using an SM'T
solver is feasible, but not realistic for the support of the interactive configuration
process, as the runtime increases immensely with the amount of features. We could
not acquire a single result within one hour for a feature model with 367 features.
However, for every evaluated request the heuristic immediately provided results,
which differed at most 2% from the exact values.
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Based on our results, we determine the following recommendations regarding SMT
solvers. SMT solvers cannot replace SAT solvers for the automated analysis of feature
models. However, they can significantly improve the finding of explanations for any
kinds of defects. Finally, we do not recommend the usage of SMT solvers to compute
attribute ranges for partial configurations. Instead we advocate to approximate the
attribute ranges with our heuristic.
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10. Future Work

In this chapter, we present possible future work regarding the topic of our thesis.
First, we introduce cross-tree constraints including feature attributes. Second, we
propose future work for the automated analysis of feature models. Third, we speak
about adding more solvers to the implementation to compare them. Fourth, we
present a method to find the minimal unsatisfiable core using an SMT solver. Fifth,
we discuss possible improvements of the interactive configuration process. Last but
not least, we propose further optimizations for the range computation.

Feature Attributes

Cross-tree constraints describe relations between feature which are not directly
connected. In future, one might extend the cross-tree constraints for extended
feature models to include the attributes from features. This would greatly benefit
the variability of the extended feature model but would also increase the effort to
analyze it. Additionally, more expressive solvers than SAT solvers are required.

Feature Model Analysis

As part of our thesis, we introduced, implemented, and evaluated analyses for various
defects of feature models. The introduced analyses are not the only analyses used
for feature models. Benavides et al. present the state-of-the-art for the automated
analysis of feature models by summarizing the various analyses that are available
for feature models [BSRC10]. Our implemented analyses only cover a small set of
the analyses which are currently available. Hence, in future one might extend our
implementation with the missing analyses.

One of the challenges of Benavides et al. work was to create a framework to describe
the operations of all analyses formally [BSRC10]. We realized the framework by
creating and implementing the abstract data type IncrementalSolver. With the
help of the IncrementalSolver, we already defined the analyses for the feature
model defects formally. We can further define the missing analyses for the automated
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feature model analysis. Hence, future work is to extend the abstract data type
IncrementalSolver, if needed, and to formally define the missing analyses.

In our evaluation, we detected some unoptimized analyses for certain solvers. We
saw that the optimizations cannot be performed for the SMT solvers because the
general analyses require a general data structure, which is natively not provided by
SMT solvers. In future one might create analyses that natively work with the data
structure provided by the SMT solvers to omit the conversion from the JAVASMT
data structure to the general data structure. Additionally, we saw that removing
clauses from the SAT solver is very slow. Kanning faces the same problem for SAT4J
in his work and customizes the solvers to optimize the removal for clauses [Kanl7].
If we apply his customization into our implementation, we could further improve the
performance for SAT4J.

Comparison of SMT and SAT

During this thesis, we implemented the SAT solver SAT4J and the solver API
JAVASMT and compared all solvers on the task of the automated analysis and on the
task of finding their explanations. The implemented solvers are not the only solvers
available. Future work is to add more SAT and SMT solvers to our implementation
and to compare the solvers with the IncrementalSolver on the different analyses.

Unsatisfiable Core

With the current state of our implementation, it is possible to retrieve the unsatisfiable
core of a formula. The unsatisfiable core is used as an explanation to help the user
fixing a defect. The explanation can be understood more easily if the unsatisfiable
core is minimal. Hence, it is desired to retrieve the minimal unsatisfiable core. SAT4J
can retrieve all minimal unsatisfiable cores. In contrast, SMT solvers can also retrieve
the unsatisfiable core, but generally, the computed unsatisfiable core is not minimal.
Therefore, we present the work of Guthmann et al., which shows an algorithm for SM'T
solvers to extract a minimal unsatisfiable core of an unsatisfiable formula [GST16].
Their algorithm is based on a well known deletion-based minimal unsatisfiable cores
extraction, which is also widely used for propositional based minimal unsatisfiable
cores extraction. Theory-rotation and several other optimizations further enhance
the algorithm. In future one might extend our implementation with the algorithm of
Guthmann et al. to retrieve minimal unsatisfiable cores for the SMT solvers.

Computing Attribute Ranges

The validity of computing the attribute ranges with the Z3 solver and our heuristic has
to be inspected further. During this thesis, our evaluation focused on feature models
re-engineered from publicly available product configurators. However, computing
attribute ranges for other types of extended feature models might be interesting as
well. Even though our implementation supports all types of extended feature models,
further evaluation is necessary.

Another interesting research topic are other SMT solvers. During this thesis, we
exclusively used the Z3 solver. Other SMT based solvers or APIs might result in a
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better performance when computing attribute ranges. Therefore, a comparison of
different solvers and APIs is a relevant research topic.

Another direction for future work might be improving the methods we implemented.
First, optimizing the first-order logic formula used for computing the attribute
ranges with SMT might improve the performance of this approach. On the other
hand, the quality of the results approximated by the estimations algorithm could be
improved. For example, the algorithm could account simple cross-tree constraints
like an implication between two features. This would improve the approximations in
several cases.

Support for the Interactive Configuration Process

One possibility to improve the configuration process might be to acquire sets of
features whose attribute values build the optimized sum. These sets could be used to
automatically build configurations. Using such a functionality enables the user not
only to see the resulting minimum and maximum from a selected partial configuration,
but also to build this product.

Additionally, more specific computations of attribute ranges could be implemented.
For example, the possibility of adding further constraints may be interesting (e.g.
optimizing a price of a sandwich while not exceeding a certain amount of calories).
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A. Appendix

<?xml version="1.0" encoding="UTF-8"7>
<featureModel>
<properties />
<struct>
<and abstract="true” mandatory="true” name=”"ExampleFeatureModel”>
<feature name="Base” />
</and>
</struct >
<constraints />
<calculations Auto="true” Constraints="true” Features="true” Redundant="true”
Tautology="true” />
<comments />
<featureOrder userDefined="false” />
</featureModel >

Listing A.1: XML file of a feature model with the root feature ExampleFeatureModel
and the child Base

<?xml version=7"1.0" encoding="UTF-8"7>
<extendedFeatureModel>
<properties />
<struct>
<and abstract="true” mandatory="true” name="ExampleFeatureModel”>
<attribute name="Attribute0” type="string” unit="" value="Example” />
<feature name="Base” />
</and>
</struct>

<constraints />
<calculations Auto="true” Constraints="true” Features="true” Redundant="true”
Tautology="true” />
<comments />
<featureOrder userDefined="false” />
</extendedFeatureModel>

Listing A.2: XML file of an extended feature model with the root feature
ExampleFeatureModel and the child Base. The root feature also has the attribute
Attribute0 assigned

Name ‘ Features ‘ Constraints
aaed2000 1298 904
adder 1286 890
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adderII

aeb

aim711
aki3068net
amd31_sim
asb

asb2305
assabet
at91sam7sek
at9lsam7xek
atlas_mips32_4kc
atlas_mips64_5kc
brutus
calm16_ceb
calm32_ceb
ceb_v850
cerf

cerfpda
cma230
cma28x
cmedbbd
cq7708

cq 7750
csh281
dreamcast
eTt

ea2468

eb40

eb40a

eb42

ebbb
ebsa285
ecbhd
edb7xxx
edosk2674
excalibur_arm9
fads

flexanet
frv400
gps4020

erg
h8300h_sim
h8max
h8s_sim
hs7729pci
innovator
integrator_arm?7

1289
1226
1277
1220
1178
1244
1255
1279
1309
1332
1229
1222
1234
1186
1186
1202
1289
1304
1225
1217
1279
1252
1281
1246
1266
1280
1408
1253
1254
1247
1283
1258
1280
1259
1207
1247
1200
1278
1251
1226
1254
1195
1215
1196
1312
1270
1272

890
875
912
851
819
851
857
927
917
928
859
857
876
830
830
843
935
946
868
849
863
858
864
871
867
883
956
890
890
884
914
895
863
900
841
877
829
925
862
876
889
828
849
828
886
386
904
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integrator_arm9
ipaq
iq80310
iq80321
ixdp425
jmr3904
jtst

linux

Ipcmt
mb272c3
mac7100evb
macel
malta_mips32_4kc
malta_mips64_bkc
mb93091
mb93093
mbx
mch2100
moab
mpchH0
nano

npwr

ocelot
olpce2294
olpch2294
olpcl2294
p2106

pati
pc_i82544
pc-i82559
pc_rltk8139
pc_usb_d12
pc_vmWare
phycore
phycore229x
picasso

pid
prpmc1100
psim
rattler
ref4955
refidt334
sal100mm
sam7ex256
se7751
se77x9
sh4_202_md

1281
1271
1271
1269
1260
1212
1254
1245
1262
1336
1247
1247
1245
1245
1263
1243
1308
1262
1291
1226
1278
1271
1279
1287
1274
1286
1262
1261
1272
1272
1270
1294
1268
1287
1373
1261
1242
1236
1194
1324
1231
1276
1235
1345
1309
1333
1272

907
921
897
898
886
843
891
859
382
877
867
867
865
865
876
859
889
882
917
863
911
898
872
904
890
902
882
866
885
385
886
910
884
892
932
899
891
875
826
894
862
870
878
935
883
911
885
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sh7708
skmb91302

sleb

smdk2410

snds
sparc_erc32
sparc_leon
sparclite_sim
stb

stdevall
stm3210e_eval
ts1000

ts6

tx39_sim

uk250

vads

viper

vred373

vrcd375
XSEngine
Automotive2_V1
Automotive2_V2
Automotive2_V3
Automotive2_V4

1267
1230
1201
1279
1231
1181
1181
1181
1265
1203
1283
1310
1253
1192
1262
1253
1314
1260
1271
1273
14010
17742
18434
18616

876
840
827
884
872
816
816
816
860
844
873
886
865
822
900
865
894
860
870
886
666
914
1300
1369

Table A.1: List containing the name, number of features, and number of constraints
for all 120 feature models that were evaluated for the comparison of SAT and SMT

solvers
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