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Abstract

Many analyses have been proposed to ensure the correctness of the various mod-
els used throughout software product line development. However, these analyses
often merely serve to detect such circumstances without providing any means for
dealing with them once encountered. To aid the software product line developer in
understanding the cause of defects, a new algorithm capable of explaining satisfi-
ability queries in a software product line context is presented in this thesis. This
algorithm finds explanations by using SAT solvers to extract minimal unsatisfiable
subsets from the propositional formulas that express the defects. The algorithm is
applied to feature model defects such as dead features and redundant constraints,
automatic truth value propagations in configurations, and preprocessor annotations
that are superfluous or cause dead code blocks. Using feature models and configu-
rations from real software product lines of varying sizes, this approach is evaluated
against an existing explanation approach based on Boolean constraint propagation.
The results show that Boolean constraint propagation occasionally fails to find any
explanation at all but is magnitudes faster than using minimal unsatisfiable subset
extractors. In response, both algorithms are combined into a single one that is as
fast as Boolean constraint propagation for the cases where that finds an explanation,
but also finds an explanation for all the other cases.
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1. Introduction

A result of today’s industrial economy is the economic imperative to cater to as
many customers as possible. At the same time, the diversity of the customer de-
mands can make a one-size-fits-all solution counter-productive. In software engi-
neering, it is possible to accommodate these demands using a software product line
[PBvdL05, vdLSR07]. The idea behind software product line engineering is to take
into consideration the variability of the software platform in order to enable the de-
liberate and structured reuse of software artifacts such as program code. This way,
fewer resources are spent on developing the commonalities of the various products
more than once. Hence, product line engineering reduces the costs of the develop-
ment of variable software [ABKS13, PBvdL05, vdLSR07]. In the end, by making
customizable software feasible, software product line engineering results in individual
needs being met more adequately.

However, with software development being difficult enough as is, adding variabil-
ity to the engineering process requires additional engineering techniques [BCH15,
PBvdL05, vdLSR07]. Variable software platforms need to be modeled [BRN+13,
CGR+12], implemented [LAL+10], and tested [ER11] differently from single-system
software. This in turn entails various analyses aimed towards making software prod-
uct line engineering more robust [TAK+14].

For example, the variability of software product lines is usually modeled using feature
models [KCH+90, ABKS13]. However, given the sheer complexity of larger software
platforms, creating and maintaining feature models is not a trivial task. To ensure
the correctness of a feature model, a wide variety of analyses may be used [BSRC10,
SKT+16]. To this end, the feature model is typically transformed into a propositional
formula [Bat05] which can be used to reason over the feature model [Man02, Men09].
In particular, the feature model formula can be used in a satisfiability query deciding
some property of the feature model such as whether it is even possible to configure
the software product line in such a way that any valid product can be obtained
[BSRC10, KAT16, SKT+16]. Such satisfiability queries can be used to detect all
sorts of circumstances that require some form of intervention, be it automatic or



2 1. Introduction

manual, not just for feature models but for any artifact used throughout the software
product line engineering process [TAK+14].

Still, detecting such a circumstance only tells the developer that a certain circum-
stance takes place but not why. However, figuring out the cause of the circumstance
is crucial to understand why an automatic intervention had to happen or which steps
need to be taken to do so manually. To assist the developer in this regard, automat-
ically finding explanations of the circumstance can save time and effort when trying
to solve an issue with the model. This is particularly important for large models
as their complexity can easily be overwhelming. By pointing out which elements of
the model are involved in causing the circumstance, precise explanations reduce the
number of elements that need to be considered and inspected for possible changes.

Unfortunately, existing approaches for finding explanations in a software product line
context [KAT16, MNSY17, Bat05, Bat05, TBD+08] suffer from a number of issues
such as failing to find an explanation all the time, leading to results in unintuitive
representations, or not having been evaluated for larger models. Additionally, these
explanations approaches are typically limited to feature model defects even though
circumstances worth explaining can also arise in configurations as well as code an-
notated with preprocessor directives. Indeed, to the knowledge of the author, this
thesis constitutes the first attempt to find explanations for code annotated with
preprocessor directives automatically.

1.1 Goals

The goal of this thesis is the development of a generic explanation algorithm capa-
ble of finding explanations for any circumstance in a software product line context
that can be expressed as a satisfiability query. Relevant criteria of the algorithm
are runtime performance, correctness, completeness, and the quality of the explana-
tions it finds. The quality of an explanation is measured by its length, as a short
explanation is in general easier to understand than a longer one.

The completeness requirement is in response to the incompleteness of the algorithm
proposed by Ananieva [Ana16, KAT16], which is based on Boolean constraint propa-
gation and fails to find any explanation in certain cases. Additionally, that algorithm
is designed with only feature model defects in mind, whereas the algorithm devel-
oped in this thesis should be applicable to any use case in software product line
engineering.

To demonstrate the applicability of the algorithm devised in this thesis, it is applied
to several use cases in software product line engineering. In particular, it is applied
to the following three use cases. First, it is applied to the feature model defects
that can already be explained using Ananieva’s algorithm, which are dead features,
false-optional features, redundant constraints, implicit constraints, and void feature
models. Next, it is applied to configurations in order to explain why certain features
have to be automatically selected or automatically unselected for a valid configura-
tion. Finally, it is applied to code annotated with preprocessor directives, specifically
to explain why a given annotation is superfluous or causes a dead code block.
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1.2 Structure

The remainder of this thesis is structured as follows. In general, where applica-
ble, each section contains subsections dealing separately with the three concrete use
cases of feature model defects, configurations, and code annotated with preproces-
sor directives. First, Chapter 2 covers the preliminaries. Next, in Chapter 3, the
explanation algorithm is developed conceptually. To this end, the underlying idea of
extracting minimal unsatisfiable subsets is contrasted against the similar yet incom-
plete approach by Ananieva based on Boolean constraint propagation [Ana16]. The
implementation as part of the software product line development tool FeatureIDE
[MTS+17, TKB+14] is detailed in Chapter 4. To ensure that the requirements of
the algorithm are met, the implementation is evaluated using models from real soft-
ware projects in Chapter 4. This involves comparing it against Ananieva’s existing
algorithm based on Boolean constraint propagation. Afterwards, the commonalities
and differences between the approach contributed in this thesis and other works
are discussed in Chapter 6. Afterward, a conclusion of the findings of this thesis
is drawn in Chapter 7. Finally, Chapter 8 lists ideas for future work based on this
thesis.
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2. Background

This chapter covers the theoretical foundation of this thesis. The content explained
in this chapter is critical to the remainder of this thesis and must therefore be
understood before continuing with the following chapters.

In particular, Section 2.1 discusses the problem of Boolean satisfiability. After its
definition, automated solution approaches to it are outlined in Section 2.1.1, fol-
lowed by an definition of minimal unsatisfiable subsets in Section 2.1.2. Software
product lines are introduced in Section 2.2. The concrete software product line ar-
tifacts considered in this thesis are tied together through the software product line
engineering process outlined in Section 2.2.1. Those artifacts are feature models
(Section 2.2.2), configurations (Section 2.2.3), and code with preprocessor directives
(Section 2.2.4). Finally, Boolean satisfiability and software product lines are united
for software product line analysis in Section 2.3. The analyses revolve around the
three artifacts just mentioned and are for feature model defects (Section 2.3.1), con-
figuration selections (Section 2.3.1), and preprocessor directives (Section 2.3.3. An
approach for generating explanations for these three follows in the next chapter.

2.1 Boolean Satisfiability

A Boolean formula is a formula over Boolean variables and Boolean formulas [End01].
When each variable is interpreted to be either true or false, a formula can be eval-
uated by replacing each literal (an occurrence of a variable) with the corresponding
truth value and applying the contained functions. Classically, these functions can
be any of the following, listed in descending order of binding strength, meaning
the functions listed first bind the operators more tightly unless overwritten with
parentheses:

Negation ¬α evaluates to true iff the Boolean formula α evaluates to false.

Conjunction α1 ∧ · · · ∧ αn evaluates to true iff each of the n Boolean formulas αi

evaluates to true.
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Disjunction α1∨· · ·∨αn evaluates to true iff at least one of the n Boolean formulas
αi evaluates to true.

Implication α⇒ β evaluates to true iff ¬α ∨ β evaluates to true.

Equivalence α⇔ β evaluates to true iff (α⇒ β) ∧ (β ⇒ α) evaluates to true.

Given such a Boolean formula, the Boolean satisfiability problem (or“SAT”for short)
asks whether an interpretation exists under which it evaluates to true. If so, the
formula is said to be satisfiable. For instance, the formula A ∧B is satisfiable since
it evaluates to true when interpreting both variables A and B as true. In contrast,
A∧¬A is unsatisfiable since no interpretation exists under which the formula would
evaluate to true.

2.1.1 SAT Solving

Even though SAT is an inherently difficult problem to solve due to being NP-
complete [Coo71], a lot of research is conducted to come up with increasingly efficient
approaches for tackling the problem [CESS08]. Indeed, there are even competitions
dedicated to measuring and comparing state-of-the-art SAT solvers [JLBRS12].

Most SAT solvers operate on formulas in conjunctive normal form, which every
Boolean formula can be transformed to [EMS07, Tse68] in a process called clausifi-
cation. A formula is in conjunctive normal form if it is a conjunction of disjunctions
of literals, where a literal is a variable or a negated variable [CESS08]. This con-
junctive normal form makes it easier to reason over the formula. Indeed, being a
conjunction of clauses, it must evaluate to false as soon as any clause evaluates to
false, since every clause must evaluate to true for the conjunction to evaluate to true.
Analogously, each clause evaluates to true as soon as any of the literals it contains
evaluates to true.

These facts can be exploited when trying to find an interpretation under which
each clause and therefore the formula evaluates to true. In Boolean constraint
propagation [McA90], the first step is to identify clauses that contain exactly one
variable with no truth value assignment and otherwise only literals that evaluate to
false. These so-called unit-open clauses are important as they can only ever evaluate
to true if the remaining literal evaluates to true. As such, the corresponding truth
value is derived by interpreting the variable to be false if the literal is negated and
true otherwise. This entire process can be repeated until all clauses evaluate to true,
in which case a satisfying interpretation is found, or until no unit open-clause is left
or deriving a truth value would cause a contradiction in another unit-open clause,
in which case no satisfying interpretation is found.

However, a satisfying interpretation might exist even if Boolean constraint propa-
gation does not manage to find it. After all, at any point where unit propagation
requires picking from multiple instead of just a single unit-open clauses, it would be
possible to choose a different one, which might lead to a satisfying interpretation
down the line. Likewise, not all hope is lost if there are no unit-open clauses left;
it would be possible to give an interpretation to any variable with no truth value
assignment and see if that results in a unit-open clause. Indeed, this is called the
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Davis-Putnam-Logemann-Loveland procedure [DLL62, DP60, NOT06], which keeps
track of these decisions and backtracks upon failure to try out another path in the
decision tree.

That is how SAT solvers used to work for a long time [CESS08]. More modern SAT
solvers such as Sat4J [LBP10] typically use conflict-driven clause learning engines
that also add new, internal clauses on the fly [ES04, MMZ+01]. In any case, even-
tually, the SAT solver provides proof of the satisfiability of the formula in the form
of a so-called model, which is a set of variables which, when interpreted as true and
the other ones as false, causes the formula to evaluate to true.

2.1.2 Minimal Unsatisfiable Subsets

Some SAT solvers not only provide functionality for deciding whether a Boolean
formula is satisfiable, but also for analyzing why it is not. This is accomplished by
extracting a minimal unsatisfiable subset from the unsatisfiable formula [BLMS12].
A minimal unsatisfiable subset is any subset of the clauses of the formula in con-
junctive normal form for which any strict subset is satisfiable. There might in fact
be multiple minimal unsatisfiable subsets for a given unsatisfiable formula. In con-
trast, the smallest one of them is called the minimum unsatisfiable subset [LMS04],
which is more difficult to compute, for instance näıvely by generating all minimal
unsatisfiable subsets [dlBSW03, LS08] and choosing the smallest one.

The usefulness of minimal unsatisfiable subsets lies in acting as an explanation for
the unsatisfiability of a formula [GMP08a]. If a problem can be formulated as a
satisfiability query, a minimal unsatisfiable subset pinpoints one of the sets of clauses
that in tandem cause the unsatisfiability and therefore the problem.

There are several approaches for extracting a minimal unsatisfiable subset [BLMS12].
The approach may be destructive, which means clauses are removed until further
removal would make the subset satisfiable. Conversely, constructive approaches add
clauses until the subset becomes unsatisfiable. Finally, both approaches can be
combined for a dichotomic approach.

In all approaches, multiple SAT solver calls are required. More importantly, all
these satisfiability queries are fairly similar and might even differ by as little as only
one clause at a time. Therefore, it makes sense to exploit the similarities between
these satisfiability queries using incremental SAT solving [ES03, ALS13]. Instead of
simply forgetting the state of the previous queries, only the now affected parts need
to be solved, which drastically improves the performance and thus allows extracting
minimal unsatisfiable subsets from bigger formulas.

2.2 Software Product Lines

As an example for variability, modern cars are often highly customized to meet spe-
cific customer requirements [PBvdL05, vdLSR07]. For instance, a car may come
with or without special features such as GPS, Bluetooth, and an automatic as op-
posed to a manual gearbox. Of course, each possible car product requires a different
software system to control the car.
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Traditionally, each product would be developed from ground up. However, as the
variability increases, so does the development effort when not acknowledging and
leveraging the commonalities. Therefore, this single-system software engineering
quickly reaches its limits. The example above with merely 3 independent features
already results in 8 possible configurations. In a more complex example such as
the Linux kernel [SSSPS07] with over 10,000 features [TLSSP11], there are far more
possible configurations than atoms in the known universe. Providing a product for
every possible configuration is therefore hardly feasible using single-system software
engineering.

The difficulty of dealing with variability in software systems is handled using software
product line engineering. A software product line is a family of software systems
that are at the same time different enough from each other to be considered distinct
products but also similar enough to profit from planned reuse of software artifacts
[ABKS13]. A more liberal interpretation sees a software product line as any software
platform [ML97] for which many differing products sharing a common code base exist
[PBvdL05, TAK+14]. The core principal in either case is the variability between the
products, that is the many interrelated software systems.

Identifying and exploiting this variability is the fundamental advantage of soft-
ware product line engineering over single-system software engineering [ABKS13,
PBvdL05]. In the ideal case, both the core system, that is the part of the software
platform that is shared by all products, and each variation point are only imple-
mented once, thereby greatly reducing the development effort.

Thus, software product line engineering is a powerful extension of software engi-
neering that can be used for a number of advantages if the software system contains
enough variability. In particular, when compared to single-system software engi-
neering, the development time and costs can be reduced significantly while also
improving the quality [ABKS13, PBvdL05, vdLSR07]. Additionally, it allows for
individual needs to be met more adequately.

2.2.1 Domain Engineering and Application Engineering

Figure 2.1 shows how the software product line engineering process is realized in
two orthogonal dimensions [ABKS13]. The first dimension is domain engineering
versus application engineering. Domain engineering is concerned with the domain
[CE00], that is the set of all products, whereas application engineering focuses on
a single product [PBvdL05]. Shifting effort from application engineering to domain
engineering is how software product line engineering makes it possible to see the
big picture and reuse software artifacts in a planned as opposed to an opportunistic
manner. The other dimension is problem space versus solution space. In problem
space, the perspective of the stakeholders is assumed by thinking in terms of re-
quirements and features, whereas the solution space is targeted at the developers
paying attention at concrete software artifacts and how they can be fit together to
create working products.

The first three of the four emerging tasks of software product line engineering are
explained in more detail in the following subsections. In particular, domain anal-
ysis is covered in Section 2.2.2, requirement analysis in Section 2.2.3, and domain
implementation in Section 2.2.4. Product derivation is not relevant to this thesis.
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Figure 2.1: The software product line engineering process [ABKS13, adapted from
p. 20].

2.2.2 Feature Models

As shown in the top left of Figure 2.1, domain engineering in the problem space
is called domain analysis [ABKS13]. During domain analysis, the scope of the do-
main [CE00], that is which products are even considered part of the product line,
is defined. The result is documented in a variability model [BRN+13, CGR+12],
which may come in many different forms such as an orthogonal variability model
[PBvdL05], a decision model [SRG11], or a feature model [KCH+90]. However, in
the context of this thesis, only feature models are considered due to their widespread
use [BRN+13, CGR+12].

As the name suggests, a feature model contains features. A feature is “a prominent
or distinctive user-visible aspect, quality, or characteristic of a software system or
systems” [KCH+90] according to its original definition in the software product line
context, or, more concisely put, “an increment of program functionality” [Bat05].
The idea is to partition the software platform’s variation points into cohesive units
called features. Each product can then be identified by the features it contains
versus the ones it does not, which is called a configuration (cf. Section 2.2.3).

However, since not every configuration might be valid, the feature model defines
which products are part of the product line [Bat05, KCH+90]. The most basic way
to do this is to enumerate all valid configurations [SKT+16], which is obviously
unfeasible for large product lines.

Alternatively, the feature model may be expressed as a Boolean formula [Bat05,
Man02]. To this end, each feature is mapped to exactly one Boolean variable. The
truth value interpretation of the variable corresponds to the selection status of the
feature. In other words, if the interpretation of a variable in the formula is true, the
feature is considered to be part of the current configuration, and likewise it is not if
it is false. While this representation is useful to enable reasoning over the variability
with tried and tested tools [Men09], i.e., SAT solvers, it is still difficult to read and
maintain.
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As such, feature models typically come in the more readable form of feature dia-
grams. There are in turn varying notations for feature diagrams [BSRC10]. Through-
out this thesis, the notation of FeatureIDE [TKB+14] is used for illustration pur-
poses.

TextualUI

ChatClient

AutoCompletion

ChatLogs

MessageNotification

History

ServerHistory

UI

TextFormatting

GUI

NativeNotification

InputHistory

HighlightedTab

UnreadMessageCounter

HighlightedTab ⇒ GUI

Legend:

Mandatory
Optional
Or
Alternative
Abstract
Concrete

Figure 2.2: An exemplary feature diagram for a chat client.

Figure 2.2 is an example of a feature diagram for a chat client. The chat client
always comes with a user interface, which may be either a graphical or textual one
but not both. It provides a number of features providing access to data past its
usual lifespan, specifically a history of user input, chat logs for messages sent to and
received from other users, and a list of the servers that were visited in the past. Any
of these three features may be used with or without any of the other history features.
The same is true for the notifications that a new message was received, which may
be any combination of notifications specific to the operating system, having the tab
of the program blink, or displaying the number of unread messages in the program’s
title bar. Finally, text may or may not be formatted in other font styles and colors
and user input may or may not be automatically completed. It should be noted that
functionality which is not subject to variability, meaning core features such as being
able to send and receive messages, does not need to be modeled.

This feature diagram showcases all additional structures that may be enforced on
the features to express the relationship between them [ABKS13, BSRC10, KCH+90]:

Optional An optional child may or may not be selected if the parent is selected.
However, as with all child relationships, the parent must be selected if the
child is.

Mandatory A mandatory child must be selected if and only if the parent is selected.

Or In an or-group, at least one child must be selected if the parent is selected.
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Alternative In an alternative group, exactly one child must be selected if the parent
is selected.

In addition to being part of a child relationship or a group, a feature may be either
concrete or abstract [TKES11]. A concrete feature is considered in the implemen-
tation, whereas an abstract feature is not. Finally, the feature model may contain
cross-tree constraints (henceforth simply “constraints”), which are Boolean formulas
(containing variables with the semantics outlined above) further restricting the set
of valid configurations. Constraints are used to add restrictions that cannot be ex-
pressed using any of the previously mentioned syntax. In fact, the sole constraint in
Figure 2.2 (that is that the selection of feature HighlightedTab implies the selection
of feature GUI) is functionally a requires-relationship, which would be written as
an arrow from one feature to the other in some other notations [BSRC10].

Another advantage of the feature diagram notation is that it is easily convertible
to a Boolean formula for further analysis such as whether it describes any valid
configurations at all [Bat05, Man02]. The formula fm describing the feature model
and therefore all valid configurations is:

r ∧ (
∧
s∈S

s) ∧ (
∧
c∈C

c)

Where r is the root feature, S the set of all structural elements, and C the set of all
constraints. Each structural element s ∈ S is transformed as following:

Optional f ⇒ p, where f is the optional child and p its parent.

Mandatory f ⇔ p, where f is the mandatory child and p its parent.

Or p⇔
∨

f∈F f , where F is the set of all children of the or-group and p the parent.

Alternative (p⇔
∨

f∈F f)∧
∧
{a,b}⊆F,a6=b ¬a∨¬b, where F is the set of all children

of the alternative group and p the parent.

2.2.3 Configurations

As depicted in Figure 2.1, after capturing the variability in a feature model during
domain analysis, switching from domain engineering to application engineering man-
dates a requirements analysis [ABKS13]. To recall, application engineering means
that this task is now about a single product instead of all of them. Due to the fea-
ture model abstraction, the customer only needs to select the features of the desired
product. This set of selected features is called a configuration.

An example of a configuration of the aforementioned chat client feature model from
Figure 2.2 is shown in Figure 2.3. It refers to the aforementioned feature model for
a chat client from Figure 2.2 and as such specifies a concrete chat client product.
In this configuration, only two concrete features are selected: Firstly, the choice
between a textual and a graphical user interface went in favor of the graphical one,
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ChatClient

UI

GUI

TextualUI

InputHistory

ChatLogs

TextFormatting

History

ServerHistory

NativeNotification

HighlightedTab

MessageNotification

AutoCompletion

UnreadMessageCounter

Figure 2.3: An exemplary configuration of a chat client. A green plus sign denotes
the selection of a feature, whereas a red minus sign denotes its deselection. A gray
background denotes that the selection or deselection of the feature is necessary for
validity given the other, user-made choices (cf. Section 2.3.2).

and secondly, the notification of new messages is accomplished by highlighting the
tab of the program but none of the other means. Indeed, all of the other concrete
features in the feature model are unselected and therefore not part of the specified
product.

The process to arrive at such a configuration is an incremental one. For each cus-
tomer requirement, the feature model is consulted. If a corresponding feature is
already contained in the feature model, it is selected to be part of the configuration.
On the other hand, if the customer requires an unprecedented feature or a combi-
nation that is currently considered invalid, the feature model may or may not be
updated to meet the newly required variability depending on whether it fits in the
scope of the project or not. If afterwards all required features are included in the
feature model and the combination is valid, the configuration is complete.

Then, all that is left is to build the respective product as dictated by the configura-
tion. From that point on, it is all about the solution space. The concrete software
artifacts obtained through domain implementation (explained in Section 2.2.4) are
combined during product derivation (depicted in the bottom right of Figure 2.1)
[ABKS13, CE00]. Product derivation might require additional implementation ef-
fort specific to that product or, in the best case, constitutes only the press of a
button. In any case, it accomplishes the final goal of generating the desired product.

2.2.4 Implementation Using Preprocessors

The only step depicted in Figure 2.1 that is in solution space and relevant to this
thesis is the domain implementation [ABKS13]. Its goal is the development of soft-
ware artifacts (especially code) from which every valid product can be derived. The
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variability can be realized through various means, be it annotative (such as prepro-
cessors), i.e., removing all artifacts that do not belong to the product, compositional
(such as aspect-oriented programming), i.e., adding together all those that do, or
transformational (such as delta-oriented programming), i.e., a combination of the
two.

Most commonly, the domain implementation is achieved through the annotative
mechanism of preprocessors [LAL+10]. Historically intended for simple metapro-
gramming, they can also be used in software product line engineering. To this end,
the code is annotated with preprocessor directives, which are if-statements contain-
ing variables that refer to features from the feature model. These directives evaluate
to true or false depending on the configuration. If true, the annotated code block
remains part of the product to be derived, otherwise it is removed. During prod-
uct derivation, the preprocessed code then only contains the parts necessary for the
product and can be compiled as usual.

1 public class ChatClient {
2 public void onMessageReceived(ChatMessage msg) {
3 printMessage(msg);
4 // #if MessageNotification
5 if (!isMessageRead(msg)) {
6 // #if NativeNotification
7 //@ displayNativeNotification(msg);
8 // #endif
9 // #if HighlightedTab

10 highlightTab(msg);
11 // #endif
12 // #if UnreadMessageCounter
13 //@ increaseUnreadMessageCounter(msg);
14 // #endif
15 }
16 // #endif
17 }
18 }

Listing 2.1: Java code for a chat client annotated with Antenna preprocessor di-
rectives

Listing 2.1 is an example of Java code annotated with preprocessor directives for the
preprocessor Antenna, which is one of the three preprocessors currently supported
by FeatureIDE [MTS+16], next to CPP and Munge. The variables refer to features
from the chat client feature model from Figure 2.2 with its configuration from Fig-
ure 2.3. The code itself is an excerpt of the part of the application that reacts to
incoming chat messages. First, being a core functionality not subject to variability,
the message is always shown to the user. The next code, which reacts to unread
messages, is only included if any unread message notification features are selected.
Since only HighlightedTab is selected in the configuration, only its code block, that
is the call to the method highlightTab(ChatMessage), is part of the preprocessed
code. The other two notification features are unselected and therefore their code
blocks are commented out by the preprocessor such that the compiler ignores these
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code blocks. As a result, when compiled, the preprocessed code for this chat client
produces a product that adheres to the specified configuration.

2.3 Software Product Line Analysis

The knowledge of the variability of a software product line may also be incorpo-
rated during analysis of the software platform [PBvdL05, TAK+14]. Whereas single-
system software engineering would require every single configuration to be built and
tested in isolation, software product line engineering can greatly reduce the effort of
quality assurance by sampling the configurations more cleverly [ER11]. For instance,
for configuration coverage, configurations are selected until all variation points are
covered [TLD+11]. Alternatively, taking into account the possibility of feature in-
teractions [CKMRM03, KWG04], correctness is assured up to a certain order using
combinatorial interaction testing [AHKT+16, CDS08, JHF12]. Additionally, if a
certain feature is known to be used in many configurations, it may be tested more
thoroughly. In any case, this is obviously more efficient than testing every possible
configuration and more effective than testing only a single standard configuration.

However, before testing is even necessary, other analyses can be employed to aid
development and prevent defects [TAK+14]. As with testing in particular, analyses
in general profit from taking into account the unique qualities of software product
lines instead of simply scaling single-system analyses to the entirety of the products.

The next sections explain the analyses covered by this thesis: analysis of defects
in feature models in Section 2.3.1, analysis of configurations in Section 2.3.2, and
family-based static analysis in Section 2.3.3.

2.3.1 Feature Model Defects

Unfortunately, due to unforeseen evolution of the product line or simply the sheer
complexity of the variability to be modeled [BCH15], defects may arise in the fea-
ture model [BSRC10, vdML04], which reduces the feature model’s expressiveness
and may hint at a misunderstanding of the variability. This thesis focuses on the
following defects [MTS+17]:

Dead feature A feature is dead iff it is not part of any valid configuration of a
non-void feature model [BSRC10, KAT16, SKT+16].

False-optional feature A feature of a non-void feature model is false-optional iff
it is selected whenever its parent is selected even though it is not declared
mandatory [KAT16].

Redundant constraint A constraint is redundant iff it does not affect which con-
figurations are valid in a non-void feature model [BSRC10, KAT16]. This
means that the restriction it expresses is actually already expressed somewhere
else in the feature model, thereby rendering the constraint superfluous.

Void feature model A feature model is void iff it does not contain any valid con-
figurations [BSRC10, KAT16, SKT+16].
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Figure 2.4: Minimal examples of feature model defects.

Simplistic examples of these defects can be found in Figure 2.4. In all four cases,
the sole constraint causes the defect. In the first case, the feature A is dead because
it is always deselected by the constraint. In the next case, the feature A is false-
optional because it is optional but always selected by the constraint. In the third
case, the constraint is redundant because it only selects the root, which is already
always selected by definition. In the final case, the feature model is void because
the constraint deselects the root, so no configurations are possible.

CD DigitalCards

USA

BluetoothNavigation

GearboxTest

USB

Europe

GPSAntenna

Ports Manual

Carbody Radio

Car

Gearbox

Automatic

Navigation ⇒ USB
Europe ⇒ Gearbox

GPSAntenna ⇒ USB
Carbody ∧ Gearbox

Gearbox ∧ Radio ⇒ Navigation
Carbody ⇒ Automatic ∧ ¬Bluetooth

Legend:

Mandatory
Optional
Or
Alternative
Dead feature
False-optional feature
Redundant constraint

Figure 2.5: A feature model for a car containing several defects [KAT16].

An example of a feature model that more closely resembles one that might actually
be found in the wild is depicted in Figure 2.5. The feature model contains features for
a car such as a manual versus an automatic gearbox, an optional radio with optional
support for Bluetooth, and more. However, the features Manual and Bluetooth can
never be selected because of the last constraint and the alternative group Manual is
in, making them dead features. Navigation is false-optional because of the second
from last constraint, which always implies the selection of Navigation if its parent



16 2. Background

Radio is selected. The third from last constraint, which forces the selection of
Carbody and Gearbox, is redundant because those two features are already always
selected due to being mandatory children of the root feature Car.

The cause for the remaining defects, i.e., the features Ports, USB, and Automatic
being false-optional and the redundancy of the first two constraints, is left as an
exercise for the reader. This is meant to show that it can be time-consuming to
understand and therefore difficult to fix defects even in such small feature models,
which is why the automated analysis of the feature model is an important tool in
keeping the feature model free from defects.

Indeed, these defects can be formulated as the following satisfiability queries [Ana16],
where SAT is the satisfiability function and fm the feature model formula:

Dead feature ¬SAT (fm ∧ f), where f is the potentially dead feature.

False-optional feature ¬SAT (¬(fm∧(p⇒ f))), where f is the potentially false-
optional feature.

Redundant constraint ¬SAT (¬(fm \ c⇒ c)), where c is the potentially redun-
dant constraint.

Void feature model ¬SAT (fm).

These satisfiability queries can be used to automatically detect the defects. If they
evaluate to true (i.e., the enclosed formula is unsatisfiable), an instance of the re-
spective defect type is found.

2.3.2 Configuration Analysis

Arguably the most important information to know about a given configuration is
whether it is valid. A configuration is valid if and only if the respective product
is part of the software product line [TAK+14]. In other words, the validity of a
configuration decides whether the configuration can be used to identify a product
to be built during product derivation.

Fortunately, this can be checked fairly easily using the feature model’s formula
[Jan08]. To decide the validity of the configuration, it is assumed that each feature
evaluates to true if and only if the feature is selected, i.e., part of the configuration.
Then, the result of the evaluation of the feature model formula is the same as the
validity status of the configuration.

However, only checking whether the configuration is invalid once it is done is not
the only useful analysis over configurations. After all, the process of creating a
configuration is incremental: Each step towards the full configuration produces a
partial configuration of selected, deselected, and undefined features that can be
analyzed before taking the next step [TAK+14].

Figure 2.6 shows an example of a partial configuration of the car feature model
from Figure 2.5. In this case, all but the features CD, DigitalCards, Europe,
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Figure 2.6: An exemplary partial configuration of a car.

and USA are either selected or unselected. These four features have an undefined
selection status and can still be selected or deselected later. However, each step has
the potential of failure by selecting an additional feature that results in an invalid
configuration. For instance, the user could decide to select both Europe and USA
even though they are alternatives to each other.

The underlying, familiar cause of the issue is the complexity of the feature model.
When making a choice to select or deselect a feature, it is difficult to foresee and
keep track of all the side effects [BCH15]. While the effect of selecting a feature is
straightforward for its own structure, e.g., the alternative relationship it is in, the
selection might just logically imply other selections all over different parts of the
feature model once constraints come into play.

Luckily, the incremental and interactive nature of the configuration process leaves
the option of providing automated guidance throughout. To this end, reasoning over
partial configurations is necessary. A partial configuration is considered satisfiable if
and only if there is a valid and full configuration the partial configuration is a subset
of [KTS+17]. If so, more features can still be added to the partial configuration to
eventually reach a configuration that is both valid and full. The satisfiability of a
partial configuration can be decided automatically by deciding whether the feature
model’s formula is satisfiable under the assumptions of the partial configuration.
Thus, contradictions can be found during the configuration process and not just at
the end, when the full configuration is done.

Then, the idea behind the configuration process is to go from one satisfiable partial
configuration to another until a full configuration is found that is valid necessarily.
This can only go wrong by selecting or deselecting a feature that leads to an un-
satisfiable configuration. For instance, once any one child of an alternative group is



18 2. Background

selected, none of the others can be selected without making the configuration unsat-
isfiable. Presenting this information to the user allows such choices to be avoided.

This can be done by using decision propagation to automatically deselect such fea-
tures [HSJ+04, KTS+17]. This means that, if selecting a feature would make the
configuration unsatisfiable, it is deselected automatically to maintain satisfiability.
Likewise, features that have to be selected for satisfiability, e.g., parent features, are
selected automatically as well. In the example from Figure 2.6, the only manually
selected feature is GPSAntenna, whereas all of the other selected or unselected fea-
tures are only so because of automatic decision propagation. Having these selections
made automatically is less time-consuming than having to manually figure out which
selections are legal since it prevents backtracking [HSJ+04].

The satisfiability queries that can be used to detect features that need to be selected
or deselected automatically given a satisfiable partial configuration are the following,
where S is the set of selected features, U the set of unselected features, and f /∈ S∪U
is the feature to be checked:

Automatically selected feature ¬SAT (fm ∧ (
∧

s∈S s) ∧ (
∧

u∈U ¬u) ∧ ¬f)

Automatically unselected feature ¬SAT (fm ∧ (
∧

s∈S s) ∧ (
∧

u∈U ¬u) ∧ f)

Still, even with automatic decision propagation in place, there are often decisions
to be made when finalizing partial configurations. For example, if the parent of an
alternative group is selected, it becomes necessary to select one of the children as
well. At this point, the choice of the desired child is best left to the user instead
of having the algorithm decide on an arbitrary child. Alternatively, the user is free
to deselect the parent again. In both cases, selection and deselection, a previously
open clause is satisfied. Thus, by keeping track of the open clauses, the user choices
can be guided towards a full configuration one clause at a time [PKM+16].

2.3.3 Family-Based Static Analysis of Preprocessor Direc-
tives

The final analysis discussed in this thesis is family-based static analysis [TAK+14].
As the name suggests, a family-based static analysis is a form of static analysis.
A static analysis is one that can be done without running the code. Examples
include checking whether a called method exists and whether its parameters are
of the valid types. However, the task of such an analysis gets more complicated
when software product lines come into play [LvRK+13]. If the static analysis also
takes the variability of the entire software product line into account, it is called a
family-based static analysis.

Such an analysis can for instance be useful if the software product line is imple-
mented using preprocessors. Indeed, many family-based static analyses focus on an-
notations [TAK+14]. A notable example is the detection of preprocessor directives
that do not contribute to the variability of the software product line implementation
[TLSSP11]. In particular, the presence condition of a preprocessor directive might
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be a contradiction, in which case the corresponding code block is never included in
any product and the time spent writing the code possibly wasted. Likewise, the
presence condition might be a tautology, in which case the annotation is redundant
and merely clutters the code. In both cases, the preprocessor directive in question
probably does not achieve what the developer had in mind.

1 public class Car {
2 public static void main(String[] args) {
3 System.out.print("Hel lo , ␣ car ");
4 // #if Gearbox
5 System.out.print("␣with");
6 // #if Manual
7 //@ System.out.print(" a manual");
8 // #elif Automatic
9 System.out.print("␣an␣automatic ");

10 // #if Manual
11 //@ System.out.print(" and impossible");
12 // #endif
13 // #endif
14 System.out.print("␣gearbox");
15 // #endif
16 // #if Bluetooth
17 //@ System.out.print(" and Bluetooth");
18 // #endif
19 System.out.println(" ! ");
20 }
21 }

Listing 2.2: Java code containing invariant presence conditions in Antenna prepro-
cessor directives for the car feature model

Listing 2.2 shows a simple program with Antenna preprocessor directives referring
to the car feature model from Figure 2.5. The preprocessor directives of the pre-
processor directives contain contradictions and tautologies. Indeed, all of them are
invariant and each evaluate to the same value regardless of the configuration. In par-
ticular, Gearbox and Automatic are core features that always need to be selected,
so their code blocks do not have to be annotated with preprocessor directives in
the first place. The features Manual and Bluetooth, by contrast, are dead, leav-
ing their code blocks dead as well. As a result, this code will always print “Hello,
car with an automatic gearbox!” no matter which (valid) feature configuration is
used to configure the preprocessor. Realizing this requires knowledge of the feature
model and the combinations of the many features and expressions used throughout
the preprocessor directives, all of which can easily get too complex for a developer
to always just keep in mind. This is especially true because not all preprocessor
directives might be visible at the same time, yet they are relevant to the expressions
nested in them. Thus, the detection of invariant presence conditions is highly useful
for a correct domain implementation using preprocessors.

Fortunately, contradictions and tautologies can be detected using the following sat-
isfiability queries, where e is the expression of the annotation to be checked and ne
is the conjunction of the expressions in which e is nested in (each of which is negated
if its branch is excluded due to an else-statement):
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Dead code block ¬SAT (fm ∧ ne ∧ e).

Superfluous annotation ¬SAT (fm ∧ ne ∧ ¬e).

If either of these satisfiability queries evaluate to true, the expression e is invariant. It
should be noted that the detection of a dead code block should take precedence over
the detection of superfluous annotations. In other words, speaking of a superfluous
annotation only makes sense if it does not also cause a dead code block. This is
because the annotation containing e is not really the root of the problem if fm∧ne
is already a contradiction.

2.4 Summary

In summary, the Boolean satisfiability problem can be used to express important is-
sues in a software product line. This chapter discussed the three use cases potentially
containing such issues: feature models, which might be void or might otherwise con-
tain dead features, false-optional features, and redundant constraints, configurations,
which might require features to be selected or deselected automatically throughout
their creation process, and finally code containing preprocessor annotations that
might cause dead code blocks or might be superfluous.

The satisfiability queries used to express these issues can be decided using SAT
solvers. Still, a Boolean “yes” or “no” is often not enough to understand what is
causing the issue. Therefore, the next chapter discusses how to find explanations
for these satisfiability queries.
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The various issues that can occur throughout the software product line engineering
process established in the previous chapter can take considerable amounts of time
and effort to solve. Thus, it would be useful if the developer had explanations pro-
viding further insight into the causes of these issues. By explaining why something
is problematic rather than just pointing out that it is, the developer can more eas-
ily identify the causes of the issue that need to be undone to solve the problem.
Ultimately, this makes software product line engineering more cost-effective.

Out of this motivation, this chapter discusses how to tackle the task of finding expla-
nations in a software product line engineering context. To this end, the explanation
approach presented in this thesis is discussed from a conceptual perspective, which
lays the foundations for implementing the approach to actually be able to use it.
More importantly, the advantages and disadvantages of the various design decisions
are highlighted to provide the understanding required for future work related to this
thesis.

First, the definition of explanations and approaches for finding them are discussed
in Section 3.1. In Section 3.1.1, special attention is paid to an explanation approach
based on Boolean constraint propagation that serves as a theoretical foundation
for this thesis. Being of particular prominence to this thesis, this includes a more
detailed analysis of its most significant shortcoming: its incompleteness. This short-
coming is remedied with another approach presented in Section 3.1.2. Finally, the
application of the latter approach to concrete use cases in software product lines is
outlined in Section 3.2 and its subsections: explanations for feature model defects
in Section 3.2.1, for configurations in Section 3.2.2, and for code with preprocessor
directives in Section 3.2.3.

3.1 Finding Explanations

The subsections of Section 2.3 describe several circumstances that can be detected
automatically using a satisfiability query. For instance, deciding whether the feature
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model is void is equivalent to checking whether the Boolean formula of the feature
model is unsatisfiable [KAT16].

However, as the complexity of the model increases, simply being told that something
is the case is often not enough to understand why it is the case. Rather, an accurate
understanding of the situation required to solve the underlying problem in turn also
requires an explanation. For the purpose of this thesis, an explanation is an intuitive
description of the cause of a circumstance. In other words, the goal of an explanation
is to help understand why something is the case.

In the approach presented in this thesis, detecting the circumstance is separate from
explaining it. This means that the algorithm for finding an explanation is only run
once the circumstance to explain has been identified. The alternative would be to
do it all in one go to leverage the internal state of the SAT solver for a performance
boost in finding the explanations.

While reusing the state might make sense when only a single circumstance is de-
tected, doing so becomes problematic when multiple circumstances are detected. In
such such a case, there are two ways to reuse the state: Either the state for each
circumstance is remembered for the explanation algorithm to come or the state is
reused by the explanation algorithm immediately before the state changes when the
next circumstance is detected. The former approach is not a reasonable option since
it causes bad spatial performance. The latter approach makes it necessary to always
find an explanation even if it ends up not being used. When explaining many or
even every single defect of the model, reusing the state enables optimizations that
probably make finding explanations faster. By contrast, separating the tasks of
detecting circumstances and explaining them saves time and memory when many
circumstances are detected, yet only a few of them need to be explained. This sce-
nario, i.e., finding a single explanation, changing the model, and running the analysis
again, seems like the more realistic use case for explanations. After all, there is no
point in presenting all explanations since nobody would want to understand every
single defect before fixing any of them. Once a defect is fixed and the model changes,
the analysis for detecting the defects and therefore the explanation algorithm need
to run from scratch anyway. This speaks in favor of separating the two tasks.

Additionally, while the main argument for merging the two tasks is the performance
of finding an explanation in isolation of other circumstances, separating them also
allows for other types of optimization. For example, the separation makes it pos-
sible to use one SAT solver to detect the circumstance and another for finding the
explanations, where each SAT solver is optimized for its specific task. It is even
possible to optimize the satisfiability query itself.

Another aspect is the separation of concerns. By separating the two tasks, the
algorithm for finding the explanations does not require any knowledge of the algo-
rithm for detecting the circumstance. The advantage is thus the ability to easily
extend applications to provide explanations without touching the existing detection
algorithm.

In short, the explanation workflow starts after the circumstance to explain is de-
tected. The detection algorithm decides one of the Boolean formulas described in
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the subsections of Section 2.3. The result of the detection algorithm presents two
cases: Either the formula is satisfiable or it is unsatisfiable.

If the formula is satisfiable, an extra explanation is not even necessary. After all,
the satisfiability is already proven by any satisfying interpretation found by the
detection algorithm. For example, when deciding whether a feature model is void,
any valid configuration shows that it is not. Indeed, all that can be said about why
the formula is satisfiable is that it contains no clauses that make it unsatisfiable,
which is trivial given the knowledge that the formula is satisfiable. This point
deserves emphasis because it entails that, in order to allow meaningful explanations,
all the circumstances requiring an explanation are best expressed as formulas that
are unsatisfiable rather than satisfiable when the circumstance of interest (such as
the existence of a dead feature) occurs.

Thus, the interesting case is the formula being unsatisfiable. Whereas satisfiability
means absence of contradicting clauses, unsatisfiability means existence of contra-
dicting clauses. Therefore, instead of just stating that there are contradicting clauses,
it is possible to also point out which clauses are contradicting in an unsatisfiable
formula. That means that the task of finding an explanation can be reduced to
explaining the unsatisfiability of the formula by finding the clauses that make it
unsatisfiable.

Of course, these clauses to look for are just a minimal unsatisfiable subset, which is
why minimal unsatisfiable subsets lend themselves well for explanations [GMP08a].
Conveniently, considering the main task of finding an explanation is finding a mini-
mal unsatisfiable subset, a lot of the work can be outsourced to a minimal unsatis-
fiable subset extractor.

The minimal requirements to the minimal unsatisfiable subset extractor used in
finding these subsets for the explanation are soundness and completeness [FdK93].
Soundness denotes that the algorithm never returns incorrect results. In the case
of explanations, soundness implies that the found explanation actually explains the
circumstance. However, while soundness ensures the correct content of the result, it
does not say anything about the result being found in the first place. Completeness
means that the algorithm returns all correct results for all input, though it could
also return an incorrect result for any specific input. Thus, if the algorithm is both
sound and complete, it always returns the correct result if it exists, which is expected
from the explanation algorithm presented in this thesis.

The next two subsections explain two approaches for finding these subsets for ex-
planations. The first one in Section 3.1.1 is sound but incomplete. Therefore, it is
superseded by the sound and complete approach presented in Section 3.1.2.

3.1.1 Explaining Using Boolean Constraint Propagation

A previous approach for finding explanations involves Boolean constraint propaga-
tion [Ana16, KAT16]. Once the detection algorithm has decided that the Boolean
formula describing the circumstance is unsatisfiable, Boolean constraint propagation
is applied as outlined in Section 2.1.1. Here, Boolean constraint propagation is not
used to find a satisfying interpretation since the formula is known to be unsatisfiable
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anyway. Instead, it is used to find a contradiction. More importantly, while it is
doing so, its reasoning is recorded. Along the way to finding the contradiction, the
unit-open clauses that are propagated make up a minimal unsatisfiable subset. By
returning these clauses, an explanation is found.

However, while Boolean constraint propagation is fast and sound, it is unfortunately
also incomplete [Ana16, FdK93]. This means that, even though Boolean constraint
propagation will never incorrectly signal a contradiction when there is none, some-
times it might not signal a contradiction when there is one. Therefore, sometimes
this approach fails to find an explanation for a defect.

More specifically, Forbus and de Kleer [FdK93] identify two classes of formulas for
which Boolean constraint propagation does not give an answer. The first is defined
by refutation incompleteness, which occurs when a contradiction that is implied
logically is not found by Boolean constraint propagation. An example of this is the
following formula:

(A ∨B) ∧ (A ∨ ¬B) ∧ (¬A ∨B) ∧ (¬A ∨ ¬B) (3.1)

This is like requiring every possible truth value assignment at the same time, which
is unsatisfiable:

(A ∨B) ∧ (A ∨ ¬B) ∧ (¬A ∨B) ∧ (¬A ∨ ¬B)

≡ (A ∧ (B ∨ ¬B)) ∧ (¬A ∧ (B ∨ ¬B))

≡ (A ∧ >) ∧ (¬A ∧ >)

≡ A ∧ ¬A
≡ ⊥

However, Boolean constraint propagation cannot find the contradiction in Equa-
tion 3.1 as not a single clause is unit-open. It would have to look at multiple clauses
at the same time to deduce the conflict.

Indeed, as can be seen in Figure 3.1, it is possible to construct feature models with
defects that cannot be explained using only Boolean constraint propagation because
they contain Equation 3.1. In all four examples, the sole constraint is α⇒ f , where
f is Equation 3.1, which makes α false and causes the defect.

Granted, with the contradiction obviously contained in the constraint, these exam-
ples are rather constructed. In contrast, Figure 3.2 is a void feature model that
contains Equation 3.1 in a slightly more opaque manner. Here, the unexplainable
contradiction only reveals itself once the entire feature model is written as a formula
in conjunctive normal form:

Root ∧ (¬A ∨Root) ∧ (¬B ∨ A) ∧ (¬A ∨B) ∧ (A ∨B) ∧ (¬A ∨ ¬B)

Finally, the other class of incompleteness is literal incompleteness [FdK93]. It occurs
when it is possible to deduce the truth value assignment of a variable logically but
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A B C

Root

C ⇒ (A ∨ B) ∧ (A ∨ ¬B) ∧ (¬A ∨ B) ∧ (¬A ∨ ¬B)

(a) Dead feature

A B C

Root

¬C ⇒ (A ∨ B) ∧ (A ∨ ¬B) ∧ (¬A ∨ B) ∧ (¬A ∨ ¬B)

(b) False-optional feature

A B

Root

¬Root ⇒ (A ∨ B) ∧ (A ∨ ¬B) ∧ (¬A ∨ B) ∧ (¬A ∨ ¬B)

(c) Redundant constraint

A B

Root

Root ⇒ (A ∨ B) ∧ (A ∨ ¬B) ∧ (¬A ∨ B) ∧ (¬A ∨ ¬B)

(d) Void feature model

Figure 3.1: Feature models with defects showcasing refutation incompleteness.

A

B

Root

(A ∨ B) ∧ (¬A ∨ ¬B)

Figure 3.2: A void feature model showcasing refutation incompleteness.



26 3. Explaining Satisfiability Queries

not by using Boolean constraint propagation. The following formula is an example
of that:

(A ∨B) ∧ (A ∨ ¬B) (3.2)

These two clauses require the variable A to be true:

(A ∨B) ∧ (A ∨ ¬B)

≡ A ∨ (B ∧ ¬B)

≡ A ∨ ⊥
≡ A

Once more, Boolean constraint propagation fails due to a lack of unit-open clauses.

A

B

C

Root

D

E

A ∧ B
C ∧ D

A ∧ C ⇒ ¬E

(a) Dead feature

A

B

C

Root

D

E

A ∧ B
C ∧ D

A ∧ C ⇒ E

(b) False-optional
feature

A

B

C

Root

D

A ∧ B
C ∧ D

A ∧ C ⇒ Root

(c) Redundant con-
straint

A

B

C

Root

D

A ∧ B
C ∧ D

A ∧ C ⇒ ¬Root

(d) Void feature
model

Figure 3.3: Feature models with defects showcasing literal incompleteness.

Examples of feature models with defects that cannot be explained using only Boolean
constraint propagation due to literal incompleteness are shown in Figure 3.3. These
examples are a bit trickier than the examples for refutation incompleteness as an
analogous constraint would end up being unit-open. Instead, Equation 3.2 is applied
twice, once to make A true and once more to make C true. Then, in each example,
the constraint of the form A∧C ⇒ α renders α true, which causes the defect. None
of these examples can be explained using only Boolean constraint propagation.

3.1.2 Explaining Using Minimal Unsatisfiable Subset Ex-
tractors

Even though Boolean constraint propagation is incomplete, there is a way to extend
it to obtain a complete explanation approach. As mentioned in Section 2.1.1, adding
backtracking to Boolean constraint propagation allows the approach to function as a
complete SAT solver of the Davis-Putnam-Logemann-Loveland kind [DLL62, DP60,



3.2. Explanations for Software Product Lines 27

NOT06]. This way, it can be used to extract the minimal unsatisfiable subsets of
any Boolean formula for the desired explanation [BLMS12].

Indeed, considering that the Davis-Putnam-Logemann-Loveland procedure is just
one of many ways to implement a SAT solver, it makes sense to generalize further.
Instead of relying on this one specific SAT solving approach, the SAT solver is treated
as a black box. This means that, for this explanation approach, it does not mat-
ter how the SAT solver provides minimal unsatisfiable subsets. Which SAT solver
to use is therefore a question to answer during the implementation of the explana-
tion approach, though out of performance concerns, it should support incremental
satisfiability queries [ES03, ALS13].

Treating the SAT solver as a black box has several advantages. First, by not ex-
tending existing SAT solving approaches, the explanation approach is made much
simpler because no knowledge of any specific SAT solving technique is necessary. The
simplicity in turn makes it easier to implement and maintain. Finally, by keeping
the SAT solver exchangeable, it can profit from past, present, and future advances
in SAT solving technology. As such, this is the explanation approach used in this
thesis.

3.2 Explanations for Software Product Lines

To recapitulate, in the approach presented in this thesis, explanations are found by
using a SAT solver to find a minimal unsatisfiable subset of an unsatisfiable formula
describing the circumstance of interest from Section 2.3. By describing the elements
that cause the unsatisfiability, the minimal unsatisfiable subsets assume the role of
the “description” part of the definition of explanations from the beginning of this
chapter.

At this point, the minimal unsatisfiable subset could already be presented to the user.
While it does capture the essence of the unsatisfiability of the formula, a number of
clauses of a Boolean formula with no context hardly pass the “intuitive” requirement
of the definition. The issue is that there are two level of abstractions: the model the
user is working with on the one hand and its representation as a Boolean formula on
the other. When the user asks for an explanation for a circumstance, a reasonable
expectation is that the explanation uses the same level of abstraction as the user,
which is the model being worked on. This assumption is violated when presenting
a Boolean formula.

To overcome this difference and allow for a meaningful interpretation of the clauses,
the clauses need to be transformed back to the abstraction level of the model. Un-
fortunately, for a complex model type, deducing the connection between the two
representations might not always be easy. Indeed, the connection between a Boolean
formula and the feature model it was found from is ambiguous [Ana16, CW07]. After
all, the semantics of the model is lost during transformation to a Boolean formula
for automated analysis. As such, the information of what each clause means in
terms of the model must not be discarded during transformation. Instead, it must
be possible to recall the reason for the inclusion of each clause when presenting the
explanation to the user.
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While the question of how to do this is left to the implementation, the information
that needs to be remembered, that is the meaning of each clause, is already presented
in the following subsections. In all of the following use cases, the circumstance is
formulated as a Boolean formula to be explained with a minimal unsatisfiable subset
plus the meaning of each clause.

3.2.1 Explanations for Feature Model Defects

When explaining a feature model defect, the first thing to do is to formulate the
defect as a satisfiability query like in Section 2.3.1, which invariably involves trans-
forming the feature model to a Boolean formula. The resulting formula in con-
junctive normal form is a conjunction of clauses. An explanation is later found by
extracting a minimal unsatisfiable subset from the formula containing the feature
model formula. However, while the clauses of the minimal unsatisfiable subset do
make up the explanation, when presenting the explanation to the user, not only the
clauses need to be shown but their meaning as well.

Clause Meaning

r r is the root.
¬f ∨ p f is a child of p.
¬p ∨ f f is a mandatory child of p.

¬p ∨ f1 ∨ · · · ∨ fn
f1, . . . , and fn are or-children of p.
f1, . . . , and fn are alternative children of p.

¬f1 ∨ ¬f2 f1 and f2 are alternatives.
ci,j ci is a constraint.

Table 3.1: Meaning of each clause of a feature model.

The meaning of each clause of the feature model formula is listed in Table 3.1,
where ci,j is the j-th clause of the i-th constraint in conjunctive normal form and
the remaining variables are as defined in Section 2.2.2. It should be noted that
a clause can be more specific than a feature structure as a whole. For example,
an or-group results in not only each child implying the parent, but also the parent
implying at least one child. The direction of this relationship should be considered in
the explanation to express as many details of the reasoning denoted by the minimal
unsatisfiable subset as possible. Constraints are a special case in that they may end
up being split into multiple clauses when transformed into conjunctive normal form,
yet any one of the clauses is interpreted to stand for the respective constraint as a
whole because subformulas of constraints cannot be referenced in a feature model.

To get the meaning of each clause, one might hope to be able to simply deduce the
meaning of each clause from the clause alone. Unfortunately, this is not possible. For
instance, the clause stemming from an or-relationship is the same as the one from
an alternative relationship; the only difference is the inclusion of further alternative
clauses, which may or may not in truth be clauses of a constraint instead of an
alternative relationship. Indeed, a clause of a constraint may look the same as
any other regular clause created for a structure in the feature model. Thus, the
implementation of this explanation approach requires a way to store the meaning of
each clause as they are being created from the feature model (see Section 4.3).
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In any case, once the defect is formulated as a Boolean formula that is confirmed to
be unsatisfiable, the explanation algorithm begins. It finds the minimal unsatisfiable
subset of the formula using a SAT solver. Which formula it actually uses depends
on the defect. In general, the formula is the respective one of those listed at the
end of Section 2.3.1. Those are the same formulas already used in Ananieva’s ap-
proach based on Boolean constraint propagation [Ana16]. An exception to this is the
formula for redundant constraints, for which Ananieva combines the explanations
for multiple formulas, specifically one formula for each satisfying assignment of the
constraint in and of itself to avoid negating the redundant constraint. However, this
requires checking multiple formulas, so in this approach, the formula is simplified
into a single one with the same satisfiability.

Table 3.2 lists the expected explanations for the defects in Figure 2.5 already ex-
plained informally in Section 2.3.1. In all cases, the explanation consists of the
clauses of the minimal unsatisfiable subset as well as the meaning of each clause.
Being explanations, these example results should be self-explanatory. However, for
the sake of simplicity, explanations do not include assumptions made such as that
the parent feature is selected when talking about a false-optional feature.

3.2.2 Explanations for Configurations

The process of finding explanations for configurations is analogous to the one for
defects in feature models. First, the circumstance to explain is expressed as a sat-
isfiability query which is in conjunctive normal form and unsatisfiable. However,
instead of only considering the feature model, clauses representing selected and un-
selected features from the (full or partial) configuration are included, too.

Throughout the configuration process, each feature may be selected or deselected
manually by the user. These manual configuration choices require no explanation
as they do not involve any reasoning unknown to the user. Still, they might cause
other features to be selected or deselected automatically to maintain satisfiability as
discussed in Section 2.3.2. These automatic selections do involve automated reason-
ing over both the manual decisions and the feature model. Because the reasoning
behind these automatic decisions might not always be obvious, it might help to have
them explained.

For explaining why a feature is automatically selected or automatically unselected,
the question becomes why it would not be possible to make a different decision
regarding the selection of the feature than has already be done automatically. After
all, if the opposite decision leads to an invalid configuration, the automatically made
decision is the only valid choice left. This is in turn the same as checking the
satisfiability query from Section 2.3.2.

However, only manually selected or manually unselected features need to be included
as part of the configuration because automatic ones (except for the one being cur-
rently explained) can be deduced anyway. In fact, the automatically selected or
automatically selected features must not be included because, otherwise, the ex-
planations for automatic decisions could lead to circular reasoning between each
other.
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Clause Meaning

Car Car is the root.
¬Car ∨ Carbody Carbody is a mandatory child of Car.
¬Carbody ∨ ¬Bluetooth Carbody ⇒ Automatic ∧ ¬Bluetooth is a

constraint.

(a) Explanation why Bluetooth is a dead feature.

Clause Meaning

Car Car is the root.
¬Car ∨ Carbody Carbody is a mandatory child of Car.
¬Carbody ∨ Automatic Carbody ⇒ Automatic ∧ ¬Bluetooth is a

constraint.
¬Manual ∨ ¬Automatic Manual and Automatic are alternatives.

(b) Explanation why Manual is a dead feature.

Clause Meaning

Car Car is the root.
¬Car ∨Gearbox Gearbox is a mandatory child of Car.
¬Gearbox∨¬Radio∨Navigation Gearbox ∧ Radio ⇒ Navigation is a con-

straint.

(c) Explanation why Navigation is a false-optional feature.

Clause Meaning

Car Car is the root.
¬Car ∨ Carbody Carbody is a mandatory child of Car.
¬Car ∨Gearbox Gearbox is a mandatory child of Car.

(d) Explanation why the third from last constraint is redundant.

Table 3.2: Explanations for feature model defects in Figure 2.5.
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Then, a minimal unsatisfiable subset of the formula is found using any minimal
unsatisfiable subset extractor, e.g., a SAT solver or Boolean constraint propagation.
Each resulting clause stems from either the feature model with the meaning from
Table 3.2 or the configuration with the meaning always being the selection state of
the feature, i.e., “f is selected”for the clause f and“f is unselected”for the clause ¬f .
For explanations of automatic selections, this always refers to the manual selection
state.

Clause Meaning

¬Navigation ∨Radio Radio is a child of Navigation.
¬GPSAntenna ∨Navigation Navigation is a child of GPSAntenna.
GPSAntenna GPSAntenna is selected.

(a) Explanation why Radio is automatically selected.

Clause Meaning

Car Car is the root.
¬Car ∨ Carbody Carbody is a mandatory child of Car.
¬Carbody ∨ ¬Bluetooth Carbody ⇒ Automatic ∧ ¬Bluetooth is a

constraint.

(b) Explanation why Bluetooth is automatically unselected.

Clause Meaning

¬GPSAntenna ∨Navigation GPSAntenna is a child of Navigation.
GPSAntenna GPSAntenna is selected.

(c) Explanation why Navigation is automatically selected.

Table 3.3: Explanations for automatic configuration selections in Figure 2.6.

Table 3.3 shows various explanations for why certain features are automatically
selected or automatically unselected in the car configuration from Figure 2.6. The
explanation for why Radio is automatically selected (Table 3.3a) most notably states
the selection of the feature GPSAntenna as a reason. The other two reasons refer
to the feature model as known from Section 3.2.1.

Indeed, the entire explanation might reference only the feature model and never
the configuration, as seen in the explanation for Bluetooth being automatically
unselected (Table 3.3b). This is a special case of explaining why the dead feature
Bluetooth cannot be selected. The explanation of its selection status is the same as
the earlier explanation for why Bluetooth is dead (Table 3.2a). This is because the
configuration cannot have a bearing on the selection status of a dead feature.

Still, in some cases, by taking the configuration into account, a configuration expla-
nation might be different from the corresponding explanation for the feature model
defect. This is seen in the explanation for Navigation (Table 3.3c), which is shorter
because it directly references the selection status of its parent GPSAntenna instead
of first having to deduce the truth value through various constraints and structures
in the feature model (Table 3.2c).
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On the one hand, referencing the configuration might make the explanation of dead
and false-optional features shorter and more comprehensible. On the other hand, in
these cases, the configuration is not really involved in the automatic selection of the
feature, so it might be misleading to reference the configuration as if it did. Thus,
implementations of this approach might choose to first check whether the feature is
dead or false-optional instead of finding an explanation involving the configuration.

3.2.3 Explanations for Preprocessor Directives

The final use case for explanations considered in this thesis is that of code annotated
with preprocessor directives. This use case is more complex because explanations
not only reference the feature model but also the various preprocessor directives.
The preprocessor directives might be nested, thus implying or excluding each other.
They could be defect in and of themselves or in conjunction of the feature model.
At the same time, explanations are particularly relevant here. For example, the
user might not even be aware of all the many nested expressions due to them being
displaced by the code they annotate. To the author’s knowledge, this is the first time
explanations are found for defects in preprocessor directives in a software product
line context.

Specifically, this section revolves around finding explanations for the invariant ex-
pressions discussed in Section 2.3.3. As before, finding explanations in this context
first requires an unsatisfiable satisfiability query from which a minimal unsatisfiable
subset is extracted. The used satisfiability queries are those from that chapter. The
resulting clauses reference either the feature model or the propositional expressions
of the preprocessor directives used throughout the code.

Contradictions are checked before tautologies because a tautology nested inside a
contradiction should still be considered a contradiction. After all, its corresponding
code block will never be selected, which is the issue related to contradictions as
opposed to tautologies. Once the issue is identified, a minimal unsatisfiable subset
is extracted as usual.

1 // #if Radio
2 // #if !Radio
3 // #endif
4 // #endif
5
6 // #if Manual
7 // #else
8 // #endif
9

10 // #if GPSAntenna | Navigation
11 // #if !USB
12 // #endif
13 // #endif

Listing 3.1: Antenna preprocessor directives with invariant presence conditions for
the car feature model

Listing 3.1 shows a number of Antenna preprocessor directives (without actual code
blocks for the sake of simplicity), all of which except those in Line 1 and 10 have
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Clause Meaning

Radio Radio is a parent expression.

(a) Explanation why ¬Radio in Line 2 is a contradiction.

Clause Meaning

Car Car is the root.
¬Car ∨ Carbody Carbody is a mandatory child of Car.
¬Carbody ∨ Automatic Carbody ⇒ Automatic ∧ ¬Bluetooth is a

constraint.
¬Manual ∨ ¬Automatic Manual and Automatic are alternatives.

(b) Explanation why Manual in Line 6 is a contradiction and why its negation through
the else-statement in the next line is a tautology.

Clause Meaning

¬Navigation ∨ USB Navigation⇒ USB is a constraint.
¬GPSAntenna ∨ USB GPSAntenna⇒ USB is a constraint.
GPSAntenna ∨Navigation GPSAntenna ∨ Navigation is a parent ex-

pression.

(c) Explanation why ¬USB in Line 11 is a contradiction.

Table 3.4: Explanations for invariant presence conditions in Listing 3.1.

invariant presence conditions. They all reference the car feature model from Fig-
ure 2.5. The explanations for them can be found in Table 3.4.

The first contradiction in Line 2 is as simple as possible. In Line 1, Radio is required
to be selected for the inclusion of the code block from Line 2 to 3. At the same time,
Radio is required to be deselected in Line 2. As such, the inner expression is a
contradiction. The explanation (Table 3.4a) simply refers to the outer expression it
is nested in.

However, the feature model can also come into play when evaluating expressions for
preprocessor directives. Line 6 requires the dead feature Manual to be selected,
but being dead, this is not possible. As such, the explanation (Table 3.4b) explains
why the feature Manual is dead. The same explanation can be used for why the
else-statement in the next line is superfluous as the negation of a contradiction is a
tautology.

Finally, the most interesting case is when both the feature model and other prepro-
cessor directives come together and form an invariant presence condition. This is the
case with the contradiction in Line 11. Its parent expression requires GPSAntenna
or Navigation to be selected. However, as the explanation points out (Table 3.4c),
the feature model contains constraints which enforce the selection of USB in either
case. With USB thus always being unselected in this code block, ¬USB becomes
a contradiction.
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3.3 Summary

To sum up, the previous approach for finding explanations using Boolean constraint
propagation is incomplete. The approach presented in this thesis overcomes this
issue by using any SAT solver as minimal unsatisfiable subset extractor. After the
satisfiability query to explain is identified as unsatisfiable, a minimal unsatisfiable
subset is extracted from its underlying formula. By remembering the meaning of
each clause specific to the use case, a meaningful explanation can be presented to
the user.

Whereas the previous approach only covers feature model defects, the approach
presented in this thesis additionally handles configurations as well as code with
preprocessor directives. More importantly, it can be applied to any use case in
software product line engineering given the satisfiability query to explain and the
meaning of each clause.

However, to make quantitative comparisons between this approach and the one based
on Boolean constraint propagation, it first needs to be implemented. This is covered
in the next chapter.



4. Implementation in FeatureIDE

The explanation finding algorithm designed in the previous chapter has been im-
plemented in the course of this thesis in the software product line development tool
FeatureIDE [MTS+17, TKB+14]. This chapter discusses the inner workings of the
implementation as well as the reasoning behind the various design choices specific
to the implementation. This chapter is mainly targeted at developers of FeatureIDE
seeking to modify or extend the implementation presented here but would also be
of use to developers wishing to apply this approach to other applications. In any
case, an understanding of object-oriented programming is required.

Specifically, Section 4.1 serves as an introduction to FeatureIDE and why it is a
useful foundation for the implementation. The core of the implementation, the data
types of explanations and finding them using minimal unsatisfiable subset extrac-
tors, is discussed in Section 4.2. This includes the three use cases of feature model
defects (Section 4.2.1), configurations (Section 4.2.2), and preprocessor directives
(Section 4.2.3). For finding these explanations, a trace model and a solver are re-
quired, discussed in Section 4.3 and Section 4.4 respectively. Finally, Section 4.5
details how the explanations are displayed visually for the users of FeatureIDE.

It should be noted that some of these sections make use of class diagrams that do
not model every single detail of the implementation but rather illustrate the classes
and their connections for a more general overview. For example, even though at
several points the implementation uses private class members with public accessors
and mutators as is common in Java, the class diagram containing such a class lists
it as a public class member instead. Moreover, even though often times subclasses
override methods of the superclass with a different implementation or by specifying a
more specific return type, methods redeclared in a subclass are not redeclared in the
class diagram. Finally, if a class has been explained in another class diagram already
but it is referenced by some other class in another class diagram, the members of
the referenced class are omitted.
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4.1 FeatureIDE

FeatureIDE [MTS+17, TKB+14] consists of a number of plug-ins for Eclipse, a
widespread and easily extensible integrated development environment most Java
developers are familiar with. Being an open-source project, the code of FeatureIDE
and therefore the code of this implementation can be found online.1 This implemen-
tation is part of FeatureIDE version 3.4.0.

FeatureIDE comes with several useful functionalities that the implementation builds
upon and integrates into such as a feature model editor, a configuration editor
[PKM+16], and a text editor that recognizes preprocessor directives referencing the
feature model [MTS+16].

Since FeatureIDE is written in Java, the programming language of choice is Java. For
one, many of Java’s design goals [GM96] such as simplicity and portabiltiy overlap
with those of the implementation. Moreover, Java offers a wide range of preexisting
functionalities from not only its internal API but also from external frameworks and
libraries.

In particular, FeatureIDE uses Eclipse’s Graphical Editing Framework, which is a
model-view-controller [GHJV95] framework for such model-based graphical editors.
That is, FeatureIDE is split into three parts with different purposes: the model,
which holds the data to be edited such as a feature model, the view, which determines
how this data is displayed to the user, and finally the controller, which manages
the interaction between the two by translating user input in the graphical editor
to actions in the model and updating the view when the model changes. This
separates the model from the view, therefore reducing the side-effects and thus
effort of changing, maintaining, or even replacing parts of the application.

This is important because most of the effort of this implementation is geared towards
the model. After all, finding explanations involves reasoning over models such as
feature models, configurations, and code annotated with preprocessor directives.
However, an explanation is useless without it being noticed by the user, so of course
the implementation also includes additions to the view and the controller, discussed
in detail in Section 4.5.

FeatureIDE also comes with its own library for propositional formulas, Prop4J,
which is used throughout the implementation to store and transform formulas. In
general, when a formula is used at any point in the implementation, this refers to
an instance of Prop4J’s class Node.

4.2 Generalizing Explanations

A major contribution of this implementation is the explanations architecture. It
resides in FeatureIDE’s central plug-in for feature models and other related models
such as configurations, which is called de.ovgu.featureide.fm.core. Besides the
definition and implementation of these models, this plug-in also provides auxiliary
functionalities such as feature model analyses and format transformations. Being

1https://github.com/FeatureIDE/FeatureIDE/

https://github.com/FeatureIDE/FeatureIDE/
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a form of analysis that also involves feature models, the functionality for finding
explanations naturally lives in this plug-in, specifically in the subpackage explana-

tions. This is the same package in which Ananieva [Ana16] originally implemented
FeatureIDE’s first approach for finding explanations using Boolean constraint prop-
agation.

Abstract Explanations

As the approach of Ananieva only considers the use case of feature model defects,
their semantics were hardcoded into the data structures and algorithms. By con-
trast, the approach presented in this thesis is not limited to only feature model
defects. Instead, all circumstances that can be formulated as a satisfiability query
are considered. For that reason, the concept of explanations is generalized in this
thesis. This means that the abstract concept of an explanation as defined at the
beginning of Section 3.1 is separated from its concrete use cases such as feature
model defects.

ExplanationExplanation

+subject: Object

+addExplanation(explanation: 
Explanation): void

+reasonCounts: Map<Reason, Integer>
+explanationCount: int

+setCounts(explanation: Explanation): 
void
+getWriter(): ExplanationWriter

+addReason(reason: Reason): void
+addUniqueReason(reason: Reason): void

ExplanationWriterExplanationWriter

+writingReasonCounts: boolean

+getString(): String

+symbols: String[]

+getHeaderString(): String

#getMissingExplanationString(): String
#getIntroductionString(): String

+getCircumstanceString(): String
+getReasonString(reason: Reason): String

#getSubjectString(): String
#getAttributeString(): String
#getConcreteReasonString(reason: 
Reason): String

<<Interface>>

ExplanationCreator

<<Interface>>

ExplanationCreator

+getExplanation(): Explanation

ReasonReason

+getConfidence(): float

1 *1 *

1 1
writes

1 1
writes

fm config preprocessors

<<Interface>>

ExplanationCreatorFactory

<<Interface>>

ExplanationCreatorFactory

impl

+subject: Object

Figure 4.1: Class diagram for explanations.

The separation of abstract and concrete explanations is reflected in the implementa-
tion. Figure 4.1 shows the direct contents of the root level package for explanations,
which holds all of the interfaces and abstract classes for abstract as opposed to con-
crete explanations. All of these types are separate of any use case and need to be
extended to be filled with the semantics of a specific use case. Not only does this
grant the usual benefits of polymorphism such as modularity, type safety, and the
reduction of code duplication, but the explanation finding algorithm can be easily
extended to support future use cases that are not considered in this thesis.

Concrete Explanations

The subpackages in the bottom left corner of Figure 4.1, i.e., fm, config, and pre-

processors, handle these various concrete use cases and are detailed in Section 4.2.1,
Section 4.2.2, and Section 4.2.3 respectively. They all reside in this package merely
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due to the fact that they all share a usage of the feature model. In theory, these
packages for concrete use cases could live anywhere, even an entirely different plug-
in, and implement explanations for any conceivable circumstance. In other words,
the semantics of these explanations are extensible.

Oracles

The semantics of the explanations are just one dimension of extensibility. In addi-
tion, the explanations are agnostic to the concrete algorithm used in finding them.
This is where the impl package comes into play. It holds the implementations of
algorithms that can be used to reason over circumstances in an abstract way, i.e.,
without being bound to the specific semantics of the use case such as feature model
defects. This of course means that these algorithms can be used in finding the con-
crete explanations of the aforementioned packages. Henceforth, such algorithms are
called “oracles”, which, in the scope of this thesis, are either a minimal unsatisfiable
subset extractor or Boolean constraint propagation.

By this description, one might be lead to believe that the minimal unsatisfiable
subset extractors fundamental to the explanation finding approach presented in this
thesis live inside this impl package. In truth, the minimal unsatisfiable subset
extractors are abstracted even further and are hidden behind a solver facade living
in another package as detailed in Section 4.4, which, if anything, just proves the
extensibility of this architecture.

The only oracle that actually resides in the impl package is the logical truth main-
tenance system of the previous explanation approach based on Boolean constraint
propagation [Ana16]. Of course, in order to be compatible with the generalized ex-
planation finding structure, it had to be refactored considerably, part of which was
already done as part of a project work [Gü16]. As a result, it can now be used to
find explanations not only for feature model defects but for other use cases as well
because it essentially just returns the minimal unsatisfiable subset of the formula
it is given as input. Unfortunately, its incompleteness described in Section 3.1.1
remains an issue that is motivation enough to use a dedicated minimal unsatisfiable
subset extractor in its place.

Data Types: Explanation and Reason

To finally go into the details of the architecture, the abstract class Explanation is the
core data structure exposed to clients such as the feature model editor. To recall, an
explanation is in essence a minimal unsatisfiable subset for which the semantics of the
model it originates from is retained. The difference between a minimal unsatisfiable
subset and an explanation is that the latter comes with additional semantics.

Part of the semantics is knowing what the explanation is even about in the first place.
Every instance of Explanation revolves around a subject, which is an object that
could be anything from a feature in a feature model to a selection in a configuration.
However, the subject alone does not describe the circumstance to be explained, as
for example an explanation for a feature could be about the feature being dead
or alternatively about it being false-optional. As such, the subject also has an
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attribute, e.g., dead or false-optional. The attribute is captured via polymorphism,
meaning every type of circumstance to be explained comes with its own subclass of
Explanation. Compared to the previous implementation of storing a value of an
enumeration of all known explainable circumstance types, storing this information
via polymorphism is more extensible.

To account for the part of the definition of explanations besides semantics, i.e., the
aspect of them being minimal unsatisfiable subsets, instances of Explanation con-
sist of any number of instances of Reason. A reason could theoretically be anything,
though given the interpretation of minimal unsatisfiable subsets used throughout
this thesis, it always corresponds to exactly one of the clauses of the minimal un-
satisfiable subset the explanation represents. The set of all reasons that makes up
the explanation thus capture the minimal unsatisfiable subset. A reason could for
example refer to a relationship between features in a feature model or the selection
state of a feature in a configuration. In any case, this information is once more cap-
tured using polymorphism, meaning there is a subclass of Reason for each type of
reason, e.g., whether it stems from a feature model or a configuration. By chaining
these reasons together, coherent reasoning emerges.

Explanations may also be merged while retaining the information of how often each
reason was added in total. This is useful when multiple explanations for the same
circumstance are found. This is the case for the previous approach based on Boolean
constraint propagation, which finds multiple explanations and picks the shortest one.
By remembering how often all of these other explanations were found as well as the
reasons contained in these explanations, it is possible to deduce which reasons are
part of every explanation and therefore likely a key reason in the explanation of the
circumstance. In contrast, reasons that are not part of every explanation are less
relevant as they play an exchangeable role in the causation of the circumstance. The
numeric percentage of all the found explanations that include a given reason is thus
called the reason’s confidence.

Transformation to Natural Language: ExplanationWriter

Given all this information, instances of Explanation can be transformed into model
space for the user to understand more easily. A straightforward target representa-
tion is natural language. The transformation to natural language is the job of the
abstract class ExplanationWriter as handling it all in the toString() method of
the class Explanation instead would get messy quickly. Each instance of Explana-
tion knows which concrete subclass of ExplanationWriter in turn knows all the
semantic details of properly transforming that instance of Explanation. For exam-
ple, an instance of ExplanationWriter for an instance of Explanation explaining
a dead feature would know that the subject can be written as the feature name
and that the attribute can be written as “dead”. In any case, the explanation in
natural language is an introduction describing the circumstance to be explained,
i.e., the subject and its attribute, followed by a series of reasons in natural language
transformed similarly. It may also print additional data such as each reason’s con-
fidence. Moreover, the way any potentially occurring formulas are printed may be
customized by providing a different set of symbols for the operators.
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Finding Explanations: ExplanationCreator

Finding meaningful explanations is the task of the interface ExplanationCreator.
Besides an accessor and a mutator for the subject of the explanation to be found, the
only method it defines is getExplanation(). This might come across as somewhat
surprisingly simple compared to the complexity of the other classes and the task
at hand. Less surprisingly, though, this complexity is as always handled through
polymorphism in the subclasses. Extending interfaces define additional members
to be able to actually receive the crucial information such as the subject of the
explanation to be found. The concrete subclasses of ExplanationCreator are the
core of the explanation finding algorithm as they take the circumstance in model
space, translate it to a satisfiability query, and construct a sensible explanation from
it. As detailed in the following subsections, this is done in the combination of the
two dimensions of firstly the concrete use case (feature models vs. configurations
vs. preprocessors) and secondly the oracle used to find them (minimal unsatisfiable
subsets extractor vs. Boolean constraint propagation).

Because there are multiple approaches for finding explanations, each use case ad-
ditionally defines its own abstract factory [GHJV95] that implements the tagging
interface ExplanationCreatorFactory. Each of these abstract factories is then
subclassed by concrete factories that only return concrete instances of Explana-

tionCreator that use the same underlying algorithm. This way, switching out the
approach for finding explanations for another one is as easy as using a different
concrete factory.

The following subsections details how explanations are found for the three concrete
use cases considered in this thesis: feature model defects in Section 4.2.1, configu-
rations in Section 4.2.2, and preprocessor directives in Section 4.2.3.

4.2.1 Explanations for Feature Model Defects

The subpackage fm holds all of the code necessary for finding explanations that
involve a feature model. This means two things. First and foremost, it contains the
functionality necessary for finding explanations for feature model defects. Secondly,
however, its classes may also be extended by classes of use cases for which the
explanations involve a feature model, most notably configurations and preprocessor
directives. While this distinction entails some finer implementation details, it mostly
becomes relevant in the sections for these other use cases, and so this section is simply
dedicated to the implementation of explanations of feature model defects.

Figure 4.2 shows the various classes of the subpackage fm in relation to their ab-
stract superclasses detailed in the previous section. They all apply the semantics
of the concrete use case of feature models to the abstract classes they extend. In
other words, whereas the previously discussed abstract explanations do not have
any meaning on their own, the concrete explanations discussed from this point on
provide this meaning by referring to a tangible feature model.

Data Types: FeatureModelExplanation and FeatureModelReason

The abstract class FeatureModelExplanation represents explanations involving a
feature model. As a subclass of Explanation, instances of FeatureModelExplana-
tion may contain any number of instances of Reason. For explanations of feature
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Figure 4.2: Class diagram for explanations for feature models.
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model defects, those are in particular instances of FeatureModelReason. These rea-
sons simply refer to a trace of the trace model described in Section 4.3. In essence,
a trace maps a clause of the feature model as a formula in conjunctive normal form
to the feature model element it originates from. That way, the semantic connection
between the feature model and the clauses of the minimal unsatisfiable subset the
explanation consists of is maintained. This is necessary for the explanation to be
transformed back into the model space that the user is comfortable with.

The FeatureModelExplanation class also provides a helper function for figuring
out which feature model elements are affected by the explanation. A feature model
element is considered to be affected by the explanation if it is somehow involved in
the explanation, i.e., it is the subject of the explanation or the subject of one of
its reasons. This is useful for quickly working with them in the client such as the
feature model editor, in which affected elements are highlighted (cf. Section 4.5.1).

Each concrete subclass of FeatureModelExplanation in this package is responsi-
ble for one of the specific types of feature model defects mentioned in Section 2.3.1.
DeadFeatureExplanation explains dead features. It also explains void feature mod-
els if the root feature is dead as the underlying formula is the same as the one that
would be used for void feature models if it were handled separately anyway (cf. Sec-
tion 2.3.1). Next, FalseOptionalFeatureExplanation explains false-optional fea-
tures. Finally, RedundantConstraintExplanation explains redundant constraints.
It also explains transitive constraints [KAT16] if the constraint in question is implic-
itly defined [AKTS16] through feature model slicing [Kan16, KSTS16]. In all three
cases, the subject accessors are overridden to return the specific type of subject
instead of simply Object.

Transformation to Natural Language: FeatureModelExplanationWriter

The same hierarchical pattern can be found with the abstract class FeatureMod-

elExplanationWriter. Its concrete subclasses each write instances of the concrete
subclasses of FeatureModelExplanation in natural language. For example, Dead-
FeatureModelExplanationWriter implements the abstract getSubjectString()

by describing the dead feature that is the subject of the explanation with its name or
alternatively by returning “feature model” if the explanation is about a void feature
model. Similarly, getAttributeString() either returns “dead” or “void”. The rest
of the implementation remains the same as in FeatureModelExplanationWriter

and ExplanationWriter. Thus, this architecture results in as little code duplica-
tion as possible by only requiring the bare minimum of the knowledge specific to the
circumstance type of each concrete class.

Finding Explanations: FeatureModelExplanationCreator

The only interfaces in this package are the ones for finding explanations of these
three concrete defect types. The interface FeatureModelExplanationCreator ex-
tends ExplanationCreator with the feature model context and hence defines an
accessor and a mutator for it. The three interfaces that in turn extend it, DeadFea-
tureExplanationCreator, FalseOptionalFeatureExplanationCreator, and Re-

dundantConstraintExplanationCreator, handle the various defects by assuming
a more specific subject type.
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These three interfaces are the abstract products of the abstract factory [GHJV95]
FeatureModelExplanationCreatorFactory. The concrete factory and the concrete
products are defined in the subpackage impl. This strict separation of the interfaces
and their implementation is to make the different approaches for finding explanations
interchangeable.

The subpackage impl is visualized in Figure 4.3. It contains two further subpack-
ages, mus and ltms, for the implementation of finding explanations of feature model
defects using either a minimal unsatisfiable subset extractor or a logical truth main-
tenance system based on Boolean constraint propagation.

Finding Concrete Explanations: AbstractFeatureModelExplanationCreator

The only class that lives on the root level of the package impl is the abstract class
AbstractFeatureModelExplanationCreator, which provides some core function-
alities that are used by both approaches. In particular, it manages the various
resources used in finding explanations. These are the feature model as a formula
in conjunctive normal form and the trace model to retain the feature model seman-
tics in the formula (cf. Section 4.3). To generate these two, it requires the feature
model as well as an instance of AdvancedNodeCreator, which not only handles the
transformation but also builds the trace model while doing so.

In order to avoid unnecessary computations, these resources are cached by the class
AbstractFeatureModelExplanationCreator. In particular, the transformation of
the feature model to a formula in conjunctive normal form is a rather costly op-
eration and definitely needs to be cached. The trace model is cached in the class
AdvancedNodeCreator already, but is cached by reference here as well for consis-
tency and to remain agnostic of such implementation details of other classes that
might change in the future. Finally, even the instance of AdvancedNodeCreator is
cached.

To ensure correctness, these cached resources need to be kept up-to-date. Fortu-
nately, the dependency graph of the resources is fairly simple. When the feature
model is changed, all of the other resources need to be refreshed. However, to avoid
unnecessarily generating all these resources whenever the feature model is changed,
the class relies heavily on lazily generating resources when needed as opposed to
greedily as soon as possible. This is achieved by marking the resource as dirty by
setting it to null and recreating it in the accessor method when this state is en-
countered. That way, committing to costly operations such as generating the feature
model formula is done as often as necessary and as rarely as possible.

Apart from managing resources, the AbstractFeatureModelExplanationCreator

also provides some functionality for building an explanation from a minimal unsatis-
fiable subset. The method getExplanation(Set<Integer>) takes a set of clauses,
i.e., the minimal unsatisfiable subset, where each clause is referenced by its index in
the formula, and returns an explanation containing one reason for each clause. For
feature model defects, these reasons are instances of FeatureModelReason, which
just contain these traces taken from the trace model. Naturally, in order to do so, it
needs to construct a new instance of some concrete subclass of Explanation. This is
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Figure 4.3: Class diagram for the implementation of explanations for feature models.
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what the abstract method getConcreteExplanation() does. It needs to be imple-
mented by the concrete subclasses of AbstractFeatureModelExplanationCreator
to return a new and empty but concrete explanation with the subject already set.

Finding Concrete Explanations Using a Minimal Unsatisfiable Subset Ex-
tractor: MusFeatureModelExplanationCreator

The concrete subclasses of AbstractFeatureModelExplanationCreator all find ex-
planations for a specific type of feature model defects using either a minimal un-
satisfiable subset extractor or a logical truth maintenance system based on Boolean
constraint propagation and are implemented in the subpackages mus and ltms re-
spectively. However, being the focus of this thesis, only the former is discussed.
Besides, the latter is completely analogous to the former anyway and more or less
only uses a different oracle and finds not just one explanation but multiple ones to
choose the shortest one among them.

Indeed, the oracle is the focus of the intermediate abstract class MusFeatureModel-
ExplanationCreator that extends the class AbstractFeatureModelExplanation-
Creator. The oracle is an instance of MusExtractor (cf. Section 4.4) and does the
actual reasoning over the formula by extracting a minimal unsatisfiable subset from
it. The oracle is cached just like the resources of the superclass. It is reset when
the feature model formula changes and is recreated when needed, i.e., when an ex-
planation is being found. The feature model formula is automatically added upon
creation of the oracle as all defects use the feature model formula.

All that is left to do for the three concrete subclasses of MusFeatureModelExplana-
tionCreator is to add the remaining clauses of the satisfiability query to the oracle,
execute it to obtain the minimal unsatisfiable subset, and return the explanation
found using the method getExplanation(Set<Integer>).

MusDeadFeatureExplanationCreator finds explanations for dead features. It adds
the assumption to the oracle that the dead feature is false before executing the satis-
fiability query for the minimal unsatisfiable subset. To explain void feature models,
the root feature is used as the dead feature, but MusDeadFeatureExplanationCre-
ator is not aware of this. It simply treats the root feature like any other dead
feature. In any case, after the execution of the query, the assumption is removed
from the oracle using the method MutableSatSolver#pop() detailed in Section 4.4.
By only removing the assumption, the feature model formula does not have to be
added again when finding the explanation for the next dead feature in the same
feature model. Instead, only the assumption changes. This leaves the oracle the
option to make use of incremental SAT solving techniques for a performance boost
[ES03].

MusFalseOptionalFeatureExplanationCreator explains false-optional features. It
adds two assumptions to the oracle: that the false-optional feature is false and that
its parent feature is true. From that point on, it works the same way as MusDead-

FeatureExplanationCreator.

Finally, MusRedundantConstraintExplanationCreator finds explanations for re-
dundant constraints. However, because the satisfiability query includes the formula
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of the feature model without the redundant constraint, the generation of the feature
model formula resource is done differently. The instance of AdvancedNodeCreator

is told not to include any constraints in the formula. Instead, the constraints are
added to the oracle manually when finding the explanation so the redundant con-
straint can be negated before being added. All added constraints are also removed
afterward to reset the state of the oracle for the next call to getExplanation().

These three concrete subclasses of MusFeatureModelExplanationCreator are the
concrete products of the concrete factory MusFeatureModelExplanationCreator-

Factory. As such, clients can easily access them together using the factory methods
of MusFeatureModelExplanationCreatorFactory instead of explicitly calling their
constructors.

4.2.2 Explanations for Configurations

The next use case for explanations are configurations. Due to the strong link be-
tween configurations and feature models, finding explanations for configurations
automatically involves finding explanations for feature models. Therefore, finding
explanations for configurations reuses some of the classes for finding explanations
for feature models.

Figure 4.4 shows the contents of the subpackage config, which deals with finding
explanations for configurations. The extension pattern is the same as for feature
models, except that, instead of three concrete explanation types, there is only one,
specifically for automatically selected and automatically unselected features.

Data Types: ConfigurationExplanation and ConfigurationReason

Unsurprisingly, the abstract class ConfigurationExplanation is an extension of
Explanation holding the configuration context. Likewise, just as FeatureModel-

Reason contains an element of the feature model, ConfigurationReason contains
an element of a configuration, i.e., a feature selection. The feature selection object
keeps track of automatic as well as manual selections, though only manual selec-
tions are used as reasons, whereas automatic ones are explained as pointed out in
Section 3.2.2. These explanations of automatic selections are represented by the
concrete class AutomaticSelectionExplanation, which assumes that the subject
is the automatic selection part of a feature selection object.

Transformation to Natural Language: ConfigurationExplanationWriter

The transformation to natural language is accomplished using the abstract class
ConfigurationExplanationWriter. When transforming an instance of Configu-

rationReason, it simply refers to the manual selection state of the contained feature
selection. However, since instances of ConfigurationExplanation can hold not
only instances of ConfigurationReason but also instances of FeatureModelRea-

son, ConfigurationExplanationWriter needs to be capable of transforming these
as well. To this end, it extends FeatureModelExplanationWriter and delegates the
transformation to its superclass to handle any instances of FeatureModelReason it
encounters. An alternative to this design would be to have a writer type for each
reason type, i.e., FeatureModelReasonWriter and ConfigurationReasonWriter.
Creating another object for each item of the explanation just to transform it to
natural language is rather excessive, though.



4.2. Generalizing Explanations 47

Ex
pl

an
at

io
n

Ex
pl

an
at

io
n

Ex
pl

an
at

io
nW

ri
te

r
Ex

pl
an

at
io

nW
ri

te
r

<
<I

n
te

rf
a

ce
>

>

Ex
pl

an
at

io
nC

re
at

or

<
<I

n
te

rf
a

ce
>

>

Ex
pl

an
at

io
nC

re
at

or

Co
nf

ig
ur

a
ti

on
Ex

pl
an

at
io

n
Co

nf
ig

ur
a

ti
on

Ex
pl

an
at

io
n

C
on

fi
gu

ra
ti

o
nR

ea
so

n
C

on
fi

gu
ra

ti
o

nR
ea

so
n

+
se

le
ct

io
n

: 
Se

le
ct

ab
le

Fe
a

tu
re

R
ea

so
n

R
ea

so
n

1
*

1
*

Co
nf

ig
ur

a
ti

on
Ex

pl
an

at
io

nW
ri

te
r

Co
nf

ig
ur

a
ti

on
Ex

pl
an

at
io

nW
ri

te
r

<
<I

n
te

rf
a

ce
>

>

C
o

n
fi

gu
ra

ti
o

n
E

xp
la

n
at

io
n

C
re

at
o

r

<
<I

n
te

rf
a

ce
>

>

C
o

n
fi

gu
ra

ti
o

n
E

xp
la

n
at

io
n

C
re

at
o

r
Co

nf
ig

ur
a

ti
on

Ex
pl

an
at

io
nC

re
at

or
Fa

ct
or

y
Co

nf
ig

ur
a

ti
on

Ex
pl

an
at

io
nC

re
at

or
Fa

ct
or

y

+
ge

tD
e

fa
u

lt
()

: 
C

o
n

fi
g

u
ra

ti
o

n
E

xp
la

n
at

io
n

C
re

a
to

rF
ac

to
ry

+
ge

tA
u

to
m

a
ti

cS
el

e
ct

io
n

E
xp

la
n

a
ti

on
C

re
a

to
r(

):
 

A
u

to
m

a
ti

cS
e

le
ct

io
n

Ex
p

la
n

a
ti

o
n

C
re

a
to

r

A
u

to
m

at
ic

Se
le

ct
io

nE
xp

la
na

ti
on

A
u

to
m

at
ic

Se
le

ct
io

nE
xp

la
na

ti
on

1
1

w
ri

te
s

1
1

w
ri

te
s

A
u

to
m

at
ic

Se
le

ct
io

nE
xp

la
na

ti
on

W
ri

te
r

A
u

to
m

at
ic

Se
le

ct
io

nE
xp

la
na

ti
on

W
ri

te
r

im
p

l

A
b

st
ra

ct
 

Fa
ct

o
ry

<
<I

n
te

rf
a

ce
>

>

Ex
pl

an
at

io
nC

re
at

or
Fa

ct
or

y

<
<I

n
te

rf
a

ce
>

>

Ex
pl

an
at

io
nC

re
at

or
Fa

ct
or

y

Fe
at

u
re

M
od

el
Ex

p
la

na
ti

on
W

ri
te

r
Fe

at
u

re
M

od
el

Ex
p

la
na

ti
on

W
ri

te
r

+
co

n
fi

g
: C

o
n

fi
gu

ra
ti

o
n

+
co

n
fi

g
: C

o
n

fi
gu

ra
ti

o
n

<
<I

n
te

rf
a

ce
>

>

A
u

to
m

at
ic

Se
le

ct
io

nE
xp

la
na

ti
on

Cr
ea

to
r

<
<I

n
te

rf
a

ce
>

>

A
u

to
m

at
ic

Se
le

ct
io

nE
xp

la
na

ti
on

Cr
ea

to
r

<<
cr

ea
te

>>
<<

cr
ea

te
>>

<<
cr

ea
te

>>
<<

cr
ea

te
>>

Figure 4.4: Class diagram for explanations for configurations.
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Finding Explanations: ConfigurationExplanationCreator

The interface ConfigurationExplanationCreator handles finding explanations for
configurations. It is only extended by the interface AutomaticSelectionExplana-

tionCreator, which handles finding explanations for automatic selections in config-
urations and thus assumes an automatic selection as its subject.

Accordingly, the abstract factory [GHJV95] ConfigurationExplanationCreator-
Factory is only capable of producing instances of AutomaticSelectionExplana-

tionCreator. The concrete factories and their products using either of the two
oracles, i.e., minimal unsatisfiable subset extractors and Boolean constraint propa-
gation, are contained inside the subpackages of the subpackage impl.

The contents of the package impl are visualized in Figure 4.5. It contains the
subpackages mus and ltms for finding explanations using the respective approaches.

Finding Concrete Explanations: AbstractConfigurationExplanationCreator

The package impl holds a single abstract class AbstractConfigurationExplana-

tionCreator, which in turn contains the functionality for finding explanations in-
volving configurations used by either of the two approaches. It reuses all of the
functionality of AbstractFeatureModelExplanationCreator, i.e., managing the
resources such as the oracle and the feature model formula in conjunctive normal
form. Here, the distinction between finding explanations involving feature models
and finding explanations for feature model defects mentioned at the beginning of
Section 4.2.1 becomes important. Because AbstractFeatureModelExplanation-

Creator only finds explanations involving feature models, it can be extended by
AbstractConfigurationExplanationCreator, which needs to find explanations in-
volving not only configurations but also feature models by association. Hence, no
code for finding explanations in any specific context is duplicated.

Finding Concrete Explanations Using a Minimal Unsatisfiable Subset Ex-
tractor: MusConfigurationExplanationCreator

The functionality for finding explanations for configurations in general and auto-
matic selections in specific using minimal unsatisfiable subset extractors resides in
the subpackage mus. The abstract class MusConfigurationExplanationCreator

handles the creation of the oracle, that is the instance of MusExtractor from the
SAT solver facade (cf. Section 4.4).

Using this oracle, its only concrete subclass MusAutomaticSelectionExplanation-
Creator extracts a minimal unsatisfiable subset from the satisfiability query detailed
in Section 2.3.2. This subset is expressed as an explanation in model space using the
trace model for clauses originating from the feature model and using the respective
feature selection for clauses originating from the configuration. The latter does not
require an additional trace model because its clauses only ever contain exactly one
distinct feature and are therefore trivial to trace back.

The concrete factory creating instances of MusAutomaticSelectionExplanation-

Creator is MusFeatureModelExplanationCreatorFactory. It makes it possible to
easily exchange the algorithm used to find the explanations.
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Figure 4.5: Class diagram for the implementation of explanations for configurations.
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4.2.3 Explanations for Preprocessor Directives

The final use case for explanations are preprocessor directives. Finding these is
analogous to finding explanations for configurations. In both cases, because the
feature model is involved, functionality for finding explanations for feature models
is reused.

Figure 4.6 shows the contents of the subpackage preprocessors, which is responsible
for finding explanations involving preprocessors. The class hierarchy should seem
familiar at this point.

Data Types: PreprocessorExplanation and PreprocessorReason

Unlike the other direct subclasses of Explanation, the abstract class Preproces-

sorExplanation does not define a context, i.e., a preprocessor object in this case.
This is because FeatureIDE does not model preprocessors in the first place. Af-
ter all, whereas feature models and configurations are created and maintained by
FeatureIDE, preprocessors are merely used by FeatureIDE in the form of libraries.

As usual, instances of PreprocessorExplanation contain any number of reasons,
specifically instances of FeatureModelReason and more importantly instances of
PreprocessorReason. Each instance of PreprocessorReason refers to a preproces-
sor directive’s expression, which is simply a propositional formula involving features
from the feature model.

The only concrete explanation type for preprocessors is the class InvariantPres-

enceConditionExplanation. It denotes an explanation for either a contradiction
or a tautology in a presence condition. To know which one of these two cases the
specific instance is about, each instance stores a Boolean flag.

Transformation to Natural Language: PreprocessorExplanationWriter

The transformation to natural language using the class PreprocessorExplanation-
Writer works as usual, with this class supplying the logic for the preprocessor
context. Like ConfigurationExplanationWriter for transforming explanations
for configurations, it extends FeatureModelExplanationWriter in case it needs
to transform instances of FeatureModelReason.

Finding Explanations: PreprocessorExplanationCreator

The interface PreprocessorExplanationCreator allows finding explanations in-
volving preprocessors. To this end, it requires the expression stack of the prepro-
cessor. The expression stack contains all of the expressions that the expression to
explain is nested in. Each of these expressions is already negated properly in case it
is part of the if-branches that were not taken in favor of an else-statement. On top
of the stack is the expression to be explained.

The interface InvariantPresenceConditionExplanationCreator extends Prepro-
cessorExplanationCreator to allow finding explanations for invariant presence
conditions. In order to do so, it needs to know whether it should explain a con-
tradiction or a tautology. For this purpose, each instance stores a corresponding
Boolean flag just like the instances of InvariantExpressionExplanation.
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Figure 4.6: Class diagram for explanations for preprocessors.
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The abstract factory [GHJV95] PreprocessorExplanationCreator provides means
for instantiating concrete instances of InvariantPresenceConditionExplanation-
Creator. As always, this allows the underlying algorithm to be exchanged easily.

The concrete instances are contained in the subpackages of the subpackage impl,
the contents of which are shown in Figure 4.7. Specifically, they either use mini-
mal unsatisfiable subset extractors (in the mus subpackage) or Boolean constraint
propagation (in the ltms subpackage).

Finding Concrete Explanations: AbstractPreprocessorExplanationCreator

The functionality used by both approaches, i.e., storing the expression stack, lives
in AbstractPreprocessorExplanationCreator. Just like AbstractConfigura-

tionExplanationCreator, it extends AbstractFeatureModelExplanationCreator
to reuse its functionality regarding finding explanations involving feature models.

Finding Concrete Explanations Using a Minimal Unsatisfiable Subset Ex-
tractor: MusPreprocessorExplanationCreator

The classes using minimal unsatisfiable subset extractors to find explanations for
preprocessor directives reside in the package mus. The basic explanation creator for
that is MusPreprocessorExplanationCreator, which uses an instance of MusEx-

tractor from the SAT solver facade (cf. Section 4.4) as oracle.

The only subclass of MusPreprocessorExplanationCreator, MusInvariantPres-
enceConditionExplanationCreator, uses that oracle to find explanations for in-
variant presence conditions by extracting the minimal unsatisfiable subset from the
satisfiability queries from Section 2.3.3. For contradictions, the satisfiability query
is built by forming the conjunction of the feature model formula and the presence
condition, i.e., each expression from the expression stack. The same is done for tau-
tologies, except that the top element of the expression stack, which is the expression
to be explained, is negated first. In both cases, it is remembered which clauses stem
from which expression so they can be traced back when building the explanation
from the minimal unsatisfiable subset. Due to the simplicity of this, no extra trace
model is defined.

Finally, the instances of MusInvariantPresenceConditionExplanationCreator

are created by the concrete factory MusPreprocessorExplanationCreatorFactory.
Using this factory pattern makes it possible to quickly change to a different approach
for finding explanations such as Boolean constraint propagation.

4.3 From Formula to Feature Model Using a Trace

Model

As mentioned in Section 3.2, finding meaningful explanations requires the clauses
from the minimal unsatisfiable subset to be transformed from their formula repre-
sentation to the representation in the model they originate from. For preprocessor
directives and configurations, this is straight-forward or even trivial. However, for
feature models, it is more complex. Because the mapping between clauses and
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Figure 4.7: Class diagram for the implementation of explanations for preprocessors.
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feature model elements is ambiguous [Ana16, CW07], there needs to be a way to
remember the mapping.

This is what the trace model does. After a model is transformed from one format
to another, in this case a feature model to its representation as a propositional
formula, the link between the elements of the two is usually lost. To solve this, a
trace model keeps track of how the elements in the two models correspond to one
another. Languages designed with model-to-model transformations in mind such as
Query/View/Transformation (QVT) and the Atlas Transformation Language (ATL)
often already come with automatically created trace models [Bie10].

However, because FeatureIDE’s transformation from feature model to formula is
written in plain Java, the trace model needs to be written by hand. In the imple-
mentation of the approch for finding explanations using Boolean constraint propaga-
tion [Ana16], the tracing information is encoded in an integer value added to every
literal of the formula. The issue with this technique is that it binds the feature
model semantics to propositional formulas, creating a dependency to a conceptually
unrelated model.

To maintain the separation of concerns with the approach presented in this the-
sis, the tracing information is separated from the formula. This is done with
the trace model class FeatureModelToNodeTraceModel. It resides in the package
de.ovgu.featureide.fm.core.editing, as does the class AdvancedNodeCreator

for transforming feature models to propositional formulas. The AdvancedNodeCre-

ator simply needs to populate the trace model while performing the transformation.

The first step in modeling the contents of the trace model is to find the conceptual
connection between the transformation’s source and target models. The source
model, i.e., the feature model, contains a number of elements, specifically features
in a tree structure as well as constraints. The target model, i.e., the propositional
formula, contains a number of clauses. Each feature model element is transformed to
at least one clause as specified at the end of Section 2.2.2. To turn this into a more
detailed, unambiguous mapping, the source elements are interpreted to be of finer
granularity than the feature model elements. In particular, the various structures
from Table 3.1 are used as sources to be more specific about the source elements.

This mapping is modeled in FeatureModelToNodeTraceModel by storing an instance
of FeatureModelElementTrace for each target element. The traces in the trace
model are the individual links of the mapping. Each trace remembers the role of
each source element in the transformation, e.g., which one is the parent and which
ones are the children.

In order to be able to do so, the trace also needs to know which type of transformation
the source element is involved in in the first place. Hence, this information is stored
as one of the following values of the enumeration Origin, where the variables are to
be interpreted as in Section 2.2.2:

ROOT For the clause of the root feature.

CHILD_UP For clauses of the form f ⇒ p. Every relationship between a child and
a parent feature involves such a clause because parent features are always
selected if any of its children is selected.
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CHILD_DOWN For clauses of the form p ⇒ f in case of mandatory features or p ⇒∨
f∈F f in case of or-groups and alternative groups.

CHILD_HORIZONTAL For clauses involving only children and no parent. Alternative
groups create one of these for every combination of two children.

CONSTRAINT For the clauses of a constraint.

In the approach based on Boolean constraint propagation [Ana16], the three child
relationship types are not differentiated. However, the detail of which part of the
relationship is causing a defect is worthwhile information that should not be ignored
when finding an explanation. As such, the approach presented in this thesis differ-
entiates every clause if possible. With this information, every source element can be
uniquely identified.

To identify the other end of the mapping, i.e., the clauses the source elements were
transformed to, it would be possible to store references to the clause objects. How-
ever, querying the traces by clause object is more expensive as it requires object
comparison. Also, duplicate clauses in the formula could not be discerned. There-
fore, the clauses and therefore the traces are identified by the clause index, which is
always known given the target formula.

Finally, it should be noted that generating the trace model is not a cheap operation
due to the many references that need to be stored. As such, generating the trace
model is disabled by default. Clients wishing to use the trace model, especially the
algorithms for finding explanations, need to enable tracing for their own instance of
AdvancedNodeCreator before transforming the feature model to a formula.

4.4 Exchanging SAT Solvers Using a Solver Fa-

cade

An important ingredient in the implementation of the approach for finding expla-
nations presented in this thesis are minimal unsatisfiable subset extractors. The
Prop4J library for propositional formulas that FeatureIDE comes with provides not
only data classes for formulas but also adapters [GHJV95] that enable using them
with the SAT solvers provided by the Sat4J library [LBP10]. Fortunately, the Sat4J
library offers minimal unsatisfiable subset extractors. Unfortunately, the Prop4J
library does not provide adapters for them.

This section discusses the implementation of a facade [GHJV95] for SAT solvers and
especially minimal unsatisfiable subset extractors using Sat4J to solve this issue.
Being a facade, its goal is to simplify the use of the wrapped library by hiding the
implementation details of the underlying implementation through abstraction. The
opportunity is used to design the facade to be extensible such that not only Sat4J
may be used in the future but also any other SAT solver library.

The SAT solver facade is located in the org.prop4j.explain.solvers package,
which is part of the de.ovgu.featureide.fm.core plug-in for ease of access for
FeatureIDE developers. The contents of the package are shown in Figure 4.8. The
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Figure 4.8: Class diagram for the SAT solver facade.
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facade strictly separates the implementation from the interfaces defined on its root
level. In general, the interfaces are kept as small as possible so they can be imple-
mented using any SAT solver regardless of the number of features it offers. The
extension hierarchy of the interfaces also makes it possible to provide functionality
only up to the point supported by the concrete SAT solver, e.g., checking satisfia-
bility queries for satisfiability but not extracting minimal unsatisfiable subsets. The
extension hierarchy additionally makes the separation of concerns in the implemen-
tation of the interfaces easier. The rest of this section leads through the extension
hierarchy.

Data Type: SatProblem

The most basic interface of this facade is SatProblem. It only defines functionality
for adding formulas in conjunctive normal form and truth value assumptions for
given variables to it. This interface is fairly standard in SAT solving and allows for
incremental SAT solving [ES03].

Each added formula is transformed to conjunctive normal form if necessary and
stored as a list of clauses to be queried later [EMS07]. It is worth noting that, in order
to keep the demands of the interface to a minimum, it provides no functionality for
removing any of the clause once added, which happens later in MutableSatSolver.

Assumptions may also be added but not removed. An assumption means that the
given variable is always assigned the given truth value when reasoning over the
formula. Theoretically, assumptions can be seen as clauses that only contain the
literal of the given variable with the respective negation conforming to the truth
value. In practice, many SAT solvers work faster with explicit assumptions than with
singleton clauses. Furthermore, since they are not actually clauses of the formula,
assumptions do not show up in minimal unsatisfiable subsets and therefore also not
in explanations, which makes them useful for hiding trivial information.

SAT Solving: SatSolver

The first functionality for executing the satisfiability query added to an instance of
SatProblem is defined in the interface SatSolver. Its most important method is
isSatisfiable() for deciding the satisfiability of the contained formula with the
contained assumptions. If that turns out to be satisfiable, the satisfying truth value
assignments found can be queried using getModel(). This is probably done using a
SAT solver from a library, though the oracle could also refer to this or even another
instance of SatSolver to be decorated.

Mutable SAT Solving: MutableSatSolver

Further functionality is added to SatSolver in the interface MutableSatSolver.
MutableSatSolver provides functionality for removing clauses previously added to
the solver.

This is achieved by treating the solver as a stack of scopes, like onion layers made
of formulas and assumptions that can be added or removed. A scope can be added
to the stack with push(). Then, all formulas and assumptions added to it are
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simultaneously removed when its scope is removed with pop(). By adding multiple
scopes to the stack, each scope can be made to contain only specific parts of the
formula that can then be removed in as fine a granularity as wanted. Of course,
executing the satisfiability query needs to take all scopes of the stack into account.

The idea of this design of a solver as a stack is lifted from SMT-LIB [BFT17],
a language for interacting with satisfiabiltiy modulo theories solvers. Here, it is
applied to SAT solvers. The advantage of this design is that it makes removal easier
by treating clauses that belong together in the formula as one as defined by the
scope boundaries. Additionally, this does not require the client to keep any handles
on the added clauses to remove them later. For example, a clause added to a Sat4J
solver can only be removed using the handle of the type IConstr returned after
adding it. Instead, all that needs to be remembered is which scope of the stack the
clauses where added to, which is often trivial due to the formula layout.

Extracting Minimal Unsatisfiable Subsets: MusExtractor

The last interface in the SAT solver hierarchy is the interface MusExtractor. It is as
simple as one would expect and only provides functionality for extracting a minimal
unsatisfiable subset from the added formula [BLMS12]. This can be done either
while staying in the abstraction level of the Node class of Prop4J or by referencing
the clauses by the index in which they occur in the formula. The latter is useful
in case multiple semantically equal instances of Node were added as clauses to the
solver. The difference between these clauses might for instance matter when looking
them up in the trace model (cf. Section 4.3) and thus resulting in a different trace
for the instance of FeatureModelReason (cf. Section 4.2.1).

The three solver interfaces SatSolver, MutableSatSolver, and MusExtractor are
the abstract products of the abstract factory [GHJV95] SatSolverFactory. This is
to easily access and exchange their specific related implementations.

Implementation Using Sat4J

The implementations of the SAT solver facade interfaces are located inside the sub-
package impl. The abstract classes AbstractSatProblem and AbstractSatSolver

provide abstract implementations of the respective interfaces they implement. The
former keeps track of the added formulas and assumptions and in particular ensures
that the clauses are added in conjunctive normal form while the latter stores the
oracle for its concrete subclasses.

Currently, the only concrete subclasses are located in the subpackage sat4j and
use the solvers from the Sat4J library [LBP10]. The first concrete subclass is
Sat4jSatSolver, which extends AbstractSatSolver. It uses the default oracle
provided by the class SolverFactory from Sat4J to execute the added satisfiability
query.

SAT Solving Using Sat4J: Sat4jSatSolver

The class Sat4jSatSolver extends the behavior of AbstractSatProblem by making
sure that all the added formulas and assumptions also make it to the underlying
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oracle. To this end, the solver facade first needs to declare every variable used
throughout the formula. This in turn requires translating the Node instances from
Prop4J to the format used by Sat4J. The solver brings several helper functions for
converting the formula formats of Prop4J and Sat4J, but since they are fairly specific
to these libraries, they are not discussed here for the sake of brevity.

Should a contradicting clause be added to the oracle, Sat4J signals an exception,
which is caught and remembered by the solver facade. In such a case, checking
satisfiability does not even require a call to the oracle as the formula is known to be
unsatisfiable anyway. If no immediate contradiction was found while adding clauses,
the satisfiability check can go on as normal using the oracle with its added formulas
and additional assumptions, the latter of which need to be added again for every
satisfiability query.

Mutable SAT Solving Using Sat4J: Sat4jMutableSatSolver

The class Sat4jMutableSatSolver provides functionality for removing clauses and
assumptions using the stack-based approach discussed earlier in this section. To
model this stack, the class Sat4jMutableSatSolver keeps track of the clauses and
the assumptions that were added in each scope. This is done by storing the data
from the previous scopes in addition to the data from the superclass. To keep the
superclass method implementations intact, the accessor methods of its resources are
overridden to take into account not only the current scope but all previous scopes
as well.

The new assumptions of the current scope and the assumptions that were added in
each previous scope are stored separately. Thus, when accessing the assumptions
for executing the satisfiability query, the assumptions are merged together, starting
at the bottom of the stack so newer assumptions override older ones. Instead of
storing these assumption deltas that then need to be resolved when accessing the
assumptions, it would also be possible to store copies of all assumptions valid in
each scope that are then simply restored when changing the scope, though this
would come at the cost of a bigger memory footprint.

For the clauses, only the number of clauses that were added in each scope needs to
be stored. Those many of the newest clauses are removed from the oracle using the
respective clause handles when pop() is called. However, Sat4J does not free up
the constraint’s index from the vocabulary when a clause is removed.2 In the local
clause list, the resulting gaps in the index range are modeled using null values. To
account for this, the accessor methods related to clauses are overridden to skip null

values in the clause list.

The last resource that is affected by scopes and removal is the flag of whether a
contradiction was just added. Removing the clause that introduced the contradiction
clears the contradiction. As such, the scope containing that clause needs to be
remembered. This is done by storing the distance to it, i.e., how often pop() needs
to be called until the scope containing the contradiction is reached. Calling push()

increases that number while pop() decreases it. If it is at 0, the current scope is
the one containing the contradiction, and calling pop() removes the contradiction,
which is reflected by updating the contradiction flag.

2http://www.sat4j.org/maven234/apidocs/org/sat4j/specs/ISolver.html, accessed 2017-09-11

http://www.sat4j.org/maven234/apidocs/org/sat4j/specs/ISolver.html
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Extracting Minimal Unsatisfiable Subsets Using Sat4J: Sat4jMusExtractor

Finally, the class Sat4jMusExtractor extends the class Sat4jMutableSatSolver

to add the functionality of extracting minimal unsatisfiable subsets. This is done by
decorating the oracle with an instance of Xplain from Sat4J, which grants access to
minimal unsatisfiable subsets from the underlying solver. Once more, the format is
automatically transformed by the solver facade. The resulting minimal unsatisfiable
subset can be used by any client, most notably for finding explanations.

All three of these concrete solver classes using a Sat4J oracle, Sat4jSatSolver,
Sat4jMutableSatSolver, and Sat4jMusExtractor, are the concrete classes of the
concrete factory Sat4jSatSolverFactory. That makes it currently the only con-
crete factory extending the abstract factory SatSolverFactory. Still, should other
SAT solving libraries be added to the solver facade in the future, using the new
implementation only requires switching the factory instance.

4.5 Visualizing Explanations

Up to this point, only components falling into the model category of the model-view-
controller pattern underlying FeatureIDE were discussed. This section introduces
functionality belonging to the other categories of the model-view-controller pattern.
In other words, this section details how the explanations may be accessed through
FeatureIDE’s graphical user interface and how, once found, the explanations actually
end up being visualized for the user to make sense of. If the visualization is intuitive,
this greatly helps the user to parse the explanation.

As always, each concrete use case is discussed in its own subsection: feature model
defects in Section 4.5.1, configurations in Section 4.5.2, and preprocessor directives
in Section 4.5.3.

4.5.1 Explanations for Feature Model Defects

The first use case is that of feature model defects. In this implementation, visual-
izing explanations for feature model defects is more refined than for the other two
use cases. Whereas explanations in configurations and preprocessor directives are
visualized as more or less only text, the explanations in feature model are visualized
as highlighted graphcial elements in the feature diagram.

The visualization of explanations for feature model defects was first implemented in
FeatureIDE as part of a project work [Gü16] building upon the explanations found
by the approach using Boolean constraint propagation [KAT16]. This section also
outlines the implementation of that project work as it is obviously relevant to this
thesis, yet it was never documented in text form before. Besides, this thesis features
major changes to that implementation.

FeatureIDE’s plug-in handling everything related to the graphical user interface of
feature models is de.ovgu.featureide.fm.ui. In its subpackage editors lives
the class FeatureDiagramEditor, which hooks into Eclipse to provide a graphical
editor for feature diagrams. It acts as the starting point for finding and subsequently
visualizing the explanations.
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When a defect is found in a feature model, it is highlighted the way it is known from
the feature diagrams shown throughout this thesis. The selection of such a defect
feature model element is interpreted as interest in an explanation for the defect.
Hence, once a defect element is selected, an explanation is found using one of the
three concrete explanation creators from Section 4.2.1 (or taken from the editor’s
cache if an explanation for the selected defect was already found before). Only up
to one explanation may be active at a time. Then, the explanation is shown to the
user.

To start the visualization of the explanation, the feature diagram editor notifies
each feature model element’s edit part that there is a new active explanation. To
avoid having each element in turn search the entire explanation for what reason it
is involved in, the feature diagram editor already specifies the corresponding reason
for each involved element when notifying.

The edit part of each involved element then forwards the reason to the figure of the
element. Upon this, the figure, being part of the view, finally changes its appearance
in accordance to the received reason. What this actually looks like depends on the
figure and the reason. In general, the respective graphical element is highlighted by
setting its line color to a color on the gradient from red to black depending on the
reason’s confidence (cf. Section 4.2).
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Figure 4.9: Visual explanation for why Manual is a dead feature.

An example of how this looks is shown in Figure 4.9. In this example, the explanation
why Manual is a dead feature is visualized. The explanation in text form can be
found in Table 3.2b on page 30. Looking at that table, it should be obvious how
each element is highlighted according to its involvement in the explanation. The
mandatory decoration of Carbody is highlighted because of the second reason (it
is a mandatory child of Car), the last constraint because of the third one (it is a
constraint), and Manual and Automatic because of the fourth one (the two are
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alternatives). Only the first reason regarding the root feature is not visualized since
it is trivial. On top of the visualization, the tooltip of each highlighted element
contains the textual reason for clarification.
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Figure 4.10: Visual explanations for feature structures.

As this example suggests, the visualization of each feature structure depends on
which reasons pertain to it. Indeed, Figure 4.10 shows the visualization for each
possible combinations of structure type (optional feature, mandatory feature, or-
group, and alternative group) and child relationship direction (upward, downward,
and horizontal) from the trace model (cf. Section 4.3). In all these examples, the
sole constraint expresses one of these combinations, which makes the constraint
redundant. As a result, the explanation of the redundancy contains only the reason
for that combination to serve as an illustration of how that specific combination is
visualized.

In the implementation of the approach using Boolean constraint propagation [Ana16],
none of these directions are differentiated. Therefore, when a feature structure is the
reason of an explanation found with that implementation, all parts of the feature
structure have to be highlighted. The big difference between the visualization from
the project work [Gü16] and the visualization presented in this thesis is that now
the direction is differentiated as explained above. Each part of the feature structure
is only highlighted if applicable. Thus, because no information is lost in the trans-
formation from clause of the minimal unsatisfiable subset to its visualization, the
user can understand the reasoning underlying the explanation more easily.
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4.5.2 Explanations for Configurations

Next, explanations for configurations are visualized. This is implemented in the
same plug-in as the visualization of explanations for feature model defects, that is
de.ovgu.featureide.fm.ui. The editor that handles configurations, Configura-
tionTreeEditorPage, lives in the subpackage editors.configuration. Analogous
to the feature model editor, the configuration editor uses the explanation creators
from Section 4.2.2 to find the explanations when necessary.

The graphical visualization of the explanations for configurations is more difficult
than the visualization of explanations for feature model defects. After all, not only
configuration elements inside the configuration editor need to be highlighted but
also any referenced elements in the feature model. Therefore, in addition to the
configuration editor, the feature diagram would have to be visible whenever an
explanation for a configuration is visualized graphically. This cannot simply be
assumed to be the case, so the feature diagram would have to be opened for the user
and displayed next to the configuration when an explanation is required.
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The concrete feature Ports is automatically selected because:
• USB is a child of Ports (i.e., USB ⇒ Ports).
• GPSAntenna ⇒ USB is a constraint.
• Car is manually selected.

Figure 4.11: Textual explanation for the automatically selected feature Ports.

Instead, to keep the user interaction simple, the visualization of explanations for con-
figurations is not done graphically but textually. Specifically, the explanations for
automatic selections are written in natural language in the tooltip of the automati-
cally selected feature in the configuration editor. As an example, Figure 4.11 shows
what it looks like when the user hovers the mouse cursor over the automatically
selected feature Ports in the configuration from Figure 2.6. The transformation to
natural language is done by the explanation writers from Section 4.2.2.

4.5.3 Explanations for Preprocessor Directives

Finally, explanations for preprocessor directives are visualized. This is analogous to
the visualization of explanations for configurations. Because explanations for pre-
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processor directives also involve the feature model, the same reasoning for choosing
a textual over a graphical visualization applies.

 1 #include <stdio.h>
 2 #include <stdlib.h>
 3
 4 int main(void) {
 5     printf(“Hello“);
 6 #ifdef Beautiful
 7     printf(“ beautiful“);
 8 #endif
 9 #ifdef Wonderful
10 #ifdef Beautiful
11     printf(“ wonderful“);
12 #endif
13 #endif
14 #ifdef World
15     printf(“ world“);
16 #endif
17     return 0;
18 }
19

This annotation causes a dead code block.
The presence condition of Beautiful is a contradiction because:
• Wonderful and Beautiful are alternatives (i.e., ¬(Wonderful ∧ Beautiful)).
• The expression is nested within a block annotated with Wonderful.

Figure 4.12: Textual explanation for a contradiction in a CPP preprocessor directive.

Unlike the visualization of the explanations for the other two use cases, the visu-
alization of explanations for preprocessor directives is implemented in the plug-in
de.ovgu.featureide.core. The class PPComposerExtensionClass in the subpack-
age builder.preprocessor checks for invariant presence conditions in preprocessor
directives. As usual, it uses the explanation creators from Section 4.2.3 to find an
explanation when it encounters such a defect. The explanation is then added to the
warning marker that is used to notify the user of the defect. An example of how it
looks when the mouse curvor is hovered over such a warning marker can be found
in Figure 4.12.

4.6 Summary

This chapter showed one possible way to implement the approach presented in this
thesis using a highly extensible architecture for finding abstract explanations. This
involved a trace model and minimal unsatisfiable subset extractors accessed through
a SAT solver facade implemented with Sat4J. The resulting explanations are visu-
alized graphically in feature diagrams or written in natural language in the cases of
configurations and code with preprocessor directives.

The question remains how the approach presented in this thesis performs in compar-
ison to the previous explanation approach based on Boolean constraint propagation.
This is answered in the next chapter.
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The previous chapters presented an approach for finding explanations for satisfia-
bility queries in a software product line context using minimal unsatisfiable subsets.
The conceptual framework was realized as an addition to the software product line
development tool FeatureIDE. Given this implementation, it is now possible to ex-
amine the algorithm from a practical point of view. Thus, in this chapter, the al-
gorithm is evaluated using qualitative observations and quantitative measurements.
It is also compared against the previous approach for finding explanations using
Boolean constraint propagation [KAT16].

The models and the code used for this evaluation can be found online in the artifact
repository for this thesis.1 Alternatively, most of the models can also be found inside
example projects that can be imported from FeatureIDE into Eclipse.

Before the evaluation begins, the evaluation criteria are detailed in Section 5.1. The
“soft” criteria are evaluated using a qualitative analysis performed in Section 5.2.
Section 5.3, by contrast, covers criteria revolving around aspects such as performance
that can be measured more definitively in numbers. A conclusion from the results
is drawn in Section 5.4.

5.1 Evaluation Criteria

Throughout this evaluation, various relevant characteristics of the algorithm pre-
sented in this thesis are examined. This ensures its usefulness and allows a com-
parison against existing approaches. This section discusses which characteristics are
considered particularly relevant and are therefore evaluated in the analysis to come.

The first thing to determine is whether the explanations found by the explanation
algorithm are semantically correct. This is the case if the reasons of the explanation
in question do in fact imply the circumstance to explain.

However, by this definition, an explanation that contains all of the possible reasons of
the context (e.g., the entire feature model when explaining a feature model defect) is

1https://github.com/TimoGuenther/explaining-sat-queries-for-spls

https://github.com/TimoGuenther/explaining-sat-queries-for-spls
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always correct. Because such an explanation is not particularly useful, it is necessary
that, in addition to being correct, the explanation significantly reduces the number
of possible reasons. Such explanations are more sensible because they can help the
user pinpoint the relevant causes of the circumstance.

Because of this, explanations should be as short as possible. Therefore, it is analyzed
how much the approach presented in this thesis affects the length of explanations
compared to the approach based on Boolean constraint propagation [KAT16].

Still, even a short explanation is useless if the user does not want to wait for it
to be found automatically or if the user can manually figure out the cause of the
circumstance manually before an explanation is found. Hence, the performance of
this approach is considered as well.

Finally, the explanation needs to be found in the first place. As detailed in Sec-
tion 3.1.1, Boolean constraint propagation is incomplete, which means that expla-
nation approaches relying on it do not always find an explanation for a given cir-
cumstance to explain. By contrast, the approach presented in this thesis is based
on minimal unsatisfiable subset extractors. Therefore, it is determined how often an
explanation is found using this approach where none could be found using Boolean
constraint propagation and vice versa.

All of this needs to be considered not only for small models but also for large ones.
Especially the large models have too many details for the user to just keep in mind
all the time. In the following, these criteria are determined using both a qualitative
analysis (Section 5.2) and a quantitative analysis (Section 5.3).

5.2 Qualitative Analysis

The qualitative properties of the approach for finding explanations as presented in
this thesis are checked by examining the output of the algorithm by hand. Part
of this can be done using the examples shown throughout this thesis as they all
are the result of the approach presented in this thesis. However, the evaluation
should include as many different examples as possible to discover edge cases that
the algorithm struggles with. Fortunately, Ananieva already compiled a set of varied
examples of small feature models containing defects to explain [Ana16].

The minimal unsatisfiable subset approach manages to find an explanation for all
of these examples. The findings of the author are that all of the explanations are
semantically correct, i.e., logically lead to the conclusion that the defect element is
indeed defect. This is because minimal unsatisfiable subsets are unsatisfiable. They
are also sensible in that they all reduce the searching space for the involved feature
model elements. This is because minimal unsatisfiable subsets are minimal subsets.

The feature model defect explanations found using a minimal unsatisfiable extrac-
tor are fairly similar to those found using Boolean constraint propagation. One
difference is that the former typically express the same reasoning using structural
information, while the latter favors constraints. However, this should vary depending
on the SAT solver used and the order of the clauses of the formula that the min-
imal unsatisfiable subset is extracted from. After all, which of the many minimal
unsatisfiable subsets is returned depends on the underlying algorithm [dlBSW03].
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In summary, the explanation approach presented in this thesis leads to correct and
sensible results. However, this reveals nothing about performance, explanation
lengths, or availability for models from real software projects. To quantify these
remaining characteristics, a quantitative analysis follows.

5.3 Quantitative Analysis

The quantitative analysis answers the remaining research questions using concrete
measurements. Of interest are the performance impact of finding explanations using
minimal unsatisfiable subset extractors and the length of the explanations, i.e., the
number of reasons they contain. Additionally, because Boolean constraint propaga-
tion is incomplete as detailed in Section 3.1.1, it is measured how often this actually
becomes a problem and Boolean constraint propagation fails to find an explanation.
The models used to test the algorithm on are presented in the following.

Feature Model Features Constraints DFs FOFs RCs

SortingLine 39 11 0 0 6
PPU 52 15 5 4 10
Violet 101 27 0 1 1
uClibc 313 56 31 10 0
E-Shop 326 21 0 1 1
WaterlooGenerated 580 61 10 13 8
Busybox 1.18.0 854 123 18 3 0
XSEngine 1273 886 42 166 51
uClibc-Distribution 1580 197 1 6 0
Automotive01 2513 2833 195 80 869

Table 5.1: Evaluation models containing feature model defects. “DFs” is the number
of dead features,“FOFs”the number of false-optional features, and“RCs”the number
of redundant constraints.

The first use case is that of feature model defects. The feature models containing
defects to be explained in this quantitative analysis are listed in Table 5.1. The
feature models range in size, from a small feature model with just 39 features to one
with 2513 features. This allows evaluating the scalability of the approach presented
in this thesis. Each feature model in turn contains a varying number of defects, i.e.,
dead features, false-optional features, and redundant constraints. The distribution
of the feature model defect types varies in all feature models. This allows identifying
defect types that tend to be more difficult to explain. During the analysis, all feature
model defects are explained.

The smallest two feature models in the list are from the industrial case studies of the
Sorting Line and the Pick-and-Place Unit [FLVH15, KLL+14]. The largest feature
model is a real example stemming from the automotive industry. Ananieva uses
these three feature models in the evaluation of the explanation approach based on
Boolean constraint propagation [Ana16]. For the intermediate sizes, Ananieva uses
automatically generated feature models. However, real feature models are preferable
as they contain defects that evidently actually come up in practice. Hence, the
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remaining feature models for this analysis are instead taken from a study with the
explicit intent of gathering feature models from real software projects [KTM+17].
The feature models are chosen in such a way as to establish a dense range of feature
model sizes.

Feature Model Features Constraints Configuration ASs

SortingLine 39 11 00012 29
PPU 52 15 00006 44
Violet 101 27 00033 3
uClibc 313 56 00019 182
E-Shop 326 21 00042 51
WaterlooGenerated 580 61 00270 120
Busybox 1.18.0 854 123 00102 57
XSEngine 1273 886 00167 228
uClibc-Distribution 1580 197 01337 55
PROFilE-ERP-System 1920 59044 10001 223
PROFilE-E-Agribusiness 2238 0 34819 148
Automotive01 2513 2833 02017 1366

Table 5.2: Evaluation models for configurations. “ASs” is the number of automati-
cally selected or automatically unselected features.

Next, Table 5.2 lists the models used for finding explanations for configurations. For
all of the feature models already mentioned, all configurations covering all pairwise
feature interactions [CKMRM03, KWG04] are generated using the IncLing algorithm
[AHKT+16]. This is currently the fastest algorithm for doing so, thereby allowing to
analyze configurations for larger feature models as well. In addition, this set includes
two feature models and their real-world configurations, which have been used in
prior studies [PMK+16]. However, because analyzing all configurations would take
too long, only one configuration is tested per feature model. The configurations
are chosen arbitrarily and randomly in case the order of the configurations contains
biases. For each chosen configuration, all automatic configuration propagations are
detected and explained.

Unfortunately, no code annotated with preprocessor directives is analyzed in this
evaluation. This is because the code annotated with preprocessor annotations used
to implement software product lines available online is typically configured using
build systems. For instance, Linux does not use FeatureIDE feature models but
KConfig models [TLSSP11]. Transforming these would require normalizing them
first, in turn requiring specialized tool support. Developing such a tool, however, is
out of the scope of this thesis.

5.3.1 Performance

Regarding performance, while the explanation algorithm is deterministic (as long as
the used minimal unsatisfiable subset extractor is deterministic), in practice, the du-
ration of its execution naturally varies depending on nondeterministic effects encoun-
tered on any modern computing device, e.g., multithreading and process scheduling.
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As such, to perform accurate performance measurements, a few technical details
have to be considered.

The first means taken to ensure accurate measurements in all of the following per-
formance tests is that of a warm-up phase before each test. During the warm-up
phase, the test is executed but the measurements are discarded. This is to mitigate
effects that might skew the results due to program branches being executed for the
first time, such as the Java virtual machine loading classes and doing just-in-time
compilation in the background. Furthermore, the warm-up phase is prolonged to
at least 5 seconds by running the test repeatedly in case the processor is not yet
running at full power after just a single iteration of a quick test case.

After the warm-up phase, the actual test is executed and the measurements are
stored. However, processor load peaks caused by activating background processes
might still interfere with an accurate measurement of any single data point. There-
fore, to minimize the average error, each test is repeated 10 times and the average
is taken. All measurements are taken on an AMD FX-6300 CPU at 3.5 GHz.
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Figure 5.1: Computation time of all explanations for feature model defects.

Figure 5.1 shows the results of the performance tests for explaining the feature model
defects in the models listed in Table 5.1. For each feature model, the time it takes
to find the explanations for all feature model defect is measured. The measurements
are taken for both the approach based on Boolean constraint propagation [KAT16]
and the approach based on minimal unsatisfiable subset extractors as presented in
this thesis.

For both approaches, unsurprisingly, the total explanation time depends largely on
the number of defects to explain and is exponential in the number of features. In
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the worst case of the largest feature model, finding all explanations using minimal
unsatisfiable subset extractors takes almost 3 hours. Because nobody wants to wait
that long and because the user is probably just interested in one defect at a time
anyway, it is important to only find explanations when necessary instead of all of
them in advance. This is done in the implementation of this approach as the expla-
nation algorithm is only started when a defect element is selected (cf. Section 4.5.1).
This way, the factor that affects the user experience more is the duration it takes to
find an explanation for a single defect.

Hence, the duration of finding an explanation for a single defect is measured as well.
This is shown in Figure 5.2 with the shortest duration to find an explanation, the
longest one, and the quartiles between. For both approaches, the duration to find an
explanation scales well with the feature model size. Except for minimal unsatisfiable
subset extractors with the largest feature model tested, explaining a single defect
takes a reasonable amount of time.

Still, comparing the timings of the two approaches immediately reveals that Boolean
constraint propagation is magnitudes faster than using minimal unsatisfiable sub-
set extractors. This is especially true considering that Ananieva’s approach using
Boolean constraint propagation continues running after finding the first explanation
to possibly find a shorter one. The slow-down factor of the latter compared to the
former is 4 in the best case (for the second largest model) and 1565 in the worst case
(for the largest model). The performance difference is so substantial that, for some
feature models, finding a single explanation using minimal unsatisfiable subset ex-
tractors can take longer than finding an explanation for every defect using Boolean
constraint propagation.

The performance of finding explanations for configurations is similar. The timings
of finding explanations for all automatic selections in configurations are visualized
in Figure 5.3. Here, too, do the approaches scale well with the input sizes.

Figure 5.4 also confirms this. It shows the ranges of the individual timings of find-
ing explanations for all automatic selections in configurations. Once more, using
minimal unsatisfiable subset extractors is magnitudes slower than using Boolean
constraint propagation.

5.3.2 Explanation Lengths

Next, the lengths of the found explanations are examined. This is important because
an explanation becomes more difficult to comprehend as it gets larger. Here, the
length is measured by the number of reasons it contains. Each such reason is one
of the elements that the explanation could possibly reference in the model, such as
the structural relationship between two features in a feature model. In the case of
explanations based on minimal unsatisfiable subsets, the length of the explanation
is the cardinality of the minimal unsatisfiable subset.

As with the performance tests, all of the feature model defects from Table 5.1 are
explained. Box plots of the lengths of all the explanations found are shown in
Figure 5.5. For each feature model, this details the shortest explanation found, the
longest explanation found, and the quartiles between these extremes.
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(a) Computation time using minimal unsatisfiable subset extractors.
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(b) Computation time using Boolean constraint propagation.

Figure 5.2: Computation time of individual explanations for feature model defects.
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Figure 5.3: Computation time of all explanations for configurations.

For all but the smallest two feature models, the shortest explanation is as short
as possible, consisting of only a single reason. The other end of the spectrum,
the longest explanation, which consists of 51 reasons in total, is found in the largest
feature model. This shows that the likelihood of the occurrence of very trivial defects
(such as the existence of two logically equal constraints) and very complex defects
increases with the size of the feature model and the number of defects it contains.

Since this arguably says more about the feature model than the approach used to find
the explanations, the median length of the found explanations is probably a better
indicator of the compactness of the explanations. Comparing the median length
of the explanations found by the two approaches reveals that neither consistently
outperforms the other. While in some cases one approach or the other finds slightly
shorter explanations on average, which one that is depends on the feature model.
All in all, the explanation lengths are fairly similar.

Fortunately, for both approaches, the average length is relatively small. Especially
for the largest feature model, an explanation with a median length of below 10 rea-
sons is definitely short enough to be useful. This shows that the approach presented
in this thesis, like the approach based on Boolean constraint propagation, scales well
with the size of the feature model in terms of the length of the explanations it finds.

The same can be seen with the explanation lengths of explanations for configurations
shown in Figure 5.6. The lengths between the results of the two algorithms do not
differ much. Apart from a few very large outliars in the largest feature model, the
vast majority of explanations have a reasonable length. Given how long explanations
can get in large feature models, it is noteworthy that most of them are short enough
to be understood easily.
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(a) Computation time using minimal unsatisfiable subset extractors.
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Figure 5.4: Computation time of individual explanations for configurations.
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(a) Lengths using minimal unsatisfiable subset extractors.
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Figure 5.5: Lengths of explanations for feature model defects.
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(a) Lengths using minimal unsatisfiable subset extractors.
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Figure 5.6: Lengths of explanations for configurations.
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5.3.3 Explanation Availability

Moving on to the last of the criteria evaluated in this thesis, this section deals with
the availability of explanations. As mentioned before in Section 3.1.1, Boolean con-
straint propagation is incomplete, meaning it sometimes fails to find an explanation
at all. To solve this, the approach presented in this thesis uses minimal unsatisfiable
subset extractors instead. Thus, in this section, the availability of the explanations
found using the two approaches is compared.

Feature Model
DFs FOFs RCs No Expl.

BCP MUS BCP MUS BCP MUS BCP

SortingLine 0 0 0 0 6 6 0
PPU 5 5 4 4 10 10 0
Violet 0 0 1 1 1 1 0
uClibc 31 31 10 10 0 0 0
E-Shop 0 0 1 1 1 1 0
WaterlooGenerated 10 10 13 13 8 8 0
Busybox 1.18.0 12 18 3 3 0 0 6
XSEngine 40 42 166 166 51 51 2
uClibc-Distribution 1 1 6 6 0 0 0
Automotive01 191 195 77 80 869 869 7

Total 290 302 281 284 946 946 15

Table 5.3: Availability of explanations for feature model defects.

The number of explanations found for each type of feature model defect per feature
model is listed in Table 5.3. Comparing these values against those of Table 5.1 shows
that the approach presented in this thesis manages to find an explanation for every
defect it is given as input. In other words, explaining using minimal unsatisfiable
subset extractors is complete as long as the underlying extractor is complete.

By contrast, the approach based on Boolean constraint propagation has trouble find-
ing an explanation for every defect. In particular, of the 10 feature models analyzed,
3 contain defects that cannot be explained using Boolean constraint propagation.
Those defects are mainly dead features, though the automotive feature model also
contains 3 false-optional features for which Boolean constraint propagation returns
no result. The percentage of the defects that cannot be explained using Boolean
constraint propagation is 29% in Busybox, 0.8% in XSEngine and 0.6% in the au-
tomotive feature model. The many unexplainable dead features in Busybox, for
example, are cases of literal incompleteness (cf. Section 3.1.1).

For configurations, the availability of explanations is similar, as can be seen in
Table 5.4. Using the approach presented in this thesis, all automatic selections
can be explained. As for Boolean constraint propagation, it once more fails to
find an explanation for every automatic selection. The incompleteness reveals itself
only in the feature models that contain feature model defects that already cannot
be explained using Boolean constraint propagation. The number of circumstances
that cannot be explained using Boolean constraint propagation remain the same
compared to those for feature model defects. An exception is the automotive feature
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Feature Model
ASs No Expl.

BCP MUS BCP

SortingLine 29 29 0
PPU 44 44 0
Violet 3 3 0
uClibc 182 182 0
E-Shop 51 51 0
WaterlooGenerated 120 120 0
Busybox 1.18.0 51 57 6
XSEngine 226 228 2
uClibc-Distribution 55 55 0
PROFilE-ERP-System 223 223 0
PROFilE-E-Agribusiness 148 148 0
Automotive01 1364 1366 2

Total 2496 2506 10

Table 5.4: Availability of explanations for configurations.

model, which contains only 2 instead of 7 unexplainable circumstances. After all,
compared to feature model defects, the satisfiability queries involving configurations
only add unit-clauses. These unit-clauses can always be propagated into unless
they are satisfied or contradicted already and hence make it more likely that an
explanation is found.

5.4 Conclusion

In conclusion, the approach presented in this thesis allows finding explanations with
many positive criteria. The explanations it finds are correct and sensible as well as
short enough to be helpful. This holds true not only for small models but also large
ones. Its main advantage over the existing explanation approach using Boolean con-
straint propagation [KAT16], which is incomplete, is that it is complete and therefore
finds explanations for any circumstance it is given as input. As the analysis shows,
circumstances for which Boolean constraint propagation fails to find an explanation
do in fact occur in real models but are very seldom.

Unfortunately, the completeness of this approach comes at a cost. The performance
of this approach is several orders of magnitudes worse than that of the approach
based on Boolean constraint propagation. For this reason, it is inadvisable to use
minimal unsatisfiable subset extractors in cases where Boolean constraint propaga-
tion does the job. However, it is typically not known whether a given circumstance
can be explained using Boolean constraint propagation before actually attempting
to do so.

Therefore, given both approaches, the optimal solution is to combine them to get
the best of both worlds. This can be done using a two-step algorithm. First, an
explanation is attempted to be found using Boolean constraint propagation. This
is fairly fast but might fail to return an explanation. If it succeeds in finding an
explanation, the explanation can be returned immediately. However, if it fails to find
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an explanation, an explanation is (definitely) found using a minimal unsatisfiable
subset extractor. On average, the performance overhead for sometimes running
two explanation approaches is offset by usually not running the costly minimal
unsatisfiable subset extraction.

Indeed, as part of this thesis, this combined approach is implemented in response to
this evaluation. It is implemented as another set of subclasses of ExplanationCre-
ator and ExplanationCreatorFactory (cf. Section 4.2) in the package composite

next to the packages ltms and mus for every use case. It is basically a decorator
[GHJV95] that delegates to any number of decorated explanation creators. When ex-
plaining, it uses the decorated explanation creators in their specified order until one
successfully finds an explanation. By default, the abstract factory CompositeExpla-

nationCreatorFactory creates such instances of CompositeExplanationCreator

composing first an explanation creator using Boolean constraint propagation and
second one using a minimal unsatisfiable subset extractor. Due to conforming to
the abstract factory pattern [GHJV95], it is plugged into the existing application
seamlessly.

The effect of the combined algorithm is as expected. Often, the explanation is
quickly found using Boolean constraint propagation right away, causing no slow-
down. For models containing some circumstances that cannot be explained using
Boolean constraint propagation, the combined algorithm is, averaged across all ex-
planations, slower than Boolean constraint propagation but much faster than using
minimal unsatisfiable subset extractors all the time. The slow-down factor of finding
explanations for all feature model defects using the combined approach compared to
Boolean constraint propagation is 2.96 (instead of 4.66 using minimal unsatisfiable
subset extractors) for Busybox, 1.01 (instead of 11.3) for XSEngine, and 1.06 (in-
stead of 1565) for the automotive feature model. This is a significant performance
improvement over using minimal unsatisfiable subset extractors all the time. Most
importantly, the combined algorithm always finds an explanation.



6. Related Work

This chapter discusses work similar to this thesis. This serves as an overview of the
research field to point the reader in the right direction for further reading. In addi-
tion, the commonalities and differences are highlighted for a better understanding
of the contributions of this thesis.

Feature Model Defects

Much of the automated analysis of software product lines [TAK+14] leverages a
connection between the model to be analyzed and the satisfiability problem. Most
notably, feature models can be transformed to propositional formulas, which enables
a way of reasoning over feature models [Man02, Men09] that can be used to analyze
a wide variety of properties of feature models and their elements [BSRC10]. Of par-
ticular relevance to this thesis is the analysis of feature model defects [vdML04], es-
pecially regarding dead features [BSRC10, SKT+16], false-optional features, redun-
dant constraints [BSRC10], implicit constraints, and void feature models [BSRC10,
Hem08, SKT+16]. However, these works on analyzing feature model defects only
involve the detection of defects instead of also providing means for solving them.
This is unfortunate because having to figure out how to solve the defect takes time
away from other tasks of the engineering process. With the explanation approach
presented in this thesis, the developer is given explanations that help understand
and thus solve the issue. This is especially relevant for large feature models, where
many elements of the feature model interact in complex ways.

As mentioned in Section 2.1.1, Boolean constraint propagation lies at the heart of
most SAT solvers developed before the rise of conflict-driven clause learning engines
[CESS08]. Ananieva [Ana16, KAT16] employs a logical truth maintenance system
with Boolean constraint propagation at its core to find explanations for defects in
feature models. First, the various defects are formulated as a satisfiability query just
like in Section 3.2.1. If the formula is unsatisfiable, Boolean constraint propagation
[McA90] is applied, i.e., unit-open clauses are used to derive truth value assign-
ments one variable at a time. During propagation, the unit-open clauses involved
in making the formula unsatisfiable are recorded. The set of all these propagated
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unit-open clauses is a minimal unsatisfiable subset and serves as the explanation for
the unsatisfiability and therefore the defect. Unfortunately, as was shown in this
thesis in Section 3.1.1, Ananieva’s approach using Boolean constraint propagation
is incomplete, meaning it does not always find an explanation for a given defect.
Specifically, of all the feature model defects tested in the evaluation part of this the-
sis, 1% could not be explained using Boolean constraint propagation. The approach
contributed in this thesis, on the other hand, is complete and always finds a correct
explanation for every recognized defect. Additionally, this thesis addresses most
of the future work proposed by Ananieva. However, the evaluation in this thesis
has also shown that Boolean constraint propagation is magnitudes faster than using
SAT solvers to extract minimal unsatisfiable subsets. Therefore, as another contri-
bution of this thesis, the two approaches are combined to mitigate the downsides of
both. By attempting to find an explanation using Boolean constraint propagation
first and a minimal unsatisfiable subset extractor second, the combined approach
is as fast as Boolean constraint propagation if it finds an explanation. Otherwise,
the combined algorithm still manages to find an explanation using minimal unsat-
isfiable subset extractors. Considering how rarely the latter case occurs and how
much faster Boolean constraint propagation is, the overhead of having tried out
Boolean constraint propagation before the minimal unsatisfiable subset extraction
is negligible.

Mauro et al. [MNSY17] contribute the tool HyVarRec to detect and explain dead
features and void feature models in context-aware feature models [MNSY16]. In
context-aware feature models, features may be attributed with restrictable values.
The analysis of such feature models requires quantifiers, which is why these defects
are expressed in terms of satisfiability modulo theories instead of propositional for-
mulas. The approach presented in this thesis, in contrast, deals with pure feature
models. Therefore, SAT solvers suffice for the analysis. Additionally, this thesis
takes more feature model defect types into account, in particular false-optional fea-
tures, redundant constraints, and implicit constraints.

Wang et al. [WXH+14] propose an interactive approach for fixing feature model
defects using constraint hierarchies [BFBW92]. In that approach, the application
keeps suggesting the developer one of the many concrete solutions to the defect by
removing a low-priority constraint from the over-constrained feature model. While
doing so, each decision of the developer to accept or refuse a given solution is taken
into account for further suggestions. Thus, the constraint hierarchy gradually adapts
to the developer’s confidence on the constraints, leading to more desirable sugges-
tions. By contrast, the approach presented in this thesis does not attempt to figure
out the thoughts of the developer. Instead, it finds explanations that narrow down
the number of elements that the developer needs to consider for removal or adop-
tion. With the knowledge provided by the explanation, the developer is then free to
realize the optimal solution autonomously.

Compared to all of those approaches mentioned so far that find explanations, an-
other advantage of the approach contributed in this thesis is the visualization of
explanations for feature model defects. Whereas the explanations found by the pre-
vious approaches are displayed textually, often not even in natural language, this
approach provides a more intuitive representation of the explanation. To this end,
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the explanation is represented visually by highlighting relevant graphical elements
of the feature diagram. This is implemented as part of the software product line
development tool FeatureIDE [MTS+17, TKB+14]. FeatureIDE offers many exam-
ples of feature models from real software projects of various sizes that are used in
this thesis for a more comprehensive evaluation of the scalability than is typically
the case for the works mentioned before. Additionally, in this thesis, the concept of
explanations is generalized and applied to more use cases than just defects in feature
models, specifically configurations and code annotated with preprocessor directives.

Analysis of Configurations

Building upon the ability to express feature models as propositional formulas, SAT
solvers can also be used to analyze configurations [Jan08]. In particular, configu-
rations may be checked for validity [TAK+14], i.e., whether the configuration con-
forms to the feature model and refers to a product that can actually be derived.
Throughout the configuration process, this can be ensured using decision propa-
gation [HSJ+04, KTS+17], in which case selections are propagated automatically
to avoid backtracking. As with the analysis of feature model defects, the analy-
ses of configurations in these works do not provide an explanation of the detected
property. Thus, the developer might end up being confused why a certain selec-
tion or deselection occurred and why its selection status can no longer be changed.
The explanation approach presented in this thesis clears up any potential confusion
regarding the causes of automatic configuration propagations.

Batory [Bat05] proposes an explanation approach using a logical truth maintenance
system based on Boolean constraint propagation. That approach is implemented in
the tool GUIDSL. In GUIDSL, features of a feature model may be selected or de-
selected manually, causing automatic decision propagations for which explanations
are generated using Boolean constraint propagation. Unfortunately, the explana-
tions are formulated in the problem space, i.e., they are formulas. Conversely, the
approach contributed in this thesis finds explanations that are formulated in model
space, i.e., they explicitly reference elements from the feature model and the config-
uration. This is a much more intuitive and user-friendly representation. In addition,
because Batory’s approach is based on Boolean constraint propagation, it is incom-
plete, meaning it occasionally fails to find an explanation at all. In particular, it
does not manage to find explanations for the two classes of feature model defects
detailed in Section 3.1.1, whereas the approach presented in this thesis does. On
top of that, the approach contributed in this thesis provides explanations not only
during the configuration phase but also earlier during the feature modeling phase.

Trinidad et al. [TBD+08] contribute the tool FAMA, which detects and explains
feature model defects and invalid configurations. This is done using a solver for con-
straint satisfiability problems. However, this is not applied to redundant constraints.
In contrast, the approach presented in this thesis uses a SAT solver and explains
redundant constraints in addition to the other defects. Additionally, in FAMA, the
explanations are not written in natural language but a very abbreviated text form.
Finally, FAMA is not evaluated against feature models as large as those used in the
evaluation of this thesis.
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Analysis of Preprocessor Directives

The satisfiability problem can also be applied to code annotated with preprocessor
directives [TAK+14]. For the implementation of a software product line, preproces-
sor directives contain expressions in the form of propositional formulas over features
from the feature model. This makes possible what is here called invariant presence
conditions, that is presence conditions that always evaluate to true, rendering the
annotation superfluous, or presence conditions that always evaluate to false, thereby
causing dead code blocks [LvRK+13]. Tartler et al. apply this analysis to the Linux
kernel [TLD+11, TLSSP11, TSSPL09]. However, these works on analyzing code an-
notated with preprocessor conditions only provide algorithms for detecting invariant
presence conditions but not for explaining why they occur. Yet, such explanations
are especially useful in this use case because of the complex interactions between
the various nested code blocks. When combined with the complexity of the feature
model, figuring out the cause of defects can easily become overwhelming. With the
approach presented in this thesis, it is possible to find explanations that allow the
developer to easily track down the cause of invariant presence conditions. To the
author’s knowledge, this is the first time an algorithm for finding explanations in
code annotated with preprocessor directives is conceptualized and respective tool
support is provided.

Minimal Unsatisfiable Subsets

A minimal unsatisfiable subset is subset of a propositional formula for which no satis-
fying truth value assignment exists and which cannot be reduced further without be-
coming satisfiable. By extracting minimal unsatisfiable subsets [BLMS12, dlBSW03]
from formulas, explanations of their unsatisfiability can be found [GMP08a]. The
approach presented in this thesis applies this concept to satisfiability queries in the
context of software product lines. For each clause of the found minimal unsatisfi-
able subset, the corresponding meaning in model space is remembered, e.g., that a
feature is manually selected in a configuration or that a feature is a child of another
feature.

However, the aforementioned explanation approaches use a variety of problem rep-
resentations such as propositional formulas [Bat05, KAT16], constraint satisfiability
problems [TBD+08], and satisfiability modulo theories [MNSY17]. Typically, mini-
mal unsatisfiable subsets are extracted from propositional formulas, but minimal un-
satisfiable subsets can also be extracted in these other cases. For example, Grégoire
et al. [GMP08b] extract minimal unsatisfiable subsets from constraint satisfiability
problems. Similarly, Guthmann et al. [GST16] extract minimal unsatisfiable subsets
using several satisfiability modulo theory solvers. This means that the explanation
approach presented in this thesis can be applied to the aforementioned approaches
for finding explanations.

Liffiton et al. [LS08] propose CAMUS, an algorithm for computing all minimal un-
satisfiable subsets of a formula rather than just one. This is done by first finding
a minimal correction subset and then deducing the minimal unsatisfiable subsets
from them. Finding all minimal unsatisfiable subsets is interesting because it en-
ables identifying particularly critical clauses as well as using the smallest minimal
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unsatisfiable subset for the explanation. The SAT solver library Sat4J [LBP10],
which is used in the implementation of the approach presented in this thesis, pro-
vides an implementation of the algorithm of Liffiton et al. [LS08].a However, finding
all minimal unsatisfiable subset takes significantly longer than finding any minimal
unsatisfiable subset. This is because finding a minimal correction subset is an expen-
sive operation, which is addressed in follow-up work by Liffiton et al. [LM13] with
the algorithm MARCO. Due to the performance issues of extracting all minimal
unsatisfiable subsets, the implementation of the approach contributed in this thesis
uses only a single minimal unsatisfiable subset to create the explanation.
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7. Conclusion

The first conclusion to draw from this thesis is that Ananieva’s explanation approach
based on Boolean constraint propagation [Ana16, KAT16] is incomplete. This means
that it sometimes fails to produce any explanations for a defect. In this thesis, the
incompleteness has been linked to what Forbus and de Kleer [FdK93] call refutation
incompleteness and literal incompleteness. A quantitative analysis showed that these
cases do in fact occur in feature models of real software projects, albeit only 1% of
the feature model defects tested could not be explained using Boolean constraint
propagation.

Hence, to be able to find explanations for any satisfiability query in a software prod-
uct line context, another explanation algorithm using minimal unsatisfiable subsets
was devised in this thesis. This algorithm uses SAT solvers to extract minimal un-
satisfiable subsets from the propositional formulas expressing the circumstances to
explain. Each resulting clause is traced back to model space for a more intuitive
representation such as natural language or, for explanations for feature model de-
fects, highlighted elements in the feature diagram. The algorithm is easily extensible
and was applied to explain various circumstances in feature models, configurations,
and code annotated with preprocessor directives. As far as the author is aware,
this is the first time explanations are found automatically for code annotated with
preprocessor directives.

As the evaluation showed, the algorithm presented in this thesis is both sound and
complete and typically finds explanations of reasonable length. Unfortunately, com-
pared to Boolean constraint propagation, it is slower by orders of magnitudes. To
solve the performance issue, the two algorithms were combined into one. This com-
bined algorithm attempts to find an explanation using Boolean constraint propaga-
tion first and only falls back to minimal unsatisfiable subset extractors if Boolean
constraint propagation fails. As a result, the combined algorithm is as fast as
Boolean constraint propagation if it finds an explanation. In the rare case that
Boolean constraint propagation fails to find an explanation, the combined approach
is still complete through the use of minimal unsatisfiable subset extractors.
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8. Future Work

The explanation approach presented in this thesis entails several possibilities for
future work. This chapter provides a few examples of them.

Using a Different Solver to Extract Minimal Unsatisfiable Subsets

Extracting minimal unsatisfiable subsets using the SAT solver from the Sat4J frame-
work takes significantly longer than running Boolean constraint propagation. How-
ever, it is unclear whether this is an inherent issue of SAT solvers in general or only
the implementation provided by Sat4J. Since it is possible that other SAT solvers
are faster or provide smaller unsatisfiable subsets, another SAT solver implementa-
tion could be added to the SAT solver facade implemented as part of this thesis.
Instead of SAT solvers, the minimal unsatisfiable subset extraction could also be
done using other solver types such as those for satisfiability modulo theories. This
could then be evaluated regarding criteria such as performance and the size of the
returned minimal unsatisfiable subsets.

Extracting a Minimum Unsatisfiable Subset

To explain a circumstance, the approach presented in this thesis uses whichever
minimal unsatisfiable subset of the satisfiability query is returned by the SAT solver.
The minimal unsatisfiable subset extractor provided by Sat4J does not promise that
the returned minimal unsatisfiable subset is actually the smallest one possible, i.e.,
the minimum unsatisfiable subset. Extracting the minimum unsatisfiable subset
instead of just any minimal unsatisfiable subset would ensure that the explanation
is as short as possible and therefore the most easily comprehensible. Given that
extracting any minimal unsatisfiable subset is already a costly operation, this should
include an evaluation with a strong focus on performance.

Extracting Multiple Minimal Unsatisfiable Subsets

Ananieva’s explanation approach based on Boolean constraint propagation [KAT16]
finds multiple explanations and returns the shortest one found. The other explana-
tions are not simply discarded but each reason is used to give a confidence hint based
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on how often it occurs across all found explanations. The idea behind this is that
an explanation part of every explanation is more likely to be the root cause of the
problem. It could be investigated whether such a confidence hint could also be given
in a performant manner using the approach presented in this thesis by extracting
multiple minimal unsatisfiable subsets instead of just one. For example, Liffiton et
al. [LM13] propose the algorithm MARCO with the purpose of enumerating multiple
minimal unsatisfiable subsets quickly.

Reusing the Internal Solver State

In this thesis, detecting a circumstance is separate from explaining it. This is a
deliberate decision to increase the separation of concerns, to enable the independent
optimization of the two tasks, and to make finding explanations optional, thereby
typically avoiding having to find many explanations that end up being unused. How-
ever, for cases in which most or even all of the defects in a model need to be explained,
merging the two tasks might bring a performance benefit. In particular, by reusing
the state of the solver used to detect the defect, the explanation algorithm might
run faster than if it did not.

Still, care must be taken not to simply reuse all of the solver’s internal propagations
without question. After all, to decide the satisfiability query, the solver might have
branched incorrectly in trying to arrive to the conclusion. In such a case, the subset
of the clauses deduced to have a certain truth value might not actually be a minimal
unsatisfiable subset, which is critical to having a sensible explanation. Having to
minimize the set might in turn nullify the performance advantages gained by reusing
the solver state in the first place.

Visual Explanations for Configurations and Preprocessor Directives

Currently, the explanations for configurations and code with preprocessor directives
are displayed as text in natural language inside tooltips. This can be made more
intuitive using a visual representation of the explanation. These could look similar
to the visual explanations for feature model defects. They could even reuse the
visual explanations for feature model defects by for example opening the relevant
parts of the feature diagram when an explanation is visualized.

Collapsing Parts of Configurations and Preprocessor Directives Irrelevant
to Explanation

Parts of the feature diagram that are irrelevant to the visual explanations for feature
model defects can be collapsed in a single operation. There could be an analogous
operation for collapsing irrelevant parts of the configuration and for hiding irrelevant
parts of the code annotated with preprocessor directives.

Quantifying the Usefulness of Explanations

A user study or experiment could be conducted to measure how useful explanations
are in practice. For instance, it could be measured how fast test groups find solutions
to defects with or without being given explanations.
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and Gunter Saake. Feature-Model Interfaces: The Highway to Com-
positional Analyses of Highly-Configurable Systems. In IEEE Trans-
actions on Software Engineering, pages 667–678, 2016. (cited on Page 1,

9, 14, and 79)

[SRG11] Klaus Schmid, Rick Rabiser, and Paul Grünbacher. A Comparison
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