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Abstract

Family-based static analysis techniques allow to efficiently analyze the exponential
variant space of a software product line (SPL). Rather than analyzing each variant
completely on its own, a family-based analysis processes information shared among
multiple variants only once. The analysis delegates parts of the exponential com-
plexity to reasoning about boolean presence conditions, which control the inclusion
or exclusion of code fragments in a particular variant. The feature model of the SPL,
which determines the set of valid variants, must be included in the reasoning pro-
cess to obtain correct results. However, typically not all parts of a feature model are
relevant for a particular condition. In this work, we propose a method to accelerate
presence condition reasoning by decreasing the size of the model used for reasoning.
In particular, we use the concept of feature model interfaces to decompose a feature
diagram according to its hierarchical structure, and obtain an abstraction that can
be selectively refined on the fly for a given condition. We formalize our approach
in terms of propositional feature diagram semantics and prove its correctness. In
our evaluation, we demonstrate that our approach accelerates reasoning by up to 24
percent.
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1. Introduction

A software product line (SPL) allows to compose custom-tailored software variants
from reusable artifacts [Clements and Northrop, 2001; Czarnecki and Eisenecker,
2000]. A product line is modeled by a set of features, which represent individual
units of functionality that may be present or absent in concrete variants. Typically,
a product line provides a configuration mechanism that receives a set of desired
features, and produces the variant that behaves accordingly. To this end, develop-
ers associate code artifacts with particular features or feature combinations. Such
mechanisms range from compile-time generators (e.g., the C preprocessor [Hunsen
et al., 2015]) to runtime conditionals (e.g., if statements [Apel et al., 2013a]). The
ability to produce different products from a common code base is called variability.

In general, not all configurations of a product line are valid. For example, two
features may be mutually exclusive due to technical restrictions. Therefore, a prod-
uct line has a feature model that defines the set of valid feature combinations [Kang
et al., 1990]. The configuration mechanism enforces such restrictions imposed by the
model, so that only valid variants can be derived. In particular, feature diagrams
provide a graphical representation of feature models, and are for example used to
communicate among stakeholders. Feature diagrams organize features hierarchically
in form of a tree, such that subordinate features concretize the specification of their
parents.

Static analysis of product lines, such as parsing [Kästner et al., 2011] or type check-
ing [Kästner et al., 2012], requires enhanced techniques due to the large variant
space [Thüm et al., 2014a]. Assuming boolean configuration options, a product line
with n features gives rise to 2n variants in the worst case. Analyzing each variant
individually (called brute-force approach) is therefore not feasible. Consequently,
family-based analyses have been developed, which process a product line as a whole,
and do not examine individual variants. Often, variants share some portions of the
code. By processing such commonalities only once, family-based analyses avoid re-
dundant computations and hence are more efficient than brute-force analyses. For
example, a 6,000 feature version of the Linux kernel has been parsed in 85 hours us-
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2 1. Introduction

ing a family-based technique [Kästner et al., 2011], whereas parsing 26000 individual
variants in reasonable time would be clearly impossible.

Family-based analyses process program code along with the variability mechanism of
the product line (e.g., preprocessor #ifdefs). The variability mechanism associates
code fragments with features or combinations thereof, typically through proposi-
tional formulas called presence conditions that range over the available features.
Reasoning about such conditions is a central concern of family-based analyses, as
information from different code fragments can be combined only if those are present
together in some variant. Consequently, to produce correct results, the analysis
needs to respect the feature model while reasoning. To this end, feature models are
translated to propositional formulas [Batory, 2005; Benavides et al., 2010], such that
presence conditions can be checked against them.

Satisfiability solvers (SAT solvers) can be used to reason about propositional for-
mulas [Harrison, 2009]. Although deciding satisfiability is NP-complete and thus
presumably has exponential worst-case complexity in the number of formula atoms,
solvers operate in acceptable times on problems that are related to feature mod-
els [Mendonca et al., 2009; Liang et al., 2015], and static analysis of product line
code [Liebig et al., 2013]. Nevertheless, Liebig et al. [2013] have reported that solv-
ing a typical condition during an analysis of the Linux kernel still took 0.5 seconds
on average when the feature model was involved. To accelerate some of their analy-
ses, they removed the feature model from SAT checks on intermediate results, and
instead only used it when final results were returned. In the evaluation of this work,
we found that reasoning takes about 12 seconds in total when type checking a typical
Linux source file.

In this thesis, we present an approach to accelerate family-based analyses by reducing
reasoning times. Our goal is to decrease the size of the feature model that is used
by the solver. To this end, we compose a specific abstract model on the fly for
each presence condition from parts of the original model. This model contains
fewer features than the original model and therefore facilitates faster reasoning.
Nevertheless, we ensure by construction that the composed model is sound and
complete with respect to the particular presence condition.

To construct such abstractions of feature models, we use the concept of feature
model interfaces [Schröter et al., 2016]. An interface of a feature model has fewer
features, yet preserves all dependencies between the remaining features. Feature
model interfaces can therefore be used as a substitute for the original model if one
is interested in analyzing properties (e.g., dead features [Benavides et al., 2010]) for
only a subset of features. Furthermore, composing interfaces of parts of a feature
model yields an interface of the overall model under certain restrictions.

We follow the general approach of Schröter et al. [2016] in this thesis to decompose
and reduce a feature model. In a nutshell, we select subtrees of a given feature
diagram as elements of our decomposition, the intuition being that these subtrees
correspond to cohesive implementation units (e.g., modules) of the product line. In
particular, we hypothesize that presence conditions which arise during the analysis
of such an impementation unit mostly contain features that belong to such a single
subtree. For example, we would expect that networking code does not involve check-
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3

ing feature model constraints of the filesystem code and vice versa. Using feature
model slicing [Acher et al., 2011], we then obtain an interface of each subtree, which
only contains features that are required for re-composition with the other subtrees
(e.g., features in cross-tree constraints).

The composition of those interfaces is an interface of the original model, which can
be selectively refined to a more concrete interface by re-composing it with individual
concrete subtrees. We show that selecting all decomposition subtrees which share
a feature with a given presence condition yields a sound and complete model for
this condition. In other words, feature-based selection on such a feature diagram
decomposition is sufficient to ensure correct reasoning. Since we aim to choose a
decomposition that corresponds to the implementation structure, we expect that
a selection returns few (or even a single) model for most presence conditions, and
consequently the speed gain in the solver because of the smaller model outweighs
the recomposition costs.

Schröter et al. [2016] define feature model interfaces on sets of product line config-
urations. By contrast, we base our theory directly on propositional logic, since we
are mainly concerned with reasoning about propositional formulas. Furthermore,
we formalize a generic feature diagram decomposition, which only requires a ba-
sic tree structure, whereas all other feature dependencies (e.g., group constraints)
are considered as arbitrary formulas. Subsequently, we prove the correctness of our
approach.

To evaluate the potential of our approach for accelerating family-based analyses,
we analyze characteristics of presence conditions that arise while type checking a
version of the Linux kernel. In particular, we measure reasoning times, and other
properties such as the number of distinct features. To compare the performance of
our approach with the conventional technique that uses the full feature model, we
implement both strategies in a prototype based on FeatureIDE [Thüm et al., 2014b].
We use the data obtained from the type checking experiment to generate a set of
realistic presence conditions, which we process with both strategies while measuring
computation times.

Contribution

In particular, we make the following contributions.

• We formalize a simple approximate but complete strategy to select relevant
parts from a set of propositional formulas, in order to reason about another
given formula, which is based on the set of shared atomic propositions.

• We transfer the notion of feature model interfaces to propositional logic, thereby
defining the concept of a propositional interface as a means for sound and com-
plete reasoning for a subset of atomic propositions.

• We formalize feature diagrams in a generic way that only requires a tree struc-
ture, and provide semantics in propositional logic for this definition.
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4 1. Introduction

• We define a decomposition and abstraction operation on feature diagrams that
is based on subtrees, and that yields a set of formulas that can be selectively
composed for presence condition reasoning.

• We prove the correctness of our approach. That is, our decomposition satisfies
the requirements of the atom-based selection strategy we have defined.

• We analyze properties of presence condition reasoning in practical family-based
analysis.

• Finally, we compare the performance of our approach with a conventional
reasoning technique, using a prototypical implementation.

Structure of the thesis

This thesis is organized as follows. In Chapter 2, we provide the necessary back-
ground for this thesis, particularly propositional logic, software product lines, feature
models and feature model interfaces. In Chapter 3, we present our approach to rea-
son with decomposed feature diagrams and prove its correctness. Subsequently, we
analyze properties of practical presence conditions, and compare effectiveness of our
approach with conventional reasoning in Chapter 4. Chapter 5 surveys related work.
Finally, we summarize the results of this thesis in Chapter 6.
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2. Background

In this chapter, we provide the necessary background for this thesis. In Section 2.1,
we formally define syntax and semantics of standard propositional logic as a means to
reason about feature models. In Section 2.2, we explain relevant aspects of software
product lines. In particular, we describe feature models and feature model interfaces.
Using the concept of annotation-based product lines, we then illustrate how feature
models and implementation artifacts are connected. Finally, we explain how such
product lines can be statically analyzed using family-based analysis.

2.1 Propositional logic

Propositional logic [Huth and Ryan, 2004] allows to formalize statements about
concepts that are either true or false. These concepts are called atomic propositions
or short atoms. For example, we could define the statements ”it rains” (R) and ”sun
shines” (S) as atoms. Depending on the weather, these statements are either true
or false. Unless stated otherwise, we adapt notions from Huth and Ryan [2004] in
this section.

Formulas in propositional logic consist of atoms connected by logical operators,
which are called connectives. For example, the ∧ connective represents the logical
”and”, whereas ¬ represents ”not”. We could therefore formalize the statement ”it
rains and the sun does not shine” as the propositional formula R ∧ ¬S.

A valuation assigns a truth value (i.e., true or false) to each atom of a formula.
As a consequence, also each formula has a truth value, which depends on the truth
values of the atoms, and the meaning of the particular connectives. For example,
the above statement R ∧ ¬S is only true, if it indeed rains (i.e., R is true), and the
sun does not shine (i.e., S is false).

Furthermore, a propositional formula may have other statements as a consequence.
This relation is called entailment. If we assume that R∧¬S is true, then consequently
R must be true. Therefore, R∧¬S entails R. There are also formulas that have the
same semantic meaning, but different syntactic structure. For example, the formulas
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6 2. Background

R∧¬S and ¬S∧R obviously represent the same statement about the weather, but in
different order. Such formulas are called equivalent. We are able to computationally
prove or disprove such entailments and equivalences using satisfiability solvers (SAT
solvers).

We now precisely define the notions that we have informally explained above. First,
we formally define the syntax of propositional formulas. Second, we give meaning to
the syntactic elements by defining a formal semantics for them. Finally, we define
entailment and equivalence, and relate them to satisfiability solving.

2.1.1 Syntax

We define the syntax of propositional formulas inductively over the atomic proposi-
tions (atoms) and connectives as follows. Additionally, we define special symbols for
contradiction (⊥), which is always false, and tautology (>), which is always true.

Definition 2.1 (Propositional formula). Let A be a set of atoms. The symbols ⊥
and >, and every atom t ∈ A are propositional formulas. Furthermore, if ϕ and ψ
are propositional formulas, then also

• ¬ϕ,
• ϕ ∧ ψ,
• ϕ ∨ ψ, and
• ϕ⇒ ψ

are propositional formulas. The set of atoms of a formula ϕ is denoted as a(ϕ).
Moreover, the set of formulas over atoms A is denoted as Θ(A).

We assume the usual precedence rules for the connectives. That is, ¬ binds stronger
than ∧, ∨ and ⇒. Moreover, ∧ and ∨ bind stronger than ⇒.

Example 2.1. The term R ∧ ¬S is a propositional formula, and its set of atoms
a(R ∧ ¬S) is {R, S}. Also, the formula is in the set Θ({P,Q,R, S}), but not in
Θ({R}). By the precedence rules, the formula ¬P ∧Q⇒ R actually represents the
formula ((¬P ) ∧Q)⇒ R.

2.1.2 Semantics

To define the truth value of a formula, we specify how to evaluate each atom and
each connective. The truth value of a formula depends on the concrete choice of
truth values for each atomic proposition. Since atomic propositions are either true
or false, we define a function α from atoms into a binary set B = {0, 1}, where 0
represents false and 1 represents true.

Definition 2.2 (Valuation). Let ϕ be a propositional formula. A valuation for ϕ is
a function α : A→ B, where A is a set of atoms such that a(ϕ) ⊆ A.

Note that some authors define valuations for precisely those atoms that occur in the
formula (i.e., A = a(ϕ)). This would be unnecessarily restrictive for our purposes,
since we intend to use a single valuation on multiple formulas, which may have
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2.1. Propositional logic 7

different sets of atoms. Therefore, we merely require A to be a superset of a(ϕ). For
example, a valuation for the formula P ∧Q is thus also a valuation for ¬P .

So far, we have only defined how to evaluate atoms. Now, we define a function that
also evaluates connectives [Harrison, 2009]. To this end, we extend each valuation
α defined for atoms A to a function α̂ on all formulas over A (i.e., the set Θ(A)).
For atoms, the value of α̂ is simply α, whereas for connectives, we define the value
either directly, or express it using other connectives1.

Definition 2.3 (Truth value). Let α : A→ B be a valuation. The function

α̂ : Θ(A)→ B

determines a truth value for every formula in Θ(A), and is defined recursively as
follows:

α̂(⊥) = 0

α̂(t) = α(t) for all t ∈ A

α̂(¬ϕ) =

{
1 if α̂(ϕ) = 0

0 otherwise

α̂(>) = α̂(¬⊥)

α̂(ϕ ∧ ψ) =

{
1 if α̂(ϕ) = 1 and α̂(ψ) = 1

0 otherwise

α̂(ϕ ∨ ψ) = α̂(¬(¬ϕ ∧ ¬ψ))

α̂(ϕ⇒ ψ) = α̂(¬ϕ ∨ ψ)

Example 2.2. Consider the formula ϕ = P ⇒ Q∧R. Now let α be a valuation for
ϕ such that α(P ) = 1 and α(Q) = 1 and α(R) = 0. Then, we can use α̂ to determine
the truth value of ϕ with respect to valuation α as follows. First, we evaluate the
outer formula:

α̂(P ⇒ Q ∧R) = α̂(¬P ∨ (Q ∧R))

= α̂(¬(¬¬P ∧ ¬(Q ∧R)))

Next, we evaluate the inner term ¬¬P ∧ ¬(Q ∧ R) in bottom-up order. Since
α̂(P ) = α(P ) = 1, we have α̂(¬P ) = 0 and consequently α̂(¬¬P ) = 1. Moreover,
α̂(Q∧R) = 0, because α(R) = 0. Therefore, α̂(¬(Q∧R)) = 1. Thus, α̂(¬(Q∧R)) =
1. Consequently, it follows that α̂(¬¬P ∧¬(Q∧R)) = 1. Since we actually needed to
evaluate the negation of the previous term, we finally obtain that α̂(P ⇒ (Q∧R)) =
0.

2.1.3 Satisfiability and entailment

We are now able to evaluate a propositional formula to a value. This thesis is
concerned with deciding entailments, which can be reduced to solving a satisfiability
problem, that is, whether a formula can be evaluated to true at all. Thus, we define
satisfiability and entailment next, and link these notions through a theorem.

1Since the set {¬,∧} of connectives is adequate, we can use these two connectives to express all
other connectives [Harrison, 2009].
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8 2. Background

Definition 2.4 (Satisfiability). A valuation α satisfies a propositional formula ϕ
if α̂(ϕ) = 1. Consequently, a formula is satisfiable if there exists a valuation that
satisfies it.

Example 2.3. The formula P ∨Q is satisfied by a valuation α such that α(P ) = 1
and α(Q) = 0. By contrast, the formula P ∧ ¬P is not satisfiable by any valuation.

The details of SAT solving algorithms are beyond the scope of this thesis. There-
fore, we treat SAT solvers as black box tools that decide the satisfiability of arbitrary
propositional formulas. In particular, we use the Sat4j solver [Berre and Parrain,
2010] for our implementation. It is generally assumed that deciding the satisfia-
bility of a formula has a worst-case complexity exponential in the number of its
atoms [Harrison, 2009]. However, such SAT solvers are typically faster for formulas
that arise in real-world applications, especially in the context of software product
lines [Liang et al., 2015].

Sat4j expects input formulas to be in conjunctive normal form (CNF ). The con-
junctive normal form of a formula is an equivalent formula that has a particular
structure. A CNF is a conjunction of so-called clauses. A clause is a disjunction
of literals, where a literal is defined as either an atomic proposition or its negation.
For example, the formula (P ∨Q) ∧ (P ∨ ¬R) is a CNF of P ∨ (Q ∧ ¬R).

Now that we have described satisfiability, we explain entailment next. In proposi-
tional logic, we can derive formulas from other formulas. Particularly, if a formula
ϕ is true for some valuation, there are formulas that must also be true for the same
valuation. In other words, these formulas are a semantic consequence of ϕ. For
example, regarding software product lines, we may be interested whether a feature
model entails a formula that expresses a certain dependency between features. We
formalize this property in the following definition. However, it is customary to refer
to a set of formulas Γ instead of a single formula ϕ.

Definition 2.5 (Semantic entailment). Let Γ be a set of propositional formulas,
and let ϕ be a propositional formula. The set Γ entails ϕ, denoted as Γ � ϕ, if every
valuation that satisfies all formulas in Γ also satisfies ϕ.

Example 2.4. Let Γ = {P ⇒ Q,P}. Then Γ � Q, but Γ 2 R. Note that contra-
dictions (e.g., ⊥) entail arbitrary formulas, since they have no satisfying valuation.

For convenience, we use sets of formulas and the conjunction over their elements
interchangeably, depending on the context2. For example, let Γ = {P,Q}. Then
we interpret Γ ∧ R as the formula P ∧ Q ∧ R, or as the set {P,Q,R}, as needed.
Consequently, we also write ϕ � . . . instead of {ϕ} � . . . for a single formula ϕ.

If two formulas entail each other, they are interchangeable. More precisely, both
are satisfied by the same sets of valuations. Therefore, we can define an equivalence
relation ≡ on propositional formulas that goes beyond syntactic equality and that
precisely represents semantic equivalence.

2This is valid, since we only deal with finite sets of formulas in this work. We can transform a
finite Γ into a conjunction and vice versa using the conjunction introduction and elemination rules
from natural deduction [Huth and Ryan, 2004].
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Definition 2.6 (Semantic equivalence). Two propositional formulas ϕ1 and ϕ2 are
equivalent, denoted as ϕ1 ≡ ϕ2, if ϕ1 � ϕ2 and ϕ2 � ϕ1.

Finally, we show that we can use satisfiability to decide entailment. Intuitively, if
ϕ � ψ, then by definition there cannot exist a valuation that satisfies ϕ, but does
not satisfy ψ. Consequently, the formula ϕ ∧ ¬ψ cannot be satisfiable. Note again
that ϕ may be represented as a finite set of formulas.

Theorem 2.1. Let ϕ and ψ be propositional formulas. Then ϕ � ψ if and only if
the formula ϕ ∧ ¬ψ is not satisfiable.

Proof. From Huth and Ryan [2004], combine Proposition 1.45 with Lemma 1.41.

2.2 Software product lines

A software system that allows to derive a family of related programs from a common
code base is called a software product line [Clements and Northrop, 2001; Apel
et al., 2013a]. This kind of engineering reduces development costs for software
that is targeted at mass customization. Instead of manually developing multiple
similar systems for overlapping sets of requirements, reusable artifacts for each unit
of functionality are implemented, and then automatically integrated for a concrete
set of requirements, to form a variant or product. This ability to produce different
variants from a single code base is called variability, and is a key concept of software
product lines.

To create a tailor-made variant, developers use a configuration mechanism to adjust
functional and non-functional properties, ideally without editing any code. This
configuration then fully determines the particular variant. Depending on the mech-
anism, derivation of the variant happens at compile, load, or run time. The config-
uration options are commonly called features, since they often represent high-level
functionality with direct meaning to users or other stakeholders.

In the remainder of this section, we illustrate product line methodology using a
simplified version of the graph product line (GPL) [Lopez-Herrejon and Batory,
2001], which is a standard example in product line research. The GPL models a
family of graph algorithm libraries. For example, the GPL has a feature for weighted
edges, and another feature for the computation of shortest paths in a graph.

2.2.1 Feature models

The feature model of a product line describes the set of available features and their
dependencies. Due to technical reasons, often not all feature combinations are valid.
For example, the GPL feature model demands the all products with the shortest
path algorithm also must have graphs with weighted edges. In other words, there
cannot be a product with the former feature, but not the latter one.

At the bare minimum, a feature model determines the set of valid product configu-
rations (i.e., combinations of features). The following definition, which is also called
configuration semantics [Acher et al., 2011], makes this explicit.
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10 2. Background

Definition 2.7. A feature model is a pair (F, P ), where F is the set of features, and
P ⊆ 2F is the set of valid configurations.

In this definition, each element p ∈ P corresponds to a configuration. Thus, if some
feature t ∈ F is in p, then it is regarded as selected for that particular configuration.

Since P contains up to 2|F | elements, there are several notations to specify feature
models in a more compact form. For example, the Linux kernel uses a textual mod-
eling language called Kconfig3 to describe selectable kernel functions (e.g., driver
modules) and their dependencies [Berger et al., 2010]. This language is also inte-
grated with the build system and configuration tools of Linux. By contrast, feature
diagrams, first proposed by Kang et al. [1990], provide a graphical notation for
feature models, which is only concerned with features themselves and their relation-
ships.

Feature diagrams

Feature diagrams arrange features hierarchically as a tree, such that child features
concretize the concepts of their parent features. To express dependencies between
features, feature diagrams have notations for groups of alternative features, manda-
tory features, cross-tree dependencies, or even arbitrary boolean constraints. To
date, several types of feature diagrams have been proposed, which have different
notational capabilities and expressiveness [Schobbens et al., 2007].

GPL

Algorithms

Connected comp.Shortest path

Edges

UnweightedWeighted

Mandatory

Optional

Or
Alternative
Requires

Figure 2.1: Feature diagram of the graph product line

We show the GPL feature diagram in Figure 2.1 and explain its notational elements.
At the root of the tree, there is the GPL feature, which simply represents the whole
product line. The root feature is usually implicitly mandatory (i.e., it is present in
every product). The GPL supports different types of graph edges, and two graph
algorithms. Since graphs always have edges, the Edges feature is mandatory. As
graphs cannot be weighted and unweighted at the same time, the corresponding
features are mutually exclusive. By contrast, multiple algorithms can be included in
the product. Hence, their features are defined as an or-group, which means that we

3Note however, that Kconfig models can only be approximated by configuration semantics, since
they also permit numeric values for features.
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2.2. Software product lines 11

have to select at least one of them, if the parent (Algorithms) is selected. Moreover,
if we want to compute shortest paths on a graph, we need a weight value for each
edge to measure distances. Therefore, the diagram contains a cross-tree constraint
between Shortest path and Weighted. Since we could also use only the graph data
structures without the algorithms, the Algorithms feature is optional. As a general
rule, we must not select a child feature without selecting its parent. Thus, for
example we cannot select Shortest path without selecting Algorithms, which also
would be intuitively wrong.

F = {G,E,W,U,A, S, C}
P ={{G,E,W} ,
{G,E, U} ,
{G,E,W,A, S} ,
{G,E, U,A,C} ,
{G,E,W,A,C} ,
{G,E,W,A,C} ,
{G,E,W,A, S, C}}

Figure 2.2: Configuration semantics (F, P ) of the GPL feature diagram

In Figure 2.2, we express the valid feature combinations of the GPL diagram as
configuration semantics. We abbreviate the feature names with the corresponding
underlined letters in the diagram.

F1

F2

F3

(a) Parent-child relationship

F1

F3F2

(b) Cross-tree dependency

Figure 2.3: Feature diagrams with different structure, but same feature combinations

In general, feature diagrams are not unique [Czarnecki and Eisenecker, 2000]. Often
there are several different diagrams that represent the same set of feature combina-
tions. In Figure 2.3 we show an example of two such diagrams, which are equivalent
with respect to the configurable products. Diagram (a) has a parent-child relation-
ship between features F2 and F3. Hence, informally F3 is some sub-functionality of
F2, and selecting F3 implies that we also select F2. In Diagram (b), we have changed
the hierarchy such that F2 and F3 are now on the same level in the tree. Regarding
the informal meaning, F3 is therefore no longer a concretization or specialization of
F2. However, because of the newly introduced cross-tree dependency, we still cannot
select F3 without F2.
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12 2. Background

Reasoning with feature diagrams

Feature models can be analyzed with regard to several properties [Benavides et al.,
2010]. For example, it could be interesting to decide whether some feature model
permits any configuration at all, which is called the void feature model analysis.
As another example, we could want to extract non-obvious dependencies between
features: Regarding our GPL model, we might want to know whether selecting
Algorithms but not Connected comp. requires us to deselect Unweighted (which is
indeed the case). While the former analysis is concerned with the model itself, the
result of the latter analysis could be required by some other analysis (e.g., static
code analysis).

To this end, many types of feature models can be translated to a propositional logic
formula. That way, we can give precise semantics to feature models, and moreover
use off-the-shelf tools like SAT solvers for analysis. Such a translation works for all
diagram types that have only boolean features (i.e., features are either selected or
not) [Batory, 2005; Benavides et al., 2010]. In other words, they must be expressible
in the configuration semantics from Definition 2.7. However, there are for example
feature models with numerical attributes and numerical constraints [Passos et al.,
2011], which cannot be represented this way. Those diagrams are beyond the scope
of this work.

Translation to propositional logic is straightforward. Since features are either se-
lected or deselected, and feature models determine the valid combinations of such
binary parameters, a feature directly corresponds to an atomic proposition. For each
diagram element, we can then construct a propositional formula over the involved
features. For example, or-groups are translated to disjunction, dependencies (child-
parent, cross-tree) correspond to implication. The overall formula for the diagram
is then the conjunction of all those element formulas. In Figure 2.4, we show the
propositional representation of the GPL feature diagram.

Having a propositional logic representation of a feature diagram, we can use a SAT
solver to compute results for the aforementioned analyses. The void analysis is
simply equivalent to the unsatisfiability of the model formula, whereas the analysis
of feature dependencies can be expressed as entailments. For the example above, we
would decide the entailment

FM � (Algor . ∧ ¬Conn.)⇒ ¬Unweigh.,

where FM is the GPL model formula. As explained in Section 2.1.3, this can be
achieved using a SAT solver as well.

Note that we describe the translation only informally in this section. We give a
generic formal definition of feature diagrams and a corresponding translation in
Chapter 3.

2.2.2 Feature model interfaces

As feature models may contain over 10,000 features in practice, and often not all
features are of interest for a particular analysis [Passos et al., 2011], feature model
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Parent-child dependencies

Edges ⇒ GPL

Algorithms ⇒ GPL

Weighted ⇒ Edges

Unweighted ⇒ Edges

Shortest path ⇒ Algorithms

Connected components ⇒ Algorithms

Constraints

GPL (Root)

GPL⇒ Edges (Mandatory feature)

Edges ⇒ (Weigh. ∨ Unweigh.) ∧ ¬(Weigh. ∧ Unweigh.) (Alternative group)

Algorithms ⇒ Shortest path ∨ Connected components (Or-group)

Figure 2.4: Propositional representation of the GPL feature diagram

interfaces [Schröter et al., 2016] have been proposed to facilitate compositional anal-
ysis. A feature model interface abstracts away some features from a feature model
while preserving the valid combinations for all remaining features. For several anal-
yses such as core features and atomic sets [Benavides et al., 2010], we may therefore
analyze an interface containing all features under consideration instead of analyzing
the full model and then filtering the result for those features [Schröter et al., 2016].
Computing such an interface and its subsequent analysis are potentially faster than
analyzing the full model, if one intends to analyze only a subset of features of the
full model.

In terms of configuration semantics, an interface is a feature model that omits fea-
tures which are not of interest from each configuration. In other words, an interface
(F ′, P ′) of a feature model (F, P ) is determined by its set of features F ′, such that
all other features (i.e., F \F ′) are removed with set intersection. Since the removed
features are not in F ′, their absence in all configurations does not mean deselection.
Instead, their status is merely unspecified by the interface. This boils down to the
following definition.

Definition 2.8 (Feature model interface). A feature model M ′ = (F ′, P ′) is an
interface of another feature model M = (F, P ), denoted as M ′ �c M , if

• F ′ ⊆ F , and
• P ′ = { p ∩ F ′ | p ∈ P }.

Example 2.5. Recall the GPL feature model (F, P ) from Figure 2.2. Now let
F ′ = {G,E,A, S} be the set of interface features. From each configuration in P , we
remove all other features, and obtain the set

P ′ ={{G,E} ,
{G,E,A, S} ,
{G,E,A}}.
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14 2. Background

Hence, the feature model M ′ = (F ′, P ′) is an interface of M = (F, P ) (i.e., M ′ �c
M). Since some of the reduced configurations are no longer distinguishable in terms
of features, the number of configurations in this interface is smaller than the number
of configurations in the original model M . Note however that all dependencies
between the remaining features are preserved in each configuration. For example,
there still is no configuration where Shortest path is selected, but Algorithms is not.

GPL

Algorithms

Shortest path

Edges

Mandatory

Optional

Requires

Figure 2.5: Feature diagram for the interface from Example 2.5

In Figure 2.5, we show the interface from the previous example as a feature diagram.
Obviously, the features not in F ′ are not present in the diagram. In addition, we
have to adjust the dependencies between the remaining features. The Shortest path
feature is now optional, as in the original model there was a configuration where
Algorithms was selected, but Shortest path was not. Moreover, Shortest path now
requires Edges instead of Weighted, since interfaces preserve transitive dependencies:
Shortest path required Weighted, which in turn required Edges, because it was a
direct child of Edges. In this special case, we could have actually omitted the
requires constraint altogether, since Edges is mandatory and therefore present in all
variants. Concerning the diagram structure, the interface diagram omits the entire
left subtree, as well as a part of the right subtree. Note however that it would also
be possible to construct interface diagrams where only intermediate nodes (e.g., the
Edges feature) are removed.

Feature model analysis with interfaces

Since feature model interfaces preserve all dependencies between their contained
features, we can analyze interfaces instead of the full model, provided that we are
interested only in features that are present in the particular interface. We illustrate
this approach using the core feature analysis4: A feature is a core feature if it is
contained in every valid configuration [Benavides et al., 2010]. With the following
theorem, we formalize that an interface M ′ = (F ′, P ′) of another model M preserves
the core property for all features in F ′ (i.e., the interface features).

Theorem 2.2. Let M and M ′ = (F ′, P ′) be feature models such that M ′ �c M .
Then t ∈ F ′ is a core feature of M ′ if and only if it is a core feature of M .

Proof. See Theorem 13 from Schröter et al. [2016].

4For further analyses that can be used this way, see the work of Schröter et al. [2016].
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2.2. Software product lines 15

For example, if we want to know whether the Edges and Algorithms features of the
GPL feature model are core features, we could compute the set of all core features for
this model. This would result in the set {G,E}. Therefore, Edges is a core feature,
whereas Algorithms is not. However, we could instead compute the core features of
the interface from Example 2.5, since it also contains both features. In this case, we
would again obtain the set {G,E}, from which we could draw the same conclusion.
By contrast, we could not use this interface to decide whether Unweighted is a core
feature.

Composing interfaces

Hiding irrelevant features with interfaces enables compositional analysis. Suppose
a scenario where a feature model is composed of several smaller models that are
maintained independently. If we are only interested in analyzing a subset of all
features of the composed model, we can instead compose interfaces of the submodels,
which then yields an interface of the overall model. This approach has several
advantages. First, the composed interface is potentially smaller, which speeds up
the analysis. Second, we can compute each interface in isolation. Thus, if a submodel
changes, we do not have to recompute interfaces of the other submodels. Finally,
if a submodel only changes in a way that its interface remains the same, we know
that the analysis result of the composed interface does not change.

Edges

UnweightedWeighted

(a) Edges subdiagram

Algorithms

Connected comp.Shortest path

(b) Algorithms subdiagram

GPL

AlgorithmsEdges

(c) Abstract GPL diagram

Figure 2.6: GPL feature diagram decomposed into three parts

To compose two feature diagrams, we can add one diagram as a subtree of the other
diagram, possibly with additional constraints. For example, we could compose our
GPL feature diagram from Figure 2.1 from three smaller diagrams and an additional
constraint. In Figure 2.6, we show these diagrams. Diagram 2.6a represents the
subtree of the Edges feature, and similarly, the Algorithms feature is modeled by
Diagram 2.6b. To obtain the complete GPL diagram, we integrate the two diagrams
into Diagram 2.6c using their root features, and add the dependency of Shortest
path on Weighted. Similarly, we can instead use interfaces of the diagrams for
composition.

However, we cannot remove arbitrary features from the submodels to construct
their interfaces. Otherwise, the composition of those interfaces would not be an
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interface of the overall model. More precisely, the submodel interfaces must retain
all features that are shared with some other model of the composition, since those
features express the dependencies between models5. In particular, the root feature
of each subdiagram cannot be removed, as well as all features that are involved in
constraints between subdiagrams. By contrast, we may remove features that are
only present in constraints within a subdiagram.

We illustrate these restrictions on interface features using the GPL submodels from
Figure 2.6. From the Edges subdiagram, we may only remove the Unweighted fea-
ture, as the Edges feature connects the tree to the abstract GPL diagram, and
the Weighted feature is present in the constraint between this subdiagram and the
Algorithms subdiagram. For similar reasons, we can only remove the Connected
components feature from the Algorithms subdiagram, and we must retain the Algo-
rithms and Edges features in interfaces of the abstract GPL diagram.

By contrast, if we would for example construct an interface of the Edges subdiagram
that lacks the Weighted feature, we would lose the information that Weighted and
Unweighted are mutually exclusive. Thus, the composition of this interface with the
other two diagrams plus the requires constraint between Shortest path and Weighted
would contain spurious variants: We could now select Shortest path together with
Unweighted. Hence, this composition would not be an interface of the original model.

Feature model slicing

The formal definition of feature model interfaces already gives instructions on how to
compute an interface from a set of desired interface features F ′. However, since this
approach is based on configuration semantics, we cannot use it in practice. Instead,
there is a technique called feature model slicing [Acher et al., 2011], which operates
on the propositional representation of a feature model.

Feature model slicing was first proposed using existential quantification over propo-
sitional formulas [Acher et al., 2011]. To remove an atom t from a formula ϕ, it is
existentially quantified, while the other atoms remain free. Intuitively, the resulting
formula ϕ′ = ∃t.ϕ expresses that there exists some arbitrary truth value for t such
that ϕ can be satisfied. As a consequence, the valuations that satisfy ϕ′ are the
same valuations that satisfy ϕ, except for t. In particular, valuations for ϕ′ may
omit t altogether, since it is bound by the quantifier. In a scenario where atoms cor-
respond to features, all dependencies are therefore preserved, precisely as required
by the definition of feature model interfaces6.

Existential quantification for propositional formulas is commonly defined similar to a
Shannon expansion, but without replicating the atom with each cofactor [Huth and
Ryan, 2004]. In particular, to eliminate the existential quantifier, two formulas are
derived from ϕ by replacing t with either ⊥ or >. The existential quantification over
t is the disjunction of these formulas. The resulting formula then contains neither
the atom t nor the quantifier. We use this technique to define a slice operation on
propositional formulas, which removes arbitrary sets of atoms.

5Of course, we could directly construct an interface of the overall model, which would be correct
for arbitrary removed features. However, this approach would not be compositional, as we would
not construct submodel interfaces in isolation.

6We formally prove this in Chapter 3.
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Definition 2.9 (Slice). Let ϕ be a propositional formula, and A = {t1, . . . , tn} be
a set of atoms. The slice s(ϕ,A) is defined as

s(ϕ,A) = ∃t1. . . .∃tn.ϕ,

where

∃t.ψ = ψ[t← ⊥] ∨ ψ[t← >],

and ψ[t← v] is the formula ψ with every occurrence of atom t replaced by term v.

Example 2.6. Consider the formula ϕ = (P ⇒ Q) ∧ (Q ⇒ R). We use the slice
operation to remove the atom Q from ϕ. First, we expand the definition of s(·, ·).
Then, we apply trivial simplifications to the formula to obtain the final result.

s(ϕ, {Q}) = ∃Q.((P ⇒ Q) ∧ (Q⇒ R))

= ((P ⇒ ⊥) ∧ (⊥ ⇒ R)) ∨ ((P ⇒ >) ∧ (> ⇒ R))

≡ (¬P ∧ >) ∨ (> ∧R)

≡ ¬P ∨R
≡ P ⇒ R

In the original formula ϕ, atom P transitively implied R through Q. Since slicing
preserves all dependencies, this implication is now explicit in the sliced formula.

As slicing is based on the substitution of atoms, it has to be applied only to those
parts of a formula that contain the atoms to be sliced. In other words, terms without
those atoms are not altered by the slicing operation. In the following theorem, we
formalize this property for the conjunction of two formulas, because we will need it
for a proof later in this thesis.

Lemma 2.1. Let ϕ, ψ be propositional formulas, and t be an atom such that t /∈
a(ψ). Then

∃t.(ϕ ∧ ψ) ≡ (∃t.ϕ) ∧ ψ.

Proof. See Büning and Bubeck [2009].

Example 2.7. The formula ∃P.(¬P ∧Q) is equivalent to the formula (∃P.¬P )∧Q,
since Q is not affected by the quantifier:

∃P.(¬P ∧Q) = (> ∧Q) ∨ (⊥ ∧Q)

≡ Q

≡ (> ∨⊥) ∧Q
≡ (∃P.¬P ) ∧Q

Besides existential quantification, there are other approaches to implement slicing.
For a method that is based on logical resolution [Huth and Ryan, 2004], see the
work of Krieter et al. [2016].
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2.2.3 Implementation techniques

In this section, we illustrate the implementation of a software product line. To
automatically derive a variant from a configuration, software product lines have
a mechanism to map features to code artifacts. Those artifacts are then selected
according to the configuration, and integrated to form the particular variant.

We illustrate such a variability mechanism using the annotative approach: Source
code is mapped to a particular feature (or certain combinations of features) using
some language construct together with a feature name or a conditional expression
that ranges over the available features. Such expressions are called presence condi-
tions, since they control whether the annotated functionality is included in a par-
ticular variant with respect to the selected features. In contrast to compositional
approaches such as feature-oriented programming [Batory et al., 2004; Apel et al.,
2013b], code belonging to a particular feature is potentially scattered over the whole
code base.

The standard example of this technique is the C Preprocessor (CPP) [Kernighan
and Ritchie, 1988], which is widely used in both open source and industrial software
systems [Hunsen et al., 2015] such as the Linux kernel. Through its #ifdef directive,
the CPP facilitates conditional compilation. Typically, a developer (or user) uses
some command line mechanism or menu (e.g., Kconfig [Berger et al., 2010]) to pass
the desired features for a concrete variant to the preprocessor. The CPP then derives
the corresponding variant from the code base by excluding code of any features that
have not been selected. Afterwards, the resulting code is fed into the compiler to
obtain an executable program.

In Listing 2.1, we show an example of preprocessor-based variability. The listing con-
tains a possible implementation fragment for the GPL. In Lines 1–17, we define data
structures for nodes, edges and graphs. Lines 19–28 contain a function to compute
the shortest path between two nodes from and to in a graph g. To map the modeled
features Weighted and Shortest path to their implementation code, there are corre-
sponding preprocessor macros WEIGHTED and SHORTEST_PATH. The #ifdef directives
in Lines 8–10 and 18–29 check whether these macros are defined, and include or
exclude the enclosed code accordingly. In other words, these sections of the code are
variable, whereas the remaining code is present in all variants. Since the Weighted
feature specifies a weight value for edges, the code for this feature defines a mem-
ber double weight for the edge structure. Similarly, the shortest_path function is
annotated with the SHORTEST_PATH macro. Thus, WEIGHTED and SHORTEST_PATH are
simple examples of presence conditions.

To generate the implementation for a given product line configuration from List-
ing 2.1, the preprocessor is called with arguments that define all corresponding
feature macros. We can therefore derive a total of three variants from the code
fragment, since including SHORTEST_PATH code but excluding WEIGHTED is not al-
lowed according to the feature model. We show the variants in Figure 2.7, where we
highlight all code belonging to a feature in blue.

Note that we have chosen the CPP to illustrate variability because of its widespread
use. However, this thesis also applies to other mechanisms that aggregate all variants
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1 typedef struct {
2 char∗ name;
3 } node;
4
5 typedef struct {
6 node∗ source;
7 node∗ target;
8 #ifdef WEIGHTED
9 double weight;

10 #endif
11 } edge;
12
13 typedef struct {
14 node∗ nodes;
15 edge∗ edges;
16 } graph;
17
18 #ifdef SHORTEST_PATH
19 edge∗ shortest_path(graph g,
20 node∗ from, node∗ to) {
21 // ...
22 while(...) {
23 edge next_edge = ...;
24 double weight
25 = next_edge.weight;
26 // ...
27 } // ...
28 }
29 #endif

Listing 2.1: GPL code fragment with CPP directives

in a single code base and that are capable of mapping feature conditions to code
fragments. For example, the variability in Listing 2.1 could also be implemented
using normal if statements and distinguished variables for features. Consequently,
derivation of the variant then happens at run time rather than compile time. Ac-
cordingly, this approach is called runtime variability [Apel et al., 2013a]. There
are also several further mechanisms for variability with different characteristics and
flexibility, such as plugin frameworks, Feature-oriented [Batory et al., 2004; Apel
et al., 2013b] or Delta-oriented programming [Schaefer et al., 2010; Koscielny et al.,
2014].

2.2.4 Analysis of product lines

Static analysis of software product lines such as type checking or data-flow analysis
leads to scalability issues. In the worst case, a system with n independent7 configura-
tion options gives rise to 2n derivable variants. Analyzing the whole system (i.e., all
variants) by analyzing each variant on its own is therefore infeasible because of the
exponential complexity. Due to feature model constraints and alternative features
or annotations (e.g., #ifdef ... #else ...), in general there is no configuration
that includes all features. Moreover, feature interactions [Apel et al., 2013c] lead to

7i.e., no feature model constraints
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typedef struct {
char∗ name;

} node;

typedef struct {
node∗ source;
node∗ target;

} edge;

typedef struct {
node∗ nodes;
edge∗ edges;

} graph;

(a) None

typedef struct {
char∗ name;

} node;

typedef struct {
node∗ source;
node∗ target;
double weight;

} edge;

typedef struct {
node∗ nodes;
edge∗ edges;

} graph;

(b) Weighted

typedef struct {
char∗ name;

} node;

typedef struct {
node∗ source;
node∗ target;
double weight;

} edge;

typedef struct {
node∗ nodes;
edge∗ edges;

} graph;
edge∗ shortest_path(graph g,

node∗ from, node∗ to) {
// ...
while(...) {

edge next_edge = ...;
double weight

= next_edge.weight;
// ...

} // ...
}

(c) Weighted and Shortest path

Figure 2.7: Variants derivable from Listing 2.1

behavior that is specific to the presence or absence of some combinations of features.
Therefore, analyzing such a hypothetical feature-complete variant would generally
yield incomplete results.

Fortunately, in typical product lines large fractions of functionality are shared among
many variants, as the code of any feature is potentially present in 2n/2 variants.
Family-based analysis [Thüm et al., 2014a] exploits this redundancy in order to scale
well-known analyses such as type checking, data-flow analysis and testing to large
numbers of features. In a nutshell, those analyses attempt to share information for as
many variants as possible during the process. To this end, no variants are derived in
advance. Instead the analysis only considers differences locally when variability (e.g.,
an annotation) is encountered. Consequently, such analyses are variability aware,
as they are able to interpret presence conditions together with the actual code.
However, this implies that existing off-the-shelf analysis implementations cannot be
used as-is for this purpose. Instead, the analysis must be modified (conceptually
and programmatically) to handle product lines rather than single products.

A family-based analysis processes the presence conditions that arise from the anno-
tations together with the actual analysis information. For example, if the analysis
combines information from several annotated elements (e.g., program statements),
the result must be annotated with the conjunction of all original conditions. Fur-
thermore, such elements should only be analyzed in combination if they are present
together in some variant. To this end, the resulting presence condition must be
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checked against the feature model. Therefore, family-based analysis requires effi-
cient techniques for reasoning about presence conditions.

Type checking

We use variability-aware type checking [Kästner et al., 2012] as a concrete example
of a family-based analysis. In a nutshell, type checking verifies that variables and
functions, and also names of complex types (e.g., structs) in a program are only
used according to their declared types. Details depend on the type system of the
particular programming language. For example, in C we cannot assign an integer
value to a variable with a struct type, or call a function that is not declared.

C compilers type check a program during compilation after preprocessing. At this
point, all preprocessor directives have been removed. Hence, every variable has a
definite type, and functions are either declared or not. By contrast, when viewing
the product line as a whole, uses of variables may refer to different declarations in
different variants, and declarations may even be absent in some variants. For exam-
ple, in our GPL implementation from Listing 2.1, the struct member edge.weight is
only present in variants with the Weight feature. Thus, code that uses this member
must ensure with its presence condition that Weighted is selected. Indeed, Line 25
in the listing uses the weight member, and its presence condition is Shortest path,
which according to the GPL feature model implies that also the code for Weighted
is included. Hence, variability-aware type checking verifies that the presence con-
dition ϕu of an identifier usage implies the presence condition ϕd of the referenced
declaration by the feature model FM ; formally FM � ϕu ⇒ ϕd.

1 typedef struct {
2 char∗ name;
3 } node;

5 typedef struct {
6 node∗ source;
7 node∗ target;
8 #ifdef WEIGHTED
9 double weight;

10 #endif
11 } edge;

18 #ifdef SHORTEST_PATH

23 edge next_edge = ...;
24 double weight
25 = next_edge.weight;

29 #endif

Listing 2.2: Example of presence conditions in type checking

In Listing 2.2, we show an excerpt of Listing 2.1 to illustrate presence conditions
that arise during type checking. The reference to the edge data type in Line 19 has
presence condition Shortest path, whereas the declaration of the type has presence
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condition >, since it has no annotation (Lines 5ff.). Therefore, we need to check
whether Shortestpath ⇒ >, which is trivially true. Furthermore, for the weight

member access of the edge struct in Line 25, we need to verify that Shortestpath ⇒
Weighted as explained above. In the same line, there is also a use of the next_edge

variable, which is declared in the same annotation. Thus, the implication to check is
Shortestpath ⇒ Shortestpath, which is also trivially true. Similarly, the conditions
to check the node type references in Lines 6f. are > ⇒ >.

Dead code analysis

Apart from family-based analyses, which are derived from existing single-variant
analyses, product lines also give rise to new analyses types, which are concerned with
the variability itself. The void feature model analysis as explained in Section 2.2.1
is an example of such an analysis. Another example is the so-called dead code
analysis [Tartler et al., 2011], which deals with code variability itself. Developers
may by mistake annotate code with presence conditions that are not satisfiable with
respect to the feature model. Hence, such code fragments are not present in any
variant at all. From a developer perspective, this is undesirable and should therefore
be detected and rectified: Although the code cannot actually be executed, it is still
maintained. Furthermore, such a defect can indicate a problem with the feature
model, or uncover a misconception about the interaction of certain features.

1 #ifdef SHORTEST_PATH
2 // ...
3 #ifdef UNWEIGHTED
4 double weight = 1;
5 #endif
6 // ...
7 #endif

Listing 2.3: Example of dead code

To perform a dead code analysis, we simply check the presence condition of each
annotation for satisifiability. In our GPL implementation from Listing 2.1, we have
no dead code, since the conditions of both annotations are simply features that are
not dead. That is, there exist variants in which those features are selected (see the
configuration semantics of the GPL feature model in Figure 2.2). In Listing 2.3,
we show a possible fragment of dead code in the GPL. The code is concerned with
the implementation of the Shortest path feature. When the GPL is configured with
unweighted edges, the algorithm shall assume an edge weight of 1 for each edge.
This is realized with a nested annotation (Lines 3-5). Therefore, the statement that
assigns the default value (Line 4) has the conjunction of the outer and inner annota-
tion conditions as its presence condition, which results in Unweighted∧Shortestpath.
However, from the GPL feature model we know that there is no such variant where
both features are selected together. Hence, the statement in Line 4 is dead.
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3. Reasoning with decomposed
feature models

In this chapter, we explain our approach for reasoning with decomposed feature
models. Our overall goal is to reduce computation time when reasoning about a
propositional formula in the context of a feature model. To this end, we define
an algorithm that composes a specific model for each solver query. This model is
equivalent the original feature model with respect to the given query, but potentially
contains less features and therefore facilitates faster reasoning.

First, we formalize our general method in terms of propositional logic. In particular,
we define generic properties for decompositions of propositional formulas. We then
introduce two strategies for reasoning with such decompositions, and show that these
strategies are correct. The first strategy always composes a specific formula for each
query, whereas the second strategy resorts to using the original formula whenever
the composition process would be more computationally expensive.

Second, we define a concrete decomposition for feature diagrams that is guided by
their hierarchical structure. To this end, we first formalize a generic notion of feature
diagrams, which embraces all definitional flavors that permit a complete semantics
in propositional logic. Then, we define an operation that decomposes such a feature
diagram with respect to a set of selected features. In particular, each component
reflects the subtree of a selected feature. We then apply feature model slicing to
obtain a reduced version of the original model, which can be correctly re-extended
by sets of those components.

We finally prove that the resulting decomposition adheres to our generic decompo-
sition properties, and thus can be used for compositional reasoning. To this end, we
use the notion of feature model interfaces. We provide a characterization of feature
model interfaces in propositional logic, and subsequently show that, for a subset of
features, such interfaces are equivalent to their concretizations.
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3.1 Selectable decompositions

Family-based analyses need to decide entailments in the form of Φ � ψ, where Φ
represents a feature model, and ψ is some aggregated condition. This is equivalent to
deciding the unsatisfiability of Φ∧¬ψ, which can be achieved through a SAT solver.
While the performance of such solvers depends on several characteristics of Φ and ψ,
such as the number of valid products [Liang et al., 2015], the worst-case complexity
is exponential in the number of atoms in the input formula. Therefore, we use this
measure as a heuristic to assess the complexity of the solver input. Consequently,
our objective is to remove atoms from Φ∧¬ψ that are not necessary to decide Φ � ψ.
In particular, we focus on the atoms of Φ (i.e., the feature model).

We formalize the standard procedure for deciding entailment with a SAT solver in
the following reasoning strategy full-model. This strategy serves as a baseline
against which we evaluate our method in Chapter 4.

Strategy 3.1 (full-model). Given a feature model represented as a propositional
formula Φ, and a propositional query formula ψ, decide whether Φ ∧ ¬ψ is unsatis-
fiable. If the formula is unsatisfiable, then return that Φ � ψ, otherwise return that
Φ 2 ψ.

Often, not all parts of Φ are relevant for deciding whether Φ � ψ holds for some
query ψ. For example, let Φ = P ∧Q ∧ R, where P , Q and R are atoms. To prove
Φ � P , we do not need the Q ∧ R part, since it does not influence the truth value
of P . Instead, we could use a part Φ′ that is equivalent to Φ with respect to the
query P . In this example, Φ′ is simply P . Indeed, we can easily construct a sound
and complete abstraction of Φ for any ψ in this special case: We first disassemble Φ
into the set Γ = {P,Q,R} of its subformulas. For every query ψ, we select precisely
those elements from Γ that share an atom with ψ, and decide if their conjunction
entails ψ. For example, let ψ = P ∧R. To prove Φ � P ∧R, we would then merely
prove P ∧R � P ∧R instead of P ∧Q ∧R � P ∧R.

We formalize this atom-based selection from a set of formulas in the following defi-
nition.

Definition 3.1 (Selection). The selection ∆|A from a set of propositional formulas
∆ with respect to a set of atomic propositions A is defined as

∆|A = { δ ∈ ∆ | a(δ) ∩ A 6= ∅ } .

Clearly, the previous example does not account for more complex situations such as
transitive implications. Consider for example Γ = {P, P ⇒ X,X ⇒ Q} and ψ = Q.
Using the selection Γ|{Q} = {X ⇒ Q}, the entailment Γ|{Q} � Q does not hold,
although Γ � Q holds. Therefore, simple atom-based selection does not guarantee
semantic completeness.

We can remedy this shortcoming in several ways. For example, we could extend
the selection operation to the transitive closure of formulas connected by at least
one atom. Although this solution would be semantically complete, it tends to select
superfluous elements from Γ that are actually irrelevant. The most precise method
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would be a semantic analysis of Γ with respect to ψ that returns only relevant for-
mulas. However, this would involve additional round trips to the solver with subsets
of Γ. We rule out this solution, since it potentially leads to more computations
at runtime. Instead, we strive for a method that reduces solver effort at the cost
of additional preprocessing on the feature model, and admits a more precise selec-
tion than transitive closure. To this end, we propose the following method: We
decompose the original formula into two sets of formulas. One of the sets consists
of parts of the original formula. We apply the atom-based selection to this set for
each query. Independently from the query, we add all formulas from the other set
to the selection, and use the resulting set of formulas for reasoning (instead of the
original formula). Intuitively, the latter set represents an abstraction of the original
formula, which can be refined by elements of the former set. To ensure correctness,
we demand that such a decomposition must be sound and complete for all queries
when used as described. We formalize this property in the following definition.

Definition 3.2 (Selectable decomposition). Let Γ, ∆ be sets of propositional for-
mulas. The pair (Γ,∆) is a selectable decomposition of a propositional formula Φ, if
for all formulas ϕ such that a(ϕ) ⊆ a(Φ),

∆|a(ϕ) ∪ Γ � ϕ if and only if Φ � ϕ.

Note that this definition does not require the decomposition elements to have disjoint
sets of atoms.

Example 3.1. Let Φ = P ∧ Q ∧ (P ⇒ R) ∧ (Q ⇒ S), and let Γ = {P ∧Q}
and ∆ = {P ⇒ R,Q⇒ S}. Then (Γ,∆) is a selectable decomposition of Φ. Now
assume that we want to decide whether Φ � S. The selection ∆|{S} yields {Q⇒ S},
which would not be sufficient to prove S. However, if we combine the selection with
Γ, then indeed Γ ∪∆|{S} � S. Clearly, also Φ � S. If we furthermore try to decide
Φ � Q using this method, we see that atom-based selection is an overapproximation:
The selection again is {Q⇒ S}, although semantically, Γ alone would suffice in this
case.

The previous example suggests that a selectable decomposition must consist of ver-
batim parts of the original formula. However, we could also derive new formulas
from the original formula, and use them to construct a decomposition.

Example 3.2. Consider Φ = (P ⇒ Q)∧(Q⇒ R). From Φ we can deduce the tran-
sitive implication P ⇒ R. Therefore, let Γ = {P ⇒ R} and ∆ = {P ⇒ Q,Q⇒ R}.
Then (Γ,∆) is a selectable decomposition.

We are now able to specify strategies that given a feature model decomposition
and a query formula, decide whether the feature model entails the query. The
strategies reduce this problem to satisfiability and can therefore be implemented
using an arbitrary SAT solver. The reduced-model strategy constitutes our basic
approach. It selects all formulas from the decomposition that share some feature
with the query formula. Subsequently, the strategy uses the conjunction of the
selected formulas to compose a potentially smaller model, which is then used for
reasoning in place of the original model.
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Strategy 3.2 (reduced-model). Given a feature model represented as a formula
Φ, a query formula ψ, and a selectable decomposition (Γ,∆) of Φ, decide whether
the formula ∧

δ∈∆′

δ ∧ Γ ∧ ¬ψ,

is unsatisfiable, with

∆′ = ∆|a(ψ).

If the formula is unsatisfiable, then return that Φ � ψ, otherwise return that Φ 2 ψ.

During early experiments, we found a computational trade-off between composing
a query-specific formula and using the original formula. Querying the solver with
a set of formulas was sometimes slower than just using the original formula. The
culprit was some formula in the decomposition that contained approximately half
of the features of the original model. Consequently, the formula was so large that
composing within the solver took longer than the actual solving1. Therefore, we in-
troduce a measure m(∆′) that represents the composition overhead for the selection
∆′. Beyond a fixed threshold overhead τ we use the full-model strategy instead
of reduced-model. In Chapter 4, we evaluate candidates for such a measure and
determine threshold values.

Strategy 3.3 (adaptive-model). Given a model formula Φ, a query formula ψ,
a selectable decomposition (Γ,∆) of Φ, and a threshold value τ ,

• use strategy reduced-model if m
(
∆|a(ψ)

)
< τ ,

• use strategy full-model otherwise.

We suspect that the optimal threshold depends on several factors, such as the size
distribution of the decomposition elements, the queries and the internals of the
particular solver algorithm.

Finally, we prove the correctness of all three strategies.

Theorem 3.1 (Correctness). The strategies full-model, reduced-model, and
adaptive-model are correct. To be precise, they decide Φ � ψ, where Φ represents
a feature model and ψ is a query formula.

Proof. Strategy full-model decides the unsatisfiability of Φ∧¬ψ, which is equiv-
alent to deciding if Φ � ψ. Therefore, the strategy is correct.

Strategy reduced-model decides the unsatisfiability of
∧{

∆|a(ψ)

}
∧Γ∧¬ψ, which

is equivalent to deciding ∆|a(ψ) ∪ Γ � ψ. Since (Γ,∆) is a selectable decomposition
of Φ, claim immediately follows by the definition.

Strategy adaptive-model is correct, since it merely delegates to either full-
model or adaptive-model, which are both correct.

1We explain this in more detail in Chapter 4.
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3.2 Decomposing feature diagrams

Our decomposition definition does not describe how to actually decompose feature
models. Indeed, there are several decompositions for a single model. In this work,
we propose a decomposition technique adapted from Schröter et al. [Schröter et al.,
2016], which incorporates the structure of feature diagrams. Since a feature dia-
gram hierarchically represents the functionality of a product line, we hypothesize
that implementation artifacts also reflect this structure. More precisely, we expect
that each implementation unit (e.g., module consisting of a set of source code files)
corresponds to some subtree in the feature diagram. Consequently, a family-based
analysis of each implementation unit mostly leads to solver queries that only con-
tain features from the implementation subtree. Therefore, most of the features in
other subtrees are irrelevant and could thus be omitted from reasoning. However,
we cannot simply use only the subtrees for reasoning, since we must respect cross-
tree constraints and group constraints of parent features. Moreover, reasoning must
remain correct whenever the query involves features from multiple subtrees.

In this section, we describe a method for decomposing feature diagrams according to
their tree structure. Using the concept of feature model interfaces, we subsequently
prove that our method produces selectable compositions, and can therefore be used
for correct reasoning as described in Section 3.1.

Kernel

Block devicesFilesystem

ext3ext2NFS

Network

UDPTCP
Optional

Or
Requires

Figure 3.1: Feature diagram of simple kernel product line

3.2.1 Overall approach and running example

We illustrate our method using a simple fictional system kernel product line as a
running example, which is loosely inspired by the Linux kernel. In Figure 3.1, we
show its feature diagram. The kernel supports networking, some filesystems, and
block devices such as hard disks. All of those features are optional. However, file
system functionality requires block device support, and the network file system2

(NFS) requires networking. We show fragments of corresponding implementation
files in Figure 3.2. File “network.c” implements the networking and all of its subfea-
tures. For example, networking code needs to allocate and deallocate memory for
socket data structures (functions create_socket and free_socket). The function
close_tcp of the TCP feature therefore uses the latter function to free up memory
after closing a connection. In file “filesystem.c”, which implements the Filesystem

2https://tools.ietf.org/html/rfc1094
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feature, we show an exemplary function of the NFS feature. Since NFS mounts
remote file systems via network, it needs to create sockets, and thus references
create_socket from the Network feature.

1 #ifdef NETWORK
2 int create_socket(...);
3 void free_socket(...);
4 ...
5 #endif
6
7 ...
8
9 #ifdef TCP

10 void close_tcp(int s) {
11 ...
12 free_socket(s);
13 }
14 #endif
15
16 #ifdef UDP
17 ...
18 #endif

(a) network.c

1 #ifdef FILESYSTEM
2 ...
3 #endif
4
5 ...
6
7 #ifdef NFS
8 int mount_nfs(...) {
9 create_socket(...);

10 ...
11 }
12 #endif
13
14 ...

(b) filesystem.c

Figure 3.2: Implementation fragments of the kernel product line

If we want to typecheck file “network.c” with a family-based technique, we would for
example need to check whether free_socket is declared in every variant in which the
TCP feature is selected. Since only the Network feature declares such a function, we
need the solver to decide whether FM � TCP ⇒ Network , where FM represents the
feature diagram from Figure 3.1. Since basic networking typically is concerned with
neither file systems nor block devices, the queries that arise from file “network.c”
would only consist of features from the Network subtree of the feature diagram.
Ideally, we would want to only use this subtree instead of the full model FM in order
to accelerate reasoning. However, such an approach would be incorrect in general:
To typecheck file “filesystem.c”, we need to check if FM � NFS ⇒ Network , since
the NFS feature uses a function that is defined by the Network feature. If we consider
the Filesystem subtree in isolation, we cannot prove that implication, although it
actually holds. Instead, we also need the Network subtree and the shared constraint.

In the above example, using the two subtrees without the Kernel feature would
suffice. However, in general even such sets of subtrees are incomplete with respect to
reasoning. We show another two examples of constructs that lead to incompleteness
in Figure 3.3 (highlighted in red). Since F1 requires F3, and F3 requires F2, feature
F1 also transitively requires F2. However, we cannot prove this relation using the
subtree S1 alone. A more subtle problem arises from the alternative group of S1 and
S2. Since S1 and S2 are mutually exclusive, their subfeatures cannot occur together
in any variant, thus for example F1 ⇒ ¬F4 holds, which we cannot prove even when
we consider both subtrees S1 and S2 (without B).
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B

S2

F4F3

S1

F2F1

Optional

Alternative
Requires

Figure 3.3: Additional constructs that lead to incompleteness

Consequently, we need a more sophisticated decomposition method that accounts
for dependencies between subtrees of implementation units. Intuitively, dependen-
cies between those subtrees reflect dependencies between implementation units, such
as global3 declarations or a certain programmatic behavior, whereas dependencies
within a subtree represent implementation details of a single (compound) feature.

Therefore, we propose the following decomposition technique: Given a set of sub-
trees, we construct an interface of the original feature diagram that models exactly
the dependencies between those subtrees. In the interface, we omit all subtree fea-
tures that are not directly (i.e., not transitively) involved in such dependencies. We
call such features local features. The interface is already complete with respect to
its features. However, when a query contains a local feature, we refine the inter-
face by reinstantiating the full subtree that the local feature belongs to. Since we
retain all cross-tree dependencies in the abstraction, we also ensure completeness
for all reinstantiated subtrees. To abstract away from different definitional styles
of feature diagrams, we perform interface construction and reinstantiation on the
semantic level (i.e., propositional formulas).

Kernel

Block devicesFilesystem

NFS

Network

Optional

Requires

Figure 3.4: Interface of the feature diagram in Figure 3.1

We illustrate the decomposition using our running example from Figure 3.1. First,
we select the features Network, Filesystem and Block devices as subtree roots, since
they correspond to our implementation units. Then, we identify the local features
of each subtree. In the example, the features TCP, UDP, ext2, and ext3 are local,
since they are not involved in constraints between subtrees. Finally, we construct the
interface by slicing out those features. In Figure 3.4, we show the resulting interface.

3in terms of features
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Now reconsider the query TCP ⇒ Network . As the TCP feature was local, it is
not present in the interface. We therefore need to reinstantiate the Network subtree
before reasoning. We show the resulting feature diagram in Figure 3.5. Similarly,
we would reinstantiate the Filesystem subtree when needed.

Kernel

Block devicesFilesystem

NFS

Network

UDPTCP
Optional

Or
Requires

Figure 3.5: Interface from Figure 3.4 with reinstantiated Network subtree

In the remainder of this section, we formalize the decomposition method we have
described above, and prove that it satisfies the properties of a selectable composition
from Definition 3.2. To this end, we first formalize feature diagrams in a generic
way. Then, we provide a formal semantics for this definition, which is based on
propositional logic. Using this propositional representation of feature diagrams, we
define our decomposition operation by means of feature model slicing. We then
specify feature model interfaces in terms of propositional logic, and subsequently
prove that all slices are interfaces of their original models. Moreover, we prove
that reasoning with an interface is sound and complete for all of its features. To
establish correctness, we finally show that interfaces with reinstantiated subtrees are
still interfaces of the original model.

3.2.2 Formalization of feature diagrams

Since we are only interested in the tree structure, we abstract away from all other
syntactic elements of feature diagrams, such as alternative groups or cross-tree con-
straints. To capture the semantics of such constructs, we provide a set for arbitrary
propositional constraints in our definition. The definition also accommodates the
various styles of feature diagrams, as long as they admit a complete semantics in
propositional logics. As a result, we define feature diagrams as follows.

Definition 3.3 (Feature diagram). A feature diagram is a tuple (F,E, r,Ψ), where

• F is a set of features,
• (F,E) is a directed out-tree4 with root r ∈ F , and
• Ψ is a set of propositional formulas over F as atoms.

Example 3.3. We illustrate the definition using the feature diagram from our run-
ning example (Figure 3.1). For brevity, the letters we have underlined in the dia-
gram shall represent the features. Therefore, the diagram is represented by the tuple
(F , E , K,ΨG ∪ΨC), where

• F = {K,N, F,B, T, U, S, x, e},
4i.e., edges point away from the root
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• E = {(K,N), (K,F ), (K,B), (N, T ), (N,U), (F, S), (F, x), (F, e)},
• ΨG = {N ⇒ T ∨ U, F ⇒ S ∨ x ∨ e} (groups), and
• ΨC = {S ⇒ N, e⇒ x, F ⇒ B} (require constraints).

Next, we define subdiagrams that are determined by a subtree root. Such a subtree
diagram contains all features of its subtree, and all constraints that range over only
those features.

Definition 3.4 (Subtree diagram). Let D = (F,E, r,Ψ) be a feature diagram, and
t ∈ F be a feature. The subtree diagram ↓t is a feature diagram (F↓t, E↓t, r,Ψ↓t),
where

• (F↓t, E↓t) is the subtree in (F,E) with root t, and
• Ψ↓t = {ψ ∈ Ψ | a(ψ) ⊆ F↓t }.

As a convention, whenever we write F↓t, E↓t, or Ψ↓t autonomously, we implicitly
refer to a subtree diagram ↓t that defines these sets.

Example 3.4. Consider the Filesystem feature (F ) of our running example. For
↓F = (F↓F , E↓F , F,Ψ↓F ) we have that

• F↓F = {F, S, x, e},
• E↓F = {(F, S), (F, x), (F, e)}, and
• Ψ↓F = {F ⇒ S ∨ x ∨ e, e⇒ x}.

So far we have only defined the syntactic structure of feature diagrams. The purpose
of feature diagrams is to specify all valid configurations for a product line (i.e., com-
binations of selected features). Therefore, propositional logic is an adequate means
to assign semantics to feature diagrams. We use features as atomic propositions,
and construct a formula which maps all tree edges to implications such that child
nodes imply their parents. We simply add all formulas from Ψ. For our later proof,
we need to ensure that the semantic formula always contains all features as atoms.
Therefore, we add the term ⊥ ⇒ t for each feature. This term does not alter the
semantics, hence we will omit it outside of the definition.

Note that from now on, we will use the terms “atom” and “feature” interchangeably,
depending on the context.

Definition 3.5 (Propositional semantics). Let D = (F,E, r,Ψ) be a feature dia-
gram. The propositional semantics of D, denoted as Φ(D), are defined as follows:

• Φ(D) =
∧
t∈F ΦE(t) ∧Ψ

• ΦE(t) =
∧

(t,t′)∈E (t′ ⇒ t) ∧ (⊥ ⇒ t)

We omit E in ΦE(t) if the context is unambiguous.

Corollary 3.1. Let D = (F,E, r,Ψ) be a feature diagram. Then a(Φ(D)) = F .

Example 3.5. Recall the subtree diagram ↓F from Example 3.4. The semantics of
↓F are expressed as follows:

Φ(↓F ) = (S ⇒ F ) ∧ (x⇒ F ) ∧ (e⇒ F ) ∧ (F ⇒ S ∨ x ∨ e) ∧ (e⇒ x)
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We have already informally explained what a local feature is. Intuitively, a feature is
local to a subtree, if it has no direct dependencies outside this tree. More formally,
the feature must only occur in constraints that belong to the subtree diagram. Since
the root of a subtree is always connected to its parent (apart from the global root),
we exclude it from the definition.

Definition 3.6 (Local feature). Let D = (F,E, r,Ψ) be a feature diagram and
↓t = (F↓t, E↓t, r,Ψ↓t) be a subtree diagram of D. A feature r is local to ↓t, if

• r ∈ F↓t,
• r 6= t, and
• r /∈ a(Ψ \Ψ↓t).

We denote the set of local features of a subtree diagram as l(↓t).
Example 3.6. For ↓F from Example 3.4, we have that l(↓F ) = {x, e}.

For our decomposition example above, we have implicitly assumed that the chosen
subtrees do not overlap. Although recursive decompositions and successive reinstan-
tiations of subtrees might be possible, we leave such situations for future work to
simplify the proof. Consequently, we introduce the notion of disjoint features to rule
out overlapping subtrees.

Definition 3.7 (Disjoint features). Two features t, t′ of a feature diagram are
disjoint, if their subtree diagrams have no common features, formally

F↓t ∩ F↓t′ = ∅.

Example 3.7. In the feature diagram of our running example, the features N and
F are disjoint, whereas K and F are not.

We are now able to formally specify our subtree-guided decomposition of feature
diagrams. Given a feature diagram and set of disjoint features, the decomposition
produces two sets of formulas. The first set represents a slice of the original diagram
such that all local features are removed, whereas the second set contains a subtree
diagram for each of the specified disjoint features. These subtree diagrams can then
be fully reinstantiated by mere conjunction with the slice.

Definition 3.8 (Subtree decomposition). Let D = (F,E, r,Ψ) be a feature diagram
and S ⊆ F be a set of disjoint features. The subtree decomposition of D with respect
to S, denoted as D/S, is a pair of sets such that

D/S = ({s(Φ(D), L)} , {Φ(↓t) | t ∈ S }),
where

L =
⋃
t∈S

l(↓t).

In Figure 3.4 and Figure 3.5, we have illustrated the decomposition of our running
example with respect to the set {N,F,B} of disjoint features. Note however that
the formal definition applies the slice operation to formulas instead of diagrams,
and produces propositional formulas instead of feature diagrams and trees. For
subsequent reasoning, we only need the propositional representation and are not
interested in the diagram structure.
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3.2.3 Propositional interfaces

We have based our decomposition operation on feature model slicing. To capture
how slices semantically relate to their original models, we adopt the notion of feature
model interfaces, which were originally defined on sets of product line configurations.
Informally, a feature model is an interface of another feature model, if it admits
exactly those configurations for a subset of features that also the original model
would admit. We transfer this definition to propositional formulas, which leads to
interesting properties that might also be useful in a broader context. Therefore, we
formulate the following theory independently of feature diagrams.

To define interfaces for propositional formulas, we first need to define two properties
of valuations. Typically, a valuation for a formula is defined for a superset of the
formula atoms. Therefore, a valuation might be unnecessarily overspecified, which
prevents us from extending it with further atoms in some cases. We thus specify
minimal valuations, which are defined for exactly those atoms that occur in the
formula. Moreover, since we want to extend valuations, we specify a partial order
on them: A valuation includes another valuation, if it contains the same assignments
for all common features.

Definition 3.9 (Minimal valuation). A valuation α is minimal with respect to a
propositional formula ϕ, if α is only defined for atoms in a(ϕ).

Example 3.8. For the formula P ∨ Q, the valuation α : {P,Q} → B is minimal,
whereas the valuation α′ : {P,Q,R} → B is not.

Definition 3.10. A valuation α includes another valuation α′, denoted as α′ ⊆ α,
if for all atoms t for which α′ is defined, α′(t) = α(t).

Example 3.9. Let α = {P 7→ 1, Q 7→ 0} and α′ = {P 7→ 1, Q 7→ 0, R 7→ 0} be
valuations. Then α ⊆ α′. By contrast, the valuation α′′ = {P 7→ 0} is not included
in α′, formally α′′ * α′.

Using the two previous definitions, we specify an interface relation on propositional
formulas. As in the general notion of an interface, with this definition we abstract
away some details of a formula, while the remaining elements exhibit the same
semantics as the original formula. To be more precise, an interface formula of a
concrete formula contains less atoms. However, regarding the remaining atoms, the
interface formula is satisfied by exactly the same valuations as the concrete formula.
This property directly corresponds to the subsets of valid configurations of feature
model interfaces. As an interesting consequence of this property, interfaces are
sound and complete with respect to their atoms. Therefore, when reasoning, we can
use an interface instead of the concrete formula, as long as the query ranges only
over a subset of the interface atoms.

We can apply every valuation of concrete formula to its interfaces, since such a
valuation is defined on all atoms of the interface. By contrast, we cannot simply
use an interface valuation to satisfy a concrete formula, since the valuation is gen-
erally underspecified. Instead, we demand that there exists another valuation that
includes the interface valuation, and satisfies the concrete formula. To avoid that
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the interface relation is unnecessarily restrictive, we require only minimal valuations
to be extensible this way. Otherwise, the interface valuation could also be defined
for additional atoms that only occur in the concrete formula, and in such a way that
the concrete formula is not satisfied.

Definition 3.11 (Propositional interface). Let ϕ, ϕ′ be propositional formulas. The
formula ϕ′ is an interface of formula ϕ, denoted as ϕ′ � ϕ, if

1. a(ϕ′) ⊆ a(ϕ),
2. every valuation that satisfies ϕ also satisfies ϕ′, and
3. for every minimal valuation α′ that satisfies ϕ′ there exists a valuation α ⊇ α′

that satisfies ϕ.

Note that the interface relation is stronger than entailment and equisatisfiability5.

Example 3.10. Let ϕ = P ∧Q and ϕ′ = P be propositional formulas. Then ϕ′ � ϕ.
By contrast, let ψ = P ∧ (P ⇒ Q) ∧ (¬Q ∨R) and ψ′ = ¬Q ∨R. Then ψ � ψ′, the
formulas are equisatisfiable, and a(ψ′) ( a(ψ). However, ψ′ � ψ, since there exists
a valuation α that satisfies ψ′ with α(Q) = 0, yet ψ can only be satisfied with Q
bound to 1.

The following theorem is a central result of this thesis. With it, we prove that
we can use interfaces instead of their concretizations to reason about formulas, if
these formulas only contain atoms of the interface. In other words, the interface is
equivalent to the concretization under this restriction. Because of the smaller set
of atoms, reasoning with an interface is potentially faster compared to the concrete
formula.

Theorem 3.2. Let Φ, Φ′, ϕ be propositional formulas such that Φ′ � Φ and a(ϕ) ⊆
a(Φ′). Then Φ′ � ϕ if and only if Φ � ϕ.

Proof. We directly prove both implications of the equivalent proposition that Φ′∧¬ϕ
is satisfiable if and only if Φ ∧ ¬ϕ is satisfiable.

”⇐”: Let α be a valuation that satisfies Φ ∧ ¬ϕ, then α particularly satisfies Φ.
Because Φ′ � Φ, valuation α also satisfies Φ′. Moreover, since α satisfies ¬ϕ, and ϕ
only contains atoms from Φ′, valuation α satisfies Φ′ ∧ ¬ϕ.

”⇒”: Let α be a minimal valuation that satisfies Φ′∧¬ϕ. This valuation particularly
satisfies Φ′. Since a(ϕ) ⊆ a(Φ′), valuation α is also a minimal satisfying valuation
for Φ′. Because Φ′ � Φ, there exists a valuation α′ ⊇ α that satisfies Φ. Since α
satisfies ¬ϕ, valuation α′ then also satisfies ¬ϕ and thus satisfies Φ ∧ ¬ϕ.

The interface relation on formulas is a proper subset of the entailment relation (i.e.,
�(�). As a consequence, a concrete formula absorbs its interface in conjunctions,
formally ϕ′∧ϕ ≡ ϕ [Huth and Ryan, 2004]. We prove this property in the following
lemma, which we will use later in the proof of another central theorem to rearrange
a formula.

5Two propositional formulas are equisatisfiable if both are either satisfiable or unsatisfiable [Har-
rison, 2009].
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Lemma 3.1. Let ϕ, ϕ′ be propositional formulas such that ϕ′ � ϕ. Then the
following relations hold:

1. ϕ � ϕ′.
2. ϕ ∧ ϕ′ ≡ ϕ

Proof.
1. Since ϕ′ � ϕ, every valuation that satisfies ϕ also satisfies ϕ′. Therefore ϕ � ϕ′.
2. Since ϕ � ϕ′ and trivially ϕ � ϕ, also ϕ � ϕ∧ϕ′. Moreover, trivially ϕ∧ϕ′ � ϕ.

3.2.4 Properties of the slicing operation

To simplify the proofs of our other two main theorems, we first establish some
properties of the slicing operation s(·, ·) from Definition 2.9 on page 17.

With the following lemma, we show that a slice satisfies the interface properties
with respect to the original formula. Consequently, we can use slicing to produce
abstractions of formulas for our reasoning strategies.

Lemma 3.2. Let Φ be a propositional formula and L be a set of atoms. Then
s(Φ, L) � Φ.

Proof. By induction over the size of L.

For L = ∅, we have that s(Φ, L) = Φ, and trivially Φ � Φ.

By the inductive hypothesis, s(Φ, L) � Φ. Now let t /∈ L be some atom. Then, by
Definition 2.9,

s(Φ, L+ {t}) = ∃t.s(Φ, L)

= s(Φ, L)[t← ⊥] ∨ s(Φ, L)[t← >]. (3.1)

If t /∈ a(Φ), then Equation 3.1 reduces to s(Φ, L) ∨ s(Φ, L), which is equivalent to
s(Φ, L), and s(Φ, L) � Φ by the hypothesis.

Now we assume the contrary that t ∈ a(Φ) and prove all three interface properties.

1. Since, by the hypothesis, a (s(Φ, L)) ⊆ a(Φ), and Equation 3.1 only con-
sists of a disjunction over s(Φ, L) with t replaced by either ⊥ or >, also
a (s(Φ, L+ {t})) ⊆ a(Φ).

2. Let α be a valuation that satisfies Φ. By the hypothesis, α also satisfies
s(Φ, L). Since t ∈ a(Φ) and thus t ∈ a (s(Φ, L)), valuation α satisfies s(Φ, L)
either with α(t) = 0 or α(t) = 1. This directly corresponds to the disjunction
in Equation 3.1, where t is replaced by ⊥ or >, which represent either truth
value.

http://publikationsserver.tu-braunschweig.de/get/64390



36 3. Reasoning with decomposed feature models

3. Let α′′ be a minimal valuation that satisfies s(Φ, L + {t}). Without loss of
generality, assume that α′′ satisfies s(Φ, L)[t ← ⊥] (i.e., the left operand of
Equation 3.1). We can then construct a valuation α′ that satisfies s(Φ, L) as

α′(r) =

{
0 if r = t

α′′(r) otherwise.

Since α′′ is minimal, it is not defined for t. Therefore, α′ ) α′′. Moreover, α′ is
minimal with respect to s(Φ, L), and thus, by the hypothesis, can be extended
to a valuation α ⊇ α′ that satisfies Φ. Consequently, also α ⊇ α′′.

Slicing removes some atoms from a formula, while preserving a part of its semantics.
However, if a formula does not contain those atoms, we cannot remove anything.
Indeed, the following lemma and corollary state that we only need to apply slicing
to those parts of the formula that have some common atom with the set of sliced
atoms.

Lemma 3.3. If a(ψ) and L are disjoint, then s(ϕ ∧ ψ,L) ≡ s(ϕ,L) ∧ ψ.

Proof. Let L = {t1, . . . , tn}. Since s(ϕ∧ψ,L) = ∃t1 . . . ∃tn.(ϕ∧ψ), we can repeatedly
apply Lemma 2.1 to pull ψ out of the scope of each quantifier, and eventually obtain

(∃t1 . . . ∃tn.ϕ) ∧ ψ = s(ϕ,L) ∧ ψ.

Corollary 3.2. If a(ϕ) and L are disjoint, then s(ϕ,L) ≡ ϕ.

We now state a related lemma, which allows rearranging of the slicing operation
even for those parts of the formula which have atoms in the slicing set. We show
that the slicing set can be reduced to those atoms that actually occur in each part.
However, we have to require that no two parts we want to rearrange have a common
atom that is also in the slicing set.

Lemma 3.4. Let ϕ, ψ be propositional formulas, and let L be a set of atoms. If
a(ϕ) ∩ a(ψ) ∩ L = ∅, then

s(ϕ ∧ ψ,L) ≡ s(ϕ,L ∩ a(ϕ)) ∧ s(ψ,L ∩ a(ψ)).

Proof. By induction over the size of L.

For L = ∅, we have

s(ϕ ∧ ψ,L) = ϕ ∧ ψ
≡ s(ϕ,∅) ∧ s(ψ,∅)

≡ s(ϕ,L ∩ a(ϕ)) ∧ s(ψ,L ∩ a(ψ)).
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For the inductive step let L′ = L + {t} such that a(ϕ) ∩ a(ψ) ∩ L′ = ∅. Then, by
the inductive hypothesis,

s(ϕ ∧ ψ,L′) = ∃t.s(ϕ ∧ ψ,L)

≡ ∃t. [s(ϕ,L ∩ a(ϕ)) ∧ s(ψ,L ∩ a(ψ))]

≡ s [s(ϕ,L ∩ a(ϕ)) ∧ s(ψ,L ∩ a(ψ)), t] (3.2)

If t /∈ a(ϕ), then L ∩ a(ϕ) = L′ ∩ a(ϕ), and a similar result holds for t /∈ a(ψ).

If t is in neither set of atoms, then by Corollary 3.2

(Equation 3.2) ≡ s(ϕ,L ∩ a(ϕ)) ∧ s(ψ,L ∩ a(ϕ))

≡ s(ϕ,L′ ∩ a(ϕ)) ∧ s(ψ,L′ ∩ a(ϕ)).

On the contrary, without loss of generality let t ∈ a(ϕ). Then t /∈ a(ψ), and we can
apply Lemma 3.3 to Equation 3.2:

(Equation 3.2) ≡ s [s(ϕ,L ∩ a(ϕ)), t] ∧ s(ψ,L ∩ a(ψ))

≡ s(ϕ,L′ ∩ a(ϕ)) ∧ s(ψ,L ∩ a(ψ))

≡ s(ϕ,L′ ∩ a(ϕ)) ∧ s(ψ,L′ ∩ a(ψ))

Example 3.11. By the previous lemma, we have

s(P ∧Q, {P,Q,R}) ≡ s(P, {P}) ∧ s(Q, {Q}).

That is, the atoms P and Q can be moved to the slices of their corresponding
formulas, and R can be completely omitted, since it does not occur in the original
formula.

Moreover, we have the following counterexample for non-disjoint sets of atoms:

s [(P ∨R) ∧ (Q ∨ ¬R), {R}] ≡ P ∨Q
6≡ s(P ∨R, {R}) ∧ s(Q ∨ ¬R, {R})
≡ >

3.2.5 Properties of feature diagrams

Since our correctness proof will be partially based on the semantics of feature di-
agrams, we establish some properties of those semantics. In a nutshell, with these
properties we can rearrange the semantic formula of a feature diagram into a con-
junction of subtree diagrams and another conjunction of the remaining features.

The following lemma states that given a subtree diagram (Definition 3.4), we can use
the set of edges of its surrounding feature diagram to express its semantics (instead
of only the edges of the subtree).
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Lemma 3.5. Let D = (F,E, r,Ψ) be a feature diagram. Then

Φ(↓t) ≡
∧
t′∈F↓t

ΦE(t′) ∧Ψ↓t

for every t ∈ F .

Proof. By expanding the definitions, we obtain

Φ(↓t) ≡
∧
t′∈F↓t

ΦE↓t′
(t′) ∧Ψ↓t

≡
∧
t′∈F↓t

∧
(t′,t′′)∈E↓t

(t′′ ⇒ t′) ∧Ψ↓t. (3.3)

Since (F↓t, E↓t) is the subtree in (F,E) with root t, the set E↓t consists of all edges
from E that have some t′ ∈ F↓t as source. However, the conjunction in Equation 3.3
also only ranges over edges that have their source in F↓t. Therefore, we can replace
E↓t with E in this context:

(Equation 3.3) ≡
∧
t′∈F↓t

∧
(t′,t′′)∈E

(t′′ ⇒ t′) ∧Ψ↓t

≡
∧
t′∈F↓t

ΦE(t′) ∧Ψ↓t

Subtree diagrams are a direct part of their surrounding diagram, and do not abstract
away or add information. Therefore, intuitively we can express the semantics of the
full diagram as a conjunction of subtree diagram semantics, plus the semantics of the
features that are not included in any of those subtree diagrams. With the following
lemma, we show that such a semantic decomposition is valid for arbitrary choices of
subtree diagrams.

Lemma 3.6. Let D = (F,E, r,Ψ) be a feature diagram, and S ⊆ F be a set of
disjoint features. Then

Φ(D) ≡
∧
t∈S

Φ(↓t) ∧
∧

t∈F\Ŝ

ΦE(t) ∧ΨG, (3.4)

where

Ŝ =
⋃
t∈S

F↓t

and

ΨG = Ψ \
⋃
t∈S

Ψ↓t.
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Proof. We rearrange the right-hand side of the equivalence until it matches the
definition of Φ(D).

We first expand the Φ(↓t) terms using Lemma 3.5, that is, we express the ↓t seman-
tics by means of E. ∧

t∈S

Φ(↓t) ≡
∧
t∈S

∧
t′∈F↓t

ΦE(t′) ∧Ψ↓t (3.5)

The conjunction in Equation 3.5 ranges over t′ ∈ F↓t with t ∈ S, which directly

corresponds to the definition of Ŝ. Therefore, we arrive at the following equivalence.

(Equation 3.5) ≡
∧
t′∈Ŝ

ΦE(t′) ∧
∧
t∈S

Ψ↓t (3.6)

We now substitute Equation 3.6 into the right-hand side of Equation 3.4.∧
t∈S

Φ(↓t) ∧
∧

t∈F\Ŝ

ΦE(t) ∧ΨG ≡
∧
t′∈Ŝ

ΦE(t′) ∧
∧
t∈S

Ψ↓t ∧
∧

t∈F\Ŝ

ΦE(t) ∧ΨG (3.7)

Since Ŝ ⊆ F and consequently Ŝ ∪ (F \ Ŝ) = F , we can join both conjunctions of
ΦE terms to a single conjunction that ranges over F . Similarly, ΨG ∧

∧
t∈S Ψ↓t ≡ Ψ.

We apply both equivalences and finally obtain the definition of Φ(D).

(Equation 3.7) ≡
∧
t′∈F

ΦE(t′) ∧
∧
t∈S

Ψ↓t ∧ΨG

≡
∧
t′∈F

ΦE(t′) ∧Ψ

= Φ(D)

Lemma 3.7. For every set S of disjoint features, the union of local subtree features⋃
t∈S

l(↓t).

is disjoint.

Proof. Let t, t′ ∈ S. Since features in S are disjoint, the sets F↓t and F↓t′ are disjoint
by definition. Furthermore, l(t) ⊆ F↓t for every feature t by definition. Therefore,
also l(t) and l(t′) are disjoint.

3.2.6 Correctness

Finally, we show that the subtree decomposition is correct, that is, every subtree
decomposition is a selectable decomposition. We split the proof into two theorems:
The first theorem states that the composition of an interface of a feature diagram
with a set of subtree diagrams is still an interface. With the second theorem, we
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show that every atom-based selection over a set of subtree diagrams from a subtree
decomposition is semantically complete. Therefore, the latter theorem establishes
the connection to selectable decompositions from Section 3.1.

Informally, the following theorem states that reinstantiating a concrete subtree in an
interface of a feature diagram results in another interface, but with an extended set
of atoms. In other words, we can selectively reconcretize parts of a formula we have
sliced out before, and obtain another, more concrete abstraction of the formula. As
a consequence, we can use the result for sound and complete reasoning with respect
to all of its atoms.

Theorem 3.3. Let D = (F,E, r,Ψ) be a feature diagram, and D/S = (Γ,∆) be a
subtree decomposition. Then Γ ∪∆′ � Φ(D) for every ∆′ ⊆ ∆.

Proof. By definition, Γ = s(Φ(D), L), where L =
⋃
t∈S l(↓t). With Lemma 3.6, we

can reformulate Φ(D), such that Φ(D) ≡ ∧t∈S Φ(↓t) ∧∧t∈F\Ŝ ΦE(t) ∧ΨG.

The sets of local features are disjoint (Lemma 3.7), and occur only in formulas of
their subtree diagram ↓t. Therefore, we can apply Lemma 3.4 and Lemma 3.3 to
decompose the application of the slice operation:

s(Φ(D), L) ≡ s

∧
t∈S

Φ(↓t) ∧
∧

t∈F\Ŝ

ΦE(t) ∧ΨG, L


≡
∧
t∈S

s(Φ(↓t), l(↓t)) ∧
∧

t∈F\Ŝ

ΦE(t) ∧ΨG (3.8)

Recall that by Lemma 3.2, every slice is an interface of its original formula. Now
consider the conjunction of Γ ∪ ∆′. Since ∆′ consists of subtree diagrams induced
by S, for every Φ(↓t) ∈ ∆′ there is a corresponding interface s(Φ(↓t), l(↓t)) in Γ. By
Lemma 3.1, each interface is absorbed by its original formula. Accordingly, in the
set Γ ∪∆′, each subtree from ∆′ absorbs its interface from Γ; formally

Φ(↓t) ∧ s(Φ(↓t), l(↓t)) ≡ Φ(↓t).

Therefore, we can formulate the following equivalences. Let S ′ ⊆ S be a set of
features such that ∆′ = {Φ(↓t) | t ∈ S ′ }. We substitute Equation 3.8 into Γ ∪ ∆′

and let each subtree absorb its interface. Consequently, the conjunction of slice
operations then merely ranges over S \ S ′:

Γ ∪∆′ ≡ s(Φ(D), L) ∧
∧
t∈S′

Φ(↓t)

≡
∧
t∈S

s(Φ(↓t), l(↓t)) ∧
∧

t∈F\Ŝ

ΦE(t) ∧ΨG ∧
∧
t∈S′

Φ(↓t)

≡
∧

t∈S\S′

s(Φ(↓t), l(↓t)) ∧
∧

t∈F\Ŝ

ΦE(t) ∧ΨG ∧
∧
t∈S′

Φ(↓t) (3.9)

Now we apply Lemma 3.4 in reverse direction and recompose the individual slice
operations into a single operation with a subset L′ of L. The set L′ comprises all local
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features of the remaining subtree diagram interfaces, thus L′ = { l(↓t) | t ∈ S \ S ′ }.
We can include the term

∧
t∈S′ Φ(↓t) in the slice operation, since the sets S \S ′ and

S ′ are disjoint, and subtree diagrams do not share any local features (Lemma 3.7).
We arrive at the following equivalence:

(Equation 3.9) ≡ s

 ∧
t∈S\S′

Φ(↓t) ∧
∧

t∈F\Ŝ

ΦE(t) ∧ΨG ∧
∧
t∈S′

Φ(↓t), L′

 (3.10)

We now rearrange the first operand of the slice operation in Equation 3.10 so that
we are able to apply Lemma 3.6 in reverse direction and obtain the equivalence
Γ ∪ ∆′ ≡ s(Φ(D), L′). To this end, we expand the ΨG term to its definition, and
partially apply Lemma 3.5 to the rightmost conjunction of Φ(↓t) terms.∧

t∈S\S′

Φ(↓t) ∧
∧

t∈F\Ŝ

ΦE(t) ∧ΨG ∧
∧
t∈S′

Φ(↓t)

≡
∧

t∈S\S′

Φ(↓t) ∧
∧

t∈F\Ŝ

ΦE(t) ∧Ψ \
⋃
t∈S

Ψ↓t ∧
∧
t∈S′

∧
t′∈F↓t

ΦE(t′) ∧Ψ↓t (3.11)

We remove the Φ↓t terms from the rightmost conjunction and adapt the range of
the difference on Ψ accordingly6. Similarly, we join both conjunctions of ΦE terms.
Therefore, let Ŝ ′ =

⋃
t∈S′ F↓t.

(Equation 3.11) ≡
∧

t∈S\S′

Φ(↓t) ∧
∧

t∈F\Ŝ

ΦE(t) ∧Ψ \
⋃

t∈S\S′

Ψ↓t ∧
∧
t∈S′

∧
t′∈F↓t

ΦE(t′)

≡
∧

t∈S\S′

Φ(↓t) ∧
∧

t∈F\Ŝ

ΦE(t) ∧Ψ \
⋃

t∈S\S′

Ψ↓t ∧
∧
t′∈Ŝ′

ΦE(t′)

≡
∧

t∈S\S′

Φ(↓t) ∧
∧

t∈(F\Ŝ)∪Ŝ′

ΦE(t) ∧Ψ \
⋃

t∈S\S′

Ψ↓t (3.12)

To apply Lemma 3.6, we still need to prove that (F \ Ŝ) ∪ Ŝ ′ =
⋃
t∈S\S′ F↓t.

(F \ Ŝ) ∪ Ŝ ′ = (F ∪ Ŝ ′) \ (Ŝ \ Ŝ ′)

= F \ (Ŝ \ Ŝ ′)

= F \
(⋃
t∈S

F↓t \
⋃
t′∈S′

F↓t′

)
= F \

⋃
t∈S\S′

F↓t (3.13)

Using Equation 3.13, we apply Lemma 3.6 to Equation 3.12. Therefore, Equa-
tion 3.12 is equivalent to Φ(D). Consequently, Γ ∪∆′ ≡ s(Φ(D), L′). Finally, using
Lemma 3.2 we immediately obtain that Γ ∪∆′ � Φ(D).

6For ease of exposition, we abuse the notation of set operations and logical connectives here.
More precisely, we use sets of formulas and the conjunction of their elements interchangeably.
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With the previous theorem, we have shown that we can selectively reconcretize the
interface produced by a subtree decomposition. However, we still need to show that
an atom-based selection on the set of subtree diagrams indeed composes a sound
and complete interface for arbitrary queries. We show this with the following, final
theorem.

Theorem 3.4. Every subtree decomposition D/S of a feature diagram D is a se-
lectable decomposition of Φ(D).

Proof. Let D/S = (Γ,∆) with D = (F,E, r,Ψ), and ϕ be a propositional formula
such that a(ϕ) ⊆ a(Φ(D)). Moreover, let ∆′ = ∆|a(ϕ). Since ∆′ ⊆ ∆, the set Γ∪∆′

is an interface of Φ(D) by Theorem 3.3. We need to show that a(ϕ) ⊆ a(Γ ∪ ∆′),
then the claim follows with Theorem 3.2.

We prove that a(ϕ) ⊆ a(Γ ∪∆′) by contradiction. Assume that the statement does
not hold, then there exists an atom r ∈ a(ϕ) that is present neither in Γ nor in ∆′.
If r /∈ a(Γ), then, by a(ϕ) ⊆ a(Φ(D)) and the construction of D/S, atom r is a
local feature of some subtree diagram Φ(↓t) ∈ ∆. Since l(↓t) ⊆ F↓t, also r ∈ F↓t.
Consequently, a(ϕ) ∩ a(Φ(↓t)) 6= ∅, and thus Φ(↓t) ∈ ∆′. However, then r ∈ a(∆′),
which is a contradiction.

3.3 Summary

In this chapter, we have shown how to reason with decomposed feature diagrams,
which enables faster SAT solving due to smaller formulas. To this end, we have first
introduced a generic decomposition of propositional formulas, and corresponding
strategies that recompose the relevant parts for each query, using a simple atom-
based selection criterion.

Subsequently, we have defined a generic notion of feature diagrams with semantics
in propositional logic. Based on this definition, we have introduced a decomposition
and slicing procedure for a feature diagrams, which is guided by a set of its subtrees.
Provided that we are able to choose subtrees according to implementation artifacts,
we can abstract away some features that are local to such an artifact. During
a family-based analysis, we are then able to selectively reconcretize parts of the
abstract diagram, as needed by the particular implementation artifact. To prove
correctness, we have adapted the concept of feature model interfaces to propositional
formulas. We have shown that such interfaces can be used for sound and complete
reasoning under a restricted set of atoms, and that slicing indeed produces such
interfaces.

Finally, we have shown that the atom-based selection on our feature diagram decom-
position produces a correct subset of formulas for our generic reasoning strategies.
Therefore, the decomposition we have defined is correct. For now, it remains an
open question how to choose an optimal set of subtrees. Possible influencing factors
are the implementation articfacts, or the type of the family-based analysis.
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4. Evaluation

In this chapter, we evaluate our approach for reasoning with feature model interfaces
as presented in Chapter 3. In particular, we compare solver execution times of the
full-model strategy, which always uses the full model for reasoning, against our
reduced-model strategy, which composes a specific model for each solver query.
We show that under certain restrictions regarding feature model decompositions and
queries, reduced-model outperforms full-model. Consequently, we provide a
threshold measure m(∆) for the adaptive-model strategy that is based on the
number of CNF clauses in selected submodels.

Comparing overall execution times of a family-based analysis that uses either the
full-model or reduced-model strategy for reasoning would yield the most pre-
cise evaluation results. For such an experiment, we need

1. a product line with source code available,

2. its feature model in feature diagram form,

3. a decomposition of the feature diagram that corresponds to the implementation
structure, and

4. a family-based analysis implementation and setup for the product line.

To assess the full potential of our approach, we use the Linux kernel as the largest
publicly available product line. For version 2.6.33.3, which has over 10,000 fea-
tures1, there exists a family-based type checking setup2 for the TypeChef analysis
framework3. Unfortunately, to the best of our knowledge there is no comprehensive
feature diagram for any version of the Linux kernel, and we also do not have access
to another product line with similar size. Therefore, we split our evaluation into
two stages to approximate an ideal evaluation setup. In Section 4.2, we analyze

1in the boolean approximation of the original feature model
2https://github.com/ckaestne/TypeChef-LinuxAnalysis
3https://github.com/ckaestne/TypeChef
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characteristics of solver queries that arise during typechecking of the Linux kernel.
We use the results in Section 4.3 to generate realistic queries for another feature
model with similar size, which is available as a feature diagram and for which we
have decomposition into submodels.

4.1 Goals
We concretize the goals of this evaluation in form of the following research questions.
As explained above, the first stage of our evaluation consists of analyzing practical
solver queries in a family-based analysis, which we formulate in research question
RQ 1.

RQ 1 What are the characteristics of SAT solver queries in the analysis of a
real-world software system?

RQ 1.1 What is the fraction of solving satisfiability in overall analysis com-
putation time?

RQ 1.2 How local are queries?

Since a family-based analysis not only performs SAT solving but also other compu-
tations, we determine the potential performance gain in the overall analysis runtime
when using our reduced-model approach with RQ 1.1. Moreover, in Chapter 3 we
hypothesized that queries typically only contain features from few submodels. Since
we anticipate some overhead caused by recomposition of the selected submodels,
we are interested if such query locality actually exists. To this end, we formulate
RQ 1.2.

Using the results from RQ 1, we compare reasoning times of the full-model and
reduced-model strategies. As the reduced-model strategy might not outper-
form full-model in all cases, we are interested in properties of queries for which
it does. For that purpose, we specify research question RQ 2 as follows.

RQ 2 For which kinds of queries does reasoning with interfaces outperform rea-
soning with the full model?

RQ 2.1 How large is the composition overhead?

RQ 2.2 What is the impact of locality in queries?

RQ 2.3 Is there a threshold measure m(∆′) for the composition overhead?
If so, is the threshold value τ uniform accross different feature models?

As already mentioned, the overhead of recomposing models might render the reduced-
model approach inefficient in some cases. To analyze this overhead, we specify
RQ 2.1. Since this overhead might be dependent on the degree of locality of a query,
we analyze its impact with RQ 2.2. In Chapter 3, we have proposed a generic thresh-
old measure to select between full-model and reduced-model for each query, in
order to combine advantages of both strategies. With RQ 2.3, we investigate query
properties as concrete candidates for such a measure. Moreover, if such a measure
exists we want to know if its threshold value τ can be transferred to a different
model, or if it must be determined individually.
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4.2 Solver queries in family-based analysis

In this section, we answer RQ 1 by type checking a subset of the Linux kernel
with TypeChef. We record all queries issued against the feature model, and their
runtimes.

4.2.1 Experimental setup

We use the evaluation setup for Linux 2.6.33.3 (x86) from Liebig et al. [2013] with
some modifications. Linux employs the C preprocessor in combination with the
Kconfig build system to implement variability. The feature model of the given
version comprises over 10,000 features. We parse and type check each kernel source
file in a seperate Java Virtual Machine (JVM) with the most recent TypeChef release
(version 0.3.74).

As an optimization, TypeChef reasons with both binary decision diagrams (BDDs) [Bryant,
1986] and a SAT solver. Presence conditions are converted to BDDs and mostly
checked only against each other without incorporating the feature model. Only
when final results (i.e., type errors) are about to be reported, TypeChef invokes
the SAT solver with a condition and the feature model to prune false positives.
Moreover, results of recurring queries are cached.

We instrument TypeChef to record the formulas of all queries issued against the
solver, since only those queries involve the feature model. We use System.nanoTime()5

to measure solver computation time for each query. However, we do not record
queries that are retrieved from the cache. In addition, we measure times of the
parsing and type checking phases for each file.

Since type checking all kernel files would take several weeks, we only measure a
random subset of files. For the same reason, we do not take multiple samples of
each time measurement to reduce noise caused by garbage collection or just-in-time
optimizations [Georges et al., 2007]. Therefore, the results should be considered as
an estimate.

We perform all measurements in a 64-bit Debian 8.66 virtual machine with 12GB of
memory and four cores. We run a type checking task with 2.5GB JVM heap space
on each core. The host system is equipped with an Intel Core i7-4800MQ with four
cores and 16GB of memory.

4.2.2 Results

We have randomly chosen and type checked 1,363 out of 7,760 files from the x86
subset of the kernel, which issued a total of 173,845 queries against the feature
model. Out of those queries, 61 percent were syntactically distinct. On average, the
solver took 90 milliseconds to process a query. Per file, this amounts to 12 seconds
of solver computation time for 128 queries, while the overall file processing time in
TypeChef is 24 minutes. Thus, 0.7 percent of the overall analysis time is consumed

4https://github.com/ckaestne/TypeChef/tree/v0.3.7
5http://docs.oracle.com/javase/8/docs/api/java/lang/System.html#nanoTime--
6https://www.debian.org
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by SAT solving. Considering only the type checking phase, which takes 19 seconds
on average and issues most of the queries, approximately 60 percent of the time are
used for reasoning.
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Figure 4.1: Distribution of solver times per query

In Figure 4.1, we show the distribution of solver times on a logarithmic scale. We
see that more than half of the queries take less than 226 milliseconds. The median
lies at 20 milliseconds. Nevertheless, there are also queries that take over 4 seconds
to compute.

To assess the locality of queries (RQ 1.2), we analyze the number of literals and
the number of distinct features in each query. Literals are atomic propositions or
their negations, thus the number of distinct features is always smaller or equal to
the number of literals. Since we do not have a feature diagram decomposition for
Linux, we cannot determine the actual locality (i.e., number of submodels involved
in the query). Instead, we examine the distributions of literals and distinct features
to obtain an estimate.

We show the distribution of literals per query in Figure 4.2. Almost half of the
queries contain only up to 28 literals, but there are also queries with up to 529
literals, with a median of 26 literals. The distribution is roughly exponential. By
comparison, we show the distribution of distinct features per query in Figure 4.3.
The diamond symbol represents the average at 8.8 features, which is close to the
median at 9 features. There are three outlier queries at 18, 20, and 27 features.
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In Figure 4.4, we show the distribution of literals per feature for each query. The
median is at a ratio of 2.7, and slightly differs from the average at 3.3. Most queries
have a ratio of less than 8.8. Because of the large data set, there are nearly 5,000
outliers, with a maximum ratio of 33.5.

4.2.3 Discussion

Our time measurements reveal that in our particular setup, reasoning is by far not
the dominant cost when considering the overall analysis time. Rather, variability-
aware parsing accounts for over 99 percent of the computation time. We suspect that
this is due to complexity of parsing C preprocessor annotations together with the C
source code. Since in general, such annotations and the C language constructs do
not align (there may be so-called undisciplined annotations [Liebig et al., 2011]), a
variability-aware C parser must split the analysis on a per-token basis, which causes
computational overhead compared to a disciplined variability mechanism. We refer
the reader to the work of Kästner et al. [2011] for further details. However, TypeChef
allows to save and reuse the parsing result for different family-based analyses of the
same file.

If we assume a disciplined variability mechanism such as feature-oriented program-
ming, parsing becomes simpler, as variability only requires additional language con-
structs in the grammar. Therefore, we may relate the reasoning time to the actual
analysis time alone (i.e., the type checking phase in our case). Under this assump-
tion, we can potentially improve over half of the analysis time with our approach.
However, for precise results we need to perform another evaluation using such those
variability mechanisms, which we leave to future work.

Contrary to our expectations, even for such a large model with over 10,000 features a
typical query takes only 20 milliseconds to solve, and the majority requires under 300
milliseconds, as shown in Figure 4.1. Nevertheless, there are also more complicated
queries that take several orders of magnitude longer.

In summary, we answer RQ 1.1 as follows. In general, our approach may affect
over 60 percent of the pure analysis time. Although we may save up to 11 seconds
of reasoning time per file in our experiments, our approach does not improve the
analysis of product lines that are based on the C preprocessor, since parsing is the
dominant cost and should be optimized first. As an additional result, we observed
that at least 39 percent of the queries are potentially redundant, which allows for
further optimization, for example through caching across several TypeChef runs.

Regarding query locality (RQ 1.2), we conclude from the distribution in Figure 4.3
that a typical query contains 9 distinct features. Thus, for combinatorial reasons
these features belong to at most 9 different submodels. Unfortunately, without
a decomposed feature model for the considered Linux version (e.g., with kernel
modules as components), we cannot determine sharper bounds.

Although queries may contain over 500 literals (see Figure 4.2), they have a max-
imum of 27 distinct features out of over 10,000 available features. However, the
average literal to feature ratio is lower (3.3), as shown in Figure 4.4. Thus, for
queries that are large in terms of literals, we identify a higher locality than for
queries with fewer literals.
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4.3 Performance of reasoning with interfaces

In the previous section, we have analyzed queries from a practical family-based anal-
ysis. To answer RQ 2, in this section we compare the full-model and reduced-
model strategies using the structure of the recorded queries together with four
evolutionary snapshots of a feature diagram from the automotive domain.

4.3.1 Experimental setup

We have developed a prototypical benchmark implementation of the reduced-
model strategy on top of the FeatureIDE framework for feature-oriented software
development [Thüm et al., 2014b]. To realize the full-model strategy, we use
existing capabilities of FeatureIDE for reasoning with feature diagrams. From the
queries recorded in Section 4.2, we generate a set of benchmark queries by replacing
all Linux features with random features from the automotive snapshots. Then, we
run each benchmark query using both the full-model and the reduced-model
implementation, and measure computation times for comparison.

Implementation

Our implementation is based on version 3.0.1 of FeatureIDE7. FeatureIDE provides
procedures for loading and manipulating feature diagrams, as well as their conversion
to propositional formulas and subsequent reasoning. This version uses the SAT
solver library Sat4j8 2.3.5.

To initialize our implementation, we load a feature diagram (i.e., the full model)
as well as a set of extracted subdiagrams and their corresponding precomputed in-
terfaces from XML files. For the full-model strategy, we simply use the loaded
diagram itself. By contrast, for the reduced-model strategy we need a selectable
composition (Γ,∆), where Γ represents a reduced feature model that we can selec-
tively refine with submodels from ∆ (see Algorithm 3.2 on page 26). To construct
Γ, we modify in the full model in two steps. First, we insert the loaded interface
trees in place of their corresponding concrete subtrees. Second, we remove all con-
straints which contain only features that are local to some replaced subdiagram
(see Definition 3.6 on page 32). The set ∆ simply consists of the loaded subdia-
grams. To prepare the models and submodels for reasoning with Sat4j, we convert
them to their propositional formulas in conjunctive normal form. Finally, we cre-
ate two SAT solver instances, one configured with the full model, and another one
configured with the reduced model Γ.

We implement the reduced-model strategy as follows to process a query ϕ. As the
sliced model Γ of a subtree decomposition is an interface of the original model, we
do not need to include any concrete submodels if the query only consists of features
from Γ. We use this as a slight optimization of the initial definition of reduced-
model that is independent of slicing. For each feature in ϕ that is not present
in Γ, we select the subdiagram CNFs from ∆ that contain this feature. Then, we
concatenate all selected CNFs with the CNF of ¬ϕ. Finally, we invoke the reduced
model solver with the resulting formula.

7https://github.com/FeatureIDE/FeatureIDE/releases/tag/v3.0.1
8http://www.sat4j.org/
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Feature models

For this evaluation, we use the Automotive 02 feature diagram from the FeatureIDE
example models9. This model originates from practical development in the automo-
tive industry [Schröter et al., 2016]. It has been created by integrating several
smaller models into a comprehensive model. However, the submodels are still avail-
able as separate files. Furthermore, there is also a precomputed interface for each
submodel, which omits precisely all local features. Therefore, we can construct a
selectable decomposition as previously described.

Snapshot Features Constraints Clauses Submodels

1 14,010 666 237,706 44
2 17,742 914 342,935 45
3 18,434 1,300 347,557 46
4 18,616 1,369 350,287 46

Table 4.1: Statistics of the automotive model snapshots

The automotive model is available in four different snapshots, which capture its
evolution over time. We conduct independent measurements on each snapshot. In
Table 4.1, we show the statistics of each snapshot. The snapshots have between
14,010 and 18,616 features, and between 44 and 46 submodels. Thus, even the small-
est snapshot has more features than the Linux model we have used in Section 4.2.
We also specify the number of CNF clauses as computed by our implementation.
Additionally, we show the distribution of the number of features in each submodel
in Figure 4.5 for each snapshot.
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Figure 4.5: Features in submodels

Query generation

We use the queries recorded from the Linux evaluation in Section 4.2 as templates
to generate semi-random queries for the automotive snapshots. For each distinct

9https://github.com/FeatureIDE/FeatureIDE/tree/develop/plugins/de.ovgu.featureide.
examples/featureide examples/FeatureModels
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feature in the original query, we randomly select a feature from the snapshot model.
As a result, we obtain a one-to-one a mapping from Linux features to automotive
features on a per-query basis. Finally, we replace the Linux features in all literals of
the query using this mapping.

For example, in the query

(CONFIG X86 64∧¬CONFIG PARAVIRT∧¬CONFIG X86 32 )∨CONFIG PARAVIRT

we have three different Linux features. To create a query for our evaluation from this
query, we randomly choose a feature from the automotive model for each of these
features (e.g., F 4AA1EA10E8E2, F 8B531C609895, and F D86F03821B9B), and
substitute it into the formula. Thus, we obtain the formula

(F 4AA1EA10E8E2∧¬F 8B531C609895∧¬F D86F03821B9B)∨F 8B531C609895 ,

which we then check for satisfiability against the particular automotive model. We
use a single set of such generated queries for both reasoning strategies.

With this method, we generate queries that are more realistic compared to com-
pletely random formulas. The substition operation preserves properties such as
formula structure, amount of literals and distinct features, and satisfiability of the
formula itself (without considering the feature model). In addition, randomly gen-
erated formulas are often harder to solve than formulas that arise from practical
applications [Liang et al., 2015].

Measurements

Performance measurements on the Java Virtual Machine are nondeterministic due to
garbage collection and just-in-time optimizations [Georges et al., 2007]. Measuring
execution time of a code fragment multiple times could yield results that differ by
orders of magnitude, for example because the code was not optimized at the first
run, or garbage collection was accidently triggered during measurement. If such
perturbations are not detected and eliminated, the resulting data could lead to
wrong conclusions.

To improve the precision of our measurements, we use ScalaMeter 10 version 0.7,
which is a performance measuring framework for the JVM. ScalaMeter implements
several techniques that reduce the amount of misleading measurements. To measure
each reasoning strategy, we use the following ScalaMeter configuration. For a set
of generated queries, we consecutively run nine JVM invokations. Before the actual
measurements, we repeatedly run the strategy with a random query until execution
time stabilizes (so called warm-up runs). This reduces the effects of class loading
and just-in-time compilation. Then, we take four measurements of the execution
time of each query. If there is an outlier in these measurements (e.g., due to garbage
collection) we replace it with another measurement. Thus, in total we measure
each query 36 times. We use the ScalaMeter standard parameters for steady-state
detection of the warm-up phase and outlier elimination.

10https://scalameter.github.io/

http://publikationsserver.tu-braunschweig.de/get/64390

https://scalameter.github.io/


52 4. Evaluation

Unless noted otherwise, for the full-model strategy we measure how long the
initialized solver takes to decide the satisfiability of each query11. When measur-
ing the reduced-model strategy, we additionally include the time to select and
concatenate the relevant submodel CNFs.

We conduct all measurements on a Windows 7 system with an Intel Core i5-3570
and 8GB of memory, and run all JVM invokations with 4GB of heap space.

4.3.2 Optimization

In early experiments, we found that our reduced-model strategy was slower than
the full-model strategy by orders of magnitude. We did not expect such an ad-
verse effect, since the reduced-model solver processes smaller formulas on average.
Therefore, we investigated the cause and optimized the Sat4j implementation based
on our findings.
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Figure 4.6: Comparison of optimized and unoptimized solver

In Figure 4.6, we compare optimized and unoptimized versions of both strategies.
For each data point, we took the average of 100 randomly generated queries. We
see that even for a single literal in the query, the unoptimized version of reduced-
model is over 700 times slower than the unoptimized full-model.

Figure 4.7: Profiling session of initial benchmark implementation

To track down the issue, we profiled the reduced-model implementation with the
NetBeans IDE12 profiler, version 8.1. We ran the implementation in a loop with

11i.e., method org.prop4j.SatSolver.isSatisfiable(Node)
12https://netbeans.org/
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random queries, and measured execution times of all methods to discover possible
bottlenecks. In Figure 4.7, we show a screenshot of the profiling session. The
removeFrom method of Sat4j class ConstrGroup causes over 80 percent of the total
computation time.

Figure 4.8: Detailed profiling of removeFrom method

We suspected that the bottleneck was located in this method, and thus analyzed it
in more detail. We show the results in Figure 4.8. The remove method of class Vec

contributes most of the computation time.

With our findings, we investigated the semantics of ConstrGroup.removeFrom, and
especially the role of Vec.remove using the source code of Sat4j. In a nutshell,
the Sat4j solver implementation maintains a global array of clauses. This array is
encapsulated by the Vec class, which roughly resembles the implementation of a
standard Java ArrayList13. In our reduced-model use case, this array initially
contains the reduced model Γ. When a query is issued, Sat4j temporarily appends
all query clauses to the array, solves its satisfiability, and then removes the clauses
again with a call to Vec.remove for each clause. This method linearly searches the
particular clause in the array, and then removes it by shifting all following clauses
one position to the left. Thus, we have a time complexity of O(n2) for the complete
removal of a query, where n is the number of clauses in the query. The larger a
query gets, the more performance degrades.

Since the reduced-model strategy includes several models with possibly thousands
of clauses in the query, the Vec.remove implementation becomes a bottleneck. By
contrast, the full-model approach generally issues smaller queries, since it does
not add any models to the original query.

To remedy the problem, we exploit the fact that query clauses are always appended
to the array, and precisely those appended clauses are removed afterwards. The
array allocated in the Vec implementation may be larger than the actual number of
elements. Therefore, the class maintains a pointer to the end of the array (variable
nbelem), and ignores all elements beyond this pointer. Before each query, we save
the pointer, and let Sat4j add the clauses. After the query has been processed,
we simply restore the old pointer value. This way, we effectively achieve a removal
operation in constant time without any array traversal or shifting of clauses. In
other words, the time complexity decreases from O(n2) to O(1).

As shown in the comparison in Figure 4.6, the optimization has an effect on reduced-
model, but leaves the performance of full-model unchanged. We suppose that

13http://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html
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our particular way of using Sat4j was not expected by its developers. Therefore,
we have deployed this optimization on all measurements in the remainder of this
chapter.

4.3.3 Results and discussion

With the optimization from the previous section, we conduct the measurements
to compare the full-model and reduced-model strategies. To this end, we
generate a lists with 1,000 to 5,000 queries and measure the runtime of each query
in both approaches. We also record other query parameters, such as number of
relevant submodels, and the sum clauses added by the reduced-model strategy.
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Figure 4.9: Comparison of cumulative solver times (1000 queries)
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Figure 4.10: Average solver times against number of selected models (Snapshot 4)
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Granularity of decompositions

In Figure 4.9, we compare cumulative times of the strategies for all snapshots. De-
spite the optimization, reduced-model is between 21 (Snapshot 1) and 24 (Snap-
shot 2) times slower than full-model. To assess the impact of locality, we show
average solver times plotted against number of models selected by reduced-model
in Figure 4.10 for Snapshot 4. We see that reduced-model is generally slower than
full-model for all measured cases. Note that the full-model approach does not
actually select any models. Instead, its x values merely reflect the number of sub-
models involved in the query.

As the performance of full-model remains almost constant, locality does not have
an impact for this strategy. By contrast, reduced-model tends to perform worse
the more models are selected. Since we were again surprised that reduced-model
was over 20 times slower, we aimed to find the cause for the discrepancy. From
our experience with the optimization in the previous section, we suspected that the
performance was still dependent on the number of added submodel clauses. For
the following analysis, we exemplary use Snapshot 4, as the other snapshots exhibit
similar characteristics. We provide the results for Snapshots 1–3 in Chapter A.
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Figure 4.11: Solver times against number of added clauses, using reduced-model

In Figure 4.11, we show the time of each query plotted against number of added
clauses for reduced-model. Most data points gather in the upper right corner.
However, there are also a few data points in the lower left corner with up to 32,000
submodel clauses. Therefore, most queries require the strategy to add over 280,000
submodel clauses. Between both clusters, there is an horizontal gap with no queries.
In the upper right point cluster, there are also two smaller gaps.

For comparison, we show the same type of plot for the full-model strategy in
Figure 4.12. There are two clusters in the lower left and lower right corners. However,
compared to reduced-model, there are more outliers near the right cluster. Since
we used the same set of queries, the gaps remain the same. There is also a vertical
gap that separates the points in both clusters.
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Figure 4.12: Solver times against number of added clauses, using full-model

Figure 4.11 suggests a linear performance dependency on the number of added
clauses for the reduced-model approach. Thus, due to the large gap in the
number of clauses, most queries are slower than their corresponding full-model
measurements, which again have mostly constant performance despite some outliers.
Furthermore, we suppose that the vertical gap in the full-model plot is caused
by CNF simplification steps in the Sat4j implementation. In particular, if the CNF
itself already can be transformed to a contradiction or tautology, the actual solver
algorithm is not executed. However, we have not analyzed this in more detail.

100 101 102 103 104 105

Clauses

Figure 4.13: Distribution of number of clauses in submodels

The horizontal gap in the number of clauses suggests a large (clause-wise) submodel
that also has a high probability to be relevant for a query. Therefore, we analyzed
the distribution of clauses in all submodels. We show the results in Figure 4.13. The
median lies at 118 clauses, and most models have up to 2,000 clauses. There are five
outliers with 2,653, 2,985, 19,587, 27,229, and 282,268 clauses.

The largest submodel has roughly ten times more clauses than the next-largest
submodel, which is still two orders of magnitude larger than the typical submodel.
Furthermore, the largest submodel has 111,151 features, and has therefore an over 50
percent chance to be relevant already to a query with a single literal. We therefore
conclude that the reduced-model approach is ineffective if the decomposition
contains single submodels with too many clauses.

Excluding large submodels

To simulate more fine-grained decompositions, in the following we excluded all local
features of such outlier submodels from query generation. Therefore, the reduced-
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model does not include such models anymore. We also raised the number of gener-
ated queries to 5,000 to obtain more precision. Again, we show results of Snapshot 4
unless stated otherwise.
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Figure 4.14: Comparison of cumulative solver times without large models (5,000
queries)

In Figure 4.14, we again compare cumulative times of the strategies, this time with
large submodels excluded. For Snapshot 1, both strategies have almost the same
performance, although full-model is faster. By contrast, the reduced-model
approach is between 24 and 22 percent faster for Snapshots 2–4.

With a sufficiently fine-grained decomposition, our reduced-model approach there-
fore allows for up to 24 percent of performance gain. However, the tie at Snapshot 1
shows that we cannot generally conclude that using reduced-model is advanta-
geous.

Impact of locality

We also again analyzed the impact of locality on average solver time in Figure 4.15.
We see that for up to eight selected models, reduced-model outperforms full-
model. This holds for all snapshots except Snapshot 1, which is only faster for up
to six submodels.

Thus, we answer RQ 2.2 as follows. The average performance of queries in the
reduced-model strategy depends on the number of selected models. This strategy
is therefore more effective for queries with higher locality. Conversely, all snapshots
reach a point where reduced-model becomes ineffective due to insufficient locality.

Threshold measures

The locality analysis shows that there still is some threshold beyond which the
reduced-model approach is slower due to its overhead. As we have discovered
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Figure 4.15: Average solver times against number of selected models, with large
submodels excluded
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Figure 4.16: Solver times against added clauses, with large submodels excluded
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that performance depends on the number of added clauses for reduced-model
in Figure 4.11, we now analyze this correlation with large submodels excluded to
answer RQ 2.1 and RQ 2.3. Using the number of clauses allows for a more precise
measure than using the number of relevant submodels, since the latter aggregates
all queries into only 12 different data points.

In Figure 4.16, we compare solver times against the number of added clauses for
both strategies. The performance of full-model roughly alternates between two
constant values. By contrast, the performance of reduced-model increases as the
number of added clauses increases. Compared to Figure 4.11, there are no apparent
gaps.

The plot indicates a linear correlation for reduced-model, however with an in-
creasing variation. By contrast, the performance of full-model appears to depend
on some hidden property of each query, which we did not identify in this work. How-
ever, the data points concentrate at two constant values. We therefore propose a
linear regression method [Rawlings et al., 1998] to model the average performance
of queries by the number of submodel clauses.

In particular, we investigate the number of clauses in relevant submodels as a thresh-
old measure m(∆′). To this end, we define the clause measure mc(∆

′) as the number
of clauses in ∆′. To determine the threshold τ , beyond which reduced-model be-
comes ineffective, we approximate the average time cost per submodel clause for each
strategy as a linear function. The τ value is then the intersection of both functions.

Snapshot Time / 10000 clauses (ms) τ τ̂

1 3.72 5170 2.2%
2 3.55 7581 2.2%
3 3.69 7269 2.1%
4 3.79 7266 2.1%

Table 4.2: Approximated costs per clause, and thresholds for the adaptive-model
strategy

In Table 4.2, we show the approximated time costs per added submodel clause, and
the threshold we have computed using the described method for each snapshot. All
snapshots exhibit similar cost factors. While thresholds for Snapshots 2–4 are also
similar, the threshold of Snapshot 1 is lower. Additionally, we show the approxi-
mated cost functions for Snapshot 4 in Figure 4.16.

The results show that the composition costs of the reduced-model strategy are
independent of the subject model. The smaller threshold of Snapshot 1 results from
its smaller full-model computation time. When comparing the thresholds with
the overall number of model clauses from Table 4.1, we see that Snapshots 2–4 also
have similar CNF sizes, but Snapshot 1 is smaller, which could explain the threshold
difference. Therefore, we normalized each τ value by dividing it by the number of
clauses in the corresponding full model. The resulting normalized threshold reflects
the ratio between the number of submodel clauses and the number of clauses in the
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full model. We show this normalized threshold τ̂ in Table 4.2. It is similar for all
snapshots.

As a consequence, we are able to specify a normalized threshold measure with a
uniform threshold value. We define the normalized measure m′(∆′) as the clause
measure mc(∆

′) divided by the number of clauses nf in the full model. Formally,
m′(∆′) = mc(∆)/nf . Such a model-independent threshold is favorable, since we can
potentially transfer it to unknown models without prior measurements or estimates.

Threshold evaluation

Finally, we evaluate the performance gain when using the normalized threshold. To
this end, we determine cumulative solver times for the adaptive-model strategy.
In particular, we sum up all data points from reduced-model that are below the
threshold, and add all data points from full-model starting from the threshold.
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Figure 4.17: Comparison of all three strategies, using normalized threshold

We compare the performance of all three strategies in Figure 4.17, using 2.1 percent
as the smaller one of the both determined threshold values. For Snapshot 1, we
obtain a 10 percent improvement compared to full-model. Moreover, as the
reduced-model strategy is slower than full-model in this case, reasoning with
interfaces is only effective with adaptive-model. The other snapshots only slightly
benefit from using adaptive-model compared to reduced-model.

In summary, we answer the two remaining research questions as follows. Regarding
RQ 2.1, we have found a varying overhead that is roughly linearly dependendent on
the number of clauses in the submodels to be composed. The average penalty per
additional clause is similar across different models. For small enough queries, the
reduced-model strategy is more efficient than full-model despite the overhead.
However, the overhead can become so large that it renders the reduced-model ap-
proach inefficient by an order of magnitude, especially if the decomposition contains
submodels with too many clauses.
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To answer RQ 2.3, we have investigated an absolute and a relative threshold mea-
sure. We have used a linear regression to determine the threshold values. With
normalizing, we are able to obtain a uniform threshold value for all analyzed mod-
els. For Snapshots 2–4, using the threshold with the adaptive-model strategy
shows no significant improvement. By contrast, reasoning with interfaces in Snap-
shot 1, which is the smallest model, is only effective when using the threshold. Thus,
there is no definite answer to this research question. We suppose that the benefit
of the adaptive-model strategy would be greater if our evaluation subjects con-
tained either smaller models or queries with less locality. Furthermore, we suggest
to explore other, possibly more precise techniques to determine threshold measures
and values in future work.

4.4 Threats to validity

In this section, we identify possible threats to the validity of our experiments. We
distinguish between internal validity, which concerns the design of our experiments,
and external validity, which affects the generalizability of our results.

Internal validity

When measuring solver performance in a family-based analysis of the Linux kernel
in Section 4.2, we did not repeat any measurements due to the long duration of
the experiment. Therefore, particular measurements may be distorted by accidental
garbage collection, class loading, or just-in-time compilation. However, we measured
over 120,000 data points. Thus, we still expect a sufficiently precise estimate of the
average query duration.

Furthermore, we analyzed only about 1/6 of all files of the Linux kernel due to time
constraints. Therefore, we might have missed extreme cases regarding reasoning
time or locality. To prevent bias in the results caused by some accidental order, all
measured files were randomly chosen.

The functional correctness of TypeChef is checked by unit tests. We upgraded the
original experimental setup to the latest TypeChef version. Nevertheless, we cannot
guarantee soundness of the recorded analysis results.

In our experiments for comparing the three reasoning strategies in Section 4.3, there
may also be measurement errors due to internal JVM operations such as garbage col-
lection. As a countermeasure, we repeated each solver query several times in different
JVM instances, and replaced outliers with additional measurements. Therefore, we
expect those measurements to be reliable and repeatable.

We performed the measurements for all strategies in an isolated benchmark imple-
mentation to capture the raw computation time. However, such a setup could be
unrealistic, since in a real family-based analysis, reasoning and actual analysis op-
erations are interleaved. For example, the reduced-model strategy could occupy
more JVM heap memory, which in turn causes the garbage collector to be triggered
more often, such that the overall analysis becomes slower.

Our concept or implementation might contain errors, and could therefore accidently
perform better than any correct implementation. However, we proved conceptual
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correctness in Chapter 3. Furthermore, we cross-checked satisfiability results be-
tween all three strategies to ensure functional correctness of the implementation.
We also ensured that the time measurements are fair between different strategies.
In particular, we took care not to include auxiliary operations14 in the measurement
for one strategy that we had not measured for a another strategy.

External validity

In Section 4.2, we gathered data from a single product line. The results might
not apply to other product lines, as the Linux kernel is the largest one available.
Especially the parsing times might be lower for other software systems. However,
this would increase the potential of the approach presented in this work.

Furthermore, we only conducted one type of family-based analyis. Queries that arise
during other analyses (e.g., data-flow analysis) might have different characteristics
with regard to solver time or locality.

To compare the reasoning strategies, we derived semi-random queries from the Linux
analysis data, and issued them against an unrelated model. While these queries are
more realistic than randomly generated formulas, we lose the connection between
feature dependencies in the query, and feature dependencies in the query. There-
fore, an evaluation in which queries and models are related might yield different
results. Therefore, we consider our evaluation as a first step to assess the potential
performance gain of our approach.

Since we used four snapshots of a single model for our evaluation, we have less vari-
ance in the input data compared to using four unrelated models. Thus, this choice
might not be representative, especially regarding the decomposition into submodels
and the sets of local features. As the snapshots have obfuscated feature names, we
cannot further judge the semantic quality of the model. Since we have no access
to other models of similar size, we consider using only a single model in different
versions as a necessary trade-off.

We used only a single SAT solver implementation for our measurements. There-
fore, the results might be different for other solver algorithms and implementations,
especially concerning the composition overhead we have determined.

4.5 Summary

In this chapter, we have evaluated the potential of reasoning with feature model
interfaces in a family-based analysis. To this end, we have conducted a two-step
evaluation.

First, we have analyzed properties of queries in a practical family-based analysis.
We have type checked a subset of the Linux kernel, and recorded all SAT solver
queries. Although variability-aware parsing took most of the processing time on
average, we found that reasoning about presence conditions accounts for up to 60
percent of the actual analysis phase. Thus, we can potentially improve over half of

14e.g., computation of a query CNF
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the analysis time with our approach. Furthermore, queries are local to some degree.
A typical query contains nine distinct features out of over 10,000 available features,
and even queries with over 500 literals only contain up to 27 distinct features.

In the second step, we have compared the performance of reasoning with interfaces
against the conventional approach that uses the full feature model. To this end, we
have used the queries recorded in the first evaluation step as templates to generate
realistic queries for four versions of another feature model, for which we have a de-
composition into submodels, and precomputed interfaces. As a first result, we found
that reasoning with interfaces is not efficient if the decomposition contains submod-
els with too many clauses. Subsequently, we have excluded the problematic models
to simulate a more fine-grained decomposition. We have shown that the interface
approach can improve overall reasoning time by up to 24 percent despite the linear
overhead introduced by the composition of submodels. Moreover, query locality is
important. If a query is not local enough, reasoning with interfaces is inefficient.
To further improve performance, we have investigated a threshold measure to select
between both reasoning approaches, based on the number of submodels relevant to
the query. Although the measure permits a uniform threshold for all model versions,
applying the threshold in a combined reasoning strategy is only beneficial for the
smallest model. By contrast, the other models show no improvement.

In summary, we are able to improve the time of a family-based analysis by up to 14
percent using the approach presented in this thesis. However, we need more realistic
evaluation setups, where we process practical queries during a family-based analysis
run using our approach. Furthermore, it remains an open question how a feature
model has to be decomposed to achieve optimal performance.
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5. Related work

In this chapter, we survey related work. We focus on feature model abstractions, and
techniques to accelerate reasoning about feature models and presence conditions.

Schröter et al. [2016] propose feature model interfaces (FMIs) for compositional rea-
soning with feature models. The authors show that FMIs are sound and complete
for several feature model analyses (e.g., core features), if one is interested in only
interested in the interface features. Since FMIs are typically smaller than their
corresponding concrete models, they can be used to accelerate such analyses. Fur-
thermore, in an evolutionary scenario where a feature model is composed of several
smaller models, FMIs prevent reanalyzing the composed model under certain restric-
tions, if one of the smaller models changes. We have based the approach presented
in this work on FMIs. However, our theory is based on propositional logic rather
than configuration semantics.

Acher et al. [2011] propose a slicing operation for feature models to remove a selection
of features without affecting the relationships between the remaining features. They
use slicing to achieve a seperation of concerns for large feature models by construct-
ing different views [Acher et al., 2012]. The authors specify the slicing operation in
terms of configuration semantics, and additionally as an existential quantification
operation on propositional formulas. In this work, we have proven that both defini-
tions are equivalent. In other words, we can use existential quantification to obtain
abstractions of propositional formulas that are sound and complete for a subset of
atoms. Moreover, Schröter et al. [2016] use feature model slicing to construct FMIs.

Krieter et al. [2016] propose an algorithm for feature model slicing that is based on
logical resolution. In their evaluation, they compare different heuristics for the order
of feature removal to achieve optimal performance.

Liebig et al. [2013] employ multiple techniques to improve the performance of pres-
ence condition reasoning in several family-based analyses, such as type checking and
data-flow analysis. For example, they avoid reasoning with the feature model, and
instead reason only using the presence conditions themselves when possible. They
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mostly use the feature model only to prune false positives from the final analy-
sis results. Their TypeChef analysis tool1 is able to use different feature models
for different analysis phases. In particular, their variability-aware C parser uses a
simplified model, whereas type checking is performed with the full model. In addi-
tion, TypeChef caches satisfiability results to avoid solving the same query multiple
times. The technique we have proposed in this work could be a complementary
optimization.

Liang et al. [2015] show in their experiments that propositional simplification rules
reduce the formulas sizes of practical feature models by several orders of magnitude.
They conclude that for this reason, SAT solving on feature models with thousands
of features is still tractable, as SAT solvers internally perform such simplifications.

Finally, Mendonça et al. [2008] evaluate the use of binary decision diagrams (BDDs)
for reasoning about feature models, as often BDDs are more efficient than other
reasoning techniques. As size and performance of the BDD construction depend on
the chosen variable ordering, they investigate existing heuristics to find such variable
orderings. They show that these heuristics do not produce BDDs of tractable sizes.
As a remedy, they propose new heuristics that exhibit a better performance when
used for feature models.

1https://github.com/ckaestne/TypeChef/tree/v0.3.7
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6. Conclusion and future work

Family-based analysis is a technique to handle the complexity of software product
lines in a sound and complete way. In this thesis, we have presented an approach to
accelerate the inherent feature model reasoning in such analyses by using the notion
of feature model interfaces. In particular, we take advantage of the hierarchical
structure of feature diagrams to produce abstractions of feature models, which can
be selectively refined for individual reasoning tasks. Since these abstractions are
typically smaller the original feature model, they allow for faster reasoning. We
have demonstrated that our approach accelerates family-based analyses by up to 14
percent in our experimental setup.

We have formalized our approach using a propositional semantics for feature dia-
grams. First, we have defined a generic decomposition for propositional formulas.
We have specified three reasoning strategies, which decide propositional entailments
of the form Φ � ϕ, where Φ is some feature model formula with a precomputed de-
composition, and ϕ is some presence condition from a family-based analysis. Instead
of using the original model Φ, two of the strategies compose a smaller abstraction
of Φ using the decomposition, with only elements that are relevant to the query ϕ.
To this end, we have adapted the notion of feature model interfaces to propositional
logic, resulting in the definition of a propositional interface. A propositional inter-
face is an abstraction of a propositional formula that is equivalent to the original
formula in all cases where only the interface atoms are involved.

Under the assumption that feature diagrams present hierarchical refinements of
product-line functionality, and thus the diagram structure corresponds to the imple-
mentation structure of the particular product line, we have specified a decomposition
operation for feature diagrams. Given a selection of subtrees of a feature diagram,
we produce a feature model interface for the diagram by slicing out all features that
are only relevant within a particular subtree. This interface can then be selectively
reconcretized by adding individual submodels from the selection. We have proven
that our decomposition operation is correct, that is, its result can be used by the
reasoning strategies we have defined.
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We have evaluated our approach to assess its potential and the limits of its applica-
bility. To this end, we have first analyzed practical presence conditions in a family-
based analysis of the Linux kernel. We have found that reasoning contributes up
to 60 percent of the analysis time. Furthermore, although queries may contain over
500 literals, they typically involve only nine distinct features. Such query locality
makes our approach more efficient, since it leads to fewer composition operations in
the strategies.

In a second step, we have compared the performance of the three reasoning strategies
using four versions of a feature model from the automotive domain, for which pre-
computed submodels and interfaces are available. We have found that the efficiency
of our approach depends on the overall number of CNF clauses in the submodels
to be composed. Therefore, the granularity of a decomposition influences efficiency,
and consequently decompositions with smaller submodels (with respect to the num-
ber of clauses) should be preferred. Contrariwise, decompositions with too large
submodels even make our approach completely inefficient. With such outlier sub-
models excluded, our approach outperformed conventional reasoning with the full
feature model for all model versions by up to 24 percent. However, reasoning with
the smallest model was only faster when using the adaptive reasoning strategy, which
employs the conventional approach beyond some threshold value of the composition
size.

Future work

This thesis gives rise to several directions of future work. The optimal structure of
feature diagram decompositions, for example with respect to submodel granularity, is
an immediate open research question. To achieve optimal performance, we suppose
that implementation artifacts must correspond to the diagram hierarchy and the
selection of subtrees for the decomposition, as this leads to more local queries. In
this context, it would also be interesting to know how well this correspondence is
for existing product lines, and if we can analyze implementation artifacts to select
an optimal set of submodels.

Furthermore, a particular weakness of our evaluation is the use of previously recorded
queries on an unrelated feature model. To conduct a more realistic evaluation,
we would ideally integrate our approach into a family-based analysis tool such as
TypeChef, and measure its performance during a real analysis run. However, for
such an evaluation setup we need a sound and complete feature diagram of the
product line that reflects domain knowledge. Unfortunately, feature models are often
encoded in build systems such as makefiles or Kconfig files. We need techniques to
reverse engineer a precise and correct feature diagram from such artifacts, which
also retains domain knowledge in its structure. In particular, we are interested in a
comprehensive feature diagram of the Linux kernel.

We have only used a single SAT solver implementation (i.e., Sat4j) to analyze the
potential of our approach. The Sat4j optimization we have performed during our
evaluation (see Section 4.3.2 on page 52) shows that implementation peculiarities
significantly influence the performance of our approach. Therefore, we suggest a
more thorough survey and analysis of SAT solving algorithms with regard to our way
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of solver utilization, in order to select candidates for a detailed evaluation. Particular
techniques could be BDD solvers or, as feature model interfaces can be computed
by existential quantification, solvers for quantified boolean formulas (QBFs) [Büning
and Bubeck, 2009].

Finally, there are also other possibilities to use feature model interfaces for reasoning.
For example, instead of having a reduced model Γ that connects and integrates the
submodels, we could employ strong interfaces of submodels, which are already an
interface of the full model.
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A. Evaluation results

In this chapter, we present detailed evaluation results for Snapshots 1–3 of the
automotive feature model used in Chapter 4.

A.1 Snapshot 1
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Figure A.1: Average solver times against number of selected models, without ex-
cluding submodels (Snapshot 1)
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Figure A.2: Solver times against number of added clauses, using reduced-model,
without excluding submodels (Snapshot 1)
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Figure A.3: Solver times against number of added clauses, using full-model,
without excluding submodels (Snapshot 1)

100 101 102 103 104 105

Clauses

Figure A.4: Distribution of number of clauses in submodels (Snapshot 1)
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Figure A.5: Average solver times against number of selected models, with large
submodels excluded (Snapshot 1)
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Figure A.6: Solver times against added clauses, with large submodels excluded
(Snapshot 1)

http://publikationsserver.tu-braunschweig.de/get/64390



74 A. Evaluation results

A.2 Snapshot 2
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Figure A.7: Average solver times against number of selected models, without ex-
cluding submodels (Snapshot 2)
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Figure A.8: Solver times against number of added clauses, using reduced-model,
without excluding submodels (Snapshot 2)
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Figure A.9: Solver times against number of added clauses, using full-model,
without excluding submodels (Snapshot 2)
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Figure A.10: Distribution of number of clauses in submodels (Snapshot 2)
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Figure A.11: Average solver times against number of selected models, with large
submodels excluded (Snapshot 2)
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Figure A.12: Solver times against added clauses, with large submodels excluded
(Snapshot 2)

A.3 Snapshot 3
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Figure A.13: Average solver times against number of selected models, without ex-
cluding submodels (Snapshot 3)
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Figure A.14: Solver times against number of added clauses, using reduced-model,
without excluding submodels (Snapshot 3)
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Figure A.15: Solver times against number of added clauses, using full-model,
without excluding submodels (Snapshot 3)
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Figure A.16: Distribution of number of clauses in submodels (Snapshot 3)
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Figure A.17: Average solver times against number of selected models, with large
submodels excluded (Snapshot 3)
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Figure A.18: Solver times against added clauses, with large submodels excluded
(Snapshot 3)
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Christian Kästner, Klaus Ostermann, and Sebastian Erdweg. A variability-aware
module system. In Proceedings of the Conference on Object-Oriented Program-
ming, Systems, Languages and Applications (OOPSLA), pages 773–792. ACM,
2012. (cited on Page 1 and 21)

Brian W. Kernighan and Dennis M. Ritchie. The C programming language. Prentice-
Hall, second edition, 1988. (cited on Page 18)

http://publikationsserver.tu-braunschweig.de/get/64390



Bibliography 81

Jonathan Koscielny, Sönke Holthusen, Ina Schaefer, Sandro Schulze, Lorenzo Bet-
tini, and Ferruccio Damiani. DeltaJ 1.5: Delta-oriented programming for Java
1.5. In Proceedings of the International Conference on Principles and Practices
of Programming on the Java Platform: Virtual Machines, Languages and Tools
(PPPJ), pages 63–74. ACM, 2014. (cited on Page 19)
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