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Abstract

Software product line engineering has proven to be a successful develop approach for
variable software in different industrial applications, especially in the automotive area.
The variability of a product line is at the center of software product lines engineer-
ing. By modeling variability on a high abstraction level, software product lines enable
a wide variety of a product. Nevertheless, modeling variability is not a trivial task.
It gets more complex with a growing number of variants and, hence, becomes more
error-prone. For instance, modeling errors may result in product configurations being
not possible anymore. The detection of such defects is well researched. A user-friendly
explanation of the defect causes - the subject of the present work - is still a challenge
and is becoming increasingly important.
In the scope of this thesis, we elaborate a generic algorithm which is able to generate
explanations for any kind of modeling defects based on predicate logic. A resulting
explanation is generated in a user-friendly and structural manner and displayed within
a tool tip during the modeling phase.
Additionally, the basic algorithm is improved to find the shortest explanation und to
compute and visualize relevant parts of the explanation. Furthermore, we detect hid-
den dependencies among interrelated product lines and apply the generic explanation
algorithm mentioned above to explain such dependencies.
In a quantitative and qualitative analysis, we evaluate the explanation algorithm and
resulting explanations concerning their correctness, understandability, performance im-
pact and length using existing examples. For hidden dependencies, we additionally
inspect situations in which such dependencies occur most often. By analyzing respec-
tive explanations, we can furthermore determine the number of involved product lines
in a hidden dependency.
To summarize the results, we demonstrate the correctness and understandability of ex-
planations and show the scalability of the explanation algorithm for different sizes of
product lines. Generating a first explanation approximately doubles the computational
time of the former model analysis while the improved algorithm (which searches for
a shortest explanation) approximately triples the computational time. It is notable
that the first explanation is most often already the shortest one, otherwise it is usually
shorter by 25% - 50%. Explanation length slightly increases compared to the size of a
product line. Finally, we observe that up to five interrelated feature models may lead
to a hidden dependency based on the evaluated product lines.
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Zusammenfassung

Software-Produktlinien gelten als anerkanntes Entwicklungskonzept für variable Soft-
ware in vielen industriellen Anwendungsbereichen, insbesondere im Automobilbereich.
Im Zentrum von Software-Produktlinien steht die Variabilität einer Produktlinie, die
eine Variantenvielfalt des Produktes durch die Modellierung auf einer hohen Abstrak-
tionsebene ermöglicht. Jedoch ist die Modellierung von Variabilität eine nicht triviale
Aufgabe, die mit der wachsenden Anzahl der Varianten komplexer und dadurch fehler-
anfälliger wird. Modellierungsfehler können beispielsweise dazu führen, dass Produk-
tkonfigurationen nicht mehr möglich sind. Die Detektion von Modellierungsfehlern einer
Softwareproduktlinie ist ein weit verbreitetes Forschungsfeld. Die nutzerfreundliche
Erklärung von Fehlerursachen - das Thema der vorliegenden Arbeit - stellt dabei weit-
erhin eine Herausforderung dar und wird immer wichtiger.
Im Rahmen dieser Arbeit wird ein generischer Algorithmus ausgearbeitet, um Model-
lierungsfehler aller Arten auf Basis der Prädikatenlogik zu erklären. Die resultierende
Erklärung wird in der natürlichen Sprache nutzerfreundlich und strukturiert generiert
und als Tooltip während der Modellierung angezeigt. Der Basisalgorithmus wird zusät-
zlich erweitert, um kürzeste Erklärungen zu finden und die Relevanz der einzelnen Teile
einer Erklärung zu berechnen und visuell hervorzuheben.
Weiterhin detektieren wir versteckte Abhängigkeiten in zusammenhängenden Produk-
tlinien und verwenden den oben erwähnten generischen Algorithmus zur Erklärung
dieser Abhängigkeiten. In einer qualitativen und quantitativen Analyse evaluieren wir
den Algorithmus und resultierende Erklärungen anhand der vorhandenen Beispiele im
Hinblick auf ihre Korrektheit, Verständlichkeit, Performance und Länge.
Für versteckte Abhängigkeiten untersuchen wir zusätzlich, in welchen typischen Sit-
uationen diese Abhängigkeiten am häufigsten entstehen. Durch die Inspektion von
Erklärungen können wir darüber hinaus feststellen, wie viele zusammenhängende Pro-
duktlinien in einer versteckten Abhängigkeit involviert sind.
Zusammenfassend stellen wir fest, dass Erklärungen korrekt und verständlich sind
und die Generierung von Erklärungen für unterschiedlich große Produktlinien skaliert.
Die Generierung der Erklärung mit dem Basisalgorithmus verdoppelt dabei ungefähr
die Rechenzeit der ursprünglichen Modellanalyse, während der erweiterte Algorithmus
(welcher nach der kürzesten Erklärung sucht) die Rechenzeit in etwa verdreifacht. Auf-
fällig ist, dass die erste Erklärung meistens die Kürzeste ist, andernfalls ist die kürzeste
Erklärung üblicherweise um 25% - 50% kleiner. Die Erklärungslänge wächst nur ger-
ingfügig im Vergleich zu der Größe einer Produktlinie. Zum Schluss zeigen wir, dass
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anhand der analysierten Produktlinien bis zu fünf zusammenhängende Produktlinien
zu einer versteckten Abhängigkeit führen können.
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1. Introduction

With a growing interest in variant diversity for industrial products, variability has be-
come a key characteristic to many software systems. It enables a system to adapt to
different environments or customer requirements and, hence, allowing fully customized
product variants. To manage variability, the paradigm of software product lines (SPL)
has been introduced [16]. SPLs make use of a common base platform for all product
variants. Reusing parts of the base platform enables a reduced time-to-market and
improves the cost-efficient distribution of individualized products compared to classic
development methods.

1.1 Motivation

A wide-spread approach to model variability in SPLs are feature models [10]. In a
feature model, features represent permanent or variable product characteristics. Con-
straints express relationships among features such as the selection of one feature may
require or exclude the selection of another feature. Nevertheless, feature models might
become a subject to uncontrolled software evolution due to constantly changing require-
ments and dependencies between features [49]. This can result in erroneous (defect)
feature models. V.d. Maßen et al. differ between three types of such defects namely
redundancy, anomaly and inconsistency [67]. A feature model contains redundancy, if
semantic information is modeled in multiple ways. Anomalies appear, if a feature model
represents an incorrectly modeled domain, e.g., a permanent feature excludes another
feature, thus making it impossible to select. Finally, inconsistencies appear in a feature
model, if semantic information is modeled contradictory.

In order to avoid the described defects, an adequate tool support is needed to assist
the user during the development and maintenance of a feature model. In literature,
this process is called automated analysis of feature models and represents one of the
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2 1. Introduction

current challenges in SPLs [9, 10]. An important part of automated analysis operations
are explanations, which are usually related to defects in the feature model and make
the occurrence of a certain defect comprehensible for the user [10]. Explanations are
most commonly expressed in terms of features and relationships among them. In order
to help the modeler find the source of a defect, explanations should be as detailed and
understandable as possible [9].

Although several tools for feature modeling manage to detect defects, e.g., Fea-
tureIDE [63] or pure::variants1, the generation of explanations suffers from several
limitations: existing explanation algorithms are either not open-source [40], roughly
described in literature [7] or are disadvantageous in terms of explanation length, scala-
bility, understandability and evaluation [10, 25, 55, 66]. Furthermore, explanations for
redundant cross-tree constraints are often completely missing [7, 40, 55].

An additional use case for explanations emerges from explaining implicit constraints
in feature models. An implicit constraint is a hidden dependency between features,
which occurs in interrelated feature models. Such feature models are connected by
cross-tree constraints, while every feature model might represent a subset of the large
model or depict a different view on the SPL, e.g., mechanical, electrical and software
components of a product. With growing feature models consisting of thousands of
features and constraints, splitting large models into a set of interrelated submodels
reduces the complexity of an SPL. To assure the quality of interrelated feature models,
the automated detection and explanation of hidden dependencies becomes even more
important.

1.2 Goals

With the limitations concerning the explanation of defects and hidden dependencies in
feature models mentioned above in mind, we aim at achieving two overall research
goals (RG):

RG1 Developing a generic algorithm, which provides explanations for redundant
cross-tree constraints within a feature model. Explanations may be also gener-
ated for further defects. Explanations must be informative with respect to size
and completeness. A tool tip containing an explanation for a selected defect
should be provided.

RG2 Explain implicit constraints in interrelated feature models by reusing the ex-
planation approach from RG1.

The thesis must include a critical assessment of the developed methods. As proof of
concept, the presented feature models by Feldmann et al. along with several test feature
models should be used to assess the applicability of both methods [21] .

1https://www.pure-systems.com/
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1.3 Contribution

Realizing RG1 includes the following contributions:

RG1.1 Developing a generic explanation algorithm.
We develop a generic algorithm, which is able to explain all defects in a feature
model.

RG1.2 Providing an open-source implementation.
We provide an open-source implementation of the explaining algorithm within
FeatureIDE. The implementation is publicly available on GitHub.

RG1.3 Refine the explanation algorithm to increase the quality of explanations.
We aim to find shortest explanations, express explanations in a user-friendly
manner and emphasize most relevant parts leading to a defect.

RG1.4 Evaluating the scalability of the generic algorithm.
We show the scalability of the explanation algorithm by applying it on
industrial-sized feature models.

Realizing RG2 leads to the following contributions:

RG2.1 Detecting implicit constraints for a feature model.
We develop an approach, which detects and presents implicit constraints for a
subtree of a feature model.

RG2.2 Explaining implicit constraints.
Using the explanation approach from RG1, we compose and visualize an ex-
planation for implicit constraints in order to understand hidden dependencies.

RG2.3 Providing an open-source implementation.
We provide an open-source implementation of the explaining algorithm within
FeatureIDE. The implementation is publicly available on GitHub.

To realize both research goals, the following steps are performed iteratively for RG1
and RG2:

1. Literature research:
Collect knowledge in the context of automated analysis, detection and explanation
of defects.

2. Concept development:
In the first phase, a generic explanation algorithm will be worked out in order to
find causes for redundant cross-tree constraints and provide respective explana-
tions. The algorithm will be applicable to explain further defects. In the second
phase, a conceptual framework will be developed to detect and explain implicit
constraints in interrelated feature models.

http://publikationsserver.tu-braunschweig.de/get/64218



4 1. Introduction

3. Prototypical implementation:
The implementation of an explanation algorithm is supported by using existing
tools, i.e., the Eclipse Modeling Framework and FeatureIDE [63]. FeatureIDE is
an Eclipse-based IDE and supports single development steps of SPL, e.g., domain
analysis and domain implementation. In the first phase, FeatureIDE will be ex-
tended to display explanations of defects to the user designing feature models.
In the second phase, FeatureIDE will be extended with the functionality to present
and explain hidden dependencies in a feature model.

4. Conducting a case study:
To explore the applicability of the developed explanation approach, multiple test
models and interrelated feature models from Feldmann et al. will be used [21]. If
redundant cross-tree constraints or implicit constraints are missing, the feature
models will be artificially extended.

1.4 Structure

The remainder of this thesis is structured as follows.

In Chapter 2, we present relevant background information on SPLs in general. This
includes feature models, their mapping to propositional formulas and an overview about
interrelated feature models. Next, we describe common defects in feature models using
suitable examples. The section ends with an overview about automated analysis of
feature models and the state-of-the-art of explanations.
Chapter 3 deals with the theoretical background of explanations. We introduce the
basics of an explanation algorithm, which meets the specified requirements. Next, we
discuss the adaption of the algorithm for defects and hidden dependencies in a feature
model. The chapter ends with improvements of the algorithm.
Chapter 4 covers the workflow and architecture of the implementation. Additionally,
we provide information about the availability of the source code.
Chapter 5 presents an evaluation of the generic explanation approach, divided into
a quantitative and a quantitative analysis of the explanation algorithm and resulting
explanations. In this chapter, we present and discuss the results of the evaluation.
In Chapter 6, we give an overview about related work.
Chapter 7 deals with a brief conclusion on this thesis and summarized findings.
Eventually, we present future work in Chapter 8.
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2. Background

The subject of this thesis is the generation of explanations for defects which occur in
a feature model. Therefore, we provide relevant background information in this chap-
ter. In Section 2.1, we give an overview about fundamental aspects of SPLs including
feature models and their mapping to propositional formulas. In Section 2.2, we explain
different kinds of defects in a feature model and give small examples for every defect. In
Section 2.3, we refer to the automated analysis of feature models and give an overview
about the detect of defects in a feature model and their explanation.

2.1 Software Product Lines

Software product line engineering has established itself as a successful approach for
reusability and expandability of software. The idea of software product line engineering
was inspired by the individualized mass production back in the 70’s, which enabled a
cost-efficient and faster production due to common platforms [52]. Such platforms rep-
resented commonalities between all product variants, while further development added
distinguishing features to every product variant. This development paradigm was suc-
cessfully adapted by the automotive industry, e.g., a common platform for different
vehicles comprised the chassis and components of a car body. A recent example covers
the Volkswagen Group MQB platform (Modularer Querbaukasten in German). The
MQB platform represents a construction system for automobiles with standardized and
transverse front-engines 1. Key advantages of a common platform are reduced produc-
tion costs, a rapid time-to-market and a wide variety of products. In the automotive
industry, a product line represented a series of vehicles, e.g., a VW Golf VII and VW
Golf Sportsvan, which both are based on the MQB platform.

Software Systems get increasingly more complex nowadays, which is why software en-
gineers applied the idea of product lines to software development. This has replaced a

1http://www.volkswagenag.com/content/vwcorp/info center/en/themes/2012/02/MQB.html
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6 2. Background

conventional software development focusing on producing software for single customers
or a certain purpose. The main idea of SPLs enables software manufacturers to tailor
products according to the needs of customers while reusing common and variable parts
for generating a software product [4]. The Institute of Software Engineering at the
Carnegie Mellon University provides a common definition of SPLs [16]:

”A software product line (SPL) is a set of software-intensive systems that share a com-
mon, managed set of features satisfying the specific needs of a particular market segment
or mission and that are developed from a common set of core assets in a prescribed way.”

The definition covers software-intensive systems, i.e., hardware systems whose software
component mainly drives the characteristics of a system encompassing similar, yet dis-
tinguishable software products based on features. A feature represents a characteristic
of a software system, which can be adapted to changing customer needs and environ-
ments and which is visible to customers [4].
Figure 2.1 illustrates an SPL with three exemplary product variants. A common, man-
aged set of features involves left button, right button, scroll wheel, ball, scanner, USB,
bluetooth. The first product comprises a left and right button, an USB connection and
a ball, which is used to register mouse movement. Based on the first product, a second
product is enhanced with a scroll wheel between the buttons and a scanner instead of a
ball to process mouse movement. A third product also uses a scanner and a bluetooth
connection instead of USB. Core assets are available in every product configuration and
provide basic functionality, e.g., the left button and the right button. An example for
the reusability of variable parts in an SPL is the scroll wheel feature. It extends the
SPL by an optional functionality and is used in the second and third product. Hence,
all products are similar yet different and based on a common, managed set of features.

Product 1 Product 2 Product 3

Figure 2.1: Mouse example SPL

During the development of an SPL, diversity and commonality of the artifacts represent
a key factor. Differences are realized by so called variation points, which represent
configuration options that are specified by a user. Hence, products of an SPL differ with
respect to decisions made by a user at these points. In order to define commonalities
and differences of a product line, software product line development is divided into two
subsequent processes: Domain Engineering and Application Engineering [53].
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• The domain engineering process focuses on modeling an SPL in order to fulfill
requirements of multiple customers in a domain. It is performed once for an SPL
and covers the definition of strategic goals, requirements, architecture modeling
and developing and testing reusable code. A core task of domain engineering is
the creation of a feature model, which comprises characteristics of a product line,
dependencies and configuration options (cf. Section 2.1.1)

• The application engineering process is based on the domain engineering. It com-
prises the definition of concrete applications, i.e., product variants, which are tai-
lored to requirements of a single customer. The derivation of concrete instances
includes a refinement of requirements, architecture and code.

Czarnecki and Eisenecker distinguish between problem space and solution space in SPL
engineering [19]. While the problem space represents domain-specific artifacts, e.g.,
requirements, the solution space comprises implementation-oriented artifacts. In order
to achieve a correct variant handling, artifacts of both spaces and engineering processes
are linked. For instance, changes in a domain artifact lead to adaptions in respective
application artifacts. This essentially contributes to a successive evolution of an SPL.

In the following, we explain feature models as a common way of modeling vari-
ability in an SPL during domain engineering.

2.1.1 Feature Models

The variability of software systems is a key factor of SPLs and encompasses features
and their relationships. It allows to distinguish between product variants of a software
system and to maintain variants in a centralized manner. Additionally, it supports
changing requirements with respect to the environment, customer requests and legal
issues.

During the domain engineering process, variability is implemented in different
artifacts. Kang et al. introduce a feature model, which is commonly used to express
all valid combinations of features, i.e., product variants of an SPL [35]. A feature
model is a hierarchically arranged set of features represented by a tree structure.
Subordinate feature are entitled as child features. Respectively, superordinate features
are called parents features. The element at the top of the tree is the root feature, which
represents the product line. A graphical representation of a feature model is called a
feature diagram. In Figure 2.2, we illustrate a feature model for the mouse example
SPL.

In a feature model, features are categorized as:

• Mandatory
A feature, which always appears together with its parent feature in a product
configuration (left button, right button, sensor, connection).
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8 2. Background

• Optional
A feature, which may appear in a product configuration. Hence, it is not obliga-
tory to appear in a product configuration if its parent feature does (scroll whell).

• Alternative
Exactly one child feature must be present in every product configuration. Fea-
ture groups in an alternative relationship exclude each other (a sensor can either
consist of a ball or a scanner, but not both).

• Or
At least one child feature must be present in every product configuration. Feature
groups in an or relationship can be realized simultaneously (a mouse connection
uses USB or Bluetooth or both).

Feature models might also comprise core features, which are present in every config-
uration. Consequently, core features represent a commonality of an SPL. Every core
feature is mandatory and so are all of its predecessors in the feature tree topology (left
button, right button, sensor, connection).

RightButton

USBScanner BluetoothBall

ScrollWheel ConnectionSensor

ComputerMouse

LeftButton

ScrollWheel  ⇒  Sensor

¬ (Bluetooth  ∧  Ball)

Bluetooth  ∨  Scanner  ∧  ¬ Ball

Legend:

Mandatory

Optional

Or

Alternative

Figure 2.2: Feature model for a computer mouse example SPL.

Besides the feature tree topology, a feature model comprises cross-tree constraints.
Cross-tree constraints define relationships between features that are not related by the
tree structure. Propositional formulas are commonly used to express such constraints.
For the mouse feature model, three exemplary cross-tree constraints are presented below
the feature model. According to Batory [7], tools often approve only simple constraints
representing either inclusions or exclusions between features. Such constraints are illus-
trated by the first and second cross-tree constraint in Figure 2.2. Nevertheless, complex
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2.1. Software Product Lines 9

constraints exist, which can represent any combination of features leading to an arbi-
trary propositional formula. The third cross-tree constraint presents an example for a
complex constraint.

The variability modeling of a software system is not restricted to one single feature
model. Several feature models can be used in order to decrease the complexity of an
SPL for individual developers. In the next subchapter, we provide an overview about
interrelated feature models for SPLs.

2.1.2 Interrelated Feature Models

A single feature model representing a large-scale system might become extremely com-
plex, if the number of features and constraints reaches the hundreds or thousands. The
maintenance of such feature models is a tedious and error-prone task, which gets even
more difficult due to involved developers from different domains. To tackle this prob-
lem, large-scale systems often use multiple dedicated, interrelated feature models for
different purposes, scopes and different levels of granularity. Regarding the purpose of
a feature model, modeling spaces of feature models are distinguishable into problem
space, solution space and configuration space. Problem space refers to system speci-
fications while solution space refers to a concrete product variant. Feature models of
the configuration space represent configuration options. A scope of a feature model is a
complete SPL (a monolithic feature model) or a part of it. Furthermore, feature models
can be defined on different levels of granularity, e.g., features on high-level or low-level
system descriptions [41].
Multi software product line (MSPL) approaches have been proposed in order to support
the modularization of feature models [31]. MSPLs are an emerging research topic and
represent a special kind of SPLs. They are used to manage variability for large-scale
systems and can represent interrelated feature models. Rosenmüller and Siegmund were
the first to define MSPL with composition models integrating multiple SPLs and their
dependencies [56].

In Figure 2.3, we demonstrate two interrelated feature models, which exemplary model
hardware and software variability of a garage door. The garage door hardware comprises
a door, an optional light barrier and lock sensor. Furthermore, additional functionali-
ties include a lock LED signaling if the door is locked and an actuation motor for an
automatic garage door. The garage door software consists of a software safety module,
which interrupts an automating closing if a person crosses its path and a remote key
recognition. A dependency between the two models origins from the actuation motor
requiring the software safety module, which on its part requires a light barrier.

According to Lettner et al. [41], a need exists to manage dependencies between different
feature models. The authors argue that it is often unclear how features from different
feature models are related to each other, e.g., which feature from the configuration
space is linked to its respective configuration option or which high-level feature refers to
a feature implementing the low-level functionality. Additionally, cross-tree constraints
between interrelated feature models can lead to implicit constraints. Implicit constraints
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10 2. Background

Figure 2.3: Example of interrelated feature models for a garage door SPL.

represent hidden dependencies caused by interrelated feature models. Such constraints
represent a major challenge for maintenance and development of interrelated feature
models. In Figure 2.3, a hidden dependency occurs in the feature model representing
the garage door hardware:

Actuation Motor ⇒ Light Barrier

The implicit constraint results from the two cross-tree constraints Actuation Motor ⇒
Safety Module and Safety Module ⇒ Light Barrier and reveals a transitive relationship
between Actuation Motor and Light Barrier.

While the visualization of feature models helps developers to built and maintain an
SPL, a feature model itself can be expressed in terms of a propositional formula for
analysis purposes, which we explain in the next subsection.

2.1.3 Propositional Formulas

The validation of a feature model encompasses a configuration of products that satisfy
the constraints of the model. Validation is a difficult task due to the size of a fea-
ture model and dependencies, which increase its complexity. To tackle this problem,
Mannion et al. were the first to propose the representation of a feature model using
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2.2. Defects in Feature Models 11

propositional formulas [43]. In detail, a propositional formula is a logical expression
that consists of a set boolean variables and logical operators ∧,∨,¬,⇔,⇒. Boolean
variables are assigned a truth value, which is either true or false. A minimal example
of a propositional formula is of the form: a ∧ b⇒ c.

The representation of feature models by propositional formulas is as follows. Every
feature is considered a variable, usually with the same name, and assigned true if
the corresponding feature is selected. Logical operators represent relations between
features. In Table 2.1, we present a mapping of the computer mouse feature model
to propositional logic (cf. Figure 2.2). The conjunction of the resulting propositional
formulas represents a feature model.

Relationship Propositional Formula

Mandatory Mouse⇔ LeftButton ∧RightButton ∧ Sensor ∧ Connection
Optional ScrollWheel ⇒Mouse
Or Connection⇔ USB ∨Bluetooth
Alternative (Ball ⇔ (¬Scanner ∧ Sensor)) ∧ (Scanner ⇔ (¬Ball ∧ Sensor))
implies ScrollWheel ⇒ Sensor
Excludes ¬(Ball ∧ Scanner)

Table 2.1: Mapping feature models to propositional formulas.

A valid product configuration requires the complete propositional formula to be true.
A conjunctive normal form (CNF) is commonly used as a notation of a propositional
formula. It consists of a set of conjunct clauses. A clause consist of disjunct literals. A
literal is a variable or its negation.

Besides the validation of a feature model, the representation of a feature model with
a propositional formula enables different analyses purposes: retrieve statistics on fea-
ture models, ensure a correct implementation and serve as base for the explanation of
defects [7, 39].

2.2 Defects in Feature Models

Requirements allocation during domain and application engineering leads to a great
amount of requirements and dependencies between features. An approach to deal with
this complexity are feature models (cf. Section 2.1.1). Nevertheless, a feature model
might be subject to inconsistency, anomaly and redundancy caused by cross-tree con-
straints.

Von der Maßen and Lichter classify defects into three major groups [67]:

• Inconsistency: If contradictions between modeled relationships appear, a feature
model is inconsistent. Inconsistencies are regarded as a severe issue, since they
lead to inconsistent product configurations. Von der Maßen and Lichter identified
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inconsistencies at the domain level and at product configuration level. Inconsis-
tency at domain level comprises contradictions within a feature model, e.g., a
mutual exclusion between two core features. Inconsistency at product configura-
tion level results from conflicting or incomplete product configurations, e.g., core
features have not been selected for a product configuration.

• Anomaly: If at least one potential configuration is not possible to build although
it should be, the feature model contains an anomaly. Anomalies are regarded as a
medium issue. An example for an anomaly involves a core feature, which implies
an optional feature. This results in the optional feature become a core feature as
well.

• Redundancy: If at least one relationship is modeled in multiple ways, a feature
model contains redundancy. Redundancy decreases maintainability, since changes
must be applied to all redundant occurrences. However, redundancy can also be
used to increase readability and understandability of a feature model, therefore
it has not always a negative impact and is regarded as a light issue by the au-
thors. An example for redundancy can be illustrated by an implication of a core
feature by an optional feature. Since the core feature already appears in every
configuration, the implication is unnecessary.

In the following subsections, we discuss defects in a feature model with respect to
inconsistency, anomaly and redundancy. Additionally, we introduce implicit constraints
as another form of anomaly in interrelated feature models.

2.2.1 Void Feature Models

A void feature model is an inconsistency as no product can be derived from the SPL.
Figure 2.4 depicts a simple example of a void feature model. Constraint ¬(B∧C) leads
to features B and C being mutual exclusive and adds a contradiction to the feature
model, since both features are core features. A void feature model is a severe issue,
because it is not possible to derive any product variant of the SPL.

Figure 2.4: Example of a void feature model.
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2.2.2 Dead Features

Regarding the defect categorization of von der Maßen and Lichter, a dead feature rep-
resents an anomaly in a feature model [67]. A feature is dead, if it does not appear
in any valid configuration of an SPL. Figure 2.5 illustrates common examples for dead
features. In the first case, feature D is dead, because it is alternative to feature E, which
is implied by a core feature B. Therefore, feature B and E will appear in every product
configuration while D cannot appear in any product variant. In the second case, feature
B and C are mutual exclusive to each other, while feature B is a core feature. Since
feature B is a core feature, feature C cannot appear in any product of the SPL.

Figure 2.5: Two examples of dead features.

2.2.3 False-Optional Features

Same as dead features, false-optional features also represent anomalies in a feature
model. A feature is false-optional, if it is available with its parent feature in all products
of the SPL although it is modeled as optional. Figure 2.6 illustrates common examples
for false-optional features. In the first case, the feature B is false-optional, because
it is implied by core feature C. In the second case, core feature B implies feature D.
Since an alternative relationship allows exactly one feature selection, feature E becomes
dead and feature D must be selected. This results in the parent feature C becoming
false-optional.

2.2.4 Redundant Constraints

Generally speaking, redundancy occurs if the removal of information does not change
the semantic of a feature model, e.g., the removal of a redundant cross-tree constraint
does not affect the validity of configurations. Redundancy in a feature model origins
from different sources. First, redundancy occurs if a feature appears multiple times in
a feature model with different parent features. Since FeatureIDE forbids the creation
of identical-named features, we ignore this kind of redundancy at this point. Second,
redundancy occurs due to combinations of domain relationships within a feature tree
and dependencies, which arise through cross-tree constraints [67]. Von der Maßen and
Lichter identified five such cases of redundant cross-tree constraints:
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Figure 2.6: Two examples of false-optional features.

1. Mandatory and Implication:
Figure 2.7 presents two redundant cross-tree constraints concerning a mandatory
feature and its implication. In the first case, core feature C is implied by feature
B. This relationships is superfluous, since C is a core feature and therefore appears
in every configuration regardless from further implications. In the second case,
a mandatory child feature D is implied by its mandatory parent feature C. This
implication is also superfluous, since both features are relative-mandatory to each
other and will always appear together in a configuration.

Figure 2.7: Redundant cross-tree constraints: mandatory and implication

2. Alternative and Exclusion:
Figure 2.8 illustrates a redundant cross-tree-constraint concerning an alternative
feature-group B, C and its mutual exclusion. This is superfluous, because an
alternative relationship already includes a mutual exclusion.
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Figure 2.8: Redundant cross-tree constraints: alternative and exclusion

3. Multiple Implications:
Figure 2.9 presents a case of redundancy due to multiple implications. Constraint
¬(B ⇒ E) models an implication of feature E by feature B. Since the mandatory
feature C is a child feature of B, its implication of feature E is superfluous and
therefore the constraint (C ⇒ E) becomes redundant.

Figure 2.9: Redundant cross-tree constraints: multiple implications

4. Multiple Exclusions:
Figure 2.10 presents a case of redundancy due to multiple exclusions. Constraint
¬(B∧E) models a mutual exclusion between features B and E. Since the manda-
tory feature C is a child feature of B, its mutually exclusiveness to feature E is
superfluous and therefore the constraint ¬(C ∧ E) becomes redundant.

5. Transitive Implications:
Figure 2.11 illustrates a case of a transitive redundancy. Since feature B is is a
mandatory child of feature A and feature C is a mandatory child of feature B, a
transitive relationship between feature A and feature C is created. This leads to
a superfluous implication of feature C by feature A.
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Figure 2.10: Redundant cross-tree constraints: multiple exclusions

Figure 2.11: Redundant cross-tree constraints: transitive implications

Redundant cross-tree constraints also comprise trivial cases of redundancy by mod-
eling domain relationships and dependencies multiple times with the identical logical
expression.

2.2.5 Implicit Constraints

A rarely considered defect is an implicit constraint, which we classify as an anomaly.
An implicit constraint represents a hidden dependency caused by interrelated feature
models (cf. Section 2.1.2). Implicit constraints may lead to erroneous configurations
and have a negative effect on the maintenance of interrelated feature models.

Figure 2.12 presents two interrelated feature models FM1 and FM2. Feature C from
FM1 implies feature G from the FM2. Feature G, on its part, implies feature D from
FM1. Both cross-tree constraints result in a transitiv, hidden implication between
Feature C and D in FM1:

C ⇒ D
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Figure 2.13 presents another use case of an implicit constraint in FM1. Feature C from
FM1 implies feature G from FM2. Feature D from FM1 implies feature H from FM2.
An alternative relationship between feature G and H in FM2 results in a hidden mutual
exclusion between feature C and D in FM1.

¬(C ∧D)

Figure 2.12: Hidden implication Figure 2.13: Hidden exclusion

To assure the quality of interrelated models, the automated detection of hidden depen-
dencies has become an important field of research [39, 41].

2.3 Automated Analysis of Feature Models

The automated analysis of feature models takes a feature model as an input, performs
an analysis operation and returns its result. A usual purpose of an analysis operation
is the detection of defects. In Section 2.2, we presented different kinds of defects in a
feature model. Next, we explain how these defects are detected in a feature model.

2.3.1 Detection of Defects

First, we consider the detection of defects in single feature models, i.e., void feature
models, dead and false-optional features as well as redundant cross-tree constraint.
Afterwards, we provide information on how to reveal implicit constraints in interrelated
feature models.

Defects in Single Feature Models

Propositional formulas are a useful representation of feature models in order to perform
automated analyses (cf. Section 2.1.3). Every propositional formula can be transformed
into a CNF, which is used by most of satisfiability SAT solvers [10]. A SAT solver
determines for a given formula whether it is satisfiable, i.e., a truth value assignment
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exists that makes the formula true. If such a value assignment exists, at least one
product configuration can be derived from the feature model proving that the feature
model is not void. In Table 2.2, we define how defects can be detected with a SAT
solver.
In order to detect a dead feature, the SAT solver determines whether a satisfying value
assignment exists, which includes a certain feature to be selected. If not, the respective
feature is considered to be dead. The detection of a false-optional feature involves the
selection of its parent feature. If this leads to a selection of the feature itself and the SAT
solver cannot determine a satisfying truth value assignment, the feature is considered to
be false-optional. In order to prove that a constraint is redundant, two feature models
must be equivalent to each other, while the one feature model contains the redundant
cross-tree constraint and the other does not.

void(FM) := ¬SAT (FM)

dead(f) := ¬SAT (FM ∧ f)

falseOpt(fopt) := TAUT (FM ∧ p(fopt)⇒ fopt)

redundant(c) := TAUT (FM ′ ⇔ FM ′ ∧ c)

with TAUT (x) := ¬SAT (¬x)

Table 2.2: Defect detection with a SAT solver. FM = feature model, f = feature, fopt =
optional feature, p = parent of feature fopt, c = cross-tree constraint, FM = FM ′ ∧ c,
and x = propositional formula [37].

Although SAT solving is NP-complete [17], algorithms using efficient heuristics lead
to an tremendously improved performance [45]. Within FeatureIDE, the detection of
defects defined in Table 2.2 is performed using a SAT solver.

It is also possible to use other solving strategies not relying on CNF such as the binary
decision diagram (BDD) solver. A BDD solver transforms the propositional formula
of a feature model into a binary decision diagram. One the one hand, a BDD allows
to determine if the formula is satisfiable. On the other hand, the paths of a BDD
represent all product configurations thus revealing the number of possible variants.
Finding a variable ordering reducing the size of a BDD is known to be NP-complete.
Benavides et al. present an overview about studies proposing the usage of different
off-the-shelf solvers like SAT or BDD for feature model analyses [10]. Additionally,
Benavides et al. introduce a combination of solvers depending on the kind of analysis
and particular advantages of the different solvers [11, 12].

Implicit Constraints

The automated analysis of feature models also comprises the classification of edits be-
tween two feature models [62]. An edit can be a specialization of a feature model, i.e.,
feature model containing a smaller amount of features compared to the original model.
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When deriving specialized models, the elimination of features must not change depen-
dencies between the remaining features. A state-of-the-art approach to remove features
while maintaining dependencies between other features is feature model slicing [3, 62].
Feature model slicing can be applied for different scenarios, i.e., feature model evolu-
tion, removing abstract features and for the decomposition of feature models [2, 64].
Krieter et al. present an efficient algorithm for feature model slicing in FeatureIDE [39].
Inputs to the algorithm comprise a feature model in CNF and a set of features. The fea-
ture model parameter represents a complete feature model before the slicing operation.
After performing the feature model slicing, the algorithm returns a sliced feature model
in CNF without the specified set of features while maintaining dependencies between
features in the sliced model. The core of the slicing algorithm is logical resolution. The
main idea of logical resolution involves the construction of a new clause, which repre-
sents a relationship between features of the sliced feature model. The authors refer to
this clause as resolvent, represented by a new cross-tree constraint of the sliced feature
model. The construction of a resolvent requires two clauses such that the first clause
contains the literal to remove in its positive form and the second clause contains the
literal to remove in its negated form. The authors derive the resolvent by combining
the two clauses and removing the respective literal. The resolvent, on its part, repre-
sents a transitive relationship between the two clauses. We consider the resolvent as an
implicit constraint.

In 2010, a literature review revealed up to 30 analysis operations using up to 10 different
solvers [10]. Nowadays, the number of analysis operations increased to 40 and is still
an ongoing research in the SPL community [65].

2.3.2 Explanation of Defects

Generating explanations for defects in feature models is one of the several analysis
operations. Usually, an explanation informs a user about features and/or relationships
which lead to a defect [10].

Batory introduced one of the first explanation approaches based on a logic truth main-
tenance system (LTMS), a boolean constraint propagation-based approach, which is
independent from any solver [7]. An LTMS derives assumptions about variable truth
values in a propositional formula and maintains the reason for an inference. Based on all
stored reasons, the generation of an explanation takes place (cf. Section 3.2.1). Batory
implemented a tool called guidsl, which supports the development of SPLs including the
generation of explanations based on an LTMS. For the dead feature C in Figure 2.14,
guidsl generates the following explanation:

A has a contradiction
C because set by user
not B because (B) implies (not C)
not A because (A iff B)
not A because it is root of grammar
But A
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Figure 2.14: Example of a feature model with a dead feature C.

By assuming D to be set by a user for a product configuration, guidsl reveals a con-
tradiction within the feature model. This is due to an inference resulting in the root
feature to be excluded from the product configuration, which on its part must always
be part of a product.

Another way to express explanations is introduced by Trinidad [10–12, 66]. Trinidad
uses the Theory of Diagnosis by Reiter, which has been widely used in order to detect
a minimal set of faulty components leading to an abnormal behavior [54]. In order to
apply the theory of diagnosis on a feature model, Trinidad expresses a feature model in
terms of a constraint satisfaction problem (CSP). Components are represented as fea-
tures and constraints. A CSP contains a set of features, i.e., variables, and constraints
restricting the values of the variables. Finding a value assignment, which satisfies all
constraints simultaneously is a solution to a CSP. Applying the theory of diagnosis to a
feature model containing a defect leads to at least one minimal set of faulty constraints.
If several minimal sets are detected, one explanation is generated per set. The explana-
tions consist of the set of faulty constraints leading to the defect. For the dead feature C
in Figure 2.14, two minimal explanations exist: First, the mandatory relationship to B
and, second, the first cross-tree constraint (CTC-1) comprising an excludes-relationship
between feature B and C. The explanations in FAMA are expressed in the following
manner:

1: Dead Feature: C (2 explanations) -> [to-B-rel], [CTC-1]

In his early work, Trinidad focuses on the explanation of dead features [66]. Nowadays,
the framework is used to explain all kind of defects, implemented in the FAMA tool
suite [11, 12].

Rincón et al. present an ontological rule-based approach to detect and explain dead
and false-optional features in natural language [55]. Therefore, the authors construct an
ontology that represents a specification of concepts in a feature model and which is used
to identify dead and false-optional features. Based on the ontology and formalizing rules
leading to dead and false-optional features, the authors are able to assign every defect
feature to a respective rule. Depending on the rule, a generation of an explanation in
natural language takes place. Below, an excerpt of the results after analyzing a feature
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model with dead features is shown. For every defect, the authors provide a classification,
name the corresponding defect feature and give an explanation in natural language.

Analyzing the defects...
Defect:.........DEAD FEATURE
Feature:.........AF2
Causes: FULL MANDATORY FEATURE EXCLUDES AN OPTIONAL
FEATURE
Explanation: Optional feature AF2 is dead because it is excluded by the full manda-
tory feature AF3 with the dependency AD19

To summarize, several approaches concentrate on generating explanations within feature
models. Explanations range from presenting significant constraints leading to a defect
up to generating explanations in natural and user-friendly language. Within this thesis,
we extend the work of Batory using an LTMS to generate explanations for all described
defects [7] (cf. Section 2.2). In the next chapter, we explain the concept of our approach
in detail.
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3. A Conceptual Framework to
Generate Explanations

Finding contradictions in a feature model is challenging. In order to ensure the quality
of a software product line, quality assurance measures have to be provided to the model
designer. Generating dynamic answers in the form of why a certain defect has occurred
during usage, leads to a significantly simplified and faster error repairing. Finding errors
in feature models is important to both model designers and customers of the SPL. The
overall goal of explanations is to extract only relevant parts of the feature model causing
a defect and present those in a human-understandable form afterwards.

In this chapter, we present a generic explanation approach for defects in feature models
contributing to RG1 and RG2. In Section 3.1, we first define requirements for an
explanation algorithm. Next, we describe the basics of a suitable algorithm found in
literature in Section 3.2. By reasoning on the adaptions of the algorithm to explain
all kinds of defects (cf. Section 2.2) and providing minimal use-cases as working exam-
ples, we achieve RG1.1. Additionally, we present how to detect and explain implicit
constraints in interrelated feature models to reach RG2.1 and RG2.2. In Section 3.4,
we suggest improvements covering the generation of shortest explanations along with
highlighting parts in explanations, which have a higher probability to cause the defect.
This is essential to realize RG1.3. Parts of this chapter are available in [37].

3.1 Requirements of the Explanation Algorithm

The starting point is the selection of an appropriate algorithm to explain defects in
feature models, which shall meet the following requirements:

• generic
The algorithm shall be able to explain all previously mentioned defects (cf. Sec-
tion 2.2).
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• efficient
Variability modeling can include an enormous number of features and constraints,
i.e., several thousands. The algorithm shall be economic in terms of resources,
computing time and memory and, hence, scale to large feature models.

• informative
In order to increase the usability of explanations, they shall be as short as pos-
sible and significant parts, which are more likely to cause a defect, should be
highlighted.

Batory implemented a tool called guidsl, which serves for product-line development
and that is part of the AHEAD Tool Suite [7]. It successfully adapts basic ideas of the
boolean constraint propagation (BCP) algorithm in order to provide justifications for the
selection or deselection of features during a configuration process. BCP is an efficient
algorithm, which fulfills the listed requirements (cf. Section 3.2.2). It is used frequently
for implementing an LTMS and represents its inference engine [27]. Consequently, guidsl
serves as a model example to apply BCP for explanations in FeatureIDE.

3.2 Basic Algorithm
In this section, we propose a generic explanation algorithm, which is able to explain
all defects in a feature model only by varying two input parameters. We describe the
functionality of an LTMS and its internal inference engine BCP. Additionally, we reason
on the benefits and limitations of the explanation algorithm.

3.2.1 Logic Truth Maintenance System

Truth maintenance (TM) is a wide spread approach in the area of artificial intelligence
for implementing inference systems. The core of a truth maintenance system (TMS) is
an inference engine (IE), which derives assumptions about variable values and maintains
the reason for its belief. A TMS can be used to perform a range of activities such as
explanation capabilities, reasoning and deductions [22].

Different types of implemented TMSs exist, i.e., a justification-based TMS (JTMS),
an assumption-based TMS (ATMS) and an LTMS [36, 46, 57]. They differ in their
fundamental structure, implementation and functions. For explanation capabilities, we
chose the LTMS due to several reasons. In contrast to an ATMS and a JTMS, an
LTMS carries out logical operations and understands propositional semantics, i.e., it
can’t represent a positive and negated value of the same variable simultaneously [18].
Additionally, an LTMS allows any arbitrary propositional formula as input whereas both
JTMS and LTMS are restricted to horn clauses (i.e., formulas of the form A∧ ...∧D ⇒
Z) [27]. Since we operate with arbitrary logical formulas representing feature models,
we require these properties.

An LTMS is a boolean constraint propagation-based approach, which can be used to
infer an explanation. As an LTMS is based on logical constructions, the following logical
specification is needed:
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• a set of boolean variables

• a propositional formula consisting of clauses constraining these variables

• premises, which are permanent assignments of truth values to variables

• a set of assumptions, which are assignments of truth values to variables that may
be later revoked

The basic principle of an LTMS for generating explanations is depicted in Figure 3.1. A
formula is derived from the feature model (cf. Section 2.1.3) and a premise is assumed
which leads to a contradiction during propagation. Whenever an inference is made,
an LTMS stores the reason for an inference. The occurrence of a contradiction, for
example root = false, reveals an inconsistency in the feature model. After the detection
of a contradiction, an explanation is generated based on the stored reasons. As a result,
an LTMS can be used to assist on error repairing during SPL modeling.

LTMS

BCP
Explanations

Premises

Formula

Inferences

Figure 3.1: LTMS

3.2.2 Boolean Constraint Propagation

BCP is considered as a sound and efficient algorithm for implementing the logical spec-
ification of an LTMS [27]. Boolean constraints are represented by means of boolean
formulas and are a special case of CSPs [5]. They use typical connectives such as AND,
OR and NOT to combine variables. To reason about boolean constraints, rules can be
applied to propagate known values for boolean variables.

1. X ∧ Y = Z: If Z = true, then X and Y must be true.

2. X ∨ Y = Z: If Z = true and X = false, then Y must be true.

BCP is also known as Unit Resolution and makes use of such rules to conclude in-
ferences [20]. Input to a BCP is usually specified as a set of variables defined by a
three-value logic (true, false, unknown) and a formula in CNF. A formula is satisfied, if
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at least one literal in every clause is true. Consequently, a truth value assignment that
satisfies the formula represents a product in the SPL [7].

The basic idea of a BCP assigns a type to every clause:

• Satisfied: at least one literal is true
• Violated: all literals are false
• Unit-Open: one literal is unknown (unbound) while remaining literals are false
• Non Unit-Open: some literals are unknown, the rest is false

Hence, a unit-open clause can be satisfied by setting its unbound literal to true and a
violated clause is considered to be a contradiction.

Example. Regarding the clause ¬A ∨B ∨ C, the different types are demonstrated:

• If A is false, the clause is satisfied.
• If A is true, B is false and C is false, the clause is violated.
• If A is true, B is false and C is unknown, the clause is unit-open. C is derived

as true.
• If A is true and B and C are unknown, the clause is non unit-open.

Figure 3.2 presents a general overview of the BCP algorithm: BCP is invoked on initial
truth value assignments, which represent premises. In the first iteration, the algorithm
processes every clause in the CNF and pushes unit-open clauses it encounters on stack.
After processing the complete CNF, the latest unit-open clause is removed from the
stack. Depending on the unit-open clause, BCP infers and updates a truth value for
the unbound literal and restarts the propagation process. This is generally defined as
unit-propagation. BCP terminates and reports a contradiction as soon as it detects a
violated clause. Hence, detecting a contradiction on the basis of premises is a substantial
part for generating explanations with BCP.

Figure 3.2: Overview of BCP.
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The bookkeeping of a BCP algorithm consists of a 3-tuple <conclusion, reason, {an-
tecedents}> for every derived value assignment. Conclusion represents a value assign-
ment to a variable. Reason is the predicate or unit-open clause that lead to the derived
value. Antecedents are the remaining variables in the unit-open clause whose values
were referenced and for which the algorithm also maintains a 3-tuple.

Example. Consider the formula of a feature model: (A⇒ B) ∧ (B ⇒ ¬A)
The formula is transformed to a CNF: (¬A ∨B) ∧ (¬B ∨ ¬A)

As presented in Table 3.1, BCP sets A=true and remembers its reason to be a
premise. A premise does not have antecedents. BCP pushes respective unit-open
clauses from the CNF on stack. After examining (¬B ∨ ¬A), BCP infers B=false and
stores its unit-open clause as reason. It refers to variable A as antecedent, since its
value was referenced. The BCP algorithm discovers the violated clause (¬A ∨ B) and
generates an explanation, which is based on the violated clause and stored reasons [37].

CNF: (A)∧ (¬A∨B)∧ (¬A∨C)∧ (¬B∨A)∧ (¬C ∨A)∧ (¬B∨¬C)

ID Conclusion Reason Antecedents Stack
#1 A=1 premise (¬A ∨B), (¬B ∨ ¬A)
#2 B=0 (¬B ∨ ¬A) #1 (¬A ∨B)

Violated clause: (¬A ∨B)

Table 3.1: Stepwise example of the BCP process.

The described algorithm holds the specified requirements in Section 3.1, which we put
in concrete terms in the following.

Benefits

BCP comprises the following beneficial characteristics:

• generic
BCP works on the basis of a propositional formula. Since every feature model
can be mapped to a propositional formula, described in Section 2.1.3, BCP can
process every kind of feature model regardless of the kind of defect.

• efficient
The BCP process requires a quadratic time depending on the sum of literals
contained in every clause [24].

• informative
Since BCP only maintains reasons leading to a contradiction, explanations com-
prise relevant information for a defect. Clauses, which do not result in a violation,
are ignored.

Along with beneficial characteristics, BCP suffers from several limitations, which we
present next.
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Limitations

BCP comprises the following limitations:

• order-sensitive
Assuming that a CNF is processed from the left to the right and a stack is used
to maintain unit-open clauses, the explanation depends on the order of clauses.
Processing a CNF the another way may lead to a different explanation. This
characteristic also implies that the BCP algorithm per se does not always find an
explanation with a minimal length.

• incomplete
BCP cannot infer all truth values. Consider two clauses:

(A⇒ B) ∧ (B ⇒ ¬A)

The first clause selects B if A is selected, while the second clause deselects
A. Therefore, selecting A leads to its deselection. BCP is not able to infer that
A cannot be present in a product (dead feature) and only the selection of A
reveals the contradiction [30]. However, this characteristic is not restrictive to
explain defects in feature models, since FeatureIDE already detects that A is a
dead feature.

All in all, LTMS and its internal inference engine BCP are able to generate explanations
consisting of propositional formulas. For the tool guidsl, BCP is used to inform a user
why the selection of a specific feature is not able during the configuration process of an
SPL [7]. To the best of our knowledge, BCP was never used to explain all defects in a
feature model.

3.3 Explaining Defects

In this section, we reason on how to vary the input parameters for the BPC algorithm
in order to explain void feature models, dead and false-optional features as well as
redundant and implicit constraints. Minimal use cases for every defect serve as examples
to demonstrate the applicability of BCP. Additionally, we suggest improvements for
explanations concerning their length and emphasis of parts that are more likely to
cause a defect. The detection of defects is already performed by FeatureIDE.

3.3.1 Void Feature Models

A void feature model represents an inconsistency in a feature model. An inconsistency
is regarded as a severe form of a defect, since no valid product configurations can be
derived from the SPL (cf. Section 2.2.1). Consider the feature model illustrated in
Figure 3.3. Feature B and C exclude each other mutually resulting in a void feature
model.
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Figure 3.3: A void feature model.

To explain why the feature model is void, BCP requires two input parameters. First,
the CNF of the feature model. Second, a premise which leads to a contradiction. A
contradiction occurs, if the root feature is assumed to be true which is not the case
in a void feature model. An explanation consists of the violated clause and the stored
reasons during propagation. Table 3.2 demonstrates the single steps of explaining the
void feature model depicted in Figure 3.3. First, we build the CNF of the feature
model. During the creation of the CNF, we extend every literal with tracing information,
i.e., every literal belongs to a clause, which either represents a relationship within the
feature-tree topology or a cross-tree constraint. Together with the CNF, we pass a
premise root = true to the BCP algorithm. Since the root feature is initially bound,
it does not have any antecedents. Note that all other literals except for premises are
initially unbound. BCP processes the CNF and pushes all unit-open clauses on stack.
Afterwards, BCP removes the last occurred unit-open clause (¬A ∨ C) and concludes
C to be true in order to satisfy the clause. Propagation terminates with detecting the
violated clause (¬A∨B). The tracing information allows us to express explanations in
a user-friendly manner. Every explanation comprises the violated clause first, followed
by all stored reasons. To reduce the length of an explanation, premises are omitted in
explanations.

CNF: (A)∧ (¬A∨B)∧ (¬A∨C)∧ (¬B∨A)∧ (¬C ∨A)∧ (¬B∨¬C)

ID Conclusion Reason Antecedents Stack
#1 root=1 premise (¬A ∨B), (¬A ∨ C)
#2 C=1 (¬A ∨ C) #1 (¬A ∨B), (¬B ∨ ¬C)
#3 B=0 (¬B ∨ ¬C) #2 (¬A ∨B)

Violated clause: (¬A ∨B)

Explanation: Feature Model is void, because: B is mandatory child
of A (violated clause), ¬(B ∧C) is Constraint (#3), C is mandatory
child of A (#2).

Table 3.2: Explaining a void feature model.

Similar to explaining a void feature model, BCP explains a dead feature, which we
present in the following.
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3.3.2 Dead Features

Another defect might occur in the form of dead features (cf. Section 2.2.2). The expla-
nation for dead features is similar to the explanation of a void feature model, namely
also interpreting a dead feature to be true as we did for the root feature of a void
feature model. This will lead to a contradiction, because a dead feature cannot appear
in any configuration. Hence, we pass BCP the CNF of the feature model and a premise
including the dead feature to be true.

An example to explain dead features is demonstrated with the feature model illustrated
Figure 3.4. An alternative Feature E is implied by a core feature B resulting in an
alternative Feature D to be dead. Since B will always appear in every configuration, D
will never appear in any configuration of the SPL.

Figure 3.4: Feature model with dead feature D.

In Table 3.3, we demonstrate the BCP process. We pass the CNF and a premise
involving the selection of the dead feature D (D=true). After putting all unit-open
clauses on stack, BCP removes the last unit-open clause along with concluding and
updating the truth value for literal A. In the following, BCP infers truth values for the
literals E, B, and A. The last inference sets the root-feature A to false leading to a
violated clause (A).

3.3.3 False-Optional Features

Another form of defects in a feature model are false-optional features [67]. Such features
are modeled as optional, but are present in every product of the SPL together with their
parent feature (cf. Section 2.2.3).

We pass to the BCP algorithm the following two parameters: The CNF of the feature
model and premises, which comprise the false-optional feature to be false and its parent
feature to be true. With the premises, BCP will detect a contradiction, since the
false-optional feature will always be selected together with its parent feature for every
configuration.
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CNF: A∧ (¬A∨B)∧ (¬A∨C)∧ (¬B ∨A)∧ (¬C ∨A)∧ (¬C ∨D ∨
E) ∧ (¬D ∨ C) ∧ (¬E ∨ C) ∧ (¬D ∨ ¬E) ∧ (¬B ∨ E)

ID Conclusion Reason Antecedents Stack
#1 D=1 premise (¬D ∨ C), (¬D ∨ ¬E)
#2 E=0 (¬D ∨ ¬E) #1 (¬D ∨ C), (¬B ∨ E)
#3 B=0 (¬B ∨ E) #2 (¬D ∨ C), (¬A ∨B)
#4 A=0 (¬A ∨B) #3 (¬D ∨ C)

Violated clause: (A)

Explanation: Feature D is dead, because: A is root (violated clause),
B is mandatory child of A (#4), B ⇒ E is Constraint (#3), E is
alternative child of C (#2), D is alternative child of C (#2).

Table 3.3: Explaining a dead feature.

An example for a false-optional feature is illustrated in Figure 3.5. Feature D is false-
optional, because a mandatory feature C implies D. In Table 3.4, we demonstrate the
BCP process in order to generate an explanation. By setting the false-optional feature
D to false and its parent feature B to true, BCP concludes feature C to be false. This
results in a violation of the clause (¬B ∨ C).

Figure 3.5: Feature model with false-optional feature D.

3.3.4 Redundant Constraints

Redundancy in feature models occurs if semantic information is modeled in multiple
ways (cf. Section 2.2.4). Redundant information origins from already modeled relation-
ships within the the feature-tree or in cross-tree constraints.

To explain redundant cross-tree constraints, we need to reason on the two input pa-
rameters for BCP, i.e., the CNF and premises. For the defects described previously,
we pass the CNF of the feature model and a premise leading to a contradiction to im-
mediately retrieve an explanation. However, explaining redundant constraints is more
challenging [37]. We reason on two main questions:
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CNF: A∧ (¬A∨B)∧ (¬B∨A)∧ (¬B∨C)∧ (¬C∨B)∧ (¬D∨B)∧ (¬C∨D)

ID Conclusion Reason Antecedents Stack
#1 D=0 premise
#2 B=1 premise (¬B ∨ A), (¬B ∨ C), (¬C ∨D)
#3 C=0 (¬C ∨D) #1 (¬B ∨ A), (¬B ∨ C)!

Violated clause: (¬B ∨ C)

Explanation: Feature D is false-optional, because: C is mandatory child of
B, C ⇒ D is Constraint.

Table 3.4: Explaining a false-optional feature.

1. Shall the CNF include the redundant constraint?
A cross-tree constraint is only detected as redundant, if and only if the relationship
among its features is already modeled in some other way in the feature model.
This non-redundant relationship can be used to explain the redundant constraint.
Therefore, the generated CNF from the feature model without the redundant
constraint is needed.

2. What premises are needed to explain redundant constraints?
The truth values for features from the redundant constraint must result in a
non-satisfiable redundant constraint. This enables BCP to find a contradiction,
because information from the redundant constraint is still comprised in the CNF.
However, multiple assignments can lead to a non-satisfiable redundant constraint
and result in different explanations. Individual explanations may be incomplete.
Therefore, we need to consider all possible assignments and join all explanations
in order to receive a complete explanation.

We present a feature model containing redundancy in Figure 3.6. The constraint B∧C
is redundant, because B and C are both core features and will always appear together
in every configuration.

Figure 3.6: Feature model with a redundant constraint B ∧ C.
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As illustrated in Table 3.5, three different value assumptions lead to a non-satisfiable
redundant cross-tree constraint.

B C B ∧ C
0 0 0 1.
0 1 0 2.
1 0 0 3.
1 1 1

Table 3.5: Truth table of the redundant constraint B ∧ C.

Table 3.6 demonstrates the BCP process for all three value assumptions. For the first
iteration (#1.1 - #1.4) variable B and C are both bound to false. BCP concludes
variable D and A to be false. The algorithm detects the violated clause (A). Then,
BCP restarts the propagation with the second truth value assumption (#2.1 - #2.2).
Variable B is set to false and C is set to true. A direct violation in clause (¬C ∨ B)
appears, since all literals are false. For the third iteration (#3.1 - #3.2), variable B is
set to true and C is set to false. A direct violation in clause (¬B ∨ C) appears and
the algorithm terminates. The resulting explanation comprises all unique reasons and
violated clauses from all three propagations: (A), (¬A ∨B), (¬C ∨B), (¬B ∨ C)

CNF: (A)∧ (¬A∨B)∧ (¬B∨A)∧ (¬B∨C)∧ (¬C ∨B)∧ (¬D∨B)

ID Conclusion Reason Antecedents Stack
#1.1 B=0 premise
#1.2 C=0 premise (¬A ∨B), (¬D ∨B)
#1.3 D=0 (¬D ∨B) #1.1 (¬A ∨B)
#1.4 A=0 (¬A ∨B) #1.1

Violated clause: (A)

ID Conclusion Reason Antecedents Stack
#2.1 B=0 premise (¬A ∨B), (¬D ∨B)
#2.2 C=1 premise ||
Violated clause: (¬C ∨B)

ID Conclusion Reason Antecedents Stack
#3.1 B=1 premise #1.1 (¬A ∨B), (¬D ∨B)
#3.2 C=0 premise ||
Violated clause: (¬B ∨ C)

Explanation: Constraint is redundant, because: A is root (violated
clause), B is mandatory child of A (#1.4), C is mandatory child of
B (violated clauses).

Table 3.6: Explaining a redundant cross-tree constraint.

Although the clause (¬D ∨ B) exists in the BCP process, it is skipped. This is due to
the fact that explanations are generated backwards, i.e., depending on the antecedents,
BCP traverses the reasons for conclusions backwards to the premises. The conclusion
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for variable A references variable C while ignoring all conclusions in between, i.e., the
conclusion for variable D.

3.3.5 Implicit Constraints

Last but not least, we use BCP to explain implicit constraints. To summarize, the
slicing algorithm by Krieter et al. [39] extracts a new, so called sliced, feature model
with less features while preserving dependencies between features (cf. Section 2.3.1).
Inputs to the slicing algorithm involve a complete feature model, which shall be used to
extract a sliced model, and a set of features to remove. The sliced feature model may
contain additional cross-tree constraints, which we refer to as implicit constraints. The
detection of implicit constraints requires a comparison between cross-tree constraints
of the complete feature model and the sliced model. If a constraint does not appear in
the complete feature model, it is implicit.

We put the following thoughts into explaining an implicit constraint: Feature model
slicing constructs an implicit constraint by combining two specific clauses. One clause
contains a positive form of the literal to remove, while the other contains a negativ form
of it. The resulting implicit constraint (resolvent) represents a transitive dependency
between the involved clauses. As we describe in Section 2.2.4, transitivity is one of the
main causes of redundancy. Therefore, we treat implicit constraints as redundant ones
to generate an explanation with BCP. We pass the following input parameters to BCP:

• A complete feature model in CNF. We do not pass the sliced feature model,
because an explanation can only arise from the complete feature model due to
multiple involved submodels.

• A truth value assignments for features from the implicit constraint leading to the
constraint becoming non-satisfiable.

Consider the interrelated feature models in Figure 2.12 resulting in an implicit constraint
C ⇒ D. In order to apply the slicing algorithm, we need to pass a complete feature
model. Tools like VELVET 1 support the composition of interrelated feature models. A
composition of feature models results in a new abstract root containing the prior roots
as child features. In Figure 3.7, we depict the complete feature model.

In Table 3.7, we present the BCP process in order to explain the implicit constraint
C ⇒ D. BCP works in its old manner. First, we pass the feature model in CNF
and premises to BCP. Then, BCP collects unit-open clauses and pushes them on stack.
BCP concludes G to be true and updates all respective literals in the CNF with the
truth value. This results in a violated clause (¬G ∨D). Based on the violated clause
and the stored reason, BCP generates an explanation.

By varying input parameters, BCP can explain all defects previously described (cf. Sec-
tion 2.2). Furthermore, the generic explanation algorithm provides links to improve
explanations. We reason on improvements in the next section.

1http://wwwiti.cs.uni-magdeburg.de/iti db/research/multiple/modeling.php
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Figure 3.7: A complete feature model containing the feature models in Figure 2.12.

3.4 Improvements of the Basic Algorithm

In order to explain a defect, the BCP algorithm only presents relevant parts to the
user bundled in an explanation. However, a defect might have multiple explanations,
which differ in their size. Finding all possible explanations for a certain defect enables
different improvements that we present in the following.

3.4.1 Preferring Shortest Explanations

Since BCP is order-sensitive, the algorithm does not always find an explanation with a
minimal length. A short explanation offers the advantage of an improved readability for
the developer, considering a feature model with thousands of features and corresponding
large explanations for defects.
Decoupling the algorithm from its order-sensitivity results in examining the clauses of
the CNF in every possible order to find a minimal length. A first approach lies in the
permutation of all CNF clauses. Running the algorithm on every possible clause order
ensures finding a minimal length. However, this approach is not feasible in terms of
efficiency [37].

We propose a heuristic that takes advantage of the stack maintaining unit-open clauses.
The basic BCP algorithm generates an explanation as soon as a violation occurs, while
the stack might still contain unit-open clauses. Restarting the propagation process
with those clauses, BCP finds further explanations. However, this approach does not
guarantee to find a minimal explanation length.
Consider a simple feature model in Figure 3.8. It contains a cross-tree constraint E ⇒
B. The constraint is redundant for two reasons: First, it is superfluous due to a
transitive dependency between feature E and B. Second, B is a core feature and its
implication is unnecessary.
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CNF: Root ∧ (¬FM1 ∨ Root) ∧ (¬FM2 ∨ Root) ∧ (¬FM1 ∨ A) ∧
(¬A ∨ FM1) ∧ (¬B ∨ FM1) ∧ (¬C ∨B) ∧ (¬C ∨B) ∧ (¬D ∨B) ∧
(¬FM2∨E)∧ (¬E ∨FM2)∧ (¬F ∨FM2)∧ (¬F ∨G∨H)∧ (¬G∨
F ) ∧ (¬H ∨ F ) ∧ (¬G ∨ ¬H) ∧ (¬C ∨G) ∧ (¬G ∨D)

ID Conclusion Reason Antecedents Stack
#1 D=0 premise
#2 C=1 premise (¬G ∨D), (¬C ∨B),

(¬C ∨G)
#3 G=1 (¬C ∨G) #2 (¬G ∨D)!, (¬C ∨B),

(¬G ∨ F ), (¬G ∨ ¬H)

Violated clause: (¬G ∨D)

Explanation: Constraint C ⇒ D is transitive, because: G⇒ D is
Constraint (violated clause), C ⇒ G is Constraint (#3).

Table 3.7: Explaining an implicit constraint.

In Table 3.8, we show the BCP process to generate all explanations for the the redundant
cross-tree constraint. The first explanation comprises a relation-chain between feature
E and B. When BCP terminates, it still contains two unit-open clauses in the stack:
(¬E ∨D), (¬A ∨B).

CNF: A∧ (¬A∨B)∧ (¬B ∨A)∧ (¬H ∨A)∧ (¬B ∨C)∧ (¬C ∨B)∧ (¬C ∨
D) ∧ (¬D ∨ C) ∧ (¬D ∨ E) ∧ (¬E ∨D) ∧ (¬G ∨D)

ID Conclusion Reason Antecedent Stack
#1 E=1 premise
#2 B=0 premise (¬E ∨D), (¬A ∨B), (¬C ∨B)
#3 C=0 (¬C ∨B) #1,2 (¬E ∨D), (¬A ∨B), (¬D ∨ C)
#4 D=0 (¬D ∨ C) #3 (¬E ∨D), (¬A ∨B)

Violated clause: (¬E ∨D)

Explanation: Constraint is redundant, because: E is mandatory child of D
(violated clause), D is mandatory child of C (#4), C is mandatory child of
B (#3).

Table 3.8: Generating the first explanation for a redundant constraint.

In Table 3.9, we restart the algorithm with the remaining clause ¬A∨B on stack. BCP
removes the clause from the stack and infers false for variable A. This immediately
results in a violation of clause (A). Consequently, we have found a shorter explanation
stating that B is a core feature, because it origins from the root. Executing the algorithm
with the last remaining clause (¬E ∨D) results in the same explanation demonstrated
in Table 3.8.

To summarize, both explanations comprise only relevant information leading to the
redundant cross-tree constraint. We have shown that BCP can find several explanations
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Figure 3.8: Feature model with redundant (transitive) constraint E ⇒ B.

and even different reasons for redundancy allowing us to prefer the shortest explanation
found. We refer to an explanation with an improved length as the shortest explanation.

3.4.2 Emphasizing Significant Parts of Explanations

As presented previously, BCP can generate several explanations for different defects.
Besides finding and preferring a shortest explanation, we can process this information
further. Since every explanation consists of explanation parts either representing a child-
parent relationship or a cross-tree constraint, identical explanation parts might occur in
multiple explanations. Such common explanation parts are more likely to be the cause
of a defect. Hence, editing those parts increases the probability to repair the defect. For
instance, changing an explanation part that is not available in all explanations cannot
fix the anomaly, since at least one explanation containing a different cause remains for
the defect. In Figure 3.9, we present a feature model with three cross-tree constraints
along with one redundant constraint. The constraints result in a false-optional feature
C. The improved BCP algorithm generates three explanations for the false-optional
feature:
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CNF: A∧ (¬A∨B)∧ (¬B ∨A)∧ (¬H ∨A)∧ (¬B ∨C)∧ (¬C ∨
B) ∧ (¬C ∨D) ∧ (¬D ∨ C) ∧ (¬D ∨ E) ∧ (¬E ∨D) ∧ (¬G ∨D)

ID Conclusion Reason Antecedent Stack
#1 E=1 premise
#2 B=0 premise (¬E ∨D), (¬A ∨B)
#3 A=0 (¬A ∨B) #1, #2 (¬E ∨D)

Violated clause: A

Explanation: Constraint is redundant, because: A is root (vio-
lated clause), B is mandatory child of A (#3).

Table 3.9: Generating a shorter explanation for a redundant constraint.

Figure 3.9: Feature model with a false-optional feature C.

1. G is or child of C,D ⇒ G is Constraint and D ∨ C is Constraint.

2. D ∨ C is Constraint,D is a mandatory child of Band BC is Constraint.

3. D ∨ C is Constraint,D ⇒ G is Constraint and G is or child of C.

After analyzing all three explanations, we conclude that the explanation part ”D∨C is a
Constraint” is available in every explanation and therefore occurs most often. Removing
this constraint repairs the defect. Such information can be visually highlighted within an
explanation in order to point out an explanation part, which is more likely to represent
the faulty relationship. In Figure 3.10, we present a teaser how the emphasis of core
parts in explanations works. By hovering the cursor of feature C, a tool tip appears
containing an explanation. Behind every explanation part, numbers indicate how often
an explanation part is present in all generated explanations. This is also indicated by
a color-intensity, which ranges form black to red. Black explanation parts are only
present in one explanation at all, while red parts occur in all explanations.
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Concrete Feature	C	is false-optional,	because:
G	is or child of C	(2/3)
D	=>	G	is Constraint	(2/3)
D	|	C	is Constraint	(3/3)

Constraints:
B =>	C
D	v	C

Figure 3.10: Emphasizing significant explanation parts.

3.5 Summary

In this chapter, we presented a generic explanation algorithm in order to explain de-
fects in feature models (RG1.1). Therefore, we introduced an LTMS and its internal
inference engine BCP (cf. Section 3.2). Only by varying two input parameters for BCP,
i.e., a CNF representing a defect feature model and premises (i.e., initial value assump-
tions for variables of the CNF), the algorithm is able to generate explanations. In
Section 3.3, we provided for every previously described defect a minimal use case to
show the procedure of BCP along with the resulting explanations.

Additionally to the explanation of defects in a single feature model, i.e., void feature
models, dead and false-optional features and redundant cross-tree constraints, we pro-
posed an approach to detect and explain implicit constraints in interrelated feature
models (RG2.1, RG2.2). We applied BCP to explain implicit constraints in the same
matter as explaining redundant cross-tree constraints.

Furthermore, we suggested two improvements for explanations (cf. Section 3.4)
(RG1.3). The first improvement comprised a heuristic in order to find and prefer
shortest explanations. The second improvement enhanced the support to repair a de-
fect by highlighting parts in explanations, which most likely caused it.
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4. Implementation

In the previous chapter, we described the basics of BCP. Additionally, we explained
how to apply BCP in order to explain different defects and suggested improvements of
the explanation algorithm.
To provide an open-source implementation and, hence, realize RG1.2 and RG2.3, we
now focus on the implementation of the explanation algorithm in FeatureIDE. An im-
plementation is further needed to evaluate the scalability of BCP to reach RG1.4. In
Section 4.1, we describe the general workflow of explanation generation and the archi-
tecture. Additionally, we give implementation details for BCP and provide information
on how to express explanations in an user-friendly manner. In Section 4.2, we demon-
strate the workflow for explaining implicit constraints and the respective architecture.
Finally, we provide information about the availability of source code.

4.1 Explaining Defects

In this section, we provide details of the prototypical implementation of BCP in order to
explain defects a single feature model, i.e., void feature models, dead and false-optional
features as well as redundant cross-tree constraints.

4.1.1 Workflow of the Generation of Explanations

We integrated our explanation approach into the general workflow of the automated
analysis in FeatureIDE. The workflow consists of multiple steps as illustrated in Fig-
ure 4.1. First, feature modeling takes place (1). After every modification, an analyzer
checks the consistency of the feature model (2). During this process, the analyzer might
detect a defect (2.1). In this case, BCP is called to explain the defect (2.2). Finally,
the system updates the visualization of the feature model and highlights a defect by
coloring the faulty feature or constraint. A respective tool tip contains an explanation
for the defect (3).
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1.	Feature	
Modeling

2.	Feature-
Model	Analysis

3.	Defect	and
Explanation	
Visualization

2.1.	Defect	
Detection

2.2.	Defect	
Explanation

Figure 4.1: General workflow of explanation generation in FeatureIDE.

Figure 4.2 illustrates a detailed view on the workflow between defect detection and
explanations: FeatureIDE transforms a feature model into a propositional formula
and performs an automatic analysis on it. A SAT solver checks the formula for de-
fects (cf. Section 2.3.1). If defects are detected, the analysis algorithm invokes the BCP
algorithm on every defect. BCP receives as input the logical representation of the de-
fect feature model and premises (i.e., initial value assumptions for variables depending
on the defect). After executing the BCP algorithm, it returns an explanation for the
respective defect.

Figure 4.2: Workflow between defect detection and its explanation.
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4.1.2 Architecture of Explanations

For the software design of explanations, we chose a three-layer architecture as pre-
sented in Figure 4.3. The highest layer is responsible for defect detection. The com-
ponent Feature-Model Analyzer performs an automated analysis of the feature model.
The analyzer is invoked on every modification in a feature model. The middle layer
is responsible for preparing the BCP input and error-handling in case of a missing ex-
planation. There is a clear separation between the components Redundant Constraint,
Dead Feature and False-Optional Feature. Redundant Constraint deals with finding
premises for features, which lead to a non-satisfiable redundant constraint. It invokes
BCP for the logical formula representing a feature model and premises. Similarly, Dead
Feature and False-Optional Feature invoke the BCP process to explain the respective
defect. The lowest layer consists of the component LTMS, which uses BCP to generate
explanations.

Classes of the middle and lower layer have been added to the FeatureIDE implementa-
tion and the Feature-Model Analyzer was extended.

Figure 4.3: Component diagram of explanations in FeatureIDE.

Figure 4.4 depicts relations between classes of the middle and lowest layer. For reasons
of clarity, we ignore return types and arguments of methods at this point. Enum types
represent modes regarding the defect to explain. The hash map valueMap contains
literals as keys and instances of the Bookkeeping class as values. Within the values of
hash map, we store a truth value and reason for a literal. Additionally, Bookkeeping
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maintains the literals antecedents and a boolean flag whether the literal’s truth value
has been a premise. ExplanationMode is an enumeration of LTMS.

Figure 4.4: Class diagram of explanations in FeatureIDE.

4.1.3 Boolean Constraint Propagation

Figure 4.5 depicts a detailed workflow of the BCP process. If the stack contains unit-
open clauses, BCP removes a unit-open clause and determines the unbound literal (1).
Then, BCP justifies the literal by maintaining its reason and antecedents (2). Next,
the algorithm concludes and sets the literal’s truth value. Additionally, it pushes new
formed unit-open clauses on stack (3). If no violation occurs and the stack still contains
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unit-open clauses, BPC restarts the propagation process. As soon as BCP detects a
violated clause, it generates an explanation (4).

Figure 4.5: State machine of the BCP process.

Figure 4.6 demonstrates the workflow of the third step Set Value from Figure 4.5. After
deriving a truth value for the unbound literal in an unit-open clause, BCP processes all
n clauses of the CNF searching for a new unit-open clause. The explanation algorithm
only checks a clause to be unit-open, if the clause contains the newly bound literal
evaluated to false. This is a necessary criterium, because a unit-open clause consists
of one unbound literal while the remaining literals are false (cf. Section 3.2.2). The
method ends if either a violation occurred or every clause in a CNF is processed without
a contradiction.

Figure 4.7 illustrates the fourth step Explain from Figure 4.5. The explanation starts
with a violated clause A. BCP uses the valueMap to retrieve all antecedents of A recur-
sively, i.e., B, E, D. For these literals, a respective reason is added to the explanation.
Premises are excluded from explanations due to minimizing their length. The result-
ing explanation in Figure 4.7 consists of pure clauses whereas final explanations are
expressed in an user-friendly manner. In Section 4.1.4, we reason on this improvement.
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Figure 4.6: Activity diagram of the BCP process.

4.1.4 User-Friendly Explanations

In order to help users to understand defects, explanations must be easy to comprehend.
As demonstrated in Figure 4.7, BCP stores pure CNF clauses as reasons for a defect.
However, their relation to a feature model might not be obvious. Hence, presenting pure
logic clauses to the user can decrease the understandability of explanations. Therefore,
we need to trace the relations between the feature model and its CNF clauses.

In a feature model, every feature comprises structural information: A feature belongs
to the tree topology and may additionally occur in cross-tree constraints. Regarding
the tree topology, a feature can take up different roles, i.e., child or parent and be either
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Figure 4.7: Exemplary construction of explanations with pure clauses.

mandatory or optional as property. Additionally, it can be contained in alternative-
groups or or -groups. In order to generate user-friendly explanations, reasons can be
presented using this information. The tracing of a clause to the feature model comes
with some difficulties [37]:

• Transforming the feature model into a CNF results in a one-to-many re-
lationship between a feature and literals, which represent a feature in the
formula. Therefore, every literal has to carry its structural information whether
it is child or parent in a tree topology or is contained inside a cross-tree constraint.

• This annotation of a literal has to be as efficient as possible, since FeatureIDE
operates with literals in many different processes.

The annotation of every literal with structural information takes place during the cre-
ation of the propositional formula. FeatureIDE itself already provides means to retrieve
the structural information of a feature, which is reused in this process [37]. In the fol-
lowing, we provide implementation details on the annotation of a literal.
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We extended literal objects with an additional numeric attribute origin. The attribute
origin contains relevant information for the generation of explanations [37].
In Figure 4.8, we present a class diagram of the Literal class in FeatureIDE. Tracing
information is encoded in the literal’s attribute origin using the enumeration Feature-
Attribute. A literal has origin Up, if it origins from the tree topology and represents
a child feature within a clause. In this case, a relationship to the parent feature must
be explained. A literal has origin Down, if it is created from the tree topology and
represents a parent feature. A literal has origin Root, if it represents the root feature
of the feature model. A literal has origin Constraint, if it origins from a cross-tree
constraint. In all other cases (usually in error cases), a literal has origin Undef.

Figure 4.8: Class diagram of class Literal

The annotation of a literal takes place during the creation of a propositional formula.
A listing in Figure 4.9 presents the encoding of origin using the FeatureAttribute value
(ordinal) and optionally a constraint-index. In the first constructor, origin encodes
information that the literal object belongs to the feature tree topology.

Example: Encoding a root-feature: origin = -1 * 5 + 3 = -2

In the second constructor, which calls the method setOriginConstraint(), origin encodes
information that the literal object belongs to a cross-tree constraint and its constraint-
index.

Example: Encoding a constraint-index of 0: origin = 0 * 5 + 4 = 4
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1 /∗ Annotate every l i t e r a l with s t r u c t u r a l in fo rmat ion ∗/
pub l i c enum FeatureAttr ibute {

Undef , Up, Down, Root , Constra int
} ;

5 /∗∗
∗ Encodes a l i t e r a l from the t r e e topology .
∗ FeatureAttr ibute must not have the value Constra int .
∗ @param var The v a r i a b l e
∗ @param FeatureAttr ibute The Enumeration element

10 ∗/
pub l i c L i t e r a l ( Object var , FeatureAttr ibute a ) {

t h i s ( var ) ;
i f ( a == FeatureAttr ibute . Constra int ) {

throw new Inval idParameterExcept ion
15 ( ”Parameter Constra int i s not a l lowed ”) ;

}
t h i s . o r i g i n = −1 ∗ FeatureAttr ibute . va lue s ( ) . l ength
+ a . o r d i n a l ( ) ;

}
20 /∗∗

∗ Encodes a l i t e r a l from a c o n s t r a i n t .
∗ @param var The v a r i a b l e
∗ @param cons t ra in t Index The index o f a c o n s t r a i n t
∗/

25 pub l i c L i t e r a l ( Object var , i n t cons t ra in t Index ) {
t h i s ( var ) ;
s e tOr i g inCons t ra in t ( cons t ra in t Index ) ;

}
/∗∗

30 ∗ Encodes a cons t ra in t−index .
∗ @param const r Index The index o f a c o n s t r a i n t
∗/

pub l i c void s e tOr i g inCons t ra in t ( i n t const r Index ) {
t h i s . o r i g i n = const r Index

35 ∗ FeatureAttr ibute . va lue s ( ) . l ength
+ FeatureAttr ibute . Constra int . o r d i n a l ( ) ;

}

Figure 4.9: Encoding a literal object with an additional numeric attribute origin to
store its structural information.

A listing in Figure 4.10 demonstrates getter-methods, which decode origin. In method
getSourceIndex(), a constraint-index is retrieved from origin.
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Example: Decoding a constraint-index of 4: origin = 4 / 5 = 0
Returns a constraint with index 0.

In the method getSourceAttribute(), a FeatureAttribute is retrieved representing the
structural information of a literal.

Example: Decoding a root feature with origin of -2: -2 % 5 + 5 = 3
Returns a FeatureAttribute with value 3 (Root).

BCP decodes origin for every passed literal and generates explanations with respect to
the enumeration element and a property of the respective feature, e.g., D is mandatory
child of B or B =⇒ C is Constraint. Notice that using the enumeration element Down
may be ambiguously due to multiple children and result in superfluous explanation
parts. Therefore, we currently restrict our use to the Enumeration element Up and
Root, if dealing with a literal from the tree topology to ensure unambiguousness.

Listing 4.1: Decoding origin

1 /∗∗
∗ Decodes a cons t ra in t−index .
∗ @return o r i g i n The index o f a c o n s t r a i n t
∗/

5 pub l i c i n t getSourceIndex ( ) {
i f ( ge tSourceAtt r ibute ( ) !=
FeatureAttr ibute . Constra int ) {

throw new I n t e r n a l E r r o r
( ” o r i g i n i s not Constra int ”) ;

10 }
r e turn o r i g i n / FeatureAttr ibute . va lue s ( ) . l ength ;

}

/∗∗
15 ∗ Decodes a FeatureAttr ibute .

∗ @return FeatureAttr ibute The Enumeration element
∗/

pub l i c FeatureAttr ibute ge tSourceAtt r ibute ( ) {
i n t index = o r i g i n % FeatureAttr ibute . va lue s ( ) . l ength ;

20 i f ( index < 0) {
index += FeatureAttr ibute . va lue s ( ) . l ength ;

}
r e turn FeatureAttr ibute . va lue s ( ) [ index ] ;

}

Figure 4.10: Decoding an additional numeric attribute origin of a literal object to
retrieve its structural information.
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4.2 Implicit Constraints

In this section, we provide details of a prototypical implementation to derive, explain
and visualize implicit constraints in interrelated feature models. Therefore, we demon-
strate the workflow and architecture in FeatureIDE.

4.2.1 Workflow

In Figure 4.11, we demonstrate an user view on the calculation and visualization of
implicit constraints for a submodel. The user selects a feature FM1 of the complete
feature model (presented on the left side) and chooses an action from a context menu
to calculate hidden dependencies between the submodel with the root FM1 and the
remaining features of the complete feature model. A new dialog appears containing the
sliced model (illustrated on the right side). We emphasize an implicit constraint with
a red border.

D	v	¬	C
Implicit constraint

Figure 4.11: User view on calculating and visualizing implicit constraints.

In Figure 4.12, we demonstrate a detailed workflow of processing an user request to
calculate hidden dependencies. First, an automated analysis of the sliced feature model
takes place. The analysis comprises the detection of defects in a single feature model,
i.e., void feature model, dead and false-optional features as well as redundant con-
straints, its explanation and visualization. Second, an automated detection, explanation
and visualization of implicit constraints takes place.
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Sliced	Feature	Model

Feature-Model	
Analysis

Calculating	Implicit	
Constraints

Defect	
Detection

Defect	
Visualization

Defect	
Explanation

1. 2.

Figure 4.12: General workflow of handling implicit constraints in FeatureIDE.

4.2.2 Architecture

We demonstrate a dynamic view on calculating and displaying implicit constraints in
Figure 4.13. After an user chooses to calculate hidden dependencies, the system invokes
the action CalculateDependencyAction. The action checks if the selection of a new root
is valid, i.e., it is not empty and not the root of the complete feature model. On
success, it calls the operation CalculateDependencyOperation. The operation performs
feature model slicing. If the chosen root feature is a core feature, it represents the new
root in the sliced feature model. In all other cases, we need to introduce an artificial
root of the sliced model to preserves the consistency. This artificial root contains the
selected feature as an optional child feature. Next, the operation instantiates a new
wizard SubtreeDependencyWizard. The wizard creates a SubtreeDependencyPage object
displaying the sliced feature model and automatically running the model analysis. Then,
the operation opens a new dialog containing the wizard page.

In Figure 4.14, we depict a static view on packages involved in calculating implicit con-
straints. Packages of the plugin de.ovgu.featureide.fm.ui provide an user interface and
react to actions initiated by an user. The packages perform an action to calculate hid-
den dependencies and, hence, provide a sliced feature model with emphasized implicit
constraints. For analysis purposes and explanation capabilities, the system makes use
of FeatureIDE’s plugin de.ovgu.featureide.fm.core and the referenced packages.
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Figure 4.13: Sequence diagram for calculating and displaying implicit constraints.

4.3 Summary

In this chapter, we presented insights of our open-source implementation of the expla-
nation algorithm (RG1.2, RG2.3). As soon as the feature model analysis detects a
defect, it starts an explanation process. A tool tip contains the explanation for a de-
fect feature or cross-tree constraint. A three-layer-architecture for explanations is used:
The highest layer covers defect detection, the middle layer comprises the preparation
of BCP input and the lowest layer contains the BCP algorithm.

In order to create user-friendly explanations, we annotated every literal with a numerical
attribute during CNF creation. The attribute encodes structural information of the
literal: It either belongs to the feature-tree (representing a child or a parent feature)
or to a certain cross-tree constraint. Additionally, an explanation comprises a feature’s
property, i.e., whether it is mandatory or optional and if it is contained in an alternative-
group or in a or-group.

Furthermore, we explained the explanation of implicit constraints on implementation
level. The user initiates an action to calculate hidden dependencies in a submodel by
selecting a feature from the complete feature model, which becomes the root of the
sliced feature model. On success, an automated analysis is performed on the submodel
and, consequently, a detection, explanation and visualization of implicit constraints.

The source code is available on GitHub1. Explanations are created within FeatureIDE’s
plugin de.ovgu.featureide.fm.core. The package de.ovgu.featureide.fm.core.explanations

1https://github.com/FeatureIDE/FeatureIDE/tree/explanations/

http://publikationsserver.tu-braunschweig.de/get/64218



54 4. Implementation

Figure 4.14: Package diagram for calculating implicit constraints.

comprises the source code for explaining defects in single feature models. Within plugin
de.ovgu.featureide.fm.ui, the system reacts to an user’s request to calculate hidden
dependencies and visualize those.
A prototypical implementation is part of the major FeatureIDE 3.1.0 release.
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5. Evaluation

In the last two chapters, we described the BCP algorithm, its adaption to explain defects
in feature models and provided insights on the implementation. To provide a proof of
concept and inspect the algorithm, we need to evaluate the explanation algorithm for all
described kinds of defects (cf. Section 2.2) from a qualitative and quantitative viewpoint.
Additionally, differently sized feature models serve to evaluating the scalability of the
generic algorithm to realize RG1.4.
Therefore, we first present evaluation goals in Section 5.1. In Section 5.2, we introduce
two use cases representing real-world examples for the evaluation [21]. Next, we perform
a qualitative analysis in Section 5.3 covering the correctness of BCP and inspecting the
understandability of the resulting explanations. Furthermore, we provide multiple test
feature models for every defect. In Section 5.4, we perform a quantitative analysis and
concentrate on measurable data of explanations for differently sized feature models,
e.g., performance impact of the generation of explanations and their length. We reason
on the validity of the results in Section 5.5. Eventually, we summarize all findings in
Section 5.6. Parts of the evaluation are available in [37].

5.1 Evaluation Goals
To evaluate the explanation algorithm and the resulting explanations from a qualitative
and quantitative viewpoint, we need to inspect different characteristics of the explana-
tion approach. To asses the quality of explanations and, hence, achieve RG1.3, we
analyze the understandability and correctness of the BCP algorithm. We consider an
explanation as understandable, if the editing or removal of the explanation parts fixes
the defect. Additionally, we inspect the usability of emphasizing specific parts in an
explanation. Last but not least, we also analyze the correctness of the detection and
explanation of implicit constraints thus realizing RG2.1 and RG2.2. Consequently,
we aim to answer the following research questions (RQ):

RQ1 Do explanations contain necessary information to understand the defect?
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RQ2 Does the explanation algorithm produce the correct output?

To assess quantitative results of the explanation algorithm, we focus on its performance
impact on the system’s state prior to the generation of explanations. Using differently
sized models, we test the scalability of the approach to realize RG1.4.

RQ3 What is the performance impact of the algorithm for generating a first expla-
nation, searching for the shortest one, and highlighting significant parts of the
explanation?

A significant factor for the usability of explanations is its length. We inspect the average
explanation length for all defects in differently sized feature models. Based on that, we
determine to what extent an explanation is able to isolate a defect. Additionally, we
pay special attention to the shortening of explanations in order to asses RG1.3.

RQ4 What is the average length of the shortest explanation for all kind of defects?

RQ5 To what extent does an explanation isolate the defect in the feature model?

RQ6 How often is the first explanation already the shortest one?

RQ7 What is the average size difference between the first and the shortest explanation?

Unlike explaining defects in single feature models (i.e., a void feature model, dead and
false-optional features and redundant cross-tree constraints), the generation of expla-
nations for implicit constraints additionally interacts with the user and executes the
slicing operation on a feature model. Hence, we focus on the performance impact to
explain implicit constraints in particular. To evaluate the scalability and, consequently,
realize RG1.4, we use a large real-world feature model. By inspecting implicit con-
straints and the corresponding explanations, we retrieve further information concerning
the structure of such constraints and are able to reason on the percentage share of fea-
tures from the observed submodel (local features) and features from adjacent submodels
in an explanation.

RQ8 What is the calculation time of explaining implicit constraints in general and of
the slicing operation in particular?

RQ9 What is the percentage of local features in an implicit constraint?

RQ10 How frequently do different kinds of implicit constraints occur in a real-world
feature model?

Before answering this questions, we present two real-world case studies, which are part
of both qualitative and quantitative evaluation.
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5.2 Case Studies

We use two variant-rich real-world feature models among further evaluated models.
Both case studies have been chosen from Feldmann et al. and illustrate an interdis-
ciplinary product line in the machine manufacturing domain [21]. Both studies com-
prise interrelated feature models based on the customer’s and the developer’s point of
view. The customer’s point of view allows for modeling product configurations. The
developer’s point of view allows for modeling various disciplines which contribute to
the product, e.g. mechanics, electronics, and software engineering. Relations between
discipline-specific components connect the various feature models. Velvet composes in-
terrelated feature models into a complete feature model, which allows to perform an
automated analysis in FeatureIDE [60].

Pick-And-Place Unit

The first case study involves a ”Pick-And-Place Unit” (PPU), a real-world automation
system with 52 features [32]. It originates from the Institute for Automation and Infor-
mation System of the Technical University Munich. The PPU comprises two handling
systems using a vacuum gripper. The first system contains a cylinder while the second
system makes use of a changeover arm. Hence, the PPU allows for different config-
uration options, e.g., a cylinder or a changeover arm as handling system, the size of
processed work pieces, positioning capabilities and environment conditions.

The PPU comprises a feature model from the customer’s point of view and multiple
discipline-specific feature models from the developer’s point of view [21]. The disciplines
mechanics, electronics and software are involved in the development process of the PPU
and provide one view of the system. Depending on the discipline, variability differs. The
mechanical subsystem only provides Lifting/Lowering as a variable part. In electrical
engineering and software engineering, many different variants exist, e.g. an optional
emergency stop button or additional functionalities such as self-healing capabilities of
the PPU. Feldmann et al. provide a mapping matrix between features of the customer’s
point of view and the developer’s point of view which represents dependencies between
the different feature models [21].

Sorting Line

The second case study is a Sorting Line with four variants and 39 features [21]. The
Sorting Line consists of 5 individual stations, i.e. Distribution, Inspection, Handling,
Separating, Sorting. It aims at sorting work pieces into up to three chutes dependent
on their color or material. A single feature distribute work pieces is mandatory since
work pieces are initially required. Further optional features exist, such as count work
pieces or separate work pieces.

Identically to the PPU, the Sorting Line comprises a feature model from the customer’s
point of view and multiple feature models from the developer’s point of view. Modeling
mechanics includes all individual stations and assigned chutes. In electrical engineering,
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switches are modeled as components for pneumatics in order to push work pieces into
corresponding chutes. Furthermore, electrical engineering comprise a motor of conveyor
belt, sensors, which serve for the detection of the color or material and a light barrier,
which detects work pieces. In software engineering, the features counting work pieces
and sorting are defined.

We used both the PPU and the Sorting Line as real-world feature models for a qualita-
tive and quantitative evaluation for explanations. Additionally, we extended the PPU
feature model in order to contain implicit constraints.

5.3 Qualitative Analysis

We perform a qualitative analysis to assess the understandability of resulting expla-
nations and the correctness of BCP. This is a necessary step to inspect the quality of
explanations (RG1.3) and provide a proof of concept of the generic explanation algo-
rithm (RG1.1). To perform a qualitative analysis, we created a database containing
multiple test feature models per defect. We aimed to cover as many different causes for
a specific defect as possible to answer RQ1 and RQ2. For every feature model input,
we analyzed the BCP output concerning its correctness and the understandability of
a resulting explanation. In Chapter A, we provide small sized test models per defect
together with its explanation in FeatureIDE. In the following, we present a subset of
the test models which serve as typical examples for explanations. Feature models dis-
played in the referenced figures represent the input of the system. A respective yellow
tool tip containing an explanation forms the output of the system. All test models are
contained on a supplied CD-Rom and provided online1.

In Figure 5.1, we present a feature model with a dead feature E, because it is mutually
exclusive to core feature C. An explanation for the defect includes that C is a mandatory
child of root A (i.e., a core feature) and is mutually exclusive to feature E. Removing
or editing only the relationships expressed by emphasized explanation parts fixes the
defect, e.g., making feature C an optional child feature of A.

In Figure 5.2, we present a feature model with a false-optional feature C. The optional
feature C becomes false-optional, because it is parent of an alternative child D, which is
implied by core feature B. Consequently, feature D and its parent feature C also become
core features. This leads to feature C not being optional anymore. The algorithm
generates one explanation containing the faulty relationships. A removal or an edit of
this connections could fix the defect. For example, either by removing the implication
or changing feature C to mandatory.

1https://www.isf.cs.tu-bs.de/data/TestFeatureModels.zip
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Concrete Feature	E	is dead,	because:
A	is ROOT	(1/2)
C	is mandatory child of A	(2/2)
C	=>	- E	is Constraint	(2/2)

Constraints:
C =>	¬	E

Figure 5.1: Example of an explanation for a dead feature.

Concrete Feature	C	is false-optional,	because:
B	is mandatory child of A	(1/1)
B =>	D	is Constraint	(1/1)
D	is alternative	child of C	(1/1)

Figure 5.2: Example of an explanation for a dead feature.

Figure 5.3 shows a feature model with the redundant cross-tree constraint ¬(C ∧ E).
The constraint is redundant, because feature B is parent of feature C and mutually
exclusive to feature E as well. Therefore, the exclusion of feature E by feature C is
superfluous. The explanation reveals this connections. Removing the most emphasized
explanation part -(B & E), which occurred in all generated explanations for the defect,
fixes it.

We conclude that the presented explanations including all provided test models con-
tain the necessary information to fix the defect by performing corrective actions on the
relationships involved in an explanation, satisfying RQ1. For every test model, BCP
performes the process of finding unit-open clauses and detecting a contradiction suc-
cessfully (cf. Section 3.3). Consequently, we conclude that BCP generates the correct
output answering RQ2.
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Constraint	is redundant	and could be removed.

Constraint	is redundant,	because:	
C	is mandatory child of B	(2/3)
- (B	&	E)	is Constraint	(3/3)

Figure 5.3: Example of an explanation for a redundant cross-tree constraint.

5.4 Quantitative Analysis

To answer the remaining questions concerning a quantitative evaluation, we focus
on performance measurements and inspect the length of shortest explanations to an-
swer RQ3 and RQ4. Additionally, we investigate how often a shortest explanation is
found immediately and how much shorter it is compared to the first explanation (RQ6,
RQ7). Regarding the length of an explanation, we can further reason on the ability
of an explanation to isolate a defect (RQ5). To answer RQ8 - RQ10, we measure
the performance for explaining implicit constraints and inspect their logical structure
to determine the most common one. Additionally, we calculate the number of involved
submodels and local features in an implicit constraint to analyze how many submodels
participate in a hidden dependency and whether such dependencies are mostly caused
by local features or by features from other submodels.

5.4.1 Results

Table 5.1 depicts evaluated feature models and the contained number of redundant con-
straints, dead and false-optional features. The first two real-world feature models PPU
and Sorting Line origin from the case study (cf. Section 5.2). Furthermore, we use
generated feature models consisting of 200, 500, 1,000 and 2,000 features with a grow-
ing number of constraints and defects for performance measurements. The generated
models are freely available at the FeatureIDE website and have been chosen randomly
for different model sizes. An essential requirement for generated models comprised
the coverage of all defects per model. A feature model from the automotive industry
represents the biggest feature model with 2,513 features and 2,833 constraints and is
our third real-world example. It is provided as an example within FeatureIDE named
Automotive1. We refer to this model as automotive.

The computation time has been measured using an Intel(R) Core(TM) i7-4800MQ CPU
with 2.7 GHz and 16-GB RAM.

http://publikationsserver.tu-braunschweig.de/get/64218



5.4. Quantitative Analysis 61

Model # Features # C # RC # Dead features # FO Features

Sorting Line∗ 39 11 2 0 0
PPU∗ 52 15 7 0 0
200-model 200 20 8 106 13
500-model 500 50 14 262 56
1000-model 1,000 100 44 628 138
2000-model 2,000 200 87 1,236 254
Automotive∗ 2,513 2,833 563 192 12

Table 5.1: Overview of evaluated feature models. C = Constraints, RC = Redundant
cross-tree constraints, FO = false-optional.

Table 5.2 shows the computation times for all performance measurements. First, each
feature model was analyzed in FeatureIDE without the generation of explanations (2nd
column). Next, we measured the computation time for defect detection including the
tracing process of a literal object to determine the cost of tracing to feature model
elements (3rd column). Performance for generating explanations is divided into three
individual steps to separately assess its performance impact on the system. In the first
step, we focus on the generation of a first explanation for all defects in a feature model
(4th column). In the second step, the algorithm tries to find shortest explanations (5th
column). In the third step, explanation parts are colored based on their occurrence
(6th column). Colored explanations require the generation of a first and a shortest
explanation. All measurements have been repeated ten times for all models to reduce
computation bias. As presented in Table 5.1, the models contained different kinds of
defects. We present the average performance time in Table 5.2.

Model No Expl.(s) Tracing(s) 1. Expl.(s) Sh. Expl.(s) Col. Expl.(s)

Sorting Line∗ 0.03 0.03 0.03 0.05 0.06
PPU∗ 0.02 0.02 0.05 0.05 0.05
200-model 0.37 0.40 0.87 1.21 1.28
500-model 5.08 5.53 9.67 11.42 11.65
1000-model 43.42 46.41 88.77 116.77 116.96
2000-model 352.61 372.89 567.27 831.71 832.11
Automotive∗ 6,453.30 7,421.96 16,473.90 16,540.66 16,546.44

Table 5.2: Performance measurements for the generation of of a first explanation, a
shorter one and a colored one. Expl. = Explanation, Sh. = Shortest, Col. = Colored.

In Table 5.3, we summarize the performance impact for the generation of explanations.
For every generation step of explanations, we compute the time factor compared to
computation time which only included the detection of defects. The tracing process
increases the computation time by factor 1.1 on average. To generate the first expla-
nation, the computation time takes approximately twice as long. To find the shortest

∗Real-world feature models
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explanation, performance approximately decreases by factor 2.5. The final coloration
step of explanation takes on average factor 2.6. We discuss the results in Section 5.4.2.

Model Tracing(f) 1. Expl.(f) Shortest Expl.(f) Col. Expl.(f)

Sorting Line∗ 1 (min) 1 (min) 1.7 (min) 2 (min)
PPU∗ 1 (min) 2.5 (max) 2.5 2.5
200-model 1.1 2.4 3.3 (max) 3.4 (max)
500-model 1.1 1.9 2.3 2.3
1000-model 1.1 2 2.7 2.7
2000-model 1.1 1.6 2.4 2.4
Automotive∗ 1.2 (max) 2.5 (max) 2.6 2.6
- 1.1 (avg) 2.3 (avg) 2.5 (avg) 2.6 (avg)

Table 5.3: Summary on the performance impact for the generation of explanations.
Expl. = Explanation, Sh. = Shortest, f = factor, Col. = Colored.

To make assumptions about the average length of explanations and investigate how
beneficial to search for a shortest one, we analyze the statical distribution of all expla-
nation lengths. The length of an explanation is measured in the number of its parts.
A part is a building block of an explanation representing one single reason (cf. Sec-
tion 3.2) being expressed in user-friendly language and placed in one separate line, e.g.,
C is mandatory child of B.

Figure 5.4 illustrates the explanation length for defects in the feature models Sorting
Line and PPU. In the left model, the box plot reveals that explanation length lies
constantly at 5 parts. In the right model, 50 % of the data is concentrated between
4 and 9 parts for an explanation, having a minimal explanation length consisting of 2
parts and a maximum explanation length with 10 parts.
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Figure 5.4: Explanation length for Sorting Line and PPU

In Figure 5.5, a box plot represents explanation length for defects in the 200-model
and the 500-model. In the left model, 50% of explanations consists of 4 to 7 parts.

∗Real-world feature models
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The shortest explanation found contains 2 parts whereas the longest explanation is at
11 parts. Additionally, outliers exists revealing an explanation length of maximum 13
parts. in the right model, 50% of explanations consists of up to 7 parts. A minimum
explanation consists of 2 and the longest explanation of 33 parts.
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Figure 5.5: Explanation length for the 200-model and 500-model

Figure 5.6 illustrates length of explanation’s of the 1000-model and the 2000-model.
Half of the explanations in the left model consists of approximately 8 to 12 parts. A
minimum explanation is of length 2. Ignoring outliers, a maximum length is at 21
parts. In this model, multiple outliers exist between explanation length of 20 parts and
40 parts. The longest explanation consists of 61 parts. The right model reveals that
50% of all explanations have a length between 8 and 27 parts. A shortest explanation
consists of 3 parts. Without considering outliers, a the longest explanation has 50 parts.
Multiple outliers exist. Considering the outliers, the longest explanation consists of 65
parts.
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Figure 5.6: Explanation length for the 1000-model and 2000-model

In Figure 5.7, a box plot represents explanation length for the automotive model. Half
of explanations consists of approximately 4 to 25 parts. Several outliers occur beginning
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from 55 explanation parts. The minimum explanation length consists of 1 part, while
the maximum explanation length is at 95 parts.
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Figure 5.7: Explanation length for the automotive model

To draw conclusions about fault localization in general and about the number of the
feature model’s relationships which are involved in a defect in particular, we need to
reason on the maximum possible explanation length (number of its parts) which can be
generated from a model. For this purpose, we define the ”size of model”as the number of
features plus the number of cross-tree constraints. Since one single explanation part can
contain either one single cross-tree constraint or a relationship from a child feature to
its parent feature, an explanation (without redundant parts of course) cannot be longer
than the ”size of model”. Therefore, the ”size of model” represents also the maximal
possible explanation length. In Figure 5.8, we present the average explanation length
for all evaluated models compared to the size of a model in percentage. The figure
shows that small size models like Sorting Line or PPU contain up to approximately
10% of faulty relationships, whereas fault localization for large-scale models determines
less than 1% of the overall size. We reason on this findings in Section 5.4.2.

Next, we analyze statistics on the shortening of explanations for redundant cross-tree
constraints. Table 5.4 presents the number of all explanations per model, the number
of all first explanations which are not the shortest ones and a relative average short-
ening effect in percentage. To summarize the statistics, approximately 1 out of 6 first
explanations could be shortened. Regarding the shortening effect, explanations are
approximately 25% - 50% shorter compared to the first explanation.

In the following, we inspect implicit constraints in interrelated feature models using
the automotive feature model which acts as the complete feature model. Table 5.5
summarizes the occurrence of hidden dependencies at depth 1 and 2 of the automotive
feature model. The feature model consists of 6 submodels and comprises 12 implicit
constraints at depth 1. At depth 2, 26 submodels and 186 implicit constraints are
present. Implicit constraints at depth 1 consist of 15 explanation parts on average,
while the average length of explanations at depth 2 consists of 16 parts.

∗Real-world feature models
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Figure 5.8: Percentage of an average explanation length compared to the size of a
model.

Model # Expl. # First Expl. 6= Shortest Expl. Shorter (%)

Sorting Line∗ 2 n.a. n.a.
PPU∗ 7 1 44.4
200-model 8 2 50
500-model 14 2 25.1
1000-model 44 11 39.7
2000-model 87 21 48.4
Automotive∗ 563 56 29.8

Table 5.4: Statistics on the average shortening effect of explanations for redundant
cross-tree constraints. Expl. = Explanation.

In Table 5.6, we measured for every submodel the time for pure slicing and the overall
time to explain and visualize implicit constraints. Pure slicing process takes 0.48 seconds
on average, while the explanation and visualization of implicit constraints requires 102
seconds on average.
For a single implicit constraint at depth 1 and two implicit constraints at depth 2, we
could not explain the implicit constraints. The error was caused due to a conditionally
dead feature (i.e., a feature becoming dead due to certain conditions, for instance, other
dead features.) leading to the implicit constraint at depth 1. The error propagated to
the two implicit constraints at depth 2. Currently, we are not able to explain all cases
of defects with BCP which are caused by conditionally dead features.
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Depth # Submodels # Implicit Constraints # Explanation parts

1 6 12 15.1
2 25 186 16.46

Table 5.5: Number of Implicit constraints per depth and their average length.

Depth Submodel (Parent) #Features # I.C. Pure Slicing(s) Overall(s)

1 1 105 1 0.48 0.81
1 2 171 - 0.4 0.46
1 3 54 - 0.41 0.52
1 4 112 - 0.40 0.51
1 5 2,065 11 1.54 542.6
1 6 5 - 0.42 0.43
2 7 (1) 8 - 0.48 0.5
2 8 (1) 72 - 0.44 0.47
2 9 (1) 4 - 0.46 0.48
2 10 (1) 3 2 0.47 1.05
2 11 (1) 17 - 0.43 0.45
2 12 (2) 167 - 0.43 0.48
2 13 (2) 3 - 0.44 0.45
2 14 (3) 21 2 0.48 2.08
2 15 (3) 18 - 0.44 0.46
2 16 (3) 3 - 0.44 0.46
2 17 (3) 3 - 0.43 0.44
2 18 (3) 5 - 0.42 0.44
2 19 (3) 3 - 0.4 0.41
2 20 (4) 3 - 0.45 0.46
2 21 (4) 88 - 0.43 0.45
2 22 (4) 16 - 0.42 0.43
2 23 (4) 4 - 0.44 0.45
2 24 (5) 684 123 0.5 170.83
2 25 (5) 16 - 0.43 0.44
2 26 (5) 948 39 0.57 75.7
2 27 (5) 231 20 0.4 21.24
2 28 (5) 185 3 0.44 2.51
2 29 (6) 2 - 0.44 0.45
2 30 (6) 1 - 0.43 0.44
2 31 (6) 1 - 0.45 0.46

Table 5.6: Calculation time of the slicing operation in paricular and the overall time
including a detection, explanation and visualization of implicit constraints per model.
I.C. = implicit constraints.
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Figure 5.9 represents the calculation time of submodels at depth 2 containing implicit
constraints. The calculation time comprises a model analysis to detect defects in sin-
gle feature models (i.e., dead features, false-optional features and redundant cross-tree
constraints) followed by the slicing operation and the detection, explanation and vi-
sualization of implicit constraints. We observe, that computation time increases with
the number of implicit constraints. Notice that on average the number of implicit con-
straints increases with the number of features per model. A linear regression shows
that calculation time increases approximately by 1.4 seconds per additional implicit
constraint. The data from Table 5.6 reveals that pure slicing and the number of fea-
tures has a negligible influence on the overall time.
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Figure 5.9: Calculation time for detecting, explaining and visualizing implicit con-
straints per model including a preceding automated analysis.

Table 5.7 depicts the number of adjacent submodels involved in a hidden dependency
and the average percentage of local features in an explanation. A local feature is con-
tained in the considered submodel. Hidden dependencies at depth 1 involve up to three
adjacent submodels out of five. Hidden dependencies at depth 2 involve up to four
adjacent submodels out of 24. The percentage of local features fluctuates between 24%
and 56.1% and comprises on average 37.35%.

Table 5.8 presents a classification of implicit constraints in an implication, exclusion,
negation or another kind of logical expressions, e.g., conjunction. Additionally, every
expression is further depicted as CNF pattern. 11 out of 12 Implicit constraints at
depth 1 represent an implication of the form ¬A ∨ B. At depth 2, implicit constraints
form in 18 out of 186 cases an implication. In 115 cases, an other logical expression
occurs in the form of ¬A ∨ ¬B ∨ C.
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Depth Submodel # I.C. # Involved/All Adjacent Local Features (%)
Submodels

1 5 11 3/5 40
2 14 (3) 2 1/24 25
2 24 (5) 123 2/24 29.7
2 26 (5) 39 1/24 24
2 27 (5) 20 1/24 56.1
2 28 (5) 3 4/24 51.3

Table 5.7: Statistics on the maximum number of adjacent submodels involved in a
hidden dependency per submodel and the average number of local features in implicit
constraints.

Logical Expression CNF Pattern Depth 1 Depth 2 Overall (%)

Negation ¬A 1 16 8.6
Implication ¬A ∨B 11 18 14.6
Exclusion ¬A ∨ ¬B - 31 15.7

Other
A ∨B ∨ C - 1 0.5
¬A ∨ ¬B ∨ C - 115 58.1
¬A ∨B ∨ C - 5 2.5

Table 5.8: Classification of implicit constraints into logical expressions and representa-
tion as CNF patterns.

5.4.2 Interpretation

In this subsection, we analyze the collected data and describe results and observations.
Based on that, we evaluate the data and formulate insights concerning the performance
impact of the generation of explanations, their length and findings with respect to
implicit constraints.

Calculation time

1. Generating explanations increases computation time significantly.
Table 5.2 shows that the generation of the first and the shortest explanation is
a significant factor for the performance results of an automated analysis in Fea-
tureIDE. The computation time is roughly doubled by the generation of the first
explanation, while finding the shortest explanation takes additionally about 30%
time. In detail, computing a colored explanation exceeds the calculation time
which only included the detection of defects by factor 2.6 on average. Neverthe-
less, this is a reasonable expense to retrieve information enabling a precise and
fast default correction compared to the notoriously difficult debugging of large-
scale feature models. Hence, we conclude that the performance impact of BCP
is acceptable answering RQ3. Still, we can reduce the tradeoff between the per-
formance impact of explanation and its information yield by choosing to generate
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only the first explanation, which in most cases already returns the shortest one.
Table 5.2 additionally reveals only a slightly increased computation time for trac-
ing by 6.75 % in average, while the coloring process is almost instantly finished.
Hence, the tracing to feature model elements and coloring process of explana-
tion parts is of little importance for the performance impact of the generation of
explanations.

2. Generating explanations is scalable.
From the results depicted in Table 5.2, we also observe that the relative perfor-
mance impact stays roughly constant for models of different sizes. Consequently,
we conclude a scalability of the BCP algorithm.

Explanation length

1. Explanation length increases slightly compared to feature model size.
Given the rather small product line of the PPU, we observe that each explanation
has at most nine parts (cf. Figure 5.4). Although the 200-Model is about four
times larger (cf. Figure 5.5), we only see a slight increase in the explanation length.
This trend continues for the larger models as well (cf. Figure 5.6). Even for the
automotive feature model with 2,513 features, 75% of the explanations contain
merely up to 25 parts (cf. Figure 5.7) To answer RQ4, the average length of an
explanation comprises roughly 11 parts which we consider as still comprehensible
for developers.

2. Isolation of defects gets better for larger model sizes.
Related to the finding above, we observe that an increasing model size results in a
better isolation of a defect by analyzing Figure 5.8. To answer RQ5, we determine
that an explanation is able to greatly isolate a defect up to mostly 0.34% of the
automotive model size.

3. Exceptionally long explanations can occur in large feature models.
Compared to small and middle sized models, large models can cause unusually
long explanations. For the automotive model with 2,513 features and 2,833 con-
straints, the longest explanation consists of 95 parts which is approximately 2%
of the model size (cf. Figure 5.7). Outliers in Figure 5.6 and Figure 5.7 represent
such explanations. We consider explanations of this length as not comprehensible
anymore and suggest respective future work (cf. Chapter 8).

4. In most cases, BCP finds the shortest explanation immediately.
Table 5.4 shows that in most cases, the first found explanation is already the
shortest one answering RQ6. To further improve the performance impact of the
generation of explanations, we may decide to only generate first explanations.

5. Shortest explanations are significantly smaller.
Table 5.4 shows that shortest explanations are 25% - 50% smaller than first ex-
planations to answer RQ7. Although BCP already finds the shortest explanation
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immediately, a shortest explanation is significantly smaller which justifies the ef-
fort when dealing with middle or large-scale feature models.

Implicit Constraints

1. The number of implicit constraints increases with the number of adja-
cent submodels.
In Table 5.5, we observe the occurrence of implicit constraints in a real-world
automative feature model. At depth 1 of a feature model, the amount of implicit
constraints is 11, whereas at depth 2 it significantly increases to 186.

2. Computation time increases with the number of implicit constraints.
Based on the performance measurements in Table 5.6, we determine 0.48 seconds
as the average pure slicing time of the automotive feature model. Regarding the
computation time of submodels at depth 2 in Figure 5.9, computation time in-
creases with the number of implicit constraints. In particular, calculation time
increases approximately by 1.4 seconds per additional implicit constraint answer-
ing RQ8. We believe that this is a reasonable expense for explaining hidden
dependencies, especially in a large-scale model.

3. Explanation length stays constant at different depths.
As presented in In Table 5.5, the explanation length increases from 15 to 16 parts.
Therefore, we assume that explanation length does not depend on source depths
of submodels.

4. Less than 40% of all features in an explanation are local features.
Table 5.7 depicts that an explanation comprises from 24% to 56.1% local features
answering RQ9. On average, explanations comprise 37.35% local features leading
us to the conclusion that a hidden dependency is mostly caused by relations
between features from other submodels. This assumption is further supported
by the fact that up to 4 adjacent submodels of the evaluated submodel can be
involved in a hidden dependency as presented in Table 5.7.

5. Implicit constraints occur most often as ¬A ∨ ¬B ∨ C.
To answer RQ10, Table 5.8 shows that an implicit constraint occurs most often
as ¬A ∨ ¬B ∨ C (≡ A ∧ B ⇒ C). The second leading CNF pattern comprises
an exclusion between two features, while an implication of the form A ⇒ B
represents the third leading pattern.

5.5 Threats to Validity

In this section, we reason about the validity of the presented results. We categorize
the validity of our results according to Wohlin et al. into conclusion, internal, construct
and external validity and identify respective threats [68].
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Conclusion validity statistically ensures the rationality of our conclusions about rela-
tionships in our data. While conclusion validity only concentrates on whether there
exists a relationship, internal validity evaluates a causal relationship between the pro-
gram and the results and that no unknown or not measured factor was involved in the
outcome. Construct validity assesses whether we designed the experiment correctly to
retrieve the desired data. External validity is related to generalizing the results, e.g.,
conclusions from our results hold for other feature models.

Conclusion validity

Due to the lack of large real-world feature models which are still scalable for analysis op-
erations, results for implicit constraints are based on one single large real-world feature
model. To validate the derived insights concerning implicit constraints, e.g., number of
occurrences, logic structure and the explanation length of implicit constraints, we need
to evaluate further large real-world feature models containing implicit constraints.

Internal validity

For the internal validity, we identified two threats:

1. The resulting explanation can depend on the sequence of clauses in a CNF (cf. Sec-
tion 3.2.2). If we would change the sequence and restart the explanation algo-
rithm, we may receive another content as explanation. To tackle this threat, we
developed a heuristic which is used to search for multiple explanations per defect
to prefer the shortest one. Hence, we are able to find other explanations. We also
put thought into considering every possible clause order, i.e., a permutation of all
CNF clauses. However, the performance cost is not viable.

2. The usage of artificially generated feature models might have a distorting effect
on hypotheses about the length of explanations. Nonetheless, we chose some gen-
erated models due to the availability and reasonable number of different defects.
This allowed us to collect data for differently sized models.

Construct validity

For the construct validity, we identified a threat caused by a mono-operation bias [68].
In other words, our results concerning implicit constraints may under-represent the
respective findings due to a single evaluated feature model. This is due to the lack of
scalable large real-world feature models, as mentioned above. Nevertheless, we carefully
analyzed the model at different depths which led to a reasonable variety and amount
of data.
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External validity

For the external validity, we identify following threats concerning the generalization of
our results.

1. The usage of generated feature models for evaluation limits the generalization of
our results to other real-world feature models. We argue that we are still able
to get a proper overview of the generated explanation length by covering a great
number of different defects and additionally evaluating multiple real-world feature
models.

2. To ensure an external validity even more, we need to evaluate more real-world
feature models from different domains.

5.6 Summary

In this chapter, we performed a qualitative and quantitative analysis of the resulting
explanations. We used feature models differing in kind and size including real-world fea-
ture models. Three models contained 1,000 features and above showing the scalability
of the generic algorithm and, thus, realizing RG1.4.

For the qualitative analysis, we provided multiple test feature models per defect along
with its explanation in Chapter A and reasoned on some exemplary explanations. Based
on the test models, we analyzed and confirmed the correctness of the explanation algo-
rithm. We concluded that an explanation reveals the faulty connections which lead to
a defect. Additionally, we inspected the highlighting of specific parts. We argued that
changing or removing only those parts already fixes the defect. For the quantitative
analysis, we further analyzed that a first generated explanation is most often already
the shortest one, while an average explanation length varies between 3 and 18 parts
per model. Nevertheless, shorter explanations are up to 50% smaller which is especially
helpful if dealing with large feature models. Hence, we concluded that improvements
of the basic explanation algorithm help to increase the quality of explanations satisfy-
ing RG1.3. We reasoned that for implicit constraints, the average time to derive and
explain implicit constraints is still acceptable and grows with the number of implicit
constraints. Additionally, we detected that up to 5 out of 25 submodels are involved
in a hidden dependency and that ¬A ∨ ¬B ∨ C is the most common pattern of an
implicit constraint. It must be noted that the generic explanation approach is subject
to continuous monitoring in FeatureIDE and evaluation is still going on.
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In this chapter, we present related work to clearly differentiate the developed explana-
tion approach. First, we describe work in the area of the automated analysis of feature
models involving defect detection. Next, we concentrate on former and other explana-
tion approaches and compare them to our work. Finally, we describe the state-of-the-art
for detecting hidden dependencies including further slicing approaches.

Automated analysis and defect detection

The automated analysis of feature models is an active area of research which has led
to many analysis operations, algorithms and tools to support an automated analysis
process of a feature model [8, 10]. Meinicke et al. provide an overview on analysis tools
for SPLs [47]. FeatureIDE, pure::variants, SPLOT and FaMa are some of the tools
to support feature modeling1. According to Benavides et al. [10], automated analysis
comprises up to 30 different analysis operations including defect detection, checking the
validity of products, explanations, refactoring and optimization. To produce error-free
feature models, many approaches including the previously mentioned tools provide a
feature model error analysis. Von der Massen and Lichter give a definition and an
overview of various feature model errors while Benavides et al. present an overview of
automated analysis operations to detect the described defects in feature models [10, 67].
Hemakular introduces an approach to statically detect contradictions in feature mod-
els [30]. The approach comprises model checking in combination with BCP to propagate
consequences of a feature selection and report contradictions. Model checking is a pow-
erful analysis tool which is able to traverse states of a state machine and checks whether
particular states are reachable. Here, model checking finds user selections which lead
to an error state. An error state results from a contradiction which is detected by BCP
during constraint propagation. Nevertheless, model checking performs poorly for large
feature models and no explanation support is given. Further significant research for

1http://wwwiti.cs.uni-magdeburg.de/iti db/research/fosd-tools/
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error detection was performed by Trinidad et al. [66]. The authors express a feature
model in terms of a CSP and focus on the detection of dead features, false-optional
features and void feature models (cf. Section 2.3.2). Trinidad et al. make use of the
Theory of Diagnosis which includes a mapping of the feature model to a corresponding
diagnosis problem based on concepts proposed by Reiter [54].
In this thesis, we propose an explanation algorithm which requires an arbitrary defect
detection to generate a respective explanation. Additionally, it can be used indepen-
dently of any solver.

Defect explanation

Concerning the explanation process, Batory did significant research on reusing an LTMS
for explaining a user’s configuration of an SPL variant (cf. Section 2.3.2) [7]. Batory
introduced a tool called guidsl that provides an open-source implementation of the
LTMS. Our explanation algorithm is most closely related to his findings. In contrast,
guidsl can explain only dead features while no explanation support is provided for the
remaining defects. We improved Batory’s approach by explaining all kind of defects
in a more user-friendly manner, searching for shorter explanations and highlighting
relevant parts. Additionally, we applied LTMS to already support a developer during
the modeling phase.

Using the Theory of Diagnosis by Reiter [54], Trinidad retrieves a minimal set of faulty
constraints to explain a defect (cf. Section 2.3.2) [66]. The implementation is available
in FAMA [12, 65]. We identify similar yet different elements compared to our approach:
We provide support to fix a defect at the early stage of feature modeling by highlighting
significant explanation parts. FAMA also provides support for error-repairing, but at
the later stage of product configuration by presenting a set of necessary feature selec-
tions and deselections to fix an invalid product configuration. Furthermore, FAMA is
able to explain all kinds of defects except for redundant constraints. Further differences
comprise FAMA using only small feature models for evaluation and expressing expla-
nations in a greatly abbreviated way (cf. Section 2.3.2) which may be at the expense of
expressing an explanation in a user-friendly manner.

A well-known diagnosis algorithm is QuickXplain, which made a major contribution
concerning the efficiency of explaining a CSP [34]. QuickXplain uses of a divide-
and-conquer strategy to determine a minimal faulty set of constraints in a CSP.
Lesta et al. adapt QuickXplain to explain defects in attributed feature models, i.e.,
a feature containing integer-valued attributes [40]. For reasons of efficiency, the authors
refrain from searching for a minimal explanation. In contrast, we focus on providing
support on defect explanation for pure feature models, i.e., features without attributes.
Further on, the approach explains all defects except for redundant constraints and relies
on a constraint solver whereas our approach is independent of any solver. Last but not
least, the source code of the presented approach is not open-source.

Felfernig et al. demonstrates another explanation approach based on the Theory of Di-
agnosis using the FastDiag algorithm [25]. Similarly to QuickXplain, FastDiag is a
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divide-and-conquer diagnosis algorithm. It receives a set of diagnosable constraints of
the feature model and divides the constraints iteratively into subsets, which results in
determining a smallest possible subset of inconsistent constraints. A resulting explana-
tion consists of the faulty constraint set, which has to be adapted or deleted in order
to resolve the defect [26]. Hence, the algorithm guarantees to find a minimal possible
explanation in contrast to our approach. Apart from previously described approaches,
FastDiag is not restricted to a CSP. Similarly to our work, FastDiag explains all types
of defects and is independent from any solver. In constrast, evaluation is limited to
feature models offered by the S.P.L.O.T. repository containing 72 and 172 features.
Additional cross-tree constraints have been randomly inserted to induce inconsisten-
cies. No information is provided on the number or kind of defects in the feature model.
An evaluation of the performance impact for large-scale feature models is missing to
show the scalability of FastDiag.

The ontological rule-based approach by Ricón et al. generates explanations for defects in
feature models in natural language (cf. Section 2.3.2) [55]. The approach provides expla-
nations using a similar syntax as we do and rivals our explanation length. Nonetheless,
only dead and false-optional features can be explained.

Another approach which does not concentrate on explaining defects but active con-
figurations is proposed by Kramer et al. [38]. The authors introduce an explanation
approach for active configurations within Dynamic Software Product Lines (DSPL).
DSPLs are reconfigurable at runtime enabling a dynamic variability for an SPL. To
generate explanations, every feature holds its own description and every relationship is
mapped to a respective expression, e.g., Optional - ”which is optional”, Or - ”which can
be”. As shown in Figure 6.1, explanation fragments belong to features and relation-
ships. Their concatenation forms a complete explanation why configuration stream is
active, i.e., ”The ContentStore stores historical content purchases in all configurations,
of which can be retrieved in all configurations, either downloaded or streamed, in this
case, streamed”.

Osman et al. propose an approach for multiple analysis operations on feature models
(feature model validation, detection of dead features and inconsistencies and explana-
tions) [23]. In contrast, explanations are provided during the configuration process of
an SPL if the user selects invalid feature combinations whereas we assist on defect ex-
planation during feature modeling. Similarly, Osman et al. provide explanations which
guide users in case of an invalid feature selection, i.e., explanations comprise suggestions
to select or deselect certain features. We aim to guide a user by highlighting relevant
explanation parts.

Finally, related work exists which focuses on finding guaranteed minimal explana-
tions. This is currently not possible with our approach and part of future work. Liffi-
ton et al. focus on finding all minimal unsatisfiable subset of clauses (i.e., minimal core)
given an unsatisfiable boolean formula [42]. The authors refer to a minimal core as a
minimal unsatisfiable subset (MUS). In relation to defects in feature models, an MUS
would form the basis of a minimal explanation consisting of pure clauses. In contrast, a
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Figure 6.1: Explaining fragments for the active configuration stream [38].

minimal correction subset (MCS) is a minimal set of clauses whose removal leads to the
propositional formula becoming satisfiable. Liffiton et al. propose CAMUS (Compute
All Minimal Unsatisfiable Subsets), a two-phase approach to determine all minimal
cores. First, CAMUS finds all MCSs. Based on that, it derives MUSs. According to
the authors, algorithms of CAMUS are easily to adapt in order to work with different
constraint solvers or to reach different goals. An evaluation of CAMUS shows its scala-
bility and reveals that it performs significantly better than existing algorithms for each
of the two phases. Nevertheless, the first phase is very costly in terms of resources and
therefore not advisable when only one minimal explanation is required.

An up-to-date approach to determine one minimal explanation in terms of clauses is
presented by Guthmann et al. [29]. The authors present the tool HSMTMUC which
is implemented on top of a satisfiability modulo theories (SMT) solver for finding one
minimal unsatisfiable subset of clauses in a propositional formula, i.e., a minimal unsat-
isfiable core (MUC) [51]. As the approach described above, an MUC would represent
a raw explanation consisting of pure clauses (if applied to explain a defect within a
feature model). SMT solvers determine the satisfiability for first-order formulas com-
prising some logical theory, e.g., integer arithmetic, and are also capable of finding an
unsatisfiable core [6]. Guthmann et al. evaluate different SMT solvers, i.e., Z3 [50]
and MATHSAT [14], to first extract an unsatisfiable core which is, however, usually
non-minimal and then proceed to minimize it by invoking HSMTMUC. The authors
conclude that best runtime and smallest average core size is retrievable by first running
MATHSAT and then invoking HSMTMUC.
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Detection of hidden dependencies

While the detection of defects is well researched, only few approaches exist in litera-
ture with respect to dependencies between interrelated feature models. One of those
approaches is introduced by Mendonça et al. [48]. The authors argue that the config-
uration of products is complicated due to different involved parties. They propose an
approach called collaborative product configuration to coordinate the configuration of
products. To support the validation of configurations, Mendonça et al. provide efficient
dependency analysis algorithms which detect interdependent features, i.e., the selection
of one feature automatically selects an other feature. Specifically, dedicated algorithms
are performed on graphs representing feature models to support the dependency anal-
ysis. Contrary to our approach, hidden dependencies are detected on configuration
level, whereas we perform a dependency detection on modeling level. Additionally, no
explanations of the detected dependencies are given.

Another approach to detect hidden dependencies between features is introduced by
Ghanam et al. [28]. The authors present a linking of feature models to code arti-
facts using executable acceptance tests (ETA). EATs are executable specifications of
requirements which automatically test the behavior of a system for a certain input.
Ghanam et al. extend features containing implementation artifacts with multiple EATs.
Consequently, the selection of a feature implies the execution of all EATs. Addition-
ally, EATs inherit dependencies imposed on the linked features, i.e., EATs of alternative
features are alternative as well. The authors argue that EATs help to reveal hidden
feature interactions comprising excludes and requires dependencies. For instance, EATs
fail when two independent features are simultaneously selected. This may either reveal
an issue of the implementation or an excludes dependency between two features. In
contrast to our work, no explanation is provided. Consequently, the developer has to
inspect the respective implementation part or feature model to detect why an EAT
failed. Although the presented approach is able to detect hidden dependencies, only
dependencies representing simple constraints can be detected whereas we are able to
derive complex constraints as well (cf. Section 2.1.1).

Lettner et al. introduce an approach to support the modeling of large-scale feature mod-
els with multiple dedicated, interrelated feature models for different purposes, scopes
and granularities (cf. Section 2.1.2) [41]. The authors face a lack of explicit knowledge
about feature dependencies and the challenge to detect such dependencies between fea-
tures of different modeling spaces, i.e., solution, problem and configuration space. They
refer to Berger et al. who found that modelers from industry even try to avoid cross-tree
constraints and only use parent-child relationships [13]. Contrary, we do not operate in
different spaces, but we claim that revealing and understanding hidden dependencies is
also a current challenge in interrelated feature models.

Jonata et al. concentrate on describing an SPL from different perspectives, i.e., a feature
model and an architectural model [33]. The architectural model is a component model
which comprises implementation details of the SPL. During the configuration process
of a feature model, inconsistencies between both models can arise, e.g., a feature model
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enables a configuration which is not possible due to restrictions of the architectural
model. To tackle this problem, the authors propose to integrate both models and to
detect hidden dependencies in the feature model. Therefore, both models are expressed
in propositional logic and combined. By applying existential quantification, which is a
possible approach for feature-model slicing, Jonata et al. compute an induced feature
model containing implicit constraints. The original feature model is then enhanced with
such implicit constraints to support the application engineer during configuration. Sim-
ilar to our work, feature model slicing is performed on a CNF and implicit constraints
are detected. Contrary, Jonata et al. use existential quantification to slice a feature
model, whereas we take advantage of logical resolution, which is based on existential
quantification but improves it by keeping the resulting formula in CNF.

Next, we address related work concerning feature model slicing, i.e., the removal of
features from a model while not changing existing dependencies. Thüm et al. first
introduces the idea of feature model slicing when reasoning about edits between two
feature models, particularly the removal of abstract features in a feature model [62].
An edit to a feature model results in a new feature model and can either be classified
into a specialization (i.e., products are removed from an SPL), a generalization (i.e., no
new products are added to an SPL) or a refactoring (i.e., the number of products of
the SPL stays constant). To determine an edit between two feature models containing
abstract features, Thüm et al. remove every occurrence of an abstract feature until a
resulting propositional formula representing a feature model only consists of concrete
features. Support for the classification of edits is integrated in FeatureIDE.

On this basis, Acher et al. propose a feature model slicing technique but focuses on
the decomposition of large-scale feature models, i.e., splitting large models into a set of
interrelated submodels [2, 3]. The slicing technique is implemented into FAMILIAR,
a domain specific language of manipulating feature models [1].

Based on the work by Thüm et al. [62], Krieter et al. implemented a more efficient
slicing approach in FeatureIDE which uses logical resolution (cf. Section 2.3.1) [39]. We
make use of this approach to derive a submodel from a complete one. In a large case
study, Schröter et al. take advantage of the slicing algorithm to derive feature-model
interfaces which contain a subset of arbitrary features from the complete feature model
to hide information for modelers and stakeholders [59]. Furthermore, the authors enable
a composition of feature-model interfaces. To reduce the amount of re-computations
for a composed model and ease its maintainability, Schröter et al. reuse analyses results
of single interfaces.

Another concept to hide information in feature models are feature model views, intro-
duced by Clark et al. [15]. A view hides undesired features of a complete feature model
to reduce the complexity of a large-scale feature model. Contrary to feature model slic-
ing, it is often used to support the configuration process a feature model, e.g. multiple
views cover all configuration questions and propagate feature selections to other views
to ensure their consistency [44, 58].
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Variability has become subject to many software systems and is at the centre of the
development paradigm of software product lines. Applying the idea of product lines in
the software domain has led to an efficient production of variant-rich software systems.
Nevertheless, modeling a software product line can lead to different modeling errors.
Not only the detection, but also the user-friendly explanation of such defects potentially
allows for an improved and faster error handling.

In this thesis, we proposed a generic explanation approach based on predicate logic,
which is most closely related with previous work by Batory [7]. We applied it to explain
different kinds of defects in single and interrelated feature models in a user-friendly and
structural manner (cf. Section 2.2). The generic explanation approach is based on a
logic truth maintenance system (LTMS) which is a classic AI program (cf. Section 3.2.1).
It derives assumptions about truth values of variables in a propositional formula and
remembers the reasons for its belief. A most suitable algorithm for implementing an
LTMS is considered to be the boolean constraint propagation (BCP) (cf. Section 3.2.2).
In this thesis, we reused BCP to explain defects in feature models by only varying two
input parameters: the faulty feature model represented by a CNF formula and initial
premises, i.e., truth values for a subset of literals of the CNF. The essence of BCP is to
find unit-open clauses in a CNF (i.e., clauses whose literals are all bound to false except
for one unbound literal) and infer the truth value for the unbound literal to ensure the
satisfiability of the clause. This process iteratively continues until BCP encounters a
contradiction. A contradiction arises from a violated clause (i.e., a clause whose literals
are all bound to false). A resulting explanation consists of the violated clause and
all maintained reasons (i.e., former unit-open clauses and assumptions). We refer to a
single reason in an explanation as an explanation part being expressed in user-friendly
manner, such as B is mandatory child of A. Additionally, we identified and implemented
two main improvements of the basic BCP algorithm. A generated explanation by
BCP depends on the order of the CNF clauses. Consequently, the algorithm does
not always find an explanation with a minimal length. To find a shorter explanation
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compared to the first one, we proposed a heuristic which takes advantage of the stack
maintaining unit-open clauses: After a contradiction occurred and BCP generated the
first explanation, we restarted the explanation process for the remaining unit-open
clauses on stack and preferred the shortest explanation found (cf. Section 3.4.1). The
second improvement comprised an emphasis of relevant explanation parts which most
likely caused the defect. Error-prone explanation parts would occur in all or many
explanations for a defect. We emphasized such parts depending on their occurrence
using a coloration from red (occurred in all explanations) to black (occurred in one
out of several explanations). Applying the improved BCP algorithm, we generated
explanations for void feature models, dead and false-optional features as well as for
redundant cross-tree constraints. Furthermore, we provided explanations for implicit
constraints representing hidden dependencies in interrelated feature models. To derive
implicit constraints, an existing slicing algorithm was applied on a complete feature
model. The complete feature model was either created by combining interrelated feature
models into one large feature model or it was a monolithic feature model comprising
interrelated submodels which, for instance, represented various disciplines of a product.
The slicing operation returned a submodel enhanced with implicit constraints. To
explain implicit constraints, we treated such constraints identically to redundant ones,
since implicit constraints were derived from relationships of the complete feature model

We integrated the explanation approach into the existing structure and workflow of
FeatureIDE (cf. Chapter 4). The current implementation is available in the major
FeatureIDE 3.1.0 release. To express explanations in a user-friendly manner, we added
structural information to every literal during the creation of a CNF. For reasons of
efficiency, the structural information is encoded by an additional numeric attribute of
a literal object. Structural information of a literal comprises whether it belongs to
the tree topology, acts as parent or child feature in a CNF clause or if it is part of a
cross-tree constraint.

Finally, we performed a qualitative and quantitative evaluation of the resulting ex-
planations (Chapter 5). The qualitative evaluation included a manual analysis of the
correctness of the BCP algorithm and whether explanations contained the necessary
information to understand the defect and, consequently, fix it. For the qualitative anal-
ysis, we used multiple test feature models per defect, overall 33 models. We confirmed
the correctness of BCP and that explanations revealed the faulty relationships between
features which led to a defect.
For the quantitative evaluation, we used seven feature models of different sizes includ-
ing three real-world models. The retrieved measurements comprised the performance
impact for the generation of explanations, their length and statistics on the shortening
of explanations. For implicit constraints in particular, we additionally inspected the
number of implicit constraints in a large real-world automotive feature model together
with their logical structure, the computation time of explaining implicit constraints
and determined the percentage of local features in an explanation, i.e., features which
are contained in the observed submodel. To summarize the main insights, computa-
tion time for model analysis significantly increased when generating explanations for
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defects. Finding a first explanation approximately doubled the computation time while
searching for a shortest explanation took additional 30% time over finding the first
one. Nevertheless, we concluded that the performance impact is acceptable and that
advantages of explaining defects in large feature models compared to the difficulties
of debugging such models clearly overweight the increased computation time. Further-
more, we showed the scalability of the explanation approach by evaluating different sizes
of feature models containing large-scale feature models with 2000 features and more.
For all models, the performance impact stayed roughly constant. The length of expla-
nations varied between 3 and 18 parts on average per model. We observed only a slight
increase in the number of explanation parts for significantly larger model sizes. Based
on that, we concluded that the percentual benefit of the algorithm improves for larger
feature models and, hence, the isolation of defects gets better for larger model sizes.
Further findings concerning explanation length comprised that in most cases, BCP
found the shortest explanation immediately. Nevertheless, if BCP generated a shorter
explanation than the first one in a later processing step, it was approximately 25% -
50% smaller. We considered the shortening effect as an essential benefit if dealing with
long explanations. Finally, we observed implicit constraints of submodels at different
depths of a real-world large-scale automotive model with 2,513 features. Main findings
comprised that computation time increased with the number of implicit constraints per
submodel. In particular, an implicit constraint took approximately 1.4 seconds. We
believed that this is a reasonable expense for explaining hidden dependencies, especially
in a large-scale model. Furthermore, we analyzed explanations of implicit constraints
and discovered that up to four (out of six) submodels at depth 1 and up to five (out
of 25) submodels at depth 2 were involved in a hidden dependency. On average, less
than 40% of the features in an explanation originated from the observed submodel. We
assumed, that hidden dependencies were mostly caused by relations between features
from other submodels.

To end this chapter, we refer to the research goals RG1 and RG2. To realize RG1,
we developed a generic algorithm which produces a correct output representing a com-
prehensible explanation for any defect within a feature model. A tool tip contains the
user-friendly explanation for a defect and is displayed during the modeling phase. After
achieving RG1 which comprised the development of a generic explanation algorithm,
we concentrated on realizing RG2 which involved an explanation of implicit constraints
in interrelated feature models by reusing the generic explanation approach. Therefore,
we took advantage of an efficient slicing algorithm in FeatureIDE to derive a submodel
from a complete model. The resulting submodel was enhanced with implicit constraints
which we needed to detect first. Applying the generic explanation algorithm, we were
able to explain implicit constraints in interrelated feature models with a reasonable
performance impact. To view implicit constraints in a submodel, a user is able to
select a feature from the complete feature model which acts as the root feature of a
submodel. Sequently, a new dialog opens containing the submodel with highlighted
implicit constraints and respective explanations displayed in a tool tip.
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8. Future Work

The elaboration of a generic algorithm provides many interesting approaches for future
work. Improvements comprise, for instance, the usability and understandability of
explanations. Additionally, we propose future work with respect to implicit constraints.

• Guaranteeing the shortest explanation.
Develop a new strategy with BCP to guarantee finding the overall shortest ex-
planation. Nevertheless, computing an optimal explanation makes it difficult to
keep the explanation approach scalable.

• Graphically support the understandability of explanations in the feature model.
Generating explanations for feature models might result in quite long and un-
readable explanations. Highlighting all parts of the explanation in the feature-
tree and respective cross-tree constraints might significantly increase and speed
up the user’s understanding of explanations. Additionally, if an explanation is
generated for a large feature model, irrelevant parts of the model with respect to
the explanation could be concealed to enable a compact view on the model.

• Using BCP to generate explanations on different levels of abstraction.
Currently, we make use of BCP to explain defects which occur during the model-
ing phase of a feature model. Nevertheless, BCP can also be applied to generate
explanations on further levels of abstraction of an SPL, e.g., support develop-
ers during the configuration process of a variant. For instance, guidsl applies
BCP on configuration level to provide feedback why certain features cannot be
selected [7]. Another application might comprise the explanation of dead code,
e.g., code blocks surrounded by #ifdef directives which are never included in any
feature selection [61]. To detect dead code, a combined analysis consisting of the
feature model and implementation of the SPL is performed. Particularly, the con-
junction of a presence condition (i.e., a propositional formula comprising feature
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selections in which a code block is present) and the formula representing a feature
model is not satisfiable [4]. Since BCP is based on predicate logic, we wonder if
it might also be used to detect and explain dead code.

• Including the user’s wish how to use explanations.
For large feature models, explanations might become unreadable and downgrade
the performance of the feature model analysis. Additionally, users might not be
interested in explanations. If a user decides to use explanations, two modes could
be distinguished. Either to compute the first explanation which approximately
doubles the computation time of the feature model analysis or to search for a
shortest explanation which approximately takes additional 30% time.

• Improving the counting of explanations for redundant constraints.
For the coloration process of explanation parts, we count all generated explana-
tions. Explanations for redundant constraints result from combining individual
explanations for different assignments (premises) which lead to non-satisfiable
redundant constraints. Thus, explanations can occur which contain the same
clauses appearing in a different order. An improvement comprises the detection
of such explanations and ignoring those in the counting of all explanations for one
redundant constraint.

• Explaining conditionally dead features.
Conditionally dead features become dead due to certain conditions, e.g., they
always appear together with other dead features in a configuration. BCP is cur-
rently able to only explain unconditionally dead features by setting the truth
value of a dead feature to true. Applying the same strategy to conditionally dead
features can result in a missing contradiction. Consequently, no explanation is
possible. A strategy is needed which determines the preconditioned dead features
and which then can be considered during the BCP process.

• Evaluating the performance impact of BCP to detect redundancy.
FeatureIDE detects redundancy using a SAT solver. Amongst the detection of
other defects such as dead or false-optional features, the detection of redundancy
is of high computational effort. BCP generates explanations for a redundant con-
straints based on a contradiction, which also acts as an indicator for the existence
of such constraints. A substitution of the redundancy detection with BCP might
accelerate the analysis of feature models. This requires a performance comparison
between the two detection methods.

• Comparing the performance impact of BCP to other explanation algorithms.
To asses the performance impact of BCP compared to rivaling explanation algo-
rithms, e.g., QuickXPlain or FastDiag, a performance comparison is needed.

• Providing tool support for repairing defects.
The coloring of relevant explanation parts can be further exploited, e.g., auto-
matically remove the emphasized parts to fix the defect.

http://publikationsserver.tu-braunschweig.de/get/64218



85

• Enabling edit operations in a submodel.
Currently, the slicing operation returns a submodel which is non-editable. It
represents a consistent partial view on the complete feature model. An improve-
ment for handling implicit constraints comprises edit operations of the submodel.
Changes in the submodel need to be reflected back to the complete model to keep
the two models consistent to each other and support maintenance.

• Enabling test automation.
Evaluation concerning the correctness and performance impact of BCP is cur-
rently performed manually. To efficiently (re)test feature models, test automa-
tion is needed. Testing the correctness of an explanation is hard, because future
improvements might lead, for instance, to other or shorter explanations. A first
step towards this goal is testing whether the algorithm generates explanations for
different input data at all. Another way to verify the correctness of the BCP al-
gorithm is a formal analysis which proves that the algorithm works for any input
data covering a defect.
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A. Appendix

In this chapter, we demonstrate test feature models containing the previously described
defects and respective explanations. For every test model, we provide a description of
the defect cause. The explanation algorithm receives the presented feature model as
input and returns the explanation contained in a yellow tool tip as output. All test
models are contained on a supplied CD-Rom and available online1.

Test models for void feature models

In Table A.1, we provide four cases of void feature models and a description of the
defect cause (path on CD-Rom: /TestFeatureModels/VoidFeatureModels/ ).

Reference Description
Figure A.1 The feature model is void, because core feature B implies feature E

whose parent feature C is negated (Test Void1.xml).
Figure A.2 The feature model is void, because core feature B implies feature E

which is alternative to feature D. However, feature E implies feature D
which makes the model void (Test Void2.xml).

Figure A.4 The feature model is void, because core feature B implies the mandatory
feature D. The mandatory feature F of the same parent feature as D
excludes the core feature (Test Void3.xml).

Figure A.3 The feature model is void, because it consists of two core features B and
C which are mutually exclusive to each other (Test Void4.xml).

Table A.1: Overview of test feature models for a void feature model.

1https://www.isf.cs.tu-bs.de/data/TestFeatureModels.zip
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Feature	Model	is void,	because:
- C	is Constraint	(1/1)
E	Is alternative	child of C	(1/1)
B	=>	E	is Constraint	(1/1)
B	is mandatory child of A	(1/1)

Figure A.1: Void feature model: test
case 1

Feature	Model	is void,	because:
D	is alternative	child of C	(1/1)
E	Is alternative	child of C	(1/1)
E	=>	D	is Constraint	(1/1)
B	=>	E	is Constraint	(1/1)	
B	is mandatory child of A	(1/1)

Figure A.2: Void feature model: test
case 2

Feature	Model	is void,	because:
F	=>	- B	is Constraint	(1/1)
F is mandatory child of E	(1/1)
E	Is mandatory child of C	(1/1)
D	is mandatory child of C	(1/1)
B	=>	D is Constraint	(1/1)	
B	is mandatory child of A	(1/1)

Figure A.3: Void feature model: test
case 3

Feature	Model	is void,	because:
B	is mandatory child of A	(2/2)
- (B	&	C)	is Constraint	(2/2)
C	is mandatory child of A	(2/2)

Figure A.4: Void feature model: test
case 4

Test models for dead features

In Table A.2, we provide 7 feature models with 10 cases of dead feature and a description
of the defect cause (path on CD-Rom: /TestFeatureModels/DeadFeature/ ).
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Reference Description
Figure A.5 Feature D is dead, because core feature B implies feature E which is

alternative to D (Test DeadF1.xml).
Figure A.6 Feature C is dead, because it is mutually exclusive to core feature B.

Feature D is (conditionally) dead, because it implies the dead feature C
(Test DeadF2.xml).

Figure A.7 Feature A is dead, because it implies feature B which is exclusive to
feature A (Test DeadF3.xml).

Figure A.8 Both features C and D are dead, because they are mutually exclusive
to root A (Test DeadF4.xml).

Figure A.9 Feature D is dead, because it is excluded by root A (Test DeadF5.xml).
Figure A.10 Feature E is dead, because it is excluded by core feature C

(Test DeadF6.xml).
Figure A.11 Feature Bluetooth is dead, because it is excluded by core feature Car-

body (/TestFeatureModels/AllDefects/Test AllDefects.xml).
Figure A.12 Feature Manual is dead, because core feature Carbody implies feature

Automatic which is alternative to feature Manual (/TestFeatureModel-
s/AllDefects/Test AllDefects.xml).

Table A.2: Overview of test feature models for dead features.

Concrete Feature	D	is dead,	because:
A	is ROOT	(1/2)
B	is mandatory child of A	(2/2)
B	=>	E	is Constraint	(2/2)
E	is alternative	child of C	(2/2)
D	is alternative	child of C	(2/2)

Figure A.5: Dead feature: test case 1

Concrete Feature	C	is dead,	because:
A	is ROOT	(1/2)
B	is mandatory child of A	(2/2)
C	=>	- B	is Constraint	(2/2)

Constraints:
B	⌃ D	=>	C
C	=>	¬	B

Concrete Feature	D	is dead,	because:
B	&	D	=>	C	is Constraint	(1/2)
C	=>	-B	is Constraint	(1/1)
B	is mandatory child of A	(1/1)
D	is child of A	(1/1)

Constraints:
B	⌃ D	=>	C

Figure A.6: Dead feature: test case 2

Test models for false-optional features

In Table A.3, we provide 6 feature models with 6 cases for a false-optional feature and
a description of the defect cause (path on CD-Rom: /TestFeatureModels/FalseOption-
alFeature/ ).

Test models for redundant cross-tree constraints

In Table A.4, we provide 15 feature models with 24 cases for redundant constraints
(path on CD-Rom: /TestFeatureModels/RedundantConstraints/ ).
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Concrete Feature	A	is dead,	because:
A	=>	B	is Constraint	(2/2)
B	=>	-A	is Constraint	(2/2)

Constraints
A	=>	B
B	=>	¬	A

Figure A.7: Dead feature: test case 3

Concrete Feature	C	is dead,	because:
A	is ROOT	(1/2)
A	=>	- C	&	- D	is Constraint	(2/2)

Constraints:
A	=>	¬	C	⌃ ¬D

Concrete Feature	D	is dead,	because:
A	is ROOT	(1/2)
A	=>	- C	&	- D	is Constraint	(2/2)

Constraints:
A	=>	¬	C	⌃ ¬	D

Figure A.8: Dead feature: test case 4

Concrete Feature	D	is dead,	because:
A	is ROOT	(1/2)
A	=>	- D	is Constraint	(2/2)

Constraints:
A	=>	¬	D

Figure A.9: Dead feature: test case 5

Concrete Feature	E	is dead,	because:
A	is ROOT	(1/2)
C	is mandatory child of A	(2/2)
C	=>	- E	is Constraint	(2/2)

Constraints:
C =>	¬	E

Figure A.10: Dead feature: test case 6

Reference Description
Figure A.13 Feature B is false-optional, because it is implied by root A

(Test FO1.xml).
Figure A.14 Feature B is false-optional, because it is implied by core feature C

(Test FO2.xml).
Figure A.15 Feature C is false-optional, because core feature B implies the child

feature D of C (Test FO3.xml).
Figure A.16 Feature C is false-optional, because core feature B implies an alternative

child feature E of C (Test FO4.xml).
Figure A.17 Feature Ports is false-optional, because GPSAntenna becomes a core

feature and implies feature USB which is a child feature of Ports (/Test-
FeatureModels/AllDefects/Test AllDefects.xml).

Figure A.10 Feature Navigation is false-optional, because it is implied by core feature
Carbody (/TestFeatureModels/AllDefects/Test AllDefects.xml).

Table A.3: Overview of test feature models for false-optional features.
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Concrete Feature	Bluetooth	is dead,	because:
Carbody &	Gearbox is Constraint	(1/2)
Carbody =>	Automatic &	- Bluetooth	is Constraint	(2/2)

Constraints:
Carbody =>	Automatic ⌃ ¬	Bluetooth

Figure A.11: Dead feature: test case 7

Concrete Feature	Manual	is dead,	because:
Carbody &	Gearbox is Constraint	(1/2)
Carbody =>	Automatic &	- Bluetooth	is Constraint	(2/2)
Automatic is alternative	child of Gearbody (2/2)
Manual	is alternative	child of Gearbox (2/2)

Figure A.12: Dead feature: test case 8
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Concrete Feature	B	is false-optional,	because:
A =>	B	is Constraint	(1/1)

Constraints:
A	=>	B

Figure A.13: False-optional feature:
test case 1

Concrete Feature	B	is false-optional,	because:
C	is mandatory child of A	(1/1)
C	=>	B	is Constraint	(1/1)

Constraints:
C =>	B

Figure A.14: False-optional feature:
test case 2

Concrete Feature	C	is false-optional,	because:
B	is mandatory child of A	(1/1)
B =>	D	is Constraint	(1/1)
D	is or child of C	(1/1)

Figure A.15: False-optional feature:
test case 3

Concrete Feature	C	is false-optional,	because:
B	is mandatory child of A	(1/1)
B =>	D	is Constraint	(1/1)
D	is alternative	child of C	(1/1)

Figure A.16: False-optional feature:
test case 4
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Abstract	Feature	Ports	is false-optional,	because:
Carbody &	Gearbox is Constraint	(1/1)
Carbody &	Radio	=>	Navigation	is Constraint	(1/1)
GPSAntenna is mandatory child of Navigation	(1/1)
GPSAntenna =>	USB	is Constraint
USB	is or child of Ports	(1/1)

Figure A.17: False-optional feature: test case 5

Abstract	Feature	Navigationis false-optional,	because:
Carbody &	Gearbox is Constraint	(1/1)
Carbody &	Radio	=>	Navigation	is Constraint	(1/1)

Constraints:
Navigation	=>	USB
Gearbox ⌃ Radio	=>	Navigation

Figure A.18: False-optional feature: test case 6
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Reference Description
Figure A.19 Constraint ¬(B ∧ C) is redundant, because it represents a mutual ex-

clusion between two alternative features B and C (Test RC1.xml).
Figure A.20 Constraint A ⇒ C is redundant due to transitivity (Test RC2.xml).
Figure A.21 Constraint ¬(C ∧ E) is redundant, because it represents a multiple

exclusion of feature E (Test RC3.xml).
Figure A.22 Constraint B⇒ C is redundant due to a multiple implication of feature

E (Test RC4.xml).
Figure A.23 Constraint D ⇒ C is redundant, because feature D implies the core

feature C (Test RC5.xml).
Figure A.24 Constraint C ⇒ D∨E is redundant, because feature D and E are both

alternative to each other which includes an or-relationship between both
features (Test RC6.xml).

Figure A.25 Constraint ¬A ∨ C ∨ D is redundant, because both features C and
D have the same feature parent A and are contained in an or-group
(Test RC7.xml).

Figure A.26 Constraint B ∧C is redundant, because both B and C are core features
(Test RC8.xml).

Figure A.27 Constraint ¬(A ∨ B) ∧ ¬(A ∨ C) is redundant, because both feature
B and C are child features of A and, hence, are implied by feature A
(Test RC9.xml).

Figure A.28 Constraint ¬E ∨ ¬C represents a multiple exclusion of feature C
(Test RC10.xml).

Figure A.29 Constraint B∨C∨D is redundant, because all features are already con-
tained in an or-group within the feature tree topology (Test RC11.xml).

Figure A.30 Constraint E ⇒ B is redundant due to transitivity (Test RC12.xml).
Here, a shorter explanation is found.

Figure A.31 Constraint Navigation ⇒ USB is redundant, because a mandatory
child GPSAntenna of a false-optional feature Navigation already im-
plies USB. Constraint Europe ⇒ Gearbox is redundant, because both
features already appear as a conjunction in a constraint (/TestFeature-
Models/AllDefects/Test AllDefects.xml). Here, a shorter explanation
has been found. A longer explanation states that both features are core
features.

Figure A.32 Constraint Garbody ∧ Gearbox is redundant, because both fea-
tures are core features (emphasized parts) and, additionally, Car-
body indirectly implies Gearbox (/TestFeatureModels/AllDefect-
s/Test AllDefects.xml).
7 redundant constraints (PPU.xml)
2 redundant constraints (SortingLine.xml)

Table A.4: Overview of test feature models for redundant cross-tree constraints.
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Constraint	is redundant	and could be removed.

Constraint	is redundant,	because:	
B	is alternative	child of A	(1/1)
C	is alternative	child of A	(1/1)

Figure A.19: Redundant cross-tree con-
straint: test case 1

Constraint	is redundant	and could be removed.

Constraint	is redundant,	because:	
B	is mandatory child of A	(2/2)
C	is mandatory child of B	(2/2)

Figure A.20: Redundant cross-tree con-
straint: test case 2

Constraint	is redundant	and could be removed.

Constraint	is redundant,	because:	
C	is mandatory child of B	(2/3)
- (B	&	E)	is Constraint	(3/3)

Figure A.21: Redundant cross-tree con-
straint: test case 3

Constraint	is redundant	and could be removed.

Constraint	is redundant,	because:	
C	is mandatory child of B	(2/2)
B	=>	E	is Constraint	(2/2)

Figure A.22: Redundant cross-tree con-
straint: test case 4

Constraint	is redundant	and could be removed.

Constraint	is redundant,	because:	
A	is ROOT	(1/2)
B	is mandatory child of A	(2/2)
C	is mandatory child of B	(2/2)

Figure A.23: Redundant cross-tree con-
straint: test case 5

Constraint	is redundant	and could be removed.

Constraint	is redundant,	because:	
A	is ROOT	(1/2)
B	is mandatory child of A	(2/2)
D	is alternative	child of B	(2/2)
E	is alternative	child of B	(2/2)

Figure A.24: Redundant cross-tree con-
straint: test case 6
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Constraint	is redundant	and could be removed.

Constraint	is redundant,	because:	
C	is or child of A	(1/1)
D	is or child of A	(1/1)

Figure A.25: Redundant cross-tree con-
straint: test case 7

Constraint	is redundant	and could be removed.

Constraint	is redundant,	because:	
A	is ROOT	(1/3)
B	is mandatory child of A	(1/3)
C	is mandatory child of B	(2/3)

Figure A.26: Redundant cross-tree con-
straint: test case 8

Constraint	is redundant	and could be removed.

Constraint	is redundant,	because:	
B	is mandatory child of A	(2/3)
C	is mandatory child of A	(1/3)

)

Figure A.27: Redundant cross-tree con-
straint: test case 9

Constraint	is redundant	and could be removed.

Constraint	is redundant,	because:	
E	is mandatory child of D	(2/2)
D	is mandatory child of B	(2/2)
B	is alternative	child of A	(2/2)
C	is alternative	child of A	(2/2)

Figure A.28: Redundant cross-tree con-
straint: test case 10

Test models for implicit constraints

In Table A.5, we provide 5 feature models with 9 cases of implicit constraints and
a description of the defect cause (path on CD-Rom: /TestFeatureModels/ImplicitCon-
straints/ ). Model PPU has been artificially extended with cross-tree constraints leading
to overall 4 implicit constraints.
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Constraint	is redundant	and could be removed.

Constraint	is redundant,	because:	
A	is ROOT	(1/1)
B is or child of A	(1/1)
C is or child of A	(1/1)
D is or child of A	(1/1)

Figure A.29: Redundant cross-tree con-
straint: test case 11

Constraint	is redundant	and could be removed.

Constraint	is redundant,	because:	
A	is ROOT	(1/3)
B	is alternative	child of A	(1/3)

Figure A.30: Redundant cross-tree con-
straint: test case 12

Constraint	is redundant	and could be removed.

Constraint	is redundant,	because:	
GPSAntenna is mandatory child of Navigation	(2/2)
GPSAntenna =>	USB	is Constraint	(2/2)

Constraint	is redundant	and could be removed.

Constraint	is redundant,	because:	
Carbody &	Gearbox is Constraint	(1/1)

Figure A.31: Redundant cross-tree constraint: test case 13
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Constraint	is redundant	and could be removed.

Constraint	is redundant,	because:	
Car	is ROOT	(4/8)
Gearbox is mandatory child of Car	(4/8)
Carbody is mandatory child of Car	(4/8)
Carbody =>	Automatic &	- Bluetooth	is Constraint	(2/8)
Automatic is alternative	child of Gearbox (2/8)

Figure A.32: Redundant cross-tree constraint: test case 14

Reference Description
Figure A.34 C ∨ G is transitive, because feature G is implied by feature D which is

already in an or-relationship to feature C (Test IC1.xml).
Figure A.33 Constraint ¬ Bluetooth is transitive, because it is excluded by a core

feature Carbody. Constraint Navigation ∨¬ Radio is transitive, be-
cause Radio already implies Navigation (/TestFeatureModels/AllDe-
fects/Test AllDefects.xml).

Figure A.35 Constraint D ∨¬ C is transitiv, because feature C implies feature G
and feature G implies feature D, resulting in a transitive relationship
between feature C and D (Test IC2.xml).

Figure A.36 Constraint ¬D ∨ ¬C is transitiv, because both feature C and D imply
alternative features G and H which results in feature C and D being
mutually exclusive to each other(Test IC3.xml) .
Submodels of PPU model (# implicit constraints): PPUC(2), PPUE(1),
PPUS(1) (/PPU Extended.xml)

Table A.5: Overview of test feature models for implicit constraints.
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Figure A.33: Implicit constraint: test case 1

Figure A.34: Implicit constraint: test case 2
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Figure A.35: Implicit constraint: test case 3

Figure A.36: Implicit constraint: test case 4
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