
The Role of Complex
Constraints in

Feature Modeling
Master’s Thesis

Alexander Knüppel
July 5, 2016

Institute of Software Engineering and Automotive Informatics
Prof. Dr.-Ing. Ina Schaefer

Supervision
Dr.-Ing. Thomas Thüm

at

Technische Universität Carolo-Wilhelmina zu Braunschweig

http://publikationsserver.tu-braunschweig.de/get/64215

http://publikationsserver.tu-braunschweig.de/get/64215

The Role of Complex
Constraints in

Feature Modeling
Masterarbeit

Zur Erlangung des akademischen Grades Master of
Science

Alexander Knüppel
5. Juli 2016

Institut für Softwaretechnik und Fahrzeuginformatik
Prof. Dr.-Ing. Ina Schaefer

Betreuung
Dr.-Ing. Thomas Thüm

Technische Universität Carolo-Wilhelmina zu Braunschweig

http://publikationsserver.tu-braunschweig.de/get/64215

http://publikationsserver.tu-braunschweig.de/get/64215

Abstract
Feature modeling is a method to compactly capture commonality and variability of a software
product line. Multiple feature modeling languages have been proposed that evolved over the
last decades to become more expressive in syntax and semantics. Most of today’s languages are
capable of utilizing arbitrary propositional formulas in cross-tree constraints, denoted as complex
constraints, a mechanism enabling complete expressiveness. However, many of today’s publications
and feature model applications are targeting older, less expressive languages, due to their history
and long domination in the product-line community. We present a study on the importance of
complex constraints in feature modeling. Furthermore, to build a bridge between feature models
using complex constraints and methods lacking support for complex constraints, we present a
sound refactoring of complex constraints, discuss preconditions that must be met, and conduct
empirical experiments on real-world feature models to evaluate its usefulness and scalability.

http://publikationsserver.tu-braunschweig.de/get/64215

http://publikationsserver.tu-braunschweig.de/get/64215

Zusammenfassung
Feature-Modellierung ist eine Methode, um Gemeinsamkeiten und Variabilität einer Produktlinie
in der Softwareentwicklung kompakt darzustellen. Über die letzten Jahrzehnte wurden verschiedene
Sprachen für die Feature-Modellierung vorgestellt, die sich sowohl syntaktisch als auch seman-
tisch voneinander unterscheiden. Viele der heute eingesetzten Sprachen unterstützen die Angabe
beliebiger logischer Audrücke, so genannte komplexe Constraints, um orthogonale Beziehungen
zwischen Features festzulegen. Komplexe Constraints geben einer Feature-Modellierungssprache
volle Ausdrucksmächtigkeit. Allerdings werden heutzutage immer noch eine große Menge an Metho-
den und Applikationen publiziert, die auf bekanntere Sprachen mit weniger Ausdrucksmächtigkeit
aufbauen. In dieser Arbeit untersuchen wir die Notwenidigkeit von komplexen Constraints in der
Feature Modellierung. Zudem überbrücken wir die Problematik zwischen neueren Sprachen mit
komplexen Constraints und Methoden und Tools, die auf älteren Sprachen aufbauen, indem wir
einen Ansatz präsentieren, um komplexe Constraints in Feature Modellen zu eliminieren. Wir
diskutieren Vorbedingungen und evaluieren unseren Ansatz hinsichtlich Nutzen und Skalierbarkeit
an Feature Modellen aus der realen Welt.

http://publikationsserver.tu-braunschweig.de/get/64215

http://publikationsserver.tu-braunschweig.de/get/64215

Acknowledgement
I would first like to thank my thesis advisor Dr.-Ing. Thomas Thüm. The door was always open
whenever I ran into a trouble spot or had a question about my research or writing. He consistently
allowed this thesis to be my own work, but steered me in the right direction whenever he thought
I needed it. His careful reviews of my drafts and impeccable remarks allowed me to constantly
improve my research skills during the creation of this thesis.

I would also like to thank Prof. Dr. Ina Schaefer and her team at the institute of software
engineering and automotive informatics. Their input and substantial feedback guided me in the
right direction and broadened my view on the thesis’ topic.

A very special thanks goes to Jens Meinicke, Malte Lochau, Stephan Mennicke, and Reimar
Schröter, whose general ideas about complex constraints and the basic principle of refactoring
them laid the foundation for this thesis.

Finally, I must express my very profound gratitude towards my family and friends for their
continuous support.

http://publikationsserver.tu-braunschweig.de/get/64215

http://publikationsserver.tu-braunschweig.de/get/64215

Contents
List of Figures iii

List of Tables v

List of Code Listings vii

List of Algorithms ix

1. Introduction 1

2. Constraints in Feature Modeling 5
2.1. Software Product Lines . 5

2.1.1. Preprocessor-Based Variability . 6
2.1.2. Feature Modeling . 7
2.1.3. Domain Engineering . 8

2.2. A Survey of Feature Modeling Languages . 10
2.2.1. Graphical Representations of Feature Models 11
2.2.2. Textual Representations of Feature Models 14
2.2.3. Comparison of Feature Model Representations 18

2.3. Applications of Feature Models . 20
2.4. Summary . 26

3. Formal Foundations of Feature Models 27
3.1. Motivation for a Formal System . 27
3.2. A Formal Semantics for Feature Modeling Languages 28

3.2.1. Defining an Abstract Syntax . 28
3.2.2. Semantic Domain: Giving Meaning to Syntax 32
3.2.3. Capturing Feature Model Extensions . 34
3.2.4. Mapping Feature Models to Propositional Logic 36

3.3. Expressive Power of Feature Models . 37
3.4. Summary . 42

4. Eliminating Complex Constraints 45
4.1. General Refactoring of Feature Models . 45
4.2. Refactoring Group Cardinality . 51
4.3. Refactoring Complex Constraints . 52

4.3.1. Pseudo-Complex Constraints and Trivial Simplifications 53
4.3.2. Refactoring Using Negation Normal Form 54

http://publikationsserver.tu-braunschweig.de/get/64215

ii Contents

4.3.3. Refactoring Using Conjunctive Normal Form 59
4.3.4. One-to-One Correspondence of Configurations 61

4.4. Summary . 62

5. Eliminating Complex Constraints with FeatureIDE 65
5.1. Overview . 65
5.2. Preprocessing Phase . 67
5.3. Choosing a Conversion Strategy . 68
5.4. Implementing an Exporter for the Fama File Format 72
5.5. Summary . 73

6. Evaluation 75
6.1. Methodology . 75
6.2. Experimental Results . 77

6.2.1. Constraint Classification . 78
6.2.2. Performance Analysis . 80
6.2.3. Scalability . 86

6.3. Threats to Validity . 89
6.4. Summary . 90

7. Related Work 91

8. Conclusion 93

9. Future Work 95

Appendix A. Evaluation Results 97

Bibliography 107

http://publikationsserver.tu-braunschweig.de/get/64215

List of Figures
2.1. Stack Example Using the C Preprocessor to Implement Variability 7
2.2. Example Feature Diagram of a Mobile Phone Product Line 8
2.3. Overview of the Domain and Application Engineering Process 9
2.4. Syntax of a FODA Feature Diagram (Adopted from Kang et al. (1990)) 11
2.5. Syntax of a FeatuRSEB Feature Diagram . 12
2.6. Syntax of a Feature Diagram Proposed by Riebisch et al. (2002) 13
2.7. Syntax of a Feature Model Proposed by Van Deursen and Klint (2002) 14
2.8. Syntax of a GUIDSL Feature Model . 15
2.9. Syntax of a Feature Model in SXFM . 15
2.10. Syntax of a FAMA Feature Model . 16
2.11. Syntax of a Feature Model in TVL . 16
2.12. Syntax of a Velvet Feature Model . 17
2.13. Syntax of a Familiar Feature Model . 17
2.14. Syntax of a Clafer Feature Model . 18
2.15. Frequency of Complex Constraints in Feature Model Applications 24
2.16. Frequency of Complex Constraints Over Time . 26

3.1. Three Syntactically Different Yet Equivalent Feature Models 34
3.2. Shortened Version of the Mobile Phone Product Line 37
3.3. Feature Model with two Complex Constraints . 39
3.4. Difference in Expressive Power of Feature Models 41
3.5. Example of a Potential Feature Model in LRBFM 42
3.6. Semantic Domain of Feature Modeling Languages 43

4.1. Three Semantically Equivalent Feature Models . 46
4.2. Refactoring of a Feature Model m . 47
4.3. Example of a Feature Model Change . 48
4.4. Example of an Original Feature Model and an Abstract Subtree 49
4.5. Transformation of a Propositional Formula to an Abstract Subtree 50
4.6. Replacing a Complex Constraint by an Equivalent Abstract Subtree. 51
4.7. Problem of Refactoring Group Cardinality . 51
4.8. Eliminating Group Cardinality . 52
4.9. Resulting Abstract Subtree Based on Conjunctive Normal Form 60
4.10. Resulting Feature Model when a Coherent Refactoring is Performed 62

5.1. Feature Modeling Project in FeatureIDE with Context Menu 66
5.2. Activity Diagram of the Refactoring Process . 66

http://publikationsserver.tu-braunschweig.de/get/64215

iv List of Figures

5.3. Identifying Redundant Constraints . 68
5.4. A Wizard for the Conversion Process . 69
5.5. Relationships Between Conversion Strategies . 71

6.1. Constraint Classification for each Feature Model 78
6.3. Number in Literals of Strict-Complex Constraints for each Feature Model 79
6.4. Total Time Measured for Eliminating Complex Constraints (Incoherent Refactoring) 81
6.5. Total Time Measured for Eliminating Complex Constraints (Coherent Refactoring) 82
6.6. Time Measured to Identify Redundant and Tautological Constraints. 82
6.7. Time Measured to Process Pseudo-Complex Constraints 83
6.8. Time Measured to Process Strict-Complex Constraints 84
6.9. Time Measured to Construct and Compose all Abstract Subtrees 84
6.10. Average Heap Allocation for the Linux Kernel for each Conversion Strategy 85
6.11. Heap Allocation of a Refactoring of the Linux Kernel Using Conjunctive Normal Form 86
6.12. Increase in Features after Refactoring using the Combined Method 87
6.13. Increase in Constraints after Refactoring using the Combined Method 87

http://publikationsserver.tu-braunschweig.de/get/64215

List of Tables
2.1. Comparison of Feature Modeling Languages . 19
2.2. Summary of Reviewed Publications for Feature Model Applications 25

3.1. Translation Between Group Cardinality and Concrete Syntax in a Feature Diagram 29
3.2. Abstract Representation of the Mobile Phone Product Line 31
3.3. Comparison of Program Variants and Configurations 34
3.4. Mapping of Feature Models to Propositional Logic 36

4.1. Overview of Defined Refactoring Algorithms . 63

5.1. Publicly Available Methods of Class ComplexConstraintConverter 67
5.2. Exporting a Feature Model into the Fama File Format 73

6.1. Notation Used for Evaluation . 76
6.2. Representative Sample Set of Evaluated Feature Models 77

A.1. Notation Used for Evaluation . 98
A.2. Statistical Properties of Evaluated Feature Models 99
A.3. Time Measurements for Incoherent Refactoring . 100
A.4. Time Measurements for Coherent Refactoring . 101
A.5. Increase in Features and Constraints After Refactoring 102
A.6. Average Statistical Properties of Generated Feature Models 103
A.7. Summary of Computed Times for Generated Feature Models 104
A.8. Summary of Increase in Features and Constraints for generated Feature Models . . 105

http://publikationsserver.tu-braunschweig.de/get/64215

http://publikationsserver.tu-braunschweig.de/get/64215

List of Code Listings
5.1. IConverterStrategy Interface . 68
5.2. Preprocessing Method of NNFConverter . 69
5.3. Preprocessing Method of CombinedConverter . 71

http://publikationsserver.tu-braunschweig.de/get/64215

http://publikationsserver.tu-braunschweig.de/get/64215

List of Algorithms
4.1. Converting a Propositional Formula to Negation Normal Form 55
4.2. Converting a Propositional Formula to Conjunctive Normal Form 60

http://publikationsserver.tu-braunschweig.de/get/64215

http://publikationsserver.tu-braunschweig.de/get/64215

1 Introduction
A major challenge in today’s software engineering process is the cost-efficient reuse of software
artifacts. Obviously, reuse not only helps in drastically decreasing the cost of software development
and maintenance, but also helps in increasing the software’s quality. Software product-line
engineering has evolved to a new software paradigm embracing the idea of mass customization and
software reuse (Pohl et al., 2005). A software product line is a family of related software products
that share a common code base and are each composed by a legal combination of software artifacts
(Czarnecki and Eisenecker, 2000). Those software artifacts are termed features. Kang et al. (1990)
define a feature as a "prominent or distinctive user-visible aspect, quality, or characteristic of a
software or system that is relevant to some stakeholder".

Currently, the most frequently used family of approaches in industrial practice to represent a
software product line is feature modeling, originally introduced in the Feature-Oriented Domain
Analysis (FODA) method by Kang et al. (1990). Feature modeling captures valid configuration
options of a software product line in a hierarchically arranged set of features. Feature models allow
practitioners to describe commonality (i.e., characteristics that all products share) and variability
(i.e., the differences between products) of a software product line in terms of features.

In its basic form (Benavides et al., 2010) there are two types of relationships among features in
a feature model. The first type is a parental relationship (i.e., decomposition) between a feature
and its child features and consists of either an optional/mandatory relation, alternative relation, or
or relation. The second type, namely cross-tree constraints, symbols a dependency of two features
in the final product beyond decomposition. There are two kinds of cross-tree constraints in a basic
feature model: either the existence of one feature requires the existence of another feature (requires
relation) or a mutual exclusion between two features (excludes relation) (Kang et al., 1990). We
call requires and excludes relations simple constraints. More complex constraints have later been
proposed in literature (Batory, 2005) and allow the existence of arbitrary propositional formulas
among features in feature models.

In this thesis, we focus on the distinction between simple and complex constraints. Many of
today’s feature models consist of at least several hundreds of features. We argue that the use of
only simple constraints may complicate the modeling process. Moreover, complex constraints were
introduced with the clear objective to deal with the enormous and ever-increasing complexity of
feature models. However, over the last decades, several new or extended feature modeling languages,
both graphical and textual, have been proposed, which do not consider complex constraints at
all (Kang et al., 1990; Griss et al., 1998; Kang et al., 1998; Czarnecki and Eisenecker, 2000; Gurp
et al., 2001; Riebisch et al., 2002; Eriksson et al., 2005; Benavides et al., 2005). Benavides et al.
(2010) even proclaim that cross-tree constraints "are typically inclusion or exclusion statements",
i.e., simple constraints, but as far as we know, this has not been studied empirically yet.

Nevertheless, there are also numerous languages that increase the power of feature models
through complex constraints (Batory, 2005; Kästner et al., 2009; Mendonça et al., 2009). Starting

http://publikationsserver.tu-braunschweig.de/get/64215

2

from the distinction between simple and complex constraints, we found one particular question of
interest to be left unanswered by today’s research: how important is the role of complex constraints
in feature modeling?

We identified that several publications on feature modeling applications only consider languages
close to basic feature models, i.e., without complex constraints. These applications include the
generation of feature model configurations (White et al., 2014), the generation of feature models
that are particular hard to analyze (Segura et al., 2014), extracting models from configurations
(Al-Msie ’deen et al., 2014), and optimal product derivation based on non-functional properties
(Guo et al., 2011). Another challenge is the automated analysis of feature models (Benavides et al.,
2010). Betty, for example, is a framework that aims at "[enabling] the automated detection of
faults in feature model analysis tools" (Segura et al., 2012). However, Betty can only work with
feature models using simple constraints. Feature modeling practitioners working with complex
constraints may not be able to make use of one of these approaches and tools, or the results and
insights Betty offers.

We think that a starting point to this problem is automated elimination of complex constraints
and the accompanied feature model refactoring to a basic feature model. However, Schobbens
et al. (2007) argue that the language of basic feature models is not expressive complete (i.e., there
exists a product line for which no feature model can be found), which prevents a transformation
from feature models with complex constraints to feature models with only simple constraints. We
argue that with the concept of abstract features (i.e., features with no code mapping used for
decomposition and as part of cross-tree constraints), feature models with simple constraints can
become expressive complete.

Nevertheless, it is unclear if an efficient refactoring can be constructed and if these refactorings
are still useful in practice. If such a refactoring does not scale well, we have indeed highlighted the
expressive power of complex constraints, hence we are motivated to conduct empirical experiments
to examine the role of complex constraints in feature modeling.

Problem Statement
The Betty example shows that even modern tooling can rely on a basic feature modeling language.
The following four research questions, left mostly unanswered by related work, motivate us to
address this problem further.

Research Question 1 (RQ1). Which feature modeling languages, methods, and tools do support
or do not support complex constraints, and how valuable are complex constraints in general?

Research Question 2 (RQ2). Under which circumstances is it possible to eliminate complex con-
straints?

Research Question 3 (RQ3). To what extent are complex constraints used in real-world feature
models?

Research Question 4 (RQ4). What are the costs of eliminating complex constraints?

http://publikationsserver.tu-braunschweig.de/get/64215

1. Introduction 3

Research Goals
The main goal of this thesis is a sound refactoring of feature models containing complex constraints
to feature models containing only simple constraints. We will see that the concept of abstract
features will play a big role in the refactoring. The second big major goal is an investigation of
the portion of real-world feature models, containing arbitrary constraints, and to what extent
approaches, such as feature model analysis or optimal product derivation, can only deal with
requires and excludes constraints. Namely, this thesis consists of the following goals.

Research Goal 1 (RG1). Evidence that real-world feature models rely on complex cross-tree con-
straints but many published methods for feature models do not. Whether the problem is worth
studying remains. We will collect evidence that many feature models in practice already use
arbitrary cross-tree constraints, yet a big portion of modern tools and research contributions
in this domain assumes that feature models only contain requires and excludes constraints.
9pt] Realization. We survey several feature modeling languages and take on a short litera-
ture review on methods and tooling in the domain of feature models. Moreover, we examine
the portion of complex constraints in real-world feature models in an empirical study.

Research Goal 2 (RG2). A proof that feature model trees with only requires and excludes con-
straints but abstract features are expressive complete. The case without explicit abstract
features has already been studied by Schobbens et al. (2007). The general conclusion is that
these kinds of feature models are not expressive complete. With a formal semantics and the
use of abstract features we provide a formal proof that every product line can be modeled by
a feature model language only using simple constraints.

Realization. We formalize a general formal semantics targeting the diversity of various
feature modeling languages. This formal framework will help us to highlight the expressive
value of complex constraints and abstract features, and helps us also in examining the
expressive restriction for other languages (e.g., basic feature models).

Research Goal 3 (RG3). An algorithm for refactoring feature models with arbitrary constraints to
feature models with only requires and excludes constraints. From the conclusion drawn above
we want to present an algorithm for the refactoring process including a formal proof of the
correctness of the transformation.

Realization. Based on our formal semantics, we are able to formulate a step-by-step
refactoring algorithm and to prove its correctness formally. We introduce the concept of
abstract subtrees that we exploit to build semantically equivalent feature model structures
from cross-tree constraints.

Research Goal 4 (RG4). An implementation of the refactoring algorithm in FeatureIDE and an
evaluation of its scalability. To evaluate our approach in terms of speed, memory usage, and
scalability with real-world examples, we want to implement our algorithm in FeatureIDE,
an Eclipse-based framework for the whole process of software product-line engineering.
Moreover, it is important to empirically evaluate whether our algorithm is useful for large
feature models.

http://publikationsserver.tu-braunschweig.de/get/64215

4

Realization. The implementation will consist of a basic implementation eliminating complex
constraints of feature models in FeatureIDE. Moreover, we use this implementation to
extend FeatureIDE with a real application scenario: an exporter for the Fama file format,
a format for basic feature models. Our implementation is also eventually used to conduct
experiments to empirical evaluate our algorithm and to answer part of the research questions
formulated above. We therefore use a representative sample set of large and small feature
models, and artificial generated feature models of different sizes.

Reader’s Guide
Chapter 2 provides an introduction to feature models and software product lines, and a survey on
the evolution of feature modeling languages. We also provide evidence from the real-world that
the underlying problem of missing support for complex constraints needs to be investigated. In
Chapter 3, we develop a general formal semantics for feature models and explore the expressiveness
of different feature modeling characteristics. Chapter 4 covers our formulation of an refactoring
algorithm to eliminate complex constraints, including a formal proof of its correctness. The
implementation in FeatureIDE is described in Chapter 5. We empirically evaluate the usefulness
and scalability of our algorithm in Chapter 6. Related work is discussed in Chapter 7. Finally, we
conclude this thesis and give an outlook to future work in Chapter 8 and Chapter 9, respectively,
and present the collected results of our empirical evaluation in Appendix A.

http://publikationsserver.tu-braunschweig.de/get/64215

2 Constraints in Feature
Modeling
The subject of this thesis are complex constraints in feature models. This chapter’s objective is
twofold. First, in Section 2.1, we provide the necessary background on software product lines,
feature modeling, and domain engineering. Second, we are motivated by RQ1 to analyze which
feature modeling languages, methods, and tools use complex constraint and which use only simple
constraints to reason about the acceptance of complex constraints in feature modeling. We survey
different feature modeling languages in Section 2.2, and collect information about the use of
complex constraints in the literature in Section 2.3.

2.1. Software Product Lines
In today’s software engineering process, more and more companies are targeting the demands of
their prospective customers by creating a software product line (i.e., a set of software products as
variations of a common code base (Clements and Northrop, 2001)) rather than a single software
product.

For example, a company developing an infotainment system in the automotive marketplace will
not be competitive if it sells its software product to only one client tailored to only one particular
car model. Different automotive companies have different requirements, specifications, and needs.
Creating individual products for every car model would result in massive costs. Another prominent
example can be found in embedded systems, where software often has a critical responsibility.
Inboard software is embedded software running in aircraft, spacecraft, or satellites, and thus needs
to work as intended, or otherwise can lead to catastrophic behavior. The goal of software product
lines is to reuse reliable and tested software artifacts in related software products.

To address these problems, cost-efficient manufacturing of software from reusable parts has
emerged into a new software paradigm called software product-line engineering. Pohl et al. (2005,
p. 14) define software product line engineering as follows.

"Software product line engineering is a paradigm to develop software applications
(software-intensive systems and software products) using platforms and mass customi-
sation."

Mass customization in product-line engineering targets similar products in the same domain. A
specific process called domain engineering (Pohl et al., 2005) helps in identifying reusable software
artifact, as a first step to implement a product line, and also to define commonalities and variability
of the underlying domain. The result is then captured in a variability model that offers variation
points. Variation points enable the adjustment of similar software assets to one context to derive a

http://publikationsserver.tu-braunschweig.de/get/64215

6 2.1. Software Product Lines

customized software product. For example, a software asset sending messages over a network can
vary in its encryption method, i.e., symmetric key, public key, or other means of encryption. The
type of encryption can be seen as a variation point.

Reusing software artifacts during product development is done in a process called application
engineering (Pohl et al., 2005). In this process, selected software artifacts are merged together to
generate a desired software product. The selection is called a configuration.

The most typical approach on representing a product line is through compiler-directives such
as the well-known #ifdef from the C preprocessor (Svahnberg and Bosch, 2000; Gacek and
Anastasopoules, 2001), or other means of conditional compilation. A basic example of a product
line using the C preprocessor is described in Section 2.1.1. In Section 2.1.2, we give an informal
introduction to feature models, a prominent kind of a variation model and subject of this thesis.
Finally, in Section 2.1.3, we give an overview on domain engineering, the first stage in developing
a software product line.

2.1.1. Preprocessor-Based Variability
As mentioned in the previous section, a typical approach on implementing variability in source
code is through preprocessor directives. A preprocessor is a tool that runs over the source code
before compilation and removes parts wrapped between specific annotations (directives) (Apel
et al., 2013, p. 110ff.). For example, the C preprocessor allows code parts to be wrapped between
#ifdef and #endif. The code in between is removed when following symbol after #ifdef is not
defined. Figure 2.1 exemplifies a variability through preprocessor directives of a simple stack
implementation.

In this example, DEVELOPMENT is defined whereas SERIALIZE is not. Hence, only the part
surrounded by #ifdef DEVELOPMENT ... #endif is retained (highlighted in green). The right-
hand side depicts the generated source code after preprocessing and before compilation. This
variability is offered by defining symbols either directly in the source code through #define, or by
giving the compiler a list of defined symbols, mostly through the prefix -D followed by the symbols
name (e.g., -DDEVELOPMENT in this case).

In product-line engineering, we speak of features instead of symbols. The exact definition of
a feature varies in literature depending on the approach to implement variability as shown by
Classen et al. (2008). For example, Batory et al. (2006) define a feature as an "increment in
program functionality" which aligns with the perspective of feature-oriented programming; another
mechanism to offer variability as opposed to a preprocessor. We stick with the notion by Kang
et al. (1990) and see a feature as a specific characteristic or aspect that can be added to the
software base to generate a new program variant.

One of the most prominent and complex examples for a preprocessor-based variability model
with many different variants is the Linux kernel (Bovet and Cesati, 2005). In one of its larger
versions, the Linux kernel comprises over 10,000 features, which can be selected to generate specific
kernel images (i.e., software products).

Preprocessing is an easy way to develop a product line, yet this technique has obviously some weak
points. For example, reusing and even identifying software assets is not a clear task. Besides the
preprocessor, there are other common options to implement variability, i.e., Runtime Parameters,

http://publikationsserver.tu-braunschweig.de/get/64215

2. Constraints in Feature Modeling 7

1 # include <stdio.h>
2 # define STACKMAX 50
3 typedef struct Stack {
4 int storage[STACKMAX];
5 int top;
6 } Stack;
7
8 void init(Stack *s) {...}
9

10 int pop(Stack *s) {...}
11
12 void push(Stack *s, int v) {
13 if(s->top < STACKMAX)
14 s->storage[s->size ++] = d;
15 #ifdef DEVELOPMENT
16 else
17 fprintf(stderr , "Stack is full.\n");
18 #endif
19 }
20
21 #ifdef SERIALIZE
22 void* serialize(Stack *s) {...}
23 Stack* unserialize(void *buffer) {...}
24 #endif

1 # include <stdio.h>
2 # define STACKMAX 50
3 typedef struct Stack {
4 int storage[STACKMAX];
5 int top;
6 } Stack;
7
8 void init(Stack *s) {...}
9

10 int pop(Stack *s) {...}
11
12 void push(Stack *s, int v) {
13 if(s->top < STACKMAX)
14 s->storage[s->size ++] = d;
15
16 else
17 fprintf(stderr , "Stack is full.\n");
18
19 }
20
21
22
23
24

Figure 2.1.: Stack Example Using the C Preprocessor to Implement Variability

Design Patterns, Frameworks, Components and Services, Build and Version-Control Systems, and
Feature-Oriented and Aspect-Oriented Programming. All of these are further described by Apel
et al. (2013).

2.1.2. Feature Modeling
Feature models were first introduced in the Feature-Oriented Domain Analysis (FODA) by Kang
et al. (1990) and became an important means for modeling variability in software product-line
engineering. A feature model is a simple and hierarchically organized model that captures
commonality and variability of a software product line in terms of features.

Feature models are used to represent all possible configurations in a software product line. There
are several representations of feature models. The graphical representation of a feature model
is called a feature diagram (Kang et al., 1990). An example of a feature diagram modeled in
FeatureIDE (Kästner et al., 2009) is given in Figure 2.2. A feature diagram is a tree where each
feature has a parent feature except for the root feature. Each feature is decomposed into one or
more features except for terminal features. The selection of features to derive a product underlies
rules given by the feature diagram’s notation. As indicated in Figure 2.2, we distinguish between
four decomposition types:

Or: at least one of its sub-features must be included (cf. sub-features of Media).

Alternative: exactly one of its sub-features must be included (cf. sub-features of Screen).

http://publikationsserver.tu-braunschweig.de/get/64215

8 2.1. Software Product Lines

Figure 2.2.: Example Feature Diagram of a Mobile Phone Product Line

Mandatory and Optional: Mandatory and optional features are typically part of an and
decomposition. Mandatory sub-features must be included and optional features can be
included (cf. features Calls and GPS).

The inclusion of any feature assumes that its parent is also included. Furthermore, cross-tree
constraints can be specified to define further relationships between features not in parental
relationship. In Figure 2.2, cross-tree constraints are arbitrary propositional formulas that must
valuate to true.

The use of arbitrary propositional formulas is not self-evident. Many notations, as investigated
in Section 2.2, are restricted to two special kinds of cross-tree constraints, namely requires and
excludes constraints. Given two features A and B,

A requires B: if A is included then B must also be included.

A excludes B: if A is included then B is not allowed to be included, and vice versa.

Hence, we make the distinction between arbitrary propositional formulas and these two special
cross-tree constraints. Every constraint representing a requires constraint or excludes constraint is
called a simple constraint. A textual constraint using arbitrary propositional formula is called a
complex constraint. It has to be noted that this concept does not depend on the concrete syntax of
a feature modeling notation. For example, consider a requires constraint between features A and
B, then (A =⇒ B), (¬A∨B), or a graphical representation (e.g., a drawn arrow from feature A
to feature B) are all equivalent simple constraints. In contrast, (A∨B) is a complex constraint.1

We also distinguish between features that influence program functionality (i.e., result in different
source code if included) and features that are mainly used for modeling and decomposition (i.e.,
they do not occur in an #ifdef in preprocessor-based variability). The former features are called
concrete features, whereas the latter features are called abstract features (Thüm et al., 2011).

2.1.3. Domain Engineering
In Section 2.1.2, we introduced feature modeling. In product-line engineering, the process eventually
resulting in a feature model is called domain engineering. When implementing a software product

1Opposed to the definitions here, some authors use the term basic constraint to refer to a subset of arbitrary
propositional formula, and the term complex constraint to refer to first order logic or to constraints including
attributes (Classen et al., 2011).

http://publikationsserver.tu-braunschweig.de/get/64215

2. Constraints in Feature Modeling 9

Figure 2.3.: Overview of the Domain and Application Engineering Process (Adopted from Pohl et al. (2005))

line, a common software platform for gathering software assets is used. The term platform originally
arose from a customer’s need to have an individualized product in the industry sector. Therefore,
especially in the car industry, many companies started to introduce common platforms for their
different types of models to allow the cost-efficient exchange of certain parts (Pohl et al., 2005).
Meyer and Lehnerd (1997) define a platform as "a set of common components, modules, or parts
from which a stream of derivative products can be efficiently developed and launched". For example,
a different suspension system can be used in the same car model to satisfy a customer’s demands.

Similar, a software platform consists of software subsystems (also called software assets) and
interfaces that form a common structure and enable the derivation of a number of software products.
These subsystems can be classified according to their functionality. For example, a hotel reservation
system may depend on a database system, a GUI library, a numerical library for statistics, etc. We
refer to these classifications as domains. Again, the approach of organizing and preparing software
assets for reuse according to their domain is called domain engineering. Czarnecki and Eisenecker
(2000, p. 33) define domain engineering as follows.

"Domain engineering is the activity of collecting, organizing, and storing past experience
in building systems or parts of systems in a particular domain in the form of reusable
assets (i.e. reusable workproducts), as well as providing an adequate means for reusing
these assets (i.e. retrieval, qualification, dissemination, adaptation, assembly, etc.)
when building new systems."

Domain engineering embodies three consecutive steps: domain analysis, domain design, and
domain implementation (Czarnecki and Eisenecker, 2000). These steps are illustrated in Figure 2.3.
In the domain analysis, a set of reusable, configurable requirements for the system in the domain

http://publikationsserver.tu-braunschweig.de/get/64215

10 2.2. A Survey of Feature Modeling Languages

is defined. The purpose is to select and define the domain of focus and to collect relevant domain
information. Sources of information are usually existing systems, experiments, publications, or
domain experts. This step yields to a domain model capturing all relevant relationships among
the classes, oftentimes represented through a UML class diagram. According to the mobile phone
product line example indicated in Figure 2.1, the domain model states that a mobile phone needs
to have exactly one type of screen (either basic, colour, or high resolution).

During domain design, a common platform for the system in the domain is established. We call
such a platform an architecture for the family of systems in the domain (Pohl et al., 2005). Part of
the architecture is a variability model such as the feature model presented in Figure 2.2 for the
mobile phone example. The architecture along with the feature model captures commonality and
variability and therefore enables a production plan. GPS for a mobile phone is optional whereas
the ability for calls, a screen type, and a battery type (AccuCell) are mandatory.

Finally, during domain implementation, reusable software assets are implemented. These include
domain specific languages, components, and code generators. When choosing preprocessor-based
variability, features from the feature model are mapped to preprocessor directives. Hence, different
selections of features (i.e., configurations) result in different source code and therefore in a different,
yet similar, product.

In conclusion, domain engineering focuses on providing reusable solutions for families of systems
contrary to conventional software engineering, which focuses only on a single system. An important
part of the result is a variability model, like the feature diagram presented in Section 2.1.2.

During application engineering, reusable software assets developed in the domain engineering
phase are received to derive applications based on configurations. First, a requirement analysis
similar to traditional software engineering is performed. If necessary features are missing, they
need to be implemented. Then, based on the requirements, features are selected, mapped to
the corresponding software artifacts, and a software product is derived (Pohl et al., 2005; Apel
et al., 2013). Nevertheless, in this thesis we are mainly concerned with feature models and domain
engineering.

2.2. A Survey of Feature Modeling Languages
In the history of software product lines and feature modeling, many different languages have been
proposed. We distinguish between two kinds of representations, graphical and textual languages.
Graphical feature modeling languages (also called feature diagrams) based on FODA Kang et al.
(1990) are by far the most common used in the literature. According to RQ1, we are interested
in the role of complex constraints in different languages. This includes identifying commonalities
and differences between different languages. Many of the languages have been surveyed elsewhere
(Schobbens et al., 2007; Alturki and Khedri, 2010). However, they all only focus either on a specific
subset (e.g., graphical or textual notations) or have a different concern than ours. Hence, we want
to recall the essentials on these surveys and complete them with additional languages.

This survey is by no means complete, but it has the purpose of identifying most important
characteristics of different feature modeling languages. In particular, we are interested in concepts
that enriches the expressiveness of feature models. This includes supported decomposition types,

http://publikationsserver.tu-braunschweig.de/get/64215

2. Constraints in Feature Modeling 11

support for simple and complex constraints, whether the languages are built upon directed acyclic
graphs or trees, and if abstract features are supported. t it gives a sampled overview of different
feature modeling dialects. In Section 3.2, we use this information to define an abstract syntax and
a formal semantics to capture the most important characteristics of feature model languages.

2.2.1. Graphical Representations of Feature Models
In the following, we present nine different graphical feature modeling languages.

FODA (Kang et al., 1990). The feature diagram introduced as part of the Feature Oriented
Domain Analysis (FODA) by Kang et al. (1990) was the first ever specified graphical feature
modeling notation and as such the foundation for many other extensions. As depicted in Figure 2.4,
the characteristics are as follows:

It is a tree.

The root feature (also termed concept) of the product line is at the top.

Features can be mandatory (by default) or optional (visualized with a hollow circle).

Features can be hierarchically decomposed into and-groups or alternative-groups (cf. Sec-
tion 2.1.2).

Features can have a non-hierarchically relationship with textual cross-tree constraints called
composition rules (the same as simple constraints).

Features that are mutual exclusive, i.e., two features cannot coexist in the same
configuration.

Including features, i.e., the presence of one feature requires the existence of another
feature

Figure 2.4.: Syntax of a FODA Feature Diagram (Adopted from Kang et al. (1990))

FeatuRSEB (Griss et al., 1998). Griss et al. (1998) have developed FeatuRSEB which is a fusion
of FODA and the Reuse-Driven Software Engineering Business (RSEB) method. RSEB "[...] is a
systematic, model-driven approach to large-scale software reuse" (Griss et al., 1998). Figure 2.5
shows an example feature diagram in FeatuRSEB. Differences and extensions to FODA are as
follows.

http://publikationsserver.tu-braunschweig.de/get/64215

12 2.2. A Survey of Feature Modeling Languages

It is a directed acyclic graph.

Hierarchical decomposition into or groups was added (cf. Section 2.1.2).

Constraints are represented in graphical fashion.

Requires with a dashed arrow

Excludes with a dashed double-arrow

Figure 2.5.: Syntax of a FeatuRSEB Feature Diagram

FORM (Kang et al., 1998). Kang et al. (1998) have proposed a couple of extensions under the
name Feature-Oriented Reuse Method (FORM) to FODA.

Feature diagrams can be directed acyclic graphs instead of trees.

Features are now organized into a hierarchy of the following four layers. capabilities layer
(functionality of the end user), operating environment layer (attributes of the environment;
hardware, software), domain technologies layer (non-technical issues), implementation tech-
nologies layer (technologies not specific to a domain).

Generative programming (Czarnecki and Eisenecker, 2000). Czarnecki and Eisenecker (2000)
extend the feature diagram of FODA and adapt it to generative programming, a programming
paradigm aiming at the automated generation of source code.

Hierarchical decomposition into or groups was added.

Different decomposition types can be specified on the same level in the tree (e.g., a mandatory
feature next to an or group).

Group features can be labeled as mandatory (e.g., an or group with a mandatory feature).

Gurp et al. (2001). Gurp et al. (2001) only extend FeaturRSEB (Griss et al., 1998) by binding
times and external features, which are features referring to "technical possibilities offered by the
target platform of the system" (Schobbens et al., 2007).

Riebisch et al. (2002). Riebisch et al. (2002) proposed the concept of group cardinalities in
feature models. Group cardinalities are a UML-like version of multiplicities and generalize or,
and, and alternative groups. Group cardinalities consist of two numbers. First, a lower bound
indicating how many sub-features must be included. Second, an upper bound restricting the
maximum number of sub-features that can be included.

http://publikationsserver.tu-braunschweig.de/get/64215

2. Constraints in Feature Modeling 13

It is a directed acyclic graph.

Group cardinalities instead of and, or, and alternative groups.

Edges can be mandatory or optional.

Simple constraints as in FeatuRSEB

Figure 2.6 depicts an example of the car model in the language proposed by Riebisch et al. (2002).
Mandatory features are visualized with a black circle at the end of an edge. Optional features are
visualized with a white circle. Moreover, group cardinalities dictate the group type. For instance,
feature gear has group cardinality 1..1, which is essentially the same as an alternative group.

Figure 2.6.: Syntax of a Feature Diagram Proposed by Riebisch et al. (2002)

PLUSS (Eriksson et al., 2005). Product Line Use case modeling for Systems and Software
engineering (PLUSS) by Eriksson et al. (2005) follows the same model driven approach as proposed
by Griss et al. (1998) with FeatuRSEB. Additionally, it combines use case modeling with feature
modeling in the same graphical representation. PLUSS has the following characteristics:

PLUSS is a tree.

There are some notational changes for decomposition. Every node has a circle which can
possess a specific character. An ’S’ in a circle refers to single adapters, which is equivalent
to be part of an alternative-group. An ’M’ in a circle refers to multiple adaptors, which is
equivalent to be part of an or-group. A white circle without a character indicates a optional
feature and a black circle indicates a mandatory feature.

PLUSS has graphical requires and excludes constraints.

Benavides et al. (2005). Benavides et al. (2005) provide an extension to the language proposed
by Czarnecki and Eisenecker (2000). They introduced the concept of attributed features. Attributes
in feature models are additional non-boolean information (e.g., int, string,...) directly attached
onto features. Attributes can then be used for specific tools. For example, finding optimal products
requires each feature to have a cost. Restricting variability by means of constraints on attributes
is another common use case.

FeatureIDE (Kästner et al., 2009). FeatureIDE is an Eclipse-based open-source framework
supporting feature-oriented software development, a paradigm for the construction, customization
and synthesis of software systems. FeatureIDE offers a graphical feature model editor for
constructing feature diagrams as well as a textual representation, which can be modified by hand.
There are two main extensions to FODA.

http://publikationsserver.tu-braunschweig.de/get/64215

14 2.2. A Survey of Feature Modeling Languages

Arbitrary propositional formulas as cross-cutting constraints are allowed.

FeatureIDE explicitly distinguishes between abstract and concrete features.

Because FeatureIDE is a framework following feature-oriented software development, it integrates
a mapping from source code to features in a feature model. One distinctive characteristic of features
in FeatureIDE is that every feature can either be abstract or concrete, typically highlighted
through a difference in color in the concrete syntax. We refer again to Figure 2.2 on Page 8,
showing an example of a feature diagram modeled in FeatureIDE.

2.2.2. Textual Representations of Feature Models
Over time, textual feature modeling notations have also been proposed, arguing that it is oftentimes
difficult to analyze and interpret large visual feature diagrams. In the following, we present eight
textual feature modeling languages.

Van Deursen and Klint (2002). The approach proposed by Van Deursen and Klint (2002) is one
of the earliest attempts of defining a textual notation for feature models. Its representation is a
list of feature definitions, where each definition consists of a unique feature name followed by ":"
and a feature expression. The textual notation by Van Deursen and Klint (2002) has the following
characteristics.

It is a tree.

Features can be decomposed into or, and, and alternative groups with syntactical function
more-of, all, and one-of, respectively.

An and group comprises mandatory and optional features (suffixed with a ?).

Simple constraints can be specified.

Figure 2.7 shows an example of the car feature diagram depicted in Figure 2.5 on Page 12.

1 car: all(engine , body , gear , keyless_entry?, power_locks ?)
2 engine: more -of(electric , gas)
3 gear: one -of(manual , automatic)
4 keyless_entry requires power_locks

Figure 2.7.: Syntax of a Feature Model Proposed by Van Deursen and Klint (2002)

GUIDSL (Batory, 2005). GUIDSL is part of the AHEAD tool suite and offers a grammar-like
notation for specifying a feature model. It consists of the following elements:

A feature s with mandatory children e1...en is represented as s:e1...en. If a child is optional,
it is surrounded by [brackets].

An alternative-group is represented as s:e1|e2|...|en

An or-group is a composition of two rules: s:t+ and t:e1|e2|...|en.

http://publikationsserver.tu-braunschweig.de/get/64215

2. Constraints in Feature Modeling 15

In addition, arbitrary propositional formulas are allowed between terminal symbols, repre-
sented through certain keywords (i.e., implies, or, and, not, brackets).

Figure 2.8 shows an example of the car feature model in GUIDSL.

1 car : engine body gear [keyless_entry] [power_locks];
2 engine : e+;
3 e : electric | gas;
4 gear : manual | automatic;
5 keyless_entry implies power_locks;

Figure 2.8.: Syntax of a GUIDSL Feature Model

SXFM (Mendonça et al., 2009). SXFM (Simple XML Feature Models) is a file format created
for the software product line online tools (S.P.L.O.T.). SXFM is similar to the tree-grammar
approach by Batory (2005). Moreover, SXFM uses group cardinalities instead of explicit or, and,
or alternative groups (cf. language proposed by Riebisch et al. (2002)). Complex constraints are
supported, but must be specified in conjunctive normal form. Each clause then represents a solitary
cross-tree constraint. Figure 2.9 shows an example of the car feature model in SXFM.

1 <feature_model name= " c a r " >
2 <meta >
3 ...
4 </meta >
5 <feature_tree >
6 :r car(_r)
7 :m engine(_r_1)
8 :g (_r_1_6) [1,*]
9 : electric(_r_1_6_7)

10 : gas(_r_1_6_8)
11 :m body(_r_2)
12 :m gear(_r_3)
13 :g (_r_3_9) [1,1]
14 : manual(_r_3_9_10)
15 : automatic(_r_3_9_11)
16 :o keyless_entry(_r_4)
17 :o power_locks(_r_5)
18 </feature_tree >
19 <constraints >constraint_1 :~_r_4 or _r_5 </ constraints >
20 </feature_model >

Figure 2.9.: Syntax of a Feature Model in SXFM

FAMA (Benavides et al., 2007) FAMA (FeAture Model Analyzer) is a framework for the
automated analysis of feature models, including recognizing anomalies as dead features (i.e.,
features that not part of any product) and false-optionals (i.e., features that must be selected if
their parents are selected). FAMA offers essentially two input formats. First, a XML format for
feature models with cardinality-based relationships, but only simple constraints. Second, a plain
text format for either the same feature models as for XML, or attributed feature models with the
possibility to use complex constraints.

http://publikationsserver.tu-braunschweig.de/get/64215

16 2.2. A Survey of Feature Modeling Languages

However, when we used the attributed format in the interactive shell offered by FAMA2, crucial
analyses (e.g. counting the numbers of valid products) were not available anymore. Hence,
Figure 2.10 shows an example of the car feature model in the basic plain text format.

1 %Relationships
2 car: engine body gear [keyless_entry] [power_locks];
3 engine: [1,2]{ electric gas};
4 gear: [1,1]{ manual automatic };
5 %Constraints
6 keyless_entry REQUIRES power_locks;

Figure 2.10.: Syntax of a FAMA Feature Model

TVL (Boucher et al., 2010). TVL is a text-based feature modeling language with a C-like syntax
that claims to be "[...] both light and comprehensive, meaning that it covers most constructs
of existing languages [...]" (Boucher et al., 2010). One of the goals of TVL is to be scalable
by offering mechanisms for modularity while also being readable by humans. TVL enhances
basic feature models with cardinality-based decomposition and feature attributes. Additionally,
feature models in TVL can be directed acyclic graphs. Typical cross-tree constraints in TVL are
boolean expressions, meaning that arbitrary propositional formulas as constraints can be defined.
Figure 2.11 shows an example of the car feature model in TVL.

1 root car {
2 group allOf {
3 engine group [1..2] {
4 electric ,
5 gas
6 },
7 body ,
8 gear group [1..1] {
9 manual ,

10 automatic
11 },
12 opt keyless_entry ,
13 opt power_locks
14 }
15 keyless_entry requires power_locks;
16 }

Figure 2.11.: Syntax of a Feature Model in TVL

Velvet (Rosenmüller et al., 2011). Velvet aims at support for multidimensional variability
modeling. Feature models in Velvet can be combined to model dependent software product lines.
The concrete syntax is similar to object-oriented classes, using specialized keywords to indicate
features, feature groups and constraints. Features are hierarchically decomposed and by default
optional. Mandatory features are denoted with the mandatory keyword. Similar to FeatureIDE,
features can be abstract. Feature groups are either alternative relationships or or relationships,
explicitly indicated through the keywords oneOf and someOf. Additionally, Velvet offers the
possibility for defining attributes. Velvet has full support for complex constraints. Furthermore,

2Repository for FAMA: https://code.google.com/archive/p/famats/downloads

http://publikationsserver.tu-braunschweig.de/get/64215

https://code.google.com/archive/p/famats/downloads

2. Constraints in Feature Modeling 17

there exist also constraints for attributes in particular. Figure 2.12 shows an example of the car
feature model in Velvet.

1 concept car {
2 mandatory feature engine {
3 someOf { feature electric; feature gas;}
4 }
5 mandatory feature body;
6 mandatory feature gear {
7 oneOf { feature manual; feature automatic ;}
8 }
9 feature keyless_entry;

10 feature power_locks;
11
12 constraint keyless_entry -> power_locks;
13 }

Figure 2.12.: Syntax of a Velvet Feature Model

Familiar (Acher et al., 2011). Familiar is a scripting language that focuses on the management
of feature models. Different operators are offered including the combination, manipulation, and
analysis of feature models. Familiar is Eclipse-based and, among other things, consists of a
textual editor, an interpreter, reasoner, an integration of the textual language to the FeatureIDE
graphical editor, and the integration for some model formats. Familiar allows the basic modeling
of alternative and or groups as well as mandatory and optional features. Additionally, propositional
formulas can be specified, thus, allowing complex constraints. Figure 2.13 shows an example of the
car feature model in Familiar.

1 fm1 = FM(car : engine body gear [keyless_entry] [power_locks];
2 engine: (electric|gas)+; gear: (automatic|manual);)
3 c1 = { keyless_entry implies power_locks ;}

Figure 2.13.: Syntax of a Familiar Feature Model

Clafer (Bak et al., 2013). Clafer (CLAss, FEature, Reference) is a framework offering meta-
modeling and first-class support for feature models. Feature models in Clafer are trees. The
language offers basic feature groups (alternative group and or group). Moreover, group cardinalities
for each feature can be specified. Cross-tree constraints in Clafer are either arbitrary propositional
formulas or if-then-else expressions (higher level concept). Other notable constructions include the
specification of attributes and abstract features. Figure 2.14 shows an example of the car feature
model in Clafer.

http://publikationsserver.tu-braunschweig.de/get/64215

18 2.2. A Survey of Feature Modeling Languages

1 abstract car
2 or engine
3 electric
4 gas
5 body
6 xor gear
7 manual
8 automatic
9 keyless_entry ?

10 power_locks ?
11 [keyless_entry => power_locks]

Figure 2.14.: Syntax of a Clafer Feature Model

2.2.3. Comparison of Feature Model Representations
Table 2.1 summarizes important characteristics of all surveyed languages. Again, we are particularly
interested in concepts that enhance the expressiveness of a language. For instance, every language
that supports directed acyclic graphs is already capable of expressing every possible product
line (Schobbens et al., 2007). However, feature trees are more common in today’s product-line
engineering. Moreover, complex constraints are also sufficient, as we will prove formally in Chapter 4.
Unfortunately, basic feature models like FODA or GP lack expressiveness (Schobbens et al., 2007).
We also provided a column for attributes. Attributes do not enhance expressiveness, as they deal
with non-functional properties. Nevertheless, attributes are an important part of extended feature
models and offer a different type of variability, which is why we included them. In the next section,
we investigate to what extent typical feature modeling applications deal with complex constraints.

http://publikationsserver.tu-braunschweig.de/get/64215

2. Constraints in Feature Modeling 19

F e
at

ur
e

M
od

el
in

g
L
an

gu
ag

e

Rep
re

se
nt

at
ion Gra

ph
ty

pe1

Dec
om

po
sit

ion
ty

pe
s2 Con

str
ain

tty
pe

Attr
ibu

te
s

Abs
tra

ct
fea

tu
re

s R
em

ar
ks

F O
D

A
(K

an
g

et
al

.,
19

90
)

G
ra

ph
ic

al
Tr

ee
{∧

,⊕
,o

pt
}

Si
m

pl
e

-
-

-
F

ea
tu

R
SE

B
(G

ris
s

et
al

.,
19

98
)

G
ra

ph
ic

al
D

A
G

{∧
,∨

,⊕
,o

pt
}

Si
m

pl
e

-
-

Fi
rs

t
w

ith
or

gr
ou

ps
FO

R
M

(K
an

g
et

al
.,

19
98

)
G

ra
ph

ic
al

D
A

G
{∧

,⊕
,o

pt
}

Si
m

pl
e

-
-

Fi
rs

t
w

ith
D

A
G

G
P

(C
za

rn
ec

ki
an

d
Ei

se
ne

ck
er

,2
00

0)
G

ra
ph

ic
al

Tr
ee

{∧
,∨

,⊕
,o

pt
}

Si
m

pl
e

-
-

M
an

da
to

ry
/o

pt
io

na
li

n
gr

ou
ps

,
m

ul
tip

le
gr

ou
ps

un
de

r
on

e
fe

a-
tu

re
G

ur
p

et
al

.(
20

01
)

G
ra

ph
ic

al
D

A
G

{∧
,∨

,⊕
,o

pt
}

Si
m

pl
e

-
-

-
R

ie
bi

sc
h

et
al

.(
20

02
)

G
ra

ph
ic

al
D

A
G

{c
ar

d,
op

t}
Si

m
pl

e
-

-
Fi

rs
t

w
ith

gr
ou

p
ca

rd
in

al
ity

P
LU

SS
(E

rik
ss

on
et

al
.,

20
05

)
G

ra
ph

ic
al

Tr
ee

{∧
,∨

,⊕
,o

pt
}

Si
m

pl
e

-
-

N
ot

at
io

n
of

m
ul

tip
le

ad
ap

te
rs

B
en

av
id

es
et

al
.(

20
05

)
G

ra
ph

ic
al

Tr
ee

{∧
,∨

,⊕
,o

pt
}

Si
m

pl
e

ye
s

-
A

tt
rib

ut
es

F
ea

tu
re

ID
E

(K
äs

tn
er

et
al

.,
20

09
)

B
ot

h
Tr

ee
{∧

,∨
,⊕

,o
pt
}

C
om

pl
ex

-
ye

s
Ex

pl
ic

it
ab

st
ra

ct
fe

at
ur

es
Va

n
D

eu
rs

en
an

d
K

lin
t

(2
00

2)
Te

xt
ua

l
Tr

ee
{∧

,∨
,⊕

,o
pt
}

Si
m

pl
e

-
-

-
G

U
ID

SL
(B

at
or

y,
20

05
)

Te
xt

ua
l

Tr
ee

{∧
,∨

,⊕
,o

pt
}

C
om

pl
ex

-
-

Fi
rs

tw
ith

co
m

pl
ex

co
ns

tr
ai

nt
s

FA
M

A
(B

en
av

id
es

et
al

.,
20

07
)

Te
xt

ua
l

Tr
ee

{c
ar

d,
op

t}
Si

m
pl

e
ye

s
ye

s
-

V
el

ve
t

(R
os

en
m

ül
le

r
et

al
.,

20
11

)
Te

xt
ua

l
Tr

ee
{∧

,∨
,⊕

,o
pt
}

C
om

pl
ex

ye
s

ye
s

R
el

at
io

na
le

xp
re

ss
io

ns
SX

F
M

(M
en

do
nç

a
et

al
.,

20
09

)
Te

xt
ua

l
Tr

ee
{c

ar
d,

op
t}

C
om

pl
ex

-
-

C
on

st
ra

in
ts

ar
e

in
co

nj
un

ct
iv

e
no

rm
al

fo
rm

T
V

L
(B

ou
ch

er
et

al
.,

20
10

)
Te

xt
ua

l
Tr

ee
{∧

,∨
,⊕

,c
ar

d,
op

t}
C

om
pl

ex
-

-
R

el
at

io
na

le
xp

re
ss

io
ns

Fa
m

il
ia

r
(A

ch
er

et
al

.,
20

11
)

B
ot

h
Tr

ee
{∧

,∨
,⊕

,o
pt
}

C
om

pl
ex

-
-

C
la

fe
r

(B
ak

et
al

.,
20

13
)

Te
xt

ua
l

Tr
ee

{∧
,∨

,⊕
,c

ar
d,

op
t}

C
om

pl
ex

ye
s

ye
s

R
el

at
io

na
le

xp
re

ss
io

ns
1

D
A

G
:D

ire
ct

ed
ac

yc
lic

gr
ap

h
2
∧:

an
d

gr
ou

p,
∨:

or
gr

ou
p,
⊕

:
al

te
rn

at
iv

e
gr

ou
p,

ca
rd

:
gr

ou
p

ca
rd

in
al

ity
,o

pt
:

op
tio

na
lit

y

Ta
bl

e
2.

1.
:C

om
pa

ris
on

of
Fe

at
ur

e
M

od
el

in
g

La
ng

ua
ge

s

http://publikationsserver.tu-braunschweig.de/get/64215

20 2.3. Applications of Feature Models

2.3. Applications of Feature Models
In the previous section, we presented a survey of some important feature modeling languages we
found in the literature, and reviewed whether they support complex constraints. In this section,
we address the second part of RQ1: which approaches and tools do support/do not support complex
constraints? To answer this question, we chose five feature model application areas. In particular,
we discuss automated analysis of feature models, synthesis of feature models, generation of feature
models as test data, product-line testing and analysis, and optimal feature selection.

Automated Analysis of Feature Models. The automated analysis deals with computer-aided
extraction of information from feature models (Batory et al., 2006). Automation is needed, as the
manual analysis is not only highly error-prone but also infeasible for large-scale feature models.
Benavides et al. (2010) have contributed a literature review on the automated analysis of feature
models, highlighting the increase in quality and quantity of analysis operations over the last
decades. In total, they identified 30 analysis operations in the literature to be performed on feature
models. For example, some of the more prominent operations are checking for a void feature model
(i.e., a model that has no valid products), counting the number of generated products, finding dead
features (i.e., features that are not part of any configuration), or identifying false-optionals (i.e.,
optional features that behave like mandatory features). Since the beginning, a whole community
has been built around the automated analysis of feature models, which led to an increase in the
number of proliferated methods and analysis tools (Benavides et al., 2010).

An important step towards more effective techniques in the automated analysis is the translation
from a feature model to propositional logic (Batory, 2005). This has opened the whole squad of
logic-based mathematics to reason about feature models, including off-the-shelf satisfiability solvers.
Many of the analysis operations can be therefore formulated as SAT-problems. For example, a
satisfiability solver can check whether a legal assignment of a propositional formula, translated
from a feature model, exists. If not, the feature model is a void feature model. Obviously, complex
constraints are propositional formulas, hence analysis tools relying on SAT-solving techniques can
easily integrate complex constraints. Analysis tools are very important applications in feature
modeling, especially in practice, as they also help in interactive configurations, where a user derives
a product by consecutively selecting features. The tool guides the user by enabling or disabling
features to select based on a SAT-analysis.

Some prominent analysis tools are S.P.L.O.T. (Software Product Lines Online Tools) (Mendonça
et al., 2009), FAMA (FeAture Model Analyser) (Benavides et al., 2007), and FeatureIDE
(Kästner et al., 2009). S.P.L.O.T. is a web-based reasoning and configuration system for software
product lines. It offers services for automated statistics computation and basic analysis of feature
models, i.e. checking for a void model and detecting the presence of dead and common features
(Mendonça et al., 2009). As mentioned in Section 2.2, S.P.L.O.T. uses the SXFM format and
as such can make use of complex constraints. FAMA is another tool to analyze feature models.
FAMA can be either used with a stand-alone shell (front-end), as a web-service, or integrated as a
Java library, and offers similar services as S.P.L.O.T. i.e. calculating the number of products or
checking for consistency. FAMA supports both, feature models with only simple constraints and
extended feature models (cf. Section 2.2). Extended feature models support complex constraints
(even with attributes). However, as we already mentioned in the last section, some basic analysis

http://publikationsserver.tu-braunschweig.de/get/64215

2. Constraints in Feature Modeling 21

operations (e.g., counting the number of valid products) seem not to work properly with the
extended version. Moreover, we have not found a simple example employing complex constraints.

A different problem in this discipline is addressed by Betty (Segura et al., 2012). More and
more in-house analysis tools are created by researchers. Rather than simply developing basic
research prototypes, the goal should be to develop bug-free and efficient high quality analysis tools.
Betty offers a platform to test and compare these analysis tools. However, Betty can only deal
with basic (FAMA) feature models at this moment, which renders the testing and comparing of
analysis tools with a richer feature modeling language insignificant.

Synthesis of Feature Models. Given the rigorous task of manually reverse engineering a feature
model from a configuration, a propositional formula, or even an informal product description, the
product-line community has shown significant interest in automating this process.

Acher et al. (2012) proposed a semi-automated method to construct a feature model hierarchy
and cross-tree constraints based on tabular product descriptions. They explicitly use requires
and excludes constraints in their formulation, but conclude themselves that those two constraints
are not expressively sufficient. Their evaluation shows an over-approximation of configurations
for various real-world cases. Bécan et al. (2015) build up on the work of Acher et al. (2012) and
allow arbitrary propositional formulas. Al-Msie ’deen et al. (2014) propose a method to mine a
feature model from a set of software configurations using formal concept analysis, a mathematical
principle based on complete lattice (Ganter and Wille, 2012). However, they only give algorithms
for extracting feature groups, requires and excludes constraints. Moreover, in their experiments,
they derive a set of configurations from basic feature models, which they use for their mining
approach. Hence, they do not deal with complex constraints at all. The method proposed by She
et al. (2011) requires a set of feature names, feature descriptions, and feature dependencies as input,
and heuristically identifies parental relationships and requires and excludes constraints, resulting
in a reverse engineered feature model. Analogous to Acher et al. (2012), they tolerate the over-
approximation of configurations in their results. Nevertheless, both methods identify dependencies
that cannot be entailed in basic feature models as a propositional formula, which essentially is a
complex constraint. A later extension to this work is based on input of feature models in either
conjunctive normal form or disjunctive normal form (She et al., 2014). Furthermore, She et al.
(2014) encodes requires and excludes constraints now in their formulation of feature diagrams and
explicitly carry an extra propositional formula for more complex feature dependencies. Haslinger
et al. (2013) also propose an algorithm to synthesize feature models from valid configurations. Their
approach is based on finding patterns among valid configurations to estimate parental relationships.
They mention the existence of more complex constraints, but discuss only requires and excludes
constraints. (Lopez-Herrejon et al., 2015) evaluated three search based methods (evolutionary
algorithms, hill climbing, and random search) for reverse engineering feature models in the domain
of genetic algorithms. They use a special array for cross-tree constraints, on which mutations and
crossovers are applied. However, they only consider requires and excludes constraints. A similar
approach is proposed by Linsbauer et al. (2014), using evolutionary algorithms, too. Again, only
requires and excludes constraint are considered. This may correlate with the difficulty of encoding
arbitrary cross-tree constraints in such algorithms.

http://publikationsserver.tu-braunschweig.de/get/64215

22 2.3. Applications of Feature Models

Generation of Feature Models as Test Data. A related field is the automated generation of
computationally hard feature models. As mentioned before, analysis tools in feature modeling are
important applications and should aspire efficiency. The problem of generating hard test data (i.e.,
computationally hard to analyze feature models) to find vulnerable weak points in such tools has
been largely studied.

Obviously, as feature models become bigger, solvers take more time for analysis. However, one
conclusion is that random values are not enough for discovering efficiency reducing flaws in these
systems (McMinn, 2004). However, to empirically evaluate one’s tools, authors often rely on more
realistic feature models with hundreds of features. Moreover, only a small portion of meaningful
feature models is typically publicly available. Hence, authors oftentimes must generate their test
data themselves.

Thüm et al. (2009) randomly generate feature models based on probabilities for certain groups
to show the scalability of their classification approach for feature model edits. They elucidate their
algorithm, used probabilities, and results. Furthermore, complex constraints are generated, too,
and according to them, the resulting feature models are close to realistic feature models. Guo et al.
(2011) adopt the approach and probabilities used by Thüm et al. (2009) but discards the generation
of complex constraints, as for their work only requires and excludes are needed. Segura et al.
(2014) addresses the absence for real approaches to generate sufficient test data in general and
propose to model the finding of computationally hard feature models as an optimization problem,
solved by using a novel evolutionary algorithm (ETHOM). This algorithm is publicly available and
part of the Betty framework (Segura et al., 2012). The algorithm allows the user to specify the
number of features and percentage of cross-tree constraints. However, ETHOM can only generate
basic feature models with simple constraints. Segura et al. (2014) concluded in their publication
that a more flexible algorithm dealing with complex constraints and cardinality is desirable and
will be part of future work.

Product-Line Testing and Analysis. As product lines are increasingly applied to safety-critical
software projects (e.g., automotive or aviation) and their software assets may be reused several
times, verification and analysis become important means to ensure reliability and correctness of
all generated products. However, testing an entire product line is a difficult task, as even feature
models with a few features can comprise an exponential number of products. There are mainly
three strategies of product-line testing.

Product-based strategy follows a brute-force strategy and tries to verify the correctness of a
product line by generating each product individually (Thüm et al., 2012). However, it is obvious,
that this strategy does not scale well for product lines with many features.

Alternatively, a sample-based strategy can be applied. This strategy aims on a subset of possible
products, oftentimes realized through combinatorial interaction testing, to reduce the problem
space, and to identify defects faster (Al-Hajjaji et al., 2014). Interactions can be tested among
t = 1, 2, 3, ... features. The general case where t can be chosen freely is therefore called t-wise
testing, whereas the typical case between exactly two features is called pairwise testing (Al-Hajjaji
et al., 2014).

The third strategy is called family-based strategy (Thüm et al., 2012), an approach to apply
verification on implementation artifacts of a whole product line instead of each product separately.

Perrouin et al. (2010) propose a sample-based algorithm. They built a metamodel for feature

http://publikationsserver.tu-braunschweig.de/get/64215

2. Constraints in Feature Modeling 23

diagrams based on the formal semantics defined by Schobbens et al. (2007). They use the same
textual constraint language, i.e., allowing only requires and excludes cross-tree constraints. However,
their approach is based on a model transformation from a feature diagram to Alloy.3 This may
allow an easy integration of complex constraints. Shi et al. (2012) propose a sample-based approach
that not only uses a feature model, but incorporates underlying code, too. Both are used to build a
feature dependency graph representing (and limiting) the set of possible interaction among features.
However, only requires and excludes constraints are discussed. Ensan et al. (2012) uses genetic
algorithms to minimize the number of products that needs to be tested. They refer to requires
and excludes constraints as integrity constraints and do not discuss any other forms of constraints
besides those two. Al-Hajjaji et al. (2014) propose a similarity-based prioritization before products
are generated and tested, aiming at faster increasing interaction coverage. Moreover, they extended
FeatureIDE with product-line testing and similarity-based prioritization, and hence, use arbitrary
cross-tree constraints.

Optimal Feature Selection. Earlier industrial case studies have shown that product derivation
can be a time consuming and costly process (Deelstra et al., 2004, 2005). Practitioners face a
couple of challenges when trying to derive an optimized feature selection based on both functional
and arbitrary non-functional requirements. For example, consider a database product line where a
product might be used in a mobile application. The application has certain requirements towards
a database’s functionality. However, today’s mobile phone may have a limited amount of memory
space. Therefore, the optimization goal could be to select a configuration that does not exceed
a certain memory space threshold while at the same time maximizing functionality. Many exact
methods for calculating the real optimum haven been proposed. However, optimal feature selection
with such non-functional requirements has been proven to be NP-hard (White et al., 2009). Hence,
many heuristics have been proposed, too.

Benavides et al. (2005) choose an exact method and modeled the problem of optimal product
configuration as a constraint satisfaction problem. However, they take neither complex nor
simple constraints into account. White et al. (2009) propose an approximation algorithm which
transforms the problem into a multidimensional multiple choice knapsack problem and solves
it with the modified heuristic method. They only discuss requires and excludes constraints. A
later approach uses a formulation as constraint satisfaction problem, too White et al. (2014).
Again, complex constraints are left out. Guo et al. (2011) proposed GAFES, an evolutionary
algorithm to heuristically solve this optimization problem. GAFES does not support complex
constraints. (Machado et al., 2014) proposes SPLConfig, a tool built upon FeatureIDE for
optimal configuration derivation. As FeatureIDE supports complex constraints, SPLConfig
does, too. (Zanardini et al., 2016) presents several strategies for optimal feature selection, mostly
regarding resource-usage for functional properties. They report and prototypical implementation
of some strategies and conduct an industrial case study. They also include complex constraints in
their implementation.

3The Alloy Analyzer is a software tool for automated analyses of specifications written in the Alloy specification
language. See http://alloy.mit.edu/alloy/.

http://publikationsserver.tu-braunschweig.de/get/64215

http://alloy.mit.edu/alloy/

24 2.3. Applications of Feature Models

Support for Complex Constraints
In the following, we concisely conclude to what extent complex constraints are supported in our
reviewed publications. We chose a small representative set of 26 publications in total, classified in
five applications (cf. Section 2.3). Each publication represents either an algorithmic method or an
introduced tool. We also give a brief description and important characteristics for each publication.
Furthermore, we state for each publication if complex constraints are supported in one of three
ways. A Yes means integrated support. Analogously, a No means no integrated support. A (Yes)
in brackets indicates that either support is discussed and integration is intended, or can easily be
integrated but is not discussed in detail (e.g., if the method works with a feature model represented
as a propositional formula). Table 2.2 illustrates our results.

FM Analysis

FM Syntehsis

FM Generation

PL Testing

Optimal Configuration

0

1

2

3

4

5

6

7

8

9

Complex Constraints in Feature Model Applications

Simple constraints
Complex constraints

N
o.

 o
f P

ub
lic

at
io

ns

Figure 2.15.: Frequency of Complex Constraints in Feature Model Applications

In Figure 2.15, we present the number of reviewed publications for each feature model application
individually, and highlight how many of them support complex constraints. It can be seen that in
almost all fields, the ratio between simple and complex constraints is balanced. Obviously, the
number of reviewed publications is too few to make substantial assumptions about the acceptance
of complex constraints in these fields.

Furthermore, we reviewed many older publications which we assumed to have a tendency against
complex constraints. However, in Figure 2.16, it can be seen that the number of publications not
supporting complex constraints does not decrease over time. In total, less than roughly 50% of all
reviewed publications discuss the integration of complex constraints.

http://publikationsserver.tu-braunschweig.de/get/64215

2. Constraints in Feature Modeling 25

Automated analysis of feature models
Reference Contribution Characteristics Complex

constraints
Remarks

S.P.L.O.T. (Mendonça et al.,
2009)

Tool Analysis; Feature model
generation

Yes Online access1

FAMA (Benavides et al., 2007) Tool Analysis Yes Java library, stand-alone, or web ser-
vice

FeatureIDE (Kästner et al.,
2009)

Tool Combination of software
product line methods

Yes Eclipse-based

Betty (Segura et al., 2012) Tool Benchmarking; Feature
model generation

No Online access2

Feature Model Synthesis
Reference Contribution Characteristics Complex

constraints
Remarks

She et al. (2011) Method From descriptions No Evaluated on large real-world mod-
els

Ryssel et al. (2011) Method From configurations Yes Formal concept analysis
She et al. (2014) Method From propositional formu-

las
(Yes) -

Acher et al. (2012) Method Semi-automated; from
product descriptions

(Yes) -

Al-Msie ’deen et al. (2014) Method From configurations No Formal concept analysis
Bécan et al. (2015) Method Semi-automated; from

product descriptions
Yes -

Haslinger et al. (2013) Method From configurations No -
Lopez-Herrejon et al. (2015) Method From configurations No Genetic algorithms
Linsbauer et al. (2014) Method From configurations No Genetic algorithms

Feature Model Generation as Test Data
Reference Contribution Characteristics Complex

constraints
Remarks

Thüm et al. (2009) Method Close to realistic feature
models

Yes Probabilistic parameters for groups
and constraints

Guo et al. (2011) Method Close to realistic feature
models

No Based on method proposed by
Thüm et al. (2009)

ETHOM (Segura et al., 2014) Method Generating hard feature
models

No Integrated in BeTTy

Software product line testing
Reference Contribution Characteristics Complex

constraints
Remarks

Perrouin et al. (2010) Method Sample-based strategy (Yes) t-wise coverage
Shi et al. (2012) Method Sample-based strategy No Compositional symbolic execution
Ensan et al. (2012) Method Sample-based strategy No Evolutionary algorithm for test case

generation
Al-Hajjaji et al. (2014) Method Prior to sample-based

strategies
Yes Ordering tests through similarity-

based prioritization

Optimal feature selection
Reference Contribution Characteristics Complex

constraints
Remarks

Benavides et al. (2005) Method Automatic No Constraint satisfaction problem
White et al. (2009) Method Automatic; Polynomial-

time
No Multidimensional multi-choice

knapsack problem
GAFES (Guo et al., 2011) Method Automatic; Fast selection

time
No Evolutionary algorithm

White et al. (2014) Method Automatic; Multi-step No Constraint satisfaction problem
Machado et al. (2014) Tool Automatic; Built upon

FeatureIDE
Yes

Zanardini et al. (2016) Method Automatic; Re-
source–usage–aware
configuration

Yes µTVL; SACO analyzer

1 http://www.splot-research.org/
2 http://www.isa.us.es/betty/betty-online

Table 2.2.: Summary of publications we reviewed for each feature modeling application including character-
istics and information about support for complex constraints.

http://publikationsserver.tu-braunschweig.de/get/64215

http://www.splot-research.org/
http://www.isa.us.es/betty/betty-online

26 2.4. Summary

2005 2010 20150

1

2

3

4

5

6

7

Complex Constraints in Feature Model Applications per year

Simple constraints
Complex constraints

N
o.

 o
f P

ub
lic

at
io

ns

Figure 2.16.: Frequency of Complex Constraints Over Time

2.4. Summary
To capture commonality and variability of a product line, numerous feature modeling languages exist.
While most of them originated from the feature diagram proposed by Kang et al. (1990), a couple of
extensions have been submitted by the product-line community over the last decades. One of these
extensions is the use of arbitrary propositional formulas for cross-tree constraints. Beforehand, only
requires and excludes constraints could be used. Complex constraints offer practitioners a great
tool to ease the arduous modeling process. However, they can also deteriorate the comprehension
of feature interactions provoked by the potentially complex nature of propositional formulas. For
this reason, questioning the acceptance of complex constraints in feature modeling was the goal of
this chapter.

Overall, we surveyed 18 different graphical and textual feature model languages, seven of whom
support complex constraints. We also briefly examined tool support and published methods in
five different feature model applications and examined given support for complex constraints.
For example, the analysis of feature models is mostly formulated as a satisfiability problem. A
feature model is then translated into a propositional formula and can be solved with one of many
SAT-solvers or binary decision diagrams. Therefore, complex constraints can easily be integrated,
and tools like S.P.L.O.T. and FAMA already support them. In other areas, for instance optimal
feature selection or feature model synthesis, we found very few attempts in literature so far that
explicitly focus on the integration of complex constraints.

http://publikationsserver.tu-braunschweig.de/get/64215

3 Formal Foundations of
Feature Models
In this chapter, we introduce formal foundations of feature models as a means to mathematically
reason about capabilities and limitations of different feature modeling languages. In the letter
half of RQ1, we asked how valuable complex constraints are. We measure the value of a feature
modeling concept (e.g., supported decomposition types, attributes, or constraint types) in terms of
the expressiveness it adds to a language. The expressive power of a feature modeling language
is a measurement for the number of product lines it can express. For example, a language that
only knows alternative groups is less expressive than a language that additionally knows or groups.
The underlying motivation for this chapter is to analyze the problem whether feature models with
simple constraints and feature models with complex constraints are equally expressive.

First, based on our observations on applications of feature models (cf. Section 2.3) and in regard
to RQ1, we briefly motivate the necessity of formal foundations in Section 3.1. Next, to employ
theoretical considerations on feature models, we create a general formal semantics that covers the
most important concepts of our surveyed languages (cf. Section 2.2) in Section 3.2. Afterwards, in
Section 3.3, we quantitatively analyze the expressive power of basic feature models. Finally, we
give a summary.

3.1. Motivation for a Formal System
In Section 2.2, we already emphasized the syntactical dissimilarities in a number of feature modeling
languages. This variety in dialects makes it difficult to discuss definitions and results on a common
basis if feature models are only presented informally. For example, it should be defined whether
mandatory features in a feature model are only part of a product if their parents are part of it, or
if they are part of all products. Without such clarification obscurity and ambiguity rise. Moreover,
many authors do not distinguish between configurations (i.e., a valid feature selection including
concrete and abstract features) and products (i.e., a valid feature selection including only concrete
features).

In this context, Sun et al. (2005) propose the concept of semantic equivalence. Two feature
models may therefore be semantically equivalent, even though they syntactically differ. Moreover,
the semantic domain of feature models are product lines (Schobbens et al., 2007). Without a formal
foundation of feature models, reasoning about equivalence of feature models (i.e., determining
whether they represent the same product line) when changing one’s syntax becomes a daunting
and imprecise task. On the other hand, this raises an interesting question. Is there a feature model
for every product line?

http://publikationsserver.tu-braunschweig.de/get/64215

28 3.2. A Formal Semantics for Feature Modeling Languages

The answer to this question depends on the feature modeling language that is used. An important
measure of feature model languages is the expressive power (Schobbens et al., 2007). Informally,
the expressive power of a formal language is a measurement to what extent a language can represent
the elements of its predefined semantics. For feature models, expressive power correlates with the
question asked above. If a language can represent more product lines than another, its expressive
power is simply greater. A follow-up question highlights the essence of this thesis and refines RQ1.
Do complex constraints add expressive value to feature modeling languages, and if so, to what
extent?

In the next two sections, we first formulate an unambiguous and rigorous formal semantics for
feature models. Afterwards, we analyze the expressive power of basic feature models and feature
models with complex constraints to eventually transpire the expressive gap between them. Again,
formal foundations are necessary to exploit the power of mathematics and to avoid ambiguity.

3.2. A Formal Semantics for Feature Modeling
Languages

Schobbens et al. (2007) propose a general formal semantics, namely free feature diagram (FFD),
to capture numerous feature modeling notations with a single abstract syntax. In this thesis, we
use the concept of FFD as a basis. However, we need to extend and modify FFD to suffice the
needs of this thesis. For instance, FFD does not support complex constraints but only requires
and excludes constraints.

The construction of FFD is based on the guidelines of Harel and Rumpe (2000), according to
whom each modeling language L is mathematically and unambiguously defined by three parts:
a syntactic notation LL (syntax), a semantic domain SL (semantics) and a semantic function
J.KL : LL → SL.

3.2.1. Defining an Abstract Syntax
The syntactic notation (also sometimes called syntactic domain) encapsulates the abstract syntax
of a feature model. It determines what can be written using a feature modeling language. In
Section 2.2, we already described common characteristics of feature models. In the following, we
first want to informally agree on the characteristics that will be part of our abstract syntax. Then,
we give a more formal definition.

A feature model in our case is a tree with a single root feature and each feature is decomposed
into one or more features, except for terminal features. Features can also be labeled as optional,
and we distinguish between abstract features (i.e., no influence on the final product) and concrete
features (i.e., influence on the final product). This allows us to find out whether two or more
product lines are identical in their products, meaning that they result in the exact same programs
based on their code artifacts. Basic compound features, only used for decomposition in most
feature modeling languages, are the same as abstract features. In contrast to FFD, we do not
specify the decomposition type by well-defined operators (e.g., andk, xork, ork,...) but by group
cardinality. Even if we do not allow cardinalities in our concrete syntax, all decomposition types

http://publikationsserver.tu-braunschweig.de/get/64215

3. Formal Foundations of Feature Models 29

(i.e., and, alternative, or) can be represented by a cardinality in the abstract syntax as shown in
Table 3.1. The reason for this approach is that all results in this thesis can be applied to feature
modeling languages explicitly using group cardinalities in their concrete syntax. Finally, complex
constraints can be specified.

Cardinality Operator Concrete syntax

< n..n > andn

< 1..n > orn

< 1..1 > alternative

< a..b > carda,b

Table 3.1.: Translation Between Group Cardinality and Concrete Syntax in a Feature Diagram

According to the name Free Feature Diagram defined by Schobbens et al. (2007), we denote our
formal semantics of feature models as Free Feature Model (FFM). As mentioned earlier, the role
of FFM is to capture all necessary characteristics of a feature model (i.e., decomposition type,
concrete/abstract features, parent-child-relations, optionality, and even cardinality) in an abstract
syntax and provide a semantic function that maps each feature model of FFM to its product
line. Constructs such as attributes or feature cardinality are ignored, as they do not overlap with
our contributions in this thesis.

Regarding the variety of different feature model languages (cf. Section 2.2), FFM enables the
comparison of two or more feature models regardless of their concrete syntax. Informally, two
features models presented in different notations are therefore equivalent if their representation in
FFM represents the exact same product line. We denote the language of all feature models in
FFM as LFFM. The definition of a feature model of LFFM is as follows.

Definition 3.1. A feature model in LFFM is a 7-tuple (N ,P , r,ω,λ,DE, Φ) such that

N is the set of features.

P ⊆ N is the set of concrete features. Therefore, N \P is the set of abstract features. P can
be empty.

r ∈ N is the root feature.

ω : N → {0, 1} declares a feature as either optional (0) or mandatory (1).

http://publikationsserver.tu-braunschweig.de/get/64215

30 3.2. A Formal Semantics for Feature Modeling Languages

λ : N →N×N represents the relationship of a parent feature and its sub-features in terms
of cardinality 〈a..b〉, where a is the lower bound of sub-features required and b the upper bound
of sub-features allowed.

DE ⊆ N ×N is the set of decomposition edges that represent parental relationships between
features. (f , g) ∈ DE (f is parent of g) is sometimes written as f → g. We will denote by
subf = {f ′ | (f , f ′) ∈ DE} the sub-features of f.

Φ ⊂ {φ |φ ∈ B(N)} is the set of cross-tree constraints (i.e., requires constraints, excludes
constraints, or arbitrary propositional formulas).

Every feature model in LFFM must also satisfy the following five well-formedness constraints.

c1 Feature r has no parent: there exists no f ∈ N such that f → r.

c2 DE is acyclic: there exist no f1, ..., fn ∈ N such that f1 → f2, f2 → f3, ..., fn → f1.

c3 Terminal features are 〈0..0〉-decomposed.

c4 Except for r, each feature has a single parent: for all g ∈ N \ {r}, there exists exactly one
f ∈ N such that f → g.

c5 If a feature f is mandatory, it must be part of an and decomposition: if g → f with ω(f) = 1,
then λ(g) = 〈n..n〉 with n = |subg|. r is always mandatory.

As we use group cardinalities as a means for general decomposition, we may refer to custom group
cardinality when neither and, or, nor alternative decompositions are involved. Implicitly, every
feature that is not part of a 〈n..n〉 decomposition, with n being the total number of features in such
a group, is therefore optional by default (cf. Definition 3.1 (c5)). This is a justifiable simplification
in our abstract syntax, as we restrict the concept of optionality of solitary features to only and
decompositions. This obviously also means a restriction to our abstract syntax, as mandatory
features mixed with custom cardinalities are conceivable. However, to the best of our knowledge,
no such structures are used in the literature, and hence we do not take them into consideration
in our abstract syntax. Later in this chapter, we still present necessary changes to be made to
obtain an equivalent structure that conforms to our abstract syntax. The following example based
on the mobile phone product line illustrates a feature model in our abstract syntax satisfying
Definition 3.1.

Example 3.1. Table 3.2 illustrates a shortened abstract representation of the mobile phone feature
model presented in Figure 2.2 on Page 8. Except for the root (MobilePhone), each feature has
a single parent. Terminal features are 〈0..0〉 decomposed. Other decompositions are according to
Table 3.1 on Page 29. Each feature is concrete, and thus there are no abstract features. Furthermore,
Φ is a set of three cross-tree constraints in propositional logic. φ1 is a simple excludes constraints,
whereas φ2 and φ3 are complex constraints.

http://publikationsserver.tu-braunschweig.de/get/64215

3. Formal Foundations of Feature Models 31

Feature ω λ DE (Parent)

MobilePhone 1 〈5..5〉
Calls 1 〈0..0〉 MobilePhone
GPS 0 〈0..0〉 MobilePhone

Screen 1 〈1..1〉 MobilePhone
Basic 0 〈0..0〉 Screen

Colour 0 〈0..0〉 Screen
HighResolution 0 〈0..0〉 Screen

Media 0 〈1..2〉 MobilePhone
Camera 0 〈0..0〉 Media

MP3 0 〈0..0〉 Media
AccuCal 1 〈1..1〉 MobilePhone
Strong 0 〈0..0〉 AccuCal

Medium 0 〈0..0〉 AccuCal
Weak 0 〈0..0〉 AccuCal

Φ = {φ1,φ2,φ3}

φ1 = ¬GPS ∨¬Basic
φ2 = Color ∨ HighResolution ∨¬ Camera
φ3 = Weak ⇒ ¬HighResolution ∨¬GPS

Table 3.2.: Abstract Representation of the Mobile Phone Product Line

In the following, we formally define the terms configuration, product, and product line according to
the abstract syntax described above.

Definition 3.2 (Configuration, Product, Product Line). We define configuration, product, and
product line as follows.

A configuration is any element of P(N).

A product is a configuration that contains only concrete features. Let c ∈ P(N) be a
configuration. Then p = c∩ P is the corresponding product.

A product line is a set of products, i.e., any element of P(P(P)). Throughout this thesis,
we denote any product line by π.

Instead of products, we may also say program variants. Moreover, it is necessary to extract the
product line from a set of configurations. Hence, we define the projection of one set on another as
follows.

Definition 3.3 (Projection A|B). For two given sets A and B, the projection of A on B is defined
by A|B := {a∩B | a ∈ A}

Example 3.2. Given a set of configurations C ∈ P(P(N)), where C = {{A,B}, {A,B,C}}
and N = {A,B,C}. Let further be P = {A,C}. Then, the corresponding product line is
π = C|P = {{A}, {A,C}}. Feature B is abstract as N \ P = {B}, and hence omitted in the
product line π.

http://publikationsserver.tu-braunschweig.de/get/64215

32 3.2. A Formal Semantics for Feature Modeling Languages

3.2.2. Semantic Domain: Giving Meaning to Syntax
In Definition 3.1, we defined the formal language LFFM, which represents an abstract syntax that
we use throughout this thesis to formalize feature models (i.e., characterizing what is allowed and
disallowed in terms of relationships, cross-tree constraints, ...). Besides syntax, feature models
have also a meaning. The meaning of a feature model is obviously its product line (i.e., the set
of program variants that conform to the feature model). The set of all possible meanings that a
language can have is called the semantic domain (Harel and Rumpe, 2000). Giving meaning to
feature models allows us to compare them beyond syntax. For instance, two feature models can
represent the same product line, yet have different syntax. We will denote the semantic domain of
FFM by SFFM, and define it as follows.

Definition 3.4 (Semantic Domain SFFM). Given a set P of concrete features. Then we denote
by SFFM = P(P(P)) the semantic domain, i.e., the set of all possible product lines expressible by
the language LFFM.

It can be seen in Definition 3.5 that here product lines are represented as a mathematical set of
sets of features. However, there exist other representations. In the later stage of this section, we
introduce propositional logic as a means to represent product lines. But first, we need to connect
the syntax of a feature model with its product line. According to Harel and Rumpe (2000), the
semantic function is the function that maps a syntactic notion to its semantic domain. It is defined
as follows.

Definition 3.5 (Semantic Function J.KFFM). The semantic function J.KFFM : LFFM → SFFM
returns a set of all valid feature configurations C ∈ P(P(N)) restricted to concrete features.

Given a feature model m = (N ,P , r,ω,λ,DE, Φ) in LFFM. Then, the semantic function maps
m to its product line, i.e., JmKFFM = C|P if C is the set of feature model m’s valid configurations.
Each c ∈ C is such that

it contains the root: r ∈ c.

it satisfies the decomposition type, i.e.,

for all f ∈ c, if λf = 〈a..b〉 then a ≤ | subf ∩ c | ≤ b and mandf ⊆ c

where mandf = { g ∈ N |ω(g) = 1 and f → g }.

its parent-child-relationships hold: if f ′ ∈ c and f ′ ∈ subf then f ∈ c.

it satisfies each cross-tree constraint: for all φ ∈ Φ, c |= φ (i.e., if c is valid, φ must valuate
to true).

In completion, we define the semantic function that is not restricted to concrete features (i.e.,
representing all configurations instead of program variants) as J.KcFFM : LFFM → P(P(N)).
Moreover, for convenience, we may write J.K instead of J.KFFM.

Example 3.3. Consider the previous example of a mobile phone product line whose feature model
shall be denoted by m. The semantic function then maps the feature model presented in Figure 2.2

http://publikationsserver.tu-braunschweig.de/get/64215

3. Formal Foundations of Feature Models 33

on Page 8 to its product line, which, in this case, is a set of 50 program variants. Each program
variant itself is a set of concrete features.

pi ∈ JmK Program variant

p1 {MobilePhone,Calls,Screen,Basic,AccuCell,Strong}
p2 {MobilePhone,Calls,Screen,Colour,AccuCell,Strong}
p3 {MobilePhone,Calls,Screen,HighResolution,AccuCell,Strong}
p4 {MobilePhone,Calls,Screen,Basic,AccuCell,Medium}
p5 {MobilePhone,Calls,Screen,Colour,AccuCell,Medium}
p6 {MobilePhone,Calls,Screen,HighResolution,AccuCell,Medium}
p7 {MobilePhone,Calls,Screen,Basic,AccuCell,Weak}
p8 {MobilePhone,Calls,Screen,Colour,AccuCell,Weak}
p9 {MobilePhone,Calls,Screen,HighResolution,AccuCell,Weak}
... ...
p50 {MobilePhone,GPS,Calls,Screen,Colour,Media,Camera,MP3,AccuCell,Strong}

Feature models are ambiguous; syntactically different feature models may express the same product
line. However, with the semantic function, we can analyze product lines based on set theory.
Product lines expressed as sets are unambiguous, as the mapping from distinct product lines to
sets of program variants is bijective. This allows us to reason about whether two feature models
may express the same product line. Now the question arises, which feature models do exactly
express the same product line? For instance, can we find a feature model with only requires and
excludes constraints for any product line or do we need complex constraints? Answering this
question obviously helps in examining the role of complex constraints in feature modeling. We
need to define two more terms to be able to compare feature models based on their product line.

Definition 3.6 (Feature Model Equivalence). We say that two feature models m,m′ ∈ LFFM are
equivalent if and only if their product lines are identical, i.e., JmK = Jm′K. We say that m,m′ are
strict equivalent if and only if they represent the same set of configurations, i.e., JmKc = Jm′Kc.
We write m ≡ m′ for equivalent feature models and m ≡c m′ for strict equivalent feature diagrams.

If two feature models are equivalent, their semantic function maps both feature models to the
same set of program variants. Strict equivalence is stronger in the sense that both feature models
represent the same set of configurations, and thus including abstract features as well. The following
example emphasizes the meaning of equivalent and strict equivalent feature models.

Example 3.4. Figure 3.1 illustrates three syntactically different feature models, namely m1,m2,
and m3, representing the same product line. m1 and m3 share even the same configurations, as is
illustrated by the list of program variants and configurations of each feature model in Table 3.3.
Gray feature names represent abstract features. Hence, m1, m2, and m3 are equivalent, and m1
and m3 are even strict equivalent, i.e., mi ≡ mj for i, j ∈ {1, 2, 3} but m1 6≡c m2 and m2 6≡c m3.

http://publikationsserver.tu-braunschweig.de/get/64215

34 3.2. A Formal Semantics for Feature Modeling Languages

(a) Feature Diagram m1 (b) Feature Diagram m2 (c) Feature Diagram m3

Figure 3.1.: Three Syntactically Different Yet Equivalent Feature Models

Program variants Configurations m1 Configurations m2 Configurations m3

{B} {Root,B} {Root,D,B} {Root,B}

{A,B} {Root,A,B} {Root,D,A,B} {Root,A,B}

{A,B,C} {Root,A,B,C} {Root,D,A,B,C} {Root,A,B,C}

Table 3.3.: Comparison of Program Variants and Configurations

3.2.3. Capturing Feature Model Extensions
In Section 2.2, we identified several differences in the concrete syntax of feature modeling languages.
For example, FORM and FeatuRSEB use directed acyclic graphs in contrast to trees, and the
notation by Czarnecki and Eisenecker (2000) allows a feature to have multiple decomposition types.
Moreover, we mentioned a special case where mandatory features and group cardinality are mixed.
We consider it as necessary to provide instructions on how to transform these three syntactical
special cases to our abstract syntax without distorting the product line.

Multiple decomposition types. The following changes ensure that every feature has exactly
one decomposition type.

Each or and alternative decomposition below feature f ∈ N is substituted by an
auxiliary abstract feature auxi ∈ N such that f → auxi for each i.
auxi is labeled as mandatory: ω(auxi) = 1 for each i.
f becomes and decomposed (cf. Table 3.1).

http://publikationsserver.tu-braunschweig.de/get/64215

3. Formal Foundations of Feature Models 35

Directed acyclic graphs. The following changes convert a feature g with n parents f1, ..., fn
to a tree where the feature g has only one parent f1.

n− 1 new auxiliary nodes are added aux1, ..., auxn−1 to N .

Edges from f2, ..., fn to g are replaced by f2 → aux1, ..., fn → auxn−1.

Additional constraints are added: {auxi ⇔ g | i ≥ 1} ⊆ Φ.

Mix of group cardinality and mandatory features. The following changes separates
optional and mandatory features in a group with custom group cardinality.

Let feature f be decomposed with λ(f) = 〈a..b〉 and let features f1, ..., fk be optional
children and fk+1, ..., fn be mandatory children of feature f . We denote by |m| = n− k
the number of mandatory children of feature f.

We create an abstract auxiliary feature aux such that f → aux.

f1, ..., fk are moved to aux: aux→ fi for 1 ≤ i ≤ k.

f becomes and decomposed: λ(f) = 〈|m|+ 1, |m|+ 1〉.

Finally, the number of mandatory features must be subtracted from feature f ’s original
group cardinality for feature aux: λ(aux) = 〈a− |m|, b− |m|〉.

It should be obvious that those trivial changes lead to an equivalent feature model in the context
of FFM. We therefore waive proofs verifying their correctness. In Chapter 4, we give a more
formal definition of a feature model refactoring, that is, changing the syntax of a feature model
while maintaining semantics. We then present and prove our approach of eliminating complex
constraints. Next, we briefly illustrate how feature models can be converted to propositional logic,
another representation of product lines.

http://publikationsserver.tu-braunschweig.de/get/64215

36 3.2. A Formal Semantics for Feature Modeling Languages

3.2.4. Mapping Feature Models to Propositional Logic
Product lines can be expressed in various ways. Besides feature models, we also expressed product
lines as a set of sets of valid feature combinations (i.e., set of program variants), for which we defined
the semantic function (cf. Definition 3.5). Another expression of product lines is propositional logic
(Batory, 2005). Today’s feature models are mostly analyzed by SAT-solvers due to their efficiency
as illustrated by Liang et al. (2015). Feature models are converted to a propositional formula that
is used as an input for SAT-solvers. Legal feature combinations can then be determined by solving
the satisfiability problem. Obviously, using this representation of product lines allows us to exploit
the whole mathematical background that is given by propositional logic. For instance, we will use
propositional logic to prove the correctness of our approach presented in Chapter 4.

The conversion of a feature model to a propositional formula is straight forward. Each decom-
position can be translated to a propositional formula (Batory, 2005). The resulting formula is
then a conjunction (∧) of those formulas. Table 3.4 illustrates the mapping from a feature model
primitive to a propositional formula. We use the equivalent concrete syntax to our abstract syntax
for readability.

Primitve Syntax Propositional Logic

root r

optional sub-feature f ′ ⇒ f

mandatory sub-feature f ′ ⇔ f

alternative group (f1 ∨ ...∨ fn ⇔ f) ∧
∧
i<j

¬(fi ∧ fj)

or group f1 ∨ ...∨ fn ⇔ f

custom group cardinality

∨
M∈Pa,b

(
∧
l∈M

l ∧
∧

l∈{f1,...,fn}\M
¬l) with

Pa,b = {A ∈ P({f1, ..., fn}) | a ≤ |A| ≤ b}

Table 3.4.: Mapping of Feature Models to Propositional Logic

Example 3.5. Consider the following (shortened) feature model of the mobile phone product line
depicted in Figure 3.2. Each primitive is individually converted into a propositional formula and
connected by conjunction. The resulting propositional formula has then the form

http://publikationsserver.tu-braunschweig.de/get/64215

3. Formal Foundations of Feature Models 37

MobilePhone
∧ (MobilePhone⇔ Calls) ∧ (GPS⇒ MobilePhone)
∧ (MobilePhone⇔ Screen) ∧ (Media⇒ MobilePhone)
∧ (Screen⇔ Basic∨Colour) ∧ (¬Basic∨¬Colour)
∧ (Media⇔ Camera∨MP3)
∧ (GPS⇒ ¬Basic).

Figure 3.2.: Shortened Version of the Mobile Phone Product Line

3.3. Expressive Power of Feature Models
As already mentioned in the beginning of this chapter, the expressive power of a language is
commonly understood as the breadth of what can be expressed in a language according to its
semantics. For formal languages, as we developed one in the previous section for feature models,
we can give a more precise definition of expressiveness (inspired by Schobbens et al. (2007)).

Definition 3.7 (Expressive Power). The expressive power of a language L is E(L) = {JdKL | d ∈
L}. If E(L1) ⊂ E(L2) then L2 is more expressive than L1. If E(L1) = SL then L is expressive
complete.

The expressiveness E of a language L is therefore a subset of its semantic domain SL, and the
codomain of its semantic function J.KL. Usually, to prove that a language is as expressive as
another language, we must give a translation from the first to the second language and prove
that the translation is indeed correct. Expressive completeness is oftentimes easier to show. If
J.KL is a surjective total function, L is expressive complete. This can be analyzed by constructing
an algorithm that has any element of SL as input and can construct a syntactic element in L.
Fortunately, showing that LFFM is expressive complete is fairly easy, as we can exploit the
capability of propositional logic in complex constraints, which is known to be expressive complete
(Nolt et al., 1998).

Theorem 3.1. LFFM is expressive complete.

http://publikationsserver.tu-braunschweig.de/get/64215

38 3.3. Expressive Power of Feature Models

Proof. Let π ∈ SFFM be a product line. We can construct a feature modelm = (N ,P , r,ω,λ,DE, Φ)

in LFFM such that for each feature f ∈ P the following conditions hold.

f is a child feature of root r: r → f .

f is optional: ω(f) = 0.

f is a terminal feature: λ(f) = 〈0..0〉.

r is and decomposed. Finally, we have exactly one complex constraint representing the product
line in disjunctive normal form: Φ = {(

∨
p∈π

(
∧
f∈p

f ∧
∧

f∈P\p
¬f))}.

Theorem 3.1 is important. Every application or proposed method that builds upon a feature
modeling language with complex constraints can be used with every product line. An interesting
question is what can be said about the expressiveness of feature modeling languages with only
simple constraints? If their expressiveness would be likewise complete, complex constraints would
add no expressive value. First, we need to formulate the syntactic domain for a basic feature model
to further investigate its expressiveness.

A Formal Semantics for Basic Feature Models
In Section 2.1.2, we already described the elements of basic feature models. As a reminder, we list
the characteristics of basic feature models once again. Features in a basic feature model can be
and, or or alternative decomposed. Features in an and group are additionally labeled as either
mandatory or optional. Terminal features must be concrete. Furthermore, requires and excludes
constraints are only allowed between concrete features.

Definition 3.8 (Syntactic domain for Basic Feature Models). A basic feature model in LBFM is
a 7-tuple (N ,P , r,ω,λ,DE, Φ) where:

N ,P , r,ω,DE follow Definition 3.1.

λ : N → N×N is restricted to 〈1..1〉 (alternative groups), 〈1..n〉 (or groups with n sub-
features), 〈n..n〉 (and group with n sub-features), and 〈0..0〉 (terminal features).

All terminal features must be concrete: for all f ∈ N with λ(f) = 〈0..0〉 it follows that f ∈ P

Only simple constraints between concrete features are allowed: Φ ⊂ {f ⇒ g | f , g ∈ P}∪{f ⇒
¬g | f , g ∈ P}

It can be seen that LBFM is a subset of LFFM, as we only restrict the handling of certain
aspects like decompositions and cross-tree constraints. Therefore, the semantic function J.KFFM
(Definition 3.5 on Page 32) holds also for LBFM . We may write J.KBFM to explicitly refer to the
syntactic domain of basic feature models.

Theorem 3.2. LBFM is not expressive complete.

Proof. We prove the theorem with proof by contradiction. Assume LBFM is expressive complete.
Then there exists a syntactic representation in LBFM for the product line

{{A,B}, {A,C}, {B}, {B,C}, {A,B,C}}

http://publikationsserver.tu-braunschweig.de/get/64215

3. Formal Foundations of Feature Models 39

Figure 3.3.: A feature model that has two complex constraints. There exists no feature model in LBFM
that is equivalent to this representation.

(root feature S is omitted). Figure 3.3 visualizes the product line in a feature diagram with two
complex constraints. Because there is no feature occurring in every product, none of the features
A, B, and C is a mandatory feature of S. Because no feature is occurring with any other feature
in each product, there are no parent-child-relationships or requires constraints between A, B, and
C. Because of product {A,B,C}, there are no excludes constraints and no alternative groups.
Because the products {A} and {C} are not part of the product line and there are no excludes
constraints, none of these are part of an or group, leaving no or groups at all. Therefore, A, B, and
C must be just optional sub-features of S, which does not represent the product line either.

An important question is: does group cardinality help? Introducing group cardinality does not
help either, as we can only specify one interval for the number of feature that should be selected.
The counter example above, however, requires us to select two to three features of {A,B,C}, or
only B.

Consider a feature model in LFFM. There may be no equivalent feature model in LBFM.
Corollary, Theorem 3.2 disproves the existence of a translation from LFFM to LBFM . In the
following, we highlight the restricted expressiveness of basic feature models.

Basic Feature Model Existence
Even though the expressive powers of LBFM and LFFM differ, there are numerous product lines
that can be described by basic feature models. Again, we may ask the question: which product
lines can be represented by LBFM? This may further indicate the gap between the usage of
complex and only simple constraints. We define the problem of finding a basic feature model given
a product line as follows.

Definition 3.9 (Feature Model Correspondence Problem (FMCP)). Given a set of concrete
features P and a product line π ∈ P(P(P)). We call the problem whether a feature model
d ∈ LBFM exists such that JmKBFM = π feature model correspondence problem.

Theorem 3.3. The feature model correspondence problem is decidable.

Proof. The number of syntactically distinct feature models in LBFM is finite. This can be concluded
from the fact that there exist only three types of constraints between any pair of features (two
requires and one excludes constraint), and for each concrete feature there exists at most one
abstract feature (cf. Definition 3.8). We can construct an algorithm that has a feature model
m ∈ LBFM and a product line π ∈ P(P(P)) as input, and returns true if JmKBFM = π:

http://publikationsserver.tu-braunschweig.de/get/64215

40 3.3. Expressive Power of Feature Models

m can be encoded as a propositional formula (cf. Section 3.2.4). Let mB be the propositional
formula of m.

π can be encoded as the disjunctive normal form over the variables in P : πdnf =
∨
p∈π

(
∧
f∈p

f ∧∧
f∈P\p

¬f).

Then, JmKBFM = π if mB ⇒ πdnf is a tautology. This correlates to the entailment problem,
which is known to be decidable and in coNP-complete (Das, 2008, p. 95).

Because LBFM is finite, we have eventually valuated each syntactically distinct feature model to
either represent π or not.

It is important to know that the feature model correspondence problem is decidable. Otherwise,
the search for an algorithm to find a basic feature model, given a product line, would be needless.
Furthermore, an (desirably efficient) algorithm can help in finding expressive holes in the language
of basic feature models. For instance, any product line not expressible by basic feature models
might be so uncommon to a degree that it would never be used in industrial cases, rendering the
value of complex constraints to a minimum. However, this can only be evaluated if we investigate
the expressiveness of basic feature models further.

Unfortunately, to this point, an efficient algorithm to solve the feature model correspondence
problem is still missing. However, to illustrate the expressive gap between feature models with
complex constraints and feature models with only simple constraints, we rely on a brute force
algorithm which generates for a given number of concrete features every possible basic feature
model and counts the number of represented product lines.

We only consider product lines that cover every feature from a given set of concrete features.
For instance, if P = {A,B} is our feature set with |P | = 2, we do not care about the product
line {{A}}, as this product line is already part of all product lines with |P | = 1. The number of
distinct product lines covering a set features P with |P | = n is

n∑
k=0

(
n

k

)
(−1)k22n−k

The sequence1 of product lines covering n features starts then with 2, 2, 10, 218, 64594, 4294642034,
...

Figure 3.4 depicts our results. The brute force method is very time consuming. We only show
the results up to five features which already took more than five hours to calculate on a single
machine. However, it can be seen that already after five features, less than 1% of all available
product lines can be represented by a basic feature model. The number above each stack states
the exact number of expressible product lines. Next, we show how to relax some of the restrictions
on LBFM to increase expressiveness without introducing complex constraints.

1The problem of finding all power sets covering a set of elements is well studied and results in OIES sequence
A000371. See https://oeis.org/A000371 for further information.

http://publikationsserver.tu-braunschweig.de/get/64215

https://oeis.org/A000371

3. Formal Foundations of Feature Models 41

1 2 3 4 50

20

40

60

80

100

Number of concrete features

N
um

be
r

of
 p

ro
du

ct
 li

ne
s

(%
)

Not expressible
Expressible

2 10 121 3214 175550

Figure 3.4.: We depict the difference in expressiveness of distinct feature models with only simple constraints
up to five features.

Relaxing Rules on Basic Feature Models
We saw that LBFM lacks expressiveness which prevents a translation from LFFM to LBFM . We
therefore endeavor to find an expressive complete sub-language of LFFM which is as similar as
possible to LBFM . Fortunately, relaxing some of the constraints on basic feature models already
guarantees expressive completeness, which leads us to the notation of relaxed basic feature models.

Definition 3.10 (Syntactic domain for Relaxed Basic Feature Models). A relaxed basic feature
model in LRBFM ⊂ LFFM is a 7-tuple (N ,P , r,ω,λ,DE, Φ) where

N ,P , r,ω,DE follow Definition 3.1.

λ : N → N×N is restricted to 〈1..1〉 (alternative groups), 〈1..n〉 (or groups with n sub-
features), 〈n..n〉 (and groups with n sub-features), and 〈0..0〉 (terminal features).

Only simple constraints between features are allowed: Φ ⊂ {f ⇒ g | f , g ∈ P} ∪ {f ⇒
¬g | f , g ∈ N}

The difference to LBFM is that we have simply softened the restrictive use on abstract features.
Terminals do not need to be concrete anymore, but can be abstract. Moreover, simple constraints
between abstract features are now permitted.

Theorem 3.4. LRBFM is expressive complete.

Proof. Let π ∈ SFFM be a product line. We can construct a feature model such that for each
feature f ∈ P the following conditions hold:

http://publikationsserver.tu-braunschweig.de/get/64215

42 3.4. Summary

f is a sub-feature of root r: r → f .

f is optional: ω(f) = 0.

f is a terminal feature: λ(f) = 〈0..0〉.

Finally, we add a mandatory node T ∈ N to r with an underlying alternative group. For each
product pi ∈ π, we create a sub-feature ti for T , where i is the ith product. For each feature in
product pi, we create a single requires constraint: g ∈ pi ⇒ (ti ⇒ g) ∈ Φ. For every other feature,
we create as single excludes constraint g ∈ P \ pi ⇒ (ti ⇒ ¬g) ∈ Φ. Each abstract terminal feature
now symbols a product in the product line π. With requires and excludes constraints we explicitly
include and exclude features.

Example 3.6. Figure 3.5 illustrates an equivalent feature model in LRBFM to the feature model
depicted in Figure 3.3 on Page 39. Both express the product line

{{A,B}, {A,C}, {B}, {B,C}, {A,B,C}}.

Each abstract terminal feature below feature T represents exactly one product. Hence, there are
five terminal features. Each feature then includes all concrete features of its represented product
and excludes all other concrete features.

Figure 3.5.: Example of a Potential Feature Model in LRBFM

We now know that LRBFM is expressive complete. Hence, there may exist a more succinct
translation from LFFM to LRBFM as seen in Example 3.6. In the next chapter, we present a more
intelligent approach to translate a feature model from LFFM to LRBFM without changing the
product line.

3.4. Summary
In this chapter, we created a formal semantics to capture a variety of specific feature model
characteristics. Moreover, based on this semantics, we gave insight on the expressive power of

http://publikationsserver.tu-braunschweig.de/get/64215

3. Formal Foundations of Feature Models 43

basic feature models. Not all product lines can be covered by basic feature models. An interesting
problem is to investigate how many product lines are really covered by basic feature models, and
also, what patterns in product line cannot be represented by basic feature models. Future work
may deal with the analysis of expressive incompleteness of basic feature models.

Figure 3.6.: Highlighted differences in expressive power. LFFM and LRBFM cover the whole semantic
domain of product lines whereas LBFM covers only a fractional amount.

Moreover, the expressive incompleteness led us to relax some of the restrictions on basic feature
models. The result is LRBFM , where abstract features can be terminal features and participate in
cross-tree constraints. Both languages, LFFM and LRBFM , are expressive complete. This means
that we can give a translation from LFFM to LRBFM . Figure 3.6 highlights the differences in
expressiveness of all three languages. LFFM target the whole semantic domain LRBFM , whereas
LBFM is limited to a fractional amount.

In the next chapter, we present an approach to refactor feature models from LFFM to feature
models in LRBFM , that is, an approach to eliminate complex constraints without changing
semantics.

http://publikationsserver.tu-braunschweig.de/get/64215

http://publikationsserver.tu-braunschweig.de/get/64215

4 Eliminating Complex Con-
straints
In the previous chapter, we examined the expressive power of feature models in terms of product
lines. We identified that some product lines cannot be described by basic feature models. As a
result, we introduced the concept of relaxed basic feature models, an expressive-complete alternative
to basic feature models allowing abstract features (i.e., features that do not influence any program
variants) to be part of cross-tree constraints. These abstract features do also not need to have
any child features. Hence, we have already addressed part of RQ2: Under which circumstances
is it possible to eliminate complex constraints?. In this chapter, we introduce our algorithm for
eliminating complex constraints by converting a free feature model to an equivalent relaxed basic
feature model.

First, in Section 4.1, we refine our goal of achieving a relaxed basic feature model from an
arbitrary one by applying feature model refactorings and elaborate on the necessary mathematical
properties a refactoring algorithm must fulfill. In Section 4.2, we explain how to eliminate group
cardinalities, as they are not allowed in a relaxed basic feature model. Then, in Section 4.3, we
continue to illustrate how we simplify the refactoring process by identifying trivial cases and how
we can obtain a refactoring of complex constraints using two well-known logical normal forms:
negation normal form and conjunctive normal form. Finally, we give a summary.

4.1. General Refactoring of Feature Models
One research goal of this thesis is the elimination of complex constraints and, as a result, obtaining
an equivalent basic feature model (RG3). As we exposed earlier, basic feature models are less
expressive than cardinality-based feature models or feature models with complex constraints
(cf. Chapter 3). Some product lines have no expression as a basic feature model, and thus a
transformation from a feature model with complex constraint will fail. Hence, we needed to relax
some properties of basic features models to acquire a close feature modeling notation with the
same expressive power as feature models with complex constraints (cf. Definition 3.10 on Page 41).

In Definition 3.6 on Page 33, we already provided a definition of the equivalence of feature models
according to our constructed formal semantics (cf. Section 3.2). In essence, Sun et al. (2005) and
Czarnecki and Wasowski (2007) showed that given a product line there may exist multiple feature
models representing this exact product line. We call such feature models equivalent.

Example 4.1. In Figure 4.1, we depict three feature models noticeably differing in their structure
and cross-tree constraints. All three feature models represent the same product line, which is the
following set of feature combinations: {{∅}, {B}, {A,B}}. In contrast to the other two feature

http://publikationsserver.tu-braunschweig.de/get/64215

46 4.1. General Refactoring of Feature Models

diagrams, the right feature diagram has an additional feature C. The abstract property ensures
that feature C cannot be part of any program variant and is therefore omitted in the product line.
Nevertheless, feature C is relevant in the configuration process, as it enables the selection of feature
B.

Figure 4.1.: Three Semantically Equivalent Feature Models

In our elimination approach, we aim at changing the structure of a feature model with complex
constraints such that the resulting feature model is compliant to the definition of a relaxed basic
feature model (cf. Definition 3.10 on Page 41), while also preserving all program variants. Therefore,
we call such a change to a feature model a feature model refactoring.

Definition 4.1 (Feature Model Refactoring). A feature model refactoring, short refactoring, is
a change made to the structure of a feature model, allowing a change to its configurability, but
without changing its derivable products. Formally, based on our formal semantics, a refactoring is
a total function R : L → L′ that preserves semantics: m ∈ L, JR(m)KL′ = JmKL.

We use L and L′ as a placeholder for LFFM and LRBFM , respectively. Obviously, a refactoring
can only exist between two languages that are able to express the same set of product lines.

Definition 4.1 is similar to the definition provided by Thüm et al. (2009) . 1 Thüm et al. (2009)
contributed an algorithm to automatically classify the changes made to a feature model into
four classes: specialization (program variants are removed), generalization (program variants are
added), refactoring (program variants are maintained), and arbitrary edit (program variants are
changed). A trivial approach for refactoring complex constraints would be to let a user manually
modify the feature model and then automatically check if the made changes result in an equivalent
feature model, utilizing the algorithm provided by Thüm et al. (2009). However, with increasing
complexity of feature models and complex constraints, modifications become more complicated,
and it can be extremely difficult to manually see how to refactor a feature model. Our goal is
therefore to provide a refactoring algorithm that automates the refactoring process.

We use the terms refactoring and refactoring algorithm interchangeably, although their appli-
cation area slightly differs. Refactoring is the overall concept whereas a refactoring algorithm
involves the necessary steps according to our formal semantics to reach such a refactoring.

To formulate a refactoring that transforms an arbitrary feature model to a relaxed basic feature
model, we, once again, make use of our formal semantics (cf. Section 3.2). Our formal semantics

1Alves et al. (2006) differentiate between uni- and bidirectional refactoring, meaning that a unidirectional refactoring
includes an increase in the number of program variants, whereas a bidirectional refactoring follows our definition.

http://publikationsserver.tu-braunschweig.de/get/64215

4. Eliminating Complex Constraints 47

helps us to formally proof the correctness of our approach. In the following, we briefly recall the
essentials of our formal semantics.

From Free Feature Model to Relaxed Basic Feature Model
In Chapter 3, we constructed a general formal semantics called free feature models (FFM) as a
means to cover most common properties of a number of feature model languages. These properties
include basic decompositions (i.e., and, or, alternative), optionality, group cardinalities, and
cross-tree constraints consisting of arbitrary propositional formulas. We denote the abstract syntax
by LFFM. Then, the semantic function J.KFFM maps a feature model M ∈ LFFM to its product
line π ∈ SFFM (recall that SFFM is the semantic domain of LFFM, i.e., the set of all possible
product lines).

Given a feature model m ∈ LFFM. A valid refactoring leading to a modified feature model m′ is
illustrated in Figure 4.2. Applying the semantic function to both feature models, m and m′, must
result in the same product line π. In the case of our formal semantics, we are also saying that
semantics is preserved, meaning that both feature models indeed express the same product line.

m m′
R(m)

JmKFFM Jm′KFFM
π

Figure 4.2.: Refactoring of a Feature Model m

LRBFM is a subset of LFFM. Only custom group cardinalities and complex constraints are disal-
lowed in LRBFM. Nevertheless, LFFM and LRBFM are both expressive complete (cf. Section 3.3),
which leads us to the following corollary.

Corollary 4.1. For all π ∈ SFFM, there exist a feature model m ∈ LFFM and a feature model
m′ ∈ LRBFM such that both feature models express π: JmKFFM = Jm′KRBFM = π. It follows that
a refactoring algorithm R : LFFM → LRBFM must exist.

Proof. Follows from expressive completeness of LFFM and LRBFM (cf. Section 3.3).

Corollary 4.1 ensures that the formalization of a refactoring algorithm is promising. However,
finding a sufficient refactoring and formally proving its correctness is a difficult task. One could
think of a simpler option that allows the algorithm to produce a generalization, that is, allowing
the resulting feature model to express a product line that is a superset of the expressed product
line of the input feature model. However, as we already know that a refactoring must exist, we
are aiming at the more accurate solution. In Example 4.2, we highlight the differences between a
generalization and a refactoring.

Example 4.2. Consider an allegedly constructed refactoring algorithm R : LFFM → LFFM
that adds an optional concrete node to each terminal node. The transformation using a concrete
syntax is depicted in Figure 4.3. The product line of the left-hand side feature model is the

http://publikationsserver.tu-braunschweig.de/get/64215

48 4.1. General Refactoring of Feature Models

set πlhs = {{∅}, {A}}. The product line of the right-hand side feature model is the set πrhs =

{{∅}, {A}, {opt2}, {A, opt1}, {A, opt2}, {A, opt1, opt2}}. Because πlhs is a subset of πrhs, πrhs is
at least as big as πlhs. But because πrhs is not a subset of πlhs, πlhs must be smaller than πrhs.
Therefore, R is not a valid refactoring algorithm. Here, R produces a generalization. If each
added node would be abstract, πlhs and πlhs would be identical. R would then be a valid constructed
refactoring algorithm.

Figure 4.3.: Example of a Feature Model Change

In the following, we informally introduce the base idea of our refactoring algorithm that, given a
complex constraint in propositional formula, constructs an equivalent abstract subtree. An abstract
subtree consists of a feature model with only abstract features and a set of simple constraints in
propositional formula. Original feature model and all abstract subtrees can then be conjoined to
form an equivalent feature model without complex constraints.

Refactoring Constraints Through Abstract Subtree Construction
Our approach is based on the idea that feature models can be converted into propositional formulas
(cf. Section 3.2.4). Corollary, this induces that we may find a feature model structure (potentially
including simple constraints) which, if converted into propositional logic, is equivalent to a given
complex constraint. Adding new features to a feature model usually may result in larger program
variants. However, our feature modeling language allows abstract features that do not influence
the source code and therefore do not harm any program variant. We call such a feature model
structure an abstract subtree and define it as follows.

Definition 4.2 (Abstract Subtree). An abstract subtree AS is a pair (M , Ψ), where M =

(N , ∅, r,λ,ω,DE, ∅) is a feature model in LRBFM with no concrete features and no cross-tree
constraints, and Ψ is a set of requires and excludes constraints in propositional logic.

We are using the term subtree to highlight its function in this thesis. An abstract subtree is never
used independently but is eventually conjoined with a feature model.

Example 4.3. Figure 4.4 shows a feature model (left-hand side) and a possible isolated abstract
subtree (right-hand side). An abstract subtree is not a feature model, as both cross-tree constraints
are invalid in the isolated abstract subtree (i.e., features A and C are missing).

http://publikationsserver.tu-braunschweig.de/get/64215

4. Eliminating Complex Constraints 49

Figure 4.4.: Example of an Original Feature Model and an Abstract Subtree

The idea is now that, given a complex constraint φ in propositional formula, we can translate this
formula into an abstract subtree. We first traverse through the parsing tree of φ. Disjunctions
(∨) are modeled as or groups and conjunctions (∧) are modeled as and groups with mandatory
sub-features. Literals become abstract terminal features. Each terminal feature in the abstract
subtree now represents the occurring of a literal in the complex constraint. We can connect abstract
features of the abstract subtree and features used in the original complex constraint through simple
constraints. If the literal is positive in the complex constraint, we add a requires constraint. If the
literal is negative, we add an excludes constraint.

Example 4.4. Figure 4.5 illustrates how to construct an abstract subtree based on a cross-tree
constraint. First, the constraint is decomposed multiple times, as highlighted in the parsing tree. In
this case, the decomposition types are ∧ and ∨, which can be directly translated into and groups and
or groups of a feature model. Finally, each terminal feature is associated to either a positive literal
(in case of feature A, B, and C) or negative literal (in case of feature D). A simple constraint is
added accordingly.

Example 4.4 adumbrates a limitation of our approach. Negations in front of groups with more than
one literal cannot be encoded in the abstract subtree, as there exist simply no decomposition type.
Furthermore, operators {⇒,⇔} in a complex constraint cannot be encoded either. Therefore, we
first must translate each complex constraint to a form, where negations only occur in literals, and
only operators {∧,∨,¬} may be used.

If we have encoded a complex constraint into an abstract subtree, we finally can conjoin original
feature model and abstract subtree. First, we compose the original feature model and the abstract
subtree’s feature model. Then, we add all abstract subtree’s propositional formulas as simple
constraints. We define the composition of two feature models as follows.

Definition 4.3 (Join operator •). Let m,m′ be feature models. The join operator • takes two
feature models as input and returns a new combined feature model m′′ = m •m′, which is a merge
of parent-child-relationships and cross-tree constraints. Formally,

m •m′ = (N ,P,r,λ,ω,DE, Φ) • (N ′,P ′, r′,λ,ω,DE′, Φ′)

= (N ∪N ′,P ∪ P ′, r′′,λ′′,ω′′,DE ∪DE′, Φ ∪Φ′)

http://publikationsserver.tu-braunschweig.de/get/64215

50 4.1. General Refactoring of Feature Models

φ = (A∨ (B ∧C) ∧ ¬D)

¬DA ∨ (B ∧C)

B ∧ C

CB

A

Figure 4.5.: On the left-hand side is the parsing tree of a complex constraint. On the right-hand side is the
constructed abstract subtree.

Functions λ′′ and ω′′ adapt as intended and r′′ becomes new root (either r or r′). Hence, for all
features f ∈ N ∪N ′, the following redefinitions take place:

λ′′(f) =

λ′(f), f ∈ N ′ \N
λ(f), f ∈ N \N ′

〈a..b〉 , f ∈ N ∩N ′
ω′′(f) =

ω′(f), f ∈ N ′ \N
ω(f), otherwise

r′′ =

r′, f ∈ N ′ \N
r, otherwise

If feature f is an element of N ∩N ′ then a and b depend on the decomposition type that feature
f inherits after merge (either and groups, or groups, or alternative-group). We disallow a merge of
features with custom group cardinality, as, in this thesis, we use the join operator only between a
feature model in LFFM and (possibly many) feature models from abstract subtrees, which are by
definition in LRBFM (cf. Definition 4.2 on Page 48).
m and m′ are only allowed to conjoin if and only if the combined feature model would not

result in contradicting relationships. Furthermore, all merged features need to have the same
decomposition type (either and group, or group, or alternative group), and either r must be
element in N ′ or r′ must be element in N . The join operator allows chaining, but is generally not
commutative. Example 4.5 demonstrates the overall conversion procedure from a feature model to
an equivalent feature model without complex constraints.

Example 4.5. Consider the original feature model shown on the left-hand side in Figure 4.6.
Obviously, the only program variant excluded from its product line is {C}. We want to eliminate its
single complex constraint A∨B ∨¬C by constructing an equivalent abstract subtree. The abstract
subtree, including additional simple constraints, is depicted in the middle of Figure 4.6. We can
now remove the complex constraint A∨B ∨¬C and conjoin original feature model and abstract
subtree to acquire an equivalent feature model without complex constraints (cf. Figure 4.6). The
refactored feature model excludes only the program variant {C}. Hence, both product lines are
indeed equivalent.

http://publikationsserver.tu-braunschweig.de/get/64215

4. Eliminating Complex Constraints 51

Figure 4.6.: Replacing a Complex Constraint by an Equivalent Abstract Subtree.

4.2. Refactoring Group Cardinality
Feature models of LFFM can utilize custom group cardinality. However, our target syntactic
domain LRBFM disallows them (cf. Definition 3.10 on Page 41).

Example 4.6. Consider the part of a feature model shown in Figure 4.7. Selecting feature A
enforces the selection of two out of three features of A’s sub-features (i.e., features B, C, and D).
The definition of LRBFM requires us to find a transformation that eliminates such group cardinality
and at the same time preserves all valid feature combinations.

Figure 4.7.: Problem of Refactoring Group Cardinality

We define the refactoring algorithm removing custom group cardinality as follows.

Definition 4.4 (Rcard). Rcard : LFFM → LFFM is a refactoring removing group cardinalities
from all features of a feature model that neither represent and groups, or groups nor alternative
groups (cf. Table 3.1).

As mentioned in Section 3.2, each basic decomposition type (i.e., and group, or group, and
alternative group) can also be expressed by group cardinality (cf. Table 3.1). Rcard targets
only group cardinalities besides basic decomposition types. In the following we present a simple
construction scheme for Rcard.

http://publikationsserver.tu-braunschweig.de/get/64215

52 4.3. Refactoring Complex Constraints

Construction of Rcard

Let m = (N ,P , r,ω,λ,DE, Φ) be a feature model in LFFM. We construct Rcard the following way.

Let F be the set of features having a custom group cardinality: f ∈ F if and only if λ(f) = 〈a..b〉
with a, b 6∈ {1, |subf |} and a ≤ b for each f ∈ N .

Given a feature f in F with λ(f) = 〈a..b〉. Let Cf be the set of all valid sub-feature combinations
of f : Cf = {A |A ⊆ subf and a ≤ |A| ≤ b}

For all features f in F , add a complex constraint to Φ stating their valid sub-feature combinations
of Cf : {

∨
P∈Cf

∧
l∈P

l
∧

l∈subf\C
¬l} ∈ Φ.

Finally, change group cardinality of every feature f in F to an and decomposition (all features
become optional): λ(f) = 〈n..n〉 with n = |subf |.

Example 4.7. The refactoring algorithm Rcard is depicted in Figure 4.8. Once again, the selection
of feature A of the left-hand side feature model enforces the selection of two out of three sub-features
of A (i.e., B, C, and D). The valid feature combinations are therefore {B,C}, {B,D}, {C,D}, and
{B,C,D}. Rcard changes the group cardinality of feature A to an and-group with only optional
sub-features. Finally, a complex constraint is added that represents the valid feature combinations
between features B, C, and D.

() () () ()

Figure 4.8.: Eliminating Group Cardinality

Theorem 4.1. Rcard is a correct refactoring algorithm, i.e., preserves semantics.

Proof. Follows directly from Table 3.1, as the according propositional formula of a custom group
cardinality is simply added as a complex constraint.

After applying Rcard to a feature model, the resulting feature model has no custom group
cardinalities left. We are one step closer to a representation in LRBFM. The next and final step is
to refactor the feature model such that no complex constraints are left.

4.3. Refactoring Complex Constraints
In this section, we introduce our approach for disposing complex constraints in a feature model
while preserving program variants. First, in Section 4.3.1, our goal is to identify trivial complex

http://publikationsserver.tu-braunschweig.de/get/64215

4. Eliminating Complex Constraints 53

constraints that request no refactoring of the feature model’s structure except the constraints
themselves. Then, in Section 4.3.2, we use the negation normal form of a complex constraint to
build an equivalent sub-tree with simple constraints. In Section 4.3.3, we discuss advantages and
disadvantages using the conjunctive normal form instead of the negation normal form.

4.3.1. Pseudo-Complex Constraints and Trivial Simplifications
A trivial simplification in the elimination process is the identification of complex constraints that
form a conjunction (∧) of simple and complex constraints at the highest level. Simple constraints,
if identified, can then be chopped off from the constraint without further refactoring the feature
model, resulting in smaller complex constraints and, thus, additional (abstract) features overall.

Example 4.8. Consider the following complex constraint:

φ = (A⇒ B) ∧ (B ∨C) ∧ (¬C ∨¬A)

On the highest level, φ is a conjunction of sub-formulas. The green highlighted parts mark simple
constraints. The first is a requires constraint (A requires B) and the second is an excludes constraint
(C and A are mutually exclusive). Obviously, (B ∨C) is the only real complex constraint that needs
to be eliminated. The other two constraints can simply be added as two separate simple constraints.
After simplification, φ is removed and the following constraints are added to the feature model:

φ1 = A⇒ B

φ2 = B ∨C
φ3 = ¬C ∨¬A

Another trivial simplification is the identification of complex constraints that can be converted to
an equivalent formula consisting of a conjunction of only simple constraints. In this thesis, we call
such complex constraints pseudo-complex constraints. Moreover, we call complex constraints that
are not pseudo-complex strict-complex constraints.

Definition 4.5 (Pseudo-Complex Constraints). A pseudo-complex constraint is a complex con-
straint φ that is logically equivalent to a propositional formula φ′ =

∧
i
ci where ci ≡ A ⇒ B or

ci ≡ A⇒ ¬B for any A,B ∈ B.

Definition 4.6 (Strict-Complex Constraints). A strict-complex constraint is a constraint φ that
is neither pseudo-complex nor simple.

Example 4.9. Consider the following cross-tree constraint:

φ = ¬A∨ (B ∧C)

Obviously, φ is a complex constraint. However, we can transform φ to an equivalent propositional
formula, revealing it as pseudo-complex:

φ′ = (¬A∨B) ∧ (¬A∨C)

http://publikationsserver.tu-braunschweig.de/get/64215

54 4.3. Refactoring Complex Constraints

Then, again, we remove φ from the feature model and add the following new constraints:

φ1 = ¬A∨B
φ2 = ¬A∨C

Analyzing the conjunctive normal form of a complex constraint allows us to refactor pseudo-complex
constraints. We will introduce the conjunctive normal form in more detail in Section 4.3.3. For
now, it is only important, that the conjunctive normal form has the form of a conjunction (∧) of
clauses, where each clause consists of a disjunction (∨) of literals. Furthermore, any propositional
formula can be converted into a conjunctive normal form (Büning and Lettmann, 1999, p. 24ff.).
If each clause symbols a simple constraint, it can be trivially refactored.

We also provide refactorings for trivial simplifications and pseudo-complex constraints. We
waive the construction schemes for both, as the idea of their functioning should be clear from
the examples above. Furthermore, they are not crucial for the refactoring, but serve only as
improvements.

Definition 4.7 (Rtrivial). Rtrivial : LFFM → LFFM is a refactoring reducing the size of complex
constraints by extracting simple constraints if possible.

Definition 4.8 (Rpseudo). Rpseudo : LFFM → LFFM is a refactoring eliminating pseudo-complex
constraints.

In the worst case, the conjunctive normal form can lead to an exponential increase in size of clauses
and literals (Büning and Lettmann, 1999, p. 24ff.). This may result in an exponential increase
in additional features and simple constraints. We therefore do not want to convert a complex
constraint into conjunctive normal form before applying Rtrivial at this preprocessing stage. As
we will see in Section 4.3.3, we could apply Rtrivial a second time after utilizing the conjunctive
normal form for our abstract subtree construction.

Theorem 4.2. Rtrivial and Rpseudo are correct refactoring algorithms, i.e., both preserve semantics.

Proof. Follows directly from logical equivalence (Büning and Lettmann, 1999) and the representa-
tion of feature model in propositional logic (cf. Section 3.2).

4.3.2. Refactoring Using Negation Normal Form
In Section 4.1, we already mentioned that our approach of converting complex constraints into
an equivalent abstract subtree requires a special form. First, the negation operator may only
be applied directly to atoms. Second, the only other allowed connectors are disjunction (∨) and
conjunction (∧). One idea is therefore to convert all complex constraints to a logically equivalent
constraint in negation normal form.

Definition 4.9 (Negation Normal Form (Büning and Lettmann, 1999)). A propositional formula
is in negation normal form (NNF) if and only if every negation is directly attached to one atom
and the only other logical connectors are ∧ and ∨. Implicitly, two negations are not permitted to
directly follow each other.

http://publikationsserver.tu-braunschweig.de/get/64215

4. Eliminating Complex Constraints 55

Lemma 4.1. For every propositional formula φ there exists an equivalent representation φ′ in
negation normal form.

Proof. See (Büning and Lettmann, 1999).

An algorithm for propagating negations in a propositional formula to its atoms can be acquired by
using rules form propositional logic to eliminate ⇒ and ⇐, De Morgan’s laws, and the fact that
double negation is equivalent to no negation (Büning and Lettmann, 1999).

Lemma 4.2. Given two propositions P and Q, then the following statements hold:

P ⇒ Q is the same as ¬P ∨Q.

P ⇔ Q is the same as (¬P ∨Q) ∧ (¬Q∨ P).

¬(P ∧Q) is the same as (¬P) ∨ (¬Q) (De Morgan’s first law).

¬(P ∨Q) is the same as (¬P) ∧ (¬Q) (De Morgan’s second law).

¬¬P is the same as P (Double negation).

Proof. See (Büning and Lettmann, 1999).

Example 4.10. Given the formula φ = ¬(A ∨B) ∧ ¬C. We can convert φ to an equivalent
representation in negation normal form using De Morgan’s second law: φnnf = ¬A∧¬B ∧¬C.

An algorithm that converts a propositional formula to an equivalent propositional formula in
negation normal form is depicted in Algorithm 4.1. Boolean connectors ⇒ and ⇐ must be
eliminated beforehand according to Lemma 4.2.

function PropagateNegation(Formula φ, boolean negated)
δ ← ∅
if φ == ¬α then

negated = !negated
δ = PropagateNegation(α, negated)

else if φ == α∧ β then
if negated then

δ = PropagateNegation(α, negated) ∨ PropagateNegationβ, negated
else

δ = PropagateNegation(α, negated) ∧ PropagateNegation(β, negated)
else if φ == α∨ β then

if negated then
δ = PropagateNegation(α, negated) ∧ PropagateNegation(β, negated)

else
δ = PropagateNegation(α, negated) ∨ PropagateNegation(β, negated)

else . phi is an atom
if negated then

δ = ¬φ
else

δ = φ

return δ

Algorithm 4.1 Converting a propositional formula to an equivalent formula in negation normal
(adapted from Büning and Lettmann (1999))

We now give a definition for a refactoring that aims at eliminating complex constraints in a feature
model and its according construction scheme utilizing the negation normal form.

http://publikationsserver.tu-braunschweig.de/get/64215

56 4.3. Refactoring Complex Constraints

Definition 4.10 (Rcomplex). Rcomplex : LFFM → LFFM is a refactoring that eliminates complex
constraints in negation normal form by constructing an equivalent abstract subtree.

Construction of Rcomplex

Let m = (N ,P , r,ω,λ,DE, Φ) be a feature model in LFFM and Φ′ ⊆ Φ be the set of complex
constraints. We construct Rcomplex as follows.

For all φi ∈ Φ′, eliminate logical connectors⇒ and⇔ in φi (cf. Lemma 4.2). Afterwards, convert
φi into negation normal form (cf. Algorithm 4.1).

For all φi ∈ Φ′, construct an abstract subtree (Mi, Ψi) equivalent to the parsing tree of φi (cf.
Section 4.1).

Finally, Rcomplex(m) = (N ,P , r,ω,λ,DE, (Φ \Φ′) ∪Ψ1 ∪ ...∪Ψn) •M1 • ... •M|Φ′|.

Example 4.11. We have already given examples indirectly using the negation normal form for
constructing and joining abstract subtrees in Example 4.4 and Example 4.5.

In the following, we formally prove the correctness of Rcomplex, i.e., Rcomplex indeed returns an
equivalent feature model without complex constraints.

Proof of Correctness

To proof that Rcomplex is indeed a refactoring algorithm, we exploit the fact that feature models
can be translated into propositional formulas to reason about them (Thüm et al., 2009). First, we
need to give one definition and two lemmas to ease the proof procedure.

Definition 4.11 (Boolean Mapping Function B). Let N be the set of all features. The mapping
function B : LFFM → B(N) maps a feature model to its representation in propositional logic by
transforming all occurring relations according to Table 3.4 and concatenating them through logical
conjunction (∧).

Lemma 4.3. Given two feature models m,m′ ∈ LFFM. If B(m) ⇒ B(m′) is a tautology, then
JmK ⊆ Jm′K.

Proof. We prove this lemma by contradiction. Assume JmK 6⊆ Jm′K. Then there exists a product
p in JmK that is not in Jm′K. Let φp be a propositional formula representing product p. Then
φp ∧B(m) ∧¬B(m′) valuates to true. Since B(m)⇒ B(m′) is a tautology, it follows that

φp ∧B(m) ∧¬B(m′)
≡ φp ∧¬(¬B(m) ∨B(m′)
≡ φp ∧¬(B(m)⇒ B(m′)
≡ ⊥

where ⊥ is a symbol stating the valuation to false. Hence, B(m)⇒ B(m′) cannot be a tautology.
This is obviously contradicting to our assumption.

http://publikationsserver.tu-braunschweig.de/get/64215

4. Eliminating Complex Constraints 57

Part of our upcoming proof involves showing that the implication between two feature models in
propositional formula is a tautology. We can then conclude that one feature model semantically
represents a superset of the other feature model. To do so, we need rules to syntactically infer
from one formula to another. Furthermore, if we want to show that A ⇒ B is a tautology, we
can also show that A ⇒ A′ and A′ ⇒ B are both tautologies, potentially chaining more steps
in between. These rules are also known as logical substitution, as they syntactically change a
propositional formula without changing its semantics. For our proof, we only need three rules,
depicted in Lemma 4.4.

Lemma 4.4. Given two propositions P ,Q. Then the following three propositional formulas are
tautologies.

(P ⇒ Q) ∧ P ⇒ Q (modus ponens)

(P ⇒ ¬Q) ∧ P ⇒ ¬Q (modus porendo tollens)

(P ⇔ Q) ∧ P ⇒ Q (biconditional elimination)

Proof. Can easily be shown by constructing truth tables.

Example 4.12. Consider the propositional formula φ = P ∧Q ∧ (P ⇒ S ∨ T). Modus ponens
states that if φ valuates to true, so does φ′ = (S ∨ T) ∧Q.

Theorem 4.3. Rcomplex is a correct refactoring algorithm, i.e., preserves semantics.

Proof. We demonstrate JRcomplex(m)KFFM = JmK in two steps. For simplicity, we denote
Rcomplex(m) as mR.

(1) each program variant of JmRK is also program variant of JmK. Because of Lemma 4.3, we
need to show that B(mR)⇒ B(m) is a tautology. Without loss of generality, let φ be one
complex constraint in negation normal form of m and (M , Ψ) the corresponding abstract
subtree. When we construct the abstract subtree, we start with the root feature r. We show
that B(M) ∧Ψ⇒ φ is a tautology by utilizing our three substitution rules (cf. Lemma 4.3).
We use the notation A→ B to indicate that A is substituted by B. We have to distinguish
the following cases.

Root feature. According to Table 3.4, root feature r is always true.

And groups. Let A be an abstract feature (and decomposed) and α′1, ...,α′n its mandatory
children (each can be either decomposed further or be a terminal feature). According
to Table 3.4, the corresponding conversion in propositional formula is (α′1 ⇔ A) ∧ ...∧
(α′n ⇔ A). We assume that feature A is selected (otherwise all α′i would simply be false).
For all i = 1..n, the following substitution follows by rule of biconditional elimination
(cf. Lemma 4.4).

A∧ (α′i ⇔ A)→ α′i

This leads to the conjunction α′1 ∧ ...∧ α′n.

http://publikationsserver.tu-braunschweig.de/get/64215

58 4.3. Refactoring Complex Constraints

Or groups. Let B be an abstract feature (or decomposed) and β′1, ...,β′m its children
(again, each can be either decomposed further or be a terminal feature). According to
Table 3.4, the corresponding conversion in propositional formula is β′1 ∨ ...∨ βm ⇔ B.
Analogously, we assume that feature B is selected. We can once again use rule of
biconditional elimination (cf. Lemma 4.4).

B ∧ (β′1 ∨ ...∨ β′m ⇔ B)→ β′1 ∨ ...∨ β′m

Terminal features. Let γ′k be a terminal feature. We constructed our abstract subtree
such that {γ′k ⇒ γk} ∈ Ψ or {γ′k ⇒ ¬γk} ∈ Ψ with γk being a variable (feature) in
φ. The substitution using modus ponens or modus ponendo tollens (cf. Lemma 4.4),
respectively, is as follows.

γ′k ∧ (γ′k ⇒ γk)→ γk or γ′k ∧ (γ′k ⇒ ¬γk)→ ¬γk

In total, we can substitute each proposition in B(M)∧Ψ by the original propositions of φ. If
we do this for all complex constraints in m, we have syntactically derived B(m) from B(mR),
and thus B(mR)⇒ B(m) is a tautology. Based on Lemma 4.3, it follows that JmRK ⊆ JmK.

(2) each program variant of JmK is also program variant of JmRK. We prove this by reductio ad
absurdum, i.e., that the following does not hold.

There exists at least one product in JmK that is not in JmRK.

Rcomplex only adds abstract features and does not change existing parent-child-relationships
(cf. Section 4.3). Then it follows thatRcomplex must eliminate program variants by introducing
or eliminating cross-tree constraints. The only cross-tree constraints that Rcomplex adds
are simple constraints by constructing and composing an abstract subtree (M , Ψ) from a
complex constraint φ. Through modus ponens and modus ponendo tollens, terminal features
of M can be substituted by according literals in φ. We also showed in (1) that any complex
constraint φ is a syntactical consequence of B(M) ∧Ψ. The change of cross-tree constraints
we perform does therefore not change the product line. The only way now to eliminate
program variants is when Rcomplex introduces new concrete features that are used in (M , Φ),
which it does not. Hence, no program variants are removed by Rcomplex, which means that
JmK ⊆ JmRK.

Example 4.13. Consider the propositional formula φ = (A ∨ (B ∧ C) ∧ ¬D) and according

http://publikationsserver.tu-braunschweig.de/get/64215

4. Eliminating Complex Constraints 59

abstract subtree, here denoted as (M , Ψ), in Figure 4.5. It follows that

B(M) ∧Ψ ≡ And∧ (And⇔ Or) ∧ (And⇔ D′) ∧ (A′ ∨And2⇔ Or) ∧ (B′ ⇔ And2)
∧ (C ′ ⇔ And2) ∧ (A′ ⇒ A) ∧ (B′ ⇒ B) ∧ (C ′ ⇒ C) ∧ (D′ ⇒ ¬D)

(1)⇒ Or ∧ (D′) ∧ (A′ ∨And2⇔ Or) ∧ (B′ ⇔ And2) ∧ (C ′ ⇔ And2)
∧ (A′ ⇒ A) ∧ (B′ ⇒ B) ∧ (C ′ ⇒ C) ∧ (D′ ⇒ ¬D)

(2)⇒ D′ ∧ (A′ ∨And2) ∧ (B′ ⇔ And2) ∧ (C ′ ⇔ And2)
∧ (A′ ⇒ A) ∧ (B′ ⇒ B) ∧ (C ′ ⇒ C) ∧ (D′ ⇒ ¬D)

(3)⇒ D′ ∧ (A′ ∨ (B′ ∧C ′)) ∧ (A′ ⇒ A) ∧ (B′ ⇒ B) ∧ (C ′ ⇒ C) ∧ (D′ ⇒ ¬D)

(4)⇒ D′ ∧ (A∨ (B ∧C)) ∧ (D′ ⇒ ¬D)

(5)⇒ ¬D ∧ (A∨ (B ∧C)) ≡ φ

In (1) we use biconditional elimination to eliminate And. In (2) we use biconditional elimination
to eliminate Or. In (2) we use again biconditional elimination to substitute And2 with B and C.
Finally, we use modus ponens in (4) for A’, B’, and C’, and modus ponendo tollens in (5) for D’.

4.3.3. Refactoring Using Conjunctive Normal Form
In the previous section, we used the negation normal form of a complex constraint to construct an
equivalent abstract subtree. The subtree’s structure depends directly on the formula’s parsing tree.
Based on this approach, we can convert a complex constraint to a different, but equivalent, negation
normal form that may be even more simplified. The goal is to scale down complex constraints
in terms of number of literals. As we saw in Section 4.3.1, simplifying complex constraints can
be achieved by extracting simple constraints. It is only natural to have a look at the conjunctive
normal form, as simple constraints already are a disjunction of two literals.
We briefly recall the essentials on a propositional formula in conjunctive normal form.

Definition 4.12 (Conjunctive Normal Form (Davis et al., 1962)). A propositional formula Φ is
in conjunctive normal form if and only if it is of the form

c1 ∧ ...∧ cn

and each (so-called) clause ci is a disjunction of literals

l1 ∧ ...∧ lm

Analogous, a disjunction of conjunctions is called a disjunctive normal form.

Lemma 4.5. For every propositional formula φ there exists an equivalent representation φ′ in
conjunctive normal form.

Proof. See Davis et al. (1962).

Algorithm 4.2 converts a propositional formula into conjunctive normal form. After converting all
complex constraints into conjunctive normal form using Algorithm 4.2, we can apply Rtrivial a
second time (cf. Section 4.3.1). Rcomplex can then be applied as is.

http://publikationsserver.tu-braunschweig.de/get/64215

60 4.3. Refactoring Complex Constraints

function ToCNF(Formula φ)
if φ == α∧ β then φ = ToCNF(α) ∨ ToCNF(β)
else if φ == α∨ β then

α ← ToCNF(α)
β ← ToCNF(β)
if α == γ ∧ δ then

φ ← (γ ∨ β) ∧ (δ ∨ β)
else if β == γ ∧ δ then

φ ← (α∨ γ) ∧ (α∨ δ)
else

φ ← α∨ β
return φ

Algorithm 4.2 Converting a propositional formula to an equivalent formula in conjunctive normal
(adapted from Büning and Lettmann (1999))

Example 4.14. Consider the following propositional formula.

φ = (A∨ (B ∧C)) ∧¬D

Transforming formula φ into its conjunctive normal form according to Algorithm 4.2 results in

φcnf = (A∨B) ∧ (A∨C) ∧¬D

The constructed abstract subtree is depicted in Figure 4.9. It can be seen that the subtree consists
of only two levels besides its root feature CNF.

Figure 4.9.: Resulting Abstract Subtree Based on Conjunctive Normal Form

Example 4.15. Consider the following cross-tree constraint.

φ = ¬A∨ (B ∧C) ∧ (D ∨E)

Formula φ is a complex constraint. However, we can transform φ to an equivalent propositional
formula in conjunctive normal form:

φ′ = (¬A∨B) ∧ (¬A∨C) ∧ (D ∨E)

http://publikationsserver.tu-braunschweig.de/get/64215

4. Eliminating Complex Constraints 61

In this case, the conjunctive normal form results in a simplification (two simple constraints
highlighted in green), as the only complex part left is (D ∨E).

We already mentioned earlier that, although the conjunctive normal leaves more space for simpli-
fications, it is not always the better option. Translating a formula to conjunctive normal form
may lead to an exponential increase of the formula in number of clauses and literals (Büning and
Lettmann, 1999; Tseitin, 1983), resulting in a more complex feature model as when the standard
negation normal form is used. However, an option for practical use might be to decide individually
for each complex constraint which form to use. In Chapter 6, we evaluate the strengths and
weaknesses of each strategy.

Example 4.16. Consider the following propositional formula in negation normal form.

φ = ¬F ∨ (A∧X) ∨ (B ∧ (Y ∨Z)) ∨C

Once again, formula φ is a complex constraint. If we transform φ to an equivalent propositional
formula in conjunctive normal form, we get the following result.

φ′ = (¬F ∨A∨B ∨C) ∧ (¬F ∨A∨ Y ∨Z ∨C) ∧ (¬F ∨X ∨B ∨C) ∧ (¬F ∨X ∨ Y ∨Z ∨C)

In this case, the conjunctive normal form results in a bigger formula, leading eventually to a bigger
feature model.

4.3.4. One-to-One Correspondence of Configurations
Recall that, at Definition 3.6 on Page 33, we defined two meanings for semantic equivalence of
feature models. First, basic equivalence in terms of program variants. Second, strict equivalence in
terms of configurations. Our approach so far complies with equivalence but cannot comply with
strict equivalence, as we introduce additional abstract features.

However, when we introduce new features, as presented in the previous sections, we also increase
the number of configurations, which is not always desired. For instance, tools that are not aware
of the concept of abstract features will configurations mistake with program variants. If we then
introduce too many new configurations in our approach, the resulting feature model is far from
equivalent.

To preserve the initial configuration state, we can at least create a bijection between old and
new configurations. We therefore replace all requires constraints in our abstract subtree with a
bidirectional implication (that can obviously split up into two requires constraints). Each old
configuration is then a subset of its corresponding new configuration. We say that a refactoring
algorithm who provides such a bijection is coherent, and define it as follows.

Definition 4.13 (Configuration Coherence). Given a feature model m and a refactoring algorithm
R. R is coherent if and only we can pair all p ∈ JmKc with exactly one q ∈ JR(m)Kc such that
p ⊆ q. Otherwise we say that R is incoherent.

Example 4.17. Consider again the abstract subtree in Figure 4.9. Supplementary to A′ ⇒ A, we
add A⇒ A′. Analogous for B and C. Excludes constraints are symmetrical and just remain as

http://publikationsserver.tu-braunschweig.de/get/64215

62 4.4. Summary

they are. Figure 4.10 illustrates the result when a bijection between configurations is established.
The additional simple constraints are highlighted in red.

Figure 4.10.: Resulting Feature Model when a Coherent Refactoring is Performed

As can be seen in Example 4.17, our refactoring algorithm for strict complex constraints can simply
be extended through adding a bidirectional implication for each requires constraint to become
coherent. A disadvantage is, however, the increase in additional cross-tree constraints.

4.4. Summary
We proposed an approach to refactor a feature model with complex constraints to a relaxed
basic feature model. We first construct semantically equivalent abstract subtrees for each complex
constraint that are then conjoined with the original feature model. The approach additionally
involves identifying pseudo-complex constraints to decrease the size of the resulting feature model,
and simplifying constraints beforehand in general. In the following, we summarize all defined
refactoring algorithm that are involved in the overall refactoring process.

Required Refactorings
Recall that there are only two main differences between LFFM and LRBFM. On the one hand,
LFFM can make use of group cardinalities which LRBFM cannot. On the other hand, LRBFM
allows only simple constraints, whereas LFFM allows complex constraints. To provide a feature
model refactoring from LFFM to LRBFM, we have constructed the refactoring algorithms summa-
rized in Table 4.1. Refactoring Rtotal represents the overall refactoring procedure. Refactoring
Rcomplex uses either the negation normal form, conjunctive normal form, or a combination of both.
The end result is a feature model in LRBFM. In the next chapter, we give an implementation in
FeatureIDE for refactoring feature models with complex constraints to feature models with only
simple constraints.

http://publikationsserver.tu-braunschweig.de/get/64215

4. Eliminating Complex Constraints 63

Refactoring Algorithm Description
Rcard : LFFM → LFFM Rcard results in an equivalent feature model without group

cardinalities (cf. Section 4.2).
Rtrivial : LFFM → LFFM Rtrivial results in an equivalent feature model with potentially

shrunk complex constraints (cf. Section 4.3.1).
Rpseudo : LFFM → LFFM Rpseudo results in an equivalent feature model with no more

pseudo-complex constraints (cf. Section 4.3.1).
Rcomplex : LFFM → LFFM Rcomplex results in an equivalent feature model without com-

plex constraints (cf. Section 4.3)
Rtotal : LFFM → LRBFM Rtotal is the total refactoring algorithm comprising all other

refactorings: Rtotal = Rcard ◦Rtrivial ◦Rpseudo ◦Rcomplex

Table 4.1.: Overview of Defined Refactoring Algorithms

http://publikationsserver.tu-braunschweig.de/get/64215

http://publikationsserver.tu-braunschweig.de/get/64215

5 Eliminating Complex Con-
straints with FeatureIDE
In Section 2.3, we took a look at five different areas for feature model applications and transpired that
only roughly 50% out of 26 of our reviewed publications discussed complex constraints. However,
we know from Section 3.3 that complex constraints add expressive value to a feature modeling
language. The problem is that it may be hard to extend some feature modeling applications, that
use only simple constraints, to support complex constraints. Our approach for eliminating complex
constraints in feature models from the previous chapter may overcome this limitation. To get more
insight of the practical significance of our algorithm, we need to conduct an empirical evaluation
with industrial feature models. Therefore, we decided to implement our refactoring algorithm in
FeatureIDE.1

Moreover, our approach enables the possibilities to export feature models with complex constraints
to basic feature model formats (cf. Section 2.2). This is a practical application for our approach
that we also want to integrate in FeatureIDE. We chose the Fama file format serving as a real
application scenario for the implementation of an exporter to a basic feature model format in
FeatureIDE.

In Section 5.1, we introduce all necessary tools and explain how our concept is implemented.
Then, in Section 5.2, we illustrate necessary preprocessing steps. Next, we explain implementation
details of our elimination strategies in Section 5.3. We elaborate on the implementation steps for
our Fama exporter in Section 5.4. Finally, we summarize this chapter in Section 5.5.

5.1. Overview
As mentioned in the beginning, FeatureIDE is an Eclipse-based open-source framework for
feature-oriented software development. In general, FeatureIDE aims at covering the the whole
development process of software product lines, from feature modeling over code artifact implemen-
tation to program-variant generation. FeatureIDE offers a graphical editor based on Eclipse for
modeling feature diagrams (cf. Section 2.2.1 for an example of its format) and supports different
software product line composition techniques (e.g., aspect-oriented programming, feature-oriented
programming, and preprocessor-based development).

Our approach presented in Chapter 4 focuses on a refactoring of feature models. Hence, we
find ourselves primarily in the phase of feature modeling. Our goal is to enhance FeatureIDE’s
graphical modeling editor to give support for the elimination of complex constraints. We provide the
elimination of complex constraints of a feature model in FeatureIDE by an entry in the context

1Available in FeatureIDE v3.1.0: https://github.com/FeatureIDE/FeatureIDE/releases/tag/v3.1.0

http://publikationsserver.tu-braunschweig.de/get/64215

https://github.com/FeatureIDE/FeatureIDE/releases/tag/v3.1.0

66 5.1. Overview

menu. Moreover, we provide an exporter for the Fama file format based on our approach, also
accessible by the context menu. Figure 5.1 shows a new feature modeling project in FeatureIDE
and the context menu of the project’s feature model, offering both of our extensions.

Figure 5.1.: Feature Modeling Project in FeatureIDE with Context Menu

Refactoring Implementation
Figure 5.2 depicts the refactoring overview as a sequence of actions. We begin with a preprocessing
phase where tautological and redundant constraints are removed and pseudo-complex constraints
are refactored as described in Section 4.3.1. Subsequently, we iterate through all strict-complex
constraints and eliminate them by constructing a equivalent abstract subtree which is then conjoined
with the original feature model (cf. Section 4.1).

Figure 5.2.: Activity Diagram of the Refactoring Process

To provide a main anchor point for our refactoring process, we implemented the class Complex-
ConstraintConverter in a newly created package called conversion. We refer to our process
as conversion, as we convert strict-complex constraints before elimination to either conjunctive

http://publikationsserver.tu-braunschweig.de/get/64215

5. Eliminating Complex Constraints with FeatureIDE 67

IFeatureModel convert(IFeatureModel m, IConverterStrategy conv)

Description. The conversion method is an accurate portrayal of the activity diagram
shown in Figure 5.2. The result is an equivalent feature model without complex
constraints.

static boolean isSimple(IConstraint c)

Description. isSimple checks whether c is a simple constraint.

static boolean isComplex(IConstraint c)

Description. isComplex checks whether isSimple(c) valuates to false.

static boolean isPseudoComplex(IConstraint c)

Description. isPseudoComplex checks whether c is a conjunction of simple con-
straints. isPseudoComplex converts c into conjunctive normal form beforehand.

static boolean onlyTrivialRefactoring(List<IConstraint> C)

Description. onlyTrivialRefactoring checks whether isPseudoSimple(c) valu-
ates to true for all c in C.

Table 5.1.: Publicly Available Methods of Class ComplexConstraintConverter

normal form or negation normal form, and eventually to an abstract subtree. ComplexConstraint-
Converter offers static methods to recognize simple, pseudo-complex, and complex constraints in
general, and is responsible for the refactoring process depicted in Figure 5.2. Table 5.1 gives an
overview of our publicly implemented methods in class ComplexConstraintConverter.

Remember that all pseudo-complex constraints are complex constraints by definition (cf. Sec-
tion 4.3.1). It is therefore important to first refactor pseudo-complex constraints into simple
constraints. Afterwards, if a constraint is recognized as complex, it is ensured that it is a strict-
complex constraint. Next, we briefly explain the actions we take in our preprocessing phase.

5.2. Preprocessing Phase
The preprocessing phase aims at simplifying the input feature model by removing tautological
and redundant constraints, as a refactoring of those is unnecessary by definition. However, this is
optional for a user based on two observations. First, a user may want to get a refactored feature
model that inherits all flaws from the original one. Second, the recognizing of tautological and
redundant constraints is costly, as a SAT-analysis is required. For large feature models, this can
consume a huge amount of time.

http://publikationsserver.tu-braunschweig.de/get/64215

68 5.3. Choosing a Conversion Strategy

Figure 5.3.: Identifying Redundant Constraints

The FeatureIDE framework is capable of recognizing tautological and redundant constraints
through an implemented analyzer for feature models (Thüm et al., 2014). Figure 5.3 shows an
example of a feature model in FeatureIDE with a redundant constraint (i.e., C ⇒ D ∨E is
already modeled by the tree) and a tautological constraint (i.e., D ⇒ D is always true).

Obviously, unnecessary constraints, should be resolved by a modeler beforehand. However, if
desired, the preprocessing phase at least tries to perform useful actions (i.e., removing them if
possible) in case of their occurrences.

5.3. Choosing a Conversion Strategy
In Chapter 4, we introduced two conversion strategies for constructing an abstract subtree
equivalent to a complex constraint based on propositional calculus: negation normal form and
conjunctive normal form. Both strategies have their individual advantages (cf. Section 4.3.2). In
our implementation, both strategies are based on the interface IConverterStragety presented in
Listing 5.1. IConverterStragety offers two methods that need to be implemented when adding a
new strategy.

1 public interface IConverterStrategy {

2 public List <IConstraint > preprocess(IConstraint constraint);

3 public IFeatureModel convert(IFeatureModel fm, List <IConstraint >

↪→ constraitns , boolean preserveConfigurations);

4 }

Listing 5.1.: IConverterStrategy Interface

List<IConstraint> preprocess(IConstraint). IConverterStragety.preprocess is called for
every complex constraint by the main module and returns a list of constraints. For instance,
the preprocessing method for the conjunctive normal form first converts a complex constraint
into its conjunctive normal form and then returns the list of all clauses. Some of them may
be simple constraints and will not be converted into an abstract subtree, but simply added
to the resulting feature model.

IFeatureModel convert(IFeatureModel, List<IConstraint>, boolean). The most important
method of a strategy is IConverterStragety.convert. It takes a feature model and a sepa-
rated list of its strict-complex constraints as input arguments and is responsible for converting

http://publikationsserver.tu-braunschweig.de/get/64215

5. Eliminating Complex Constraints with FeatureIDE 69

each strict-complex constraint into an equivalent abstract subtree. Abstract subtree and
original feature model are then conjoined. Both of our strategies (i.e., conjunctive normal
form and negation normal form) create an abstract subtree that is added directly below the
root feature. Future strategies may choose to add abstract subtrees to other (potentially
concrete) features of the feature model.

Listing 5.2 shows the preprocessing method of the negation normal form strategy. For the negation
normal form, the returned list comprises only one constraint. First, all logical connectors instead of
{∧,∨,¬} are eliminated by the rules of propositional calculus. Then, the negation ¬ is recursively
propagated until it vanishes or reaches an atom (cf. Section 4.3.2).

1 public class NNFConverter implements IConverterStrategy {

2 /∗ ... ∗/
3 Override

4 public List <IConstraint > preprocess(IConstraint constraint) {

5 List <IConstraint > result = new LinkedList <IConstraint >();

6 IConstraint elem = constraint.clone();

7
8 elem = eliminateNotSupportedConnectors(elem);

9 elem = propagateNegation(elem , false);
10
11 result.add(elem);

12 return result;

13 }

14 /∗ ... ∗/
15 }

Listing 5.2.: Preprocessing Method of NNFConverter

A conversion strategy must only be chosen if there are any complex constraints left that cannot be
refactored trivially (cf. Section 4.3). In this case, we provide a wizard that guides a user through
the elimination process.

A Wizard for Equivalent Conversion

Figure 5.4.: A Wizard for the Conversion Process

http://publikationsserver.tu-braunschweig.de/get/64215

70 5.3. Choosing a Conversion Strategy

Beside the options to choose a file path, a user can have tautological and redundant automatically
removed, and can demand a coherent refactoring through the option to preserve semantics (cf.
Section 4.3.4). Furthermore, we provide three different strategies for constructing all abstract
subtrees if strict-complex constraints exist.

Negation Normal Form: Uses the negation normal form of a strict-complex constraint to construct
an abstract subtree that is conjoined with the feature model (cf. Section 4.3.2). Implemented
by class NNFConverter.

Conjunctive Normal Form: Analogous to the negation normal form, but uses the conjunctive
normal form instead. Implemented by class CNFConverter.

Combined : Mixes both strategies and decides individually for each strict-complex constraint
which of the other two methods to use (see explanation below). Can also be used with
future strategies implementing the interface IConverterStrategy. Implemented by class
CombinedConverter.

The combined method is an optimization. It estimates for each complex constraint the increase in
size regarding additional features and simple constraints and chooses the method with minimal
impact according to a cost function. Given a strict-complex constraint c, the number of estimated
additional simple constraints denoted as |c|φ, and the number of estimated additional abstract
features denoted as |c|F . The according cost function is as follows.

f(c) = wφ ∗ |c|φ +wF ∗ |c|F

wφ and wF represent weights to penalize either additional constraints or additional features. In
our implementation, constraints and features are equally weighted. Listing 5.3 shows the simple
preprocessing method of CombinedConverter. As mentioned, any conversion strategy implementing
the IConverterStrategy-interface may participate. After choosing the constraint with minimal
impact, the equivalent abstract subtree can be conjoined with the input feature model as explained
in Section 4.3.2. Listing 5.3 presents the preprocessing method of CombinedConverter. The cost
function is implemented by the method estimatedCosts.

http://publikationsserver.tu-braunschweig.de/get/64215

5. Eliminating Complex Constraints with FeatureIDE 71

1 public class CombinedConverter implements IConverterStrategy {

2 /∗ ... ∗/
3 List <IConverterStrategy > strategies = new LinkedList <

↪→ IConverterStrategy >();

4 /∗ ... ∗/
5 Override

6 public List <IConstraint > preprocess(IConstraint constraint) {

7 List <IConstraint > result = new LinkedList <IConstraint >();

8
9 int costs = Integer.MAX_VALUE;

10 for(IConverterStrategy strat : strategies) {

11 List <IConstraint > preprocessed = strat.preprocess(constraint);

12 int cost = 0;

13 if((cost = estimatedCosts(preprocessed)) < costs) {

14 result = preprocessed;

15 costs = cost;

16 }

17 }

18 return result;

19 }

20 }

Listing 5.3.: Preprocessing Method of CombinedConverter

The class diagram depicted in Figure 5.5 illustrates the relationships between the interface
IConverterStrategy and its implementations NNFConverter, CNFConverter, and Combined-
Converter.

Figure 5.5.: Class diagram depicting the relationships between all currently implemented refactoring strate-
gies.

CNFConverter inherits from NNFConverter and only needs to override the preprocessing method.
The conversion process is for both strategies the same, as conjunctive normal form is only a special
case of negation normal form. Therefore, it may happen that both strategies, given a strict-complex
constraint, produce an identical abstract subtree.
CombinedConverter holds a number of strategies for which it decides which to use for prepro-

http://publikationsserver.tu-braunschweig.de/get/64215

72 5.4. Implementing an Exporter for the Fama File Format

cessing each strict-complex constraint individually. In its convert method, it also produces an
abstract subtree for each preprocessed constraint according to minimal impact.

5.4. Implementing an Exporter for the Fama File
Format

Fama is a framework for automated analysis of feature models (Benavides et al., 2007). We
chose to implement an exporter to a basic feature model file format for FeatureIDE as a real
application scenario for our approach. Fama satisfies this need, as it is highly used for automated
analysis of feature models.

Fama offers two file formats.2 First, a file format that can use group cardinalities but only simple
constraints. Second, an extended format with complex and attributed constraints. Nevertheless,
we decided to implement the first file format, which is better integrated. We refer to Section 2.2.2
for a description of the plain text Fama file format for basic feature models.

FeatureIDE offers already classes for exporting feature models to different file formats (SXFM,
Velvet, GUIDSL, and DIMACS). We provide a new package named de.ovgu.featureide.fm.-
io.fama and implement the class FAMAWriter, which inherits from AbstractFeatureModelWriter.
First, a feature model clone is refactored as explained in the previous sections. Second, the refactored
model is exported into the Fama file format. However, all abstract features become concrete in
the process. We therefore offer a user the option to perform a coherent refactoring (cf. Figure 5.4).

Table 5.2 exemplifies the conversion from a feature model with complex constraints (left-hand
side) to the Fama file format (right-hand side). The refactored feature model (center) is the result
of an incoherent refactoring with our approach. In this case, all three strategies (conjunctive
normal form, negation normal form, and the combined method) produce the same result, as both
strict-complex constraints are already in conjunctive normal form.

Known Limitations
Our result is obviously not optimal regarding minimal additional features and constraints, as the
implementation of a minimization of all constraints while also preserving the structure of the
feature model is beyond the scope of this thesis.

Moreover, the Fama file format does not support abstract features. This obviously leads to a
non-equivalent feature model in the sense of this thesis. However, products are only increasing in
terms of additional features. This means that at least every product of the input feature model is
also part of a product of the Fama feature model. If a coherent refactoring performed, there is a
one-to-one mapping between configurations of the input feature model and products of the Fama
feature model.

2Further information in the user manual: https://famats.googlecode.com/files/FaMa%20User%20Manual.pdf

http://publikationsserver.tu-braunschweig.de/get/64215

https://famats.googlecode.com/files/FaMa%20User%20Manual.pdf

5. Eliminating Complex Constraints with FeatureIDE 73

Original Feature Model Refactored Feature Model Fama Feature Model

%Relationships
root: [A] [B] [C] Subtree;
OR1: [1,2]{A1 B1};
OR2: [1,2]{B2 C2};
Subtree: OR1 OR2;

%Constraints
A1 REQUIRES A;
B1 REQUIRES B;
B2 REQUIRES B;
C2 REQUIRES C;

Table 5.2.: Exporting a Feature Model into the Fama File Format

5.5. Summary
In this chapter, we explained how we integrated our approach from the previous chapter into
the FeatureIDE framework. Our contribution includes an equivalent refactoring of feature
models with complex constraints to feature models with only simple constraints. Based on this
implementation, we also extended FeatureIDE with an exporter for the basic Fama file format
as a real application scenario. Before a feature model can be exported to Fama, all complex
constraints must be eliminated. In the next chapter, we use our implementation to empirically
evaluate the practical significance of our proposed refactoring algorithm.

http://publikationsserver.tu-braunschweig.de/get/64215

http://publikationsserver.tu-braunschweig.de/get/64215

6 Evaluation
Given our implemented tool support for FeatureIDE from the previous chapter, it is now possible
to eliminate complex constraints of a feature model, while also preserving its program variants.
In Chapter 4, we introduced three strategies to accomplish such a refactoring. We can either use
conjunctive normal form, negation normal form, or an optimized combination of both. Furthermore,
we pointed out the importance of identifying pseudo-complex constraints, i.e., cross-tree constraints
that can be directly refactored into simple constraints, resulting in less additional abstract features.

A number of questions arise. What is the portion of simple, pseudo-complex, and strict-complex
constraints in real-world feature models? How complicated are typical strict-complex constraints?
What can we say about the scalability of our approach, i.e., do some feature models become
disproportionately difficult to analyze based on their increase in size? What is the performance
per strategy, i.e., speed and memory consumption?

In Section 6.1, we introduce the goals and the methodology for this evaluation. Next, in
Section 6.2, we present and discuss our results. Finally, in Section 6.3, we discuss threats to the
validity of our evaluation.

6.1. Methodology
As a reminder, we recall the remaining two research questions we formulated at the beginning of
this thesis.

RQ3 To what extent are complex constraints used in real-world feature models?

RQ4 What are the costs of eliminating complex constraints?

For this chapter, we refine those two research questions to become more specific. To get more
insight of whether our approach works in practice, the following research questions need to be
answered by empirical evaluation.

RQ3.1 To what extent are simple, pseudo-complex, and strict-complex constraints used in real-world
feature models?

RQ3.2 What is the typical size of strict-complex constraints?

RQ4.1 How efficient is our algorithm in the preprocessing and elimination of complex constraints,
regarding speed and memory consumption?

RQ4.2 Does the size of the refactored models increase significantly?

Answering RQ3.1 gives us a tendency towards the role of strict-complex constraints in the real
world. It is yet unclear to what extend strict-complex constraints are used in industrial cases.

http://publikationsserver.tu-braunschweig.de/get/64215

76 6.1. Methodology

A follow-up question is RQ3.2. Strict-complex constraints have different lengths and, hence can
therefore be considered differently complicated. Based on the work of von Rhein et al. (2015),
who also needed to take the difficulty of a propositional formula into account, we use the counted
number of literals occurring in a strict-complex constraint as a measurement for its complication.
To avoid bias, we first convert a constraint into conjunctive normal form. There is also a connection
to SAT problems, that we discuss in a later stage.

For RQ4.1 and RQ4.2, we attempt to additionally use generated feature models of different sizes
in terms of features (50, 100, 200, 500, 1,000, 2,000, 5,000, and 10,000) and constraints (5, 10, 20,
50, 100, 200, 500, and 1,000). They are provided in the GUIDSL format (cf. Section 2.2.2), and
have been used as a benchmark before (Thüm et al., 2009). Those generated feature models do not
represent industrial cases, but can reveal information about efficiency and memory consumption of
our algorithm. We refer to Appendix A for the results.

In line with our notation, the following symbols are used in this chapter for number of features
and number of (classified) cross-tree constraints, respectively.

Symbol Description
|N | The total number of features
|Φ| The total number of cross-tree constraints

|Φ| = |Φ|simp + |Φ|pseudo + |Φ|strict
|Φ|simp The number of simple constraints
|Φ|pseudo The number of pseudo-complex constraints
|Φ|strict The number of strict-complex constraints

Table 6.1.: Notation Used for Evaluation

Experimental Subjects
We choose a representative sample set comprising 17 feature models. A complete evaluation of
including the generated feature models can be found in Appendix A. The evaluation uses five
different evolutions of the Automotive feature model from our industrial partners, three large
feature models imported from dimacs file format (Linux kernel, eCos, and part of the FreeBSD
kernel), also used by She et al. (2011), and several smaller feature models from the repositories of
S.P.L.O.T. and FeatureIDE with at least 50 features and at least one cross-tree constraint.

Table 6.2 gives an overview of the representative feature models we chose. The first column
shows the feature model name. The second and third column state the number of features and
cross-tree constraints We also present the cross-tree constraint ratio, i.e., the relative number of
features participating in one or more constraints to the total number of features of a feature model.
The last column presents the number of clauses in conjunctive normal form over all cross-tree
constraints for each feature model. The feature models consist of up to 18,616 features and up to
80,715 cross-tree constraints.

http://publikationsserver.tu-braunschweig.de/get/64215

6. Evaluation 77

Model name |N | |Φ| CTCR1(%) #Clauses in CNF
Automotive 2.42 18,616 1,369 8 1,823
Automotive 2.32 18,434 1,300 7 1,676
Automotive 2.22 17,742 914 6 1,050
Automotive 2.12 14,010 666 6 788
Linux kernel v2.6.28.63 6,889 80,715 99 80,715
Automotive 12 2,513 2,833 51 2,833
FreeBSD kernel 8.0.03 1,397 14,295 93 14,295
eCos 3.0 i386p3 1,245 2,478 99 2,478
EIS-Investement4 366 192 93 192
e-Shop2 326 21 10 21
Electronic Shopping4 291 21 11 21
FMTest4 168 46 29 46
Violet2 101 27 66 27
Billing4 88 59 66 59
BerkeleyDB2 76 20 42 20
Arcade Game4 65 34 52 34
Classic Shell4 65 11 20 11
1 CTCR: cross-tree constraint ratio
2 FeatureIDE examples
3 She et al. (2011)
4 S.P.L.O.T.

Table 6.2.: Representative Sample Set of Evaluated Feature Models

Set-Up
We computed all experiments on a single machine with an Intel Core i5-4670K with 3.4Ghz, 16 GB
RAM, Window 7 (64 Bit), and Java 1.8.0.05 (64 Bit). To automate the evaluation, we implemented
an evaluation tool that, given a a list of feature models, eliminates strict-complex constraints
according to our three strategies (i.e., negation normal form, conjunctive normal for, and the
combination of both), and gathers statistics about the change in number of features, constraints,
elapsed time and memory consumption in different stages of the algorithm.

To prevent the heap space from running out of memory, we set the maximum heap space from 1
GB to 2 GB. Moreover, to measure the elapsed time for a computation, we use System.nanoTime(),
which returns a specific time of the virtual machine in nanoseconds.

6.2. Experimental Results
In this section, we employ our approach presented in Chapter 4 to conduct an experimental
evaluation on a mix of large real-word feature models differing in size and complexity (cf. Section 6.1).
In Section 6.2.1, we first determine the number of simple, pseudo-complex, and complex constraints.

http://publikationsserver.tu-braunschweig.de/get/64215

78 6.2. Experimental Results

Moreover, we also determine the average and worst length of strict-complex constraints. In
Section 6.2.2, we evaluate the efficiency of our approach in terms of elapsed time and memory
consumption. Next, in Section 6.2.3, we evaluate the scalability of our approach for large feature
models. After each section, we give a discussion on our results.

6.2.1. Constraint Classification
In this thesis, we distinguish between three classes of cross-tree constraints.

Simple constraints. Every constraint that requires exactly one feature to either include or
exclude exactly one other feature (cf. Section 2.1.2).

Pseudo-complex constraints. Constraints that can be transformed into an equivalent con-
junction of simple constraints. These can be trivially refactored (cf. Definition 4.5 on Page
53).

Strict-complex constraints. All constraints that are neither simple nor pseudo-complex (cf.
Definition 4.6 on Page 53).

To gain insight to what extent feature models rely on strict-complex constraints, we are interested
in the fractional amount of each class used in our feature models. In Figure 6.1, we visualize the
number of constraints per feature model of our representative sample set (cf. Table 6.2) for each of
the three classes accordingly.

Feature Model

Figure 6.1.: Number of simple constraints, pseudo-complex constraints, and strict-complex constraints for
each feature model.

It can be seen that 12 out of 17 feature models from our sample set utilize indeed strict-complex
constraints. Exceptions are Automotive 1, Billing, and Arcade Game, who use only simple
constraints. Moreover, BerkeleyDB and Violet can be trivially refactored to basic feature models by
eliminating their pseudo-complex constraints. Two feature models from the S.P.L.O.T. repository,
namely EIS-Investment and Classic Shell, have more strict-complex than simple constraints. The
Linux kernel exaggerates the use of cross-tree constraints. Despite having only 6,889 features,
Linux kernel has 80,715 cross-tree constraints, 60,269 of whom are strict-complex constraints.

http://publikationsserver.tu-braunschweig.de/get/64215

6. Evaluation 79

Constraints can also be redundant or tautological. To decrease the number of constraints, a user
may cause our implementation to automatically remove them (cf. Section 5.2). Figure 6.2 illustrates
the fraction of redundant constraints we found in our evaluated feature models. Unfortunately, the
larger feature models (i.e., all versions of Automotive, Linux kernel, eCos, and FreeBSD) ran into
a timeout. The reason is that identifying redundant constraints requires a SAT analysis, which
can be quite costly for larger feature models. This is also one reason why removing redundant
and tautological constraints is optional in our implementation. Surprisingly, only three out of the
nine remaining feature models were free from redundant constraints. FMTest has even over 50%
redundant constraints.

Feature Model

Figure 6.2.: Number of Identified Redundant Constraints

As already mentioned in the previous section, another important metric of a strict-complex
constraint for our approach is its length (also called width) and clause density.

Automotive 2.4

Automotive 2.3

Automotive 2.2

Automotive 2.1

Linux kernel v2.6.28.6

FreeBSD kernel 8.0.0

eCos 3.0 i386p

EIS-Investement

e-Shop
Electronic Shopping

FMTest
Classic Shell

0

20

40

60

80

100

N
um

be
r

of
 li

te
ra

ls

Feature Model

Figure 6.3.: Number in Literals of Strict-Complex Constraints for each Feature Model

The constraint width is the maximum number of literals in one clause and the clause density is
the average number of literals per clause. The more literals a strict-complex constraint holds,

http://publikationsserver.tu-braunschweig.de/get/64215

80 6.2. Experimental Results

the bigger the corresponding abstract subtree becomes in terms of additional features and simple
constraints. Figure 6.3 shows a box plot illustrating the width of strict-complex constraints for
each feature model. The Linux kernel has strict-complex constraints with a width up to 98 literals.
However, the average number of literals for each clause is approximately five.

Discussion (RQ3.1 and RQ3.2)

As we can see in Figure 6.1, two-third of our evaluated feature models utilized strict-complex
constraints. However, the Automotive versions, Linux kernel, eCos, and FreeBSD are the most
important ones, as they represent our industrial cases. Except for Automotive 1, all of them use
strict-complex constraints. Moreover, the larger feature models in the S.P.L.O.T. repositories like
Classic Shell, EIS-Investment, and FMTest use a significant amount of strict-complex constraints.
EIS-Investment even has almost only strict-complex constraints. Furthermore, only three feature
models in total, namely Automotive 1, Billing, and Arcade Games, have merely simple constraints.
There is thus reason to presume that the larger a feature model becomes (and therefore more
complex), the more useful are complex constraints based on their expressive value (cf. Section 3.3).
Six feature models were also using pseudo-complex constraints, mostly of the form A⇒ a1 ∧ ...∧ an,
to shorten the construction of multiple simple constraints, which is yet another point for expressive
usefulness of complex constraints. Feature models from S.P.L.O.T. and the imported DIMACS
models (Linux kernel, eCos, and FreeBSD) do not have pseudo-complex constraints, as each
constraint consist of only one clause in conjunctive normal form either by definition (S.P.L.O.T.)
or by importing it into FeatureIDE (DIMACS). Pseudo-complex constraints require at least a
conjunction of two or more clauses (cf. Definition 4.5 on Page 53).

6.2.2. Performance Analysis
Recall that our elimination process can be divided into four major steps.

1. Removing redundant and tautological constraints. To decrease the size of processed constraints,
we provide users the option to eliminate redundant constraints beforehand (cf. Section 5.1).
Unfortunately, this step requires a SAT analysis. The question then arises as to how much
time is consumed during the analysis of redundant constraints?

2. Identifying and refactoring pseudo-complex constraints. This step aims at decreasing the
number of complex constraints and potentially the width (e.g., if the top level is a conjunction
of simple and complex constraints), leaving only simple and strict-complex constraints.

3. Preprocessing strict-complex constraints according to a given strategy. Only strict-complex
constraints are dealt with at this stage. Strict-complex constraints are either transformed
into negation normal form (nnf strategy), conjunctive normal form (cnf strategy), or into
the one which results in a minimum number of additional features and simple constraints
(combined strategy).

4. Generating abstract subtrees and composing them with the original feature model. Given the
set of processed strict-complex constraints from the last step. Each constraint results in an
abstract subtree that is then conjoined with the original feature model.

http://publikationsserver.tu-braunschweig.de/get/64215

6. Evaluation 81

In the following, we want to measure the average elapsed time in milliseconds to perform either of
the four steps. Step 1 requires a SAT analysis and may therefore be expensive. Step 2 depends
only on the number of constraints. Step 3 and step 4 depend on the number of strict-complex
constraints and the chosen strategy. Hence, we measure the times for each strategy individually.1

Overall Performance of Eliminating Complex Constraints

Before we evaluate the performance for each of the four steps individually, we depict the total
time needed to eliminate complex constraints for each evaluated feature model (cf. Table 6.2) and
strategy (NNF, CNF, combined) in Figure 6.4.

Figure 6.4.: Total Time Measured for Eliminating Complex Constraints (Incoherent Refactoring)

It can be seen that the Linux kernel takes the longest with approximately 20 seconds per strategy.
Moreover, there seems to be no significant timing difference among the three strategies. This is
surprising, as we assumed that the combined strategy would take considerably longer. However,
except for the Linux kernel and the FreeBSD kernel, all other feature models needed less than 25
milliseconds for each strategy. The eight smallest features models were even close to 0 milliseconds
for each strategy, which can be seen by the missing bars.

Recall that we provide a user option to preserve a bijection between old and new configurations by
adding additional simple constraints to the abstract subtree (cf. Section 4.3.4). At Definition 4.13
on Page 61, we declared a refactoring producing a bijection between old and new configurations as
coherent. The total time measured with a coherent refactoring for each strategy is illustrated in
Figure 6.5.

1To extenuate outliers caused by fluctuation, we take 100 measurements for each step and feature model and use
the average as the measured time.

http://publikationsserver.tu-braunschweig.de/get/64215

82 6.2. Experimental Results

Figure 6.5.: Total Time Measured for Eliminating Complex Constraints (Coherent Refactoring)

Again, all three strategies produce times that are close together. Overall, the coherent refactoring
performed slightly worse in total, but not to a noticeable degree.

Removing Redundant and Tautological Constraints

Identifying redundant and tautological constraints is an integral part in FeatureIDE (cf. Sec-
tion 5.2). In Figure 6.2, we already depicted that six feature models of our evaluated sample
set have redundant constraints (either redundant or tautological). Figure 6.6 illustrates the time
needed to identify and remove them.

Fe
at

ur
e

M
od

el

Figure 6.6.: Time Measured to Identify Redundant and Tautological Constraints.

Whereas the smaller feature models up to 366 features and 192 constraints (EIS-Investment)
could be analyzed approximately within six seconds, the larger feature models (i.e., all versions of
Automotive, Linux kernel, eCos, and FreeBSD) ran into an appointed timeout of 6 minutes and
are therefore not depicted in Figure 6.6. Nevertheless, as this step is optional, we omit this step

http://publikationsserver.tu-braunschweig.de/get/64215

6. Evaluation 83

in the following measurements, meaning that we use the original feature models with redundant
constraints instead of the reduced versions.

Refactoring Pseudo-Complex Constraints

In the following, we present the average times needed to identify and remove pseudo-complex
constraints from feature models of our representative sample set (cf. Table 6.2). For each feature
model, we measured the average time needed to run through all cross-tree constraints, converting
each cross-tree constraint into conjunctive normal form, and checking if the transformed constraint
is a conjunction of simple constraints. We set the time needed in this phase in relation to total
time needed. As none of the three strategies is involved, we computed the average total time and
average time to refactor pseudo-complex constraints over all instances we ran. The results are
depicted in Figure 6.7.

Unsurprisingly, the more cross-tree constraints a feature model has, the more time is consumed
during the process of identifying pseudo-complex constraints. The Linux kernel spends roughly
90% of its time in this phase. However, even with over 80,000 cross-tree constraints, the Linux
kernel needs only 18 seconds in average. Unfortunately, the Linux kernel has no pseudo-complex
constraints and therefore do not need to perform a split into simple constraints, so the time spent
could be even worse.

As can be seen by Automotive 2.1-2.4, FreeBSD, and eCos, only a fractional amount of time
compared to the Linux kernel is spent by these models. Automotive 2.3 has less constraints
compared to Automotive 2.4, but slightly more pseudo-complex constraints, and therefore spends
2% more time in this phase in our experiments. All other feature models need less than one
millisecond to refactor pseudo-complex constraints.

Feature Model

Figure 6.7.: Time Measured to Process Pseudo-Complex Constraints

Preprocessing Strict-Complex Constraints

We now present the average times needed to transform all strict-complex constraint into either
conjunctive normal form, negation normal form, or the combined option. For the sake of clarity
and based on our observations of the total time measured, we again compute the average on all
instances we ran, as there was no significant difference in time measured at any stage among the
three strategies. We depict the results for each strategy in Figure 6.8, once again in relation to
the total time measured. A more detailed overview is given in Table A.3. It can be seen that

http://publikationsserver.tu-braunschweig.de/get/64215

84 6.2. Experimental Results

EIS-Investments spends roughly 30% on average of the total time in this phase. The next one
is FreeBSD with 20% and the Linux kernel with 8%. All other feature models do not have any
strict-complex constraints (highlighted in red), or took less than one millisecond.

Feature Model

Figure 6.8.: Time Measured to Process Strict-Complex Constraints

Generating and Adding Abstract Subtrees

Finally, we present the results of our time measurements for the construction and composing of an
abstract subtree given the list of strict-complex constraints. The time needed for this not only
depends on the number of strict-complex constraints, but obviously also on the constraint’s width,
as the number of literals and nesting of logical operators may result in a bigger abstract subtree.
In Figure 6.9, we depict the results of this time measurement for each feature model and strategy,
again in relation to the average total time. Surprisingly, the Linux kernel spends less than 8%
of its time in this phase. Nevertheless, the absolute time is almost five times greater than the
absolute time of FreeBSD.

Feature Model

Figure 6.9.: Time Measured to Construct and Compose all Abstract Subtrees

Memory Consumption

To discover bottlenecks resulting from poor implementation, and to find out whether a dispropor-
tionately amount of heap space in the refactoring is required, we conducted a benchmark where
we monitored the heap allocation of our algorithm over time. We only used the Linux kernel
as the feature model of choice, as all other feature models were processed too fast. The Linux

http://publikationsserver.tu-braunschweig.de/get/64215

6. Evaluation 85

kernel should give a fair measure of the upper bound in terms of memory consumption to our
implementation, as it is takes by far the longest. We skipped the identifying of redundant and
tautological constraints, as the analysis for the Linux kernel takes too long (cf. Figure 6.2).

Figure 6.10.: Average Heap Allocation for the Linux Kernel for each Conversion Strategy

Figure 6.11 shows a bar diagram of the average memory consumption during either a coherent
or incoherent refactoring of the Linux kernel for each strategy. It can be seen that the coherent
refactoring allocates slightly more heap in the process which is not surprising considering the
additional simple constraints. Figure 6.11 shows that heap memory is allocated in the beginning,
when initialization of our implementation takes place, and then drops to a moderate 25% in
the process of identifying pseudo-complex constraints. This process takes the longest for the
Linux kernel (cf. Figure 6.8), but requires no additional heap allocation. The reason is that the
Linux kernel has no pseudo-complex constraints, which would otherwise cause a spike in the heap
allocation. The peak for heap allocation in instance illustrated in Figure 6.11 is at 430 MB. For
runs with smaller feature models (e.g., all Automotive versions), the peak was below 100 MB. All
in all, the resulting heap memory allocation for such large feature models can be considered fairly
usual.

http://publikationsserver.tu-braunschweig.de/get/64215

86 6.2. Experimental Results

Figure 6.11.: Heap Allocation of a Refactoring of the Linux Kernel Using Conjunctive Normal Form

Discussion (RQ4.1)

The refactoring of redundant and tautological constraints is optional in our implementation, as the
required SAT analysis is quiet disappointing for large feature models (cf. Figure 6.6). Moreover, a
thoughtful modeling prevents the necessity of this refactoring step.

As visualized in Figure 6.8, and more elaborated in Table A.3, identifying and refactoring
pseudo-complex constraints takes the longest in our implementation for larger feature models.
However, skipping this refactoring may result in larger abstract subtrees. Furthermore, our
implementation for refactoring pseudo-complex constraints requires general heap allocation that is
also used in following computations. This allocation would then need to take place at another
location, eventually resulting in equal computation time. Skipping this refactoring may therefore
only benefit feature models that have no pseudo-complex constraints. Moreover, except for Linux
kernel, all computations were remarkably fast (cf. Figure 6.4 and Figure 6.5). We found no
significant differences when we compared the measured times of all three strategies, either with or
without a coherent refactoring.

6.2.3. Scalability
Introducing new features and cross-tree constraints to feature models may require additional effort
from automated analysis tools, potentially making them infeasible. It is therefore important to
look at the increase in number of features and cross-tree constraints after performing a refactoring
with our three strategies. Our evaluated results on additional features and cross-tree constraints

http://publikationsserver.tu-braunschweig.de/get/64215

6. Evaluation 87

for each of the three strategies can be found in Table A.5. For a more convenient presentation,
we only use the results from the combined strategy, which performed best, as a lower bound. We
recognized that the number of additional feature and constraints is proportional to the number
of strict-complex constraints. Figure 6.12 and Figure 6.13 highlight the increase in features and
constraints after an incoherent and coherent refactoring. It can be seen that the Linux kernel
has four times more cross-tree constraints and 60 times more features in total after an incoherent
refactoring. The coherent refactoring leads to an increase of constraints by a factor of 6.5. The
impact on the automotive versions were comparatively small. The resulted feature model of the
FreeBSD was the worst. It had 85 times more features and 13.5 times more constraints after an
coherent refactoring.

Automotive 2.4

Automotive 2.3

Automotive 2.2

Automotive 2.1

Linux kernel v2.6.28.6

Automotive 1

FreeBSD kernel 8.0.0

eCos 3.0 i386p

EIS-Investement

e-Shop
Electronic Shopping

FMTest
Violet

Billing
BerkeleyDB

Arcade Game

Classic Shell

0

20

40

60

80

In
cr

ea
se

 in
 a

dd
iti

on
al

 f
ea

tu
re

s

1.025x 1.012x 1.008x 1.006x

52.189x

1.0x

85.538x

1.767x 4.079x
1.024x 1.027x 1.321x 1.0x 1.0x 1.0x 1.0x 1.507x

Feature Model

Figure 6.12.: Increase in Features after Refactoring using the Combined Method

Smaller feature models are less affected by our refactoring. However, Violet, for example, has
no strict cross-tree constraints, but eight pseudo-complex constraints. The refactoring of those
pseudo-complex constraints results in an increase of additional constraints by a factor of 3.3.

We can conclude that both, incoherent and coherent refactorings, may lead to a massive rise
in cross-tree constraints to a point, where the analysis of a refactored feature model might be
rendered infeasible alongside with other feature modeling applications (cf. Section 2.3).

Feature Model

Figure 6.13.: Increase in Constraints after Refactoring using the Combined Method

http://publikationsserver.tu-braunschweig.de/get/64215

88 6.2. Experimental Results

Discussion (RQ4.2)

Comparing the increase in additional features and cross-tree constraints using either conjunctive
normal form, negation normal form, or the combined strategy, it can be seen in Table A.5 that,
unsurprisingly, the combined strategy outproduces the other two strategies in terms of additional
features and simple constraints (especially for Automotive 2.1-2.4). However, the results depend
on the number and structure of strict-complex constraints. For instance, for feature models
from the S.P.L.O.T. repositories, all strict-complex constraints are already in conjunctive normal
form, which should cause all three strategies to produce the same results. However, as we load
feature models in SXFM file format with FeatureIDE, we identified an internal encoding of the
cross-tree constraints that harms our strategy using negation normal form. For example, given a
strict-complex constraint of the form ¬A∨B ∨C ∨D in a SXFM-file, after loading this constraint
into FeatureIDE, the constraint is encoded into (¬A ∨ (B ∨ (C ∨D))). Using the negation
normal form results in four or-groups instead of one, and thus leads to an increase of unnecessary
features.

We already mentioned earlier that the expected increase in size after refactoring depends on
number of strict-complex constraints. For our extreme case, the Linux kernel, with over 60,000
strict-complex constraints, this means a multiplication of cross-tree constraints by factor four and a
multiplication of features by factor 60. For all other features models, except for EIS-Investment, the
increase in additional constraints and features was fairly low compared to the original size. If our
refactoring algorithm uses a coherent refactoring, the number of additional cross-tree constraints
for the Linux kernel became twice as much compared to the incoherent approach, resulting in over
500,000 simple constraints in total. Our approach seems therefore suitable for feature models with
only a low number of strict-complex-constraints. Moreover, the performance analysis revealed that
the combined strategy in total time was surprisingly fast and should, based on our measurements,
always be picked over the other two.

General Conclusion and Implications
Overall, we can conclude that the results produced by our approach depend on the feature model’s
structure and number of strict-complex constraints it comprises. The Linux kernel has over ten
times more cross-tree constraints than features, which indicates a miserable feature model structure
and overuse of cross-tree constraints. There might be even a basic feature model or a closer feature
model, meaning more feature model groups and less constraints, representing the same product
line. However, our approach does not change the original feature model structure, but essentially
only refactors cross-tree constraints.

Nevertheless, our refactoring algorithm looks promising for smaller feature models. Moreover,
all computations, except for finding redundant and tautological constraints, were remarkably fast.
The Linux kernel took the longest with ≈ 20 seconds. All other feature models from our sample
set took less than 100 milliseconds in total. This indicates that there is a large timing window for
further improvements and additional optimizations. For instance, a post procedure could determine
and groups, produced by the negation normal form, that can be completely replaced by only one
feature, as the selection of any feature of an and group with only mandatory features requires the
selection of each feature of this group. This reduces the number of abstract features and should

http://publikationsserver.tu-braunschweig.de/get/64215

6. Evaluation 89

not take longer than the general construction of abstract subtrees.

6.3. Threats to Validity
In the previous section, we measured the performance and scalability of our elimination algorithm
for complex constraints. However, as for all experimental evaluations, certain threats may render
our results less plausible. In the following, we address the potential threats harming our evaluation’s
validity.

The sample size for our evaluation with real-world feature models is small, as free large feature
models are rare to find. We also incorporate artificial generated feature models in eight different
sizes, which may lack the structure and complexity of real-world feature models. In addition, feature
models from S.P.L.O.T. and the imported DIMACS models (Linux kernel, eCos, and FreeBSD)
are limited in their diversity of complex constraints, as each constraint consists of only one clause
in conjunctive normal form either by definition (S.P.L.O.T.) or by importing it into FeatureIDE
(DIMACS) There is thus reason to presume that the elimination of complex constraints produces
different results when using a different sample set. However, the generated feature models were
not randomly constructed but are sympathized with the complexity of real-world feature models
(i.e., number of different decompositions and length of constraints). Moreover, the Automotive
feature models represent large and real-world feature models that are not limited in their internal
structure. In addition, we could show that there may exist feature models that cannot be tamed
when refactored. As there are no real guidelines for modelers, real-world feature models can quite
differ in their structure. In addition, most of our evaluated feature models are used in other
evaluations as well.

Moreover, the feature models we use to answer the research questions are biased towards
specific properties. All feature models are contradiction-free. In addition, the feature models
from S.P.L.O.T. and DIMAC have no pseudo-complex constraints. The generated feature models
are also biased. For every 10th feature, exactly one constraint is added. However, the internal
implementation of our approach performs a simple refactoring. A contradicting feature model
would result in a likewise contradicting feature model. The missing pseudo-complex constraints
do not harm our evaluation either, as this step is only an optimization. A refactoring without
identifying pseudo-complex constraints works as intended. The generated feature models represent
more reliable use cases, where the majority of a feature model is modeled in its structure instead
of its cross-tree constraints.

Furthermore, there could also be bugs and memory leaks in our implementation, falsifying
our evaluated results. Nevertheless, we monitored memory consumption and CPU usage. The
computations for identifying pseudo-complex constraints and refactoring strict-complex constraints
were faster than expected. We additionally wrote several unit tests to ensure the correctness of
checks for simple constraints, pseudo-complex constraints, and strict-complex constraints, and to
ensure that we indeed perform a refactoring.

We rely on FeatureIDE to load feature models from disk. This is especially interesting
in the case of the SXFM format, as cross-tree constraints, when converted into the format of
FeatureIDE, are nested according to disjunction (∨). Our negation normal form then produces

http://publikationsserver.tu-braunschweig.de/get/64215

90 6.4. Summary

larger abstract subtrees than necessary. Other implementations may therefore produce better
results. However, we already concluded that using the combined strategy seems to be the overall
solution and would, in this case, be equal to using the conjunctive normal form.

6.4. Summary
In Chapter 4, we proposed an algorithm for refactoring feature models with complex constraints
to feature models with only simple constraints. In Chapter 5, we implemented our algorithm in
FeatureIDE to evaluate its practical significance. Our evaluation reveals that a higher number
of strict-complex constraints may result in an enormous increase in size and number of simple
constraints through our refactoring algorithm, eventually leading to a massive increase in effort
for SAT-solvers and other feature modeling applications. For smaller feature models, the results
were as expected. In addition, when using feature models with more than 1,000 strict-complex
constraints, the total time needed increases significantly. Anyhow, the performance, except for
identifying redundant and tautological constraints, was very fast, even for very large feature models.

http://publikationsserver.tu-braunschweig.de/get/64215

7 Related Work
In the following, we discuss work that relate to the research on complex constraints and our
refactoring solution to eliminate them.

Expressive Power and Formal Semantics
The question of expressive power of feature models has been discussed before (Schobbens et al.,
2007; Gil et al., 2010). We evaluated and highlighted that complex constraints add expressive
value to feature modeling languages.

Schobbens et al. (2007) surveyed 12 feature modeling languages in total and, based upon them,
proposed a general formal semantics capturing the most common feature model extensions. All
surveyed languages use only simple constraints. However, their semantics includes directed acyclic
graphs alongside with trees to overcome the limitation in expressiveness, whereas our proposed
formal semantics uses only trees. Nevertheless, trees are more common in feature modeling, thus
our proposed semantics seems easier to adopt in general and is much closer to the semantics of
basic feature models. While they mention the decreased expressiveness of some languages, they do
not explicitly discuss complex constraints. This thesis extends their prior research and highlights
the differences in expressiveness with real numbers between basic feature models, feature models
with complex constraints, and the usefulness of abstract features (Thüm et al., 2011). We also
adopted and extended their survey with modern feature modeling languages that are richer in
syntax and semantics.

Eliminating Cross-Tree Constraints
We formalized an expressive complete sub-language to give a sound refactoring for eliminating
complex constraints.

One attempt to eliminate cross-tree constraints is proposed by van den Broek and Galvao
Lourenco da Silva (2009). They discuss the elimination of simple constraints by transforming a
feature model to a generalized feature tree. A generalized feature tree allows features to occur
multiple times in different places. This is obviously a greater restriction than our relaxation on
the usage of abstract features. Moreover, they do not consider complex constraints. Cross-tree
constraints are an integral and accepted part in feature modeling, as it can be seen in our survey
that there is no prominent language discarding cross-tree constraints in general. Hence, we chose a
different strategy and focused only on the elimination of complex constraints.

A different solution is proposed by Gil et al. (2010). There they prove that textual constraints
can be eliminated by introducing a new set of features. Unfortunately, they restrict their approach
to only textual constraints over two features. The handling of complex constraints is therefore
questionable.

http://publikationsserver.tu-braunschweig.de/get/64215

92

Complex Constraints in the Literature
We surveyed 17 different feature modeling languages and identified nine of them only using simple
constraints (Kang et al., 1990; Griss et al., 1998; Kang et al., 1998; Czarnecki and Eisenecker, 2000;
Gurp et al., 2001; Riebisch et al., 2002; Eriksson et al., 2005; Benavides et al., 2005; Van Deursen
and Klint, 2002).

Furthermore, we reviewed and discussed 26 publications on feature model applications and
tools. Besides the assimilation of complex constraints, we particularly highlighted the absence on
integration and discussion of complex constraints in five different areas, namely automated analysis
of feature models (Segura et al., 2012), synthesis of feature models (She et al., 2011; Al-Msie ’deen
et al., 2014; Haslinger et al., 2013; Lopez-Herrejon et al., 2015; Linsbauer et al., 2014), generation
of feature models as test data (Guo et al., 2011; Segura et al., 2014), product-line testing and
analysis (Shi et al., 2012; Ensan et al., 2012), and optimal feature selection (Benavides et al., 2005;
White et al., 2009; Guo et al., 2011; White et al., 2014).

She et al. (2014) propose an algorithm to reverse engineer a feature model from an arbitrary
propositional formula in either conjunctive normal form or disjunctive normal form. Their focus is
on heuristically and automatically extracting a maximum number of groups as well as requires and
excludes constraints. They acknowledge that a propositional rest may remain, depending on the
complexity of the initial formula. Our evaluation on publicly available feature models complements
their work and may reveal, based on the fraction of strict-complex constraints, which feature
models tend to have a propositional rest and how large it is.

Mendonca et al. (2009) focus on the evaluation of SAT-based analysis for realistic feature models.
They conclude that realistic feature models have a mix of binary and ternary clauses in conjunctive
normal form. Our evaluation revealed that strict-complex constraints of larger feature models
tend to have clauses with up to eight literals per clause in average (Automotive 2.4). Nevertheless,
as they pointed out, it can be seen in our evaluation that realistic feature models indeed rely on
complex constraints.

Berger et al. (2010) compare two variability modeling languages, CDL and KConfig, which
are used in the operating system domain. They conduct an empirical study on the Linux kernel
and provide evidence that real-world large-scale models need advanced concepts, compared to the
concepts that FODA offers, to implement sufficient variability. They use cross-tree constraints
beyond simple and complex constraints, as their constraints can have non-boolean properties (e.g.,
integers or strings). We think that the need for more complex constraints (e.g., non-boolean types,
first-order logic) should be investigated in the future to complement our work.

http://publikationsserver.tu-braunschweig.de/get/64215

8 Conclusion
Feature modeling is used in software product-line engineering to compactly express commonality
and variability of a family of related software programs. Since feature models were first introduced
in 1990, various notational extensions have been proposed by research to overcome the lack of
expressiveness and allow a more precise representation of product lines. Using propositional
calculus for cross-tree constraints, namely complex constraints, enable full expressiveness. In
contrast, basic feature models know only two types of constraints between two features, called
simple constraints. First, requires constraints can be used to always include a feature if another
feature is selected. Second, excludes constraints are used when two features cannot be part of the
same product. Surprisingly, basic feature models, despite their lack in expressiveness, prevail in
many publications to today. This makes it worth to question the necessity of complex constraints
and to think about a potential refactoring from complex to simple constraints.

We surveyed several textual and graphical feature modeling notations, and also got insight of
the use of complex constraints in modern publications. Even though recent notations become more
expressive through the use of group cardinalities or complex constraints, we highlighted that many
publications on novel methods do not adapt accordingly and, hence, are tailored towards a small
group of feature modeling languages. Moreover, practitioners working with complex constraints
may not utilize these methods, resulting in a not intended limitation on both sides. Observing this
problem, we dedicated ourselves in this thesis to fill this gap by contributing a refactoring from
arbitrary feature models to basic feature models.

We emphasized the difference in expressiveness between feature models using complex constraints
and feature models using only simple constraints. Unfortunately, this difference prevents a direct
refactoring between both feature models. To overcome this limitation, we used the concept of
abstract features, for which we proved complete expressiveness. Abstract features allow us to
distinguish between program variants and configurations. Corollary, they allow us to add new
features to a feature model without changing its product line.

We propose a sound refactoring algorithm. We can devise an equivalent feature model structure,
consisting of only abstract features and simple constraints, using the negation normal form of
a cross-tree constraint. This structure is eventually conjoined with the original feature model.
The result is an equivalent basic feature model with abstract features. However, the practical
significance needed to be evaluated empirically, for which we implemented our refactoring algorithm
in the open-source Eclipse plug-in FeatureIDE.

While our evaluation highlighted that feature models tend to have a significant amount of
strict-complex constraints, and some feature models could be refactored sufficiently, the refactoring
was devastating for larger feature models. The number of features of the Linux kernel feature
model grew after refactoring from initially 6,889 features to 359,535 features, which is an increase
by a factor of 52. Only the FreeBSD kernel was worse with an increase by a factor of 85, eventually
consisting of almost 120,000 features.

http://publikationsserver.tu-braunschweig.de/get/64215

94

Our main insight is that complex constraints are needed in the modeling process to increase
applicability and expressiveness. First, complex constraints are already used by practitioners as
our survey and evaluation revealed. Second, our algorithm illustrated the struggle to represent
some product lines with only simple constraints. These refactored feature models would most
definitely result in infeasibility for the majority of our reviewed methods that deal only with simple
constraints.

http://publikationsserver.tu-braunschweig.de/get/64215

9 Future Work
This thesis gave only a gentle entry into the world of complex constraints in feature modeling. We
want to address the following concerns in future work.

Improving our Algorithm through Partial Boolean Simplification
In Section 6.2.1, we measured the length of strict-complex constraints, and identified a correlation
between number of strict-complex constraints, average length, and increase in size of the refactored
feature model. Our refactoring algorithm can probably be improved and, thus, produce smaller
feature models by reducing the length of strict-complex constraints.

In Section 3.2, we described how to transform a feature model into a propositional formula.
The idea is to use this formula and then to logically minimize only cross-tree constraints. Logical
minimization has the goal to eliminate as much literals as possible and, hence, to decrease the
size of a propositional formula. Each complex constraint can be transformed into a two-level-
logic-minimization problem Coudert and Sasao (2002). Two levels refer to the structure of the
propositional formula, which is mostly in disjunctive normal form (first level is a disjunction
of clauses (∨) and second level a conjunction of literals (∧)). The problem can then be solved
with a minimization algorithm. Prominent examples are Quine-McCluscy- and the Espresso-
algorithm. The problem of logically minimizing cross-tree constraints while performing no change
to the rest of the feature model has already been tackled by von Rhein et al. (2015) .

Evaluating the Impact on Feature Model Applications
In Section 2.3, we highlighted that many publications propose methods without taking complex
constraints into considerations. Some of them are highly cited and we assume they might be
adopted more often than alternative options already integrating complex constraints.

However, it is yet unclear how to extend those methods so they can be used with complex
constraints. For instance, methods utilizing SAT-solvers may be easier to prepare for complex
constraints, as they typically transform a feature model into a propositional formula. Examples
are analysis tools like Betty (Segura et al., 2012). Other areas, as optimal feature selection,
oftentimes try to solve the problem heuristically and propose an explicit transformation algorithm
for each part of a feature model that is compliant with one of many methods in the operations
research. Examples are evolutionary algorithms, for which even the creation of a structure for
complex constraints allowing recombination, mutation, and selection might be difficult (Guo et al.,
2011).

http://publikationsserver.tu-braunschweig.de/get/64215

http://publikationsserver.tu-braunschweig.de/get/64215

A Evaluation Results
In Chapter 6, we used a small sample set of feature models to evaluate our approach. In the
following, we give a more detailed overview with numbers on our results. As already mentioned
in Section 6.1, we included also results on generated feature models of different sizes in terms of
features (50, 100, 200, 500, 1,000, 2,000, 5,000, and 10,000) and constraints (5, 10, 20, 50, 100, 200,
500, and 1,000). Each category comprises 200 feature models. For a more convenient overview, we
only present the average measurements on performance and scalability over the 200 feature models
for each category.

Representative Sample Set .99

Statistical Properties of Evaluated Feature Models (cf. Section 6.1) 99

Time Measurements for Incoherent Refactoring (cf. Section 6.2.2) 100

Time Measurements for Coherent Refactoring (cf. Section 6.2.2) 101

Increase in additional Features and Constraints (cf. Section 6.2.3) 102

Generated Feature Models . 103

Statistical Properties of Generated Feature Models . 103

Time Measurements for Refactoring (Coherent and Incoherent) 104

Increase in Additional Features and Constraints . 105

http://publikationsserver.tu-braunschweig.de/get/64215

98

Notation
We use the following symbols in this evaluation.

Symbol* Description
∆tr Time needed to remove tautologies and redundancies (in milliseconds)
∆tp Time needed to refactor pseudo-complex constraints (in milliseconds)
∆tsp Time needed to preprocess strict-complex constraints (in milliseconds)
∆tsAS Time needed to construct an abstract subtree including composition with

original feature model (in milliseconds)
tsΣ Total time needed for our algorithm (in milliseconds)

tsΣ = ∆tp + ∆tsp + ∆tsAS
|N |s The total number of features
|Φ|s The total number of cross-tree constraints

|Φ| = |Φ|simp + |Φ|pseudo + |Φ|strict
|Φ|simp The number of simple constraints
|Φ|pseudo The number of pseudo-complex constraints
|Φ|strict The number of strict-complex constraints
* s is a replacement for either cnf (conjunctive normal form), nnf (negation normal form),

or comb (combined method). For the number of features and constraints, s can also be
empty (values of original feature model).

Table A.1.: Notation Used for Evaluation

The total time tsΣ omits ∆tr, the time needed to remove irrelevant constraints. The reason is that
the required SAT-analysis is expensive for large feature models. Moreover, our algorithm has no
influence on the performance of this step. We therefore decided to evaluate ∆tr in isolation.

http://publikationsserver.tu-braunschweig.de/get/64215

A. Evaluation Results 99

M
o d

el
na

m
e

|N
|

|Φ
|
|Φ

si
m
p
|
|Φ

p
eu
d
o
|
|Φ

st
r
ic
t|

C
T

R
C

#
R

ed
un

da
nt

1
#

C
la

us
es

∆
C

la
us

e
D

en
sit

y2
C

on
st

ra
in

t
W

id
th

A
ut

om
ot

iv
e

2.
4

18
,6

16
1,

36
9

1,
10

2
19

0
77

8
*

1,
82

3
7.

0
42

A
ut

om
ot

iv
e

2.
3

18
,4

34
1,

30
0

1,
05

2
19

8
50

7
*

1,
67

6
4.

1
12

A
ut

om
ot

iv
e

2.
2

17
,7

42
91

4
76

5
11

3
36

6
*

1,
05

0
3.

7
11

A
ut

om
ot

iv
e

2.
1

14
01

0
66

6
55

0
99

17
6

*
78

8
4.

9
11

Li
nu

x
ke

rn
el

v2
.6

.2
8.

6
6,

88
9

80
,7

15
20

,4
46

0
60

,2
69

99
*

80
,7

15
4.

9
98

A
ut

om
ot

iv
e

1
2,

51
3

2,
83

3
2,

83
3

0
0

51
*

2,
83

3
0.

0
0

Fr
ee

B
SD

ke
rn

el
8.

0.
0

1,
39

7
14

,2
95

1,
31

0
0

12
,9

85
93

*
14

,2
95

8.
1

15
eC

os
3.

0
i3

86
p

1,
24

5
2,

47
8

2,
26

5
0

21
3

99
*

2,
47

8
3.

5
5

EI
S-

In
ve

st
em

en
t

36
6

19
2

1
0

19
1

93
7

19
2

4.
9

14
e-

Sh
op

32
6

21
19

0
2

2
10

21
2.

5
3

El
ec

tr
on

ic
sh

op
pi

ng
29

1
21

19
0

2
12

1
21

2.
5

3
FM

Te
st

16
8

46
36

0
10

29
24

46
4.

3
6

V
io

le
t

10
1

27
19

8
0

66
1

89
0.

0
0

B
ill

in
g

88
59

59
0

0
66

13
59

0.
0

0
B

er
ke

le
yD

B
76

20
10

10
0

42
0

46
0.

0
0

A
rc

ad
e

G
am

e
65

34
34

0
0

52
0

34
0.

0
0

C
la

ss
ic

Sh
el

l
65

11
3

0
8

20
0

11
3.

0
3

1
T

im
eo

ut
(>

36
0s

)
2

Av
er

ag
e

m
ea

n
of

al
lc

la
us

es
fr

om
st

ric
t-

co
m

pl
ex

co
ns

tr
ai

nt
s

Ta
bl

e
A

.2
.:

St
at

ist
ic

al
Pr

op
er

tie
s

of
Ev

al
ua

te
d

Fe
at

ur
e

M
od

el
s

http://publikationsserver.tu-braunschweig.de/get/64215

100

M
od

el
na

m
e

tc
n
f

Σ
tn
n
f

Σ
tc
o
m
b

Σ
∆
t p

∆
tc
n
f

p
∆
tn
n
f

p
∆
tc
o
m
b

p
∆
tc
n
f

A
S

∆
tn
n
f

A
S

∆
tc
o
m
b

A
S

A
ut

om
ot

iv
e

2.
4

12
4

49
66

25
1

4
1

69
21

10
A

ut
om

ot
iv

e
2.

3
17

2
39

10
3

4
0

0
2

9
20

86
A

ut
om

ot
iv

e
2.

2
92

19
20

3
2

0
0

9
8

8
A

ut
om

ot
iv

e
2.

1
17

18
21

2
0

0
0

6
6

7
Li

nu
x

ke
rn

el
v2

.6
.2

8.
6

18
,3

92
19

,2
99

21
,3

87
15

,5
16

18
5

1,
46

4
84

0
2,

56
4

2,
97

4
3,

05
6

A
ut

om
ot

iv
e

1
10

9
9

5
0

0
0

0
0

0
Fr

ee
B

SD
ke

rn
el

8.
0.

0
75

9
56

0
1,

05
5

22
6

15
2

35
26

3
34

9
36

3
42

0
eC

os
3.

0
i3

86
p

12
10

11
5

0
0

0
3

2
2

EI
S-

In
ve

st
em

en
t

5
5

5
0

0
0

1
2

3
2

e-
Sh

op
0

0
1

0
0

0
0

0
0

0
El

ec
tr

on
ic

Sh
op

pi
ng

0
0

0
0

0
0

0
0

0
0

FM
Te

st
0

0
0

0
0

0
0

0
0

0
V

io
le

t
0

0
0

0
0

0
0

0
0

0
B

ill
in

g
0

0
0

0
0

0
0

0
0

0
B

er
ke

le
yD

B
0

0
0

0
0

0
0

0
0

0
A

rc
ad

e
G

am
e

0
0

0
0

0
0

0
0

0
0

C
la

ss
ic

Sh
el

l
0

0
0

0
0

0
0

0
0

0

Ta
bl

e
A

.3
.:

T
im

e
M

ea
su

re
m

en
ts

fo
r

In
co

he
re

nt
R

ef
ac

to
rin

g

http://publikationsserver.tu-braunschweig.de/get/64215

A. Evaluation Results 101

M
o d

el
na

m
e

tc
n
f

Σ
tn
n
f

Σ
tc
o
m
b

Σ
∆
t p

∆
tc
n
f

p
∆
tn
n
f

p
∆
tc
o
m
b

p
∆
tc
n
f

A
S

∆
tn
n
f

A
S

∆
tc
o
m
b

A
S

A
ut

om
ot

iv
e

2.
4

26
1

68
35

29
1

2
2

20
2

45
12

A
ut

om
ot

iv
e

2.
3

46
24

68
6

0
0

1
9

9
8

A
ut

om
ot

iv
e

2.
2

21
23

22
3

0
0

0
8

9
9

A
ut

om
ot

iv
e

2.
1

19
22

23
2

0
0

0
6

7
8

Li
nu

x
ke

rn
el

v2
.6

.2
8.

6
26

,4
04

23
38

5
21

,2
21

23
,8

29
15

1
21

5
34

6
2,

29
6

3,
56

3
1,

29
9

A
ut

om
ot

iv
e

1
8

28
1

7
4

0
0

0
0

0
0

Fr
ee

B
SD

ke
rn

el
8.

0.
0

51
2

17
37

11
36

13
4

47
31

67
2

29
9

1,
45

5
30

7
eC

os
3.

0
i3

86
p

9
9

9
4

0
0

0
2

2
2

EI
S-

In
ve

st
em

en
t

4
5

6
0

0
0

1
2

3
3

e-
Sh

op
0

0
0

0
0

0
0

0
0

0
El

ec
tr

on
ic

Sh
op

pi
ng

0
0

0
0

0
0

0
0

0
0

FM
Te

st
1

0
0

1
0

0
0

0
0

0
V

io
le

t
0

0
0

0
0

0
0

0
0

0
B

ill
in

g
0

0
0

0
0

0
0

0
0

0
B

er
ke

le
yD

B
0

0
0

0
0

0
0

0
0

0
A

rc
ad

e
G

am
e

0
0

0
0

0
0

0
0

0
0

C
la

ss
ic

Sh
el

l
0

0
0

0
0

0
0

0
0

0

T a
bl

e
A

.4
.:

T
im

e
M

ea
su

re
m

en
ts

fo
r

C
oh

er
en

t
R

ef
ac

to
rin

g

http://publikationsserver.tu-braunschweig.de/get/64215

102

In
co

he
re

nt
C
oh

er
en

t
M

od
el

na
m

e
|N
|cn

f
|Φ
|cn

f
|N
|n
n
f

|Φ
|n
n
f
|N
|co
m
b
|Φ
|co
m
b

|Φ
|cn

f
|Φ
|n
n
f

|Φ
|co
m
b

A
ut

om
ot

iv
e

2.
4

19
,2

12
2,

13
2

19
,2

09
1,

97
1

19
,0

98
1,

97
0

2,
37

9
2,

13
8

2,
13

1
A

ut
om

ot
iv

e
2.

3
18

,6
86

1,
80

3
18

,7
54

1,
79

1
18

,6
73

1,
78

6
1,

90
4

1,
88

7
1,

87
7

A
ut

om
ot

iv
e

2.
2

17
,8

96
1,

12
5

17
,9

50
1,

12
5

17
,8

92
1,

11
9

1,
19

9
1,

20
3

1,
19

1
A

ut
om

ot
iv

e
2.

1
14

,1
02

83
9

14
,1

36
83

3
14

,0
98

83
3

87
3

86
5

86
5

Li
nu

x
ke

rn
el

v2
.6

.2
8.

6
35

9,
53

5
31

2,
82

2
35

9,
53

5
31

2,
82

2
35

9,
53

5
31

2,
82

2
52

3,
59

4
52

3,
59

4
52

3,
59

4
A

ut
om

ot
iv

e
1

2,
51

3
2,

83
3

2,
51

3
2,

83
3

2,
51

3
2,

83
3

2,
83

3
2,

83
3

2,
83

3
Fr

ee
B

SD
ke

rn
el

8.
0.

0
11

9,
49

7
10

6,
42

4
11

9,
49

7
10

6,
42

4
11

9,
49

7
10

6,
42

4
19

3,
49

2
19

3,
49

2
19

3,
49

2
eC

os
3.

0
i3

86
p

2,
20

0
3,

00
6

2,
20

0
3,

00
6

2,
20

0
3,

00
6

3,
19

7
3,

19
7

3,
19

7
EI

S-
In

ve
st

em
en

t
1,

49
3

93
6

2,
04

6
93

6
1,

49
3

93
6

1,
60

6
1,

60
6

1,
60

6
e-

Sh
op

33
4

24
33

5
24

33
4

24
28

28
28

El
ec

tr
on

ic
Sh

op
pi

ng
29

9
24

30
0

24
29

9
24

28
28

28
FM

Te
st

22
2

79
24

5
79

22
2

79
11

2
11

2
11

2
V

io
le

t
10

1
89

10
1

89
10

1
89

89
89

89
B

ill
in

g
88

59
88

59
88

59
59

59
59

B
er

ke
le

yD
B

76
46

76
46

76
46

46
46

46
A

rc
ad

e
G

am
e

65
34

65
34

65
34

34
34

34
C

la
ss

ic
Sh

el
l

98
27

10
6

27
98

27
43

43
43

Ta
bl

e
A

.5
.:

In
cr

ea
se

in
Fe

at
ur

es
an

d
C

on
st

ra
in

ts
A

ft
er

R
ef

ac
to

rin
g

http://publikationsserver.tu-braunschweig.de/get/64215

A. Evaluation Results 103

M
o d

el
na

m
e

|Φ
si
m
p
|
|Φ

p
eu
d
o
|
|Φ

st
r
ic
t|

C
T

R
C

#
C

la
us

es
C

la
us

e
D

en
sit

y
C

on
st

ra
in

t
W

id
th

ge
ne

ra
te

d5
0

0.
54

0.
37

4.
08

29
.3

9
19

.1
9

13
.2

3
30

.8
7

ge
ne

ra
te

d1
00

1.
01

0.
75

8.
23

29
.4

7
39

.4
1

14
.1

5
51

.6
4

ge
ne

ra
te

d2
00

2.
19

1.
54

16
.2

6
29

.6
8

81
.9

4
15

.3
4

80
.2

9
ge

ne
ra

te
d5

00
5.

41
4.

18
40

.4
29

.6
7

20
2.

61
15

.1
9

11
0.

84
ge

ne
ra

te
d1

00
0

10
.6

8
8.

46
80

.8
6

29
.6

7
40

8.
91

15
.4

5
14

8.
81

ge
ne

ra
te

d2
00

0
21

.5
1

17
.6

4
16

0.
84

29
.7

3
82

2.
3

15
.6

6
19

3.
59

ge
ne

ra
te

d5
00

0
56

.2
9

45
.2

39
8.

5
29

.7
2,

05
6.

09
15

.8
8

27
1.

03
ge

ne
ra

te
d1

00
00

11
5.

85
93

.9
6

79
0.

18
29

.7
4,

09
1.

55
15

.9
2

31
7.

55

T a
bl

e
A

.6
.:

Av
er

ag
e

St
at

ist
ic

al
Pr

op
er

tie
s

of
G

en
er

at
ed

Fe
at

ur
e

M
od

el
s

http://publikationsserver.tu-braunschweig.de/get/64215

104

M
od

el
na

m
e

tc
n
f

Σ
tn
n
f

Σ
tc
o
m
b

Σ
∆
t p

∆
tc
n
f

p
∆
tn
n
f

p
∆
tc
o
m
b

p
∆
tc
n
f

A
S

∆
tn
n
f

A
S

∆
tc
o
m
b

A
S

In
co

he
re

nt

ge
ne

ra
te

d5
0

0.
54

0.
41

0.
47

0.
07

0.
03

0.
05

0.
1

0.
36

0.
26

0.
28

ge
ne

ra
te

d1
00

0.
63

0.
59

0.
57

0.
07

0.
06

0.
08

0.
16

0.
39

0.
33

0.
26

ge
ne

ra
te

d2
00

1.
02

0.
98

1.
31

0.
15

0.
13

0.
15

0.
55

0.
55

0.
5

0.
43

ge
ne

ra
te

d5
00

2.
35

2.
46

2.
72

0.
36

0.
29

0.
34

0.
76

1.
29

1.
33

1.
13

ge
ne

ra
te

d1
00

0
4.

81
5.

08
5.

68
0.

67
0.

61
0.

7
1.

61
2.

67
2.

59
2.

28
ge

ne
ra

te
d2

00
0

9.
93

10
.1

4
11

.1
3

1.
36

1.
27

1.
41

3.
19

5.
54

5.
25

4.
5

ge
ne

ra
te

d5
00

0
26

.1
1

25
.5

6
28

.5
3.

82
3.

3
3.

65
8.

36
14

.2
7

12
.9

5
11

.1
7

ge
ne

ra
te

d1
00

00
53

.2
2

52
.4

9
56

.9
7

7.
43

6.
51

7.
31

16
.4

29
.7

9
27

.1
2

22
.7

5

C
oh

er
en

t

ge
ne

ra
te

d5
0

0.
56

0.
46

0.
45

0.
07

0.
04

0.
05

0.
14

0.
38

0.
29

0.
2

ge
ne

ra
te

d1
00

0.
56

0.
55

0.
61

0.
08

0.
06

0.
08

0.
17

0.
32

0.
3

0.
29

ge
ne

ra
te

d2
00

1.
2

1.
09

1.
21

0.
17

0.
15

0.
17

0.
4

0.
69

0.
56

0.
45

ge
ne

ra
te

d5
00

2.
35

2.
4

2.
81

0.
37

0.
33

0.
37

0.
87

1.
23

1.
21

1.
07

ge
ne

ra
te

d1
00

0
4.

84
5.

14
5.

75
0.

74
0.

71
0.

82
1.

87
2.

53
2.

57
2.

09
ge

ne
ra

te
d2

00
0

10
.1

3
10

.1
9

11
.5

9
1.

62
1.

41
1.

56
3.

58
5.

31
4.

96
4.

4
ge

ne
ra

te
d5

00
0

26
.5

4
25

.7
3

29
.3

4.
12

3.
75

4.
2

9.
15

13
.8

7
12

.2
8

10
.8

1
ge

ne
ra

te
d1

00
00

54
.0

9
53

.2
9

59
.2

5
8.

28
7.

38
8.

41
17

.9
6

28
.6

1
26

.1
4

22
.6

5

Ta
bl

e
A

.7
.:

Su
m

m
ar

y
of

C
om

pu
te

d
T

im
es

fo
r

G
en

er
at

ed
Fe

at
ur

e
M

od
el

s

http://publikationsserver.tu-braunschweig.de/get/64215

A. Evaluation Results 105

In
c o

he
re

nt
(∅

)
C
oh

er
en

t
(∅

)
M

o d
el

na
m

e
|N
|cn

f
|Φ
|cn

f
|N
|n
n
f

|Φ
|n
n
f

|N
|co
m
b

|Φ
|co
m
b

|Φ
|cn

f
|Φ
|n
n
f

|Φ
|co
m
b

ge
ne

ra
te

d5
0

11
4.

3
53

.5
3

11
4.

8
35

.1
9

10
1.

38
31

.5
8

79
.7

5
52

.5
7

46
.8

ge
ne

ra
te

d1
00

23
3.

5
11

3.
22

22
7.

72
70

.0
8

19
8.

72
62

.6
16

7.
24

10
3.

8
91

.8
5

ge
ne

ra
te

d2
00

48
8.

9
24

5.
25

45
6.

21
14

1.
63

40
3.

89
12

7.
86

36
2.

62
20

9.
63

18
7.

75
ge

ne
ra

te
d5

00
1,

20
9.

5
60

3.
88

1,
13

4.
29

35
2.

32
1,

00
7.

31
31

9.
8

89
2.

36
52

0.
64

46
8.

51
ge

ne
ra

te
d1

00
0

2,
44

3.
17

1,
22

8.
92

2,
27

6.
86

70
9.

65
2,

02
3.

35
64

4.
38

1,
81

4.
21

1,
04

6.
85

94
2.

92
ge

ne
ra

te
d2

00
0

4,
90

8.
05

2,
47

9.
92

4,
55

1.
39

1,
42

0.
69

4,
04

9.
56

1,
29

3.
08

3,
65

0.
31

2,
08

8.
9

1,
88

5.
0

ge
ne

ra
te

d5
00

0
12

,2
97

.5
2

6,
23

2.
95

11
,3

21
.0

3
3,

52
7.

47
10

,0
89

.1
8

3,
21

4.
59

9,
15

8.
48

5,
17

6.
08

4,
67

4.
97

ge
ne

ra
te

d1
00

00
24

,5
19

.3
7

12
,4

13
.4

9
22

,5
50

.9
3

7,
01

8.
15

20
,1

07
.7

1
6,

39
8.

35
18

,2
03

.2
3

10
,2

71
.1

2
9,

27
8.

75

T a
bl

e
A

.8
.:

Su
m

m
ar

y
of

In
cr

ea
se

in
Fe

at
ur

es
an

d
C

on
st

ra
in

ts
fo

r
ge

ne
ra

te
d

Fe
at

ur
e

M
od

el
s

http://publikationsserver.tu-braunschweig.de/get/64215

http://publikationsserver.tu-braunschweig.de/get/64215

Bibliography
Acher, M., A. Cleve, G. Perrouin, P. Heymans, C. Vanbeneden, P. Collet, and P. Lahire

2012. On extracting feature models from product descriptions. In Proceedings of the Sixth
International Workshop on Variability Modeling of Software-Intensive Systems, Pp. 45–54. ACM.
(Cited on pages 21 and 25.)

Acher, M., P. Collet, P. Lahire, and R. B. France
2011. Managing feature models with familiar: a demonstration of the language and its tool
support. In Proceedings of the 5th Workshop on Variability Modeling of Software-Intensive
Systems, Pp. 91–96. ACM. (Cited on pages 17 and 19.)

Al-Hajjaji, M., T. Thüm, J. Meinicke, M. Lochau, and G. Saake
2014. Similarity-based prioritization in software product-line testing. In Proceedings of the
18th International Software Product Line Conference-Volume 1, Pp. 197–206. ACM. (Cited on
pages 22, 23, and 25.)

Al-Msie ’deen, R., M. Huchard, A.-D. Seriai, C. Urtado, and S. Vauttier
2014. Reverse Engineering Feature Models from Software Configurations using Formal Concept
Analysis. In CLA 2014: Eleventh International Conference on Concept Lattices and Their
Applications, S. R. Karell Bertet, ed., volume 1252 of CEUR-Workshop, Pp. 95–106, Košice,
Slovakia. Ondrej Krídlo. (Cited on pages 2, 21, 25, and 92.)

Alturki, F. and R. Khedri
2010. A tool for formal feature modeling based on bdds and product families algebra. In WER.
(Cited on page 10.)

Alves, V., R. Gheyi, T. Massoni, U. Kulesza, P. Borba, and C. Lucena
2006. Refactoring product lines. In Proceedings of the 5th international conference on Generative
programming and component engineering, Pp. 201–210. ACM. (Cited on page 46.)

Apel, S., D. Batory, C. Kästner, and G. Saake
2013. Feature-Oriented Software Product Lines. Berlin, Heidelberg: Springer. (Cited on pages 6,
7, and 10.)

Bak, K., Z. Diskin, M. Antkiewicz, K. Czarnecki, and A. Wasowski
2013. Clafer: unifying class and feature modeling. Software & Systems Modeling, Pp. 1–35.
(Cited on pages 17 and 19.)

Batory, D.
2005. Feature models, grammars, and propositional formulas. In Proceedings of the 9th In-
ternational Conference on Software Product Lines, SPLC’05, Pp. 7–20, Berlin, Heidelberg.
Springer-Verlag. (Cited on pages 1, 14, 15, 19, 20, and 36.)

http://publikationsserver.tu-braunschweig.de/get/64215

108 Bibliography

Batory, D., D. Benavides, and A. Ruiz-Cortes
2006. Automated analysis of feature models: Challenges ahead. Commun. ACM, 49(12):45–47.
(Cited on pages 6 and 20.)

Bécan, G., M. Acher, B. Baudry, and S. B. Nasr
2015. Breathing ontological knowledge into feature model synthesis: an empirical study. Empirical
Software Engineering, Pp. 1–48. (Cited on pages 21 and 25.)

Benavides, D., S. Segura, and A. Ruiz-Cortés
2010. Automated analysis of feature models 20 years later: A literature review. Information
Systems, 35(6):615 – 636. (Cited on pages 1, 2, and 20.)

Benavides, D., S. Segura, P. Trinidad, and A. Ruiz-Cortés
2007. FAMA: Tooling a Framework for the Automated Analysis of Feature Models. Pp. 129–134,
Limerick, Ireland. Technical Report 2007-01, Lero. (Cited on pages 15, 19, 20, 25, and 72.)

Benavides, D., P. Trinidad, and A. Ruiz-Cortés
2005. Automated reasoning on feature models. In Advanced Information Systems Engineering,
Pp. 491–503. Springer. (Cited on pages 1, 13, 19, 23, 25, and 92.)

Berger, T., S. She, R. Lotufo, A. Wąsowski, and K. Czarnecki
2010. Variability modeling in the real: a perspective from the operating systems domain. In
Proceedings of the IEEE/ACM international conference on Automated software engineering,
Pp. 73–82. ACM. (Cited on page 92.)

Boucher, Q., A. Classen, P. Faber, and P. Heymans
2010. Introducing tvl, a text-based feature modelling language. In Proceedings of the Fourth
International Workshop on Variability Modelling of Software-intensive Systems (VaMoS’10),
Linz, Austria, January, Pp. 27–29. (Cited on pages 16 and 19.)

Bovet, D. P. and M. Cesati
2005. Understanding the Linux kernel. " O’Reilly Media, Inc.". (Cited on page 6.)

Büning, H. K. and T. Lettmann
1999. Propositional logic: deduction and algorithms, volume 48. Cambridge University Press.
(Cited on pages 54, 55, 60, and 61.)

Classen, A., Q. Boucher, and P. Heymans
2011. A text-based approach to feature modelling: Syntax and semantics of tvl. Science of
Computer Programming, 76(12):1130–1143. (Cited on page 8.)

Classen, A., P. Heymans, and P.-Y. Schobbens
2008. What’s in a feature: A requirements engineering perspective. In Proceedings of the Theory
and Practice of Software, 11th International Conference on Fundamental Approaches to Software
Engineering, FASE’08/ETAPS’08, Pp. 16–30, Berlin, Heidelberg. Springer-Verlag. (Cited on
page 6.)

http://publikationsserver.tu-braunschweig.de/get/64215

Bibliography 109

Clements, P. and L. M. Northrop
2001. Software Product Lines: Practices and Patterns. Boston, MA, USA: Addison-Wesley
Longman Publishing Co., Inc. (Cited on page 5.)

Coudert, O. and T. Sasao
2002. Two-level logic minimization. In Logic Synthesis and Verification, Pp. 1–27. Springer.
(Cited on page 95.)

Czarnecki, K. and U. W. Eisenecker
2000. Generative Programming: Methods, Tools, and Applications. New York, NY, USA: ACM
Press/Addison-Wesley Publishing Co. (Cited on pages 1, 9, 12, 13, 19, 34, and 92.)

Czarnecki, K. and A. Wasowski
2007. Feature diagrams and logics: There and back again. In Software Product Line Conference,
2007. SPLC 2007. 11th International, Pp. 23–34. IEEE. (Cited on page 45.)

Das, S. K.
2008. Foundations of decision-making agents: logic, probability and modality. World Scientific.
(Cited on page 40.)

Davis, M., G. Logemann, and D. Loveland
1962. A machine program for theorem-proving. Communications of the ACM, 5(7):394–397.
(Cited on page 59.)

Deelstra, S., M. Sinnema, and J. Bosch
2004. Experiences in software product families: Problems and issues during product derivation.
In Software Product Lines, Pp. 165–182. Springer. (Cited on page 23.)

Deelstra, S., M. Sinnema, and J. Bosch
2005. Product derivation in software product families: a case study. Journal of Systems and
Software, 74(2):173–194. (Cited on page 23.)

Ensan, F., E. Bagheri, and D. Gašević
2012. Evolutionary search-based test generation for software product line feature models. In
Advanced Information Systems Engineering, Pp. 613–628. Springer. (Cited on pages 23, 25,
and 92.)

Eriksson, M., J. Börstler, and K. Borg
2005. The pluss approach: Domain modeling with features, use cases and use case realizations. In
Proceedings of the 9th International Conference on Software Product Lines, SPLC’05, Pp. 33–44,
Berlin, Heidelberg. Springer-Verlag. (Cited on pages 1, 13, 19, and 92.)

Gacek, C. and M. Anastasopoules
2001. Implementing product line variabilities. In Proceedings of the 2001 Symposium on Software
Reusability: Putting Software Reuse in Context, SSR ’01, Pp. 109–117, New York, NY, USA.
ACM. (Cited on page 6.)

http://publikationsserver.tu-braunschweig.de/get/64215

110 Bibliography

Ganter, B. and R. Wille
2012. Formal concept analysis: mathematical foundations. Springer Science & Business Media.
(Cited on page 21.)

Gil, Y., S. Kremer-Davidson, and I. Maman
2010. Sans constraints? feature diagrams vs. feature models. In International Conference on
Software Product Lines, Pp. 271–285. Springer. (Cited on page 91.)

Griss, M. L., J. Favaro, and M. d. Alessandro
1998. Integrating feature modeling with the rseb. In Proceedings of the 5th International
Conference on Software Reuse, ICSR ’98, Pp. 76–, Washington, DC, USA. IEEE Computer
Society. (Cited on pages 1, 11, 12, 13, 19, and 92.)

Guo, J., J. White, G. Wang, J. Li, and Y. Wang
2011. A genetic algorithm for optimized feature selection with resource constraints in software
product lines. J. Syst. Softw., 84(12):2208–2221. (Cited on pages 2, 22, 23, 25, 92, and 95.)

Gurp, J. V., J. Bosch, and M. Svahnberg
2001. On the notion of variability in software product lines. In Proceedings of the Working
IEEE/IFIP Conference on Software Architecture, WICSA ’01, Pp. 45–, Washington, DC, USA.
IEEE Computer Society. (Cited on pages 1, 12, 19, and 92.)

Harel, D. and B. Rumpe
2000. Modeling languages: Syntax, semantics and all that stuff, part i: The basic stuff. Technical
report, Jerusalem, Israel, Israel. (Cited on pages 28 and 32.)

Haslinger, E. N., R. E. Lopez-Herrejon, and A. Egyed
2013. On extracting feature models from sets of valid feature combinations. In International
Conference on Fundamental Approaches to Software Engineering, Pp. 53–67. Springer. (Cited
on pages 21, 25, and 92.)

Kang, K. C., S. G. Cohen, J. A. Hess, W. E. Novak, and A. S. Peterson
1990. Feature-oriented domain analysis (foda) feasibility study. Technical report, Carnegie-Mellon
University Software Engineering Institute. (Cited on pages iii, 1, 6, 7, 10, 11, 19, 26, and 92.)

Kang, K. C., S. Kim, J. Lee, K. Kim, G. J. Kim, and E. Shin
1998. Form: A feature-oriented reuse method with domain-specific reference architectures. Annals
of Software Engineering, 5:143–168. (Cited on pages 1, 12, 19, and 92.)

Kästner, C., T. Thüm, G. Saake, J. Feigenspan, T. Leich, F. Wielgorz, and S. Apel
2009. FeatureIDE: A Tool Framework for Feature-Oriented Software Development. Pp. 611–614.
Formal demonstration paper. (Cited on pages 1, 7, 13, 19, 20, and 25.)

Liang, J. H., V. Ganesh, K. Czarnecki, and V. Raman
2015. Sat-based analysis of large real-world feature models is easy. In Proceedings of the 19th
International Conference on Software Product Line, Pp. 91–100. ACM. (Cited on page 36.)

http://publikationsserver.tu-braunschweig.de/get/64215

Bibliography 111

Linsbauer, L., R. E. Lopez-Herrejon, and A. Egyed
2014. Feature model synthesis with genetic programming. In International Symposium on Search
Based Software Engineering, Pp. 153–167. Springer. (Cited on pages 21, 25, and 92.)

Lopez-Herrejon, R. E., L. Linsbauer, J. A. Galindo, J. A. Parejo, D. Benavides, S. Segura, and
A. Egyed
2015. An assessment of search-based techniques for reverse engineering feature models. Journal
of Systems and Software, 103:353–369. (Cited on pages 21, 25, and 92.)

Machado, L., J. Pereira, L. Garcia, and E. Figueiredo
2014. Splconfig: Product configuration in software product line. (Cited on pages 23 and 25.)

McMinn, P.
2004. Search-based software test data generation: a survey. Software testing, Verification and
reliability, 14(2):105–156. (Cited on page 22.)

Mendonca, M., A. Wąsowski, and K. Czarnecki
2009. Sat-based analysis of feature models is easy. In Proceedings of the 13th International
Software Product Line Conference, Pp. 231–240. Carnegie Mellon University. (Cited on page 92.)

Mendonça, M., M. Branco, and D. Cowan
2009. S.P.L.O.T.: Software Product Lines Online Tools. Pp. 761–762. (Cited on pages 1, 15, 19,
20, and 25.)

Meyer, M. H. and A. P. Lehnerd
1997. The power of product platforms. Simon and Schuster. (Cited on page 9.)

Nolt, J. E., D. A. Rohatyn, and A. Varzi
1998. Schaum’s outline of theory and problems of logic. (Cited on page 37.)

Perrouin, G., S. Sen, J. Klein, B. Baudry, and Y. Le Traon
2010. Automated and scalable t-wise test case generation strategies for software product lines.
In Software Testing, Verification and Validation (ICST), 2010 Third International Conference
on, Pp. 459–468. IEEE. (Cited on pages 22 and 25.)

Pohl, K., G. Böckle, and F. J. v. d. Linden
2005. Software Product Line Engineering: Foundations, Principles and Techniques. Secaucus,
NJ, USA: Springer-Verlag New York, Inc. (Cited on pages 1, 5, 6, 9, and 10.)

Riebisch, M., K. Böllert, D. Streitferdt, and I. Philippow
2002. Extending feature diagrams with uml multiplicities. Pasadena, CA. (Cited on pages iii, 1,
12, 13, 15, 19, and 92.)

Rosenmüller, M., N. Siegmund, T. Thüm, and G. Saake
2011. Multi-Dimensional Variability Modeling. In VaMoS, Pp. 11–22, NY. ACM. (Cited on
pages 16 and 19.)

Ryssel, U., J. Ploennigs, and K. Kabitzsch
2011. Extraction of feature models from formal contexts. In Proceedings of the 15th International
Software Product Line Conference, Volume 2, P. 4. ACM. (Cited on page 25.)

http://publikationsserver.tu-braunschweig.de/get/64215

112 Bibliography

Schobbens, P.-Y., P. Heymans, J.-C. Trigaux, and Y. Bontemps
2007. Generic semantics of feature diagrams. Comput. Netw., 51(2):456–479. (Cited on pages 2,
3, 10, 12, 18, 23, 27, 28, 29, 37, and 91.)

Segura, S., J. A. Galindo, D. Benavides, J. A. Parejo, and A. Ruiz-Cortés
2012. Betty: benchmarking and testing on the automated analysis of feature models. In
Proceedings of the Sixth International Workshop on Variability Modeling of Software-Intensive
Systems, Pp. 63–71. ACM. (Cited on pages 2, 21, 22, 25, 92, and 95.)

Segura, S., J. A. Parejo, R. M. Hierons, D. Benavides, and A. Ruiz-Cortés
2014. Automated generation of computationally hard feature models using evolutionary algorithms.
Expert Systems with Applications, 41(8):3975–3992. (Cited on pages 2, 22, 25, and 92.)

She, S., R. Lotufo, T. Berger, A. Wøsowski, and K. Czarnecki
2011. Reverse engineering feature models. In Software Engineering (ICSE), 2011 33rd Interna-
tional Conference on, Pp. 461–470. IEEE. (Cited on pages 21, 25, 76, 77, and 92.)

She, S., U. Ryssel, N. Andersen, A. Wasowski, and K. Czarnecki
2014. Efficient synthesis of feature models. Information and Software Technology, 56(9):1122–1143.
(Cited on pages 21, 25, and 92.)

Shi, J., M. B. Cohen, and M. B. Dwyer
2012. Integration testing of software product lines using compositional symbolic execution. In
Fundamental Approaches to Software Engineering, Pp. 270–284. Springer. (Cited on pages 23,
25, and 92.)

Sun, J., H. Zhang, Y. Fang, and L. H. Wang
2005. Formal semantics and verification for feature modeling. In 10th IEEE International
Conference on Engineering of Complex Computer Systems (ICECCS’05), Pp. 303–312. IEEE.
(Cited on pages 27 and 45.)

Svahnberg, M. and J. Bosch
2000. Issues concerning variability in software product lines. In Software Architectures for Product
Families, Pp. 146–157. Springer. (Cited on page 6.)

Thüm, T., S. Apel, C. Kästner, M. Kuhlemann, I. Schaefer, and G. Saake
2012. Analysis strategies for software product lines. School of Computer Science, University of
Magdeburg, Tech. Rep. FIN-004-2012. (Cited on page 22.)

Thüm, T., D. Batory, and C. Kästner
2009. Reasoning about edits to feature models. In Software Engineering, 2009. ICSE 2009. IEEE
31st International Conference on, Pp. 254–264. IEEE. (Cited on pages 22, 25, 46, 56, and 76.)

Thüm, T., C. Kästner, F. Benduhn, J. Meinicke, G. Saake, and T. Leich
2014. Featureide: An extensible framework for feature-oriented software development. Sci.
Comput. Program., 79:70–85. (Cited on page 68.)

Thüm, T., C. Kästner, S. Erdweg, and N. Siegmund
2011. Abstract features in feature modeling. In Proceedings of the 2011 15th International

http://publikationsserver.tu-braunschweig.de/get/64215

Bibliography 113

Software Product Line Conference, SPLC ’11, Pp. 191–200, Washington, DC, USA. IEEE
Computer Society. (Cited on pages 8 and 91.)

Tseitin, G. S.
1983. On the complexity of derivation in propositional calculus. In Automation of reasoning,
Pp. 466–483. Springer. (Cited on page 61.)

van den Broek, P. and I. Galvao Lourenco da Silva
2009. Analysis of feature models using generalised feature trees. (Cited on page 91.)

Van Deursen, A. and P. Klint
2002. Domain-specific language design requires feature descriptions. CIT. Journal of computing
and information technology, 10(1):1–17. (Cited on pages iii, 14, 19, and 92.)

von Rhein, A., A. Grebhahn, S. Apel, N. Siegmund, D. Beyer, and T. Berger
2015. Presence-condition simplification in highly configurable systems. In Proceedings of the 37th
International Conference on Software Engineering-Volume 1, Pp. 178–188. IEEE Press. (Cited
on pages 76 and 95.)

White, J., B. Dougherty, and D. C. Schmidt
2009. Selecting highly optimal architectural feature sets with filtered cartesian flattening. Journal
of Systems and Software, 82(8):1268–1284. (Cited on pages 23, 25, and 92.)

White, J., J. A. Galindo, T. Saxena, B. Dougherty, D. Benavides, and D. C. Schmidt
2014. Evolving feature model configurations in software product lines. J. Syst. Softw., 87:119–136.
(Cited on pages 2, 23, 25, and 92.)

Zanardini, D., E. Albert, and K. Villela
2016. Resource–usage–aware configuration in software product lines. Journal of Logical and
Algebraic Methods in Programming, 85(1):173–199. (Cited on pages 23 and 25.)

http://publikationsserver.tu-braunschweig.de/get/64215

http://publikationsserver.tu-braunschweig.de/get/64215

http://publikationsserver.tu-braunschweig.de/get/64215

Technische Universität Carolo-Wilhelmina in Braunschweig
Institut für Softwaretechnik und Fahrzeuginformatik

Mühlenpfordtstr. 23
D-38106 Braunschweig

http://publikationsserver.tu-braunschweig.de/get/64215

	List of Figures
	List of Tables
	List of Code Listings
	List of Algorithms
	Introduction
	Constraints in Feature Modeling
	Software Product Lines
	Preprocessor-Based Variability
	Feature Modeling
	Domain Engineering

	A Survey of Feature Modeling Languages
	Graphical Representations of Feature Models
	Textual Representations of Feature Models
	Comparison of Feature Model Representations

	Applications of Feature Models
	Summary

	Formal Foundations of Feature Models
	Motivation for a Formal System
	A Formal Semantics for Feature Modeling Languages
	Defining an Abstract Syntax
	Semantic Domain: Giving Meaning to Syntax
	Capturing Feature Model Extensions
	Mapping Feature Models to Propositional Logic

	Expressive Power of Feature Models
	Summary

	Eliminating Complex Constraints
	General Refactoring of Feature Models
	Refactoring Group Cardinality
	Refactoring Complex Constraints
	Pseudo-Complex Constraints and Trivial Simplifications
	Refactoring Using Negation Normal Form
	Refactoring Using Conjunctive Normal Form
	One-to-One Correspondence of Configurations

	Summary

	Eliminating Complex Constraints with FeatureIDE
	Overview
	Preprocessing Phase
	Choosing a Conversion Strategy
	Implementing an Exporter for the Fama File Format
	Summary

	Evaluation
	Methodology
	Experimental Results
	Constraint Classification
	Performance Analysis
	Scalability

	Threats to Validity
	Summary

	Related Work
	Conclusion
	Future Work
	Appendix Evaluation Results
	Bibliography

