Coclass theory for nilpotent associative algebras

Von der Carl-Friedrich-Gauß-Fakultät der Technischen Universität Carolo-Wilhelmina zu Braunschweig

zur Erlangung des Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigte Dissertation

vom Tobias Moede geboren am 13.09.1987 in Hamburg

Eingereicht am: 02.05.2016
Disputation am: 01.07.2016
1. Referentin: Prof. Dr. Bettina Eick
2. Referent: Prof. Dr. Andrea Caranti

2016
Contents

1 Introduction .. 5

2 Preliminaries .. 13

3 Infinite paths in coclass graphs 17
 3.1 Description of infinite paths 17
 3.2 Construction of infinite paths 25
 3.3 Number of infinite paths 31

4 Trees in coclass graphs 37
 4.1 Roots of maximal descendant trees 37
 4.2 Depth of coclass trees 41
 4.3 General periodicity conjecture 46
 4.4 Periodicity for coclass 1 47
 4.5 Periodicity conjecture for coclass 2 51

5 Algorithms .. 53
 5.1 Algorithm to compute immediate descendants 53
 5.2 Algorithm to calculate roots of maximal descendant trees 55

6 Applications of the algorithms 57
 6.1 The coclass graph $G_F(1)$ with $|F| < 20$ 57
 6.2 The coclass graph $G_F(2)$ with $|F| \leq 5$ 59
 6.3 The coclass graph $G_F(3)$ 68

7 Summary .. 75
 7.1 Summary .. 75
 7.2 Zusammenfassung .. 78

Bibliography .. 83
Chapter 1

Introduction

Coclass theory can be considered as an approach towards classifying nilpotent algebraic objects. In this thesis we develop a coclass theory for nilpotent associative algebras over fields. The thesis contains results from our papers [EM15b] & [EM16] as well as various new results.

Historically coclass theory was first introduced for finite p-groups by Leedham-Green & Newman [LGN80] in 1980. Ideas of coclass theory have been translated to special types of Lie algebras, see e.g. Caranti, Mattarei & Newman [CMN97], Caranti & Vaughan-Lee [CVL00], Riley & Semple [RS94] and Shalev & Zelmanov [SZ97]. Ideas have also been transferred to nilpotent semigroups by Distler & Eick [DE13]. We first recall some of the highlights of coclass theory for finite p-groups before we give an overview of the main results of this thesis.

Coclass theory for finite p-groups

A group G of order p^n and nilpotency class c has coclass $cc(G) = n - c$. Inspired by Blackburn’s work [Bla58] on groups of maximal class, i.e. coclass 1, Leedham-Green & Newman suggested to use coclass as primary invariant in a possible classification of finite p-groups. In [LGN80] Leedham-Green & Newman proved first results and proposed five very detailed conjectures known as Conjectures A-E. These conjectures have become a driving force for the first years of coclass theory. We exhibit the conjectures here for completeness and refer to the monograph by Leedham-Green & McKay [LGM02] for details. The conjectures involve infinite pro-p-groups of coclass r, i.e. infinite groups that are inverse limits of finite p-groups of coclass r. Conjectures A-E are ordered in decreasing strength, i.e. Conjecture A implies all the others.

Conjecture A. For some function $f(p, r)$, every finite p-group of coclass r has a normal subgroup K of class at most 2 and index at most $f(p, r)$. If $p = 2$, one can require K to be abelian.

Conjecture B. For some function $g(p, r)$, every finite p-group of coclass r has derived length at most $g(p, r)$.

Conjecture C. Every pro-p-group of finite coclass is soluble.
Conjecture D. For fixed p and r there are only finitely many isomorphism classes of infinite pro-p-groups of coclass r.

Conjecture E. There are only finitely many isomorphism classes of infinite soluble pro-p-groups of coclass r.

The work on these conjectures has produced many interesting results. All of these conjectures have become theorems by now, hence we refer to them as Theorems A-E. The strongest one, Theorem A, has been proved by Leedham-Green [LG94] and Shalev [Sha94].

One can associate to the p-groups of a fixed coclass r a directed graph $G(p,r)$. The vertices correspond one-to-one to isomorphism types of finite p-groups of coclass r and there is a directed edge from H to G if $G/\gamma(G) \cong H$, where $\gamma(G)$ is the last non-trivial term of the lower central series of H. Newman and O’Brien [NO99] conjectured that the graphs $G(2,r)$ exhibit a certain periodic pattern (Conjecture P). This was proved independently by du Sautoy [dS00] using the theory of zeta functions and Eick & Leedham-Green [ELG08] using cohomological methods.

It seems that coclass theory for finite p-groups is very helpful to describe global structure phenomena. Eick [Eic06] showed that for 2-groups the automorphism groups also exhibit a periodic pattern. Eick & Leedham-Green [ELG08] introduced so called infinite coclass sequences and in [EF11] Eick & Feichtenschlager proved that low-dimensional cohomology groups agree for almost all groups in an infinite coclass sequence. Couson [Cou14] showed that for an infinite coclass sequence there is an integer b, such that every irreducible character of every group in the sequence has degree at most p^b. These and other structure results are part of the reason why coclass theory for finite p-groups is considered as a successful approach.

There is still active work on coclass theory for finite p-groups. The most prominent and important open question is whether for fixed p and r, the p-groups of coclass r can be described by finitely many parametrized presentations. This is related to Conjecture W by Eick, Leedham-Green, Newman & O’Brien [ELGNO13]. In the case of 2-groups this is implied by the periodicity result obtained by Eick & Leedham-Green [ELG08].

Nilpotent associative \mathbb{F}-algebras

An associative algebra over a field \mathbb{F} is an \mathbb{F}-vector space equipped with an associative, bilinear multiplication. If an associative \mathbb{F}-algebra contains an identity element, we call it unital, otherwise non-unital. Associative algebras are found in many areas of mathematics. Examples include the algebra $M_n(\mathbb{F})$ of $(n \times n)$-matrices with entries in \mathbb{F} and its various subalgebras, group algebras $\mathbb{F}G$ for finite groups G and many others. An important example for our purpose is the ideal $\mathbb{F}_c[[t]]$ generated by t in the ring of formal power series $\mathbb{F}[[t]]$. It is a non-unital infinite-dimensional associative \mathbb{F}-algebra.

Definition 1.1

Let A be an associative \mathbb{F}-algebra and let A^i denote the ideal generated by all products of length i in A. We call the series

$$A = A^1 > A^2 > \ldots$$
the power series of A. We say that A is nilpotent if there is $c \in \mathbb{N}$, such that $A^c \neq \{0\}$ and $A^{c+1} = \{0\}$. In this case we call c the class of A and denote it by $\text{cl}(A)$.

Note that nilpotent associative \mathbb{F}-algebras are always non-unital. The importance of nilpotent associative \mathbb{F}-algebras in the structure theory of finite-dimensional associative \mathbb{F}-algebras is illustrated by a theorem of Wedderburn (see [Wed08]), which states that the Jacobson radical $J(A)$ of a finite-dimensional associative \mathbb{F}-algebra A is a nilpotent associative \mathbb{F}-algebra and $A/J(A)$ is a direct sum of full matrix algebras over skewfields.

An isomorphism type classification of the nilpotent associative \mathbb{F}-algebras seems to be an interesting project. The classification is available for small dimensions. It is easy to see that there is one such algebra of dimension 1: $C_1 = \mathbb{Z}_1 = \langle a \mid a^2 \rangle$, and there are two such algebras of dimension 2: $Z_2 = \mathbb{Z}_1 \oplus \mathbb{Z}_1$ and $C_2 = \langle a \mid a^3 \rangle$. The number of nilpotent associative \mathbb{F}-algebras of dimension 3 depends on the underlying field (see de Graaf [dG10], Kruse & Price [KP69]). If \mathbb{F} is infinite, then there are infinitely many such algebras. If \mathbb{F} is finite, then there are $|\mathbb{F}| + 6$ such algebras if $\text{char}(\mathbb{F})$ is odd and $|\mathbb{F}| + 5$ if $\text{char}(\mathbb{F})$ is even. Kruse & Price give a classification of nilpotent associative \mathbb{F}-algebras of dimension 4 (see [KP69, Chapter VI]).

Coclass theory for nilpotent associative \mathbb{F}-algebras

In this thesis we take a different classification approach: coclass theory. In analogy to the case of finite p-groups we define the coclass of a finite-dimensional nilpotent-associative \mathbb{F}-algebra.

Definition 1.2
Let A be a finite-dimensional nilpotent associative \mathbb{F}-algebra. We define the coclass of A as $cc(A) = \dim(A) - \text{cl}(A)$.

A very important tool in the investigation of finite-dimensional nilpotent associative \mathbb{F}-algebras of coclass r are the associated coclass graphs, which we define in the following. Note that we exhibit some more terminology and some elementary facts in Chapter 2.

Let $A \not\cong B$ be two finite-dimensional nilpotent associative \mathbb{F}-algebras. We call B a descendant of A (and A an ancestor of B), if $B/B^i \cong A$ for some $i > 1$. In the special case that $B/B^{\text{cl}(B)} \cong A$, we say that B is an immediate descendant of A and similarly that A is an immediate ancestor of B.

Definition 1.3
Let \mathbb{F} be an arbitrary field and let r be a non-negative integer. We define the coclass graph $\mathcal{C}_\mathbb{F}(r)$ as follows. The vertices correspond one-to-one to the isomorphism types of finite-dimensional nilpotent associative \mathbb{F}-algebras of coclass r and there is a directed edge between A and B if B is an immediate descendant of A.

Note that we do often not distinguish between the vertex and an algebra representing the isomorphism type that corresponds to it. As first examples we depict the coclass graph for coclass 0 and all fields and the coclass graph for coclass 1 and the field with three elements.
Both of these graphs have been calculated up to dimension 40 using the algorithms we present in Chapter 5. Both graphs exhibit a periodic pattern, which we investigate in more detail in Chapter 4. Note that the graphs for higher coclasses get significantly more complex.

Infinite paths in coclass graphs

We observe that a main feature of coclass graphs are the infinite paths contained in them. We use inverse limits as a convenient and compact description for them. A central result of this thesis (Theorem 1 in our paper [EM15b]) is the following structure description for the inverse limits associated to infinite paths in $G_{\mathbb{F}}(r)$. Note that $Ann^*_x(A)$ is the direct limit of the upper annihilator series of A (see Definition 3.13). We give more details and a proof in Section 3.1.

Theorem 1.4

Let \mathbb{F} be an arbitrary field and let r be a non-negative integer. An associative \mathbb{F}-algebra A is isomorphic to an inverse limit of an infinite path in $G_{\mathbb{F}}(r)$ if and only if it is a split extension $A = T \rtimes Ann_x(A)$ with $dim(Ann_x(A)) = r$ and T is a subalgebra of A such that $T \cong \mathbb{F}[[t]]$.

This can be seen as an analogue to Conjecture C from the p-group case. We call two infinite paths in $G_{\mathbb{F}}(r)$ **equivalent** if one is contained in the other. In Section 3.3 we further deduce that an analogue of Conjecture D holds if and only if $r \leq 1$ or \mathbb{F} is finite, i.e. we have the following theorem. Note that this result is also contained in Section 5 of our paper [EM15b], but we use different methods to prove it here.

Theorem 1.5

The number of equivalence classes of infinite paths in $G_{\mathbb{F}}(r)$ is finite if and only if $r \leq 1$ or \mathbb{F} is finite.
In Section 3.2 we explicitly describe the construction of the inverse limits describing infinite paths in coclass graphs as so called iterated annihilator extensions of $\mathbb{F}_\circ[[t]]$. We solve the arising isomorphism problem using an action of automorphism groups on cohomology, in particular see Lemma 3.32 and Theorem 3.33.

Trees in coclass graphs

Let \mathbb{F} be an arbitrary field and let r be a non-negative integer and let be $A \in \mathcal{G}_\mathbb{F}(r)$. The *descendant tree* $\mathcal{T}(A)$ of A is the full subtree of $\mathcal{G}_\mathbb{F}(r)$ consisting of A and all descendants of A in $\mathcal{G}_\mathbb{F}(r)$. It is a rooted tree with root A. $\mathcal{T}(A)$ is called *maximal* if it is not properly contained in the descendant tree of an ancestor of A. The descendant tree $\mathcal{T}(A)$ can be finite or infinite with one or several infinite paths starting at A.

In Section 4.1 we describe the shape of the coclass graphs $\mathcal{G}_\mathbb{F}(r)$ in more detail. These results are also contained in our paper [EM16].

Theorem 1.6

Let \mathbb{F} be an arbitrary field and let r be a non-negative integer. Let R be a root of a maximal descendant tree in $\mathcal{G}_\mathbb{F}(r)$. If $r = 0$, then $\dim(R) = 1$. If $r \geq 1$, then $r + 1 \leq \dim(R) \leq 2r$ and these bounds are sharp.

Corollary 1.7

Let \mathbb{F} be an arbitrary finite field and let r be a non-negative integer. Then $\mathcal{G}_\mathbb{F}(r)$ is a disjoint union of finitely many maximal descendant trees.

This result can be further strengthened using the notion of coclass trees.

Definition 1.8

Let \mathbb{F} be an arbitrary field and let r be a non-negative integer. Let $A \in \mathcal{G}_\mathbb{F}(r)$. A descendant tree $\mathcal{T}(A)$ in $\mathcal{G}_\mathbb{F}(r)$ is called a *coclass tree* if it contains a unique infinite path starting at its root. A coclass tree $\mathcal{T}(A)$ is called *maximal* if it is not properly contained in another coclass tree.

Theorem 1.9

Let \mathbb{F} be an arbitrary finite field and let r be a non-negative integer. Then each maximal descendant tree of $\mathcal{G}_\mathbb{F}(r)$ consists of finitely many maximal coclass trees and finitely many other vertices. Hence $\mathcal{G}_\mathbb{F}(r)$ is a disjoint union of finitely many maximal coclass trees and finitely many other vertices.

Definition 1.10

Let \mathbb{F} be an arbitrary field and let r be a non-negative integer. Let \mathcal{T} be a maximal coclass tree in $\mathcal{G}_\mathbb{F}(r)$ and let $A_1 \rightarrow A_2 \rightarrow \ldots$ be the unique infinite path starting at the root of \mathcal{T}.

- The subtree \mathcal{B}_i of $\mathcal{T}(A_i)$ containing all algebras that are not contained in $\mathcal{T}(A_{i+1})$ is called the *i-th branch* of \mathcal{T}. The branch \mathcal{B}_i is a finite tree with root A_i.

- We define the depth $\text{dep}(\mathcal{B}_i)$ of \mathcal{B}_i to be the maximum distance of a vertex in \mathcal{B}_i to the algebra A_i. If the sequence $\text{dep}(\mathcal{B}_i)_{i \in \mathbb{N}}$ is bounded, we define the *depth* of \mathcal{T} as $\text{dep}(\mathcal{T}) = \max_{i \in \mathbb{N}} \text{dep}(\mathcal{B}_i)$. In this case we say that \mathcal{T} has *bounded* depth. Otherwise \mathcal{T} has *unbounded* depth and we write $\text{dep}(\mathcal{T}) = \infty$.

9
We prove in Section 4.2 the new result that for almost all algebras \(A \) in a maximal coclass tree in \(\mathcal{G}_F(r) \) the algebra \(A/A^{d(A)} - r + 1 \) is isomorphic to an algebra on the infinite path. In other words, we have that almost all branches of maximal coclass trees in \(\mathcal{G}_F(r) \) have depth bounded by the coclass and hence we have the following theorem.

Theorem 1.11

Let \(F \) be an arbitrary field and let \(r \) be a non-negative integer. Let \(T \) be a maximal coclass tree in \(\mathcal{G}_F(r) \). Then \(T \) has bounded depth.

Periodicity of coclass graphs

For finite fields \(F \), we propose strong conjectures in Section 4.3 resembling Conjecture P and the consequences of Conjecture W from the \(p \)-group case (see also our paper [EM16]). These conjectures are based on computational evidence that we obtained using the algorithms we present in Chapter 5. A preliminary version of the descendant algorithm (see Algorithm 5.1) was used by Bertram [Ber11] to calculate the 5-dimensional nilpotent associative \(F_2 \)-algebras.

Definition 1.12

Let \(F \) be an arbitrary field and let \(r \) be a non-negative integer. Let \(T \) be a maximal coclass tree in \(\mathcal{G}_F(r) \) with unique infinite path \(A_1 \to A_2 \to \ldots \) starting at the root of \(T \). Then \(T \) is called virtually periodic with period \(d \) and periodic root \(A_\ell \) if the descendant trees \(T(A_i) \) and \(T(A_{i+d}) \) are isomorphic as directed graphs for each \(i \geq \ell \).

Conjecture 1.13

Let \(F \) be an arbitrary finite field and let \(r \) be a non-negative integer and let \(T \) be maximal coclass tree in \(\mathcal{G}_F(r) \). Then \(T \) is virtually periodic.

Conjecture 1.14

Let \(F \) be an arbitrary finite field and let \(r \) be a non-negative integer and let \(T \) be maximal coclass tree in \(\mathcal{G}_F(r) \). Then the algebras in \(T \) can be described by finitely many parametrized presentations.

In Section 4.4 we give a first proof of these conjectures in the case of coclass \(r \leq 1 \) and for coclass 2 give a far more detailed conjecture in Section 4.5.

Outline of the thesis

In the following we outline the structure of the thesis.

In Chapter 2 we introduce more basic definitions and notions of coclass theory for nilpotent associative \(F \)-algebras.

In Chapter 3 we deal with the infinite paths of coclass graphs associated to the nilpotent associative \(F \)-algebras of a fixed coclass \(r \). It contains the central structure description for the inverse limits describing those infinite paths as well as a method for explicitly constructing these inverse limits. The number of infinite paths in coclass graphs is also investigated here.

In Chapter 4 we consider trees in coclass graphs. We prove a bound for the dimension of roots of maximal descendant trees in coclass graphs and prove a depth bound for coclass
trees. Furthermore, we make strong conjectures involving periodicity of coclass graphs for finite fields and prove these conjectures for coclass 1.

In Chapter 5 we describe algorithms that enable us to calculate finite parts of coclass graphs for finite fields.

In Chapter 6 we apply the algorithms of the previous chapter. As a first application we fully describe the graphs $G_F(1)$ for all finite fields of size less than 20. We also depict the graph $G_F(2)$ for finite fields with $|F| \leq 5$ and the graph $G_{F_2}(3)$.

In Chapter 7 we give a summary of what has been achieved in this thesis.
Chapter 2

Preliminaries

Let \mathbb{F} be an arbitrary field. We introduce more terminology needed to develop a coclass theory for nilpotent associative \mathbb{F}-algebras. We state and prove small helpful facts and give some examples.

Definition 2.1
Recall from Definition 1.1 that an associative \mathbb{F}-algebra is nilpotent of class c if its power series has the form $A = A^1 > A^2 > \ldots > A^c > A^{c+1} = \{0\}$. We call $rk(A) = dim(A/A^2)$ the rank of A.

Remark 2.2
The rank of a nilpotent associative \mathbb{F}-algebra A coincides with its minimal generator number.

Of course it would be desirable to have a classification of the nilpotent associative \mathbb{F}-algebras up to isomorphism by dimension, but as discussed in the introduction, this seems to be a hard and daunting task. Thus we settle for a different approach, namely the use of coclass as the primary invariant in a classification attempt. Recall from Definition 1.2 that the coclass of a nilpotent associative \mathbb{F}-algebra is defined as $cc(A) = dim(A) - cl(A)$.

Lemma 2.3
A nilpotent associative \mathbb{F}-algebra A has coclass r if and only if

$$\sum_{i=1}^{cl(A)} (dim(A^i/A^{i+1}) - 1) = r$$

Proof:

$$cc(A) = dim(A) - cl(A) = \sum_{i=1}^{cl(A)} dim(A^i/A^{i+1}) - cl(A) = \sum_{i=1}^{cl(A)} (dim(A^i/A^{i+1}) - 1).$$

We proceed by making some elementary observations concerning rank and coclass, in particular we see that the rank is bounded in terms of the coclass.

Lemma 2.4
Let A be a finite-dimensional nilpotent associative \mathbb{F}-algebra. Then

(a) $cc(A) \geq 0$, and
(b) \(\text{rk}(A) \leq \text{cc}(A) + 1\).

Proof:

(a) Obviously \(\text{cl}(A) \leq \dim(A)\), hence \(\text{cc}(A) \geq 0\).
(b) \(\text{rk}(A) - 1 \leq \text{cc}(A/A^2) \leq \text{cc}(A/A^3) \leq \ldots \leq \text{cc}(A/A^{\text{cl}(A)+1}) = \text{cc}(A)\).

We first give a few examples of finite-dimensional nilpotent associative \(F\)-algebras.

Example 2.5

Let \(F\) be an arbitrary field.

(a) Consider the finite-dimensional nilpotent associative \(F\)-algebras given by \(C_n = \langle a \mid a^{n+1} \rangle\) for each \(n \geq 1\). These rank 1 algebras are \(n\)-dimensional and have class \(n\). Thus they are of coclass 0. In fact the algebras \(C_n\) are all the nilpotent associative \(F\)-algebras of coclass 0. They (and their inverse limit) play an important role in the theory. Note that in the \(p\)-group case coclass 0 is non-existent.

(b) We denote the \(d\)-dimensional \(F\)-algebras with trivial multiplication by \(Z_d\). These have class 1 and hence coclass \(d - 1\) meaning that there are nilpotent associative \(F\)-algebras for every coclass \(r \geq 0\). The algebras \(C_n\) for coclass 0 and \(C_n \oplus Z_d\) for coclass \(d \geq 1\) show that there are infinitely many nilpotent associative \(F\)-algebras for every coclass \(r \geq 0\).

(c) Let \(\text{SUT}(n; F)\) be the \(F\)-algebra of strictly upper triangular \((n \times n)\)-matrices over \(F\). Then \(\text{SUT}(n; F)\) is nilpotent of dimension \(n(n - 1)/2\) and class \(n - 1\). Consequently, these algebras have coclass \((n - 1)(n - 2)/2\). Note that \(\text{SUT}(n; F)\) is precisely the Jacobson radical of the \(F\)-algebra of upper triangular \((n \times n)\)-matrices over \(F\).

For finite fields \(F\) an interesting way of constructing nilpotent associative \(F\)-algebras from finite \(p\)-groups is described in the next example. This is due to Jennings [Jen41] and a more detailed exposition of this construction can be found in Chapter VIII \(\S\) 2 of [HB12].

Example 2.6

Let \(G\) be a finite \(p\)-group of order \(p^n\). Let \(F\) be a finite field of characteristic \(p\) and let \(A = J(FG)\) be the Jacobson radical of the group algebra \(FG\). Furthermore, let \(\kappa\) denote the Jennings series of \(G\) and let \(\ell\) be the length of this series. Then \(A\) is a nilpotent associative algebra of dimension \(p^n - 1\) and class \((p - 1)\sum_{n=1}^{\ell} nd_n\), where \(d_n\) is defined by \(|\kappa_n(G) : \kappa_{n+1}(G)| = p^{d_n}\).

Remark 2.7

Not all nilpotent associative \(F\)-algebras arise as a Jacobson radical in the sense of Example 2.6. Even for the algebras that do arise in this way the fact that the Jennings series is involved in the calculation of the class shows that there is no direct way to exploit the connection for coclass theoretic results.

There is also a construction going the other direction, i.e. starting with a nilpotent associative \(F_p\)-algebra and yielding a finite \(p\)-group.
Example 2.8
Let A be a finite-dimensional nilpotent \mathbb{F}_p-algebra. Then A is a p-group of order $p^{\dim(A)}$ with the composition given by
\[a \circ b = a + b + ab \quad \forall a, b \in A. \]

Remark 2.9
The composition defined in Definition 2.8 is called the circle product and the group (A, \circ) is called the circle group or adjoint group of A. Furthermore, the power series of A is a central series for (A, \circ) (see 1.6.5 in Kruse & Price [KP69]), thus giving an upper bound for the class of (A, \circ). Not all finite p-groups arise in this way, e.g. the dihedral group on 16 elements is not the circle group of a nilpotent associative \mathbb{F}_p-algebra. This can be deduced from Corollary 1.6.9 in [KP69].

Remark 2.10
Kruse & Price give a slightly more general version of this construction in [KP69, Theorem 1.6.2]. More precisely they introduce this construction for nil rings, i.e. rings in which every element is nilpotent. In the general setting this construction does of course not necessarily yield p-groups.

To end the chapter we give some more terminology to precisely describe coclass graphs and prove some elementary facts.

Definition 2.11
- The distance $\text{dist}(B)$ of the descendant B is defined as $\text{dist}(B) = \text{cl}(B) - \text{cl}(A)$ and the stepsize $s(B)$ is defined as $s(B) = \text{dim}(B) - \text{dim}(A)$. Using this terminology the immediate descendants are the descendants of distance 1.
- We call a finite-dimensional nilpotent associative \mathbb{F}-algebra A capable if it has immediate descendants. Otherwise it is called terminal.

We have the following elementary results for rank and coclass of an immediate descendant.

Lemma 2.12
Let A be a finite-dimensional nilpotent associative \mathbb{F}-algebra and let B be an immediate descendant of A with stepsize $s(B)$. By definition we have that $s(B) \geq 1, \text{cl}(B) = \text{cl}(A) + 1$ and $\text{dim}(B) = \text{dim}(A) + s(B)$. Furthermore, the following holds:
(a) $rk(B) = rk(A)$,
(b) $cc(B) = cc(A) + s(B) - 1$. In particular $cc(B) \geq cc(A)$ and equality holds if and only if B has stepsize 1.

Proof:
(a) Note that $\text{cl}(B) > 2$ since by definition we have $\text{cl}(B) > \text{cl}(A) \geq 1$, hence $B/B^2 \cong (B/B^{\text{cl}(B)}/(B^2/B^{\text{cl}(B)}) \cong A/A^2$. Thus of course $rk(B) = rk(A)$.
(b) $cc(B) = \text{dim}(B) - \text{cl}(B) = \text{dim}(A) + s(B) - (\text{cl}(A) + 1) = cc(A) + s(B) - 1.$

In the next chapter we turn to the theoretical investigation of these graphs. The first goal is a detailed investigation of the infinite paths contained in these graphs.
Chapter 3
Infinite paths in coclass graphs

If not explicitly mentioned, let \mathbb{F} be an arbitrary field and r a non-negative integer throughout this chapter. The results overlap with our paper [EM15b].

3.1 Description of infinite paths

In this section we investigate one of the central features of the coclass graph $\mathcal{G}_\mathbb{F}(r)$, namely the infinite paths contained in these graphs. Our main result can be regarded as an analogue of Theorem C in the p-group case (see Section 1).

We need the concept of inverse limits to give a convenient description for the infinite paths. The general concept is defined using a universal property, which we shortly recall here (for more details on limits see e.g. Lane [Lan71, Chapter III]).

Definition 3.1
Let (I, \leq) be a directed set and let $(A_i)_{i \in I}$ be a family of objects in a category C. Further suppose that there are morphisms $f_{ij}: A_j \to A_i$ for all $i \leq j$ that satisfy

- f_{ii} is the identity on A_i
- $f_{ik} = f_{ij} \circ f_{jk}$ for $i \leq j \leq k$.

Then $((A_i)_{i \in I}, (f_{ij})_{i \leq j \in I})$ is called an inverse system. For convenience we often just write (A_i, f_{ij}). If we have such an inverse system (A_i, f_{ij}), the inverse limit of this system is an object $A \in C$ together with morphisms $\pi_i : A \to A_i$ satisfying $\pi_i = f_{ij} \circ \pi_j$ for all $i \leq j$. Additionally (A, π_i) must be universal, i.e. for every other such (B, ψ_i) there must be a unique morphism $f : B \to A$ such that the following diagram commutes for all $i \leq j$.

\[
\begin{array}{ccc}
B & \xrightarrow{f} & A \\
\downarrow{\psi_j} & & \downarrow{\psi_i} \\
A_j & \xleftarrow{f_{ij}} & A_i \\
\end{array}
\]
We often denote the inverse limit by $A = \lim_{\leftarrow} A_i$.

In the special case of associative algebras one can give an explicit construction for the inverse limits, which usually suffices for our considerations.

Remark 3.2

Let

$$A_1 \xrightarrow{\varphi_1} A_2 \xrightarrow{\varphi_2} \ldots$$

be an infinite sequence of associative \mathbb{F}-algebras with epimorphisms $\varphi_i : A_{i+1} \to A_i$ for all $i \in \mathbb{N}$. Then the inverse limit of this sequence is defined as

$$\lim_{\leftarrow} A_i = \{(a_1, a_2, \ldots) \in \prod_{i \in \mathbb{N}} A_i \mid \varphi_i(a_{i+1}) = a_i \text{ for all } i \in \mathbb{N}\}.$$

Example 3.3

Consider the nilpotent associative \mathbb{F}-algebras of coclass 0 given by $C_i = \langle a \mid a^{i+1} \rangle$ for $i \in \mathbb{N}$. Let $\varphi_i : C_{i+1} \to C_i$ be the natural projection that maps $a \in C_{i+1}$ to $a \in C_i$. Let $\mathbb{F}_o[[t]]$ be the ideal generated by t in the ring of formal power series $\mathbb{F}[[t]]$. Then $\mathbb{F}_o[[t]] \cong \lim_{\leftarrow} C_i$ as algebras via the isomorphism $t \mapsto (a, a, \ldots)$. This inverse limit is very important, as it is one of the central building blocks in the description of the inverse limits of infinite paths in $\mathcal{G}_F(r)$.

To conveniently talk about the inverse limits that arise in the case of infinite paths in $\mathcal{G}_F(r)$, we need a few more definitions. The first two are related to nilpotency.

Definition 3.4

Let A be an associative \mathbb{F}-algebra.

- A is called **residually nilpotent** if $\bigcap_{i \in \mathbb{N}} A_i = \{0\}$.
- A is called **pro-nilpotent** if it is isomorphic to the inverse limit of an infinite sequence of finite-dimensional nilpotent associative \mathbb{F}-algebras.

Remark 3.5

Note that if an associative \mathbb{F}-algebra A is pro-nilpotent, then A is also residually nilpotent.

So far we have only defined coclass for finite-dimensional nilpotent associative \mathbb{F}-algebras. Now we also want to have a notion of coclass for the infinite-dimensional case.

Definition 3.6

We say that an infinite-dimensional associative \mathbb{F}-algebra A has finite coclass r if it is residually nilpotent and for the ascending sequence $cc(A/A^i), i \geq 2$ we have

$$\lim_{i \to \infty} cc(A/A^i) = r.$$

As in the finite-dimensional case we write $cc(A) = r$.

Lemma 3.7

An infinite-dimensional associative \mathbb{F}-algebra A has finite coclass r if it is residually nilpotent and

$$\sum_{i=1}^{\infty} \left(\dim(A^i/A^{i+1}) - 1\right) = r$$
3.1. DESCRIPTION OF INFINITE PATHS

Proof:
This follows because $cc(A/A^j) = dim(A/A^j) - (j - 1) = \sum_{i=1}^{j-1} (dim(A^i/A^{i+1}) - 1)$ holds for all $j \in \mathbb{N}$.

Now that we have the necessary terminology in place, we can give a first elementary lemma from our paper [EM15b] concerning the inverse limits associated to infinite paths in $G_{\mathbb{F}}(r)$.

Lemma 3.8
Let A be the inverse limit of an infinite path $A_1 \rightarrow A_2 \rightarrow \ldots$ in $G_{\mathbb{F}}(r)$. Then the following holds:

(a) Let be $c = cl(A_1)$. Then $A/A^{c+i} \cong A_i$ and $cc(A/A^{c+i}) = r$ for all $i \in \mathbb{N}$.
(b) A is an infinite-dimensional pro-nilpotent \mathbb{F}-algebra of coclass r.
(c) A is finitely generated by at most $r + 1$ generators.

Proof:
(a) By definition of the infinite path one has $A_{i+1}/A_{i+1}^{cl(A_{i+1})} \cong A_i$ for all $i \in \mathbb{N}$. Now by construction of the inverse limit we get $A/A^{c+i} \cong A_i$ for all $i \in \mathbb{N}$. This in turn implies that $cc(A/A^{c+i}) = cc(A_i) = r$, because $A_i \in G_{\mathbb{F}}(r)$.
(b) Again by definition of the infinite path in $G_{\mathbb{F}}(r)$ it follows that $dim(A_{i+1}) = dim(A_i) + 1$ for all $i \in \mathbb{N}$. By the first part in (a) $A/A^{c+i} \cong A_i$ holds. Therefore $dim(A/A^i)$ is unbounded and it follows that A is infinite-dimensional. By construction A is pro-nilpotent and it follows directly from the second part of (a) that it has coclass r.
(c) Part (b) implies that A is pro-nilpotent and has coclass r. Therefore it follows that $dim(A/A^2) \leq r + 1$ and hence A is finitely generated by at most $r + 1$ elements.

Recall that two infinite paths in $G_{\mathbb{F}}(r)$ are called equivalent if one is contained in the other. The next theorem, which is also contained in our paper [EM15b], describes a one-to-one correspondence between infinite-dimensional pro-nilpotent \mathbb{F}-algebras of coclass r and the equivalence classes of infinite paths.

Theorem 3.9

(a) Let $A_1 \rightarrow A_2 \rightarrow \ldots$ be an infinite path in $G_{\mathbb{F}}(r)$. Then $\varprojlim A_i$ is an infinite-dimensional pro-nilpotent \mathbb{F}-algebra of coclass r.
(b) Let A be an infinite-dimensional pro-nilpotent \mathbb{F}-algebra of coclass r. Then there is $\ell \in \mathbb{N}$, such that $A/A^\ell \rightarrow A/A^{\ell+1} \rightarrow \ldots$ is an infinite path in $G_{\mathbb{F}}(r)$.
(c) The constructions (a) and (b) yield a one-to-one correspondence between the equivalence classes of infinite paths in $G_{\mathbb{F}}(r)$ and the isomorphism types of infinite-dimensional pro-nilpotent algebras of coclass r.

Proof:
(a) This is Lemma 3.8.
(b) This follows from the definition of coclass for such infinite-dimensional pro-nilpotent \mathbb{F}-algebras.
3.1. DESCRIPTION OF INFINITE PATHS

(c) By construction (a) every infinite path in $G_F(r)$ yields an infinite-dimensional pro-nilpotent F-algebra of coclass r. Under this construction equivalent paths yield isomorphic algebras and non-equivalent paths yield non-isomorphic algebras. By part (b) every infinite-dimensional pro-nilpotent F-algebra of coclass r is obtained in this way. Therefore the claimed one-to-one correspondence is obtained.

The above theorem translates the problem of classifying the infinite paths in $G_F(r)$ to the problem of classifying the infinite-dimensional pro-nilpotent F-algebras of coclass r. If we denote by $I_F(r)$ a set of isomorphism type representatives of infinite-dimensional pro-nilpotent F-algebras of coclass r, we can formulate the following corollary.

Corollary 3.10

$I_F(r)$ is a set of isomorphism type representatives of inverse limits of infinite paths in $G_F(r)$. Thus its elements correspond one-to-one to equivalence classes of infinite paths in $G_F(r)$.

Our task now is to give a precise structure description for the inverse limits of infinite paths in $G_F(r)$ and thus provide an analogue of Theorem C from the p-group case for nilpotent associative F-algebras. Recall from Section 1 that Theorem C in the p-group case states that every inverse limit of an infinite path in a coclass graph of finite p-groups, i.e. every infinite pro-p-group is soluble. In fact one can even describe the structure more precisely as being uniserial p-adic pre-space groups (see Leedham-Green & McKay [LGM02]). Our description for the inverse limits of infinite paths involves the notion of split extensions of algebras, which we recall here.

Definition 3.11

An associative F-algebra A is said to be a split extension $U \rtimes I$ if U is a subalgebra of A, I is a two-sided ideal in A and $A = \{ u + v \mid u \in U, v \in I \}$ and $U \cap I = \{0\}$.

Another ingredient required in the description of the inverse limits of the infinite paths in $G_F(r)$ is the upper annihilator series of an algebra. In general annihilators play a central role in the theory. Elementary results on annihilators can be found in Chapter I of Kruse & Price [KP69].

Definition 3.12

Let A be an algebra and let S be a non-empty subset of A. We define the left, right and two-sided annihilators of S in A as

$Ann_L(S) = \{ a \in A \mid ab = 0 \text{ for all } b \in S \}$

$Ann_R(S) = \{ a \in A \mid ba = 0 \text{ for all } b \in S \}$

$Ann(S) = \{ a \in A \mid ab = 0 = ba \text{ for all } b \in S \}$.

We refer to the two-sided annihilator simply as annihilator.

Definition 3.13

We define the upper annihilator series inductively by setting $Ann_0(A) = \{0\}$ and

$Ann_i(A)/Ann_{i-1}(A) = Ann(A/Ann_{i-1}(A))$, $i \geq 1$.

20
Finally, we denote the direct limit of this ascending series by $Ann_s(A) = \bigcup_{i \in \mathbb{N}} Ann_i(A)$.

Recall from Example 3.3 that $\mathbb{F}_0[[t]]$ denotes the ideal generated by t in $\mathbb{F}[[t]]$ and recall our description (see also [EM15b, Theorem 1]) of the inverse limits of infinite paths in $G_\mathbb{F}(r)$.

Theorem 1.4

Let \mathbb{F} be an arbitrary field and let r be a non-negative integer. An associative \mathbb{F}-algebra A is isomorphic to an inverse limit of an infinite path in $G_\mathbb{F}(r)$ if and only if it is a split extension $A = T \times Ann_s(A)$ with $\dim(Ann_s(A)) = r$ and T is a subalgebra of A such that $T \cong \mathbb{F}_0[[t]]$.

Before we prove Theorem 1.4 we mention the following. We call an infinite-dimensional associative \mathbb{F}-algebra A **just-infinite** if every non-trivial ideal I of A has finite codimension. For a recent paper on properties of just-infinite algebras see Farina & Pendergrass-Rice [FPR07]. The following is a direct corollary of Theorem 1.4.

Corollary 3.14

An inverse limit of an infinite path in $G_\mathbb{F}(r)$ is just-infinite if and only if it is isomorphic to $\mathbb{F}_0[[t]]$ and $r = 0$.

Remark 3.15

The just-infinite groups arising as inverse limits of infinite paths in coclass graphs of finite p-groups are uniserial p-adic space groups and these exist for every coclass.

We now continue with the proof of Theorem 1.4 following our work in [EM15b]. We break it up into several smaller theorems.

Theorem 3.16

Let A be an associative \mathbb{F}-algebra so that $A \cong T \times Ann_s(A)$ with $\dim(Ann_s(A)) < \infty$ and again $T \cong \mathbb{F}_0[[t]]$. Then A is an infinite-dimensional pro-nilpotent \mathbb{F}-algebra of coclass $\dim(Ann_s(A))$.

Proof:

Let be $r = \dim(Ann_s(A))$ and let $t \in A$ be an element that generates T. As T is infinite-dimensional it follows that A is also an infinite-dimensional \mathbb{F}-algebra. Thus it remains to show that (1) A has coclass r and (2) A is pro-nilpotent.

(1) Because $Ann_s(A)$ is finite-dimensional, there is $s \in \mathbb{N}$ such that the upper annihilator series of A is given by

$$\{0\} = Ann_0(A) < \ldots < Ann_s(A) = Ann_s(A).$$

Now consider $B = A/Ann_{s-1}(A) \cong T \times Ann_s(A)/Ann_{s-1}(A)$. As, by construction of the annihilators, T acts trivially by multiplication on $Ann_s(A)/Ann_{s-1}(A)$ one even has $B \cong T \oplus Ann_s(A)/Ann_{s-1}(A)$. Thus $B^2 = T^2$ and it follows that $A^2 \leq T^2 \times Ann_{s-1}(A)$. Iterating this we get $A^{s+1} \leq T^{s+1} \times Ann_0(A) = T^{s+1}$. Thus the fact that T is residually nilpotent implies that A is residually nilpotent as well. Furthermore, for every $i \geq s$ it follows that

$$cc(A/A^{i+1}) = \dim(A/A^{i+1}) - cl(A/A^{i+1})$$

$$= (\dim(T/T^{i+1}) + \dim(Ann_s(A))) - i$$

$$= i + r - i = r.$$
This precisely means that A has coclass r.

(2) We show that A is isomorphic to the inverse limit of the infinite path $A/A^{s+1} \to A/A^{s+2} \to \ldots$ in $G_F(r)$. For $i \geq s+1$ consider the natural epimorphisms $\varphi_i : A/A^{i+1} \to A/A^i$ and let $\pi_i : A \to A/A^i$ denote the natural projections. Now define

$$
\epsilon : A \to \varprojlim A/A^i, \quad a \mapsto (\pi_{s+1}(a), \pi_{s+2}(a), \ldots).
$$

This yields an injective F-algebra homomorphism. To show that ϵ is also surjective note that $A/A^{i+1} \cong T/T^{i+1} \times \text{Ann}_s(A)$ by (1). As this is compatible with the π_i it follows that $\varprojlim A/A^i = \varprojlim T/T^i \times \text{Ann}_s(A)$. Now $\varprojlim T/T^i \cong T$ as seen in Example 3.3. This concludes the proof.

The next theorem establishes the existence of a subalgebra $T \cong F_c[[t]]$ for an inverse limit of an infinite path in $G_F(r)$.

Theorem 3.17

Let be $A \in G_F(r)$. Then there is an element $t \in A$ such that $t^i \in A^i \setminus A^{i+1}$ for all $i \in \mathbb{N}$. Furthermore, for the subalgebra T generated by t we have $T \cong F_c[[t]]$.

Proof:

We proceed in three steps. These calculations are inspired by Theorem 1.3.3 in Kruse & Price [KP69].

(1) Because A has finite coclass, there is $n \in \mathbb{N}$ such that $\dim(A^i/A^{i+1}) = 1$ for all $i \geq n$. We show that there is $t \in A$, so that $t^n + A^{n+1}$ generates A^n/A^{n+1} as F-vector space. As $A^n = AA^{n-1}$ there is $t \in A$ and $w \in A^{n-1}$ such that $tw \in A^n \setminus A^{n+1}$. As A^n/A^{n+1} is 1-dimensional we can deduce that it is generated as an F-vector space by $tw + A^{n+1}$. Thus as a set $A^n = Ftw + A^{n+1}$.

Let $i \in \{1, \ldots, n\}$ be maximal with $A^n = Ft^iw' + A^{n+1}$. Here $w' = w'_1 \cdots w'_{n-i} \in A^{n-i}$. We show that $i = n$ and w' is empty. Assume that $i \neq n$ and so w' is not empty. Then

$$
A^{n+1} = A^n A
= (Ft^iw' + A^{n+1})A
= Ft^iw' A + A^{n+2}
= t(t^{-1}w'A) + A^{n+2}
\subseteq tA^n + A^{n+2}
= t(Ft^iw' + A^{n+1}) + A^{n+2}
\subseteq Ft^{i+1}w' + A^{n+2}
$$

The other inclusion is obvious, hence $Ft^{i+1}w' + A^{n+2} = A^{n+1}$. Note that $t^{i+1}w' \notin A^{n+2}$ as otherwise $A^{n+1} = A^{n+2}$ would follow. Let w'' be such that $w' = w''w_{n-i}$. Then $t^{i+1}w'' \in A^n \setminus A^{n+1}$. As A^n/A^{n+1} is 1-dimensional we conclude that $A^n = Ft^{i+1}w'' + A^{n+1}$, which is a contradiction to the choice of i. Thus $i = n$ and $t^n + A^{n+1}$ generates A^n/A^{n+1} as an F-vector space.
3.1. DESCRIPTION OF INFINITE PATHS

(2) In this second part we prove that \(t^i \in A^i \setminus A^{i+1} \) for all \(i \in \mathbb{N} \). By definition \(t^i \in A^i \) for all \(i \in \mathbb{N} \), so it remains to show that \(t^i \not\in A^{i+1} \). If \(i < n \) and \(t^i \in A^{i+1} \), then \(t^n = t^{n-i}t^i \in A^{n-i} A^{i+1} = A^{n+1} \) in contradiction to (1). We now proceed by induction to show that \(t^i \not\in A^{i+1} \) for the remaining \(i > n \). So let us suppose that \(t^i \not\in A^i \) for some \(i \in \mathbb{N} \). Then as a set we have \(A^i = F t^i + A^{i+1} \) and therefore \(A^{i+1} \subseteq F t^{i+1} + A^{i+2} \) follows by the same calculation used in Step (1) with \(a' \) now being the empty word. Again, the other inclusion is obvious and it follows that \(A^{i+1} = F t^{i+1} + A^{i+2} \). Thus \(t^{i+1} \in A^{i+1} \setminus A^{i+2} \) as otherwise \(A^{i+1} = A^{i+2} \) would follow. This finishes the induction step.

(3) Let \(T \) be the subalgebra of \(A \) generated by the element \(t \) constructed in the first step. The second step implies that \(\{ t^i \mid i \in \mathbb{N} \} \) is an \(F \)-basis for \(T \). In conclusion \(T \cong F[[t]] \).

Finally we prove that the direct limit of the upper annihilator series has the correct dimension.

Theorem 3.18

Let be \(A \in \mathcal{I}_F(r) \). *Then* \(\dim(Ann_*(A)) = r \).

Proof:

Let \(t \in A \) be as in Theorem 3.17 and again let \(T \) be the subalgebra generated by \(t \). Recall that the coclass of \(A \) is given by

\[
r = cc(A) = \sum_{i=1}^{\infty} (\dim(A^i/A^{i+1}) - 1).
\]

Now if \(r = 0 \), then \(\dim(A^i/A^{i+1}) = 1 \) for all \(i \in \mathbb{N} \) and thus \(A = T \) and \(\dim(Ann_*(A)) = 0 \) as desired. So let us now suppose that \(r > 0 \). We proceed in two steps.

(1) We show that \(Ann(A) \neq \{0\} \).

To this end we explicitly construct an element in \(Ann(A) \). Because \(r > 0 \) there exists \(n \in \mathbb{N} \) with \(\dim(A^n/A^{n+1}) \neq 1 \) and \(\dim(A^i/A^{i+1}) = 1 \) for all \(i > n \). In this case the set \(\{ t^i \mid i > n \} \) is a basis for \(A^{n+1} \). Furthermore, there is an element \(a + A^{n+1} \in A^n/A^{n+1} \) that is linearly independent of \(t^n + A^{n+1} \). Now consider the product \(ta \). We have \(ta \in A^{n+1} \), which hence can be written as a sum of \(t \)-powers as follows.

\[
ta = \sum_{i=n+1}^{\infty} \alpha_i t^i, \quad \alpha_i \in F
\]

and define

\[
\overline{a} = a - \sum_{i=n+1}^{\infty} \alpha_i t^{i-1}.
\]

Since \(a + A^{n+1} \) and \(t^n + A^{n+1} \) are linearly independent it follows that \(\overline{a} \in A^n \setminus A^{n+1} \) and in particular \(\overline{a} \neq 0 \). We show that \(\overline{a} \) is an element of \(Ann(A) \). By construction

\[
t\overline{a} = t \left(a - \sum_{i=n+1}^{\infty} \alpha_i t^{i-1} \right) = ta - \sum_{i=n+1}^{\infty} \alpha_i t^i = 0.
\]
Let $b \in A$ be an arbitrary element. Then $\overline{ab} \in A^{n+1}$. Again, write

$$\overline{ab} = \sum_{i=n+1}^{\infty} \beta_i t^i, \quad \beta_i \in \mathbb{F}.$$

It follows that

$$0 = (t \overline{a})b = t(\overline{ab}) = \sum_{i=n+1}^{\infty} \beta_i t^{i+1}$$

and thus $\beta_i = 0$ for all $i > n$. This means that $\overline{ab} = 0$ for all $b \in A$, in particular $\overline{at} = 0$. Using this fact one can deduce $\overline{ba} = 0$ for all $b \in A$ by a similar calculation. Hence we constructed an element $0 \neq \overline{a} \in \text{Ann}(A)$.

(2) We iteratively use (1) to show that $\dim(\text{Ann}_*(A)) = r$.

Because $cc(A) = r$ it follows that $\dim_{\mathbb{F}}(A/T) = r$. Obviously $\text{Ann}(T) = \{0\}$, hence $\text{Ann}(A) \cap T = \{0\}$ and this implies $\dim(\text{Ann}(A)) \leq r$. Now consider $B = A/\text{Ann}(A)$ and $S = (T + \text{Ann}(A))/\text{Ann}(A) \leq B$. In this case $S \cong T$ and $cc(B) = \dim_{\mathbb{F}}(B/S) = r - \dim(\text{Ann}(A))$. If $cc(B) = 0$, then $B = S$, $\text{Ann}_*(A) = \text{Ann}(A)$ has dimension r and we are finished. Otherwise we iterate this process with B and S instead of A and T. This terminates after finitely many steps and gives the desired result.

We can now combine the previous theorems we proved to give a proof of our structure description for the inverse limits of infinite paths in $\mathcal{G}_F(r)$, i.e. Theorem 1.4.

Proof (of Theorem 1.4):

By Corollary 3.10 A is isomorphic to the inverse limit of an infinite path in $\mathcal{G}_F(r)$ if and only if A is isomorphic to an algebra in $\mathcal{I}_F(r)$.

"⇒": Suppose that A is isomorphic to an algebra in $\mathcal{I}_F(r)$. Then by Theorem 3.18 we have $\dim(\text{Ann}_*(A)) = r$. In the proof of this theorem we also constructed a subalgebra T isomorphic to $\mathbb{F}_0[[t]]$ such that A is a split extension $T \ltimes \text{Ann}_*(A)$.

"⇐": Suppose that $A \cong T \ltimes \text{Ann}_*(A)$ with $T \cong \mathbb{F}_0[[t]]$ and $\dim(\text{Ann}_*(A)) = r < \infty$. Then Theorem 3.16 implies that A is isomorphic to an algebra in $\mathcal{I}_F(r)$.

Note that the proof of Theorem 3.17 also implies the following corollary. Intuitively it states that all the complexity of a pro-nilpotent \mathbb{F}-algebra of coclass r lies in the first quotients of its power series.

Corollary 3.19

*Let A be a pro-nilpotent \mathbb{F}-algebra of coclass r. If $\dim(A^i/A^{i+1}) = 1$ for some $i \in \mathbb{N}$, then $\dim(A^j/A^{j+1}) = 1$ for all $j \geq i$. In particular we have that $\dim(A^j/A^{j+1}) = 1$ for all $j \geq r + 1$.***
3.2 Construction of infinite paths

This section considers the explicit construction of infinite paths in $G_F(r)$, i.e. the construction of pro-nilpotent F-algebras of coclass r. This is done using so called annihilator extensions and cohomological methods.

We begin by recalling basics of extension theory for algebras. Parts of this can be found e.g. in the book on associative algebras by Pierce [Pie82]. Note that we restrict to the case of trivial (bi)modules, as this is sufficient for our aims. If we write A-module, we mean A-bimodule. In this section, unless stated otherwise, let F denote an arbitrary field, let A be an associative F-algebra and let I be a finite-dimensional F-vector space considered as trivial A-module via $I^2 = AI = IA = \{0\}$.

Definition 3.20

An extension of A by I is an associative F-algebra satisfying a short exact sequence

$$0 \to I \to E \to A \to 0$$

in the category of algebras. We usually identify I with its image in E.

Definition 3.21

We say that an extension E is an annihilator extension if $I = \text{Ann}(E)$.

Remark 3.22

Note that from our structure description of the inverse limits of infinite paths in $G_F(r)$, i.e. Theorem 1.4, we see that these infinite-dimensional pro-nilpotent algebras of coclass r are iterated annihilator extensions of $T \cong F_0[[t]]$.

Next, we introduce notions to describe the relationship of two extensions.

Definition 3.23

Let E_1 and E_2 be extensions of A by I. We call these extensions

- **isomorphic** if there exists an isomorphism $\iota : E_1 \to E_2$,
- **strongly isomorphic** if there exists an isomorphism $\iota : E_1 \to E_2$ with $\iota(I) = I$ and
- **equivalent** if there exists a strong isomorphism $\iota : E_1 \to E_2$ that induces the identity on I and on $E_1/I \cong A \cong E_2/I$.

The following lemma shows that for annihilator extensions isomorphism and strong isomorphism coincide.

Lemma 3.24

Let E_1 and E_2 be extensions of A by I, such that $\text{Ann}(E_1) = I$ and $\text{Ann}(E_2) = I$. Then strong isomorphism is equivalent to isomorphism.

Proof:

By definition every strong isomorphism is an isomorphism. For the converse let $\iota : E_1 \to E_2$ be an isomorphism and let $a \in \text{Ann}(E_1)$. Then for all $b \in E_2$ we have $\iota(a)b = \iota(au^{-1}(b)) = \iota(0) = 0$ and similarly $bu(a) = 0$. A dual computation shows the reverse inclusion. \[\square\]

We look at the following to motivate the definition of cohomology afterwards.
3.2. CONSTRUCTION OF INFINITE PATHS

Definition 3.25
Let E be an extension of A by I and consider the projection $\pi : E \to A$ with kernel I. Let τ be an \mathbb{F}-linear map with $\pi \circ \tau = \text{id}_A$. In this case we call τ a section. Note that we can write each element of E uniquely as $\tau(a) + b$ with $a \in A$ and $b \in I$.

Definition 3.26
We call $\rho : A \times A \to I$, $(a_1, a_2) \mapsto \tau(a_1)\tau(a_2) - \tau(a_1a_2)$ the 2-cocycle defined by the section τ.

Definition 3.27
We call a k-linear map $\rho : \bigoplus_{j=1}^k A \to I$ normalized if its value is 0 in case one of the input parameters is 0.

Lemma 3.28
The 2-cocycle ρ associated to a section τ is bilinear and normalized.

Proof:

\[
\rho(\alpha a_1 + a_2, \beta b_1 + b_2) = \tau(\alpha a_1 + a_2)\tau(\beta b_1 + b_2) - \tau((\alpha a_1 + a_2)(\beta b_1 + b_2)) \\
= (\alpha \tau(a_1) + \tau(a_2))(\beta \tau(b_1) + \tau(b_2)) \\
- \alpha \beta \tau(a_1b_1) - \alpha \tau(a_1b_2) - \beta \tau(a_2b_1) - \tau(a_2b_2) \\
= \alpha \beta \tau(a_1)\tau(b_1) + \alpha \tau(a_1)\tau(b_2) + \beta \tau(a_2)\tau(b_1) + \tau(a_2)\tau(b_2) \\
- \alpha \beta \tau(a_1b_1) - \alpha \tau(a_1b_2) - \beta \tau(a_2b_1) - \tau(a_2b_2) \\
= \alpha \beta \rho(a_1, b_1) + \alpha \rho(a_1, b_2) + \beta \rho(a_2, b_1) + \rho(a_2, b_2)
\]

for all $\alpha, \beta \in \mathbb{F}$ and a_1, a_2, b_1, b_2 in A. Hence ρ is bilinear. Clearly it is normalized. \qed

Remark 3.29
Using the above definitions one can write the multiplication in E as

\[
(\tau(a_1) + b_1)(\tau(a_2) + b_2) = \tau(a_1)\tau(a_2) = \tau(a_1a_2) + \rho(a_1, a_2).
\]

Evaluating the associativity of E yields

\[
((\tau(a_1) + b_1)(\tau(a_2) + b_2))(\tau(a_3) + b_3) = (\tau(a_1a_2) + \rho(a_1, a_2))(\tau(a_3) + b_3) \\
= \tau(a_1a_2a_3) + \rho(a_1a_2, a_3), \text{ and}
\]

\[
(\tau(a_1) + b_1)((\tau(a_2) + b_2)(\tau(a_3) + b_3)) = (\tau(a_1) + b_1)(\tau(a_2a_3) + \rho(a_2, a_3)) \\
= \tau(a_1a_2a_3) + \rho(a_1, a_2a_3)
\]

for all $a_1, a_2, a_3 \in A$. Thus we have the relation $\rho(a, bc) = \rho(ab, c)$ for all $a, b, c \in A$.

This leads us to the following notions from cohomology theory. We restrict our exposition to the low-dimensional cases. The definition of higher cohomology spaces can be found in Chapter 11 of Pierce [Pie82].
Definition 3.30
We define the following \mathbb{F}-vector spaces.

\[C^k(A, I) = \{ \rho : \bigoplus_{j=1}^k A \to I \mid \rho \text{ k-linear and normalized} \} \]

\[Z^2(A, I) = \{ \rho \in C^2(A, I) \mid \rho(ab, c) = \rho(a, bc) \text{ for all } a, b, c \in A \} \]

\[B^2(A, I) = \{ \rho \in C^2(A, I) \mid \exists \phi \in C^1(A, I) \text{ such that } \rho(a, b) = \phi(ab) \text{ for all } a, b \in A \} \]

\[H^2(A, I) = Z^2(A, I)/B^2(A, I) \]

We call the elements of these spaces k-cochains, 2-cocycles, 2-coboundaries and 2-cohomology classes, respectively.

Remark 3.31
We have seen that if τ is a section for an extension of A by I and ρ is the 2-cocycle defined by τ, then $\rho \in Z^2(A, I)$. Conversely every $\rho \in Z^2(A, I)$ arises as a 2-cocycle defined by a section. This implies that $Z^2(A, I)$ corresponds to all possible extensions of A by I.

By Remark 3.31 the space $Z^2(A, I)$ fully describes all extensions of A by I. It remains to solve the isomorphism problem for those extensions. The following Theorem 3.33 solves the problems of classifying extensions up to equivalence and up to strong isomorphism. As we have shown in Lemma 3.24 the latter solves the isomorphism problem in the case of annihilator extensions. For the strong isomorphism case we need the following preliminary lemma.

Lemma 3.32
We can define an action of $\text{Aut}(A) \times \text{Aut}(I)$ on $Z^2(A, I)$ as follows. Let $(\alpha, \beta) \in \text{Aut}(A) \times \text{Aut}(I)$, $\rho \in Z^2(A, I)$ and $a_1, a_2 \in A$. Then (α, β) acts on ρ by

\[\rho^{(\alpha, \beta)}(a_1, a_2) = \beta^{-1}(\rho(\alpha(a_1), \alpha(a_2))). \]

Furthermore, this action leaves $B^2(A, I)$ setwise invariant and hence induces an action on $H^2(A, I)$.

Proof:
The proof that this defines an action of $\text{Aut}(A) \times \text{Aut}(I)$ on $Z^2(A, I)$ is a straightforward calculation. To see that it leaves $B^2(A, I)$ setwise invariant let $\rho \in B^2(A, I)$, i.e. there exists $\phi \in C^1(A, I)$ with $\rho(a_1, a_2) = \phi(a_1 a_2)$ for all $a_1, a_2 \in A$. Let $(\alpha, \beta) \in \text{Aut}(A) \times \text{Aut}(I)$. Then $\rho^{(\alpha, \beta)}(a_1, a_2) = \eta(a_1 a_2)$ for all $a_1, a_2 \in A$, where $\eta = (\beta^{-1} \circ \phi \circ \alpha) \in C^1(A, I)$.

Theorem 3.33
Let A be an extension of A by I.

1. There is a one-to-one correspondence between the equivalence classes of extensions of A by I and the elements of $H^2(A, I)$.

2. There is a one-to-one correspondence between the strong isomorphism classes of extensions of A by I and the orbits of $\text{Aut}(A) \times \text{Aut}(I)$ on the elements of $H^2(A, I)$, where the action is as given in Lemma 3.32.
Proof:
Let \(E_1 \) and \(E_2 \) be extensions of \(A \) by \(I \) with sections \(\tau_1 \) and \(\tau_2 \). Let \(\rho_1 \) and \(\rho_2 \) denote the 2-cocycles defined by \(\tau_1 \) and \(\tau_2 \).

(1) Suppose that \(E_1 \) and \(E_2 \) are equivalent extensions. Let \(\iota : E_1 \to E_2 \) be an isomorphism that induces the identity on \(I \) and on \(E_1/I \cong A \cong E_2/I \). This implies that \(\iota \) has the form \(\tau_1(a) + b \mapsto \tau_2(a) + b + \phi(a) \) for \(a \in A, b \in I \) and some \(\phi \in C^1(A,I) \). We have the following for all \(a, b \in A \).

\[
\rho_2(a,b) - \rho_1(a,b) = \rho_2(a,b) - \iota(\rho_1(a,b)) \\
= \tau_2(a)\tau_2(b) - \tau_2(ab) - \iota(\tau_1(a)\tau_1(b) - \tau_1(ab)) \\
= \tau_2(a)\tau_2(b) - \tau_2(ab) - \iota(\tau_1(a))\iota(\tau_1(b)) + \iota(\tau_1(ab)) \\
= \tau_2(a)\tau_2(b) - \tau_2(ab) - (\tau_2(a) + \phi(a))(\tau_2(b) + \phi(b)) + (\tau_2(ab) + \phi(ab)) \\
= \tau_2(a)\tau_2(b) - \tau_2(ab) - \tau_2(a)\tau_2(b) + \tau_2(ab) + \phi(ab) \\
= \phi(ab)
\]

Thus \(\rho_2 - \rho_1 \in B^2(A,I) \).

Conversely, suppose that \(\rho_2 - \rho_1 \in B^2(A,I) \). Then there exists \(\phi \in C^1(A,I) \) with \(\rho_2(a,b) - \rho_1(a,b) = \phi(ab) \) for all \(a, b \in A \). Define \(\iota : E_1 \to E_2 : \tau_1(a) + b \mapsto \tau_2(a) + b + \phi(a) \).

Note that \(\iota \) is linear because \(\tau \) and \(\phi \) are linear. It remains to show that \(\iota \) also respects the multiplication. We have

\[
\iota((\tau_1(a_1) + b_1)(\tau_1(a_2) + b_2)) = \iota(\tau_1(a_1a_2) + \rho_1(a_1,a_2)) \\
= \tau_2(a_1a_2) + \rho_2(a_1,a_2) + \phi(a_1a_2) \\
= \tau_2(a_1a_2) + \rho_2(a_1,a_2), \text{ and}
\]

\[
\iota(\tau_1(a_1) + b_1)\iota(\tau_1(a_2) + b_2) = (\tau_2(a_1) + b_1 + \phi(a_1))(\tau_2(a_2) + b_2 + \phi(a_2)) \\
= \tau_2(a_1)\tau_2(a_2) \\
= \tau_2(a_1a_2) + \rho_2(a_1,a_2)
\]

for all \(a_1, a_2 \in A \) and \(b_1, b_2 \in I \). Thus \(\iota \) is multiplicative. Finally it is easy to verify that \(\iota \) is bijective and hence an isomorphism.

(2) Let \(\iota : E_1 \to E_2 \) be a strong isomorphism. Define \(\alpha^{-1} = \iota|_{E_2/I} \in \text{Aut}(A) \) and \(\beta^{-1} = \iota|_{I} \in \text{Aut}(I) \). Furthermore, define \(\phi \in C^1(A,I) \), \(a \mapsto \iota(\tau_2(\alpha(a))) - \tau_1(a) \) and let \(\gamma \in B^2(A,I) \) be defined by \(\gamma(a_1, a_2) = \phi(a_1a_2) \) for all \(a_1, a_2 \in A \). We calculate that

\[
\iota(\tau_2(\alpha(a_1)))\tau_2(\alpha(a_2))) = \iota(\tau_2(\alpha(a_1)))(\tau_2(\alpha(a_2))) \\
= (\tau_1(a_1) + \phi(a_1))(\tau_1(a_2) + \phi(a_2)) \\
= \tau_1(a_1a_2) + \rho_1(a_1,a_2), \text{ and}
\]

\[
\iota(\tau_2(\alpha(a_1)))\tau_2(\alpha(a_2))) = \iota(\tau_2(\alpha(a_1)\alpha(a_2)) + \rho_2(\alpha(a_1), \alpha(a_2))) \\
= \iota(\tau_2(\alpha(a_1)\alpha(a_2))) + \iota(\rho_2(\alpha(a_1), \alpha(a_2))) \\
= \tau_1(a_1a_2) + \phi(a_1a_2) + \beta^{-1}(\rho_2(\alpha(a_1), \alpha(a_2))) \\
= \tau_1(a_1a_2) + \gamma(a_1,a_2) + \beta^{-1}(\rho_2(\alpha(a_1), \alpha(a_2)))
\]
for all $a_1, a_2 \in A$. Comparing the two yields $\rho_1 = \rho_2^{(\alpha, \beta)} + \gamma$ as desired.

Now suppose there is $(\alpha, \beta) \in \text{Aut}(A) \times \text{Aut}(I)$ with $\rho_1 = \rho_2^{(\alpha, \beta)} + \gamma$ for a 2-coboundary γ. Let $\phi \in C^1(A, I)$ be such that $\gamma(a_1, a_2) = \phi(a_1a_2)$ for all $a_1, a_2 \in A$. Define $\iota : E_2 \to E_1$, $\tau_2 \gamma(a)+b \to \tau_1(a)+\beta^{-1}(b)+\phi(a)$. Then a straightforward calculation shows that ι is a strong isomorphism.

Theorem 3.33 shows that our solution of the strong isomorphism problem of annihilator extensions does require the automorphism group of $\text{ker} \, \text{Aut} \, F$. Theorem 3.34 describes how the automorphism group of an extension E can be described in terms of the automorphism groups $\text{Aut}(A)$ and $\text{Aut}(I)$.

Theorem 3.34

Let E be an extensions of A by I via a section τ and let ρ be the 2-cocycle defined by τ. Consider the map

$$\Psi : \text{Aut}(E) \to \text{Aut}(A) \times \text{Aut}(I), \; \delta \mapsto (\delta|_{E/I}, \delta|_{I}).$$

Then kernel and image of Ψ can be described as follows.

1. $\text{im}(\Psi) = \text{Stab}_{\text{Aut}(A) \times \text{Aut}(I)}(\rho + B^2(A, I))$
2. $\text{ker}(\Psi) \cong Z^1(A, I) = \{ \phi \in C^1(A, I) \mid \phi(ab) = 0 \text{ for all } a, b \in A \}$.

Proof:

1. Suppose that $(\alpha, \beta) \in \text{Stab}_{\text{Aut}(A) \times \text{Aut}(I)}(\rho + B^2(A, I))$. In other words we have $\rho(a_1, a_2) = \beta^{-1}(\rho(\alpha(a_1), \alpha(a_2)) + \gamma(a_1, a_2)$ for $\gamma \in B^2(A, I)$ and all $a_1, a_2 \in A$. As usual let $\phi \in C^1(A, I)$ be such that $\phi(a_1, a_2) = \gamma(a_1, a_2)$ for all $a_1, a_2 \in A$. We define $\delta : E \to E$, $\tau(a)+b \mapsto \tau(a)+\beta(b-\phi(a))$. It is readily verified that δ is additive and a bijection. We calculate

$$\delta(\tau(a_1)+b_1)(\tau(a_2)+b_2) = \delta(\tau(a_1a_2)+\rho(a_1, a_2))$$
$$= \tau(\alpha(a_1a_2)) + \beta(\rho(a_1, a_2) - \phi(a_1a_2))$$
$$= \tau(\alpha(a_1a_2)) + \beta(a_1, a_2)$$
$$= (\tau(\alpha(a_1)) + \beta(b_1-\phi(a_1)))(\tau(\alpha(a_2)) + \beta(b_2-\phi(a_2)))$$
$$= \delta(\tau(a_1)+b_1)\delta(\tau(a_2)+b_2)$$

and thus δ is also multiplicative, i.e. $\delta \in \text{Aut}(E)$. Furthermore, $\Psi(\delta) = (\alpha, \beta)$.

Conversely, suppose that $\delta \in \text{Aut}(E)$ is given. Then $\Psi(\delta) = (\alpha, \beta)$ for some $\alpha \in \text{Aut}(A)$ and $\beta \in \text{Aut}(I)$. Hence δ has the form $\tau(a)+b \mapsto \tau(\alpha(a)) + \beta(b) + \phi(a)$ for some
3.2. CONSTRUCTION OF INFINITE PATHS

\(\phi \in C^1(A, I) \). Now
\[
\delta((\tau(a_1) + b_1)(\tau(a_2) + b_2)) = \delta(\tau(a_1a_2) + \rho(a_1, a_2))
\]
\[= \tau(a_1a_2) + \beta(\rho(a_1, a_2)) + \phi(a_1a_2), \text{ and}
\]
\[
\delta(\tau(a_1) + b_1)\delta(\tau(a_2) + b_2) = (\tau(\alpha(a_1)) + \beta(b_1) + \phi(a_1))\tau(\alpha(a_2)) + \beta(b_2) + \phi(a_2))
\]
\[= \tau(\alpha(a_1a_2)) + \rho(\alpha(a_1), \alpha(a_2))
\]
for all \(a_1, a_2 \in A \) and \(b_1, b_2 \in I \). Comparing the two yields \(\beta(\rho(a_1, a_2)) + \phi(a_1a_2) = \rho(\alpha(a_1), \alpha(a_2)) \). Applying \(\beta^{-1} \) on both sides yields
\[
\rho(a_1, a_2) + \beta^{-1}(\phi(a_1a_2)) = \beta^{-1}(\rho(\alpha(a_1), \alpha(a_2))).
\]

If one defines \(\eta(a_1, a_2) = \beta^{-1}(\phi(a_1a_2)) \) then \(\eta \in B^2(A, I) \) and hence the above equation means that \(\rho \equiv \rho^{(\alpha, \beta)} \mod B^2(A, I) \). This implies that \(\Psi(\delta) \in Stab_{\text{Aut}(A) \times \text{Aut}(I)}(\rho + B^2(A, I)) \) as desired.

(2) Let \(\delta \in \ker(\Psi) \). Then \(\delta : E \to E, \, \tau(a) + b \mapsto \tau(a) + b + \phi_\delta(a) \) for some \(\phi_\delta \in C^1(A, I) \).

We calculate
\[
\delta((\tau(a_1) + b_1)(\tau(a_2) + b_2)) = \delta(\tau(a_1a_2) + \rho(a_1, a_2))
\]
\[= \tau(a_1a_2) + \rho(a_1, a_2) + \phi_\delta(a_1a_2), \text{ and}
\]
\[
\delta(\tau(a_1) + b_1)\delta(\tau(a_2) + b_2) = (\tau(a_1) + b_1 + \phi_\delta(a_1))\tau(a_2) + b_2 + \phi_\delta(a_2))
\]
\[= \tau(a_1a_2) + \rho(a_1, a_2).
\]

As \(\delta \) is an automorphism, we can deduce that \(\phi_\delta(a_1a_2) = 0 \) for all \(a_1, a_2 \in A \), i.e. \(\phi_\delta \in Z^1(A, I) \).

Conversely, if \(\phi \in Z^1(A, I) \) is given, then \(\tau(a) + b \mapsto \tau(a) + b + \phi(a) \) is an automorphism in \(\ker(\Psi) \). The map \(\delta \mapsto \phi_\delta \) is an isomorphism between \(\ker(\Psi) \) and \(Z^1(A, I) \).

\(\square \)

We finish this section by giving a theorems that is of interest for the application of these methods to calculate annihilator extensions. In the next chapter we use these methods to prove results on the number of infinite paths for small coclasses. The result considers the dimension of \(H^2(A, I) \), which naturally plays an important role.

Theorem 3.35

Let \(A \) be finitely presented as (pro-nilpotent) algebra. Let \(m \) be the number of relations in the presentation and let \(I \) be finite-dimensional of dimension \(d \), say. Then \(\dim(H^2(A, I)) \leq md \). In particular \(H^2(A, I) \) is also finite-dimensional.

Proof:

Let \(A = \langle a_1, \ldots, a_n \mid r_1, \ldots, r_m \rangle \) and let \(b_1, \ldots, b_d \) denote a basis of \(I \). Then every extension of \(A \) by \(I \) has a presentation on the generators \(\{a_1, \ldots, a_n, b_1, \ldots, b_d\} \) and relations of the
following form

\[a_i b_j = 0 \quad \text{for} \quad 1 \leq i \leq n, 1 \leq j \leq d \]
\[b_j a_i = 0 \quad \text{for} \quad 1 \leq i \leq n, 1 \leq j \leq d \]
\[b_i b_j = 0 \quad \text{for} \quad 1 \leq i, j \leq d \]

\[r_i = \sum_{j=1}^{d} \alpha_{i,j} b_j \quad \text{for} \quad 1 \leq i \leq m \]

with some \(\alpha_{i,j} \in \mathbb{F} \). Hence we obtain a map

\[\gamma : Z^2(A, I) \to \mathbb{F}^{d \times m}. \]

Note that \(\gamma \) is \(\mathbb{F} \)-linear and that its kernel is contained in \(B^2(A, I) \). This implies that \(H^2(A, I) \cong Z^2(A, I)/B^2(A, I) \cong \gamma(Z^2(A, I))/\gamma(B^2(A, I)) \) is isomorphic to a subquotient of \(\mathbb{F}^{d \times m} \) and thus finite-dimensional.

Remark 3.36

Of course \(\gamma(Z^2(A, I)) \) and \(\gamma(B^2(A, I)) \) depend on the chosen presentation, but the isomorphism type of the quotient does not. We will usually calculate \(H^2(A, I) \) using the map \(\gamma \).

3.3 Number of infinite paths

In this chapter we are concerned with the number of (equivalence classes) of infinite paths in \(G_{\mathbb{F}}(r) \), which we denote by \(n_{\mathbb{F}}(r) = |I_{\mathbb{F}}(r)|. \) In particular we prove that the analogue of Theorem D from the \(p \)-group case (see 1) holds, i.e. the number of equivalence classes of infinite paths is finite, if and only if the field \(\mathbb{F} \) is finite or \(r \leq 1 \). Furthermore, we give an explicit number in the case \(r \leq 2 \). Note that these results are also contained in our paper [EM15b], but in contrast to the given reference here we use the cohomological methods developed in Section 3.2 to obtain and verify them.

We begin by proving the following lemma for pro-nilpotent \(\mathbb{F} \)-algebras of coclass \(r \) with \(r + 1 \) generators. Recall that this is the maximal possible number of generators for such an algebra.

Lemma 3.37

Let \(\mathbb{F} \) be an arbitrary field and let \(r \in \mathbb{N}_0 \). Let \(A \in \mathcal{I}_\mathbb{F}(r) \) with \(\dim(A/A^2) = r + 1 \), then \(A = T \oplus \text{Ann}(A) \), where \(T \cong \mathbb{F}_o[[t]] \).

Proof:

In this situation \(A \) is an annihilator extension of \(T \cong \mathbb{F}_o[[t]] \) by \(I \cong \mathbb{F}^r \). As pro-nilpotent algebra \(T \) has the presentation \(\langle t \rangle \) with one generator and no relations. Therefore Theorem 3.35 implies that \(H^2(A, I) = \{0\} \) and the result follows.

Lemma 3.37 has the following immediate corollary.

Corollary 3.38

Let \(\mathbb{F} \) be an arbitrary field, \(r \in \mathbb{N}_0 \) and \(A \in \mathcal{I}_\mathbb{F}(r) \).
3.3. NUMBER OF INFINITE PATHS

- If $r = 0$, then $A \cong \mathbb{F}_0[[t]]$.
- If $r = 1$, then $A \cong \mathbb{F}_0[[t]] \oplus \text{Ann}(A)$ with $\text{Ann}(A)$ of dimension 1.

The next theorem gives an upper bound for $n_{\mathbb{F}}(r)$ in case the field \mathbb{F} is finite. Note that this bound is not sharp.

Theorem 3.39

Let \mathbb{F} be a finite field and let $r \in \mathbb{N}_0$. Then $n_{\mathbb{F}}(r) \leq |\mathbb{F}|^{r^3+2r^2}$. In particular $n_{\mathbb{F}}(r)$ is finite.

Proof:

Let be $A \in \mathcal{I}_r(\mathbb{F})$. By our structure description Theorem 1.4 we know that $A = T \ltimes \text{Ann}_s(A)$ with $\dim(\text{Ann}_s(A)) = r$. Hence A is completely described by the structure constants for $\text{Ann}_s(A)$ and the elements tb_i, bt_i for $i \in \{1, \ldots, r\}$. Note that tb_i and bt_i are elements of $\text{Ann}_s(A)$. It only remains to count the possibilities. There are at most $|\mathbb{F}|^{r^3}$ structure constant tables for $\text{Ann}_s(A)$ and at most $|\mathbb{F}|^{2r^2}$ possibilities to choose the elements tb_i and bt_i, thus $n_{\mathbb{F}}(r) \leq |\mathbb{F}|^{r^3+2r^2}$. \qed

In the remaining part of this section we consider the case of coclass 2 in more detail.

(1) The first case are annihilator extensions of $T \cong \mathbb{F}_0[[t]]$ by a 2-dimensional \mathbb{F}-vector space.

By Lemma 3.37 there is exactly one isomorphism type of such an extension, namely the direct sum.

(2) The second case are annihilator extensions of \mathfrak{A} by \mathfrak{J}, where $\mathfrak{A} = \langle t, a \mid at = ta = a^2 = 0 \rangle$

is a representative of the unique isomorphism type of pro-nilpotent \mathbb{F}-algebras of coclass 1 and \mathfrak{J} is a 1-dimensional \mathbb{F}-vector space considered as trivial \mathfrak{A}-module.

To this end we first construct all extensions of \mathfrak{A} by \mathfrak{J} up to strong isomorphism. Let b be a basis element for \mathfrak{J} and let E be an extension of \mathfrak{A} by \mathfrak{J} defined by a 2-cocycle $\rho \in Z^2(\mathfrak{A}, \mathfrak{J})$. Then E has a presentation on the generators t, a, b with relations

$$at = \rho(a, t) = \alpha_1 b$$
$$ta = \rho(t, a) = \alpha_2 b$$
$$a^2 = \rho(a, a) = \alpha_3 b$$
$$bt = tb = ab = ba = b^2 = 0$$

and $\alpha_1, \alpha_2, \alpha_3 \in \mathbb{F}$. Thus we obtain an \mathbb{F}-linear $\gamma : Z^2(\mathfrak{A}, \mathfrak{J}) \to \mathbb{F}^3, \rho \mapsto (\alpha_1, \alpha_2, \alpha_3)^T$ as in Theorem 3.35. The map γ has the following properties.

Lemma 3.40

The map γ is surjective and $\gamma(B^2(\mathfrak{A}, \mathfrak{J})) = \{(0, 0, 0)^T\}$. Hence $H^2(\mathfrak{A}, \mathfrak{J}) \cong Z^2(\mathfrak{A}, \mathfrak{J}) \cong \mathbb{F}^3$.

Proof:

The image of γ contains those elements of \mathbb{F}^3, such that the \mathbb{F}-algebra defined by these elements is associative. Evaluating all relations yields that all elements of \mathbb{F}^3 give associative \mathbb{F}-algebras, hence γ is surjective. For the second part let $\phi \in C^1(\mathfrak{A}, \mathfrak{J})$ and let $\rho \in B^2(\mathfrak{A}, \mathfrak{J})$ defined by $\rho(a_1, a_2) = \phi(a_1a_2)$ for all $a_1, a_2 \in \mathfrak{A}$. Then $\rho(a, t) = \phi(at) = \phi(0) = 0$ and similarly $\rho(t, a) = \rho(a, a) = 0$. Therefore $\gamma(\rho) = (0, 0, 0)^T$ and hence $\gamma(B^2(\mathfrak{A}, \mathfrak{J})) = \{(0, 0, 0)^T\}$.

32
as claimed.

To classify the extensions of \mathfrak{A} by \mathfrak{I} up to strong isomorphism, by Theorem 3.33 it remains to determine the action of $\text{Aut}(\mathfrak{A}) \times \text{Aut}(\mathfrak{I})$ on $H^2(\mathfrak{A}, \mathfrak{I})$. Clearly $\text{Aut}(\mathfrak{I}) \cong F^*$. The automorphism group of \mathfrak{A} is determined in the next lemma.

Lemma 3.41

Let $\varphi \in \text{Aut}(\mathfrak{A})$. Then $\varphi(a) = \alpha a$ for some $\alpha \neq 0$ and $\varphi(t) = \sum_{i=1}^{\infty} \beta_i t^i + \delta a$ for some $\beta_i, \delta \in F$ and $\beta_1 \neq 0$. Note that all possible values of α, β_i and δ yield elements in $\text{Aut}(\mathfrak{A})$.

Proof:

Let T be the subalgebra of \mathfrak{A} generated by t. Write $\varphi(a) = s + \alpha a$ with $s \in T$ and $\alpha \in F$ and. Now $0 = \varphi(0) = \varphi(a^2) = \varphi(a)^2 = (s + \alpha a)(s + \alpha a) = s^2 + \alpha sa + \alpha a + \alpha^2 a^2 = s^2$ implies $s = 0$, hence $\varphi(a) = \alpha a$. Under this assumption φ is a homomorphism. Surjectivity of φ is equivalent to $\alpha \neq 0$ and $\beta_1 \neq 0$.

This now allows us to determine the actions of $\text{Aut}(\mathfrak{A})$ and $\text{Aut}(\mathfrak{I})$ on $H^2(\mathfrak{A}, \mathfrak{I}) \cong F^3$.

Lemma 3.42

$\text{Aut}(A)$ acts on $H^2(\mathfrak{A}, \mathfrak{I}) \cong F^3$ as

$$\left\langle \begin{pmatrix} \alpha & 0 & 0 \\ 0 & \alpha & 0 \\ 0 & 0 & \alpha^2 \end{pmatrix}, \begin{pmatrix} \beta_1 & 0 & 0 \\ 0 & \beta_1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 & \delta \\ 0 & 1 & \delta \\ 0 & 0 & 1 \end{pmatrix} \mid \alpha, \beta_1 \in F^*, \delta \in F \right\rangle.$$

and $\text{Aut}(I)$ acts on $H^2(\mathfrak{A}, \mathfrak{I}) \cong F^3$ as

$$\left\langle \begin{pmatrix} \epsilon & 0 & 0 \\ 0 & \epsilon & 0 \\ 0 & 0 & \epsilon \end{pmatrix} \mid \epsilon \in F^* \right\rangle.$$

Proof:

This follows directly by evaluating the action of the automorphisms

$$a \mapsto \alpha a \quad a \mapsto a \quad a \mapsto a$$

$$t \mapsto t \quad t \mapsto \sum_{i=1}^{\infty} \beta_i t^i \quad t \mapsto t + \delta a$$

in $\text{Aut}(\mathfrak{A})$ and of $b \mapsto eb$ in $\text{Aut}(\mathfrak{I})$.

The following lemma describes the orbits of $H^2(\mathfrak{A}, \mathfrak{I})$ under this action and hence gives a classification of extensions of \mathfrak{A} by \mathfrak{I} up to strong isomorphism.

Lemma 3.43

There are $|F| + 4$ orbits on $H^2(\mathfrak{A}, \mathfrak{I})$ under the action of $\text{Aut}(\mathfrak{A}) \times \text{Aut}(\mathfrak{I})$. A complete set of orbit representatives is given by $\{(0, 0, 0)^T, (0, 0, 1)^T, (0, 1, 1)^T, (0, 1, 0)^T, (1, x, 0)^T \mid x \in F\}$.

33
Proof:
We begin with the easy cases.

(i) The orbit of $(0,0,0)^T$ only contains this single element.

(ii) The orbit of $(0,0,1)^T$ contains all elements $(0,0,f)^T$ with $f \in \mathbb{F}^*$.

(iii) The orbit of $(0,1,0)^T$ contains all elements $(0,f,0)^T$ with $f \in \mathbb{F}^*$.

(iv) The orbit of $(1,x,0)^T$ contains all elements $(f,fx,0)^T$ with $f \in \mathbb{F}^*$ and $x \in \mathbb{F}$.

The above orbits are obviously disjoint. It remains to show that the orbit of $(0,1,1)^T$ is disjoint with all the already calculated orbits and that it covers all remaining elements of \mathbb{F}^3.

We only show that the union of the orbits contains all elements of \mathbb{F}^3, because the disjointedness can be easily verified. We calculate the following, where as in Lemma 3.42 we require that $\alpha, \beta, \epsilon \in \mathbb{F}^*$ and $\delta \in \mathbb{F}$.

(a) \[
\begin{pmatrix}
\epsilon & 0 & 0 \\
0 & \epsilon & 0 \\
0 & 0 & \epsilon
\end{pmatrix}
\begin{pmatrix}
0 \\
1 \\
1
\end{pmatrix}
= \begin{pmatrix}
0 \\
\epsilon \\
\epsilon
\end{pmatrix}
\]

(b) \[
\begin{pmatrix}
\beta_1 & 0 & 0 \\
0 & \beta_1 & 0 \\
0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
0 \\
\epsilon \\
\epsilon
\end{pmatrix}
= \begin{pmatrix}
0 \\
\beta_1 \epsilon \\
\epsilon
\end{pmatrix}
\]

(c) \[
\begin{pmatrix}
1 & 0 & \delta \\
0 & 1 & \delta \\
0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
0 \\
\beta_1 \epsilon \\
\epsilon
\end{pmatrix}
= \begin{pmatrix}
\delta \epsilon \\
(\beta_1 + \delta) \epsilon \\
\epsilon
\end{pmatrix}
\]

Let $f, g \in \mathbb{F}^*$. We see that the following holds.

• $(0,0,0)^T$ is covered by (i).
• $(0,0,f)^T$ is covered by (ii).
• $(0,f,0)^T$ is covered by (iii).
• $(f,0,0)^T$ is covered by (iv) with $x = 0$.
• $(f,g,0)^T$ is covered by (iv) with $x \neq 0$.
• $(0,f,g)^T$ is covered by (b).
• $(f,0,g)^T$ is covered by (c) with $\beta_1 = -\delta$.
• All remaining triples are covered by (c) with $\beta_1 \neq -\delta$.

We finally observe that E is an annihilator extensions of \mathfrak{A} by \mathfrak{J} if and only $\gamma(\rho) \neq (0,0,0)^T$ and thus in conclusion we have proved the following Theorem.
Theorem 3.44
Let F be an arbitrary field. Then $n_F(2) = |F| + 4$.

We can combine the results of this section to a proof of Theorem 1.5, which we recall here.

Theorem 1.5
The number of equivalence classes of infinite paths in $G_F(r)$ is finite if and only if $r \leq 1$ or F is finite.

Proof:
By Corollary 3.38 and Theorem 3.39 the number of equivalence classes of infinite paths is finite if F is finite or $r \leq 1$. Theorem 3.44 shows that for an infinite field F there are infinitely many equivalence classes of infinite paths in $G_F(2)$. If A is an algebra in $I_F(2)$, then for $r \geq 3$ we have that $A \oplus Z_{r-2} \in I_F(r)$ and hence for infinite fields F there are infinitely many equivalence classes of infinite paths in $G_F(r)$ for all $r \geq 2$.

\vspace{1cm}

35
3.3. NUMBER OF INFINITE PATHS
Chapter 4

Trees in coclass graphs

This chapter has overlap with our paper [EM16].

4.1 Roots of maximal descendant trees

In this section we prove results on the broad shape of the graphs $G_F(r)$. By definition $G_F(r)$ is a forest and the union of the maximal descendant trees contained in it. We prove that the roots of maximal descendant trees in $G_F(r)$ have dimension at most $2r$ and hence $G_F(r)$ is a union of finitely many maximal descendant trees in the case that F is finite. With the results proven in Section 3.1 we can then prove that $G_F(r)$ consists of finitely many maximal coclass trees and finitely many other vertices.

We begin by mentioning that an analogue of Corollary 3.19 also holds for finite-dimensional nilpotent associative F-algebras. This result is also contained in our paper [EM16].

Theorem 4.1

Let A be a nilpotent associative F-algebra. If $\dim(A^i/A^{i+1}) = 1$ for some $i < \text{cl}(A)$, then $\dim(A^j/A^{j+1}) = 1$ for all $i \leq j \leq \text{cl}(A)$.

Proof:

If $n = \text{cl}(A)$, then there is nothing to show. Hence we assume that $n < \text{cl}(A)$ so that $A^{n+1} \neq A^{n+2}$. We now proceed in two steps.

1: We show that there exists an element $t \in A$ such that A^n/A^{n+1} is generated by t^n as an F-vector space. As $\dim(A^n/A^{n+1}) = 1$ and $A^n = AA^{n-1}$, it follows that there exist $t \in A$ and $w \in A^{n-1}$ with $A^n = Ftw + A^{n+1}$. Using the argument of Step (1) in the proof of Theorem 3.17, it follows that $A^n = Ft^n + A^{n+1}$. Thus (1) follows.

2: We show that $A^i = Ft^i + A^{i+1}$ for each $n \leq i \leq \text{cl}(A)$. First, $t^i \in A^i$ for each $1 \leq i \leq \text{cl}(A)$ by the definition of A^i. Further, $t^i \notin A^{i+1}$ for $1 \leq i \leq n$, as otherwise $t^n = t^{n-i}t^i \in A^{n-i}A^{i+1} = A^{n+1}$ in contradiction to (1). We use induction on i to show the desired result for $n \leq i \leq \text{cl}(A)$. The initial step of this induction is proved in (1). Thus we assume that $A^i = Ft^i + A^{i+1}$ for some $i \geq n$. Then again using the argument of Step (1) in the proof of Theorem 3.17 we deduce that $A^{i+1} \subseteq Ft^{i+1} + A^{i+2}$. As $Ft^{i+1} + A^{i+2} \subseteq A^{i+1}$, it follows that $A^{i+1} = Ft^{i+1} + A^{i+2}$. This completes the induction step and yields (2).
This again intuitively means that all the complexity lies in the first quotients of the power series. In other words we have the following theorem.

Theorem 4.2

Let A be a nilpotent associative \mathbb{F}-algebra of coclass r. If $r = 0$ then $cc(A/A^i) = 0$ for all $i \geq 2$ and if $r \geq 1$ we have $cc(A/A^i) = r$ for all $i \geq r + 1$.

Proof:

The theorem obviously holds for $r = 0$. For $r \geq 1$ recall that the coclass of A/A^i is given by

$$cc(A/A^i) = \sum_{j=1}^{i-1} (dim(A^j/A^{j+1}) - 1).$$

The result now follows from Theorem 4.1.

This result now enables us to prove Theorem 1.6, i.e. bounds for the dimension of a root of a maximal descendant tree of $G_F(r)$. The upper bound (without sharpness) is also proved in our paper [EM16].

Theorem 1.6

Let \mathbb{F} be an arbitrary field and let r be a non-negative integer. Let R be a root of a maximal descendant tree in $G_F(r)$. If $r = 0$, then $dim(R) = 1$. If $r \geq 1$, then $r + 1 \leq dim(R) \leq 2r$ and these bounds are sharp.

Proof:

The case $r = 0$ is trivial, hence we assume that $r \geq 1$. For the lower bound note that $dim(R) = cl(R) + cc(R) \geq 1 + r$. Furthermore, the algebra Z_{r+1} from Example 2.5 has coclass r and dimension $r + 1$, hence this lower bound is sharp.

For the upper bound let A be an algebra in $G_F(r)$ and let $B = A/A^{r+1}$ be its class r quotient. Theorem 4.2 implies that $cc(B) = r$. Hence $dim(B) = cl(B) + cc(B) = 2r$. By construction $A \in T(B)$ and $T(B)$ in turn is contained in a maximal descendant tree of $G_F(r)$. If R is the root of this maximal descendant tree, then $dim(R) \leq 2r$ follows. For the sharpness of the upper bound consider the algebra $\langle a \mid a^{r+1} \rangle \oplus \langle b \mid b^{r+1} \rangle$. This algebra has coclass r, dimension $2r$ and all quotients have coclass smaller than r. Hence this algebra is a root of a maximal descendant tree of $G_F(r)$.

Theorems 4.1 and Theorem 1.6 also enable us to prove a class bound for the coclass settledness of a nilpotent associative \mathbb{F}-algebra.

Definition 4.3

We call a finite-dimensional nilpotent associative \mathbb{F}-algebra A **coclass settled** if all its immediate descendants have the same coclass as A.

Corollary 4.4

Let A be a finite-dimensional nilpotent associative \mathbb{F}-algebra of coclass r. If $cl(A) \geq r + 1$, then A is coclass settled.
4.1. ROOTS OF MAXIMAL DESCENDANT TREES

Proof:
If \(A \) is terminal or \(r = 0 \), then the theorem holds trivially. Suppose that \(A \) is capable and \(r \geq 1 \). By assumption \(cl(A) \geq r + 1 \), i.e. \(\dim(A) \geq 2r + 1 \) and hence by Theorem 1.6 \(A \) is not a root in \(G_\mathbb{F}(r) \). Hence it is an immediate descendant of another algebra in \(G_\mathbb{F}(r) \) and it follows that \(\dim(A^{cl(A)}/A^{cl(A)+1}) = 1 \). Let \(B \) be an immediate descendant of \(A \). Then \(B^{d(B)-1}/B^{d(B)} \cong A^{d(A)}/A^{d(A)+1} \) and hence \(\dim(B^{d(B)-1}/B^{d(B)}) = 1 \). Therefore, by Theorem 4.1 also \(\dim(B^{d(B)}/B^{d(B)+1}) = 1 \) which implies \(cc(B) = cc(A) \). \(\square \)

Remark 4.5

In the case of finite \(p \)-groups Shalev shows in [Sha94, Corollary 4.4] that 2-groups are coclass settled by class \(2^{r+3} \) and \(p \)-groups for odd \(p \) are coclass settled by class \(2p^r \).

Furthermore, Theorem 1.6 also has the following immediate corollary describing the broad shape of \(G_\mathbb{F}(r) \) for finite fields.

Corollary 1.7

Let \(\mathbb{F} \) be an arbitrary finite field and let \(r \) be a non-negative integer. Then \(G_\mathbb{F}(r) \) is a disjoint union of finitely many maximal descendant trees.

We can further strengthen this result using the following theorem from our paper [EM16], which considers branching of infinite paths in \(G_\mathbb{F}(r) \).

Theorem 4.6

Let \(\mathbb{F} \) be an arbitrary finite field and let \(r \) be a non-negative integer. Let \(A \) be an algebra of class at least \(2r \) in \(G_\mathbb{F}(r) \). Then its descendant tree \(T(A) \) contains at most one infinite path starting at its root; that is, either \(T(A) \) has no infinite path or it is a coclass tree.

Proof:
The result holds for \(r \leq 1 \), because \(G_\mathbb{F}(r) \) contains only one maximal infinite path in these cases by Corollary 3.38. Hence in the following we assume that \(r \geq 2 \). Let \(c \) denote the class of \(A \) and let \(T(A) \) have an infinite path \(A = A_1 \rightarrow A_2 \ldots \), say. Let \(\bar{A} \) be the inverse limit associated to this infinite path. By Theorem 3.18 \(Ann_r(\bar{A}) = Ann_r(\bar{A}) \) is an \(r \)-dimensional ideal in \(\bar{A} \). Additionally, there exists an element \(t \in \bar{A} \) with \(t^{r+1} \neq 0 \) and every such element \(t \) generates an infinite-dimensional algebra \(T = \langle t \rangle \) satisfying that \(\bar{A} = T \ltimes Ann_r(\bar{A}) \). This implies that \(\bar{A}^j \leq T^j \ltimes Ann_{r-j+1}(\bar{A}) \) for each \(j \in \mathbb{N} \) and thus \(\bar{A}^j = T^j \) for each \(j \geq r + 1 \).

We identify \(A \) with its isomorphic copy \(\bar{A}/\bar{A}^{c+1} \) and let \(\lambda : \bar{A} \rightarrow A \) denote the associated epimorphism. Let \(B = A/A^{r+1} \) with associated epimorphism \(\varphi : A \rightarrow B \). and let \(\sigma : \bar{A} \rightarrow B \) be the composition of \(\lambda \) and \(\varphi \). We show that the isomorphism type of \(\bar{A} \) is fully defined by \(A \) and \(B \). This is sufficient to prove the theorem. If there are two infinite paths in \(T_A \) starting at \(A \), then they both have \(A \) and \(B \) as quotients and hence have isomorphic inverse limits. Because an inverse limit defines the algebras on its associated infinite path via its power series quotients, we have that the two considered infinite paths are identical, which yields the desired result.

We now construct \(\bar{A} \) from \(A \) and \(B \). Let \(a \in A \) with \(a^c \neq 0 \) and let \(b = \varphi(a) \in B \). The element \(a \) exists, as \(A \) is a quotient of \(\bar{A} \). Write \(M = \varphi(Ann_r(A)) \leq B \) and let \(X = \langle x \rangle \)
denote the ideal generated by x in the ring of formal power series $\mathbb{F}[[x]]$. We define an action of X on M via $m \cdot x = mb$ and $x \cdot m = bm$ for each $m \in M$. Let

$$ \bar{B} = X \ltimes M. $$

Then \bar{B} is defined from A and B only. We show that \bar{A} and \bar{B} are isomorphic. For this we choose $s \in \bar{A}$ so that $\lambda(s) = a$. Then $s^c \neq 0$. As $c \geq 2r \geq r + 1$, it follows that $S = \langle s \rangle$ is an infinite-dimensional subalgebra of \bar{A} with $\bar{A} = S \ltimes \text{Ann}_r(A)$. Further, $S \to X : s \mapsto x$ induces an algebra isomorphism. We now write the elements of \bar{A} as $f(s) + w$, where $f(s)$ is a formal power series in S and $w \in \text{Ann}_r(A)$. Next, we define

$$ \gamma : \bar{A} \to \bar{B} : f(s) + w \mapsto f(x) + \sigma(w). $$

It remains to show that this is an algebra isomorphism.

We observe that $\sigma(\text{Ann}_r(\bar{A})) = \varphi(\lambda(\text{Ann}_r(\bar{A}))) = \varphi(\lambda(A)) = \varphi(\text{Ann}_r(A)) = M$ and thus σ maps $\text{Ann}_r(\bar{A})$ into M. Next, $\ker(\sigma) = \bar{A}^{r+1} = S^{r+1}$ and thus $\ker(\sigma) \cap \text{Ann}_r(\bar{A}) = \{0\}$. It follows that σ restricted to $\text{Ann}_r(\bar{A})$ is injective. As $c \geq 2r \geq r + 1$, we deduce that $\bar{A}^{c+1} = S^{c+1}$. Hence $A \cong \bar{A}/\bar{A}^{c+1} \cong S/S^{c+1} \ltimes \text{Ann}_r(\bar{A})$. Using this, we inductively obtain that $\text{Ann}_j(A) \cong \text{Ann}_j(S/S^{c+1} \ltimes \text{Ann}_r(\bar{A})) = S^{c+1-j}/S^{c+1} \ltimes \text{Ann}_j(\bar{A})$. As $c + 1 - r \geq 2r + 1 - r = r + 1$, it follows that $S^{c+1-r}/S^{c+1} \leq \ker(\varphi)$. Finally, we need to show that γ respects the multiplication. We note that $\sigma(s) = \varphi(\lambda(s)) = \varphi(a) = b$ and thus $\sigma(f(s)w) = f(\sigma(s))\sigma(w) = f(b)\sigma(w)$ for each formal power series f and each $w \in \text{Ann}_r(\bar{A})$. Further, $f(b)\sigma(w) = f(x)\sigma(w)$ by the definition of the action of X on M. Similarly, $\sigma(wf(s)) = \sigma(w)f(b)$ and $\sigma(w)f(b) = \sigma(w)f(x)$. This yields

$$ \gamma(f_1(s) + w_1)\gamma(f_2(s) + w_2) $$

$$ = (f_1(x) + \sigma(w_1))(f_2(x) + \sigma(w_2)) $$

$$ = f_1(x)f_2(x) + f_1(x)\sigma(w_2) + \sigma(w_1)f_2(x) + \sigma(w_1)\sigma(w_2) $$

$$ = f_1(x)f_2(x) + f_1(b)\sigma(w_2) + \sigma(w_1)f_2(b) + \sigma(w_1)w_2 $$

$$ = f_1(x)f_2(x) + \sigma(f_1(s)w_2) + \sigma(w_1f_2(s)) + \sigma(w_1w_2) $$

$$ = f_1(x)f_2(x) + \sigma(w_1w_2 + f_1(s)w_2 + f_1(s)f_2(s)) $$

$$ = \gamma((f_1(s) + w_1)(f_2(s) + w_2)) $$

for all $f_1(s) + w_1, f_2(s) + w_2 \in \bar{A}$. Hence γ is an algebra isomorphism and we have proved the claim. \hfill \Box

The broad shape of $\mathcal{G}_F(r)$ for finite fields can now be described by Theorem 1.9 (see also [EM16]).

Theorem 1.9

Let F be an arbitrary finite field and let r be a non-negative integer. Then each maximal
4.2 Depth of coclass trees

descendant tree of $G_F(r)$ consists of finitely many maximal coclass trees and finitely many other vertices. Hence $G_F(r)$ is a disjoint union of finitely many maximal coclass trees and finitely many other vertices.

Proof:
Let F be a finite field and r a non-negative integer. Then, since F is finite, a maximal descendant tree T in $G_F(r)$ has only finitely many algebras of class 2^r, i.e. dimension 3^r. Thus by Theorem 4.6 it follows that T contains only finitely many coclass trees and finitely many other vertices.

We give the following example to illustrate the difference between maximal descendant trees and maximal coclass trees.

Example 4.7
Consider the following infinite-dimensional pro-nilpotent F_2-algebras of coclass 3:

\[A = \langle t, a, b, c \mid a^2 - c, ab, ba, b^2, bc, cb, c^2, ta - b, tb, tc, at, bt, ct \rangle, \]

\[B = \langle t, a, b, c \mid a^2 - c, ab, ba, b^2, bc, cb, c^2, ta, tb, tc, at - b, bt, ct \rangle. \]

We have that $cc(A/A^3) = cc(B/B^3) = 3$ and $A/A^3 \cong B/B^3$. Hence the infinite paths described by A and B are contained in the same maximal descendant tree. As $A/A^4 \not\cong B/B^4$ we deduce that this maximal descendant tree contains the two maximal coclass trees with roots A/A^4 and B/B^4.

4.2 Depth of coclass trees

Next we consider the depth of a maximal coclass tree T of $G_F(r)$. Again, as $G_F(0)$ is completely understood, we suppose that $r > 0$. We show that for almost all branches B of T we have $\text{dep}(B) \leq r$ and hence T has bounded depth. To establish this result, we need to work with specific presentations for (almost all) algebras in T. Note that we refer to the algebras on the infinite path of a coclass tree as mainline algebras.

Lemma 4.8
Let T be a maximal coclass tree in $G_F(r)$. Then for $c \geq r$ the class c mainline algebra of T can be described by a presentation of the form

\[\langle t, b_1, \ldots, b_r \mid t^{c+1}, \]

\[b_i b_j - s_{ij}, \text{ for } 1 \leq i, j \leq r \]

\[tb_i - s_{0i}, \text{ for } 1 \leq i \leq r, \]

\[b_i t - s_{i0}, \text{ for } 1 \leq i \leq r \]

where s_{ij} lies in the subspace $\langle b_1, \ldots, b_r \rangle$ for $1 \leq i, j \leq r$, $s_{0i} = \sum_{j=r+1}^r \alpha_j b_j$ and $s_{i0} = \sum_{j=r+1}^r \overline{\alpha_j} b_j$

with $\alpha_j, \overline{\alpha_j} \in F$ for all $1 \leq i, j \leq r$. Note that the s_{ij}, s_{0i} and s_{i0} can be defined by the same expression for every mainline quotient of class $c \geq r$.

41
4.2. DEPTH OF COCLASS TREES

Proof:
This follows directly from the structure description in Theorem 1.4. Let \(A \cong T \ltimes \text{Ann}_\ast(A) \) describe the infinite path in \(T \). Then \(A \) has a presentation of the form

\[
\langle t, b_1, \ldots, b_r \mid b_i b_j - s_{ij}, \text{ for } 1 \leq i, j \leq r \rangle
\]

\[
\begin{align*}
&tb_i - s_{0i}, \text{ for } 1 \leq i \leq r, \\
&b_i t - s_{i0}, \text{ for } 1 \leq i \leq r
\end{align*}
\]

where the \(s_{ij} \) are of the given form. The generator \(t \) is a generator for the infinite subalgebra \(T \cong F_0[[t]] \) and \(b_1, \ldots, b_r \) correspond to a basis for \(\text{Ann}_\ast(A) \). This directly implies that for \(c \geq r \) the class \(c \) mainline algebra of \(T \) can be described by a presentation of the given form.

The generators for the mainline algebra correspond to the generators of \(A \) under the natural projection to \(A/A^{c+1} \).

Lemma 4.9

Let \(T \) be a maximal coclass tree in \(G_F(r) \) and let \(A_1 \to A_2 \to \ldots \) be the unique infinite path starting at the root of \(T \). Let \(B \in B_k \) for some \(k \in \mathbb{N} \) such that \(c = \text{cl}(A_k) \geq r + 1 \). Furthermore, let \(d = \text{cl}(B) - c \). Then \(B \) has a presentation of the following form:

\[
\langle t, b_1, \ldots, b_r, c \mid t^{c+d+1}, \;
\begin{align*}
&b_i b_j - s_{ij} - t_{ij}, \text{ for } 1 \leq i, j \leq r, \\
&tb_i - s_{0i} - t_{0i}, \text{ for } 1 \leq i \leq r, \\
&b_i t - s_{i0} - t_{i0}, \text{ for } 1 \leq i \leq r
\end{align*}
\]

where \(t_{ij} \) lies in the subspace \(\langle t^{c+1}, \ldots, t^{c+d} \rangle \) for all possible \(i, j \) and the \(s_{ij} \) are the same expressions as in the presentation of the mainline algebra \(A_k \).

Proof:

By Lemma 4.8 \(A_k \) has a presentation

\[
\langle t, b_1, \ldots, b_r \mid t^{c+1}, \;
\begin{align*}
&b_i b_j - s_{ij}, \text{ for } 1 \leq i, j \leq r, \\
&tb_i - s_{0i}, \text{ for } 1 \leq i \leq r, \\
&b_i t - s_{i0}, \text{ for } 1 \leq i \leq r
\end{align*}
\]

Now consider an extension of \(A_k \) by a 1-dimensional trivial \(A_k \)-module \(I = \langle x \rangle \). If we require the extension to be of the same coclass, it needs to be of class \(c + 1 \). Hence every immediate descendant of \(A_k \) in \(G_F(r) \) has a presentation of the form

\[
\langle t, b_1, \ldots, b_r, c \mid t^{c+1} - \beta_{00} x, \;
\begin{align*}
&b_i b_j - s_{ij} - \beta_{ij} x, \text{ for } 1 \leq i, j \leq r, \\
&tb_i - s_{0i} - \beta_{0i} x, \text{ for } 1 \leq i \leq r, \\
&b_i t - s_{i0} - \beta_{i0} x, \text{ for } 1 \leq i \leq r
\end{align*}
\]

42
where \(\beta_{00} \in \mathbb{F}^* \) and all other \(b_{ij} \in \mathbb{F} \). By rescaling we arrive at a presentation of the form

\[
\langle t, b_1, \ldots, b_r \mid t^{c+2}, \\
\quad b_i b_j - s_{ij} - t_{ij}, \text{ for } 1 \leq i, j \leq r, \\
\quad t b_i - s_{0i} - t_{0i}, \text{ for } 1 \leq i \leq r, \\
\quad b_i t - s_{i0} - t_{i0}, \text{ for } 1 \leq i \leq r \rangle
\]

with all possible \(t_{ij} \) being in the subspace \(\langle t^{c+1} \rangle \) and the \(s_{ij} \) being the same expressions as in the presentation for the mainline algebra \(A_k \). Iterating this yields the desired result.

Definition 4.10

Let \(B \) be as in Lemma 4.9. Then we call a presentation constructed as in Lemma 4.9 a \(t \)-presentation. We call such a \(t \)-presented \(B \) \(t \)-split if it is a split extension of the subalgebra generated by \(t \) and some ideal of \(B \).

Remark 4.11

If we construct \(t \)-presentations for all algebras in \(T \) that have the class \(r + 1 \) mainline algebra as quotient, then such an algebra is \(t \)-split if and only if it is mainline.

In the next lemma we construct a special generating set for a \(t \)-presented algebra \(B \). An immediate consequence of this is a sum decomposition of \(B \) into the subalgebra generated by \(t \) and the right annihilator of a certain \(t \)-power. This enables us to prove a depth bound for almost all branches of the maximal coclass tree \(T \).

Lemma 4.12

Let \(B \) be as in Lemma 4.9 and let its \(t \)-presentation have the form

\[
\langle t, b_1, \ldots, b_r \mid t^{c+d+1}, \\
\quad b_i b_j - s_{ij} - t_i^{(r+1)}, \text{ for } 1 \leq i, j \leq r, \\
\quad t b_i - s_{0i} - t_0^{(r+1)}, \text{ for } 1 \leq i \leq r, \\
\quad b_i t - s_{i0} - t_i^{(r+1)}, \text{ for } 1 \leq i \leq r \rangle
\]

Let \(s_{0i} \) for \(1 \leq i \leq r \) be defined as follows. If \(s_{0i} = \sum_{j=i+1}^{r} \alpha_j b_j \), then let \(s_{0i} = \sum_{j=i+1}^{r} \alpha_j b_j \).

Then \(B \) has a generating set \(t, \tilde{b}_1, \ldots, \tilde{b}_r \) such that \(t b_i - s_{0i} = 0 \) holds for all \(1 \leq i \leq r \).

Proof:

We construct the new generating set from the original one. To facilitate this, we describe how to replace each generator \(b_i \) with a new generator \(\tilde{b}_i \). We need to work from back to front, i.e. we first replace \(b_r \) by a new generator \(\tilde{b}_r \), then replace \(b_{r-1} \) by \(\tilde{b}_{r-1} \) and continue until we have replaced all generators \(b_i \) by the corresponding new generators \(\tilde{b}_i \).

Again, let \(T \) be the subalgebra of \(B \) generated by \(t \) and let \(\sigma_\ell \) be the left shift

\[\sigma_\ell : T^2 \rightarrow T, \quad \sum_{j=2}^{c+d} \alpha_j t^j \mapsto \sum_{j=2}^{c+d} \alpha_j t^{j-1} \]
where \(\alpha_j \in \mathbb{F} \).

Now suppose that we have replaced the generators \(b_{i+1}, \ldots, b_r \) by the corresponding new generators \(\bar{b}_{i+1}, \ldots, \bar{b}_r \). To replace \(b_i \) we do the following.

- Define the new generator as \(\bar{b}_i = b_i + \sigma(t(0i)) \).
- Adjust the relators accordingly, i.e. replace every occurrence of \(b_i \) in a relator by \(\bar{b}_i \) and replace the corresponding \(t_{i,j}^{(i+1)} \) by \(t_{i,j}^{(i+1)} - \sigma(t(0i)) \).

After replacing all the original generators \(b_i \) by the corresponding \(\bar{b}_i \) we have constructed a presentation on a new generating set \(t, \bar{b}_1, \ldots, \bar{b}_r \) that has the desired property.

Example 4.13

We illustrate the construction of this special generating set in the following example, which is an \(\mathbb{F}_2 \)-algebra of coclass 2 and dimension 8.

- The algebra is given by the following \(t \)-presentation.

\[
\langle t, a, b \mid t^7, a^2, ab, ba, b^2, at, bt, ta - b - t^6, tb - t^5 \rangle.
\]

- Replace the generator \(b \) by \(\bar{b} = b + \sigma(t^6) = b + t^5 \) and get

\[
\langle t, a, \bar{b} \mid t^7, a^2, ab, ba, \bar{b}^2, at, bt - t^6, ta - \bar{b} - t^5 - t^6, t\bar{b} \rangle.
\]

- Replace the generator \(a \) by \(\bar{a} = a + \sigma(t^5 + t^6) = a + t^4 + t^5 \) and get

\[
\langle t, \bar{a}, \bar{b} \mid t^7, \bar{a}^2, \bar{a}b, \bar{b}a, \bar{b}^2, \bar{a}t - \bar{b} - t^5 - t^6, bt - t^6, t\bar{a} - \bar{b}, t\bar{b} \rangle.
\]

The new generating set \(t, \bar{a}, \bar{b} \) has the desired property.

Corollary 4.14

Let \(B \) be as in Lemma 4.9. Then for some \(u \leq r \) we have that \(B = T + \text{Ann}_R(\{t^u\}) \), where \(T \) is the subalgebra of \(B \) generated by \(t \).

Proof:

This is a direct consequence of Lemma 4.12, as by construction the generators \(\bar{b}_1, \ldots, \bar{b}_r \) are contained in \(\text{Ann}_R(\{t^u\}) \) for some \(u \leq r \).

Remark 4.15

If we take a closer look at the construction of the new generating set \(t, \bar{b}_1, \ldots, \bar{b}_r \) inLemma 4.12 we notice the correspondence between the relations \(tb_i - s_{0i} = 0 \) in the \(t \)-presentation of the corresponding mainline algebra \(A_k \) and the relations \(\bar{t}\bar{b}_i - \bar{s}_{0i} = 0 \). More explicitly, if the \(t \)-presentation for the corresponding mainline algebra contains the relation

\[
tb_i - \sum_{j=i+1}^r \alpha_j b_j = 0
\]
In conclusion, we can now deduce the Theorem 1.11 for maximal coclass trees in $\mathcal{G}_F(r)$. Proof: Let \mathcal{C} be a maximal coclass tree in $\mathcal{G}_F(r)$. Let $B \in \mathcal{B}_i$ with $cl(B) > 2r$ and let $u \leq r$ be minimal with $B = T + \text{Ann}_R(\{t^u\})$. Then $B/B^{cl(B)-u+1}$ is a mainline algebra of \mathcal{C}.

Theorem 4.16
Let T be a maximal coclass tree in $\mathcal{G}_F(r)$. Let $B \in \mathcal{B}_i$ with $cl(B) > 2r$ and let $u \leq r$ be minimal with $B = T + \text{Ann}_R(\{t^u\})$. Then $B/B^{cl(B)-u+1}$ is a mainline algebra of T.

Proof:
First note that since $cl(B) > 2r$ and $u \leq r$, we have $B^{cl(B)-u+1} = T^{cl(B)-u+1}$. Also because $cl(B) > 2r$ the quotient $B/B^{cl(B)-u+1}$ also has coclass r. The right annihilator $\text{Ann}_R(\{t^u\})$ is obviously a right ideal, but it also is a left ideal as we show now. Let $b \in B$ and let $z \in \text{Ann}_R(\{t^u\})$. Write $b = x + y$ with $x \in T$ and $y \in \text{Ann}_R(\{t^u\})$. Then $bz = xz + yz$. Trivially $yz \in \text{Ann}_R(\{t^u\})$. Now x commutes with t^u because $x \in T$. Therefore $t^uxz = xt^uz = 0$ and $xz \in \text{Ann}_R(\{t^u\})$ follows. In conclusion $bz \in \text{Ann}_R(\{t^u\})$ and $\text{Ann}_R(\{t^u\})$ is also a left ideal, hence an ideal in B. Observe that the only t-powers contained in $\text{Ann}_R(\{t^u\})$ are $t^{cl(B)-u+1}, \ldots, t^{cl(B)-u+1}$ and thus $T^{cl(B)-u+1}$ is an ideal contained in T and $\text{Ann}_R(\{t^u\})$. Furthermore, we have

$B/B^{cl(B)-u+1} = (T + \text{Ann}_R(\{t^u\}))/T^{cl(B)-u+1} \cong T/T^{cl(B)-u+1} \times \text{Ann}_R(\{t^u\})/T^{cl(B)-u+1}$.

If the t-presentation of B is given by

$\langle t, b_1, \ldots, b_r \mid t^{cl(B)+1}, \ b_ib_j - s_{ij} - t_{ij}, \text{ for } 1 \leq i, j \leq r \text{ and } s_{ij} \in \langle b_1, \ldots, b_r \rangle, \ b_ib_i - s_{0i} - t_{0i}, \text{ for } 1 \leq i \leq r, \ b_it - s_{i0} - t_{i0}, \text{ for } 1 \leq i \leq r \rangle$

then a presentation for $B/B^{cl(B)-u+1}$ is given by

$\langle t, b_1, \ldots, b_r \mid t^{cl(B)-u+1}, \ b_ib_j - s_{ij} - t_{ij}, \text{ for } 1 \leq i, j \leq r \text{ and } s_{ij} \in \langle b_1, \ldots, b_r \rangle, \ b_ib_i - s_{0i} - t_{0i}, \text{ for } 1 \leq i \leq r, \ b_it - s_{i0} - t_{i0}, \text{ for } 1 \leq i \leq r \rangle$

which is precisely the t-presentation for the ancestor of B of distance u. By the above calculation it is t-split, hence a mainline algebra by Remark 4.11.

In conclusion, we can now deduce the Theorem 1.11 for maximal coclass trees in $\mathcal{G}_F(r)$.

45
Theorem 1.11
Let \mathbb{F} be an arbitrary field and let r be a non-negative integer. Let \mathcal{T} be a maximal coclass tree in $\mathcal{G}_\mathbb{F}(r)$. Then \mathcal{T} has bounded depth.

Proof:
Let B_i be a branch in \mathcal{T}. If $cl(A_i) \geq 2r$, then Theorem 4.16 implies that $\text{dep}(B_i) \leq r$. The finitely many branches B_i with $cl(A_i) < 2r$ have finite depth because \mathcal{T} is a maximal coclass tree, i.e. \mathcal{T} contains a unique infinite path starting at the root of \mathcal{T}. Therefore \mathcal{T} has bounded depth.

Remark 4.17
This is stronger than the corresponding result in the p-group case. For p-groups the maximal coclass trees in $\mathcal{G}(p,r)$ have bounded depth if and only if $p = 2$ or $(p,r) = (3,1)$ (see e.g. Leedham-Green & McKay [LGM02]). The simplest case with unbounded depth, i.e. $(p,r) = (5,1)$, is investigated in detail in a paper by Dietrich [Die10]. In this sense the graphs for nilpotent associative \mathbb{F}-algebras behave similar to the ones for 2-groups.

Remark 4.18
From the proof of theorem 1.11 on can see that \mathcal{T} virtually has depth less or equal than r. Note that in all of our computational data, the bound holds for all branches, i.e. $\text{dep}(B_i) \leq r$ for all $i \in \mathbb{N}$. Thus conjecturally the stronger statement $\text{dep}(\mathcal{T}) \leq r$ holds.

Remark 4.19
In many cases the depth bound obtained from Theorem 4.16 is even smaller than r. Furthermore, the same argument works using left annihilators instead of right annihilators. The depth bounds obtained from Theorem 4.16 and its analogue for left annihilators can differ. If one is interested in the best bound that can be obtained in this way, one should consider both types of annihilators.

Example 4.20
To illustrate Remark 4.19 we consider the following pro-nilpotent \mathbb{F}_2-algebra describing an infinite path of a maximal coclass tree \mathcal{T} in $\mathcal{G}_{\mathbb{F}_2}(r)$.

$$\langle t, b_1, \ldots, b_r | b_ib_j, \text{ for } 1 \leq i, j \leq r,\
 tb_i, \text{ for } 1 \leq i \leq r,\
 b_it - b_{i+1}, \text{ for } 1 \leq i \leq r - 1,\
 b_{r}t \rangle$$

The depth bound we obtain from right annihilators is $\text{dep}(\mathcal{B}) \leq 1$ for almost all branches \mathcal{B} of \mathcal{T}, whereas the depth bound we obtain from left annihilators is $\text{dep}(\mathcal{B}) \leq r$ for almost all branches \mathcal{B} of \mathcal{T}. This shows that in some cases the bound can be improved significantly by considering both types of annihilators.

4.3 General periodicity conjecture

As already mentioned in the introduction we conjecture a certain form of periodicity for the maximal coclass trees in $\mathcal{G}_p(r)$. We recall the definition of virtual periodicity, which precisely describes the type of periodicity we conjecture.
4.4 Periodicity for coclass 1

Definition 1.12
Let F be an arbitrary field and let r be a non-negative integer. Let T be a maximal coclass tree in $G_F(r)$ with unique infinite path $A_1 \rightarrow A_2 \rightarrow \ldots$ starting at the root of T. Then T is called virtually periodic with period d and periodic root A_ℓ if the descendant trees $T(A_i)$ and $T(A_{i+d})$ are isomorphic as directed graphs for each $i \geq \ell$.

Based on computational evidence we stated in [EM16] the following general conjecture for finite fields.

Conjecture 1.13
Let F be an arbitrary finite field and let r be a non-negative integer and let T be maximal coclass tree in $G_F(r)$. Then T is virtually periodic.

Remark 4.21
Our experimental evidence suggests that if T is a maximal coclass tree in $G_F(r)$ and F is a field of size $q = p^s$, then it has a period of the form $p^s(q - 1)$ with $s \leq r$.

This is similar to a periodicity result for the coclass trees associated with finite 2-groups (see e.g. Eick & Leedham-Green [ELG08]). The proof of the result in [ELG08] also implies that the 2-groups of a fixed coclass r can be described by finitely many parametrized presentations. Again in [EM16] we conjectured a similar result for nilpotent associative F-algebras over finite fields.

Conjecture 1.14
Let F be an arbitrary finite field and let r be a non-negative integer and let T be maximal coclass tree in $G_F(r)$. Then the algebras in T can be described by finitely many parametrized presentations.

These conjectures obviously hold for $r = 0$. In the following we prove Conjectures 1.13 and 1.14 for $r = 1$. In the case of $r = 2$ we give a very detailed conjecture.

4.4 Periodicity for coclass 1

In order to prove the conjectures mentioned above for coclass 1, we introduce a machinery that facilitates the computation of immediate descendants. We use concepts developed by Eick [Eic08], which we recall here. Let F be a finite field and let A be a nilpotent associative F-algebra. Let $n = \dim(A)$, $c = cl(A)$ and let $d = \dim(A/A^2)$ be the minimal generator number of A. We denote by F the free non-unital F-algebra on d generators. Then there is an ideal R, such that $A \cong F/R$.

Definition 4.22

- The covering algebra A^* of A is defined as $A^* = F/(FR \cup RF)$, where $(FR \cup RF)$ is the ideal generated by $FR \cup RF$ in F.

- The multiplicator of A is defined as $M(A) = R/(FR \cup RF)$.

- The nucleus $N(A)$ of A is defined as $(A^*)^{c+1} \leq M(A)$.

47
A proper subspace \(U < M(A) \) is called allowable if it supplements the nucleus, i.e., \(U + N(A) = M(A) \).

In [Eic08] it is shown that \(M(A) \) is a finite-dimensional \(\mathbb{F} \)-vector space. Furthermore, it is shown that the natural homomorphism \(\epsilon : \text{Aut}(A^*) \rightarrow \text{Aut}(A) \) is surjective and that its kernel consists of those automorphisms that act trivially on the multiplicator \(M(A) \). Hence we obtain an action of \(\text{Aut}(A) \) on \(M(A) \) and hence on the allowable subspaces of \(M(A) \) via \(\epsilon \). We can deduce the following theorem from [Eic08].

Theorem 4.23

Let \(\mathcal{L} \) denote a set of orbit representatives of the action of \(\text{Aut}(A) \) on the allowable subspaces of \(M(A) \). Then

\[
\{ A^*/U \mid U \in \mathcal{L} \}
\]

is a complete and irredundant set of isomorphism type representatives of immediate descendants of \(A \).

Proof:

By [Eic08, Theorem 7] every immediate descendant of \(A \) is a quotient of \(A^* \) by some allowable subspace and, conversely, every quotient of the covering algebra \(A^* \) by an allowable subspace yields an immediate descendant of \(A \). Now [Eic08, Theorem 10 (a)] states that two quotients of \(A^* \) by allowable subspaces yield isomorphic immediate descendants if and only if the allowable subspaces are in the same orbit under the action of \(\text{Aut}(A) \).

Theorem 4.23 has the following immediate corollary, which allows to decide capability by calculating the nucleus.

Corollary 4.24

A finite-dimensional nilpotent associative \(\mathbb{F} \)-algebra is capable if and only if the nucleus \(N(A) \) is non-trivial.

Proof:

This is a direct consequence of Theorem 4.23, because there are allowable subspaces if and only if \(\text{dim}(N(A)) > 0 \).

We now turn to the proof of Conjectures 1.13 and 1.14 for coclass 1. For \(r = 1 \) we can deduce from Corollary 3.38 that the coclass graph \(\mathcal{G}_\mathbb{F}(1) \) consists of a single maximal coclass tree \(\mathcal{T}(\mathbb{Z}_2) \). Let \(\mathbb{Z}_2 = A_1 \rightarrow A_2 \rightarrow \ldots \) be the infinite path. Then the mainline algebra \(A_i \) has class \(i \) and can be presented as

\[
A_i \cong \langle t, a \mid t^{i+1}, a^2, ta, at \rangle.
\]

By Theorem 4.16 the branches \(\mathcal{B}_i \) for \(i \geq 2 \) have depth at most 1. We proceed by explicitly doing the descendant calculation described in Algorithm 5.1 for the mainline algebras \(A_i \) with \(i \geq 2 \).
Lemma 4.25
For \(i \geq 2 \) the covering algebra \(A_i^* \) of the mainline algebra \(A_i \) is given by
\[
A_i^* \cong \langle t, a \mid t^{i+2}, ta^2, t^2a, tat, a^2t, at^2, a^3, ata \rangle.
\]
The multiplicator \(M(A_i) \) is 4-dimensional and has a basis given by \(\{ t^{i+1}, a^2, ta, at \} \). The nucleus \(N(A_i) \) is 1-dimensional and has a basis given by \(\{ t^{i+1} \} \).

Proof:
This follows directly from the definitions of the covering algebra, multiplicator and nucleus. □

By the previous Lemma 4.25 we see that for all \(i \geq 2 \) the multiplicator \(M(A_i) \) is 4-dimensional and the nucleus is 1-dimensional. Hence in all cases the number of immediate descendants is equal to the number of orbits of \(W_i = \{ \alpha \in Aut(A_i^*) \mid \alpha(M(A_i)) = M(A_i) \} \) on the set of supplements to the 1-dimensional subspaces \(N(A_i) \) in \(M(A_i) \). In the next lemma we describe the action of \(W_i \) on \(M(A_i) \) and obtain that the actions of \(W_i \) and \(W_{i+|F|-1} \) on the respective multiplicators coincide.

Lemma 4.26
The action of \(W_i \) on \(M(A_i) \) can be described as follows.
\[
\begin{align*}
t^{i+1} & \mapsto \alpha_1^{i+1} t^{i+1} \\
a^2 & \mapsto \beta a^2 \\
ta & \mapsto \alpha_1 \alpha_t t^{i+1} + \beta \beta a^2 + \alpha_1 \beta ta \\
at & \mapsto \alpha_1 \alpha_t t^{i+1} + \beta \beta a^2 + \alpha_1 \beta at
\end{align*}
\]
where \(\alpha_1, \beta \in F^* \) and \(\overline{\alpha}, \beta \in F \).

Proof:
We explicitly determine the groups \(W_i \). Consider a general map \(\varphi : A_i^* \to A_i^* \) given on the generators \(t \) and \(a \) by
\[
\begin{align*}
t & \mapsto \beta a + \sum_{j=1}^{i+1} \alpha_j t^j + \gamma a^2 + \delta ta + \epsilon at \\
a & \mapsto \beta a + \sum_{j=1}^{i+1} \beta_j t^j + \gamma a^2 + \beta ta + \epsilon at
\end{align*}
\]
We want to filter out those maps that are automorphisms fixing the multiplicator setwise. First note that \(\overline{\alpha_1} = 0 \), because otherwise \(a^2 \in M(A_i) \) would not get mapped into \(M(A_i) \). As \(\varphi \) needs to be surjective, we have \(\alpha_1 \neq 0 \) and \(\beta \neq 0 \). Next we have to ensure that the relators of the covering algebra get mapped into the relators of the covering algebra. Consider the relator \(t^{i+1}a \).
\[
t^{i+1}a \mapsto \sum_{n=4}^{i+1} \sum_{j+k+\ell=n}^{i+1} \alpha_j \alpha_k t^j, \text{ where } j, k \in \{1, \ldots, i+1\}, \ell \in \{2, \ldots, i+1\}.
\]
The coefficient of \(t^4 \) is \(\alpha_2^2 \) and as \(\alpha_1 \neq 0 \) it follows that \(\alpha_2 = 0 \). Now considering the coefficients for \(t^5, \ldots \) yields \(\alpha_2 = \ldots = \alpha_{i-1} = 0 \). One checks that mapping the other relators does not give additional restrictions on \(\varphi \) and that indeed all \(\varphi \) defined in this way are automorphisms of \(A_i^* \) mapping \(M(A_i) \) into itself. Explicitly writing down the action of \(\varphi \) on the multiplicator yields

\[
\begin{align*}
t^{i+1} \mapsto & = \varphi(t^{i+1}) = \alpha_1^{i+1}t^{i+1} \\
a^2 \mapsto & = \varphi(a^2) = \alpha_1 a^2 \\
ta \mapsto & = \varphi(ta) = \varphi(t)\varphi(a) = \alpha_1 \alpha \alpha t^{i+1} + \beta \alpha a^2 + \alpha_1 \beta ta \\
at \mapsto & = \varphi(at) = \varphi(a)\varphi(t) = \alpha_1 \alpha \alpha t^{i+1} + \beta \alpha a^2 + \alpha_1 \beta at
\end{align*}
\]

where \(\alpha_1, \beta \in F \) as desired.

\[\square \]

Corollary 4.27

For \(i \geq 2 \) the action of \(W_i \) on \(M(A_i) \) coincides with the action of \(W_{i+|F|-1} \) on \(M(A_{i+|F|-1}) \).

Proof:

Note that the coefficient \(\alpha_1^{i+1} \) is the only one really depending on \(i \). Furthermore, an element \(\gamma \in F \) is an \((i+1)\)th power if and only it is an \((i+|F|)\)th power, as \(\gamma^{|F|-1} = 1 \) holds for all elements in a finite field. This proves the claim.

\[\square \]

Corollary 4.28

The single maximal coclass tree \(T(Z_2) \) in \(G_F(1) \) has depth 1 and is virtually periodic with period \(|F| - 1 \) and periodic root \(A_2 \).

Proof:

Recall that the proof of Theorem 1.11 implies that the branches \(B_i \) for \(i \geq 2 \) have depth at most 1. From Corollary 4.27 we now deduce that there is an isomorphism of directed graphs \(B_i \cong B_{i+|F|-1} \) for all \(i \geq 2 \). It remains to show that the branch \(B_1 \) has depth 1. This can be done by a direct calculation.

The above Corollary 4.28 is the desired positive answer for Conjectures 1.13 and 1.14 in the case of coclass 1. Unfortunately, it seems very hard to translate this approach of explicit calculations to the general case. However, it seems plausible to extend this method to the case of a pruned coclass tree \(T^{(1)} \), where one takes a coclass tree \(T \) and cuts of all vertices of distance larger than 1 from the mainline. This would then prove the virtual periodicity for all coclass trees of depth 1, which e.g. for coclass 2 turn out to be all trees except one. As an example we give a classification of all algebras in \(G_{F_2}(1) \), before giving a detailed conjecture for the shape of \(G_{F_2}(2) \).

Example 4.29

The \(d \)-dimensional nilpotent associative \(F_2 \)-algebras of coclass 1 can be fully described as follows.
• $d = 2$ and $d = 3$ are known by the general classification mentioned in the introduction.

• $d \geq 4$:
These algebras are the immediate descendants of the mainline algebra $A_{d-1,1} = A_{d-2}$. We explicitly do the orbit calculation suggested by Lemma 4.25 and Lemma 4.26. By choosing orbit representatives we get the following d-dimensional nilpotent associative \mathbb{F}_2-algebras of coclass 1 for $d \geq 4$ and hence obtain a full classification of the algebras in $\mathcal{G}_{\mathbb{F}_2}(1)$.

\begin{align*}
A_{d,1} &= A_{d-1} = \langle t, a \mid t^d, a^2, ta, at \rangle \text{ (mainline algebra)} \\
A_{d,2} &= \langle t, a \mid t^d, a^2 - t^{d-1}, ta, at \rangle \\
A_{d,3} &= \langle t, a \mid t^d, a^2, ta - t^{d-1}, at \rangle \\
A_{d,4} &= \langle t, a \mid t^d, a^2 - t^{d-1}, ta - t^{d-1}, at \rangle
\end{align*}

Remark 4.30
The reasoning in the case of coclass 1 can also be used to obtain results for certain infinite fields, e.g. $\mathcal{G}_{\mathbb{R}}(1)$ will be virtually periodic with period at most 2 and $\mathcal{G}_{\mathbb{C}}(1)$ will be virtually periodic with period 1.

4.5 Periodicity conjecture for coclass 2

The following conjecture (see our paper [EM16, Conjecture 5]) describes the shape of $\mathcal{G}_{\mathbb{F}}(2)$ for finite fields in detail. It is based on our experimental data.

Conjecture 4.31
Let \mathbb{F} be a finite field of characteristic p with q elements.

(1) Let $p = 2$. Then $\mathcal{G}_{\mathbb{F}}(2)$ consists of $3q + 5$ maximal descendant trees. Of these trees $2q + 1$ are finite and $q + 4$ are maximal coclass trees. The maximal coclass trees are all virtually periodic and have finite depth. More precisely:

(a) There are $q + 3$ maximal coclass trees of depth 1 and period $q - 1$.

(b) There is 1 maximal coclass tree of depth 2 and period $p(q - 1)$.

(2) Let $p > 2$. Then $\mathcal{G}_{\mathbb{F}}(2)$ consists of $3q + 6$ maximal descendant trees. Of these trees $2q + 2$ are finite and $q + 4$ are maximal coclass trees. The maximal coclass trees are all virtually periodic and have finite depth. More precisely:

(a) There are $q + 1$ maximal coclass trees of depth 1 and period $q - 1$.

(b) There is 1 maximal coclass tree of depth 1 and period 1.

(c) There are 2 maximal coclass trees of depth 2 and period $p(q - 1)$.

Remark 4.32
In Conjecture 4.31 the number of maximal coclass trees is indeed a fact proven by Theorem 3.44. Theorem 4.16 yields the conjectured depth bound for almost all branches.
4.5. PERIODICITY CONJECTURE FOR COCLASS 2
Chapter 5

Algorithms

5.1 Algorithm to compute immediate descendants

The aim of this section is to explicitly write down an algorithm for computing immediate descendants of a nilpotent associative \mathbb{F}-algebra A for finite fields \mathbb{F}. More precisely we determine a complete and irredundant list of isomorphism type representatives of immediate descendants of A. A preliminary version of this algorithm has been used by Bertram [Ber11]. It is based on Theorem 4.23, which translates naturally to the following algorithm for determining immediate descendants of a nilpotent associative \mathbb{F}-algebra up to isomorphism. This algorithm is also contained in our paper [EM16].

Algorithm 5.1 (Immediate descendants)

- **Input**: A finite-dimensional nilpotent associative \mathbb{F}-algebra over a finite field \mathbb{F} described by structure constants
- **Output**: A set of isomorphism type representatives of immediate descendants of A described by structure constants

1. Determine structure constants for A^*;
2. Compute $\text{Aut}(A)$ and its action on $M(A)$;
3. Build a list \mathcal{S} of allowable subspaces $U < M(A)$;
4. Determine the orbits of $\text{Aut}(A)$ on \mathcal{S};
5. foreach orbit do
 - Choose a representative U;
 - Determine structure constants for $Q = A^*/U$;
 - Store Q in a list X;
6. end

Return the resulting list X;

Remark 5.2

Methods for determining a structure constants table for A^*, computing the automorphism group of a nilpotent associative \mathbb{F}-algebra and its action of $M(A)$ are described by Eick [Eic08] and implemented in the GAP4 package modisom [Eic16].

Remark 5.3

If one is only interested in the immediate descendants of a certain stepsize s, one only needs to calculate the allowable subspaces U with $\dim(U) = \dim(M(A)) - s$.

53
5.1. ALGORITHM TO COMPUTE IMMEDIATE DESCENDANTS

Remark 5.4
As described in [Eic08] the automorphism group of an immediate descendant Q can be determined from $\text{Stab}_{\text{Aut}(A)}(U)$. This proves to be extremely useful if the algorithm is applied iteratively, because the computation of the automorphism group can be skipped.

Remark 5.5
Starting with the d-generator algebras with trivial multiplication \mathbb{Z}_d, the Algorithm 5.1 can be applied iteratively to determine the nilpotent associative \mathbb{F}-algebras of dimension n and rank d up to isomorphism. This was also used by Bertram in [Ber11] to calculate the nilpotent associative \mathbb{F}_2-algebras of dimension 5.

Remark 5.6
If one is only interested in counting the number of nilpotent associative \mathbb{F}-algebras of dimension n, one can use the well-known Burnside/Cauchy-Frobenius lemma together with the methods developed by Eick and O'Brien in Section 4.2 of [EO99]. Note that one still has to calculate the algebras of dimension $n-1$ in this case. Below is a table containing some data for small finite fields and small dimensions.

<table>
<thead>
<tr>
<th></th>
<th>\mathbb{F}_2</th>
<th>\mathbb{F}_3</th>
<th>\mathbb{F}_4</th>
<th>\mathbb{F}_5</th>
<th>\mathbb{F}_7</th>
<th>\mathbb{F}_8</th>
<th>\mathbb{F}_9</th>
</tr>
</thead>
<tbody>
<tr>
<td>dim 4</td>
<td>27</td>
<td>35</td>
<td>37</td>
<td>45</td>
<td>55</td>
<td>57</td>
<td>65</td>
</tr>
<tr>
<td>dim 5</td>
<td>404</td>
<td>1758</td>
<td>6744</td>
<td>22117</td>
<td>144967</td>
<td></td>
<td></td>
</tr>
<tr>
<td>dim 6</td>
<td>43049</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Number of isomorphism types of nilpotent associative \mathbb{F}-algebras

Remark 5.7
It is shown in Theorem 5.2.11 of [KP69] that the number of isomorphism types of nilpotent associative \mathbb{F}_q-algebras of dimension n is of the form $q^{\alpha n^3}$ where $\alpha = \frac{4}{27} + O(n^{-\frac{2}{3}})$.

54
5.2 Algorithm to calculate roots of maximal descendant trees

This section contains an algorithm to compute the roots of all maximal descendant trees in $G_F(r)$. As the case $r = 0$ is fully known, we only consider the case $r > 0$ here. Of course the main ingredients here are Algorithm 5.1 and Theorem 4.1. The latter theorem allows us to skip the calculation of immediate descendants of stepsize 1 when computing roots. The algorithm is also described in our paper [EM16].

Algorithm 5.8 (Roots of maximal descendants trees in $G_F(r)$ of rank d)

Input: A finite field F and a rank $d \in \{2, \ldots, r+1\}$

Output: The set of roots of maximal descendant trees in $G_F(r)$ that have rank d

Initialize lists X_d, \ldots, X_{2r-2} and Y;

Define A to be \mathbb{Z}_d, the d-dimensional algebra with trivial multiplication;

if $d = r + 1$ then
 Add A to Y;
else
 Add A to X_d;
end

for i from d to $2r-2$ do
 foreach $A \in X_i$ do
 Compute the immediate descendants of A of stepsize $s \in \{2, \ldots, r - \text{cc}(A)\}$ and add these to X_{i+s};
 Compute the immediate descendants of A of stepsize $r - \text{cc}(A) + 1$ and add these to Y;
 end
end

Return Y;

With Algorithm 5.1 and Algorithm 5.8 at hand, it is easy to calculate finite parts of a coclass graph $G_F(r)$ over a finite field. As a first step we calculate the roots of maximal descendant trees in $G_F(r)$ using the latter algorithm and then iteratively apply the first algorithm to calculate immediate descendants of stepsize 1, i.e. immediate descendants of the same coclass. In the following Chapter 6 we exhibit various examples of finite parts of coclass graphs for small finite fields and small coclasses. The implementation of the algorithms is in GAP [GAP15]. The first version of the corresponding package ccalgs is available at [EM15a].
5.2. ALGORITHM TO CALCULATE ROOTS OF MAXIMAL DESCENDANT TREES
Chapter 6

Applications of the algorithms

6.1 The coclass graph $G_{\mathbb{F}}(1)$ with $|\mathbb{F}| < 20$

As a first application we describe the graphs $G_{\mathbb{F}}(1)$ for all finite fields of order less than 20 in full detail. By Corollary 4.28 we know that these graphs consist of a single maximal coclass tree of depth 1 with infinite path $A_1 \to A_2 \to \ldots$. It is virtually periodic with period $|\mathbb{F}| - 1$ and periodic root A_2. Hence it suffices to use the algorithms for the calculation of the branches $B_1, \ldots, B_{|\mathbb{F}|}$. We draw trees in a compacted form. Dots indicate vertices and the edges are numbered according to their multiplicity. The circles indicate the periodicity, meaning that the first circle is being mapped onto the second and this is repeated infinitely often. We illustrate this compacted form on the graph $G_{\mathbb{F}_3}(1)$ that we have already presented in the introduction. In general, the graphs $G_{\mathbb{F}_q}(1)$ are fully described by the values a_1, \ldots, a_q. We give the calculated values for the finite fields of order less than 20 on the next page.
<table>
<thead>
<tr>
<th></th>
<th>a_1</th>
<th>a_2</th>
<th>a_3</th>
<th>a_4</th>
<th>a_5</th>
<th>a_6</th>
<th>a_7</th>
<th>a_8</th>
<th>a_9</th>
<th>a_{10}</th>
<th>a_{11}</th>
<th>a_{12}</th>
<th>a_{13}</th>
<th>a_{14}</th>
<th>a_{15}</th>
<th>a_{16}</th>
<th>a_{17}</th>
<th>a_{18}</th>
<th>a_{19}</th>
</tr>
</thead>
<tbody>
<tr>
<td>F_2</td>
<td>4</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>F_4</td>
<td>6</td>
<td>3</td>
<td>3</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>F_8</td>
<td>10</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>F_{16}</td>
<td>18</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>5</td>
<td>3</td>
<td>7</td>
<td>5</td>
<td>3</td>
<td>5</td>
<td>7</td>
<td>3</td>
<td>5</td>
<td>3</td>
<td>3</td>
<td>17</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F_3</td>
<td>6</td>
<td>3</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>F_9</td>
<td>12</td>
<td>3</td>
<td>5</td>
<td>3</td>
<td>7</td>
<td>3</td>
<td>5</td>
<td>3</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>F_5</td>
<td>8</td>
<td>3</td>
<td>5</td>
<td>3</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>F_7</td>
<td>10</td>
<td>3</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>3</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>F_{11}</td>
<td>14</td>
<td>3</td>
<td>5</td>
<td>3</td>
<td>5</td>
<td>7</td>
<td>5</td>
<td>3</td>
<td>5</td>
<td>3</td>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F_{13}</td>
<td>16</td>
<td>3</td>
<td>5</td>
<td>5</td>
<td>7</td>
<td>3</td>
<td>9</td>
<td>3</td>
<td>7</td>
<td>5</td>
<td>7</td>
<td>3</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F_{17}</td>
<td>20</td>
<td>3</td>
<td>5</td>
<td>3</td>
<td>7</td>
<td>3</td>
<td>5</td>
<td>3</td>
<td>11</td>
<td>3</td>
<td>5</td>
<td>3</td>
<td>7</td>
<td>3</td>
<td>5</td>
<td>3</td>
<td>19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F_{19}</td>
<td>22</td>
<td>3</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>3</td>
<td>9</td>
<td>3</td>
<td>5</td>
<td>11</td>
<td>5</td>
<td>3</td>
<td>9</td>
<td>3</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>3</td>
<td>21</td>
</tr>
</tbody>
</table>

Description of branches of $G_{F_q}(1)$
6.2 The coclass graph $G_\mathbb{F}(2)$ with $|\mathbb{F}| \leq 5$

In this section we present the maximal coclass trees of the graphs $G_\mathbb{F}(2)$ for all finite fields with $|\mathbb{F}| \leq 5$. In Section 3.3 it is shown that there are $|\mathbb{F}| + 4$ maximal coclass trees. The pro-nilpotent \mathbb{F}-algebras describing the infinite paths of these maximal coclass trees have presentations of the form

$$\langle t, a, b \mid at - \alpha_1 b, ta - \alpha_2 b, a^2 - \alpha_3 b, ab, ba, bt, tb, b^2 \rangle.$$

It was shown in Lemma 3.43 that a complete and irredundant set of isomorphism type representatives is given by the algebras described by the triples

$$(\alpha_1, \alpha_2, \alpha_3) \in \{(0, 0, 0), (0, 0, 1), (0, 1, 1), (0, 1, 0), (1, x, 0) \mid x \in \mathbb{F}\}.$$

We denote the corresponding maximal coclass trees by $\mathcal{T}_{(\alpha_1, \alpha_2, \alpha_3)}$.

Maximal coclass trees in $G_{\mathbb{F}_2}(2)$

\[\mathcal{T}_{(0,0,0)} \quad \mathcal{T}_{(0,0,1), \mathcal{T}_{(0,1,0), \mathcal{T}_{(1,0,0)}} \quad \mathcal{T}_{(0,1,1)}\]

\[\mathcal{T}_{(1,1,0)}\]
Maximal coclass trees in \(G_{F_3}(2) \)

\[\mathcal{T}_{(0,0,0)} \]

\[\mathcal{T}_{(0,0,1)} \]

\[\mathcal{T}_{(0,1,1)} \]

\[\mathcal{T}_{(0,1,0)}, \mathcal{T}_{(1,0,0)} \]
6.2. THE COCLASS GRAPH $G_{\ell}(2)$ WITH $|F| \leq 5$
6.2. THE COCLASS GRAPH $G_2(2)$ WITH $|F| \leq 5$
Maximal coclass trees in $\mathcal{G}_{F_4}(2)$

Let α denote a primitive element of F_4 with $\alpha^2 \neq 1$.
6.2. THE COCLASS GRAPH $G_2(2)$ WITH $|F| \leq 5$
Maximal coclass trees in \(\mathcal{G}_{F_5}(2) \)
6.2. THE COCLASS GRAPH $G_\mathfrak{f}(2)$ WITH $|\mathfrak{f}| \leq 5$
6.2. THE COCLASS GRAPH $G_F(2)$ WITH $|F| \leq 5$

$\mathcal{T}_{(1,4,0)}$
6.3 The coclass graph $\mathcal{G}_{\mathbb{F}_2}(3)$

In this section we present the maximal coclass trees of $\mathcal{G}_{\mathbb{F}_2}(3)$. There are 39 of these trees and the pro-nilpotent \mathbb{F}-algebras describing the infinite paths of these maximal coclass trees have presentations on four generators t, a, b, c, where t corresponds to a generator of the infinite subalgebra that is isomorphic to $\mathbb{F}_0[[t]]$. We only give the non-trivial relators, i.e. all products of two generators b_1b_2, (except t^2 of course) that do not appear in the presentations yield a relator b_1b_2. We denote the pro-nilpotent \mathbb{F}_2 of coclass by A_1, \ldots, A_{39} and denote the corresponding maximal coclass trees by T_1, \ldots, T_{39}. Note that A_5 and A_7 are the algebras of Example 4.7 that have a common quotient of coclass 3. Hence the roots of the maximal coclass trees T_5 and T_7 lie in dimension 6 instead of dimension 5.

We can group the pro-nilpotent \mathbb{F}_2-algebras of coclass 3 into different types, namely annihilator extensions of the pro-nilpotent \mathbb{F}_2-algebras of coclass $i \in \{0, 1, 2\}$ by the vector spaces \mathbb{F}_2^{3-i}, respectively, considered as trivial modules. Recall from Section 3.3 that there is a unique isomorphism type of pro-nilpotent \mathbb{F}_2-algebras of coclass 0, a unique isomorphism type of coclass 1 and there are six isomorphism types of coclass 2.

Annihilator extensions of $\mathbb{F}_0[[t]]$ by \mathbb{F}_2^3:

$A_1 = \langle t, a, b, c \mid \ldots \rangle$

Annihilator extensions of $\langle t, a \mid at, ta, a^2 \rangle$ by \mathbb{F}_2^3:

$A_2 = \langle t, a, b, c \mid a^2 - b, \ldots \rangle$
$A_3 = \langle t, a, b, c \mid ta - b, \ldots \rangle$
$A_4 = \langle t, a, b, c \mid a^2 - b, ta - b, \ldots \rangle$
$A_5 = \langle t, a, b, c \mid a^2 - c, ta - b, \ldots \rangle$
$A_6 = \langle t, a, b, c \mid at - b, \ldots \rangle$
$A_7 = \langle t, a, b, c \mid a^2 - c, at - b, \ldots \rangle$
$A_8 = \langle t, a, b, c \mid ta - b, at - b, \ldots \rangle$
$A_9 = \langle t, a, b, c \mid a^2 - c, ta - b, at - b, \ldots \rangle$
$A_{10} = \langle t, a, b, c \mid at - c, at - b, \ldots \rangle$
$A_{11} = \langle t, a, b, c \mid a^2 - b - c, ta - c, at - c, \ldots \rangle$

$\mathcal{G}_{\mathbb{F}_2}(3)$

\begin{center}
\includegraphics[width=0.5\textwidth]{coclass_graph.png}
\end{center}
6.3. THE COCLASS GRAPH $G_{e_2}(3)$

$\mathcal{T}_2, \mathcal{T}_3, \mathcal{T}_6$

\mathcal{T}_4

$\mathcal{T}_5, \mathcal{T}_7$

\mathcal{T}_8

\mathcal{T}_9
6.3. THE COCLASS GRAPH $G_{\mathbb{F}_2}(3)$

\mathcal{T}_{10}

\mathcal{T}_{11}
Annihilator extensions of $\langle t, a, b \mid at, ta, a^2 - b, bt, b^2, ab, ba \rangle$ by \mathbb{F}_2:
$A_{12} = \langle t, a, b, c \mid a^2 - b, ab - c, ba - c, \ldots \rangle$
$A_{13} = \langle t, a, b, c \mid a^2 - b, ab - c, ba - c, ta - c, \ldots \rangle$

\begin{center}
\begin{tikzpicture}[scale=0.7, every node/.style={scale=0.7}]
\node (1) at (0,0) {$\dim 6$};
\node (3) at (1.5,1.5) {$\dim 3$};
\node (4) at (3,3) {$\dim 6$};
\draw (1) -- (3);
\draw (1) -- (4);
\end{tikzpicture}
\end{center}

Γ_{12}

Annihilator extensions of $\langle t, a, b \mid at, ta - b, a^2, bt, b^2, ab, ba \rangle$ by \mathbb{F}_2:
$A_{14} = \langle t, a, b, c \mid ta - b, tb - c, \ldots \rangle$
$A_{15} = \langle t, a, b, c \mid ta - b, tb - c, a^2 - c, \ldots \rangle$
$A_{16} = \langle t, a, b, c \mid ta - b, tb - c, at - c, \ldots \rangle$

\begin{center}
\begin{tikzpicture}[scale=0.7, every node/.style={scale=0.7}]
\node (1) at (0,0) {$\dim 6$};
\node (3) at (1.5,1.5) {$\dim 3$};
\node (5) at (3,3) {$\dim 6$};
\node (7) at (4.5,4.5) {$\dim 3$};
\draw (1) -- (3);
\draw (1) -- (5);
\draw (5) -- (7);
\end{tikzpicture}
\end{center}

Γ_{14}, Γ_{16}

Annihilator extensions of $\langle t, a, b \mid at - b, ta, a^2, bt, b^2, ab, ba \rangle$ by \mathbb{F}_2:
$A_{17} = \langle t, a, b, c \mid at - b, bt - c, \ldots \rangle$
$A_{18} = \langle t, a, b, c \mid at - b, a^2 - c, \ldots \rangle$
$A_{19} = \langle t, a, b, c \mid at - b, bt - c, ta - c, \ldots \rangle$

\begin{center}
\begin{tikzpicture}[scale=0.7, every node/.style={scale=0.7}]
\node (1) at (0,0) {$\dim 6$};
\node (3) at (1.5,1.5) {$\dim 3$};
\node (5) at (3,3) {$\dim 6$};
\node (7) at (4.5,4.5) {$\dim 3$};
\draw (1) -- (3);
\draw (1) -- (5);
\draw (5) -- (7);
\end{tikzpicture}
\end{center}

Γ_{17}, Γ_{19}
Annihilator extensions of \(\langle t, a, b \mid at, ta - b, a^2 - b, bt, b^2, ab, ba \rangle \) by \(\mathbb{F}_2 \): none

Annihilator extensions of \(\langle t, a, b \mid at - b, ta - b, a^2, bt, b^2, ab, ba \rangle \) by \(\mathbb{F}_2 \):

- \(A_{20} = \langle t, a, b, c \mid at - b - c, ta - b, tb - c, bt - c, \ldots \rangle \)
- \(A_{21} = \langle t, a, b, c \mid at - b, ta - b, tb - c, bt - c, a^2 - c, \ldots \rangle \)
- \(A_{22} = \langle t, a, b, c \mid at - b - c, ta - b, tb - c, bt - c, a^2 - c, \ldots \rangle \)
- \(A_{23} = \langle t, a, b, c \mid at - b, ta - b, tb - c, bt - c, \ldots \rangle \)
6.3. THE COCLASS GRAPH $G_{e_2}(3)$

T_{22}

T_{23}
Annihilator extensions of \(\langle t, a, b \mid at, ta, a^2, bt, tb, b^2, ab, ba \rangle \) by \(\mathbb{F}_2 \):

\[
\begin{align*}
A_{24} &= \langle t, a, b, c \mid ab - c, \ldots \rangle \\
A_{25} &= \langle t, a, b, c \mid ab - c, ba - c, \ldots \rangle \\
A_{26} &= \langle t, a, b, c \mid a^2 - c, ab - c, ba - c, \ldots \rangle \\
A_{27} &= \langle t, a, b, c \mid a^2 - c, ab - c, b^2 - c, \ldots \rangle \\
A_{28} &= \langle t, a, b, c \mid ab - c, ta - c, \ldots \rangle \\
A_{29} &= \langle t, a, b, c \mid ab - c, ba - c, ta - c, \ldots \rangle \\
A_{30} &= \langle t, a, b, c \mid a^2 - c, ab - c, ba - c, ta - c, \ldots \rangle \\
A_{31} &= \langle t, a, b, c \mid b^2 - c, \ldots \rangle \\
A_{32} &= \langle t, a, b, c \mid a^2 - c, b^2 - c, ta - c, \ldots \rangle \\
A_{33} &= \langle t, a, b, c \mid a^2 - c, ab - c, b^2 - c, ta - c, \ldots \rangle \\
A_{34} &= \langle t, a, b, c \mid ba - c, at - c, \ldots \rangle \\
A_{35} &= \langle t, a, b, c \mid b^2 - c, at - c, \ldots \rangle \\
A_{36} &= \langle t, a, b, c \mid b^2 - c, ta - c, at - c, \ldots \rangle \\
A_{37} &= \langle t, a, b, c \mid ab - c, b^2 - c, ta - c, at - c, \ldots \rangle \\
A_{38} &= \langle t, a, b, c \mid ta - c, \ldots \rangle \\
A_{39} &= \langle t, a, b, c \mid a^2 - c, ab - c, ba - c, b^2 - c, at - c, \ldots \rangle
\end{align*}
\]
Chapter 7

Summary

7.1 Summary

Coclass theory for finite p-groups was introduced by Leedham-Green & Newman in 1980 [LGN80] and has become a very fruitful approach in the investigation of finite p-groups yielding many interesting results.

The central aim of this thesis is to initiate a coclass theory for nilpotent associative algebras over fields and hence to gain further insight into their structure. Some results of this thesis are also contained in our papers [EM15b] and [EM16]. An essential tool in our investigation are the coclass graphs $G_F(r)$ associated to the nilpotent associative F-algebras of a fixed coclass r. We consider several important features of these graphs.

Infinite paths in coclass graphs

The first main result is the following theorem. It gives a complete structure description of the inverse limits associated to the infinite paths in the coclass graphs $G_F(r)$.

Theorem.

Let F be an arbitrary field and let r be a non-negative integer.

a) An associative F-algebra A is isomorphic to an inverse limit of an infinite path in $G_F(r)$ if and only if it is a split extension $A = T \rtimes \text{Ann}_*(A)$ with $\dim(\text{Ann}_*(A)) = r$ and T is a subalgebra of A such that $T \cong F[[t]]$.

b) The number of equivalence classes of infinite paths in $G_F(r)$ is finite if and only if $r \leq 1$ or F is finite.

This structure description is very useful for further investigations. In particular we use it to develop a method for explicitly constructing isomorphism type representatives of the infinite-dimensional F-algebras describing the inverse limits associated to an infinite path in $G_F(r)$.

Trees in coclass graphs - general case

A first description of the overall structure of $G_F(r)$ is given in the following theorem.
7.1. SUMMARY

Theorem. Let F be an arbitrary field and let r be a non-negative integer. Then $G_F(r)$ is the disjoint union of its maximal descendant trees. Let R be a root of a maximal descendant tree in $G_F(r)$. If $r = 0$, then $\dim(R) = 1$. If $r \geq 1$, then $r + 1 \leq \dim(R) \leq 2r$ holds and these bounds are sharp.

The maximal descendant trees of $G_F(r)$ can contain either zero, one or several infinite paths starting at their roots. A coclass tree is defined to contain exactly one infinite path starting at its root. Coclass trees correspond one-to-one to equivalence classes of infinite paths. We prove the following surprising result.

Theorem. Let F be an arbitrary field and let r be a non-negative integer. Let T be a maximal coclass tree in $G_F(r)$. Then T has bounded depth, i.e. there is a non-negative integer c, such that for every algebra in T the distance to an algebra on the unique infinite path starting at the root of T is at most c.

Trees in coclass graphs - finite field case

Let F be a finite field and r be a non-negative integer. Then the coclass graphs $G_F(r)$ consist of finitely many maximal descendant trees. We can further strengthen this result to the following theorem.

Theorem. Let F be an arbitrary finite field and r be a non-negative integer. Then $G_F(r)$ is the disjoint union of finitely many maximal coclass trees and finitely many other vertices.

This makes coclass graphs over finite fields accessible for computational experiments using the algorithms we exhibited in the thesis. We compute various finite parts of coclass graphs for small fields and small coclasses. The striking observation in the experimental data is that all coclass trees in our examples exhibit a periodic pattern. Based on this observation, we propose the following conjecture for coclass graphs over finite fields.

Conjecture. Let F be an arbitrary finite field and let r be a non-negative integer. Furthermore, let T be a maximal coclass tree in $G_F(r)$. Then T is virtually periodic and the algebras in T can be described by finitely many parametrized presentations.

The conjecture holds for $r = 0$ and we give a proof for $r = 1$. For coclass 2 we give a very detailed conjecture describing the structure of the coclass graphs.

Final comments

Our results concerning the structure and number of infinite paths in coclass graphs can be considered as analogues of Theorems C and D from coclass theory for finite p-groups. The results concerning the depth of coclass trees and the conjectured periodicity indicate that from a coclass theoretic viewpoint the nilpotent associative F-algebras over finite fields behave
similar to 2-groups. Note that the proofs in the theory for nilpotent associative \mathbb{F}-algebras are completely different than the proofs in the p-group case and often much simpler.
7.2 Zusammenfassung

Unendliche Pfade in Koklassengraphen

Das erste Hauptresultat ist das folgende Theorem. Wir geben eine vollständige Strukturbeschreibung für die inversen Limites, die zu unendlichen Pfaden in den Koklassengraphen $G_F(r)$ gehören.

Theorem.

*Sei F ein beliebiger Körper und r eine nichtnegative ganze Zahl.

a) Eine assoziative F-Algebra A ist genau dann isomorph zu einem inversen Limes eines unendlichen Pfades in $G_F(r)$, wenn sie eine zerfallende Erweiterung $A = T \rtimes \text{Ann}_+(A)$ mit $\dim(\text{Ann}_+(A)) = r$ ist. Hierbei ist T eine Unteralgebra von A, so dass $T \cong F[[t]].$

b) Die Anzahl der Äquivalenzklassen von unendlichen Pfaden in $G_F(r)$ ist endlich genau dann, wenn $r \leq 1$ oder F ein endlicher Körper ist.*

Diese Strukturbeschreibung ist sehr hilfreich für weitere Untersuchungen. Insbesondere nutzen wir sie um eine Methode zu entwickeln, mit der wir die unendlichdimensionalen F-Algebren, die zu unendlichen Pfaden in $G_F(r)$ gehören, bis auf Isomorphie konstruieren können.

Bäume in Koklassengraphen - Allgemeiner Fall

Eine erste Beschreibung der Gesamtstruktur von $G_F(r)$ ist durch das folgende Theorem gegeben.

Theorem.

Sei F ein beliebiger Körper und r eine nichtnegative ganze Zahl. Dann ist $G_F(r)$ die disjunkte Vereinigung seiner maximalen Nachfolgerbäume. Sei R die Wurzel eines maximalen Nachfolgerbaums in $G_F(r)$. Für $r = 0$ gilt $\dim(R) = 1$. Für $r \geq 1$ gilt $r + 1 \leq \dim(R) \leq 2r$ und diese Schranken sind bestmöglich.

Die maximalen Nachfolgerbäume von $G_F(r)$ können entweder keinen, einen oder mehrere unendliche, an den Wurzeln der Bäume beginnende, Pfade enthalten. Ein Koklassenbaum

Theorem.
Sei F ein beliebiger Körper und r eine nichtnegative ganze Zahl. Sei T ein maximaler Koklassenbaum in $\mathcal{G}_F(r)$. Dann hat T beschränkte Tiefe, d.h. es gibt eine nichtnegative Zahl c, so dass für jede Algebra in T der Abstand zu einer Algebra auf dem eindeutigen unendlichen Pfad, der an der Wurzel von T beginnt, höchstens c ist.

Bäume in Koklassengraphen - Endliche Körper
Sei F ein beliebiger endlicher Körper und r eine nichtnegative ganze Zahl. Dann besteht der Koklassengraph $\mathcal{G}_F(r)$ aus endlich vielen maximalen Nachfolgebäumen. Wir verstärken dieses Resultat im folgenden Theorem.

Theorem.
Sei F ein beliebiger endlicher Körper und r eine nichtnegative ganze Zahl. Dann ist $\mathcal{G}_F(r)$ die disjunkte Vereinigung von endlich vielen maximalen Koklassenbäumen und endlich vielen anderen Knoten.

Vermutung.
Sei F ein beliebiger endlicher Körper und r eine nichtnegative ganze Zahl. Weiter sei T ein maximaler Koklassenbaum in $\mathcal{G}_F(r)$. Dann ist T virtuell periodisch und die Algebren in T lassen sich durch endlich viele parametrisierte Präsentationen beschreiben.

Diese Vermutung ist wahr für $r = 0$ und wir geben auch einen Beweis für $r = 1$. Für Koklasse 2 geben wir eine sehr detaillierte Vermutung für die Struktur der Koklassengraphen.

Letzte Kommentare
7.2. ZUSAMMENFASSUNG
Acknowledgements

First of all, I would like to thank my supervisor Prof. Dr. Bettina Eick for making this thesis possible through her guidance and many stimulating discussions. I would also like to thank her for the diverse opportunities to visit conferences and workshops within and outside of Germany.

I also want to thank my second referee Prof. Dr. Andrea Caranti for many helpful remarks and of course for making the trip from Trento to Braunschweig to attend my defense.

I would like to thank my friends and colleagues here at the TU Braunschweig for an amazing time with lots of interesting discussions while at work and also for the necessary distractions outside of our offices.

Very warm thanks go to my family for always supporting me during the whole time of my studies. Furthermore, I would like to thank all of my friends outside of university for their continuous support.

I want to thank the DFG for the support within the DFG Priority Project SPP 1489, which made it possible for me to work on this project. Additionally, I want to thank the DAAD for the possibility of a research visit at Monash University, Melbourne, Australia.
Bibliography

