Molecular function of the cytotoxic necrotizing factor \(\text{CNF}_Y \) and its impact on the virulence of \textit{Yersinia pseudotuberculosis}

Von der Fakultät für Lebenswissenschaften
der Technischen Universität Carolo-Wilhelmina
zu Braunschweig
zur Erlangung des Grades einer
Doktorin der Naturwissenschaften
(Dr. rer. nat.)
genehmigte

D i s s e r t a t i o n

von Janina Nikola Georgia Schweer
aus Covington / USA
1. Referentin: Professorin Dr. Petra Dersch
2. Referent: Professor Dr. Michael Steinert
eingereicht am: 30.04.2014
mündliche Prüfung (Disputation) am: 26.06.2014

Druckjahr 2014
Vorveröffentlichungen der Dissertation

Teilergebnisse aus dieser Arbeit wurden mit Genehmigung der Fakultät für Lebenswissenschaften, vertreten durch die Mentorin der Arbeit, in folgenden Beiträgen vorab veröffentlicht:

Publikationen

Tagungsbeiträge

Table of Contents

Abbreviations

1 Introduction
 1.1 The genus *Yersinia* 1
 1.2 Pathogenesis of enteropathogenic *Yersinia* strains 3
 1.3 Enteropathogenic *Yersinia* and the host’s immune response 6
 1.4 Virulence factors of enteropathogenic *Yersinia* 8
 1.4.1 Invasins and adhesins 10
 1.4.1.1 Invasin ... 10
 1.4.1.2 YadA ... 11
 1.4.2 The Yop virulon 13
 1.5 The actin cytoskeleton 17
 1.6 Small Rho-GTPases 18
 1.7 Bacterial toxins interacting with Rho-GTPases 19
 1.7.1 Cytotoxic necrotizing factors 21
 1.7.1.1 CNFγ ... 24
 1.8 Aim of this study 26

2 Material and methods 27
 2.1 Material ... 27
 2.1.1 Equipment and material 27
 2.1.2 Chemicals and buffers 27
 2.1.3 Media and supplements 29
 2.1.4 Enzymes and antibodies 30
 2.1.5 Commercial kits 32
 2.1.6 Oligonucleotides and plasmids 33
 2.1.7 Oligonucleotides 33
 2.1.8 Bacterial strains and cell lines 36
 2.1.9 Software and databases 38
 2.2 Methods .. 38
 2.2.1 Microbiological methods 38
 2.2.1.1 Sterilization 38
Table of Contents

2.2.1.2 Growth conditions... 38
2.2.1.3 Determination of cell density... 38
2.2.1.4 Storage of bacteria... 39
2.2.1.5 Curing of the virulence plasmid of Y. pseudotuberculosis... 39
2.2.1.6 Yop secretion assay... 39

2.2.2 Cell biological methods... 40
 2.2.2.1 Cultivation and passage of eukaryotic cells ... 40
 2.2.2.2 Determination of cell count .. 40
 2.2.2.3 Freezing and thawing of eukaryotic cells ... 41
 2.2.2.4 Incubation of eukaryotic cells with CNF... 41
 2.2.2.5 Multinucleation assay.. 41
 2.2.2.6 Visualization of the actin cytoskeleton .. 42
 2.2.2.7 Rho/Rac/Cdc42 activation assay.. 42
 2.2.2.8 TEER (Transepithelial Electrical Resistance) measurement ... 44
 2.2.2.9 Yop delivery assay *in vitro* ... 45

2.2.3 Molecular biological methods.. 48
 2.2.3.1 Measuring of DNA concentration... 48
 2.2.3.2 Polymerase chain reaction (PCR) .. 48
 2.2.3.3 Agarose gel electrophoresis .. 48
 2.2.3.4 Plasmid DNA isolation .. 49
 2.2.3.5 Genomic DNA isolation ... 49
 2.2.3.6 DNA extraction ... 49
 2.2.3.7 Purification of PCR fragments ... 50
 2.2.3.8 Restriction digestion of DNA ... 50
 2.2.3.9 Dephosphorylation ... 50
 2.2.3.10 Ligation ... 50
 2.2.3.11 DNA sequencing ... 50
 2.2.3.12 Construction of plasmids .. 51
 2.2.3.13 Construction of mutant strains .. 52
 2.2.3.14 Production of electrocompetent *Yersinia* .. 53
 2.2.3.15 Production of chemocompetent *E. coli* ... 54
 2.2.3.16 Electro transformation in *Yersinia* ... 54
 2.2.3.17 Chemical transformation in *E. coli* ... 54

2.2.4 Biochemical methods... 55
 2.2.4.1 Preparation of whole cell extracts .. 55
 2.2.4.2 Protein precipitation (TCA). ... 55
 2.2.4.3 SDS polyacrylamide gel electrophoresis (SDS-PAGE) ... 55
 2.2.4.4 Coomassie staining ... 57
 2.2.4.5 Western blot .. 57
 2.2.4.6 Stripping of the membrane ... 57
 2.2.4.7 Purification of CNF_P-His₆ ... 58
3 Results .. 68

3.1 Expression and secretion pattern of cnfY/CNFY ... 68

3.1.1 The CNFY toxin is highly expressed and secreted under host-relevant conditions .. 68

3.1.2 The cnfY gene expression is controlled by virulence regulators 70

3.1.3 The cnfY gene is highly expressed in vivo during the whole infection route 72

3.2 CNFY activates the small Rho-GTPases and alters the cell morphology 75

3.3 Impact of CNFY on the virulence of Y. pseudotuberculosis 79

3.3.1 CNFY is crucial for the virulence of Y. pseudotuberculosis 79

3.3.1.1 CNFY is crucial for efficient colonization of mesenteric lymph nodes and the systemic organs .. 81

3.3.2 CNFY leads to highly inflamed tissues .. 85

3.3.3 CNFY triggers the release of multiple proinflammatory cytokines 87

3.3.4 CNFY modulates the host immune response .. 90

3.3.5 CNFY influence on Yop delivery .. 95

3.3.5.1 CNFY enhances the Yop delivery into eukaryotic cells 96

3.3.5.2 YopE is not strong enough to counteract CNFY ... 99

3.3.5.3 CNFY enhances Yop delivery in vivo ... 102

3.3.6 Yop delivery-independent CNFY function ... 105

3.3.6.1 Additional loss of cnfY in a yscS mutant leads to an efficient colonization of the gut 105

3.3.6.2 CNFY causes slight inflammation in the intestine independent of the Yop machinery ... 108

3.3.6.3 Loss of cnfY in a ΔyscS mutant causes no significant alteration of the immune response .. 110

3.3.6.4 Proteins of the virulence plasmid decrease the membrane integrity 115

3.4 CNFY leads to long term changes of the host immune system 117

4 Discussion .. 124

4.1 CNFY is present at infection relevant conditions .. 124
Table of Contents

4.2 CNF\textsubscript{Y} constitutively activates the small Rho-GTPases Rac1, Cdc42, and RhoA and causes inflammation ... 127

4.3 CNF\textsubscript{Y} is crucial for virulence of \textit{Y. pseudotuberculosis} YPIII 128

4.4 CNF\textsubscript{Y} functions as a Yop delivery enhancer .. 131
 4.4.1 CNF\textsubscript{Y} causes inflammation and increased cellular death 133
 4.4.2 YopE exerts counteracting effects to CNF\textsubscript{Y} ... 135
 4.4.3 Schematic model of CNF\textsubscript{Y}-enhanced Yop delivery 137

4.5 CNF\textsubscript{Y} exerts a minor impact on the epithelial layer permeability 139

4.6 CNF\textsubscript{Y} activity is detrimental to \textit{Y. pseudotuberculosis} without activated T3SS ... 140
 4.6.1 CNF\textsubscript{Y} causes long-lasting modulation of the immune cell contents in the spleen .. 142

5 Outlook .. 146

6 Summary .. 147

References .. 148

Supplementary material .. 168

Danksagung ... XII
List of figures

Figure 1.3.1: Overview of the cells of the innate and adaptive immunity (Dranoff, 2004) 7
Figure 1.4.1: Invasion of enteropathogenic Yersinia by InvA induced zipper mechanism 10
Figure 1.4.2: The invasin (InvA) structure of Y. pseudotuberculosis ... 11
Figure 1.4.3: The virulence factor YadA .. 12
Figure 1.4.5: Overview of the different effector Yops and their influence in the host signaling pathways (Viboud & Bliska, 2005) ... 16
Figure 1.5.1: Actin polymerization and depolymerization dynamics ... 17
Figure 1.6.1: The GTPase cycle of Cdc42, Rac1 and RhoA and their influence on the actin cytoskeleton ... 19
Figure 1.7.1: Different Rho-GTPase modifying toxins ... 20
Figure 1.7.2: Receptor-mediated endocytosis of the CNFs into the eukaryotic cell 22
Figure 1.7.4: Comparison of the CNFγ sequences of Y. pseudotuberculosis YPIII and Y. pestis CO92 (Lockman et al., 2002) .. 25
Figure 2.2.1: Principle of the Rho GTPase activation assay .. 43
Figure 2.2.2: Scheme of the Transwell® .. 44
Figure 2.2.3: Principle of the bla-reporter assay ... 45
Figure 2.2.4: Gene Ruler DNA Ladder Mix (Thermo Scientific) .. 49
Figure 2.2.5: PageRuler™ Prestained Protein Ladder (Fermentas) ... 56
Figure 3.1.1: The highest expression of cnfY in vitro was detected at 37°C in the late stationary growth phase .. 69
Figure 3.1.2: The highest secretion level of CNFγ in vitro was detected at 37°C in the late stationary growth phase .. 69
Figure 3.1.3: The cnfY expression is dependent on nutrient availability 70
Figure 3.1.5: The cnfY expression is dependent on Crp, but not on Fur at 37°C 72
Figure 3.1.6: The highest cnfY expression in vivo was detectable two days post infection 73
Figure 3.1.7: The cnfY expression is not organ-specific ... 74
Figure 3.2.1: Incubation of epithelial cells with sterilized Y. pseudotuberculosis YPIII lysate leads to the formation of multinucleated giant cells ... 76
List of figures

Figure 3.2.2: CNF\textsubscript{Y} induces the formation of filopodia, lamellipodia and stress fibres of mature and immature murine macrophages. ... 77

Figure 3.2.3: CNF\textsubscript{Y} intoxication leads to the activation of the three small Rho-GTPases RhoA, Rac1 and Cdc42 in murine macrophages and human epithelial cells. .. 78

Figure 3.3.1: The \textit{cnf}Y mutant strain is avirulent in a mouse survival experiment, yet causes body weight reductions of mice up to five days post infection. ... 80

Figure 3.3.2: The introduction of a functional \textit{phoP}+ into \textit{Y. pseudotuberculosis} YPIII does not change the impact of CNF\textsubscript{Y} on virulence significantly. ... 81

Figure 3.3.3: The loss of \textit{cnf}Y leads to clearance of \textit{Yersinia} in MLNs, spleen and liver in the later infection phase. ... 82

Figure 3.3.4: CNF\textsubscript{Y} induces shrinkage of spleen and liver and shortening of the gut length of infected mice... 84

Figure 3.3.5: CNF\textsubscript{Y} leads to a highly inflamed intestine and necrosis in the spleen. 86

Figure 3.3.6: CNF\textsubscript{Y} induces higher proinflammatory cytokine levels in the serum of infected mice. .. 89

Figure 3.3.7: CNF\textsubscript{Y} modulates the host immune response and leads to depletion of immune cells. .. 94

Figure 3.3.8: CNF\textsubscript{Y} enhances Yop delivery into human epithelial cells.. 97

Figure 3.3.9: CNF\textsubscript{Y} enhanced Yop delivery into murine macrophages is dependent on RhoA activation... 99

Figure 3.3.10: Deletion of YopE induces slightly higher amounts of RhoA/Rac1-GTP and leads to a minimal increase in Yop delivery. .. 101

Figure 3.3.11: Deletion of \textit{cnf}Y diminishes Yop delivery predominantly into neutrophils, macrophages and DCs in PP, MLNs and spleen \textit{in vivo}. ... 105

Figure 3.3.12: Deletion of \textit{yscS} reduces colonization of intestinal tissues, whereby a \textit{yscS cnf}Y double mutant strain is more efficient in colonizing the intestinal tract than a \textit{yscS} single mutant. ... 108

Figure 3.3.13: CNF\textsubscript{Y} induces slight inflammation in the ileum independent of the T3SS. 109

Figure 3.3.14: Additional loss of \textit{cnf}Y in a \textit{\Delta}yscS mutant does not change the triggered immune response. .. 114

Figure 3.3.15: Proteins of the virulence plasmid lead to destruction of an epithelial membrane, whereas CNF\textsubscript{Y} only causes a slight increase in membrane permeability. ... 116
List of figures

Figure 3.4.1: Only the cnfY mutant strain could be reisolated of the caecum 28 days post infection, yet the spleen weights still differ after infection with YP12 pYV, YP147 (∆cnfY) or YP150 pYV (∆cnfY). ... 118

Figure 3.4.2: CNFγ induced reduction of immune cell numbers in the spleen is independently from the virulence plasmid and still detectable 28 days post infection. ... 122

Figure 4.4.1: Proposed model of CNFγ-enhanced Yop delivery. .. 139

Figure S1: Microcolonies of Y. pseudotuberculosis in the spleen. .. 168

Figure S2: Gating strategies for immune cell contents in PP, MLNs, and spleen after infection with Y. pseudotuberculosis YPIII or YP147 (∆cnfY). ... 169

Figure S3: CNFγ modulates the host immune response in the infected mice. 172

Figure S4: Gating strategies for the analysis of CNFγ impact on Yop delivery. 173

Figure S5: Deletion of cnfY diminishes Yop delivery predominantly into neutrophils, macrophages and DCs in MLNs and spleen in vivo. ... 176

Figure S6: Gating strategies for immune cell contents in PP, MLNs, and spleen after infection with different Y. pseudotuberculosis strains. ... 177
List of tables

Table 2.1: Buffers and solutions ... 27
Table 2.2: Media .. 29
Table 2.3: Supplements and inhibitors .. 29
Table 2.4: Enzymes ... 30
Table 2.5: Antibodies ... 31
Table 2.6: Commercial kits ... 32
Table 2.7: Oligonucleotides ... 33
Table 2.8: Plasmids .. 35
Table 2.9: Bacterial strains ... 36
Table 2.10: Cell lines ... 37
Table 2.11: Composition of 0.75 mm SDS-gels (Sambrook et al., 1989) .. 56
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>adenine</td>
</tr>
<tr>
<td>Ail</td>
<td>attachment and invasion locus</td>
</tr>
<tr>
<td>Amp</td>
<td>ampicillin</td>
</tr>
<tr>
<td>APC</td>
<td>antigen presenting cell</td>
</tr>
<tr>
<td>APS</td>
<td>ammonium persulfate</td>
</tr>
<tr>
<td>ATP</td>
<td>adenosine triphosphate</td>
</tr>
<tr>
<td>bp</td>
<td>base pairs</td>
</tr>
<tr>
<td>BHI</td>
<td>brain heart infusion</td>
</tr>
<tr>
<td>bla</td>
<td>ampicillin resistance gene (β-lactamase)</td>
</tr>
<tr>
<td>BSA</td>
<td>bovine serum albumin</td>
</tr>
<tr>
<td>C</td>
<td>cytosine</td>
</tr>
<tr>
<td>°C</td>
<td>degree Celsius</td>
</tr>
<tr>
<td>Cb</td>
<td>carbenicillin</td>
</tr>
<tr>
<td>CFU</td>
<td>colony forming units</td>
</tr>
<tr>
<td>CNF</td>
<td>cytotoxic necrotizing factor</td>
</tr>
<tr>
<td>Crp</td>
<td>cAMP receptor protein</td>
</tr>
<tr>
<td>Csr</td>
<td>carbon storage regulator</td>
</tr>
<tr>
<td>Da</td>
<td>Dalton</td>
</tr>
<tr>
<td>DAPI</td>
<td>4',6'-diamidino-2-phenylindole</td>
</tr>
<tr>
<td>DC</td>
<td>dendritic cell</td>
</tr>
<tr>
<td>DNA</td>
<td>desoxyribonucleic acid</td>
</tr>
<tr>
<td>DNT</td>
<td>dermonecrotic toxin</td>
</tr>
<tr>
<td>dNTP</td>
<td>desoxy-ribonucleid-triphasphate</td>
</tr>
<tr>
<td>DYT</td>
<td>double yeast tryptone</td>
</tr>
<tr>
<td>et al.</td>
<td>et alii</td>
</tr>
<tr>
<td>ECM</td>
<td>extracellular matrix</td>
</tr>
<tr>
<td>EDTA</td>
<td>ethylenediaminetetraacetic acid</td>
</tr>
<tr>
<td>e.g.</td>
<td>for example</td>
</tr>
<tr>
<td>ETEM</td>
<td>YopE-β-lactamase</td>
</tr>
<tr>
<td>FAE</td>
<td>follicle associated epithel</td>
</tr>
<tr>
<td>F-actin</td>
<td>filamentous actin</td>
</tr>
<tr>
<td>FCS</td>
<td>fetal calf serum</td>
</tr>
<tr>
<td>FELASA</td>
<td>European Health Recommendations of the Federation of Laboratory Animal Science Associations</td>
</tr>
<tr>
<td>Fur</td>
<td>ferric uptake regulator</td>
</tr>
<tr>
<td>g</td>
<td>gram</td>
</tr>
<tr>
<td>G</td>
<td>guanine</td>
</tr>
<tr>
<td>G-actin</td>
<td>globular actin</td>
</tr>
<tr>
<td>GALT</td>
<td>gut-associated lymphoid tissue</td>
</tr>
<tr>
<td>GAP</td>
<td>GTPase-activating proteins</td>
</tr>
<tr>
<td>GDI</td>
<td>guanine-nucleotide-dissociation inhibitors</td>
</tr>
<tr>
<td>GEF</td>
<td>guanine-nucleotide-exchange factors</td>
</tr>
<tr>
<td>GFP</td>
<td>green fluorescent protein</td>
</tr>
<tr>
<td>GTP</td>
<td>guanosine triphosphate</td>
</tr>
<tr>
<td>GV-SOLAS</td>
<td>German Recommendations of the Society for Laboratory Animal Science</td>
</tr>
<tr>
<td>h</td>
<td>hour(s)</td>
</tr>
<tr>
<td>HBMIEC</td>
<td>human brain microvascular endothelial cells</td>
</tr>
<tr>
<td>Abbreviations</td>
<td></td>
</tr>
<tr>
<td>---------------</td>
<td></td>
</tr>
<tr>
<td>H & E</td>
<td>hematoxylin-eosin</td>
</tr>
<tr>
<td>HEp-2</td>
<td>human epithelial cells</td>
</tr>
<tr>
<td>HRP</td>
<td>horseradish peroxidase</td>
</tr>
<tr>
<td>IFN</td>
<td>interferon</td>
</tr>
<tr>
<td>IL</td>
<td>interleukin</td>
</tr>
<tr>
<td>IPTG</td>
<td>isopropyl-β-d-thiogalactopyranosid</td>
</tr>
<tr>
<td>IVIS</td>
<td>in vivo imaging system</td>
</tr>
<tr>
<td>kan</td>
<td>kanamycin</td>
</tr>
<tr>
<td>kb</td>
<td>kilobase</td>
</tr>
<tr>
<td>κB kinase β</td>
<td>IKKβ</td>
</tr>
<tr>
<td>kDa</td>
<td>kilo-Dalton</td>
</tr>
<tr>
<td>l</td>
<td>liter</td>
</tr>
<tr>
<td>lacZ</td>
<td>gene of β-galactosidase</td>
</tr>
<tr>
<td>LcrF</td>
<td>low calcium response F</td>
</tr>
<tr>
<td>LP</td>
<td>lamina propria</td>
</tr>
<tr>
<td>LPS</td>
<td>lipopolysaccharides</td>
</tr>
<tr>
<td>luxCDABE</td>
<td>luciferase operon (luciferase and its substrate)</td>
</tr>
<tr>
<td>M</td>
<td>molar</td>
</tr>
<tr>
<td>mA</td>
<td>milli-Ampère</td>
</tr>
<tr>
<td>MAPK</td>
<td>mitogen-activated protein kinase</td>
</tr>
<tr>
<td>M-cells</td>
<td>microfold cells</td>
</tr>
<tr>
<td>Mcs</td>
<td>multiple cloning site</td>
</tr>
<tr>
<td>MEK</td>
<td>mitogen-activated protein kinase kinases</td>
</tr>
<tr>
<td>min</td>
<td>minute</td>
</tr>
<tr>
<td>MMA</td>
<td>minimal medium A</td>
</tr>
<tr>
<td>μ</td>
<td>micro</td>
</tr>
<tr>
<td>ml</td>
<td>milliliter</td>
</tr>
<tr>
<td>MLNs</td>
<td>mesenteric lymph nodes</td>
</tr>
<tr>
<td>mm</td>
<td>millimeter</td>
</tr>
<tr>
<td>NCBI</td>
<td>National Center for Biotechnology Information</td>
</tr>
<tr>
<td>NCS</td>
<td>newborn calf serum</td>
</tr>
<tr>
<td>NEB</td>
<td>New England Biolabs</td>
</tr>
<tr>
<td>NF-κB</td>
<td>nuclear factor κB</td>
</tr>
<tr>
<td>ng</td>
<td>nanogram</td>
</tr>
<tr>
<td>NK</td>
<td>natural killer</td>
</tr>
<tr>
<td>nm</td>
<td>nanometer</td>
</tr>
<tr>
<td>nM</td>
<td>nanomolar</td>
</tr>
<tr>
<td>OD<sub>nm</sub></td>
<td>optical density<sub>nm</sub></td>
</tr>
<tr>
<td>OMV</td>
<td>outer membrane vesicle</td>
</tr>
<tr>
<td>ori</td>
<td>origin of replication</td>
</tr>
<tr>
<td>PAA</td>
<td>polyacrylamide</td>
</tr>
<tr>
<td>PAGE</td>
<td>polyacrylamide-gel electrophoresis</td>
</tr>
<tr>
<td>PAK</td>
<td>p21-activated protein kinase</td>
</tr>
<tr>
<td>PBD</td>
<td>p21-binding domain</td>
</tr>
<tr>
<td>PBS</td>
<td>phosphate buffered saline</td>
</tr>
<tr>
<td>PCR</td>
<td>polymerase chain reaction</td>
</tr>
<tr>
<td>PFA</td>
<td>paraformaldehyde</td>
</tr>
<tr>
<td>PI</td>
<td>propidium iodide</td>
</tr>
<tr>
<td>PMN</td>
<td>polymorphonuclear neutrophil</td>
</tr>
</tbody>
</table>
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PP</td>
<td>Peyer’s patches</td>
</tr>
<tr>
<td>PRK2</td>
<td>protein kinase C-like 2</td>
</tr>
<tr>
<td>PVDF</td>
<td>polyvinylidene fluoride</td>
</tr>
<tr>
<td>pYV</td>
<td>Yersinia virulence plasmid</td>
</tr>
<tr>
<td>RBD</td>
<td>Rho-binding domain</td>
</tr>
<tr>
<td>ROS</td>
<td>reactive oxygen species</td>
</tr>
<tr>
<td>rpm</td>
<td>rotation per minute</td>
</tr>
<tr>
<td>RSK1</td>
<td>ribosomal protein S6 kinase</td>
</tr>
<tr>
<td>RT</td>
<td>room temperature</td>
</tr>
<tr>
<td>SDS</td>
<td>sodium dodecylsulfate</td>
</tr>
<tr>
<td>SOC</td>
<td>super optimal broth</td>
</tr>
<tr>
<td>T</td>
<td>thymin</td>
</tr>
<tr>
<td>TBE</td>
<td>tris-borat EDTA-buffer</td>
</tr>
<tr>
<td>TCA</td>
<td>trichloracetic acid</td>
</tr>
<tr>
<td>TcdBF</td>
<td>toxin B of variant Clostridium difficile strain 1470 serotype F</td>
</tr>
<tr>
<td>TEER</td>
<td>trans epithelial electrical resistance</td>
</tr>
<tr>
<td>TLR</td>
<td>toll-like receptor</td>
</tr>
<tr>
<td>TNF</td>
<td>tumor necrosis factor</td>
</tr>
<tr>
<td>T3SS</td>
<td>type three secretion system</td>
</tr>
<tr>
<td>UPEC</td>
<td>uropathogenic E. coli</td>
</tr>
<tr>
<td>V</td>
<td>Volt</td>
</tr>
<tr>
<td>wt</td>
<td>wild-type</td>
</tr>
<tr>
<td>YadA</td>
<td>Yersinia adhesin A</td>
</tr>
<tr>
<td>YmoA</td>
<td>Yersinia-modulator A</td>
</tr>
<tr>
<td>Yop</td>
<td>Yersinia outer proteins</td>
</tr>
</tbody>
</table>
1 Introduction

Pathogenic bacteria possess different virulence factors, e.g. to evade the immune system or to efficiently colonize a host. Bacterial toxins are mostly essential virulence factors of the respective bacterium.

One of the first toxins, which were identified was the diphtheria toxin of Corynebacterium diphtheriae (Roux & Yersin, 1888). The identification of many other important toxins followed. Of particular interest are toxins functioning as biological weapons, like anthrax of Bacillus anthracis, but also toxins used in the pharmaceutical industry like botulinum toxin of Clostridium botulinum. Furthermore, inactivated bacterial toxins are commonly used as vaccines, stimulating the host’s immune system to develop immunity against the respective bacterium.

This thesis has a focus on an A-B toxin, the cytotoxic necrotizing factor CNF$_Y$, which is expressed by the enteropathogen Yersinia pseudotuberculosis, a model organism widely applied in fundamental research.

1.1 The genus Yersinia

Yersiniae are gram-negative rod shaped bacteria, which facultatively grow in aerobic conditions and are psychrotolerant. They are able to grow at 4°C as well as 43°C with an optimum between 20 - 30°C. At moderate temperatures outside the host they are mostly motile and lose this feature inside the host at 37°C (Kapatral & Minnich, 1995).

The genus Yersinia belongs to the group of Enterobacteriaceae and was first described by the Swiss tropical physician Alexandre Yersin in 1894. He was able to isolate the most known species Y. pestis out of plague-spots of human dead bodies (Treille & Yersin, 1894). In total, 18 species belong to the genus Yersinia (Savin et al., 2014), but only three of them are human pathogens, the above mentioned Y. pestis and two enteropathogenic species, namely Y. enterocolitica and Y. pseudotuberculosis (Carniel et al., 2006; Chen et al., 2010). Transmission of all human pathogenic Yersinia strains occurs by animals. These infections are referred to as zoonoses. Furthermore, isolates of these pathogens have in common a tropism for lymphatic tissue. Within these tissues the bacteria are able to replicate efficiently and escape or inhibit the innate immune response of the host (Grosdent et al., 2002; Heesemann, 1994; Naktin & Beavis, 1999).
Introduction

Up to now plague is one of the most dangerous infectious diseases and still not eradicated. New infections with *Y. pestis* are reported regularly, e.g. epidemics in Madagascar or even in the United States of America due to persistance of the bacteria in rodents. *Y. pestis* is transmitted to the host by infected fleas, which serve as vectors. The bite induces the regurgitation of the contaminated stomach content of the flea into the bloodstream of the host (Hinnebusch, 1997). Rodents often show no symptoms of disease, whereas a *Y. pestis* infection in humans leads to bubonic or pneumonic plague. These diseases cause rapid death of the patient without antibiotic treatment (McCrumb et al., 1953; Quenee & Schneewind, 2009).

In comparison, infections by the enteropathogenic strains, *Y. enterocolitica* or *Y. pseudotuberculosis*, are less dangerous. These bacteria are transmitted via contaminated food or water, e.g. raw meet or milk (Lynch et al., 2006). An infection with these species induce Yersiniosis, a variety of gut-associated diseases like enteritis and diarrhea or it can rarely cause autoimmune diseases like erythema nodosum or reactive arthritis (Lamps, 2003; Lamps et al., 2003). Yersiniosis is the third most abundant bacterial zoonotic infectious disease in Germany and the European Union (Rosner et al., 2010). With an intact immune system of the host, these infections are self limiting and do not require antibiotic treatment (Abdel-Haq et al., 2000).

Although these three human pathogenic species belong to the same genus, they vary significantly in the type of transmission (see above). The genetically higher degree of relationship is between *Y. pseudotuberculosis* and *Y. pestis*. It could be shown that *Y. pestis* evolved out of *Y. pseudotuberculosis* about 1,500 – 20,000 years ago (Achtman et al., 1999). Nevertheless, these two species show important differences in the progress and severity of disease. Responsible therefore are differences in the genome, mostly the extra chromosomal DNA.

All human pathogenic strains harbour a very similar virulence plasmid with a size of around 70 kb, which is needed for infection. However, there are 13% of genes inactive in *Y. pestis*, of which most of them are important for a successful *Y. pseudotuberculosis* infection (Chain et al., 2004). For example the gene *yadA* (*Yersinia* adhesin A), encoded on the virulence plasmid, is needed for adhesion to and invasion into the eukaryotic cells by the enteropathogenic strains, whereas it is inactive in the *Y. pestis* strains (Neyt et al., 1997). In addition to the virulence plasmid *pYV*, which is harboured by all pathogenic strains, *Y. pestis* carries two other plasmids, *pFRA* (100 kb) and *pPLA* (9.5 kb). These
two extrachromosomal elements are of high importance for the infection, because they are needed for the survival in the flea and the transmission via the blood of the host (Sebbane et al., 2009).

The enteropathogenic species consist of many different serotypes. The two species show a weak sequence-identity of around 50% in the genome, and differ in their gene expression pattern (Brenner et al., 1976). The Y. enterocolitica strains are classified in biogroups based on biochemical features and in serogroups, depending on their O-antigen immune reactivity (Brenner et al., 1976). Many of these serogroups are known to induce diseases in humans, but the most common serogroup in Germany with about 90% of all Y. enterocolitica infections is the serogroup O:3/biotype 4 (Rosner et al., 2010). The Y. pseudotuberculosis strains are categorized in 21 serogroups, whereas the majority of diseases are caused by the serogroups O:1 and O:3 (Dube, 2009). Several differences among the Y. pseudotuberculosis strains were described. A few isolates e.g. carry the intact gene for the cytotoxic necrotizing factor cnfY, whereas this gene is mutated in other sequenced Y. pseudotuberculosis strains (Lockman et al., 2002).

Due to their ability to colonize and invade different hosts, enteropathogenic Yersinia species are used for fundamental research on the infection mechanism (e.g. in mice). The detailed path of infection of the enteric species is described below.

1.2 Pathogenesis of enteropathogenic Yersinia strains

The uptake of enteropathogenic Yersinia species takes place by ingestion of contaminated food or water. Raw or undercooked pork is the main source of infection, because many pigs are colonized by Y. enterocolitica without showing any symptoms of disease (Fosse et al., 2009; Fredriksson-Ahomaa et al., 2006). Additionally, the bacteria are able to grow at 4°C in the fridge.

Infection with both enteric Yersinia species is considered as biphasic, divided into early and late infection phase. The early phase starts with the uptake of the bacteria in the human body, where an immediate shift in temperature and pH occurs, to which the bacteria need to adjust rapidly. These changes in the environment of the bacteria lead to the expression of stress adaption and virulence factors. The coding genes are located both on the chromosome and on the virulence plasmid pYV (Pepe et al., 1994). This expression is important for the bacteria to pass through the stomach with its acidic pH (Young et al., 1996). Subsequently, the bacteria reach the small intestine and the terminal ileum, where the Yersinia are able to adhere to specialized enterocytes, the
Introduction

microfold cells (M-cells) and invade therein (see Figure 1.2.1). Up to this step the bacteria are motile, but lose this characteristic during the progress of infection.

The M-cells belong to the follicle-associated epithelial layer (FAE) of the gut, which covers the Peyer’s patches (PP). These cells have a flat form and fewer, wider and less pronounced microvilli compared to the absorptive enterocytes of the gut (Grutzkau et al., 1990). M-cells possess β₁-integrins, which are important receptors for the adhesion, invasion and ultimately the induced transcytosis of *Yersinia* through the gut epithelial layer. They initiate the process of transcytosis, by recognizing antigens on their apical side, take them up in vesicles and transport them to their basolateral side into the PP (Neutra et al., 1999). With the transcytosis of the enteric *Yersinia*, the late infection phase starts.

The bacteria are able to colonize the PP, which leads to a proinflammatory response characterized by the infiltration of phagocytes (Grutzkau et al., 1990) and the release of proinflammatory cytokines (see 1.3). To evade or protect themselves against the ongoing immune response, *Yersinia* possess different virulence factors, e.g. the *Yersinia* outer proteins (Yops) (see 1.4.2), which expression is associated with the late infection phase (Cornelis & Wolf-Watz, 1997; Revell & Miller, 2001).

In the next step, the bacteria leave the PP and spread via the lymphatic system to the mesenteric lymph nodes (MLNs). From there they are able to spread to the systemic organs liver, spleen and kidneys. It is also believed, that the enteropathogenic *Yersinia* species can, in some cases, travel directly from the small intestine through the bloodstream to the systemic organs like liver and spleen and bypass the MLNs (Autenrieth & Firsching, 1996). In the organs, *Yersinia* replicates mostly extracellularly, which leads to the formation of microcolonies and abscesses (Autenrieth & Firsching, 1996; Isberg & Van Nhieu, 1994). Additionally, there is evidence that some strains of the enteropathogenic species are able to survive and even replicate within the macrophages (Brzostek et al., 2003; Cavanough & Randall, 1959; Pujol & Bliska, 2005; Tsukano et al., 1999). This would be another factor helping the bacteria to hide and thereby evade their elimination by the host’s immune system.
Introduction

The yersinia are ingested by contaminated food or water, reach the small intestine and transcytose via M-cells, localized in the terminal ileum. After the transcytosis mediated by β1-integrin receptors, the bacteria reach the Peyer's patches, travel through the lymphatic system and reach the MLN. From there they spread to the systemic organs liver and spleen. It is assumed that some of the bacteria can bypass the MLNs and reach the systemic organs directly from the PP via the blood stream (Autenrieth & Firsching, 1996).

Figure 1.2.1: Infection route of enteropathogenic *Yersinia* species through the gut.

The yersinia are ingested by contaminated food or water, reach the small intestine and transcytose via M-cells, localized in the terminal ileum. After the transcytosis mediated by β1-integrin receptors, the bacteria reach the Peyer's patches, travel through the lymphatic system and reach the MLN. From there they spread to the systemic organs liver and spleen. It is assumed that some of the bacteria can bypass the MLNs and reach the systemic organs directly from the PP via the blood stream (Autenrieth & Firsching, 1996).
Introduction

1.3 Enteropathogenic *Yersinia* and the host’s immune response

All enteropathogenic bacteria come into contact with the largest and most complex part of the host immune system, the intestinal immune system. It has evolved a local and systemic tolerance for the commensals, the oral tolerance, in which the M-cells play a key role (Strobel & Mowat, 1998). This differentiation between harmful pathogenic and harmless commensal bacteria is highly important. If the immune system overshoots constantly with commensal bacteria, inflammatory disorders like coeliac disease or Crohn’s disease may occur. If the immune system does not react properly in case of invading pathogens, an infection with severe disease symptoms can result.

A characteristic for an enteropathogenic bacterium is its ability to invade into or transpass the gut epithelial barrier. By invading in the small intestine, the pathogenic bacteria come into contact with the largest proportion of immune cells in the gut. These cells belong to the gut-associated lymphoid tissue (GALT), which is divided into two parts, the lymphocytes in the epithelial layer and lamina propria (LP) and the lymphocytes in the PP. Enteropathogenic yersiniae are known to enter through the M-cells in the terminal ileum and reach the PP as described. The PP are formed of large B cell follicles (60% B cells), intervening T cell areas (25% T cells), dendritic cells (DCs) (10%), and macrophages and polymorphonuclear leukocytes (PMNs) (together < 5%) (Jung et al., 2010). The entry of the yersinia into the PP leads to the induction phase of the innate immune response of the host, as described in detail below (see Figure 1.3.1).

At the early stage of an infection with enteropathogenic *Yersinia* species, the bacterial numbers decrease significantly, probably due to the fast influx of macrophages and neutrophils in answer to the penetration. This was especially shown after an i.v. injection, mimicking a systemic infection of the bacteria (Conlan, 1997). These cell types and also the DCs are very important during this step of the host’s immune response, because of their phagocytic behaviour and their release of proinflammatory cytokines. The release is triggered by the activation of the Toll-like receptors on these cell types upon contact with the pathogen. It was shown for enteropathogenic yersiniae, that the binding of the invasin to the β₁-integrins of enterocytes can additionally trigger the release of proinflammatory cytokines (Kampik et al., 2000; Schulte et al., 1996). Whether other factors like LPS or YadA also contribute to the recruitment of the immune cells is still unclear.
Introduction

Figure 1.3.1: Overview of the cells of the innate and adaptive immunity (Dranoff, 2004).
The innate immunity forms the first line of defence against an invading bacterium. In contrast, the adaptive immunity is slower, but more specific.

In the PP, DCs are mainly responsible for the antigen sampling. They take up the bacteria and act as antigen presenting cells (APCs) for T cells. However, also macrophages and especially PMNs are recruited to the PP and defend the host against the pathogen by phagocytizing the bacteria. Upon a *Yersinia* infection, the infiltrating immune cells as well as the enterocytes (Eckmann *et al.*, 1995) have been shown to produce proinflammatory cytokines, especially IL-1 (Autenrieth & Firsching, 1996; Beuscher *et al.*, 1992), leading to the recruitment and maturation of additional phagocytes. One day after an oral infection of mice, microabscesses and residing bacteria can be detected in the PP (Autenrieth *et al.*, 1996; Hanski *et al.*, 1989).

In the next step, the bacteria exit the PP through the lymphatics or the blood and reach the MLNs, the largest lymph nodes of the human body, or the systemic organs (see 1.2), respectively. It has been suggested that some phagocytes may also be involved in the dissemination of yersiniae from the PP (Autenrieth *et al.*, 1996). These cells are proposed to function as vehicles transporting the intracellular bacteria through the blood like trojan horses.

Different cytokines, mainly produced by macrophages, e.g. IL-12 or IL-18 lead to the stimulation of NK cells and T cells and the antigen presentation of the APCs, which constitutes the cross point between the innate and adaptive immune response. It is
known that the concerted activities of the adaptive immune cells, T helper cells (CD4$^+$), and cytotoxic T cells (CD8$^+$), and the innate immune cells, the activated macrophages are required to control a *Yersinia* infection efficiently. T cells control the infection (1) with their ability to kill infected cells, (2) by helping macrophages to eliminate the internalized bacteria, and (3) by activation of B cells for antibody production (Autenrieth et al., 1992, 1993a; Bohn & Autenrieth, 1996). But, particularly the T cell activated macrophages have been shown to kill enteric *Yersinia* species efficiently (Autenrieth & Heesemann, 1992; Zhang & Bliska, 2005).

Even though the enteropathogenic *Yersinia* species harbour defence mechanisms to evade the host immune system, infections in humans are mostly self-limiting after triggering the immune response, and end with a complete clearance of the bacteria. However, in small children, elderly persons, immunosuppressed patients or in conditions involving iron overload (Adamkiewicz et al., 1998; Chiu et al., 1986; Autenrieth et al., 1993a, b), bacteria are able to evade the immune system by injecting different effector proteins into the immune cells and impairing the complement system with virulence factors (see 1.4).

1.4 Virulence factors of enteropathogenic *Yersinia*

The virulence factors of the enteropathogenic *Yersinia* species are encoded both on the chromosome as well as on the virulence plasmid pYV (Portnoy & Falkow, 1981). In recent years, it was possible to sequence and annotate whole genomes of different *Yersinia* strains. Thereby, new virulence genes and partially their mode of action in the host-pathogen interaction have been identified (Thomson et al., 2006).

The virulence gene expression is tightly regulated and influenced by temperature, the pH or nutrients (Pepe et al., 1994). The regulation occurs on the transcriptional as well as on the post-transcriptional level and involves different regulators (Darwin & Miller, 1999; Gort & Miller, 2000; Young & Miller, 1997).

The main pathogenicity factors for infection and resistance against the innate immune system of the host are encoded on the virulence plasmid (Revell & Miller, 2001). The gene products are categorized in four groups:

1. Secreted antiphagocytic effector proteins (Yops)
2. Ysc proteins of the type-III-secretion system (T3SS) involved in the production and secretion of the Yops
Introduction

3. The *Yersinia* adhesin A (YadA), necessary for the bacteria’s adhesion and invasion to/into the eukaryotic cell

4. The regulatory protein LcrF of *Y. pseudotuberculosis* and *Y. pestis* or VirF (98% sequence-identity) of *Y. enterocolitica* (Hoe *et al*., 1992)

Without the virulence plasmid, the pathogenicity of the *Yersinia* species is massively diminished and the bacteria are no longer able to reach the systemic organs (Cornelis *et al*., 1998; Straley *et al*., 1993).

In addition to the plasmid-encoded virulence factors, three other important factors are encoded on the chromosome:

1. The attachment and invasion locus (*ail*), coding for a 17 kDa integral outer membrane protein
2. The pH6 antigen, which forms a 16 kDa pilus like structure
3. The *invA* gene, coding for the invasin

The Ail protein has been shown to play four different roles in the *Yersinia* infection process. It is important for the serum resistance of the bacteria, the adhesion to and internalization into eukaryotic cells, the Yop translocation into the host cells and it is able to inhibit the inflammatory response of the host (Bartra *et al*., 2008; Felek & Krukonis, 2009; Hinnebusch *et al*., 2011; Kolodziejek *et al*., 2007, 2010; Tsang *et al*., 2010). Ail is expressed anaerobically at 37°C in both enteropathogenic species. However, no difference in the virulence was observed in an isogenic *ail* mutant strain for the enteropathogenic species (Isberg, 1996; Wachtel & Miller, 1995). In contrast, an isogenic *Y. pestis* *ail* mutant strain was attenuated in virulence (Hinnebusch *et al*., 2011).

The pH6 antigen was shown to promote adhesion to the host cell, the induction of hemagglutination, and possesses anti-phagocytic properties towards macrophages. Nevertheless, because of its expression profile at 37°C and low pH, it is believed that it supports survival of the bacteria in the phagolysosome during the late infection phase (Huang & Lindler, 2004; Yang & Isberg, 1997; Yang *et al*., 1996).
1.4.1 Invasins and adhesins

The virulence factors inducing adhesion (adhesins) to and internalization (invasins) into the host cells are of high importance for the infection of enteropathogenic *Yersinia* strains.

Yersiniae exploit the zipper mechanism to initiate their invasion into the host cell (see Figure 1.4.1) (Finlay & Cossart, 1997; Galan, 1994). The initial contact to the eukaryotic cell is ensured by adhesins. Two of them are mainly needed, YadA and especially InvA (see below). The adhesion activates signaling pathways in the host cell. Subsequently, cytoskeletal actin rearrangements are induced and thereby the internalization of the bacterium into membrane-bound vacuoles is initiated, forming the bacterial phagosome.

![Image of zipper mechanism](image)

Figure 1.4.1: Invasion of enteropathogenic *Yersinia* by InvA induced zipper mechanism.

Schematic description of the zipper mechanism. *Yersinia* binds to the M-cell receptors (β_1-integrins) in the intestine with invasin by high affinity binding. This leads to actin cytoskeleton rearrangements and the formation of membrane protrusions. The bacterium is taken up by the cell into a bacterial phagosome (Isberg, 1989).

1.4.1.1 Invasin

Invasin (InvA) is the most important invasion protein of the enteropathogenic *Yersinia* species. This protein is involved in both the adhesion to and the invasion into the M-cells of the gut epithelial layer (Dersch & Isberg, 2000). Its expression in non-invasive *Escherichia coli* enables these bacteria to invade into human epithelial cells (HEp-2) (Isberg & Falkow, 1985; Miller & Falkow, 1988). The *invA* gene expression in *vitro* is temperature-, pH-, and growth phase-dependent. Maximal expression is obtained at 25°C during late stationary phase in nutrient rich medium with low osmolarity (Isberg *et al.*, 1988; Pepe *et al.*, 1994).
This 108 kDa outer membrane protein consists of an N-terminal outer membrane anchoring domain and five β-barrel domains in *Y. pseudotuberculosis* (see Figure 1.4.2). The invasin binds to β₁-integrins anchored in the host cell membrane and thereby leads to a clustering of these receptors. Responsible for the binding are the head domains D4 and D5 (Clark *et al.*, 1998; Tran Van Nhieu & Isberg, 1993). After binding, clustering of the integrins is induced through multimerization of invasin via domain D2 (Dersch & Isberg, 1999). This leads to the initiation of signaling cascades in the host cell, which trigger internalization (zipper mechanism) of the bacteria (see Figure 1.4.1) (Dersch & Isberg, 1999, 2000).

![Figure 1.4.2: The invasin (InvA) structure of *Y. pseudotuberculosis*](image)

InvA consists of 5 domains, with domains D4 and 5 responsible for the β₁-integrin binding. Domain 2 of *Y. pseudotuberculosis* leads to a multimerization of InvA, which in turn induces a clustering of the β₁-integrin receptors (Dersch & Isberg, 1999).

1.4.1.2 YadA

The virulence factor YadA is another important adhesin of enteropathogenic yersiniae. It binds to proteins of the extracellular matrix (ECM), e.g. laminin or collagen and thereby enables the bacterium to adhere to the host cell (Flügel *et al.*, 1994; Heise & Dersch, 2006; Tertti *et al.*, 1992).

The *yadA* gene encodes for an outer membrane protein, which is exclusively expressed at 37°C (Barocchi *et al.*, 2005; Linke *et al.*, 2006). Depending on the *Yersinia* species, it possesses an atomic mass of around 200 - 240 kDa. The trimeric protein has a „lollipop“
like structure and covers the surface of the bacterium like a capsule (Hoiczyk et al., 2000).

Structure analyses revealed that YadA from *Y. pseudotuberculosis* carries an additional domain at its N-terminus, which is absent in *Y. enterocolitica*. This domain of YadA induces, besides adhesion, also the invasion of *Y. pseudotuberculosis* into the eukaryotic cell, by binding to the natural ligand of the α5β1-integrin receptors, fibronectin. Furthermore, YadA of *Y. enterocolitica* preferentially binds to collagen and laminin of the ECM (Heise & Dersch, 2006).

![Figure 1.4.3: The virulence factor YadA.](image)

A: Schematic illustration of the trimeric protein YadA, consisting of an anchor-, stalk-, neck-, and head-domain (Linke et al., 2006).

B: Electron microscopic picture of a bacterium with the capsule like arranged YadA proteins. Bar indicates 100 nm (Hoiczyk et al., 2000).

YadA of both species also induces an inflammatory response by triggering the expression of the proinflammatory cytokine interleukin 8 (IL-8) (Eitel et al., 2005; Schmid et al., 2004). An additional function of the protein is the protection of the bacterium against the immune system of the host. It binds components of the complement system, like the factor H, and inhibits thereby the opsonation of the bacterium preventing its elimination (Balligand et al., 1985; Biedzka-Sarek et al., 2008; Kirjavainen et al., 2008; Pilz et al., 1992).
1.4.2 The Yop virulon

The T3SS forms a syringe-like structure with a needle surface to inject effector proteins into host cells (Kudryashev et al., 2013). The genes encoding the T3SS are organized in different operons on the pYV by their function, whereas the translocated Yops are distributed all over the plasmid (Cornelis, 1998, 2002a; Pujol & Bliska, 2005). The expression of this system and therefore the injection of the effector proteins is dependent on temperature and Ca\(^{2+}\) ionic concentration, conditions present in the surroundings during infection. Moreover, it is activated by the transcriptional activator low calcium response F (LcrF), which in turn is repressed by the global virulence regulator Yersinia modulator A (YmoA) at conditions found outside the host (25°C). The seven translocated Yop proteins so far known are exotoxins, named YopE, YopH, YopJ/P, YopK/Q, YopM, YopO/YpkA and YopT. They help the bacterium to manipulate the host cell functions, e.g. the cytokine production or the actin dynamics, to prevent their elimination by the host immune system, mostly by preventing phagocytosis (see Figure 1.4.5) (Cornelis, 2002a; Viboud & Bliska, 2005).

The T3SS of Yersinia consists of three parts, (1) the pore forming complex, (2) the needle structure and (3) the basal body (see Figure 1.4.4). For the assembly of the basal body, multi-ring structures consisting of different Ysc proteins are integrated in the outer- and inner-membrane of the bacterium. At first, YscC oligomerises and forms the outer-membrane ring, which stretches into the periplasm (Diepold et al., 2010; Koster et al., 1997). In the next step, the inner-membrane ring is formed by YscD, which connects the inner- and outer-membrane rings (Diepold et al., 2010; Ross & Plano, 2011; Spreter et al., 2009). Subsequently, YscJ oligomerises and completes the inner-membrane ring (Yip et al., 2005). Furthermore, a cytosolic energy producing ATPase, YscN is recruited and surrounded by the proteins YscK and YscL (Blaylock et al., 2006). In the next step, YscQ assembles at the cytoplasmic site of the T3SS (Diepold et al., 2010). Finally, the export machinery is formed, containing the proteins YscRSTUV which are positioned in the inner-membrane ring.

The secretion needle formed by the protein YscF is secreted through the basal body. YscI is positioned first and seems to allow the crossing of substrates through the inner membrane (Allaoui et al., 1995; Marlovits et al., 2006). YscF is translocated through the YscI channel and polymerizes to form the needle structure (Diepold et al., 2012). The length of the needle varies from ~41 nm in Y. pestis to ~58 nm in Y. enterocolitica and
possesses an inner diameter of ~2 - 3 nm (Hoiczyk & Blobel, 2001; Journet et al., 2003; Kubori et al., 2000). YscP appears to regulate the length of the secretion needle (Journet et al., 2003; Payne & Straley, 1999; Stainier et al., 2000). The substrate specificity of the needle seems to be determined by YscU, which possesses an inner-membrane anchoring- and a cytosolic-domain (Allaoui et al., 1994; Edqvist et al., 2003). YscP was shown to induce the autocleavage of YscU after completion of the needle assembly (Agrain et al., 2005; Lavander et al., 2003; Sorg et al., 2007). This step is needed to continue the secretion of the proteins for the formation of the pore complex and the proper secretion of the Yop proteins (Björnfot et al., 2009; Riordan & Schneewind, 2008).

The Yop effector proteins should ideally be released upon host cell contact, which can also be mimicked in vitro by depletion of calcium in the medium (Lee et al., 1998; Yother & Goguen, 1985). To prevent a premature release of the effectors, the needle is blocked for the effector Yop proteins by a complex consisting of YopN, TyeA, YscB and SycN, which is called the calcium plug (Forsberg et al., 1991). In the next step, LcrV is secreted and forms a needle tip (Mueller et al., 2005), at which the pore complex - consisting of YopD and YopB - is positioned. These two proteins (YopD/B) are able to insert...
Introduction

themselves into the host cell membrane to form a translocation pore (Hakansson et al., 1993, 1996a; Neyt & Cornelis, 1999; Rosqvist et al., 1995). With the assembly of YopD and YopB, the complex T3SS is completed and able to inject the effector Yops into the host cell upon cell contact. Most of these effector proteins require their own chaperone for correct folding and guidance to the secretion needle, but are injected into the cytosol of the host cell on their own.

Seven cytotoxic effector proteins are translocated into phagocytes, interfering with cell signaling pathways and preventing phagocytosis (Viboud & Bliska, 2005). YopE, YopO and YopT belong to the group of bacterial toxins interacting with Rho-GTPases (see 1.7) (Barbieri et al., 2002). YopE is mimicking the Guanine-exchange proteins (GAPs) of the small Rho-GTPases RhoA, Rac1 and Cdc42, leading to a continuous hydrolysis of GTP (Von Pawel-Rammingen et al., 2000). YpkA of Y. pseudotuberculosis and YopO, the homolog in Y. enterocolitica are serine/threonine kinases binding to RhoA and Rac1 (Viboud & Bliska, 2005; Wong & Isberg, 2005). This binding leads to the autophosphorylation of the Yop, which then controls the eukaryotic cell rounding and blocks the phagocytosis of the bacterium (Galyov et al., 1993; Grosdent et al., 2002; Hakansson et al., 1996b). YopT forms a cysteine protease, which leads to the removal of the GTPases RhoA, Rac, and Cdc42 from the membrane of the cell (Shao et al., 2003), causing the disruption of actin fibres, cell rounding, and inhibition of the bacterial internalization (Cornelis, 2002b; Viboud & Bliska, 2005).

YopH is a tyrosine phosphatase that blocks actin cytoskeletal dynamics, thus leading to the inhibition of phagocytosis by immune cells (Grosdent et al., 2002). It was shown to dephosphorylate mostly proteins of the focal adhesion complex (Black & Bliska, 1997; Bliska et al., 1991; Grosdent et al., 2002; Guan & Dixon, 1990; Persson et al., 1997). YopJ of Y. pseudotuberculosis and the Y. enterocolitica homolog YopP, seem to be particularly important in the defence against the adaptive immune system of the host (Viboud & Bliska, 2005). YopP/J are cysteine proteases inhibiting different signaling pathways in the host cell by binding to the mitogen-activated protein kinase (MAPK) kinases (MEKs), the inhibitor κB kinase β (IKKβ), and the counterregulators of the Toll-like receptor-4 triggered apoptotic pathway. These interactions lead to the inhibition of cytokine expression and the apoptotic cell death of macrophages and DCs (Erfurth et al., 2004; Lemaitre et al., 2006; Monack et al., 1997; Mukherjee et al., 2006; Zhang & Bliska, 2010; Zheng et al., 2011).
Introduction

YopM is a leucine-rich protein with no enzymatic activity (Viboud & Bliska, 2005). This protein appears to act like an adaptor protein, forming complexes with the ribosomal protein S6 kinase 1 (RSK1) and the protein kinase C-like 2 (PRK2) (McDonald et al., 2003). YopM travels to the nucleus of the host cell and is essential for Yersinia to persist in the systemic organs liver and spleen by blocking the innate immune response. It was shown to downregulate proinflammatory cytokines, e.g. IL-1β, IL-12 or TNF-α and causes the depletion of NK cells (Kerschen et al., 2004; Skrzypek et al., 1998). YopK of Y. pseudotuberculosis and the Y. enterocolitica homolog YopQ seem to regulate the translocation pore size by affecting the pore-forming proteins YopB and YopD (Holmstrom et al., 1997). Both proteins seem to influence the amount of delivered proteins, to prevent neutrophil death and further activation of inflammatory responses. The translocation of YopH, YopM and YopE appear to be most important for the protection of Yersinia against the immune response of the host (Kerschen et al., 2004; Logsdon & Mecsas, 2003; Trülzsch et al., 2004).

![Figure 1.4.5: Overview of the different effector Yops and their influence in the host signaling pathways (Viboud & Bliska, 2005).](image)

Yop proteins are injected into the host cell by the T3SS. YopE, YopT, and YopA/O target and manipulate the small Rho-GTPases blocking mostly phagocytosis. YopJ/P inhibits the Toll-like receptor 4 (TLR4) signaling pathways and thereby inhibits inflammatory responses and induces apoptosis in macrophages. YopH blocks phagocytosis by immune cells. YopM is able to enter the nucleus, thus interfering in gene expression.
The actin cytoskeleton is involved in many cellular functions like cell motility, cell adhesion or the cellular shape and polarity (Le Clainche & Carlier, 2008; Galletta & Cooper, 2009; Pollard & Borisy, 2003), but also in the defence against bacteria like in phagocytosis by macrophages or the migration of immune cells (Hoffmann & Schmidt, 2004).

The actin structure constantly rearranges, and this is achieved by fast polymerization and depolymerization of actin filaments. Thereby the actin alters between its monomeric form, the globular-actin (G-actin) and its multimeric form, the filamentous-actin (F-actin). G-actin is a 42 kDa protein forming tube-like structures (F-actin), consisting of two twisted strands (see Figure 1.5.1) (Winder & Ayscough, 2005).

![Figure 1.5.1: Actin polymerization and depolymerization dynamics. G-actin (ATPase) polymerizes at the plus end of the F-actin. At the minus end, the ATPase is activated and cleaves the ATP in ADP+P, resulting in the dissociation of the G-actin from the filament. This dynamics lead to rearrangements of the actin cytoskeleton.](image-url)

The G-actin is an ATPase and exists in two states, the ATP bound and the ADP bound state. If associated with ATP, it polymerizes at the plus end of the F-actin. At the minus end, the ATPase is activated and thereby the ATP is cleaved into ADP+P, which leads to the dissociation of the G-actin from the F-actin. This dynamic results in conformational changes of the actin cytoskeleton. Many signaling pathways and proteins are involved in the regulation of this process (Pollard & Borisy, 2003). Crucial are the small GTPases of the Rho-family (see 1.6). Many pathogenic bacteria are able to alter the actin cytoskeleton of the host cell by interacting with the dynamic to their advantage. This leads for example to the inhibition of their phagocytosis by macrophages, to the induction of their invasion by non-phagocytic cells or to the destruction of a barrier to reach the underlying tissue (Bhavsar et al., 2007; Gouin et al., 2005).
1.6 Small Rho-GTPases

The Rho-GTPases belong to the Ras super-family and are small monomeric G-proteins with a size of 21 - 25 kDa. The rho gene was discovered in 1985 and named after its homology to ras, Ras homolog (Madaule & Axel, 1985). The Rho-GTPases are very homologous among each other and show an amino acid sequence-identity of about 40 - 95% in their GTPase domain (Wennerberg & Der, 2004). Due to their differences in the sequence, the 23 so far known Rho-GTPases are categorized in six subfamilies, Rho, Rac, Cdc42, RhoBTB and RhoT/Miro (Bustelo et al., 2007).

The Rho-GTPases are involved in many signaling pathways in the eukaryotic cell, like the regulation of the actin cytoskeleton, the gene expression, the cell cycle or the phagocytosis (Van Aelst & D'Souza-Schorey, 1997; Etienne-Manneville & Hall, 2002). The GTPases cycle from the active GTP-bound form to the inactive GDP-bound form is regulated and coordinated by three different protein classes (see Figure 1.6.1):

1. Guanine-nucleotide-exchange factors (GEFs): these factors are responsible for the exchange of the GDP against the GTP (Symons & Settleman, 2000).
2. GTPase-activation proteins (GAPs): these factors activate the GTPase, which leads to the hydrolysis of the bound GTP.
3. Guanine-nucleotide-dissociation inhibitors (GDIs): these factors lead to the stabilization of the GDP-bound inactive form in the cytosol (Van Aelst & D'Souza-Schorey, 1997; Nomanbhoy et al., 1999).

The activation of the GTPases is triggered by extracellular signals like cytokines or by adhesion- or G-protein-associated receptors (Rossman et al., 2005). They possess isoprenylated cysteins at their C-terminus, with which they are able to bind membrane-anchored lipids and subsequently interact with their effectors. In the inactive state, the Rho-GTPases are coupled with the GDIs at their isoprenylated cysteins (DerMardirossian et al., 2004). Morphologically, the activation of the Rho-GTPases leads to the formation of different cell fibres: RhoA induces the formation of stress fibres, Rac1 of lamellipodia and Cdc42 of filopodia (see Figure 1.6.1) (Ahmadian et al., 2002). Additionally, it was shown that Cdc42 leads to the activation of Rac, which in turn leads to the activation of Rho (Nobes & Hall, 1995). Thereby, the Rho-GTPases are affecting each others activity.
Introduction

Figure 1.6.1: The GTPase cycle of Cdc42, Rac1 and RhoA and their influence on the actin cytoskeleton.

The activation of Cdc42, Rac1, and RhoA leads to the formation of filopodia, lamellipodia, and stress fibres, respectively. The GTPases cycle from the inactive form (GDP-associated) to the active form (GTP-associated). This transition is accomplished by the GEF proteins, which are exchanging the GDP against GTP. Upon activation of the GTPase by the GAP proteins, the GTP is cleaved in GDP+P, leading to an inactive state. This state is stabilized by the GDI proteins in the cytosol.

Many bacterial virulence factors are known to interact in the cycle of the most investigated GTPases, Rho, Rac and Cdc42 (Symons & Settleman, 2000). These factors help the bacterium for example to control the actin cytoskeletal rearrangements for their invasion process into the cell (Barbieri et al., 2002). Enteric yersiniae are able to interfere in the Rho-GTPase cycles at different steps, e.g. Y. pseudotuberculosis is interfering in the cycle of Rac1 during the β1-integrin induced phagocytosis (Alrutz et al., 2001). Thereby the binding of InvA leads to a local activation of Rac1 (Del Pozo et al., 2002; Wong & Isberg, 2005). In contrast, RhoA was observed to inhibit an InvA-induced bacterial invasion (Black & Bliska, 2000; Leeuwen et al., 1997; Tosello-Trampont et al., 2003). Thus, RhoA must be blocked to enable an efficient invasin-induced bacterial invasion by Rac1 activation (Wong et al., 2006). However, InvA influences the GTPases indirectly by the activation of β1-integrin signaling pathways, whereas most GTPase-interfering toxins act directly.

1.7 Bacterial toxins interacting with Rho-GTPases

Because of its diverse functions in bacterial defence, the actin cytoskeleton is a frequent target of bacterial toxins. Toxins modulating the actin cytoskeleton can be categorized into four groups, (1) toxins that covalently modify actin, (2) toxins that modulate the cytoskeleton as adenylate cyclases, (3) toxins that modulate the nucleotide state of the Rho-GTPases and (4) toxins that covalently modify GTPases (Barbieri et al., 2002). The
third group is subdivided into two subgroups, the activators and inhibitors. The first two
groups are directly influencing the actin cytoskeleton, whereas the toxins of group 3 and
4 are acting indirectly by interfering in the small Rho-GTPase cycle (Barbieri et al., 2002;
Boquet & Lemichez, 2003). Figure 1.7.1 shows a summary of different bacterial toxins
and their mode of action with the Rho-GTPases.

Figure 1.7.1: Different Rho-GTPase modifying toxins.
This scheme shows the regulating influence of the toxins in the different steps of the GTPase cycle.
Included are the cytotoxic necrotizing factors of E. coli and Y. pseudotuberculosis (Boquet & Lemichez,
2003).

Bacterial toxins mostly lead to the inactivation of the Rho-GTPases by either covalently
modifying the GTPase itself or by the imitation of GAP proteins, leading to a constitutive
GTPase activity (Fiorentini et al., 2003). Inactivating toxins are for example YopE of the
enteric Yersinia species, which imitates Rho-GTPase inactivating Rho GAPs (Black &
Bliska, 2000; Fu & Galan, 1999), YopT of Y. pseudotuberculosis, which lead to the
dissociation of the GTPase from the membrane (Shao et al., 2002) or the C3 toxin of
Clostridium botulinum, which leads to an ADP-ribosylation of RhoA, B and C, thus
inducing a strong interaction of the GTPase with the GDI. This in turn results in a
blockage of the GTPase recruitment and subsequently to the inhibition of its activation
(Aktories & Hall, 1989; Vogelsgesang et al., 2007).
In comparison, only a small group of toxins lead to a constitutive or non-constitutive activation of the Rho-GTPases by inhibiting the GTPase activity or the GAPs. Activating toxins are for example the dermonecrotic toxin (DNT) of *Bordetella* (Masuda et al., 2000) or the cytotoxic necrotizing factors (CNFs) of *Y. pseudotuberculosis* (Hoffmann et al., 2004; Knust & Schmidt, 2010; Lockman *et al.*, 2002) or *E. coli* (Fiorentini *et al.*, 1997), which all lead to the constitutive activation of the Rho-GTPases (see 1.7.1).

1.7.1 Cytotoxic necrotizing factors

In 1984, the first CNF-producing *E. coli* strain was isolated from enteritis patients. The toxin caused dermonecrotic lesions and multinucleation plus enlargement of eukaryotic cells (Caprioli *et al.*, 1984). Three CNFs of *E. coli* (CNF1-3) have been described so far, mostly produced by extraintestinal pathogenic strains. Additionally, a CNF beyond the species *E. coli* was identified in the *Y. pseudotuberculosis* wild-type strain YPIII (Lockman *et al.*, 2002).

These toxins were all shown to induce actin cytoskeletal rearrangements and multinucleation in different eukaryotic cells due to an inhibition of cytokinesis and ongoing cell cycle progression (Falzano *et al.*, 1993a; Huelsenbeck *et al.*, 2009). Furthermore, they possess the identical superior structure and consist of three functional domains: (1) the N-terminal host-cell binding domain, (2) the central translocation domain, and (3) the C-terminal catalysis domain (see Figure 1.7.3). Due to their structure, CNFs are categorized into the group of A-B toxins (Fabbri *et al.*, 1999; Fiorentini *et al.*, 1997).
Introduction

Figure 1.7.2: Receptor-mediated endocytosis of the CNFs into the eukaryotic cell.
The CNF binds to its receptor on the eukaryotic cell and is endocytosed into an endosome. The toxin containing endosome becomes acidic, leading to a conformational change of the CNF. Thereby, the translocation domain is integrated into the endosomal membrane, which leads to the cleavage and secretion of the catalytic domain into the cytosol. In there, this domain can deamidate the GTPases (Knust & Schmidt, 2010).

Bacterial A-B toxins follow the mechanism of the receptor-mediated endocytosis induced by the binding of the N-terminal domain. Two different processes and subsequent catalytic reactions of bacterial A-B toxins in eukaryotic cells can be distinguished: (1) The toxins evade the degradative pathway and reach the Golgi apparatus (Falnes & Sandvig, 2000) or (2) the toxin containing endosomes become acidic, induce a conformational change of the toxins, leading to the autocatalytical cleavage of the catalytic domain and its subsequent secretion into the cytosol (Fabbri et al., 1999; Lemichez et al., 1997). The CNFs use the second mechanism whereby the cleaved catalytic domain interacts with the Rho-GTPase (Contamin et al., 2000; Knust & Schmidt, 2010) (see Figure 1.7.2).

The CNFs are toxins interfering with the Rho-GTPase cycle by a constitutive activation of Rho, Rac or Cdc42. This permanent activation is accomplished by the deamidation of a conserved glutamine (61/63) to glutamate in the catalytic center of the GTPase. Subsequently, the GAP catalyzed hydrolysis of the bound GTP is inhibited, leading to a permanent activated state of the GTPase (Rittinger et al., 1997).
Introduction

CNF₁ is the best characterized toxin of the CNF toxin family. It is a 108 kDa sized protein, mainly produced by uropathogenic *E. coli* strains (UPEC), which cause extraintestinal infections (Blanco *et al*., 1992; Landraud *et al*., 2000). Moreover, it could be detected in *E. coli* K1 strains, which cause neonatal meningitis (Bonacorsi *et al*., 2000). CNF₁ leads to the constitutive activation of the Rho-GTPase subfamilies RhoA, Rac1, and Cdc42.

![Figure 1.7.3: Structure of the cytotoxic necrotizing factor of *E. coli* CNF₁ (Aktories, 2011).](image)

The toxin belongs to the group of A-B toxins and consists of three domains, the binding, translocation and catalysis domain. With the binding domain, CNF₁ binds to its receptor on the eukaryotic cell and subsequently gets endocytosed. After a change of the pH, the translocation domain inserts into the endosomal membrane and leads to the secretion of the catalysis domain into the cytosol.

The cnf1 gene is encoded on the chromosome on a pathogenicity island (Blum *et al*., 1995) and is secreted and transferred to the host cell by outer membrane vesicles (OMVs) (Davis *et al*., 2006; Kouokam *et al*., 2006). The receptor-mediated endocytosis of CNF₁ seems to be independent of clathrin and lipid rafts (sphingolipid/cholestrol rich microdomains) (Blumenthal *et al*., 2007; Contamin *et al*., 2000), but it was shown that binding to the 67 kDa laminin receptor induces the internalization of CNF₁-expressing *E. coli* into human brain microvascular endothelial cells (HBMEC) (Kim *et al*., 2005).

This toxin was demonstrated to induce the formation of actin stress fibres, filopodia and lamellipodia (Fiorentini *et al*., 1997), caused by the 55 kDa catalytical domain, which is essential for the biological activity of CNF₁ (Schmidt *et al*., 1998). The crystallized catalytical domain shows a unique fold with a β-sheet surrounded by α-helices and loops (Bueto et al., 2001). Different functions for CNF₁ have been demonstrated, e.g. the induction of phagocytosis by non-phagocytic cells, the inhibition of phagocytosis by phagocytic cells (Falzano *et al*., 1993b; Hofman *et al*., 2000; Visvikis *et al*., 2011) or the impairment of the barrier function of epithelial layers (Gerhard *et al*., 1998; Hopkins *et al*., 2003).
1.7.1.1 CNF$_Y$

Some *Y. pseudotuberculosis* strains of the serogroup O:3, e.g. the pathogenic isolate YPIII, have been shown to produce a CNF called CNF$_Y$ (Lockman *et al.*, 2002). Due to mutations and deletions over the complete cnfY gene, the toxin is not expressed or inactive in many sequenced *Y. pseudotuberculosis* strains of the serogroup O:3 (Lockman *et al.*, 2002). This is also true for the *Y. pestis* strain CO92, which contains a sequence (Parkhill *et al.*, 2001) with 99% sequence-identity to cnfY of *Y. pseudotuberculosis*. However, the gene in *Y. pestis* harbours a deletion at the C-terminus in the catalytical domain (see Figure 1.7.4) (Lockman *et al.*, 2002). So far no *Y. enterocolitica* strain was described to harbour the toxin gene in its genome.

The CNF$_Y$ toxin is homolog to the CNF$_1$ toxin of *E. coli*, with a sequence-identity of around 65% over the whole gene (Lockman *et al.*, 2002). The cnfY gene is encoded on the chromosome of *Y. pseudotuberculosis* and flanked by a transposase and an oxidoreductase, indicating that the gene was acquired from another bacterium, like *E. coli*. The produced toxin has a size of about 115 kDa and leads to the formation of multinucleated giant HeLa cells, like its homolog CNF$_1$ (Lockman *et al.*, 2002).

However, CNF$_Y$ seems to address a different receptor in comparison to CNF$_1$ as the preincubation of cells with inactive CNF$_1$ does not block CNF$_Y$ activity completely (Blumenthal *et al.*, 2007). Moreover, antibodies against CNF$_1$, which prevented multinucleation by CNF$_1$ expressing *E. coli* lysates, could not prevent the CNF$_Y$ activity in the eukaryotic cells (Lockman *et al.*, 2002). However, it was demonstrated that CNF$_Y$ binds to heparan sulfate proteoglycan, a co-receptor of CNF$_1$ (Blumenthal *et al.*, 2007).

Subsequently, after binding to its receptor CNF$_Y$ is taken up by receptor-mediated endocytosis into endosomes like CNF$_1$, as the internalization of the toxin is inhibited by blocking the acidification of the early endosome (Blumenthal *et al.*, 2007). In the cytosol of the eukaryotic cell, the catalytically active domain of CNF$_Y$ functions similarly to the domain of CNF$_1$ as the three recombinantly purified GTPases RhoA, Rac1, and Cdc42 were also shown to serve as substrates for CNF$_Y$. Nevertheless, CNF$_Y$ preferentially deamidates/activates RhoA over Rac or Cdc42 in human epithelial cells leading predominantly to the formation of actin stress fibres and of multinuclear giant cells (Hoffmann *et al.*, 2004).

So far, beyond elucidating the molecular mechanism of the toxin (primarily by intoxication of epithelial cells) in reference to its ability to activate the Rho-GTPase
Introduction

RhoA, no further research has been performed on CNF$_\gamma$. However, different effects on the cells were attributed to the constitutively activation of RhoA by CNF$_\gamma$. For instance, it was demonstrated by incubating cells with CNF$_\gamma$ that the RhoA activation is exclusively responsible for inhibition of cytokinesis (Huelsenbeck et al., 2009), which was described before as a consequence of CNF intoxication (Falzano et al., 1993a). Furthermore, CNF$_\gamma$ was demonstrated to (1) decrease the endothelial barrier function (Baumer et al., 2008), (2) to increase cell-matrix adhesion and subsequent cell spreading (May et al., 2012), (3) to induce apoptosis in prostate cancer cells (Augspach et al., 2013), and (4) to induce immunity of mice against a subsequent *Y. pseudotuberculosis* infection when applied subcutaneously (Mou et al., 2012).

![Figure 1.7.4: Comparison of the CNF$_\gamma$ sequences of *Y. pseudotuberculosis* YPIII and *Y. pestis* CO92 (Lockman et al., 2002).](image)

The dotted lines indicate deletions in the CNF$_\gamma$ gene of *Y. pestis* CO92 and the boxes indicate sequences that show a sequence-identity of >99%. Left and right are indicated the putative transposase and the putative oxidoreductase, respectively.
1.8 Aim of this study

As mentioned above, the clinical isolate *Y. pseudotuberculosis* YPIII harbours the toxin gene *cnfY*, which has a sequence-identity to the *cnf1* of uropathogenic *E. coli* K1 strains of about 65% (Lockman et al., 2002). Incubation of eukaryotic cells with CNFs results in a constitutive activation of the small Rho-GTPases Rho, Rac, and Cdc42, whereby CNF\(_Y\) predominantly activates RhoA (Flatau et al., 1997; Hoffmann et al., 2004). This activation leads to rearrangements of the actin cytoskeleton, and the formation of giant, multinucleated cells (Falzano et al., 2006; Huelsenbeck et al., 2009).

Previous studies focused on the molecular mechanism of the CNF\(_Y\) toxin were primarily focused on epithelial cells. However, little was known about the role of this toxin during pathogenesis of *Y. pseudotuberculosis* and the consequences of the constitutive activation of the Rho-GTPases in the infection process. Hence, the aim of this study was to investigate the molecular function of CNF\(_Y\) and its impact on the virulence of *Y. pseudotuberculosis*.

To address this aim, the expression conditions of *cnfY* in vitro as well as in vivo in the mouse model, the secretion conditions of CNF\(_Y\), and the molecular function of CNF\(_Y\) regarding the activation of the Rho-GTPases and the influence on the morphology of intoxicated eukaryotic cells should be investigated. The main focus was on deciphering the role of CNF\(_Y\) during the infection process. For this purpose, the impact of CNF\(_Y\) on the bacterial colonization ability in the different tissues, the histology of the infected tissues, and the immune response should be assessed.

Additionally, the interplay and cooperation of CNF\(_Y\) with the T3SS and the Yop effector proteins in vitro and during the infection in mice should be examined. Moreover, it should be investigated whether CNF\(_Y\) plays an additional role in the host-pathogen interaction beside the amplification of crucial virulence factor functions. Furthermore, long-term effects on the immune system after infection with avirulent/low virulent *Y. pseudotuberculosis* mutant strains should be analyzed.
2 Material and methods

2.1 Material

2.1.1 Equipment and material

Equipment and material of the following companies were used: BD Biosciences, Biochrom, Biometra, Bio-Rad, Brand, Consort, Eppendorf, Gilson, Greiner, Heraeus, Heidolph, Hirschmann EM, Ibidi, Infors AG, Integra Biosciences, Janke & Kunkel IKA-Labortechnik, Laboport, Marienfeld, Millipore, Microflex Corporation, PeqLab, Roth, Sarstedt, Sartorius, Schott, Sigma Aldrich, Sorvall, TPP, Thermo Scientific, Oregon Scientific, VWR International, Whatman Schleicher & Schüll GmbH and Zeiss. Special equipment or materials used are mentioned in the text.

2.1.2 Chemicals and buffers

Chemicals and buffers of the following companies were used: Applichem, BD Biosciences, Biochrom, BioLegend, BioMoll, BioXCell, Difco, eBioscience, Fermentas, Fischer Scientific, Fluka, GIBCO, Invitrogen, Jackson ImmunoResearch, J.T. Baker, Life Technologies, Merck, Metabion, New England Biolabs Inc. (NEB), PAA, Pierce, Perkin Elmer, PeqLab, Promega, PromoCell, Qiagen, Roche, Roth, Sigma Aldrich, Serva, T. H. Geyer and Zeiss. Special chemicals used are mentioned in the text. If not noted otherwise all buffers and solutions were prepared with distilled water. Sterilization was accomplished by autoclaving for 20 min. at 121°C and 1 bar. Temperature sensitive substances were instead filtered using a pore size of 0.2 µm.

Table 2.1: Buffers and solutions

<table>
<thead>
<tr>
<th>Buffer/solution</th>
<th>Chemicals and concentrations</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 x gel buffer</td>
<td>3 M Tris, 1 M HCl, 0.3% SDS</td>
</tr>
<tr>
<td>Acetate buffer</td>
<td>0.5 M NaCl, 0.1 M ammonium acetate; pH 4</td>
</tr>
<tr>
<td>Aceto-SDS solution</td>
<td>87.5% acetone, 0.25% SDS</td>
</tr>
<tr>
<td>Binding buffer J774A.1 & HEp-2</td>
<td>RPMI 1640 + GlutaMax-I + 0.4% BSA + 20 mM HEPES pH 7.0</td>
</tr>
<tr>
<td>Binding buffer RAW264.7</td>
<td>IMDM + 0.4% BSA + 20 mM HEPES pH 7.0</td>
</tr>
<tr>
<td>Coomassie staining solution</td>
<td>20% isopropanol, 10% acetic acid, 0.05% Coomassie™ Brilliant Blue G250</td>
</tr>
</tbody>
</table>
Material and methods

<table>
<thead>
<tr>
<th>Buffer Type</th>
<th>Composition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coupling buffer (antibody purification)</td>
<td>0.5 M NaCl, 0.1 M NaHCO₃; pH 8.3</td>
</tr>
<tr>
<td>Elution buffer 1</td>
<td>50 mM Tris-HCl, 100 mM NaCl, 150 mM imidazole</td>
</tr>
<tr>
<td>Elution buffer 2</td>
<td>50 mM Tris-HCl, 100 mM NaCl, 250 mM imidazole</td>
</tr>
<tr>
<td>Elution buffer 1 (antibody purification)</td>
<td>0.2 M glycine, 0.15 M NaCl; pH 2.2</td>
</tr>
<tr>
<td>Erythrolysis buffer</td>
<td>7.8 mM NH₄Cl, 10 mM KHCO₃, 100 µM EDTA</td>
</tr>
<tr>
<td>FACS buffer</td>
<td>PBS + 0.2% BSA</td>
</tr>
<tr>
<td>Lysis buffer (protein purification)</td>
<td>50 mM Tris-HCl, 300 mM NaCl, 10 mM imidazole</td>
</tr>
<tr>
<td>Neutralizing buffer</td>
<td>0.5 M NaCl, 0.1 M Tris-HCl; pH 8</td>
</tr>
<tr>
<td>ONPG solution</td>
<td>4 mg/ml ONPG</td>
</tr>
<tr>
<td>PBS (10x)</td>
<td>80 g/l NaCl, 2 g/l KCl, 14.4 g/l Na₂HPO₄, 2.4 g/l KH₂PO₄; pH 7.4</td>
</tr>
<tr>
<td>SDS running buffer</td>
<td>33 mM Tris-HCl pH 8.3, 192 mM glycine, 0.1% SDS</td>
</tr>
<tr>
<td>SDS sample buffer</td>
<td>3 g/l Tris pH 8.3, 14.4 g/l glycine, 0.1% SDS</td>
</tr>
<tr>
<td>SDS running gel buffer</td>
<td>500 mM Tris-HCl, 4% SDS, pH 6.8</td>
</tr>
<tr>
<td>SDS stacking gel buffer</td>
<td>1.5 M Tris-HCl, 4% SDS, pH 8.8</td>
</tr>
<tr>
<td>TAE buffer (Tris-acetate-EDTA) (1x)</td>
<td>40 mM Tris-acetate, 2 mM EDTA, pH 8.0</td>
</tr>
<tr>
<td>TBST buffer</td>
<td>20 mM Tris-HCl pH 7.5, 150 mM NaCl, 0.05% Tween-20</td>
</tr>
<tr>
<td>TBSTTB buffer</td>
<td>3% BSA in TBST</td>
</tr>
<tr>
<td>TBSTM buffer</td>
<td>5% skim milk powder in TBST</td>
</tr>
<tr>
<td>TFB1 buffer</td>
<td>30 mM potassium acetate, 10 mM CaCl₂, 50 mM MnCl₂, 100 mM RbCl, 15% glycerin, pH 5.8</td>
</tr>
<tr>
<td>TFB2 buffer</td>
<td>10 mM MOPS, 75 mM CaCl₂, 10 mM RbCl, 15% glycerin, pH 6.5</td>
</tr>
<tr>
<td>Transblot buffer</td>
<td>25 mM Tris, 192 mM glycine, 20% MetOH</td>
</tr>
<tr>
<td>Transformation buffer</td>
<td>272 mM sucrose, 15% glycerol, sterile filtrated</td>
</tr>
<tr>
<td>Washing buffer</td>
<td>50 mM Tris-HCl, 300 mM NaCl, 20 mM imidazole</td>
</tr>
<tr>
<td>Z-buffer</td>
<td>100 mM sodium phosphate buffer pH 7, 1 mM Mg₂SO₄</td>
</tr>
</tbody>
</table>
Material and methods

2.1.3 Media and supplements

Media used in this study are listed in Table 2.2. If not noted otherwise all media were prepared with distilled water. For selective media sterile antibiotics were added (see Table 2.3).

Table 2.2: Media

<table>
<thead>
<tr>
<th>Media</th>
<th>Chemicals and concentrations</th>
</tr>
</thead>
<tbody>
<tr>
<td>BHI broth (brain-heart infusion)</td>
<td>37 g/l BHI</td>
</tr>
<tr>
<td>CRMOX</td>
<td>40 g/l Tryptic Soy agar, 80 ml/l 0.25 M di-sodium oxalate, 80 ml/l 0.25 M magnesium chloride, 10 ml/l 20% galactose, 5 ml/l congo red</td>
</tr>
<tr>
<td>Caco-2 medium</td>
<td>MEM + 10% FCS</td>
</tr>
<tr>
<td>DYT broth (Double Yeast Tryptone) complex medium</td>
<td>10 g/l yeast extract, 5 g/l NaCl, 16 g/l tryptone</td>
</tr>
<tr>
<td>Freezing medium for eukaryotic cells</td>
<td>90% FCS + 10% DMSO</td>
</tr>
<tr>
<td>HEP-2 medium</td>
<td>RPMI 1640 + 1% GlutaMax-I + 7.5% NCS</td>
</tr>
<tr>
<td>J774A.1 medium</td>
<td>RPMI 1640 + 1% GlutaMax-I + 5% FCS</td>
</tr>
<tr>
<td>LB broth (Sambrook et al., 1989)</td>
<td>5 g/l yeast extract, 5 g/l NaCl, 10 g/l tryptone</td>
</tr>
<tr>
<td>LB solid medium</td>
<td>LB-medium + 18 g/l agar</td>
</tr>
<tr>
<td>MMA (minimal medium A) (Sambrook et al., 1989)</td>
<td>10.5 g/l K₂HPO₄, 4.5 g/l KH₂PO₄, 1 g/l (NH₄)₂SO₄, 0.5 g/l sodiumcitrate</td>
</tr>
<tr>
<td>Raw264.7 medium</td>
<td>Iscove Basal medium with stable glutamine (IMDM) + 10% FCS</td>
</tr>
<tr>
<td>SOC medium (super optimal broth) complex medium</td>
<td>5 g/l yeast extract, 0.5 g/l NaCl, 10 ml/l 1M MgCl₂, 20 g/l tryptone, 2.5 ml/l 1M KCl, 10 ml/l MgSO₄</td>
</tr>
<tr>
<td>Yersinia medium</td>
<td>Yersinia selective agar base and Yersinia selective supplement (Oxoid)</td>
</tr>
</tbody>
</table>

Table 2.3: Supplements and inhibitors

<table>
<thead>
<tr>
<th>Supplement/inhibitor & function</th>
<th>End concentration</th>
<th>Concentration stock solution & manufacturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbenicillin (antibiotic)</td>
<td>100 µg/ml</td>
<td>100 mg/ml in H₂O (Roth)</td>
</tr>
<tr>
<td>Chloramphenicol (antibiotic)</td>
<td>30 µg/ml</td>
<td>30 mg/ml in 70% EtOH (Roth)</td>
</tr>
</tbody>
</table>
Material and methods

<table>
<thead>
<tr>
<th>Material/Method</th>
<th>Concentration</th>
<th>Source/Additional Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>CNF<sub>Y</sub> (cytotoxic necrotizing factor of YPIII)</td>
<td>1 - 25 nM</td>
<td>1 - 5 mg/ml (this study)</td>
</tr>
<tr>
<td>CT04 (C3 Transferase; Rho Inhibitor I)</td>
<td>0.5 - 1 µg/ml</td>
<td>0.1 µg/µl (Cytoskeleton)</td>
</tr>
<tr>
<td>Cytochalasin-D (inhibitor)</td>
<td>5 µg/ml</td>
<td>5 mg/ml in DMSO (Sigma)</td>
</tr>
<tr>
<td>FCS (fetal calf serum; growth factor)</td>
<td>10%- 5%</td>
<td>100% (Biochrom)</td>
</tr>
<tr>
<td>Gentamycin (antibiotic)</td>
<td>50 µg/ml</td>
<td>50 mg/ml (Sigma)</td>
</tr>
<tr>
<td>HEPES (buffer)</td>
<td>10 mM</td>
<td>1 M (Biochrom)</td>
</tr>
<tr>
<td>Kanamycin (antibiotic)</td>
<td>50 µg/ml</td>
<td>50 mg/ml in H<sub>2</sub>O (Merck)</td>
</tr>
<tr>
<td>NCS (newborn calf serum; growth factor)</td>
<td>7.5%</td>
<td>100%</td>
</tr>
<tr>
<td>Probenecid (inhibitor)</td>
<td>1.5 mM</td>
<td>150 mM (Sigma)</td>
</tr>
<tr>
<td>TcdBF (Toxin B serotype F; Rac1/2/3 inhibitor)</td>
<td>85 - 250 ng/ml</td>
<td>850 µg/ml (H. Genth, Institute for Toxicology, Medical School Hannover)</td>
</tr>
</tbody>
</table>

2.1.4 Enzymes and antibodies

Enzymes used in this study are listed in Table 2.4 and were applied with the provided buffers. Antibodies used for western blotting or flow cytometry are listed in Table 2.5.

Table 2.4: Enzymes

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>Enzyme</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bioline</td>
<td>MangoTaq™ DNA polymerase</td>
</tr>
<tr>
<td>Finnzymes</td>
<td>Phusion® High-Fidelity DNA Polymerase</td>
</tr>
<tr>
<td>NEB</td>
<td>Antarctic phosphatase</td>
</tr>
<tr>
<td></td>
<td>Benzonase</td>
</tr>
<tr>
<td></td>
<td>LongAmp Taq DNA polymerase</td>
</tr>
<tr>
<td></td>
<td>Restriction enzymes</td>
</tr>
<tr>
<td></td>
<td>Taq DNA polymerase</td>
</tr>
<tr>
<td></td>
<td>T<sub>r</sub>-DNA ligase</td>
</tr>
<tr>
<td>Sigma Aldrich</td>
<td>Trypsin-EDTA</td>
</tr>
<tr>
<td></td>
<td>Cytochalasin-D</td>
</tr>
<tr>
<td>Qiagen</td>
<td>RNaseA</td>
</tr>
</tbody>
</table>
Table 2.5: Antibodies

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>Antibody (dilution and buffer)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antibodies for western blotting</td>
<td></td>
</tr>
<tr>
<td>Ake Forsberg</td>
<td>Anti-Yop all (TBSTB)</td>
</tr>
<tr>
<td>Cell Signaling</td>
<td>Anti-Cdc42 (1:1,000 in TBSTB)</td>
</tr>
<tr>
<td></td>
<td>Anti-mouse-HRP (1:5,000 in TBSTB/TBSTM)</td>
</tr>
<tr>
<td></td>
<td>Anti-Pan-Actin (1:1,000 in TBSTB)</td>
</tr>
<tr>
<td></td>
<td>Anti-rabbit HRP (1:5,000 in TBSTB/TBSTM)</td>
</tr>
<tr>
<td></td>
<td>Anti-Rac1/2/3 (1:1,000 in TBSTB)</td>
</tr>
<tr>
<td></td>
<td>Anti-RhoA (1:1,000 in TBSTB)</td>
</tr>
<tr>
<td>David’s Biotechnology</td>
<td>Anti-CNFW (1:1,000 in TBSTB)</td>
</tr>
<tr>
<td>Sigma</td>
<td>Anti-polyHistidin (1:2,000 in TBSTM)</td>
</tr>
<tr>
<td>Antibodies for Flow Cytometry</td>
<td></td>
</tr>
<tr>
<td>BD Biosciences</td>
<td>Anti-CD3-Biotin</td>
</tr>
<tr>
<td></td>
<td>Anti-CD3-PE</td>
</tr>
<tr>
<td></td>
<td>Anti-Ly6G-PE-Cy7</td>
</tr>
<tr>
<td></td>
<td>Streptavidin-FITC</td>
</tr>
<tr>
<td>BioLegend</td>
<td>Anti-CD11c-PE-Cy7</td>
</tr>
<tr>
<td></td>
<td>Anti-CD19-FITC</td>
</tr>
<tr>
<td></td>
<td>Anti-CD25-APC</td>
</tr>
<tr>
<td></td>
<td>Anti-CD49b-Biotin</td>
</tr>
<tr>
<td></td>
<td>Anti-Ly6C-APC</td>
</tr>
<tr>
<td>BioXCell</td>
<td>Anti-mouse CD16/CD32</td>
</tr>
<tr>
<td>eBioscience</td>
<td>Anti-CD3-APC</td>
</tr>
<tr>
<td></td>
<td>Anti-CD3-PE-Cy7</td>
</tr>
<tr>
<td></td>
<td>Anti-CD4-PerCP-Cy5.5</td>
</tr>
<tr>
<td></td>
<td>Anti-CD4-APC-eF780</td>
</tr>
<tr>
<td></td>
<td>Anti-CD8-eFluor450</td>
</tr>
<tr>
<td></td>
<td>Anti-CD335-PerCP-Cy5.5 (NKp46)</td>
</tr>
<tr>
<td></td>
<td>Anti-CD11b-Pacific Blue</td>
</tr>
<tr>
<td></td>
<td>Anti-CD11c-APC</td>
</tr>
</tbody>
</table>
Material and methods

<table>
<thead>
<tr>
<th>Antibody</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anti-CD19-Biotin</td>
</tr>
<tr>
<td>Anti-CD45R-PerCP-Cy5.5 (B220)</td>
</tr>
<tr>
<td>Anti-CD11c-APCeFluor780</td>
</tr>
<tr>
<td>Anti-F4/80-PE</td>
</tr>
<tr>
<td>Anti-Gr1-A700</td>
</tr>
<tr>
<td>Anti-NKp46-PE</td>
</tr>
<tr>
<td>Streptavidin-PerCP-Cy5.5</td>
</tr>
</tbody>
</table>

*all antibodies were titrated for optimal staining conditions

2.1.5 Commercial kits

In Table 2.6 are listed all kits used in this study. Kits were employed according to the manufacturer’s protocol, unless differently stated.

Table 2.6: Commercial kits

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>Kit</th>
<th>Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell Biolabs</td>
<td>Cdc42 and Rac Activation Assay</td>
<td>Pull down of active Rac and Cdc42 GTPases</td>
</tr>
<tr>
<td>Invitrogen</td>
<td>Live/dead Fixable Blue Dead Cell Stain Kit</td>
<td>Live/dead staining of cells for flow cytometry analysis, UV excitation</td>
</tr>
<tr>
<td>Life Technologies</td>
<td>LiveBLAzer-FRET BG Loading Kit</td>
<td>Yop delivery assay</td>
</tr>
<tr>
<td>Millipore</td>
<td>Rho Activation Assay Kit</td>
<td>Pull down of active Rho GTPases</td>
</tr>
<tr>
<td></td>
<td>MILLIPLEX MAP Mouse Cytokine/Chemokine Magnetic Bead Panel - Premixed 32 Plex - Immunology Multiplex Assay Kit</td>
<td>Measurement of cytokine level</td>
</tr>
<tr>
<td>Perkin Elmer</td>
<td>Western Lightning ECL II Kit</td>
<td>Detection of HRP conjugated secondary antibodies (western blot)</td>
</tr>
<tr>
<td>Pierce</td>
<td>Coomassie (Bradford) Protein Assay Kit</td>
<td>Detection and quantification of total protein amount</td>
</tr>
</tbody>
</table>

32
Material and methods

<table>
<thead>
<tr>
<th>Company</th>
<th>Kit Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Qiagen</td>
<td>QIAquick™ Gel Extraction Kit</td>
<td>Gel extraction of PCR products and plasmids</td>
</tr>
<tr>
<td></td>
<td>QIAquick™ PCR Purification Kit</td>
<td>Purification of PCR products</td>
</tr>
<tr>
<td></td>
<td>QIAprep™ Spin Miniprep Kit</td>
<td>Isolation and purification of plasmids</td>
</tr>
</tbody>
</table>

2.1.6 Oligonucleotides and plasmids

2.1.7 Oligonucleotides

Metabion performed the synthesis of all used oligonucleotides (see Table 2.7). Each primer stock solution was 100 µM and was diluted for PCR reactions to 10 µM. Underlined nucleotides mark integrated restriction sites or overlapping regions as indicated. Plasmids used in this study are listed in Table 2.8.

Table 2.7: Oligonucleotides

<table>
<thead>
<tr>
<th>Name</th>
<th>Sequence 5’ - 3’</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>I661</td>
<td>GTGTAGGGCTGGAGCTGCTTC</td>
<td>sense for synthesis of kan-cassette of pKD3/4</td>
</tr>
<tr>
<td>I662</td>
<td>CATATGAAATATCCTCCTTAGTTC</td>
<td>anti-sense for synthesis of kan-cassette of pKD3/4</td>
</tr>
<tr>
<td>I984</td>
<td>TAAGAAACCATTATTATCATGACC</td>
<td>sequencing primer for pFU vector system, binds in P1-site</td>
</tr>
<tr>
<td>I987</td>
<td>TCTAGGGCGGCGGATTAGTTC</td>
<td>sequencing primer for pFU vector system, binds in P2-site</td>
</tr>
<tr>
<td>II306</td>
<td>GCACCTGGATCCTAGTATCTCTGGAATAGACAACGAAAG</td>
<td>sense for 5’UTR of yopE</td>
</tr>
<tr>
<td>II371</td>
<td>CGGACATGCGGCAATTGAAGCAC</td>
<td>sense for upstream region of lcrQ</td>
</tr>
<tr>
<td>II372</td>
<td>CGGGCATGCGCCACTGGTAAATGCAGG</td>
<td>anti-sense for downstream region of lcrQ</td>
</tr>
<tr>
<td>II794</td>
<td>GGGGCTAGCATGAAAAATCAATGGCAA</td>
<td>sense for CNFα overexpression (NheI)</td>
</tr>
<tr>
<td>II795</td>
<td>GGGCTCGAGTTAAAAAGTCTTTTGTTAA</td>
<td>anti-sense for CNFα overexpression (XhoI)</td>
</tr>
<tr>
<td>II894</td>
<td>ACATAATGTATTCTAATAAAAACATTAC</td>
<td>sense for cnfα sequencing</td>
</tr>
</tbody>
</table>
Material and methods

<table>
<thead>
<tr>
<th>ID</th>
<th>Primer/oligonucleotide sequence</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>II895</td>
<td>TAAATGATAAATTGTGTTTACTGGTG</td>
<td>anti-sense for cnfY sequencing</td>
</tr>
<tr>
<td>II896</td>
<td>GGGGGGGATCTCTATTGACAAA CAAAATGAAGCAAGATAG</td>
<td>sense for promoter region of cnfY (BamHI)</td>
</tr>
<tr>
<td>II898</td>
<td>GGGGGGTGCACTTTAGCCATTG ATTTTTCATAAACACTCC</td>
<td>anti-sense for promoter region of cnfY (SalI)</td>
</tr>
<tr>
<td>III710</td>
<td>CCGGGGGAGCTCGACAACAAAATGAAGCAAGATAGTTTATACATG</td>
<td>sense for cnfY mutagenesis, upstream region (Sacl)</td>
</tr>
<tr>
<td>III711</td>
<td>CCGGGGAGCTCTTTTTTGCGAGTGCACCTACCC</td>
<td>sense 900 bp upstream of cnfY (Sacl)</td>
</tr>
<tr>
<td>III712</td>
<td>CCGGGGGAGCTCTTTTTCTGCGACCA</td>
<td>anti-sense for cnfY mutagenesis, downstream region (Sacl)</td>
</tr>
<tr>
<td>III713</td>
<td>CCGGGGAGCTCTACGCATTAG TGTCGAAACCCAGT</td>
<td>anti-sense 1000 bp downstream of cnfY (Sacl)</td>
</tr>
<tr>
<td>III714</td>
<td>GGAACCTAGGAGGATGCTATA TGAAATGTTTACAAAGAAGACTTAGTAAAATCTAACGTCCTC</td>
<td>sense for cnfY mutagenesis (downstream region) with homologous kan region</td>
</tr>
<tr>
<td>III715</td>
<td>GAAGCAGCTCCAGCTACACAAACACTCCTTTTATTGAGATG CACAATG</td>
<td>anti-sense for cnfY mutagenesis (upstream region) with homologous kan region</td>
</tr>
<tr>
<td>III727</td>
<td>CCGGGGGATCCATGAAAATC AATGGCAACATCAATATTT</td>
<td>test for cnfY loss</td>
</tr>
<tr>
<td>III680</td>
<td>TCTCCACCAAGCGGCGC</td>
<td>anti-sense kan region, testing for genomic integration</td>
</tr>
<tr>
<td>III681</td>
<td>CGATTCGAGCGCATCGC</td>
<td>sense kan region, testing for genomic integration</td>
</tr>
<tr>
<td>IV16</td>
<td>GGGGGGGCGCGCCTTTAAAGTCTTTTGTAACAC</td>
<td>anti-sense for cnfY complementation (NotI)</td>
</tr>
<tr>
<td>IV48</td>
<td>GTAAAGATGAATATGAATTCTC TATTGATGC</td>
<td>sense sequencing cnfY</td>
</tr>
<tr>
<td>IV49</td>
<td>CCTCAAGCGCAATTTTATACCC</td>
<td>anti-sense sequencing cnfY</td>
</tr>
<tr>
<td>IV474</td>
<td>CCCCAGCGCCCTGATTGCTTTGGAAGTGGATCGGTGATGATGAAAGTACCCGTTTTGTAACAC</td>
<td>anti-sense for C-terminal His tag of cnfY (NotI)</td>
</tr>
</tbody>
</table>
Material and methods

V439	AGACAGCGGCGCTCAGCTAC TTAGATGCTGAGTAAAACCTGG TCTGACAGT	anti-sense test for TEM integration
V553	CCGGGGAGCTCAGATGGGTTT TAATATATCTTGACCTGAAT	sense for yopE mutagenesis, upstream region (SacI)
V554	GAAGCAGCTCCAGCTACATT CTCTACGCTGTAGATCCC	anti-sense for yopE mutagenesis (upstream region) with homologous kan region
V555	GGAACATAAGGAGATTCATA TGTATGATAAAAAACAGGGGA TGATGT	sense for yopE mutagenesis (downstream region) with homologous kan region
V556	CCGGGGAGCTCAATGTACCTG TGAGCCATCG	Anti-sense for yopE mutagenesis, downstream region (SacI)
V557	CACCGGTGCGAGATCAA	sense 1000 bp upstream of yopE
V558	TCTGTTGAGCATTCCACACT	anti-sense 1000 bp downstream of yopE

Table 2.8: Plasmids

<table>
<thead>
<tr>
<th>Plasmid</th>
<th>Characteristics</th>
<th>Source/reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>pAKH3</td>
<td>pGO704, sacB(^+), Amp(^R)</td>
<td>(Nagel et al., 2001)</td>
</tr>
<tr>
<td>pCP20</td>
<td>pSC101(_{ts}), flp, Amp(^R), Cm(^R)</td>
<td>(Datsenko & Wanner, 2000)</td>
</tr>
<tr>
<td>pET28a</td>
<td>T7 promoter based expression vector, Kan(^R)</td>
<td>Novagen</td>
</tr>
<tr>
<td>pFU54</td>
<td>promoterless luxCDABE, pSC101(^*) ori, Amp(^R)</td>
<td>(Uliczka et al., 2011)</td>
</tr>
<tr>
<td>pFU58</td>
<td>promoterless gfpmut3.1, pSC101(^*) ori, Amp(^R)</td>
<td>(Uliczka et al., 2011)</td>
</tr>
<tr>
<td>pFU68</td>
<td>promoterless lacZ, pSC101(^*) ori, Amp(^R)</td>
<td>(Uliczka et al., 2011)</td>
</tr>
<tr>
<td>pFU166</td>
<td>gapA-luxCDABE, colE1 ori, Amp(^R)</td>
<td>(Uliczka et al., 2011)</td>
</tr>
<tr>
<td>pFU228</td>
<td>gapA-dsRed2, colE1 ori, Cm(^R)</td>
<td>(Uliczka et al., 2011)</td>
</tr>
<tr>
<td>pFU234</td>
<td>ifp(^+), pSC101(^*) ori, Kan(^R)</td>
<td>(Uliczka et al., 2011)</td>
</tr>
<tr>
<td>pKD3/4</td>
<td>Kanamycin cassette template, Kan(^R)</td>
<td>(Datsenko & Wanner, 2000)</td>
</tr>
</tbody>
</table>
Material and methods

<table>
<thead>
<tr>
<th>Vector</th>
<th>Description</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>pSR47s-E-TEM2</td>
<td>YopE-TEM1; Kan(^{R})</td>
<td>(Harmon et al., 2010)</td>
</tr>
<tr>
<td>pJNS01</td>
<td>pET28a, cnfY, Kan(^{R})</td>
<td>(Schweer et al., 2013), this study</td>
</tr>
<tr>
<td>pJNS02</td>
<td>(P_{cnfY-luxCDABE}), pSC101* ori, Amp(^{R})</td>
<td>(Schweer et al., 2013)</td>
</tr>
<tr>
<td>pJNS03</td>
<td>(P_{cnfY-gfpmut3.1}), pSC101* ori, Amp(^{R})</td>
<td>(Schweer et al., 2013)</td>
</tr>
<tr>
<td>pJNS04</td>
<td>(P_{cnfY-lac}), pSC101* ori, Amp(^{R})</td>
<td>(Schweer et al., 2013)</td>
</tr>
<tr>
<td>pJNS05</td>
<td>pAKH3, cnfY::kan(^{R}), sacB(^{R}), Amp(^{R})</td>
<td>(Schweer et al., 2013), this study</td>
</tr>
<tr>
<td>pJNS09</td>
<td>pFU234, Amp(^{R})</td>
<td>(Schweer et al., 2013), this study</td>
</tr>
<tr>
<td>pJNS10</td>
<td>pJNS09, cnfY(^{R}), pSC101* ori, Amp(^{R})</td>
<td>(Schweer et al., 2013), this study</td>
</tr>
<tr>
<td>pJNS11</td>
<td>pJNS09, pSC101* ori, Amp(^{R})</td>
<td>(Schweer et al., 2013), this study</td>
</tr>
<tr>
<td>pJNS12</td>
<td>pJNS09, cnfY(^{R}), C-terminal 6xHis, pSC101* ori, Amp(^{R})</td>
<td>(Schweer et al., 2013), this study</td>
</tr>
<tr>
<td>pJNS13</td>
<td>pAKH3, yopE::kan(^{R}), sacB(^{R}), Amp(^{R})</td>
<td>(Schweer et al., 2013), this study</td>
</tr>
</tbody>
</table>

2.1.8 Bacterial strains and cell lines

All bacterial strains and eukaryotic cell lines used in this study are listed in Table 2.9 and Table 2.10, respectively.

Table 2.9: Bacterial strains

<table>
<thead>
<tr>
<th>Bacterial strain</th>
<th>Description</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Escherichia coli K-12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DH10β</td>
<td>F(^{-}) endA1 recA1 galE15 galK16 nupG rpsL (\Delta)lacX7Φ80lacZΔM15 araD139(\Delta)(ara,leu)7697 mcrA (\Delta)(mrr-hsdRMS-mcrBC)(\lambda)</td>
<td>(Casadaban & Cohen, 1980)</td>
</tr>
<tr>
<td>BL21 λDE3</td>
<td>F(^{-}) ompT gal dcm lon hsdSB(rb2 mB2) gal λDE3</td>
<td>(Studier & Moffatt, 1986)</td>
</tr>
<tr>
<td>CC118 λpir</td>
<td>F(^{-}) (ara-leu)7697 (lacZ)74 (phoA)20 araD139 galE galK thi rpsE rpoB arfE(^{am}) recA1</td>
<td>(Manoil & Beckwith, 1986)</td>
</tr>
</tbody>
</table>
Material and methods

<table>
<thead>
<tr>
<th>S17-1 λpir</th>
<th>recA thi pro hsdR M′(RP4-2 Tc::Mu-Km::Tn7), λpir</th>
<th>(Simon et al., 1983)</th>
</tr>
</thead>
</table>

Yersinia pseudotuberculosis

<table>
<thead>
<tr>
<th>Cell line</th>
<th>Description</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>YPIII</td>
<td>pIB1, wild-type</td>
<td>(Bolin et al., 1982)</td>
</tr>
<tr>
<td>YP12</td>
<td>pIB1<sup>+</sup></td>
<td>(Bolin et al., 1982)</td>
</tr>
<tr>
<td>YP101</td>
<td>YPIII ΔyscS</td>
<td>(Schweer et al., 2013), Steinmann</td>
</tr>
<tr>
<td>YP147</td>
<td>pIB1, ΔcnfY, Kan<sup>R</sup></td>
<td>(Schweer et al., 2013), this study</td>
</tr>
<tr>
<td>YP149</td>
<td>YPIII phoPQ<sup>R32933</sup></td>
<td>(Schweer et al., 2013)</td>
</tr>
<tr>
<td>YP150</td>
<td>YP147, pIB1<sup>+</sup></td>
<td>This study</td>
</tr>
<tr>
<td>YP173</td>
<td>YPIII ETEM, amino acids 1 to 100 of YopE+TEM1</td>
<td>(Schweer et al., 2013)</td>
</tr>
<tr>
<td>YP174</td>
<td>YPIII ΔyscS ETEM, amino acids 1 to 100 of YopE+TEM1</td>
<td>(Schweer et al., 2013)</td>
</tr>
<tr>
<td>YP188</td>
<td>YP149 ΔcnfY, Kan<sup>R</sup></td>
<td>(Schweer et al., 2013), this study</td>
</tr>
<tr>
<td>YP216</td>
<td>YP147, Kan<sup>S</sup></td>
<td>This study</td>
</tr>
<tr>
<td>YP217</td>
<td>YP147 ETEM, amino acids 1 to 100 of YopE+TEM1</td>
<td>(Schweer et al., 2013), this study</td>
</tr>
<tr>
<td>YP275</td>
<td>pIB1, ΔyopE, Kan<sup>R</sup></td>
<td>(Schweer et al., 2013), this study</td>
</tr>
<tr>
<td>YP298</td>
<td>YP101, ΔcnfY, Kan<sup>R</sup></td>
<td>This study</td>
</tr>
</tbody>
</table>

Table 2.10: Cell lines

<table>
<thead>
<tr>
<th>Cell line</th>
<th>Description</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caco-2</td>
<td>Human colonic Adenocarcinoma cell line</td>
<td>(Fogh & Trempe, 1975)</td>
</tr>
<tr>
<td>HEp-2</td>
<td>Human Larynx carcinoma cell line</td>
<td>(Toolan, 1954)</td>
</tr>
<tr>
<td>J774A.1</td>
<td>Murine monocytes/macrophages cell line</td>
<td>(Ralph & Nakoinz, 1975)</td>
</tr>
<tr>
<td>RAW 264.7</td>
<td>Murine macrophages leukemia cell line</td>
<td>(Ralph & Nakoinz, 1977)</td>
</tr>
</tbody>
</table>
2.1.9 Software and databases
Software applied in this study was Graph Pad PRISM 5.0 (Graphpad Software, Inc.), FlowJo (Tree Star Inc.), and FACSDiva™ (BD Bioscience). Databases used in this study were the National Center for Biotechnology Information (NCBI; www.ncbi.nlm.gov), and uniprot (www.uniprot.de).

2.2 Methods
All microbiological, molecular, biochemical and cell biological methods used in this study are listed in the following passages. Used materials are summarized in chapter 2.1 or either mentioned in the text.

2.2.1 Microbiological methods

2.2.1.1 Sterilization
Sterilization of solutions and media was accomplished by autoclaving for 20 min at 121°C and 1 bar. Temperature sensitive substances were filtered, using a filter pore size of 0.2 µm (Filtropure S 0.2, Sarstedt). Glassware was dry heat sterilized at 180°C. Heat labile equipment and workbenches were disinfected with 70% ethanol or 7% Pursept®.

2.2.1.2 Growth conditions
Y. pseudotuberculosis was cultured under aerobic conditions at 25°C, whereas cultures of E. coli were incubated at 37°C if not noted otherwise. Cultivation took place either on agar plates (Heraeus incubator) or in liquid culture (Infors incubation shaker) at 200 rpm in test tubes or Erlenmeyer flasks. Supplements, if required for the experiment, are listed in Table 2.3. If not noted otherwise, bacteria were grown in LB broth or on LB agar plates. Specially used media were: Yersinia-agar plates, BHI, SOC, DYT, MMA and RPMI.

2.2.1.3 Determination of cell density
The cell density of bacterial cultures was measured via the optical density (OD_{600}) at 600 nm wavelength with a spectrophotometer (Ultraspec 3100 pro, Ambersham Biosciences). A bacterial culture with an OD_{600} of 1 correlates with a cell density of approx. 1 x 10^9 bacteria/ml (Sambrook et al., 1989). Reference for the measurement was the corresponding growth medium.
2.2.1.4 Storage of bacteria

For short- or middle-term storage periods the bacteria were grown on agar plates and stored at 4°C. Long-term storage was accomplished in the corresponding culture medium with 30% glycerol at -80°C. Therefore, overnight grown bacteria (1.25 ml) were mixed with 0.75 ml of 80% sterile glycerol.

2.2.1.5 Curing of the virulence plasmid of Y. pseudotuberculosis

To remove the virulence plasmid pIB1 from Y. pseudotuberculosis strains, the curing method of Riley & Toma (1989) was used. The method is based on the detection of the virulence associated calcium-dependency and Congo-red absorption of the pIB1 carrying Yersinia. Therefore, the bacteria were grown on CRMOX plates for 24 h at 37°C to build up selection pressure on the plasmid-cured bacteria (pIB1-). Bacteria colonies without the plasmid appeared bright and big, whereas bacteria still carrying the plasmid formed small red colonies. To verify the loss, bacteria were tested by colony-PCR against a plasmid-encoded gene.

2.2.1.6 Yop secretion assay

The Yop secretion assay was performed as described previously (Cornelis et al., 1987). Bacteria were grown overnight at 25°C in LB medium, diluted 1:50 in fresh LB medium and grown at 25°C to an OD$_{600}$ of about 0.4 - 0.5. The cultures were shifted to 37°C for 3 - 4 h in the absence or presence of 20 mM Mg$^{2+}$ and 20 mM sodiumoxalate, a Ca$^{2+}$ chelator. The OD$_{600}$ of the different strains was adjusted to the strain with the lowest OD$_{600}$ (18 ml). After harvesting the bacteria by a centrifugation step (10 min, 4°C, 27,000 x g), the supernatant was sterilized with a 0.2 µm filter. To precipitate the proteins of the supernatant, 2 ml of 100% trichloroacetic acid (TCA) were added and incubated for 30 min on ice. The denatured proteins were harvested by centrifugation (10 min, 4°C, 27,000 x g). After discarding the supernatant, the pellet was resuspended in 2 ml Aceto-SDS and incubated for 20 min on ice. Subsequently, the mixture was centrifuged (10 min, 4°C, 27,000 x g) and the pellet washed with 500 µl aceton. After another centrifugation step (10 min, 4°C, 27,000 x g) the pellet was dried and resuspended in 50 µl 3 x SDS sample buffer. The samples were boiled for 5 min at 95°C, separated on 12% SDS polyacrylamide gels and visualized by Coomassie brilliant blue staining (see 2.2.4.4).
2.2.2 Cell biological methods

2.2.2.1 Cultivation and passage of eukaryotic cells

The cultivation conditions of eukaryotic cells were 37°C with 5% CO₂ in a cell incubator. The cells, if not noted otherwise, were cultured in 75 cm² cell culture flasks with 20 ml medium and passaged every 2 - 3 days.

2.2.2.1.1 Cultivation and passage of HEp-2 and Caco-2 cells

Cultivation of the human epithelial cell line HEp-2 was performed in RPMI medium supplemented with 7.5% NCS. Caco-2 cells were cultured in DMEM medium supplemented with 10% FCS and 10 mM HEPES. To detach the adherent cells off the culture flask bottom, the cells were washed once with 5 - 10 ml PBS and subsequently treated with 2 ml trypsin-EDTA for 5 min at 37°C. The trypsin reaction was stopped by addition of 5 x the volume of culture medium. After resuspension, the cells were diluted 1:10 with fresh medium and transferred into a new flask.

2.2.2.1.2 Cultivation and passage of J774A.1 and RAW264.7

The adherent murine macrophage cell lines J774A.1 and Raw264.7 were cultured in RPMI or IMDM (respectively) and both supplemented with 10% FCS. For the passage, cells were washed once with PBS and scraped off the bottom of the culture flask. After resuspending the cells in 10 ml fresh culture medium, cells were diluted 1:20 with medium and transferred into fresh flasks.

2.2.2.2 Determination of cell count

For the determination of the cell amount per ml cell suspension, cells were diluted 1:10 in trypan-blue to exclude the dead cells from the count. Trypan-blue is not able to penetrate the cytoplasmic membrane, hence the dye invades selectively dead cells, which appear blue under the light microscope. The average cell number of 4 squares of a Neubauer counting chamber was determined and multiplied by 10⁴. Calculation took account of used dilutions prior to cell counting.
2.2.2.3 Freezing and thawing of eukaryotic cells

For freezing/storage, eukaryotic cells were cultured in 75 cm2 cell culture flasks to a subconfluent level. Cells were detached from the surface as described in 2.2.2.1.1 and 2.2.2.1.2. After centrifugation (5 min, 25°C, 172 x g), the pellet was resuspended in 1 ml freezing medium and transferred into cryotubes. Subsequently, the cells were cooled down slowly to -80°C and long-term stored in liquid nitrogen at -170°C.

For thawing, the cryotubes were incubated shortly at 37°C and afterwards the cells were taken up in 9 ml fresh medium followed by centrifugation (5 min, 25°C, 172 x g). After resuspending the pellet in 20 ml fresh culture medium, the cells were transferred into a 75 cm2 cell culture flask and cultivated at 37°C with 5% CO$_2$.

2.2.2.4 Incubation of eukaryotic cells with CNF$_Y$

The incubation of eukaryotic cells with CNF$_Y$ took place in the respective culture medium (concentration 1, 10 or 25 nM). For this purpose, cells were seeded one day prior to toxin treatment and washed once with PBS before addition of CNF$_Y$. Incubation took place for 30 min - 24 h in a cell incubator.

2.2.2.5 Multinucleation assay

The multinucleation assay is based on the ability of CNF$_Y$ to interfere in the cell cycle of the eukaryotic cell, leading to the formation of multinucleated giant cells. Hence, multinucleation assays were performed to determine the activity or in case of a $\Delta cnfY$ mutant strain, the loss of CNF$_Y$. In order to test this, eukaryotic cells were incubated over 48 h with lysates of whole bacterial cell extracts and visualized afterwards.

To prepare bacteria lysates, different Yersinia strains were grown at 37°C overnight in BHI medium to get a high CNF$_Y$ expression. After measuring the OD$_{600}$ of the cultures the OD$_{600}$ were adjusted to the strain with the lowest cell density to 50 ml. Bacteria were harvested by a centrifugation step (10 min, 4°C, 27,000 x g) and subsequently the pellet resuspended in 5 ml PBS containing 1 tablet Mini, EDTA-free Protease Inhibitor Cocktail (Roche) per 10 ml and 100 µg/ml gentamycin. Cells were lyzed using a French press (Thermo Scientific) and 18,000 psi pressure. After another centrifugation step (60 min, 4°C, 27,000 x g) the supernatant was sterilized using a filter with a pore size of 0.2 µm. The lysates were diluted 1:10, 1:50, 1:250 and 1:1,250 with culture medium and given onto the cells for 48 h. After the incubation, the actin cytoskeleton and nuclei were stained (2.2.2.6).
2.2.2.6 Visualization of the actin cytoskeleton

The actin cytoskeleton was stained to determine the impact of CNF\textsubscript{Y} on the polymerization dynamic after different incubation times. For this purpose, cells were treated with FITC conjugated phalloidin.

Therefore, cells were seeded one day prior to treatment with a density of \(1.7 \times 10^4\) cells/well in a microslide 8 well plate (ibidi). Cells were washed once with PBS and treated for 24 h with recombinant CNF\textsubscript{Y} or 48 h with bacteria lysate. After incubation, the cells were washed three times with PBS and fixed with 4\% Paraformaldehyde (PFA) for 10 min at room temperature. Subsequently, the cells were washed three times with PBS (each time 5 min) and permealized using 0.1\% Triton X-100 (in PBS) for 5 min at room temperature. After the following washing steps (3 x 5 min), cells were stained for 1 - 3 h at room temperature in the dark, using Phalloidin-FITC (0.5 \(\mu\)g/ml in PBS). Cells were then washed (3 x 5 min) and the nuclei stained with DAPI (1 \(\mu\)g/ml in 1 x TBST) for 3 min at room temperature in the dark. After 3 additional washing steps (3 x 5 min), the cells were visualized using a fluorescence microscope (Axiocover II with AxioCam HR, Zeiss, Germany) and the AxioVision program (Zeiss, Germany) or stored at 4\°C in the dark.

2.2.2.7 Rho/Rac/Cdc42 activation assay

To determine whether there is a concentration dependency of CNF\textsubscript{Y} or an impact of YopE on the activation of the three small Rho-GTPases, RhoA, Rac1 and Cdc42 activation assays were carried out. To test the activation of Rac1 and Cdc42 a Rac1/Cdc42 Activation Assay Combo Kit of Cell Biolabs was used, whereas the activation of RhoA was tested using the Rho Activation Assay Kit 17-294 of Millipore, following the manufacturer instructions.

For the assays, the murine macrophage cell lines J774A.1 or RAW264.7 or the human epithelial cell line HEp-2 were seeded two days prior to treatment on 1 well plates (Fischer Scientific) with a concentration of \(2 \times 10^6\) cells/well. At least 20 h before toxin treatment, cells were washed once in PBS and further incubated in starving medium (without FCS).

For evaluating activation levels’ dependency on CNF\textsubscript{Y}, cells were washed once with PBS and incubated with different concentrations of the recombinant CNF\textsubscript{Y} toxin (1 nM, 10 nM, and 25 nM) for 3 h at 37\°C in starving medium.
Material and methods

To test the impact of YopE on the activation of the three Rho-GTPases, the murine macrophages RAW264.7 were infected after toxin treatment (25 nM) with either YPIII (wild-type) or YP275 (ΔyopE). To this purpose, yersinia were grown overnight at 37°C, washed once with PBS and adjusted to an OD_{600} of 1. For infection, the cells were washed once with PBS and the bacteria, diluted in the starving medium to an MOI of 100, were given onto the cells. Infection took place for 20 min at 37°C.

The activation assay is based on the use of Rhotekin RBD or PAK PBD agarose beads. When active (GTP-bound form), RhoA is specifically binding to the Rho-binding domain (RBD) of Rhotekin, whereas active Rac1 and Cdc42 specifically bind to the p21-binding domain (PBD) of the p21-activated protein kinase (PAK) to control downstream signaling cascades. Figure 2.2.1 schematically shows the principle of the Rac1/Cdc42 Activation Assay Combo Kit. The experiment was carried out according to the manufacturer’s protocol as shortly described below.

Cells were lysed using the supplemented buffer of the kits. Subsequently protein loading controls were taken and the remaining lysates were incubated with Rhotekin RBD or PAK PBD agarose beads to isolate the active forms of RhoA, Rac1 or Cdc42. Isolated active forms of the GTPases and protein loading controls were then loaded onto SDS-PAGE and detected with specific antibodies via western blot (2.2.4.5).

Figure 2.2.1: Principle of the Rho GTPase activation assay.
RhoA/Rac1/Cdc42 Activation Assay Combo Kit (Cell Biolabs, San Diego, CA, USA).
2.2.2.8 TEER (Trans Epithelial Electrical Resistance) measurement

To test a possible influence of the toxin CNF\textsubscript{Y} on the intestinal epithelial cell monolayer, the transwell system of Corning Life Sciences was used. Therefore, the Transwell® (see Figure 2.2.2) with 3.0 µm Pore Polycarbonate Membrane Insert was moistened at least 1 h before seeding of the cells. In order to do this, 800 µl medium was given to the basolateral side and 100 µl to the apical side of the insert.

![Figure 2.2.2: Scheme of the Transwell® culture chamber.](image)

The Caco-2 cells were seeded apical (2.2.2.1.1 & 2.2.2.2) with a concentration of 1.5 x 105 cells/insert in 100 µl (in total 200 µl). A change of the medium (apical & basolateral) was performed every second day. The cells were seeded 21 - 29 days before the treatment to ensure the formation of a confluent monolayer. In order to test the confluency, the TEER was measured repeatedly with an epithelial Voltohmmeter (World Precision Instruments Inc.).

The Caco-2 monolayer was treated basolateral with the recombinant toxin or apically infected with \textit{Yersinia} strains. For the toxin treatment, CNF\textsubscript{Y} (10 nM) was given to the basolateral side of the membrane in fresh medium. The TEER was measured before treatment and subsequently every second hour. For the infection, bacteria were grown overnight at 25°C and adjusted to an OD\textsubscript{600} of 0.5. Approximately 1 x 106 bacteria/well were given apical onto the monolayer in binding buffer. The TEER was measured before infection and was subsequently determined every hour.
2.2.2.9 Yop delivery assay *in vitro*

The Yop delivery assay was carried out to detect differences in the Yop translocation pattern into eukaryotic cells due to CNF\textsubscript{Y} activity. The Yop delivery was measured with three different techniques (see below). Visualization and quantification of Yop translocated cells were carried out with the LiveBLAzer-FRET BG Loading Kit from Life Technologies (Bla-reporter assay), whereas the detection of the translocated Yop proteins in the cells was carried out with antibodies against the proteins.

The general principle of the *bla*-reporter assay is based on the translocation of β-lactamase fusion proteins into the eukaryotic cell (see Figure 2.2.3). In this study, a *yopE-bla* fusion construct was used which is translocated with the T3SS. Hence, eukaryotic cells were infected with different *Y. pseudotuberculosis* strains harbouring the gene for the fusion-protein. After an infection/translocation period of 1 h, the cells were stained with the dye CCF4-AM. The dye gets trapped due to the activity of esterases in the living cells, which appear green fluorescent after excitation with 409 nm wavelength. If the fusion-protein is translocated, the β-lactamase is able to cleave the dye, leading to blue fluorescent cells after excitation with 409 nm wavelength.

Figure 2.2.3: Principle of the *bla*-reporter assay.

The dye CCF4-AM is trapped in the cell by cytoplasmic esterases. After excitation with 409 nm wavelength, all living cells appear green fluorescent. All cells with translocated β-lactamase (YopE- β-lactamase in this study) appear blue fluorescent due to the cleavage of the dye.
2.2.2.9.1 Microscopy of Yop delivery

The microscopic Yop delivery assay was performed as described previously (Marketon et al., 2005). Therefore, 5 x 10⁴ cells/well (µ-slide, ibidi) of HEp-2, Caco-2, RAW264.7 or J774A.1 cells were seeded one day prior to infection.

At the day of infection, the cells were washed once with PBS and pretreated with 25 nM of the recombinant CNF₅ (3 µg/ml), exoenzyme C3 transferase from Clostridium botulinum (CT04, Cytoskeleton. Inc) (0.5 µg/ml, 1 µg/ml), Clostridium difficile toxin TcdBF (85 ng/ml, 250 ng/ml) (Huelsenbeck et al., 2007a) or the same amount of PBS in serum free medium for 2 - 3 h at 37°C.

For infection, overnight cultures of the strains YPIII, YP173, YP174 or YP217 were washed once with PBS and adjusted to an OD₆₀₀ of 1. The infection dose was at MOI of 10 and was carried out for 1 h at 37°C. To facilitate the interaction between eukaryotic cells and bacteria, the yersiniae were centrifuged onto the cells (5 min, RT, 172 x g).

After infection the cells were washed three times and dyed with CCF4-AM using the LiveBLAzer-FRET B⁄G Loading Kit from Life Technologies for 90 min at RT, according to the manufacturers protocol. The Yop translocation was visualized with a fluorescence microscope (Axiovert II with Axiocam HR, Zeiss, Germany), using the AxioVision program (Zeiss, Germany).

2.2.2.9.2 Flow cytometry of Yop delivery

To determine a possible influence of CNF₅ on the Yop delivery rate into Y. pseudotuberculosis infected eukaryotic cells, a Yop delivery assay with subsequent flow cytometry analysis was performed. Hence, eukaryotic cells were infected with Y. pseudotuberculosis strains harbouring a yopE-bla fusion.

For quantification of the amount of cells translocated with the yop proteins, infected and stained cells were acquired with a LSR Fortessa cell analyzer (BD Bioscience). Therefore, 1 x 10⁶ HEp-2 or J774A.1 cells/well (6-well plate, TPP) were seeded one day prior to infection.

At the day of infection, the cells were washed once with PBS and preincubated with the toxin CNF₅ (25 nM/ 3 µg/ml) or an equal amount of PBS for 3 h at 37°C. For infection, overnight cultures (37°C) of the strains YPIII, YP173, YP174 or YP217 were washed once with PBS and adjusted to an OD₆₀₀ of 1. The infection dose was an MOI of 10 and was carried out in binding buffer for 1 h at 37°C. To facilitate the interaction between
Material and methods

eukaryotic cells and bacteria, the yersiniae were centrifuged onto the cells (5 min, RT, 172 \times 10^3 g). Subsequently, the cells were washed once with PBS and detached from the cell culture plate. Therefore, HEp-2 cells were treated with 500 µl trypsin-EDTA for 5 min. The reaction was stopped by the addition of 4.5 ml medium containing 7.5% NCS. J774A.1 macrophages were detached by scraping the cells off the tissue culture plate. After detachment, the cells were resuspended in 1 ml medium and centrifuged for 5 min at 400 \times 10^3 g. The supernatant was removed completely and the cell pellet resuspended in 200 µl of the CCF4-AM staining solution (according to the manufacturers protocol) and transferred into a non-coated 96-well microtiter plate. Throughout the staining period (90 min), the cells were shaken with a microplate shaker (PMS-1000, Grant bio) at 400 rpm. Subsequently, the cells were transferred into Matrix™ Blank and Alphanumeric Storage Tubes (Thermo Scientific) and acquired with the flow cytometer. Acquired data were then analyzed with FlowJo software (Treestar).

2.2.2.9.3 Western blot of Yop delivery

To compare the translocated Yop proteins in the eukaryotic cells after infection with YPIII (wt) or the yopE mutant strain (YP275), a specific antibody against all Yop proteins was used for western blot analysis. Therefore, 2 \times 10^5 RAW264.7 cells/well were seeded one day prior to infection onto 24-well tissue culture plates.

At the day of infection, the cells were washed once with PBS and incubated with 25 nM recombinant CNF_\gamma or the equal amount of PBS for 3 h at 37°C. For infection, overnight cultures (37°C) of YPIII, YP275 and YP101 were washed once with PBS and adjusted to an OD_{600} of 1. The eukaryotic cells were infected with an MOI of 100 in binding buffer. To facilitate the interaction between eukaryotic cells and bacteria, the Yersinia were centrifuged onto the cells (5 min, RT, 172 \times 10^3 g). One hour post infection (37°C), the cells were washed twice with PBS and incubated for another hour with gentamycin containing binding buffer (50 µg/ml). After elimination of the extracellular bacteria, the cells were washed three times with PBS and resuspended in 100 µl 3 x SDS sample buffer. The lysed cells were heated for 5 min at 95°C and 10 µl loaded onto a 12% SDS polyacrylamide gel. After separation on the gel, proteins were blotted onto a nitrocellulose membrane and the intracellular Yops were visualized with an antiserum directed against all secreted Yops (\alpha-all Yop) (see 2.2.4.5). Subsequently, the membrane was stripped and reprobed with a pan-actin antibody as loading control.
2.2.3 Molecular biological methods

2.2.3.1 Measuring of DNA concentration
The measurement of the DNA concentration and purity was performed photometric with a NanoDrop spectrophotometer (PeqLab), using the optical density of the solution (OD$_{260}$, OD$_{280}$). Here, an OD$_{260}$ of 1 corresponds to a dsDNA concentration of 50 µg/ml. To eliminate potential impurities, the ratio of OD$_{260}$ to OD$_{280}$ was calculated. A value of 1.8 represents a solution with high purity, whereas DNA solutions contaminated with proteins possess significant lower OD$_{260}$/OD$_{280}$ values.

2.2.3.2 Polymerase chain reaction (PCR)
The PCR was used to amplify specific DNA fragments with heat stable DNA polymerases (e.g. Taq) and was carried out after Innis & Gelfand (1990). The annealing temperature is dependent on the used oligonucleotides (length, sequence) and was calculated (see Suggs et al., 1981) and tested by a gradient PCR. The elongation time and temperature are dependent on the used polymerase and the size of the DNA fragment, which needs to be amplified.

Because of its proof reading activity, the Phusion® High-Fidelity DNA polymerase was mainly used to amplify DNA. The screening of positive clones was accomplished by the MangoTaq™ polymerase, which contains a coloured loading dye for gel electrophoresis. The LongAmp® Taq DNA polymerase was preferentially used to amplify long DNA fragments. PCR reaction compounds were mixed according to the manufacturers protocol in 20 - 25 µl aliquots. Fragments were amplified in a T3000 Thermocycler (PeqLab), an Eppendorf Master cycler or an Eppendorf gradient cycler.

2.2.3.3 Agarose gel electrophoresis
The agarose gel electrophoresis is used for separation of DNA fragments according to their molecular weights and was carried out in horizontal electrophoresis chambers after Sambrook et al. (1989). The agarose gels contained 0.8 - 2% agarose, which was heated in 1 x TAE buffer. The same buffer was used as running buffer in the chamber. DNA samples were mixed with 6 x loading dye, applied onto the gel and seperated electrophoretically at 90 - 110 V for 45 - 60 min. Using ethidiumbromide, the DNA was stained for 10 - 20 min, detected with UV light, and documented with the camera of the
Material and methods

gel documentation system (Gel Doc™, Bio-Rad). Molecular weights were detected on the basis of the DNA size standard Gene Ruler DNA Ladder Mix (see Figure 2.2.4).

Figure 2.2.4: Gene Ruler DNA Ladder Mix (Thermo Scientific).

2.2.3.4 Plasmid DNA isolation

5 - 7 ml LB medium supplemented with antibiotics were inoculated with solid colonies of E. coli and incubated with agitation overnight at 37°C. The plasmid isolation was performed with the „QIAprep® Spin Miniprep Kit“ (QIAGEN) according to the manufacturers protocol. Isolated plasmids were eluted with 50 µl H₂O dest.

2.2.3.5 Genomic DNA isolation

For preparation of genomic DNA of Yersinia, bacteria were grown overnight at 25°C. 200 µl of the culture was mixed with 200 µl phenol/chloroform and centrifuged for 2 min (14,000 x g). The supernatant was transferred into a new tube and the DNA precipitated with 4 volumes of 100% ethanol. After centrifugation for 20 min (14,000 x g), the DNA was washed twice in 70% ethanol and the dried pellet resuspended in EB buffer. The concentration of the precipitated genomic DNA was determined and adjusted to 100 ng/µl. The DNA was stored at 4°C and used for DNA amplification.

2.2.3.6 DNA extraction

For the isolation of DNA fragments out of agarose gels, the „MinElute Gel Extraction Kit“ (QIAGEN) was used. The band was cut out of the gel under UV light and eluted according to the manufacturers protocol. The DNA was eluted in 50 µl H₂O dest.
Material and methods

2.2.3.7 Purification of PCR fragments

For purification of PCR fragments, the „QiAquick PCR Purification Kit“ (QIAGEN) was used. The purification was carried out according to the manufacturers protocol and for elution of the fragments 50 µl H₂O₇₈est was used.

2.2.3.8 Restriction digestion of DNA

For the restriction of plasmid DNA or PCR products, different restriction enzymes were used. These endonucleases possess the feature to target dsDNA at specific recognition sites. This reaction normally leads to the formation of „sticky ends“, needed for the insertion of DNA fragments, which were treated with the same enzymes. The digestion was done according to the manufacturers protocol (New England Biolabs) with the appropriate buffer and if necessary 1 - 10 units of the enzymes were used depending on the reaction mix. The restriction took place for 3 - 12 h at 37°C. Heat inactivation was performed for 20 min at 65°C, when suitable. Subsequently, the digested DNA was loaded and extracted of an agarose gel.

2.2.3.9 Dephosphorylation

To prevent religation of the digested plasmid, the DNA fragments were treated with the antarctic phosphatase prior to ligation. In this reaction the 5’ end of the restriction site is dephosphorylated with 1 - 3 µl of the phosphatase in the reaction mix for 1 h at 37°C.

2.2.3.10 Ligation

A ligation is used to insertion a DNA fragment into a plasmid. Hence both the fragment and the plasmid were digested with the same restriction endonucleases. Ligation was proceeded according to manufacturers protocol with 1 - 3 µl T₄-DNA-ligase and the appropriate buffer for 3 h at room temperature or overnight at 4°C in the dark. The ligase is catalyzing the formation of phosphodiester bonds.

2.2.3.11 DNA sequencing

Sequencing of constructed plasmids or PCR products was performed by the Department of Genome Analysis at the Helmholtz Centre for Infection Research.
Material and methods

2.2.3.12 Construction of plasmids

2.2.3.12.1 Construction of CNF$_Y$ overexpressing plasmid

For the overexpression and purification of the toxin CNF$_Y$, the plasmid pJNS01 ($cnfY_{his6}$) was constructed. Therefore, the gene $cnfY$ (ypk_{2615}) from the genomic DNA of Y. pseudotuberculosis YPIII was cloned into the commercial vector pET28a (Novagen). The gene $cnfY$ was amplified with the primers II794/II795 and integrated into the XhoI/NheI sites of pET28a (see Table 2.8), which harbours a His tag sited at the N-terminus of $cnfY$. Clones were selected on LB agar plates containing kanamycin and tested by sequencing and test restriction digest (for general cloning procedure see chapters above).

2.2.3.12.2 Construction of mutagenesis plasmids

To achieve the genomic replacement of specific genes, mutagenesis plasmids were constructed. For the construction of the plasmid pJNS05 (containing $cnfY$:KanR mutation) and the plasmid pJNS13 (containing $yopE$:KanR), first the kanamycin resistance gene was amplified, using the kan primers (I661/I662) and plasmid pACYC177 as template. Next, Y. pseudotuberculosis YPIII genomic DNA or virulence plasmid DNA was used as a template to amplify 500-bp regions flanking the target gene $cnfY$ or $yopE$ up- and down- stream. The upstream fragment of $cnfY$ or $yopE$ was amplified using the primers III710/715 or V553/V554, respectively. The reverse primers contained 20 nucleotides at the 5’-end, which are homologous to the start of the kanamycin resistance gene. The downstream fragment of $cnfY$ or $yopE$ was amplified with the primers III712/III714 or V555/V556, respectively. The forward primers contained 20 nucleotides at the 3’-end, which are homologous to the end of the kanamycin resistance gene.

A fusion-PCR reaction was performed with the corresponding forward primer and the reverse primer using the upstream and downstream PCR products of the target genes and the kanamycin gene fragment as templates. The fragments were digested using SacI and cloned into the suicide vector pAKH3. The transformants were selected on LB agar plates containing kanamycin and tested by sequencing and test restriction (for general cloning procedure see chapters above).
2.2.3.12.3 Construction of reporter gene fusion plasmids

For the construction of the cnfY promoter fusion with gfpmut3.1, the DNA upstream of cnfY (525 bp) was amplified from the genomic DNA of Y. pseudotuberculosis YPIII with the primers II896/II898. The fragment was integrated into the BamHI/SalI restriction site of pFU58. The transformants (pJNS03) were selected on LB agar plates supplemented with carbenicillin and tested by sequencing and restriction (for general cloning procedure see chapters above).

2.2.3.12.4 Others

For the complementation of the strain YP147 (ΔcnfY), the plasmid pJNS10 was constructed. This plasmid contains the cnfY gene under control of its own promoter.

For the construction, the vector pFU234 of the pFU series (Uliczka et al., 2011) was used. First, the antibiotic resistance cassette was exchanged from kanamycin to carbenicillin, using the restriction sites XhoI and SacI to obtain the vector pJNS09. Next, a PCR fragment was amplified (P_{cnfY-cnfY}) with the primers II896/IV16 from the chromosomal DNA of Y. pseudotuberculosis YPIII. The fragment was integrated into the BamHI/NotI sites of pJNS09. The transformants were selected on LB agar plates containing carbenicillin. To confirm the positive clones, the inserted fragment was sequenced and restricted.

As a control for the complementation experiments a vector containing only the ori SC101* and the antibiotic resistance cassette was constructed. Hence, the vector pJNS09 was restricted with the enzyme AatII and religated to obtain the plasmid pJNS11.

For easy western blot detection of the CNF_Y toxin without an appropriate antibody against CNF_Y, the cnfY gene with a C-terminal His tag was constructed. Therefore, the fragment P_{cnfY-cnfY_{his6}} was amplified from the chromosomal DNA of Y. pseudotuberculosis YPIII using the primers II896/IV474 and integrated into the BamHI/NotI of pJNS09. The transformants were selected on LB agar plates containing carbenicillin. To confirm the positive clones, the inserted fragment was sequenced and restricted (for general cloning procedure see chapters above).

2.2.3.13 Construction of mutant strains

Different mutant strains were generated to identify functions of the deleted genes. For the construction procedure of the mutagenesis plasmids see 2.2.3.12.2. Mutants were generated by homologous recombination as described previously (Nagel et al., 2001).
Material and methods

For construction of the mutant strains YP147, YP188 and YP298, the plasmid pJNS05 was integrated via conjugation into the cnfY locus of YPIII, YP147 and YP101, respectively. The mutant strain YP275 was generated using the plasmid pJNS13. Chromosomal integration of the fragments was selected by plating on Yersinia agar plates supplemented with kanamycin and carbenicillin. Excision of the plasmid including the cnfY or yopE allele was obtained by plating of the strain on 10% sucrose and was analyzed by PCR and DNA sequencing. To verify the deletion of cnfY or yopE, different PCR reactions were carried out, using the primer pairs II371/II372, III711/III713, III727/II895, III711/III680 and III713/III681 for ΔcnfY and V557/V558, V553/III680 and V556/III681 for ΔyopE. To further test a new constructed ΔcnfY mutant, a multinucleation assay (2.2.2.5) and/or a western blot (2.2.4.5) against CNFY were performed. To further test the ΔyopE mutant, a western blot (2.2.4.5) against all Yop proteins was performed.

The strain YP217 was constructed by chromosomal integration of the YopE-β-lactamase (ETEM) fusion plasmid pSR47s-E-TEM1 into the yopE locus. Because the plasmid pSR47s-E-TEM1 also harbours a kanamycin resistance cassette, the resistance cassette of the YP147 strain needed to be removed first. In order to do so, the vector pCP20 was transformed electrically into the strain. The transformants were inoculated in BHI medium and grown overnight at 37°C to remove the kan gene. At the next day, the overnight culture was diluted 1:10 in BHI and incubated for 1 h at 42°C to remove the remaining vector. Subsequently, the bacteria were plated on LB agar plates. The clones were tested for growth on kanamycin and carbenicillin. The bacteria not able to grow on the two antibiotics formed the mutant YP216. The following integration of yopE-TEM1 was obtained through conjugation of E. coli K-12 strain S17λpir pSR47s-E-TEM1 with the Y. pseudotuberculosis strain as described previously (Harmon et al., 2010). To verify the mutant a PCR was carried out with the primers V439/II306.

To obtain the mutant strain YP150, the YP147 was cured of the virulence plasmid pYV (see 2.2.1.5). The mutant was verified by PCR using the primers II371/II372.

For construction of the other mutant strains used in this study, see Schweer et al., 2013.

2.2.3.14 Production of electrocompetent Yersinia

For the production of electrocompetent Yersinia, 20 ml BHI medium were inoculated 1:50 with an overnight culture and grown at 25°C to exponential growth phase (OD600 0.5 - 0.8). After centrifugation for 15 min at 4°C (2,755 x g), the bacteria pellet was
resuspended in 2 ml ice-cold H$_2$O$_{\text{dest}}$ and subsequently centrifuged for 2 min at 4°C (7,500 x g). The bacteria were resuspended in 2 ml ice-cold transformation buffer, centrifuged for 2 min at 4°C (7,500 x g), resuspended in 120 µl transformation buffer, and directly used for transformation (2.2.3.16).

2.2.3.15 Production of chemocompetent *E. coli*

Chemocompetent *E. coli* were produced using the rubidium chloride method. Hence, 200 ml LB medium were inoculated 1:100 with an overnight culture and supplemented with 4 ml MgSO$_4$ (20 mM). The culture was grown at 37°C to exponential growth phase (OD$_{600}$ 0.5 - 0.8). Subsequently, the cells were centrifuged for 8 min at 4°C (2,755 x g) and the pellet resuspended in 80 ml TFB1 buffer. The suspension was incubated for 10 min on ice and centrifuged again for 8 min at 4°C (2,755 x g). Next, the pellet was resuspended in 8 ml ice-cold TFB2 buffer. After an incubation period of 45 min on ice, 100 µl aliquots of bacteria were transferred into tubes and stored at -40°C.

2.2.3.16 Electro transformation in *Yersinia*

For transformation of plasmid DNA in *Yersinia*, 40 µl electrocompetent cells were mixed with 2 - 6 µl plasmid-DNA and transferred into a cold 2 mm cuvette (PeqLab). The electroporation was accomplished at 2.5 kV, 25 µF and 200 W with an electroporator (GenePulser II, Bio-Rad). The bacteria were immediately taken up in 1 ml SOC medium without antibiotic for phenotypic expression (2 h, 25°C, 550 rpm). Next, the bacteria were grown on LB agar plates supplemented with antibiotics for selection of transformants for two days at 25°C.

2.2.3.17 Chemical transformation in *E. coli*

For the chemical transformation of plasmid DNA in *E. coli*, 100 µl aliquots of competent cells were thawed on ice and subsequently mixed with 1 - 15 µl plasmid-DNA or a ligation mix. After an incubation period of 30 min on ice, a heat shock at 42°C for 2 min and an incubation for 2 min at 4°C on ice, the bacteria were diluted in 500 µl LB medium. The cells were incubated at 37°C for 60 min at 550 rpm for phenotypic expression. The selection of the transformants was accomplished on LB agar plates supplemented with antibiotics.
2.2.4 Biochemical methods

2.2.4.1 Preparation of whole cell extracts
For the preparation of whole cell extracts, the OD\textsubscript{600} was measured to calculate the correct buffer amount (see below) and 1 ml of the bacterial culture centrifuged for 5 min at 14,000 x g. The pellet was resuspended in 3 x SDS sample buffer (150 µl = OD\textsubscript{600} 3) and heated at 95°C for 5 min. Subsequently, the samples were treated with 0.2 µl benzonase (5 - 5.8 U) for 1 h at 37°C and loaded onto a SDS polyacrylamid gel or stored at -20°C.

2.2.4.2 Protein precipitation (TCA)
To precipitate the proteins of the supernatant of a bacterial culture, TCA was used for denaturation. Therefore, the \textit{Yersinia} were grown 3 h, 7 h or overnight at 37°C or 25°C and subsequently the OD\textsubscript{600} was determined and adjusted to 45 ml with an OD\textsubscript{600} of 1. After harvesting the bacteria by a centrifugation step (10 min, 4°C, 27,000 x g), the supernatant was sterilized with a 0.2 µm filter. To precipitate the proteins of the supernatant, 5 ml of 100% TCA was added. Incubation took place for 30 min on ice and the denatured proteins were harvested by centrifugation (10 min, 4°C, 27,000 x g). After discarding the supernatant, the pellet was resuspended in 4 ml Aceto-SDS and incubated for 20 min on ice. Subsequently, the mixture was centrifuged again (10 min, 4°C, 27,000 x g) and the pellet washed with 500 µl aceton. After another centrifugation step (10 min, 4°C, 27,000 x g) the pellet was dried and resuspended in 50 µl 3 x SDS sample buffer. After heating for 5 min at 95°C, the samples were separated on 10% SDS polyacrylamide gels. A western blot was carried out with antibodies against CNF\textsubscript{Y} or a His tag to make the secreted proteins visible.

2.2.4.3 SDS polyacrylamide gel electrophoresis (SDS-PAGE)
The SDS-PAGE was performed as described previously (Laemmli, 1970). This method consists of a denaturating discontinuous electrophoresis separating proteins according to their molecular weight. The SDS and β-mercaptoethanol containing sample buffer denatures the native proteins by destroying non-covalent bondings and disulfide bridges. The different pH-values of the stacking- and running-gel lead to a discontinuous electrophoresis.
Material and methods

Figure 2.2.5: PageRuler™ Prestained Protein Ladder (Fermentas).

The samples were heated, prior to loading, for 5 min at 95°C and centrifuged for 5 min at 14,000 x g. 5 - 25 µl of the samples and 5 µl of the PageRuler™ Prestained Protein Ladder (see Figure 2.2.5) were used. The electrophoresis of the 10 - 15% gels was carried out at 130 V with SDS running buffer for 60 - 90 min. Gels were either stained in Coomassie staining solution (2.2.4.4) or blotted onto a polyvinylidene fluoride (PVDF) membrane (2.2.4.5).

Table 2.11: Composition of 0.75 mm SDS-gels (Sambrook et al., 1989)

<table>
<thead>
<tr>
<th>Component</th>
<th>10% running gel (2x)</th>
<th>12% running gel (2x)</th>
<th>15% running gel (2x)</th>
<th>Stacking gel (4x)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H₂O<sub>dest</sub></td>
<td>4.2 ml</td>
<td>3.5 ml</td>
<td>2.5 ml</td>
<td>6.5 ml</td>
</tr>
<tr>
<td>30% Acryl/bisacrylamide</td>
<td>3.3 ml</td>
<td>4.0 ml</td>
<td>5 ml</td>
<td>1.1 ml</td>
</tr>
<tr>
<td>Running gel buffer</td>
<td>2.5 ml</td>
<td>2.5 ml</td>
<td>2.5 ml</td>
<td>-</td>
</tr>
<tr>
<td>Stacking gel buffer</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2.5 ml</td>
</tr>
<tr>
<td>TEMED</td>
<td>25 µl</td>
<td>25 µl</td>
<td>25 µl</td>
<td>25 µl</td>
</tr>
<tr>
<td>APS (10%)</td>
<td>100 µl</td>
<td>100 µl</td>
<td>100 µl</td>
<td>100 µl</td>
</tr>
</tbody>
</table>
Material and methods

2.2.4.4 Coomassie staining

The Coomassie staining method was used to stain all proteins separated by a SDS polyacrylamide gel (Diezel et al., 1972). After electrophoresis, the gels were stained with agitation for 1 h at RT in the Coomassie staining solution. The destaining was carried out by agitation for 2 x 30 min in 10% acetic acid at RT.

2.2.4.5 Western blot

To specifically detect proteins, western blot analysis were carried out as described previously (Towbin et al., 1979). Therefore, proteins were separated with a SDS-PAGE and transferred electrophoretic onto an Immobion PVDF membrane (Millipore). The membrane was activated previously for 10 - 15 sec in methanol. Subsequently, the activated membrane and the gel were enclosed in between two equilibrated (transblot buffer) sponges and Whatman paper and adjusted in the blotting chamber. The assembly was carried out according to the manufacturer’s protocol (Mini-protean II western blot system, Bio-Rad). After transferring the proteins for 1 h at 100 V in precooled transblot buffer, the membrane was blocked, to avoid unspecific binding, for 1 h at RT or overnight at 4°C. Therefore, the membrane was agitated in TBSTB or TBSTM. After blocking, the membrane was incubated under agitation with the primary antibody for immuno-detection (diluted in TBSTB/TBSTM, see Table 2.5) of a specific protein for 1 - 5 h at RT or overnight at 4°C, according to the manufacturer’s protocol. Subsequently, the membrane was wasched three times in TBST for 10 min under agitation. The secondary antibody conjugated to horseradish peroxidase (HRP), was added to the membrane (diluted in TBSTB/TBSTM) and incubated for 1 h at RT or overnight at 4°C under agitation. After three washing steps, for 10 min in TBST, the blot was developed using the Western Lightning ECL II Kit (Perkin Elmer) and documented with the chemi documentation system (Bio-Rad).

2.2.4.6 Stripping of the membrane

To remove antibodies from a membrane to detect additional proteins on it, the membrane was stripped. Therefore, the membrane was washed once in TBST after developing and stripped under agitation at RT for 5 - 15 min in Restore Plus Western Blot Stripping Buffer (Thermo Scientific) according to the manufacturer's protocol. After stripping the membrane, it was washed three times for 10 min in TBST and blocked again. Subsequently, new antibody probing on the membrane could be performed.
2.2.4.7 Purification of CNF\textsubscript{Y}-His\textsubscript{6}

For overexpression of CNF\textsubscript{Y}, \textit{E. coli} strain BL21\lambdaDE3 was transformed with the \textit{cnfY} expression plasmid pJNS01. The bacteria were grown at 37°C in 500 ml LB medium supplemented with kanamycin, to an OD\textsubscript{600} of 0.6. Subsequently, the P\textsubscript{lac}-driven expression was induced upon addition of 250 \textmu M IPTG. Further incubation took place at 17°C overnight at 200 rpm. After harvesting the bacteria by centrifugation (10 min, 4°C, 27,000 x g), the pellet was resuspended in 20 ml lysis buffer. Subsequently, the bacteria were lysed with a French press (18,000 psi) and centrifuged for 90 min with 27,000 x g at 4°C. The supernatant was sterilized using a 0.2 \mu m filter.

The purification was performed by an affinity chromatography with 1.5 ml Ni-NTA agarose (Qiagen). Therefore, the agarose was transferred into a gravity chromatography column (Bio-Rad) and washed once with washing buffer. The sterile supernatant was inserted into the column to let the His tag conjugated CNF\textsubscript{Y} bind. Subsequently, the supernatant with unbound proteins run out of the column and the agarose was washed with three column volumes of washing buffer. To elute the bound protein, 8 ml elution buffer 1 followed by 8 ml elution buffer 2 were added to the column and collected in 8 fractions. Samples of each fraction were loaded onto a SDS-PAGE and detected with Coomassie staining solution (2.2.4.4). Fractions containing the recombinant protein were pooled.

To get rid of the imidazol contained in the elution buffers, a buffer exchange against PBS was performed, using an Amicon (Millipore), which excludes proteins smaller than 100 kDa. The Amicon was used according to the manufacturer’s protocol and the protein washed three times with each 10 ml PBS. After exchanging the buffer and concentrating the protein to 1.5 ml 10 \mu l of the protein was mixed with 5 \mu l of 3 x SDS sample buffer and boiled at 95°C for 5 min. The sample was loaded on 2 SDS polyacrylamide gels (5 \mu l/gel) and one gel was stained with Coomassie staining solution, the other used for western blot analysis with a anti His primary antibody (see 2.2.4.5).

To measure the concentration of the purified toxin, a Bradford assay was performed with the Coomassie Reagent Protein Assay Kit (Pierce), according to the manufacturer’s protocol. Therefore, the protein was measured undiluted and diluted 1:10 and 1:100 in duplicates. 250 \mu l of the Coomassie reagent was added to each sample and incubated for 10 min at RT. The absorption was measured in an iMark Microplate Absorbance Reader (Bio-Rad) at wavelength 595 nm. Subsequently, the protein was aliquoted and
frozen at -20°C. To test the activity of the recombinant toxin a multinucleation assay was performed (see 2.2.2.5).

2.2.4.8 Polyclonal antibodies against CNF\textsubscript{Y} of *Y. pseudotuberculosis*

Polyclonal antibodies against CNF\textsubscript{Y} were generated in a rabbit (Davids Biotechnology) by injection of 0.2 - 0.6 mg purified recombinant CNF\textsubscript{Y} (see 2.2.4.7). The toxin was heat inactivated for 30 min at 70°C prior to injection. For purification, the serum was specifically purified by affinity chromatography (see below). As a negative control for the polyclonal antibodies, pre-immune serum of the rabbit was used.

2.2.4.8.1 Specific purification of polyclonal CNF\textsubscript{Y} antibody

To specifically purify the CNF\textsubscript{Y} antibody of the rabbit serum, an affinity chromatography with CnBr activated sepharose 4B was performed. Therefore, approximately 1.5 mg of the recombinant CNF\textsubscript{Y} protein (see 2.2.4.7) were diluted in 4 ml PBS. Subsequently, the PBS was exchanged with an Amicon (>100 kDa) against 4 ml coupling buffer and stored at 4°C before addition to the activated sepharose.

To activate the CnBr sepharose, 0.5 g were taken up in 10 ml 1 mM HCl and transferred onto a filter on a suction filter. The sepharose was washed on the filter first for 15 min with 200 ml 1 mM HCl and second with 10 ml coupling buffer. Subsequently, the sepharose was transferred into a 50 ml falcon tube with 5 ml coupling buffer.

To couple the prepared protein to the activated sepharose, the protein was given to the sepharose and incubated under agitation for 2 h at RT. After incubation, the mixture was transferred onto a polypropylene column and the sepharose was sedimented. The flow through was collected and prepared for a SDS-PAGE with 3 x SDS sample buffer (see 2.2.4.3). Uncoupled protein was removed by washing the sepharose with 2.5 ml coupling buffer. Using 1 M freshly prepared ethanolamine (pH 8) the remaining binding sites of the sepharose were blocked under agitation for 2 h at RT. Therefore, the column was filled completely with ethanolamine and sealed with parafilm. Subsequently, the sepharose was washed 3 times with 2.5 ml acetate buffer, 3 times with 2.5 ml neutralizing buffer and 3 times with 2.5 ml PBS.

To couple the antibodies with the antigen, 10 ml serum (see 2.2.4.8) were given to the coupled sepharose onto the polypropylene column. The column was sealed with parafilm and the sepharose incubated with the serum under agitation overnight at 4°C. The flow through was collected and prepared for a SDS-PAGE with 3 x SDS sample...
Material and methods

buffer (see 2.2.4.3). To remove uncoupled antibodies, the sepharose was washed 10 times with 10 ml PBS and once with 10 ml 0.1 M glycine (pH 3) to remove the weakly coupled antibodies.

To elute the CNF$_Y$ antibody, the sepharose was treated 5 times with 1.5 ml elution buffer to obtain 5 elution fractions. Each fraction was neutralized by the addition of 0.6 ml 1 M Tris-HCl (pH 8). SDS samples of each fraction were prepared with 3 x SDS sample buffer and the remaining aliquots were stored at -20°C. A SDS-PAGE with following Coomassie staining of the collected samples (see 2.2.4.3 & 2.2.4.4) was carried out. Additionally, to test the specificity of the purified antibody in the different elution fractions western blot analyses (see 2.2.4.5) were performed.

2.2.4.9 Expression analysis of P$_{cnfY}$::lacZ β-galactosidase assay

For expression analyses of the cnf$_Y$ gene the vector pJNS04 was used. This vector harbours a transcriptional fusion of the cnf$_Y$ promoter region and the lacZ gene. The β-galactosidase cleaves the substrate ONPG, which leads to the formation of nitrophenol. The yellow colour of the substance was measured using an ELISA-reader (OD$_{420}$), to calculate the specific enzyme activity.

The measurement of three independent cultures in triplicate was performed as described previously (Nagel et al., 2001). Therefore, the bacteria were grown overnight at 25°C or 37°C. Subsequently, the culture was used to inoculate fresh medium 1:50 to let the bacteria grow to exponential or early stationary phase.

The OD$_{600}$ of all samples of the three growth phases was determined. Next, 200 µl of the 1:10 diluted samples were transferred into glass tubes (duplicate). Lysis of the bacteria was performed by adding 0.1% SDS-solution, two drops of chloroform and incubation for 10 min at RT. After addition of 1.8 ml Z-buffer, the reaction was started with 400 µl ONPG. When the samples turned yellow, the reaction was stopped by a change in pH with 1 ml Na$_2$CO$_3$ (1 M). The stopping time was noted and each sample was measured in duplicate.

The activities were calculated as follows: β-galactosidase activity OD$_{420} \cdot 6.75 \cdot \text{OD}_{600}^{-1} \cdot \Delta t (\text{min})^{-1} \cdot \text{vol (ml)}^{-1}$. (6.75: extinction coefficient of cleaved ONPG in [µmol/min/mg protein])
2.2.5 Mouse experiments

Female BALB/c mice between 6- and 8-weeks old were purchased from Janvier (Saint Berthevin Cedex, France) and housed under specific pathogen-free conditions according to GV-SOLAS (German Recommendations of the Society for Laboratory Animal Science) and FELASA (Federation of Laboratory Animal Science Associations) recommendations in the animal facility of the Helmholtz Centre for Infection Research, Braunschweig. The animal protocol was approved by the „Niedersächsisches Landesamt für Verbraucherschutz und Lebensmittelsicherheit“: animal licensing committee permission no. 33.9.42502-04-055/09 and 33.9.42502-04-12/0907. Animals were handled with appropriate care and welfare, and all efforts were made to minimize suffering.

2.2.5.1 Oral infection

The infection of mice with Y. pseudotuberculosis was performed orally to mimic the natural route of infection. After starving the mice overnight, the bacteria were introduced directly into the stomach of the mouse, using a syringe with a gavage needle.

Therefore, the bacteria were grown overnight in 50 ml LB liquid culture at 25°C. Subsequently, 20 ml bacterial culture was mixed with 30 ml PBS to wash the bacteria and centrifuged 10 min with 2,755 x g at RT. The pellet was resuspended in 50 ml PBS and centrifuged again for 10 min with 2,755 x g at RT. After resuspension of the bacterial pellet in 10 ml PBS, the OD_{600} was measured and adjusted to the required OD_{600}. For infection 200 µl of the bacterial suspension was used.

In order to determine the infection dose, 1:10 serial dilutions of the bacteria were plated on LB agar plates and the colony forming units (CFU) were counted.

2.2.5.2 In vivo expression analysis

To determine the expression level of the cnfY gene in vivo, the plasmids pJNS02 or pJNS03 were used. Both plasmids harbour a transcriptional fusion of the cnfY promoter region with a reporter system (P_{cnfY}::luxCDABE & P_{cnfY}::gfpmut3.1, respectively).
Material and methods

2.2.5.2.1 In vivo imaging system (IVIS)

To detect the cnfY gene expression during the course of infection, the Y. pseudotuberculosis wild-type strain YPIII, harbouring the vector pJNS02 or the empty vector pFU54, were used. About 2×10^8 luminescent bacteria were used for oral infection (see 2.2.5.1). The expression was monitored over a period of 5 days. For imaging, the mice were anesthesized with isoflurane and the bacterial infection was followed daily using the IVIS Lumina system (Xenogen).

To ensure maintenance of the plasmid during the course of infection, an organ burden experiment was performed (see 2.2.5.5). Therefore, the bacteria were isolated from the small intestine, colon, caecum, MLNs, spleen and liver and tested for the presence of the plasmid five days post infection by plating on LB agar plates with or without antibiotics.

2.2.5.2.2 Cryosections

To detect the cnfY gene expression on single cell level in the different organs, cryosections have been prepared. Therefore, the Y. pseudotuberculosis wild-type strain YPIII, harbouring the vectors pJNS03 and pFU228 ($P_{\text{gfpA}}::\text{dsRed2}$), were used. With this system it was possible to detect all bacteria under the microscope with DsRed and the ones expressing the cnfY gene with GFP. About 2×10^8 bacteria were used for oral infection (see 2.2.5.1). After five days the mice were sacrificed by CO$_2$ asphyxiation. For cryosections, the small intestine, colon, caecum, MLNs, spleen and liver were frozen in Tissue-Tek OCT freezing medium (Sakura Finetek) on dry ice. Sections of 6 - 10 mm were prepared using a Zeiss cryostat Hyrax C50, mounted on SuperFrost Plus slides (Thermo Scientific) and stored at -20°C. The samples were air-dried at RT in the dark, fixed for 10 min in ice-cold acetone and washed twice with PBS.

Nuclei in the fixed tissue were stained with 49,6-diamidino-2-phenylindole (DAPI). Therefore, a drop of Roti-Mount FluorCare MIT DAPI (Roth) was used per sample. The sample was coated with a cover slip, which was fixed with nail polish and stored at 4°C or directly used for microscopy. The visualization was performed with a fluorescence microscope (Axiovert II with AxioCam HR, Zeiss, Germany) using the AxioVision program (Zeiss, Germany).
2.2.5.3 Histology

For histological analysis of the infected organs, mice were infected orally with approximately 2×10^8 bacteria (see 2.2.5.1) for 3 or 6 days. After sacrificing the mice via CO$_2$ asphyxiation, the MLNs, spleen, liver, ileum, caecum and colon were prepared according to standard histology procedures. The organs were fixed in 4% neutrally buffered formaldehyde for 24 to 48 h, embedded in paraffin and 3 µm sections stained with hematoxylin-eosin (H & E). Organs of three to four mice per group were blindly analyzed by a histopathologist. Sections were evaluated by light microscopy blinded to the experimental groups. Dr. Marina Pils of the Mouse Pathology unit of the Helmholtz Centre for Infection Research performed the embedding, staining and microscopy.

2.2.5.4 Survival

Survival experiments were carried out to test the virulence of different Y. pseudotuberculosis strains. Therefore, groups of 10 mice were infected orally with approximately 2×10^9 bacteria of each strain. The infected mice were monitored every day for 14 days to record the survival rate, the body weight and health status. With a weight loss over 20%, in comparison to the baseline weight, mice were sacrificed and recorded as dead.

2.2.5.5 Organ burden

Organ burden experiments were performed to determine the bacterial load in the different organs affected in the infection route. Groups of 7 - 10 animals were orally infected with approximately 2×10^8 bacteria of different Y. pseudotuberculosis strains (YPIII, YP147 (ΔcnfY), YP12 (pYV$^+$), YP150 (pYV$^+$ ΔcnfY), YP101 (ΔyscS) or YP298 (ΔyscS ΔcnfY)). At specific time points after infection, mice were euthanized by CO$_2$ asphyxiation. The Peyer's patches (PP), small intestine, caecum, MLNs, liver and spleen were prepared (for Flow cytometry + Organ burden experiments of spleen, MLNs and PP, see 2.2.5.6). The ileum and caecum were first rinsed in PBS and then incubated in PBS supplemented with gentamycin (50 µg/ml) for 30 min on ice to kill the extracellular bacteria. In order to remove the gentamycin, the small intestine and caecum were washed with PBS. Subsequently, all organs were weighed, transferred into falcon tubes with 2 - 5 ml PBS and homogenized in PBS at 30,000 rpm for 30 sec, using a Polytron PT 2100 homogenizer (Kinematica, Switzerland). To determine the bacterial load of the organs 50 µl of serial 1:10 dilutions of the homogenates were plated on LB agar plates.
with and without antibiotics. The CFU were determined and calculated as CFU per g organ/tissue.

2.2.5.6 Flow cytometry (measurement of immune response)

To analyze the immune response triggered upon infection with different \(Y. \) \textit{pseudotuberculosis} strains (wild-type strain YPIII in comparison to YP147 (\(\Delta \text{cnf}Y \)), YP12 (\(pYV \)), YP101 (\(\Delta \text{yscS} \)), YP150 (\(pYV \Delta \text{cnf}Y \)) or YP298 (\(\Delta \text{yscS} \Delta \text{cnf}Y \)), an antibody staining with subsequent flow cytometry analysis was performed. Therefore, groups of 5 - 8 mice were orally infected with approximately \(2 \times 10^8 \) bacteria. 3 or 28 days after infection mice were euthanized with CO\(_2\) asphyxiation and PP, MLNs and spleen were isolated.

2.2.5.6.1 Preparation of single cell suspensions

After preparing the organs, the spleen weight was determined. Single cell suspensions were generated in PBS by pressing the spleen cells through a 100 \(\mu \)m cell strainer (Falcon) and the MLNs and PP through a 30 \(\mu \)m cell strainer with the stamp of a syringe. For isolation of spleen cells, the cell strainer was moistened with 1 ml FACS buffer and washed twice with 4 ml PBS. The cell strainer for MLNs and PP were moistened with 0.5 ml FACS buffer and washed twice with 1 ml FACS buffer. Organ burden samples were transferred into 15 ml falcon tubes (3 ml for spleen) or U-bottom tubes (100 \(\mu \)l PP sample + 900 \(\mu \)l PBS & 200 \(\mu \)l MLNs sample + 800 \(\mu \)l PBS) for homogenizing and plating (2.2.5.5). The remaining splenocytes for flow cytometry were treated with 1 ml erythrolysis buffer for 3 min at RT to eliminate the erythrocytes. By adding 10 ml FACS buffer, the lysis was stopped.

All samples were centrifuged for 8 min with 400 \(\times \) g at 4\(^\circ\)C. Subsequently, the cell pellets were resuspended in 1 ml FACS buffer. The spleen samples were transferred onto a 30 \(\mu \)m cell strainer, which was subsequently washed with 1 ml FACS buffer.

Next, the cell number was determined. Therefore, 20 \(\mu \)l of the cell suspension was diluted 1:25 with propidium iodide (PI). The cell counting was performed with an Accuri C6 flow cytometer (BD Bioscience). Amounts of 1 - 2.5 \(\times \) \(10^6 \) cells were transferred into Matrix™ Blank and Alphanumeric Storage Tube (Thermo Scientific).
Material and methods

2.2.5.6.2 Staining of immune cells

The aliquoted cell samples were washed twice by addition of 750 µl PBS and centrifugation for 3 min with 400 x g at 4°C. Subsequently, the supernatant was removed and the cell pellet resuspended in 200 µl Live/dead staining solution (Invitrogen; Live/dead Fixable Blue Dead Cell Stain Kit, UV excitation) to exclude dead cells from the analysis. After staining in the dark for 30 min on ice, the cells were washed once with 750 µl FACS-buffer. The supernatant was removed after centrifugation (3 min; 400 x g; 4°C) and blocking of FcγR and IgG was performed by addition of 50 µl CD16/CD32 (BioXCell; anti-mouse CD16/CD32) and ratIgG (Jackson ImmunoResearch; ChromPure Rat IgG, whole molecule) antibodies for 15 min on ice. By addition of 50 µl of the antibody mix (in FACS buffer) the cellular surface markers of either lymphoid or myeloid cells were stained for 15 min on ice in the dark. The following antibodies were used: CD3-APC, CD4-PerCP-Cy5.5, CD8-eFluor450, CD335-PerCP-Cy5.5, CD11b-PacificBlue, CD19-Biotin, CD45R-PerCP-Cy5.5, F4/80-PE, CD11c-APCeFluor780, CD19-FITC, CD49b-Biotin and Ly6C-APC. All antibodies were titrated for optimal staining conditions. The stained cells were washed twice with 750 µl FACS-buffer and subsequent centrifugation (3 min; 400 x g; 4°C).

Further, biotin-conjugated antibodies were treated with 100 µl streptavidin-FITC for 15 min on ice. After washing the samples twice with 750 µl FACS-buffer (3 min; 400 x g; 4°C) the cells were fixed by the addition of 200 µl Fix/Perm buffer (Foxp3 Staining Buffer Set; eBioscience) for 30 min on ice in the dark. Subsequently, 800 µl Perm buffer were added and the cells were centrifuged for 5 min with 450 x g at 4°C. The supernatant was removed and the cells resuspended in 150 µl FACS-buffer. Next, the cells were stored at 4°C or directly loaded into a LSR Fortessa cell analyzer (BD Bioscience). The acquired data were analyzed with FlowJo software (Treestar).

2.2.5.7 Yop delivery assay during mouse infection

To detect differences in the Yop translocation rates during mouse infection with or without CNFy, Yop delivery assays were performed. Therefore, groups of 5 to 8 mice were infected orally (see 2.2.5.1) with approximately 2 x 10^9 bacteria of strain YPIII-ETEM (YP173) and the isogenic cnfY mutant YP147-ETEM (YP217). As negative controls for Yop translocation, groups of 2 mice were infected with the same amount of wild-type YPIII or YP101-ETEM (YP174) bacteria. After three days, the mice were sacrificed via CO₂ asphyxiation. The lymphatic organs PP, MLNs and spleen were...
isolated, single cell suspensions were prepared, samples for organ burden were taken, erythrocytes of the spleen eliminated and cells counted (see 2.2.5.6.1).

For the flow cytometry analysis, 1×10^6 cells were transferred into Matrix™ Blank and Alphanumeric Storage Tubes (Thermo Scientific) and centrifuged for 3 min with 400 x g, 15.4 r and 4°C. The supernatant was removed and FcγR blocked using CD16/CD32 antibody diluted in FACS buffer for 15 min at 4°C. By the addition of a biotin-conjugated antibody against CD19, the immune cells were stained first for 15 min at 4°C. Subsequently, the antibody solutions (in FACS buffer) for different surface marker for the innate immune cell panel or T cell panel were added. The staining incubation time was 20 min at 4°C with the following antibodies: Streptavidin-PerCP-Cy5.5, CD11c-APC, CD11c-PE-Cy7, Gr1-A700, CD3-PE, CD4-APC-Cy7, CD3-PE-Cy7, NKp46-PE and CD25-APC. The samples were washed twice with 750 µl FACS buffer, with a centrifugation step of 3 min with 400 x g, and 4°C in between.

To label the Yop translocated cells, the LiveBLAzer-FRET B/G Loading Kit (Life Technologies) was used with 1 µg/ml CCF4-AM for 1 hour at RT in the presence of 1.5 mM probenecid (Sigma) and 50 µg/ml gentamycin, according to the manufacturer’s protocol. The cell subsets were defined as: B cells (CD19+ CD3−), T cells (CD19− CD3+), NK cells (CD19− CD3− NKp46+), neutrophils (CD19− CD3− CD49b− Ly6G+ CD11b+), macrophages/monocytes (CD19− CD3− CD49b− Ly6G− CD11b+) and DCs (CD19− CD3− CD49b− Ly-6G− B220− F4/80− CD11c+). A LSR Fortessa cell analyzer (BD Bioscience) was used to acquire the data. Data were analyzed with FlowJo software (Treestar) using unstained cells, YPIII infected and YP174 infected cells as negative controls.
Material and methods

2.2.5.8 Measurement of secreted cytokines

To measure the cytokine release in uninfected, YPIII- or YP147-infected mice, serum samples were prepared. Therefore, mice were infected orally with approximately 2×10^8 bacteria (see 2.2.5.1) for 3 days.

2.2.5.8.1 Serum preparation

After sacrificing the mice via CO$_2$ asphyxiation, heart blood was taken immediately with an insulin syringe. The blood samples were incubated for 30 min - 3 h at RT. After clotting of the blood, samples were centrifuged at RT for 8 min with 2,300 x g. Subsequently, the supernatant was transferred into new Eppendorf tubes, centrifuged and transferred again into new Eppendorf tubes. The prepared serum samples were stored at -80°C.

2.2.5.8.2 Luminex

To measure the cytokine concentrations in the serum, the MILLIPLEX MAP Mouse Cytokine/Chemokine Magnetic Bead Panel - Premixed 32 Plex - Immunology Multiplex Assay Kit from Millipore was used. The following cytokines were analyzed: Eotaxin, G-CSF, GM-CSF, IFN-γ, IL-10, IL-12 (p40), IL-12 (p70), IL-13, IL-15, IL-17, IL-1α, IL-1β, IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IL-9, IP-10, KC-like, LIF, LIX, M-CSF, MCP-1, MIG, MIP-1α, MIP-1β, MIP-2, RANTES, TNF-α and VEGF.

Therefore, the prepared serum samples were thawed on ice and processed for the measurement. The assay was performed according to the manufacturers protocol using the Luminex® detection system for the readout. This system is able to quantify multiple cytokine levels simultaneously.
3 Results

The wild-type strain YPIII of *Y. pseudotuberculosis* produces the cytotoxic necrotizing factor *cnfY*, which displays a sequence identity of about 65% (Lockman et al., 2002) to its homolog *cnf1* of uropathogenic *E. coli* or *E. coli* K1 strains (Caprioli et al., 1984). These toxins constitutively activate small Rho-GTPases, thereby inducing rearrangements of the actin cytoskeleton and thus the formation of stress fibres, filopodia or lamellipodia. Upon intoxication with CNFs, the eukaryotic cells become rigid and lose their ability to divide. This leads to the formation of multinucleated giant cells (Caprioli et al., 1984; Lockman et al., 2002). Previous studies with CNF_Y indicated that an intoxication of epithelial, as well as of neuronal cells, selectively activated the small Rho-GTPase RhoA (Hoffmann et al., 2004).

So far, only little is known about the expression of *cnfY* and the impact of the toxin-induced Rho-GTPase activation on the virulence of *Y. pseudotuberculosis*. These points are addressed below.

3.1 Expression and secretion pattern of *cnfY/CNF_Y*

A functional *cnfY* gene is encoded by a few pathogenic *Y. pseudotuberculosis* isolates. Many *Yersinia* strains harbour mutations over the whole gene, including the *Y. pestis* strain CO92 (Lockman et al., 2002). Expression of *cnfY* was tested in the wild-type strain *Y. pseudotuberculosis* YPIII.

3.1.1 The CNF_Y toxin is highly expressed and secreted under host-relevant conditions

For the *in vitro* expression analysis of the *cnfY* gene, a transcriptional promoter fusion of *cnfY* with the *lacZ* (β-galactosidase) gene was used (pJNS04). The *cnfY* expression was measured at three different growth phases, the exponential (3 h), the early stationary (7 h), and the late stationary phase (14 h) at 25°C and 37°C (see Figure 3.1.1). A low *cnfY* expression could be detected at 25°C, but the highest expression level was in the late stationary phase at 37°C, which best resembles conditions in the host.
Results

Figure 3.1: The highest expression of cnfY in vitro was detected at 37°C in the late stationary growth phase. Y. pseudotuberculosis YPIII, harbouring the plasmid pJNS04 (P_{cnfY}::lacZ), was grown in LB medium at 25°C or 37°C to exponential (3 h), early stationary (7 h) and late stationary (14 h) growth phase. The β-galactosidase activity was determined from three independent cultures in triplicate.

Subsequently, the secretion level of the toxin was examined. Therefore, Y. pseudotuberculosis YPIII was incubated at 25°C or 37°C to the exponential (3 h), the early stationary (7 h) and the late stationary (14 h) growth phase. Next, the sterilized supernatants were precipitated and analyzed on a western blot, using a CNFγ specific antiserum (see Figure 3.1.2). The secretion of CNFγ resembles the expression pattern of cnfY with the highest secretion detectable at 37°C in the late stationary phase.

Figure 3.1.2: The highest secretion level of CNFγ in vitro was detected at 37°C in the late stationary growth phase. Y. pseudotuberculosis YPIII and YP147 (∆cnfY) were grown in LB medium at 25°C or 37°C to exponential (3 h), early stationary (7 h) and late stationary (14 h) growth phase. The supernatant was sterilized and precipitated. CNFγ was detected by western blot analysis with a specific CNFγ (~115 kDa) antibody.
Subsequently, the nutrient-dependent expression of \(cnfY \) was tested. To this purpose, bacteria were grown to the late stationary phase at 37°C in different minimal- and complex-culture media (see Figure 3.1.3, other tested conditions not shown). The expression of \(cnfY \) was significantly higher in the complex media, especially in brain-heart-infusion (BHI) in comparison to the minimal-media MMA and RPMI in which the expression was as low as at 25°C in LB medium.

In summary, the expression of \(cnfY \) is growth phase-, temperature-, and nutrient-dependent, suggesting a predominant expression during late stages of the infection.

![Figure 3.1.3: The \(cnfY \) expression is dependent on nutrient availability.](image)

Figure 3.1.3: The \(cnfY \) expression is dependent on nutrient availability.

Y. pseudotuberculosis YPIII, harbouring the plasmid pJNS04 (\(P_{cnfY}::\text{lacZ} \)), was grown in complex (LB or BHI) or in minimal (MMA or RPMI) media at 37°C to the late stationary (14 h) growth phase. The \(\beta \)-galactosidase activity was determined from three independent cultures in triplicate. The asterisks indicate significant differences of \(\beta \)-galactosidase activities at the tested conditions calculated with an unpaired Student's t-test. The expression in different media differed significantly from expression in LB medium, *** (P<0.001).

3.1.2 The \(cnfY \) gene expression is controlled by virulence regulators

Due to the similarities in the expression conditions with the other known virulence genes, different regulatory factors have been tested for their influence on the \(cnfY \) expression or secretion. Hence, mutant strains lacking different virulence regulators have been used to measure the \(cnfY \) expression at the most relevant conditions at 37°C in the exponential, early stationary, and late stationary growth phases.

Previous data already showed an influence of the *Yersinia* modulator A (YmoA) as a repressor of \(\text{CNF}_Y \) at 25°C (J. Schweer, Master-thesis). YmoA has been shown before
as being important for controlling the expression of late virulence genes, like the Yop effector proteins, by inhibiting the transcription of lcrF (Böhme et al., 2012). However, previous data also showed no cnfY expression dependency on the presence of the virulence plasmid, coding for lcrF (J. Schweer, Master-thesis).

Furthermore, the secretion of CNF\textsubscript{Y} in a mutant strain lacking the virulence plasmid was examined. \textit{Y. pseudotuberculosis} YPIII, the mutant YP12 pYV−, and the cnfY mutant strain were incubated at 37°C overnight. Next, the sterilized supernatants were precipitated and analyzed on a western blot, using a CNF\textsubscript{Y} specific antiserum for the toxin-detection (see Figure 3.1.4). No virulence plasmid-dependent secretion of CNF\textsubscript{Y} could be detected. Taken together, these data suggest that the cnfY expression is repressed by YmoA like the Yop proteins, but independently from the plasmid encoded transcriptional activator LcrF. Additionally, CNF\textsubscript{Y} is not secreted via the type three secretion system (T3SS).

![Figure 3.1.4: The CNF\textsubscript{Y} secretion is independently from the virulence plasmid pYV.](image)

\textit{Y. pseudotuberculosis} YPIII, YP12 pYV−, and YP147 (\textit{\Delta}cnfY) were grown overnight in LB medium at 37°C. The supernatant was sterilized and precipitated. CNF\textsubscript{Y} was detected by western blot analysis with a specific CNF\textsubscript{Y} (~115 kDa) antibody.

Additional regulators of known virulence genes were tested, the ferric uptake regulator (Fur) and the cyclic AMP receptor protein (Crp). Hence, \textit{Y. pseudotuberculosis} strains YPIII, YP89 (\textit{\Delta}crp), and YP105 (\textit{\Delta}fur), all harbouring the plasmid pJNS04 (P\textit{cnfY}::\textit{lacZ}), were incubated at 37°C to exponential (3 h), early stationary (7 h), and late stationary (14 h) growth phase. Figure 3.1.5 shows the expression of \textit{cnfY} in the fur- and the crp-mutant strains. The deletion of the iron assimilation regulator Fur seems to have no impact on the expression of \textit{cnfY} (also at 25°C, data not shown), whereas Crp appears to upregulate the expression of \textit{cnfY} at 37°C, specifically in the late stationary phase. Crp is known to have an influence on the carbon storage regulator (Csr) system, which is in turn involved in the expression of InvA (Heroven et al., 2012). Taken together, \textit{cnfY}
is regulated by factors, which are also involved in the regulation of different virulence factors, e.g. the invA gene.

![Graph showing β-galactosidase activity](image_url)

Figure 3.1.5: The cnfY expression is dependent on Crp, but not on Fur at 37°C.

Y. pseudotuberculosis YPIII, YP89 (Δcrp) and YP105 (Δfur), harbouring the plasmid pJNS04 (P_{cnfY::lacZ}), were grown in LB medium at 37°C to exponential (3 h), early stationary (7 h), and late stationary (14 h) growth phase. The β-galactosidase activity was determined from three independent cultures in triplicate. The asterisks indicate significant differences of β-galactosidase activities at the tested conditions calculated with an unpaired Student's t-test. The expression in a crp mutant differed significantly from expression in the wild-type with **(P<0.01) and *** (P<0.001).

3.1.3 The cnfY gene is highly expressed in vivo during the whole infection route

Due to the high expression level of cnfY in vitro, a transcriptional cnfY promoter fusion with the luciferase operon (P_{cnfY::luxCDABE}) was used to detect the cnfY expression in the mouse model. The expression of the toxin during the course of infection was followed to determine time points and organs at/in which cnfY is expressed and possibly important for the infection.

To this purpose, groups of 3 - 5 BALB/c mice were infected orally with 3 x 10⁸ bacteria of *Y. pseudotuberculosis* YPIII, carrying the P_{cnfY::luxCDABE} promoter fusion plasmid (pJNS02). The luciferase activity due to cnfY expression was measured using the in vivo imaging system (IVIS), which measures the bioluminescent signal. The expression was followed during the course of infection over six days (see Figure 3.1.6). As a negative
Results

Control for the basal expression level of the luciferase, mice were infected with bacteria harbouring an empty vector (pFU54), carrying the luciferase operon without the cnfY promoter. In these mice, no bioluminescent signal was detected (data not shown).

![Image: Luciferase expression](image)

Figure 3.1.6: The highest cnfY expression *in vivo* was detectable two days post infection. Groups of 3 - 5 BALB/c mice were infected orally with 3×10^8 bacteria of *Y. pseudotuberculosis* YPIII, harbouring the plasmid pJNS02 (P_{cnfY::luxCDABE}). At indicated time points, the mice were anesthesized and the bioluminescence was detected with a CCD camera of the *in vivo* imaging system (IVIS) on the ventral site. Mice were infected with three independent bacterial cultures. The figure is representative for two independent experiments.

The overall expression level of *cnfY in vivo* during the entire course of infection was very strong. Already one hour after infection, a small bioluminescent signal was visible in the abdominal part of the anesthesized mice. The highest expression was detectable after two days in the gut and gut-related tissues. The toxin was expressed during infection up to six days. However, due to the overall high expression, it was impossible to differentiate between the different tissues (see Figure 3.1.6).

In order to test the expression of *cnfY* at a single cell level in the organs, cryosections were prepared. Hence, groups of 3 BALB/c mice were infected for three or five days with approximately 2×10^8 *Y. pseudotuberculosis* wild-type bacteria, carrying two plasmids, coding for a constitutive P_{gapA::dsred2} reporter construct (pFU228) and a compatible P_{cnfY::gfpmut3.1} transcriptional fusion (pJNS03). The small intestine, caecum, colon, mesenteric lymph nodes (MLNs), spleen, and liver were analyzed. The infected tissues were screened for bacterial microcolonies under the fluorescent microscope by the expression of *dsred2* and subsequently tested for *gfp_{mut3.1}* expression. Figure 3.1.7 shows the colonization and the expression of *cnfY* in the Peyer’s patches (PP), caecum,
Results

MLNs, spleen, and liver five days post infection. The cnfY gene is equally expressed in all tested organs, leading to the conclusion that CNF_Y is needed throughout the whole infection route.

In summary, cnfY is highly expressed in vivo during the entire infection and shows no organ dependency in its expression.

Figure 3.1.7: The cnfY expression is not organ-specific.
Groups of 3 BALB/c mice were infected orally with 2×10^8 bacteria of Y. pseudotuberculosis YPIII, harbouring the plasmids pjNS03 (P_{cnfY}::gfp_mut3.1) and pFU228 (P_{gapA}::dsRed2). Five days post infection, the mice were sacrificed and the small intestine, caecum, MLNs, spleen, and liver isolated. Cryosections
(6 µm) have been prepared and analyzed by fluorescence microscopy. Sections were screened for bacteria expressing the reporter protein DsRed2 and subsequently analyzed for cnfY expression by monitoring GFPmut3.1 fluorescence. White bars indicate 20 µm.

3.2 CNF\textsubscript{Y} activates the small Rho-GTPases and alters the cell morphology

The \textit{E. coli} homolog of CNF\textsubscript{Y}, CNF\textsubscript{1} was shown to lead to the activation of the three small Rho-GTPases Rac1, Cdc42 and RhoA, whereas CNF\textsubscript{Y} was shown to preferably activate the small Rho-GTPase RhoA in epithelial cells (Hoffmann \textit{et al.}, 2004).

Given the high expression and secretion of the toxin (see 3.1) in \textit{Y. pseudotuberculosis} YPIII, the CNF\textsubscript{Y} function was further analyzed to investigate if the produced toxin was also active. To test the activity of the toxin directly produced by YPIII, the bacteria were grown overnight at 37°C to induce the highest expression and secretion of the toxin. Sterilized supernatants of bacterial lysates of the strains YPIII and YP147 (ΔcnfY) were given onto human epithelial cells (HEp-2) and incubated for 48 hours. The polymerized actin cytoskeleton and the nuclei of the cells were stained with FITC-conjugated phalloidin and DAPI, respectively and visualized via fluorescent microscopy. Multinucleation and formation of giant cells, which is exclusively attributed to the CNF\textsubscript{Y} activity showed that CNF\textsubscript{Y} is active (see Figure 3.2.1, complementation experiments not shown).
Results

Figure 3.2.1: Incubation of epithelial cells with sterilized *Y. pseudotuberculosis* YPIII lysate leads to the formation of multinucleated giant cells.

Y. pseudotuberculosis YPIII and YP147 (ΔcnfY) were grown overnight at 37°C. The bacterial whole cell extract was lyzed, centrifuged and the sterilized supernatant incubated on human epithelial HEp-2 cells for 48 h. The nuclei were stained with DAPI (blue) and the F-actin with FITC-conjugated phalloidin. White bars indicate 20 µm.

Due to the high expression of *cnfY* in vivo, it was hypothesized that CNF\(_Y\) could play a relevant role for the virulence of *Y. pseudotuberculosis* wild-type YPIII, most likely by interfering with the immune cells and preventing the bacteria-elimination. To test the effect of CNF\(_Y\) on cultured cells, the recombinant toxin was purified. Because the innate immune cells form the first line of defence against a *Yersinia* infection, the effect of CNF\(_Y\) on murine macrophages was tested. The macrophage cell line J774A.1 with or without the induction of maturation to fully active macrophages by phorbol myristate acetate (PMA/ 48 h) was intoxicated with CNF\(_Y\) (10 nM) for 24 hours (see Figure 3.2.2). The polymerized actin cytoskeleton and nuclei of the cells were stained and visualized by fluorescent microscopy.
Results

Figure 3.2.2: CNF\textsubscript{Y} induces the formation of filopodia, lamellipodia and stress fibres of mature and immature murine macrophages.

Unstimulated (-PMA) or stimulated (+ PMA/48 h) murine macrophages J774A.1 were treated with 10 nM recombinant CNF\textsubscript{Y} or the same amount of PBS for 24 h. Nuclei were stained with DAPI (blue), F-actin with FITC-conjugated phalloidin. Arrows show membrane ruffles, filopodia and stress fibres induced by CNF\textsubscript{Y} intoxication. White bars indicate 20 \textmu m.

No difference in the effect of CNF\textsubscript{Y} on immature or mature macrophages regarding the cellular shape could be observed. However, the cells formed filopodia, lamellipodia and stress fibres, indicating the activation of the three Rho-GTPases Rac1, Cdc42 and RhoA. Subsequent Rho-GTPase activation assays of the three GTPases in the macrophages J774A.1 and the epithelial cells HEp-2 showed that CNF\textsubscript{Y}, incubated for three hours on the cells, induces the activation of the tested GTPases (see Figure 3.2.3). The activation pattern as well as the whole GTPase contents varied, depending on the concentration of the toxin.
Results

Figure 3.2.3: CNF\textsubscript{Y} intoxication leads to the activation of the three small Rho-GTPases RhoA, Rac1 and Cdc42 in murine macrophages and human epithelial cells.

J774A.1 macrophages and HEp-2 epithelial cells were treated with 1, 10 or 25 nM recombinant CNF\textsubscript{Y} or the same amount of PBS for 3 h. Cells were lysed and aliquots taken for western blot analysis of total protein contents. The rest of the samples was used to isolate the activated GTPases Rac1-/Cdc42-GTP or RhoA-GTP using PAK1- or rhotekin-coupled beads, respectively. Using specific antibodies against RhoA (24 kDa), Rac1 (21 kDa) and Cdc42 (25 kDa), the activated and total protein contents of the lysates could be detected. As a loading control actin (45 kDa) was detected with a specific antibody.

The lowest concentration of 1 nM CNF\textsubscript{Y} was sufficient to activate especially RhoA, but also Rac1 and Cdc42 in the macrophages, whereas the HEp-2 cells do not seem to be as susceptible to the CNF\textsubscript{Y} treatment as macrophages. For the HEp-2 cells, a distinct activation of RhoA and Cdc42 is only detectable at concentrations of 10 nM and 25 nM. However, the basal activation level of Rac1 seems to be quite high in both cell lines. A RhoA shift due to the deamidation of a conserved glutamine is already clearly visible with 1 nM toxin in the HEp-2 cells, whereas it is not detectable even at higher CNF\textsubscript{Y} concentrations in the treated J774A.1 cells. Additionally, Rac1 but predominantly Cdc42
Results

seem to be degraded with higher CNF\textsubscript{Y} concentrations in the HEp-2 cells, which was shown before for RhoA upon CNF\textsubscript{I} treatment (Doye et al., 2002).

Taken together, CNF\textsubscript{Y} treatment at these specific conditions leads to the activation of the three Rho-GTPases RhoA, Rac1 and Cdc42 in the tested cell lines. Very low concentrations are sufficient to activate the GTPases in J774A.1 cells, whereas higher concentrations of CNF\textsubscript{Y} are needed to achieve an equal activation level in HEp-2 cells.

3.3 Impact of CNF\textsubscript{Y} on the virulence of \textit{Y. pseudotuberculosis}

Due to the overall high expression of \textit{cnfY} and the impact on the cell morphology and Rho-GTPase activation state, it was essential to determine a possible impact of CNF\textsubscript{Y} during the course of infection in the mouse model. To this purpose, a \textit{cnfY} mutant strain was constructed by exchanging the functional \textit{cnfY} gene against the kanamycin resistance gene.

3.3.1 CNF\textsubscript{Y} is crucial for the virulence of \textit{Y. pseudotuberculosis}

To evaluate the contribution of CNF\textsubscript{Y} during infection with \textit{Y. pseudotuberculosis YPIII}, a mouse survival experiment was conducted. Groups of 10 BALB/c mice were infected orally with \textit{Y. pseudotuberculosis} wild-type or the \textit{cnfY} mutant strain YP147 both harbouring either a complementation plasmid carrying the \textit{cnfY} gene under control of its own promoter (pJNS10) or the empty vector (pJNS11).

A lethal infection dose (2 x 109 bacteria/mouse) was used and mice were monitored day-to-day for a period of 14 days for their body weight and general appearance, e.g. rough fur. Mice with less than 80% of their start-up weight were recorded as dead and the date of death was noted. Figure 3.3.1 shows the survival (A) and the body weight curves (B) of the mice.

The wild-type strain infected mice developed severe symptoms of disease with a fast weight reduction and succumbed within six days post infection. Oppositely, all mice infected with the \textit{cnfY} mutant strain survived and displayed only mild symptoms of disease until day five or six when they started recovering and regaining weight. The effect of the \textit{cnfY} loss could be reverted by introducing the complementation plasmid pJNS10 (\textit{P}_{\text{cnfY}}::\textit{cnfY}, ori SC101*). Even a minimal reduction in the average survival time of the mice, approximately by one day (not significant), was detected probably because of a slight overexpression of the toxin.
Results

Figure 3.3.1: The cnfY mutant strain is avirulent in a mouse survival experiment, yet causes body weight reductions of mice up to five days post infection.

Groups of 10 BALB/c mice were infected orally with 2×10^9 bacteria of *Y. pseudotuberculosis* YPIII pJNS11 (empty vector), YP147 (ΔcnfY) pJNS11 (empty vector), YPIII pJNS10 (cnfY$^+$; complementation plasmid) or YP147 (ΔcnfY) pJNS10 (cnfY$^+$; complementation plasmid). Two independent experiments were performed. (A) Survival of infected mice was monitored for 14 days. (B) Body weight of infected mice was recorded for 14 days. Mice with a weight reduction over 20% were sacrificed and noted as dead.

Due to a defect in the allele of *phoP*, *Y. pseudotuberculosis* YPIII is not able to replicate in macrophages, unlike other *Y. pseudotuberculosis* strains (Grabenstein *et al.*, 2004). To rule out the possibility that the effect of CNF$_Y$ on the virulence might only be visible in a *phoP*-deficient derivative with an overall lower pathogenicity, the defective *phoP* allele was exchanged against the functional *phoP* of *Y. pseudotuberculosis* IP32953 enabling the YPIII strain to replicate within macrophages. Groups of 10 BALB/c mice were infected orally with 2×10^9 bacteria of the *phoP*$^+$ YPIII strain (YP149) and the *phoP*$^+$ YPIII strain without cnfY (YP188). Survival and body weight of the mice were recorded as described above. All mice infected with the *phoP*$^+$ strain died within five days post infection, whereas 80% of the mice infected with the corresponding cnfY mutant strain survived and regained weight six days post infection (see Figure 3.3.2).

In summary, the activity of CNF$_Y$ is highly important for the pathogenicity of *Y. pseudotuberculosis* YPIII, independently of the presence of a functional *phoP*. Loss of CNF$_Y$ renders the *Y. pseudotuberculosis* YPIII strain avirulent.
Figure 3.3.2: The introduction of a functional \(\text{phoP}^{+} \) into \(Y. \text{pseudotuberculosis} \) YPIII does not change the impact of CNF\(Y \) on virulence significantly.

Groups of 10 BALB/c mice were infected orally with \(2 \times 10^9 \) bacteria of \(Y. \text{pseudotuberculosis} \) YP149 (\(\text{phoP}^{+} \)) or YP188 (\(\text{phoP}^{+} \Delta \text{cnf} Y \)). (A) Survival of infected mice was monitored for 14 days. (B) Body weight of infected mice was recorded for 14 days. Mice with a weight reduction over 20% were sacrificed and noted as dead.

3.3.1.1 CNF\(Y \) is crucial for efficient colonization of mesenteric lymph nodes and the systemic organs

CNF\(Y \) seems to be crucial for the virulence of \(Y. \text{pseudotuberculosis} \), as described above. To determine the stages during the infection in which CNF\(Y \) might be particularly relevant, oral infection experiments have been performed to detect the bacterial loads in the different organs during the infection process. Hence, groups of 5 BALB/c mice were infected orally with \(2 \times 10^8 \) bacteria and sacrificed after different time points (1 - 7 days). Small intestine, caecum, PP, MLNs, spleen, and liver were isolated, homogenized and dilutions of the homogenates were plated to determine the bacterial numbers per gram tissue.
Results

Figure 3.3.3: The loss of \(cnfY\) leads to clearance of \textit{Yersinia} in MLNs, spleen and liver in the later infection phase.

Groups of 5 BALB/c mice were infected orally with \(2 \times 10^8\) bacteria of \textit{Y. pseudotuberculosis} YPIII or YP147 (\(\Delta cnfY\)). At 1 - 7 days post infection, mice were sacrificed and the organs (small intestine, PP, caecum, MLNs, spleen, and liver) isolated. Homogenized organs were plated and the bacterial load (CFU) per gram tissue determined. The figure displays results of two independent experiments. For statistical analysis, a Mann-Whitney test was applied to determine significant differences in bacterial colonization of
Results

the organs between YPIII- and YP147 (∆cnfY)-infected mice. Asterisks indicate the significances, with * (P<0.05), ** (P<0.01) and *** (P<0.001).

Figure 3.3.3 depicts the bacterial loads at different infection periods in the organs. No difference in the colonization ability in caecum and PP between the two strains was detected. Surprisingly, at day five to seven a slightly higher amount of the cnfY mutant bacteria could be reisolated from the small intestine. This was probably due to shortening of the gut (a sign of inflammation; see below). The cnfY mutant strain is able to colonize the MLNs up to two days post infection, however after three days, the mutant strain seems to be cleared out of this tissue, whereas the wild-type strain is able to replicate therein. The clearance of the mutant strain out of the MLNs is even more pronounced four to seven days post infection. Clearance of the cnfY mutant is also visible in the systemic organs spleen and liver, starting at day four or five post infection. These data suggest that CNF_Y might be more important in the late infection phase for the colonization of the MLNs, spleen, and liver. With the loss of CNF_Y, Y. pseudotuberculosis YPIII is no longer able to colonize the host sufficiently to induce a severe infection.

In addition to the differences in colonization of the systemic organs spleen and liver, these organs displayed macroscopic differences such as size and colour during infection. The spleen of mice infected with the wild-type strain shranked and displayed a pale red colour, whereas the spleens of the mice infected with the cnfY mutant strain enlarged (see Figure 3.3.4 A) and were intensely red coloured over time (data not shown). Also the livers of mice infected with the strain YPIII were less red and shrunken, whereas the livers of the mice infected with the cnfY mutant were deep red, but showed no difference in their weights (see Figure 3.3.4 B). Additionally, the gut lengths of the mice infected with the two strains differed significantly. The small intestine of mice infected with the wild-type strain was significantly shorter after six to seven days post infection, a sign of severe inflammation as the intestinal length correlates to inflammation (see Figure 3.3.4 C). This indicates that CNF_Y is not only affecting the colonization of the systemic organs by YPIII, but also induces a different intestinal inflammation despite similar bacterial amounts.

In summary, CNF_Y seems to induce severe inflammation in the gut and leads to the shrinking of the systemic organs spleen and liver, in which CNF_Y seems to be important for the bacterial colonization.
Results

Figure 3.3.4: CNF_Y induces shrinkage of spleen and liver and shortening of the gut length of infected mice.

Groups of 5 BALB/c mice were infected orally with 2 x 10⁸ bacteria of <i>Y. pseudotuberculosis</i> YPIII or YP147 (Δcnf_Y). Mice were sacrificed and the organs (small intestine, spleen, and liver) isolated. Figure A and B display results of two independent experiments, figure C of one experiment. (A) Spleen and (B) liver weights were monitored each day up to seven days post infection. (C) Lengths of intestines were determined 6 and 7 days after infection. For statistical analysis, a Mann-Whitney test was applied to determine significant differences between the tissues of YPIII- and YP147 (Δcnf_Y)-infected mice. Asterisks indicate the significances, with ** (P<0.01) and *** (P<0.001).
3.3.2 CNF\textsubscript{Y} leads to highly inflamed tissues

As mentioned above, the infection with \textit{Y. pseudotuberculosis} wild-type or the \textit{cnfY} mutant leads to differences in the overall appearance of the isolated organs. To analyze the impact on the different tissues, histopathological analysis of the small intestine, caecum, colon, MLNs, spleen, and liver was performed. Groups of 3 BALB/c mice were infected orally with 2×10^8 bacteria for three or six days, the organs were isolated and embedded in formaldehyde. The sections were stained with hematoxylin-eosin (H & E) and blindly evaluated. The histopathological analysis was performed by Dr. Marina C. Pils of the „Mouse Pathology, Animal Experimental Unit“ of the Helmholtz Centre for Infection Research.

The overall inflammation of the examined tissues of YPIII infected mice was significantly higher in comparison to the tissue of the mice infected with the \textit{cnfY} mutant strain. The inflammatory response was especially evident in the gut and the spleens of the animals. The intestinal inflammation was most pronounced in the ileum and the caecum in both groups.

Figure 3.3.5 shows microscopic pictures of the small intestine and the spleen of YPIII- and YP147 ($\Delta cnfY$)-infected or untreated mice six days post infection. The ileum of the mice infected with the wild-type strain was overall severely inflamed with disrupted villi and a thickened lamina propria (see Figure 3.3.5 A/ B). However, the inflammation of the ileum of YP147 ($\Delta cnfY$)-infected mice was locally restricted with the formation of multifocal lesions characterized by the presence of inflammatory cells from the muscular layer up to the epithelial cells (see Figure 3.3.5 A/B). The inflammation in these spots led to an enlargement of the villi length, due to epithelial cell hyperplasia (increased proliferation), but did not affect the flanking tissue.
Results

Figure 3.3.5: CNF\textsubscript{Y} leads to a highly inflamed intestine and necrosis in the spleen.

Groups of 3 BALB/c mice were infected orally with 2 x 108 bacteria of \textit{Y. pseudotuberculosis} YPIII or YP147 (\textit{ΔcnfY}). Mice were sacrificed six days post infection, organs (ileum and spleen) isolated and sections stained with H & E. (A) Representative light microscopic picture of an ileum of YPIII- and YP147 (\textit{ΔcnfY})-infected animals. YPIII induces diffuse invasion of inflammatory cells into the lamina propria. YP147 (\textit{ΔcnfY}) induces invasion of inflammatory cells into the lamina propria at occasional inflammatory areas. Black bar represents 200 µm. Boxes indicate magnified areas shown in figure B. (B) Representative light microscopic pictures of an ileum of an uninfected mouse, the magnified ileum of a YPIII-infected
mouse, and the magnified ileum of a YP147 (ΔcnfY)-infected mouse, showing an occasional inflammatory area. The circle indicates focal invasion of inflammatory cells. Black bar represents 50 µm. (C) Representative light microscopic picture of a spleen of an uninfected mouse, of a YPIII-infected mouse with splenic atrophy and a bacterial microcolony surrounded by necrosis, and of a YP147 (ΔcnfY)-infected mouse, showing hyperplasia of the white pulp and activated lymphoid follicle. Bar represents 50 µm. Arrow indicates bacterial foci. W: white pulp (dashed line); N: necrosis; H: hyperplasia; R: red pulp; M: muscularis mucosa.

In the spleens of mice infected with the cnfY mutant strain, no bacterial microcolonies (diffuse patches of bacteria) could be detected under the light microscope with the H & E staining three or six days post infection. However, in prepared cryosections with fluorescent YP147 (ΔcnfY) bacteria harbouring a constitutively expressed dsred2 reporter gene (pFU228), few microcolonies could also be detected in the spleen three days post infection (see Figure S1). Most spleens of YPIII-infected mice in contrast contained many bacterial microcolonies, already visible in the H & E stained spleen sections six days post infection (see Figure 3.3.5 C). In addition to the higher amounts of bacteria, the inflammation in these spleens was more severe in comparison to the spleens of YP147 (ΔcnfY)-infected animals and showed areas of multifocal necrosis. The bacteria in the spleens of YPIII-infected mice resulted in necrotizing splenitis leading to splenic atrophy with marked depletion of the white pulp. However, the spleens of YP147 (ΔcnfY)-infected mice only displayed mild hyperplasia of the white pulp and an influx of red blood cells (erythropiesis) (see Figure 3.3.5 C). Nevertheless, necrotic areas could also be detected in the livers infected with YPIII (data not shown).

In summary, CNFγ leads to a severe, wide-spread inflammation in the gut particularly in the ileum. This enables the bacteria to effectively colonize the spleen, and causes necrosis in the systemic organs spleen and liver.

3.3.3 CNFγ triggers the release of multiple proinflammatory cytokines

Due to the inflammatory response visible in the histopathological analysis, the serum cytokine response triggered upon an infection of mice with YPIII or YP147 (ΔcnfY) in comparison to untreated mice, was measured. Hence, groups of 5 BALB/c mice were infected orally with 2 x 10^8 bacteria, heart blood was taken, the serum prepared, and the level of released cytokines (eotaxin, G-CSF, GM-CSF, IFN-γ, IL-10, IL-12 (p40), IL-12 (p70), IL-13, IL-15, IL-17, IL-1α, IL-1β, IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IL-9, IP-10, KC-like, LIF, LIX, M-CSF, MCP-1, MIG, MIP-1α, MIP-1β, MIP-2, RANTES, TNF-α and...
VEGF) was measured by an immunology multiplex assay, measured with the Luminex® detection system.

Figure 3.3.6 represents the released proinflammatory cytokines in the serum, which showed different levels upon infection with the two strains (eotaxin, tumor necrosis factor-α (TNF-α), macrophage inflammatory protein-1β (MIP-1β), interleukin 6 (IL-6), granulocyte macrophage colony-stimulating factor (GM-CSF), and IL-12 (p40)).

The secretion was generally higher upon infection with the wild-type strain YPIII, indicating a severe inflammation when CNF-Y is present, thus supporting the histopathological data (see above). The GM-CSF median concentration in the serum of YPIII-infected mice was 1.1 times higher compared to YP147 (ΔcnfY)-infected animals. This cytokine is secreted by different immune cells, e.g. macrophages or NK cells and increases the inflammation by stimulating the production of further immune cells (e.g. neutrophils) and the maturation of monocytes to macrophages and DCs (Shi et al., 2006). The IL-12 (p40) median concentration in the serum of YPIII-infected mice was 1.5 times higher in comparison to YP147 (ΔcnfY)-infected animals. IL-12 (p40) is a subunit of IL-12 and mainly produced by DCs and macrophages. It induces the production of cytokines from NK cells and T cells, enhances the cytotoxic activity of NK cells, and stimulates cytotoxic T cell proliferation (Trinchieri, 1995). The median concentration of TNF-α in the serum of YPIII-infected mice was also 1.5 times higher when compared to YP147 (ΔcnfY)-infected animals. TNF-α is primarily produced by macrophages, but also by T cells and results in the activation of neutrophils and further proinflammatory responses (Gifford & Flick, 1987).

The median concentration of the chemokine eotaxin was 2 times higher in the serum of YPIII-infected mice in comparison to YP147 (ΔcnfY)-infected animals. Different cell types, but mainly fibroblasts produce eotaxin in response to allergic stimuli or parasites, leading to the recruitment of eosinophils (Griffiths-Johnson et al., 1993; Jose et al., 1994). The median concentration of MIP-1β in the serum of YPIII-infected mice was also increased twofoldly in comparison to YP147 (ΔcnfY)-infected animals. MIP-1β is a chemokine secreted by macrophages, which activates inflammatory responses, resulting in the secretion of IL-6 or TNF-α (Sherry et al., 1988). However, the most significant changes were detected in the concentration measured for the IL-6. A median concentration in the serum of YPIII-infected mice, which was 4 times higher in comparison to YP147 (ΔcnfY)-infected animals could be detected. IL-6 plays a crucial
Results

role in the transition from innate to adaptive immune response and is mainly produced by macrophages, but also by T cells and endothelial cells (Jones, 2005).

In summary, these data suggest that CNFγ leads to the secretion of proinflammatory cytokines and induces an increased inflammation in the host.

Figure 3.3.6: CNFγ induces higher proinflammatory cytokine levels in the serum of infected mice.
Results

Groups of 5 BALB/c mice were infected orally with 2×10^8 bacteria of *Y. pseudotuberculosis* YPIII or YP147 ($\Delta cnfY$). Three days after infection, mice were sacrificed and serum prepared. A quantitative cytokine (eotaxin, TNF-α, MIP-1β, IL-6, GM-CSF, and IL-12 (p40)) analysis was performed. Scatter dot plots show the median of two independent experiments. For statistical analysis, a Mann-Whitney test was applied to determine significant differences in the serum cytokine levels between YPIII-infected, YP147 ($\Delta cnfY$)-infected or uninfected mice. Asterisks indicate the significances, with * (P<0.05), ** (P<0.01) and *** (P<0.001).

3.3.4 CNF$_Y$ modulates the host immune response

The differences in the colonizing abilities of the strains in the MLNs, spleen and liver and the harsh influx of proinflammatory cytokines due to the infection with YPIII led to the assumption that the triggered immune response in the lymphatic tissues PP, MLNs, and spleen could differ. These experiments have been performed in cooperation with Jörn Pezoldt of the group „Experimental Immunology“ led by Prof. Dr. Jochen Hühn, of the Helmholtz Centre for Infection Research. Due to preliminary data for infection periods of three and six days (data not shown), a period of three days was chosen for the analysis. These preliminary data suggested that the immune response is already altered at the shorter time point at which the bacterial loads are still quite similar. Furthermore, the health status of mice infected for six days is already severely reduced.

Hence, groups of 5 - 6 BALB/c mice were infected orally with approximately 2×10^8 bacteria of *Y. pseudotuberculosis* per mouse. After three days, the PP, MLNs or spleens were isolated, the prepared cell suspensions stained with fluorescently labeled antibodies for different immune cells (neutrophils, macrophages/monocytes, dendritic cells, CD3$^+$ T cells, CD4$^+$ T cells, CD8$^+$ T cells, and B cells) and analyzed by multi-colour flow cytometry. Two different panels of antibodies were used to identify the different cell populations (see Figure S2).

Figure 3.3.7 shows the amounts of isolated neutrophils (CD11b$^+$Ly6G$^+$), macrophages/monocytes (CD11b$^+$Ly6G$^-$), DCs (CD11c$^+$), NK cells (NKp46$^+$), B cells (CD19$^+$), and T cells (CD3$^+$) of the different tissues. The innate immune response in the PP was triggered upon infection with both strains, but almost no change in the adaptive immune response was detectable (see Figure 3.3.7 A). Despite the unchanged colonizing abilities of the two strains in the PP, the measured quantities of infiltrated neutrophils differed significantly. The infection with YPIII led to a 100-fold higher amount of neutrophils, whereas the infection with YP147 ($\Delta cnfY$) only induced a 40-fold higher influx in comparison to the steady state level of neutrophils in the PP of untreated mice.
Within three days, the numbers of the cnfY mutant strain began to decrease in the MLNs, whereas the wild-type strain was able to replicate. Figure 3.3.7 B shows the corresponding immune response in the MLNs. An overall increase of innate as well as adaptive immune cells was detected due to the infections. However, no drastic differences between the strains were visible. Nevertheless, slightly higher amounts of macrophages/monocytes upon infection with YPIII and of T cells upon infection with YP147 (ΔcnfY) were detected.

The colonization of the spleen up to day three post infection does not differ significantly between the two strains, yet the immune cell contents show drastic differences (see Figure 3.3.7 C). Already after three days, all tested immune cell populations were significantly decreased upon infection with YPIII, in accordance with the shrinking of the spleen and the necrotic spots in the histopathological analysis. The most significant reduction was visible in the innate immune cell contents. Particularly macrophages, monocytes, and NK cells, were significantly reduced (approximately 15-fold) in comparison to the cell populations in the spleens of untreated animals. This effect was less pronounced in the neutrophil, DC, T cell, and B cell populations.

On the other hand, a significant increase of the immune cells predominantly of neutrophils and macrophages/monocytes, was detectable in mice infected with the cnfY mutant. These data are also consistent with the differences in the spleen weight, the histopathological analysis, and the fast clearance of the mutant strain of this tissue after triggering the immune response. Necrosis in the spleen induced by YPIII infection and splenomegaly induced by YP147 (ΔcnfY) infection, resulted in significant differences in the overall cell counts for this organ between the groups. Hence, the percentages of populations also for PP and MLNs were determined to test a possible effect of CNF\textsubscript{Y} on the steady-state level of a specific cell population. CNF\textsubscript{Y} seems not to affect the steady-state level of the cell populations in the PP and MLNs (see Figure S3 A + B). However, a significant expansion of neutrophils and macrophages/monocytes could be detected in the YP147 (ΔcnfY)-infected spleens (see Figure S3 C).

Taken together, the measured immune response in the PP and MLNs, the histopathological data of the gut, and the increased secretion of proinflammatory cytokines in the serum suggest that CNF\textsubscript{Y} leads to an enhanced inflammatory response. Furthermore, the measured immune response and the histopathological data of the
Results

spleen strongly suggest that CNF\textsubscript{Y} reduces an influx and/or leads to a rapid cell death of the infiltrating immune cells.

A

Neutrophils

Neutrophils uninfecte\textsubscript{d} YPII IYP147 (cnfY)

<table>
<thead>
<tr>
<th></th>
<th>CD11b+Ly6G+ cells/PP</th>
</tr>
</thead>
<tbody>
<tr>
<td>uninfected</td>
<td>6x104</td>
</tr>
<tr>
<td>YP\textsubscript{III}</td>
<td>4x104</td>
</tr>
<tr>
<td>YP147 (ΔcnfY)</td>
<td>2x104</td>
</tr>
</tbody>
</table>

Macrophages/Monocytes

Macrophages/Monocytes uninfecte\textsubscript{d} YPII IYP147 (cnfY)

<table>
<thead>
<tr>
<th></th>
<th>CD11b+Ly6G+ cells/PP</th>
</tr>
</thead>
<tbody>
<tr>
<td>uninfected</td>
<td>2.5x104</td>
</tr>
<tr>
<td>YP\textsubscript{III}</td>
<td>2.0x104</td>
</tr>
<tr>
<td>YP147 (ΔcnfY)</td>
<td>1.5x104</td>
</tr>
</tbody>
</table>

A

Dendritic cells

Dendritic cells uninfecte\textsubscript{d} YPII IYP147 (cnfY)

<table>
<thead>
<tr>
<th></th>
<th>CD11c + cells/PP</th>
</tr>
</thead>
<tbody>
<tr>
<td>uninfected</td>
<td>5x102</td>
</tr>
<tr>
<td>YP\textsubscript{III}</td>
<td>2x102</td>
</tr>
<tr>
<td>YP147 (ΔcnfY)</td>
<td>1.5x102</td>
</tr>
</tbody>
</table>

B

Natural killer cells

Natural killer cells uninfecte\textsubscript{d} YPII IYP147 (cnfY)

<table>
<thead>
<tr>
<th></th>
<th>NKp46+ cells/PP</th>
</tr>
</thead>
<tbody>
<tr>
<td>uninfected</td>
<td>1.5x103</td>
</tr>
<tr>
<td>YP\textsubscript{III}</td>
<td>1.0x103</td>
</tr>
<tr>
<td>YP147 (ΔcnfY)</td>
<td>5x102</td>
</tr>
</tbody>
</table>

B

B cells

B cells uninfecte\textsubscript{d} YPII IYP147 (cnfY)

<table>
<thead>
<tr>
<th></th>
<th>CD19+ cells/PP</th>
</tr>
</thead>
<tbody>
<tr>
<td>uninfected</td>
<td>1.5x105</td>
</tr>
<tr>
<td>YP\textsubscript{III}</td>
<td>1.0x105</td>
</tr>
<tr>
<td>YP147 (ΔcnfY)</td>
<td>5x104</td>
</tr>
</tbody>
</table>

B

T cells

T cells uninfecte\textsubscript{d} YPII IYP147 (cnfY)

<table>
<thead>
<tr>
<th></th>
<th>CD3+ cells/PP</th>
</tr>
</thead>
<tbody>
<tr>
<td>uninfected</td>
<td>2.0x105</td>
</tr>
<tr>
<td>YP\textsubscript{III}</td>
<td>1.5x105</td>
</tr>
<tr>
<td>YP147 (ΔcnfY)</td>
<td>1.0x105</td>
</tr>
</tbody>
</table>
Results

B

Neutrophils

MLNs

Macrophages/Monocytes

Dendritic cells

Natural killer cells

B cells

T cells
Results

Figure 3.3.7: CNFγ modulates the host immune response and leads to depletion of immune cells.
Groups of 5 - 6 BALB/c mice were infected orally with 2×10^8 bacteria of *Y. pseudotuberculosis* YPIII or YP147 (ΔcnfY). Three days after infection, mice were sacrificed and organs (PP, MLNs, and spleen)
isolated. Prepared cell suspensions were stained with fluorescently labeled antibodies to detect the different immune cells with flow cytometry: neutrophils (CD11b+/Ly6G+), macrophages/monocytes (CD11b−Ly6G+), DCs (CD11c+), NK cells (NKp46+), B cells (CD19−), and T cells (CD3+). Data plotted on the y axis indicate the cell numbers isolated from uninfected, YPIII-infected of YP147 (∆cnfY)-infected organs. Scatter dot plots show the median of two independent experiments for (A) PP, (B) MLNs, and (C) spleen. For statistical analysis, a Mann-Whitney test was applied to determine significant differences in the numbers of indicated cell types in the whole or the organ between YPIII-infected, YP147 (∆cnfY)-infected or uninfected mice. Asterisks indicate the significances, with * (P<0.05), ** (P<0.01) and *** (P<0.001).

3.3.5 CNFγ influence on Yop delivery

Previous infection experiments showed that loss of CNFγ leads to a clearance of the bacteria from the MLNs, spleen, and liver and avirulence of Y. pseudotuberculosis YPIII. Similar effects after oral mouse infections have been reported for YPIII (1) without the virulence plasmid and thus without the T3SS and the Yop effector proteins, (2) with multiple yop gene deletions, and (3) without the transcriptional regulator LcrF, a regulator of the T3SS and the Yop effector proteins (Böhme et al., 2012; Logsdon & Mecsas, 2003). Furthermore, a Y. pestis yopM mutant strain induced an influx of neutrophils into the spleens of infected mice, whereas the wild-type strain caused a decrease of this cell type, similar to the effects observed in this study (Kerschen et al., 2004; Ye et al., 2009). Moreover, the Yop effector protein YopJ was demonstrated to induce the cell death of professional phagocytes (Monack et al., 1997; Zheng et al., 2011).

These data suggested an interaction or control of the CNFγ toxin with the Yop machinery during the course of infection. Furthermore, it was recently shown that Rho activation leads to enhanced Yop delivery (Mejía et al., 2008). Therefore, it was hypothesized that the CNFγ toxin might influence Yop translocation into the innate immune cells by activation of the small Rho-GTPases (Blumenthal et al., 2007; Hoffmann et al., 2004).
3.3.5.1 *CNF*_Y enhances the Yop delivery into eukaryotic cells

Due to the known impact of *CNF*_Y on the actin cytoskeleton and the Rho-GTPases of human epithelial cells (see 3.2), these cells were tested for the Yop delivery. Generally, the Yop secretion *in vitro* under secretion inducing conditions did not differ between the wild-type and the *cnf*_Y mutant strain (data not shown).

In order to test the Yop delivery by *Y. pseudotuberculosis* YPIII into eukaryotic cells, different strains harbouring a YopE-β-lactamase reporter fusion were employed (Harmon *et al.*, 2010). These strains were YP173 (YPIII-ETEM), YP174 (YP101 (ΔyscS)-ETEM), and YP217 (YP147 (Δcnf*Y*)-ETEM). Tested cells were stained with the dye CCF4-AM, consisting of coumarin and fluorescein conjugated by a lactam ring. This dye is trapped inside the living cells by estarases and fluoresces green after excitation. After translocation of the YopE β-lactamase fusion protein, the β-lactam ring of the dye is cleaved resulting in a fluorescent shift from green to blue, which allows the detection of Yop translocated cells (Gao *et al.*, 2003; Zlokarnik *et al.*, 1998).

Two approaches were followed to detect the stained translocated cells *in vitro*, (1) visualization and counting with the fluorescent microscope and (2) analysis of translocated cells by flow cytometry. To test the Yop delivery into eukaryotic cells, the cells were either pretreated with the recombinant *CNF*_Y toxin (25 nM) or the same amount of PBS for three hours. Cells were subsequently infected with an MOI 10 of the strains YPIII/YP147 (Δcnf*Y*) (both without the Yop-β-lactamase reporter fusion as negative controls), YP173 (YPIII-ETEM), YP174 (YP101 (ΔyscS)-ETEM) (without functional T3SS; additional negative control), and YP217 (YP147 (Δcnf*Y*)-ETEM) grown at 37°C overnight to achieve a high production of *CNF*_Y.

No blue cells were detectable in the control groups: untreated, YPIII, YP147 (Δcnf*Y*) or YP174 (YP101 (ΔyscS)-ETEM) treated cells. However, a high amount of cells infected with YP173 (YPIII-ETEM) without *CNF*_Y pretreatment appeared blue, indicating high translocation rates of the YopE-β-lactamase reporter fusion (see Figure 3.3.8 A, B). In contrast, an infection with YP217 (YP147 (Δcnf*Y*)-ETEM) led to significantly reduced levels of Yop delivery, indicating an impact of *CNF*_Y on Yop delivery. Additional pretreatment of the cells with recombinant *CNF*_Y led to an even higher translocation rate after infection with both strains. Nevertheless, a significantly higher amount of blue cells was still detectable due to infection with YP173 (YPIII-ETEM), compared to YP217.
Results

(YP147 (ΔcnfY)-ETEM). In conclusion, Yop translocation into eukaryotic cells is enhanced by the CNFγ activity.

![Figure 3.3.8: CNFγ enhances Yop delivery into human epithelial cells.](image)

Bacteria were pregrown for infection overnight at 37°C to induce the CNFγ secretion. The human epithelial cells HEp-2 were treated with 25 nM recombinant CNFγ or the same amount of PBS for 3 h prior infection for 1 h with *Y. pseudotuberculosis* YPIII-ETEM (YP173), YP147 (ΔcnfY)-ETEM (YP217), YPIII, YP101 (ΔyscS)-ETEM (YP174) or YP147 (ΔcnfY), using an MOI of 10. Cells were labeled with the dye CCF4-AM and analyzed: (A) Fluorescent microscopy of the HEp-2 cells. All living cells appear green fluorescent, all Yop translocated cells appear blue fluorescent after excitation. Microscopic pictures are representative for three independent experiments of 3 wells. White bars indicate 20 µm. + CNFγ indicates preincubation with the toxin. (B) Flow cytometry of the HEp-2 cells. Scatter dot plot represents the median of two independent experiments with 5 - 6 samples. For statistical analysis, a Mann-Whitney test was applied to determine significant differences in the numbers of translocated cells between YPIII-ETEM- and YP147 (ΔcnfY)-ETEM-infected cells with or without CNFγ pretreatment. Asterisks indicate the significances, with *** (P<0.001). ETEM: *yopE-bla*-expressed β-lactamase.
Results

3.3.5.1.1 Activation of Rho is crucial for enhanced Yop delivery

The innate immune cells are known to be the main targets of the T3SS and the Yop effector proteins *in vivo* (Durand *et al.*, 2010). Hence, murine macrophages (J774A.1 and RAW246.7) were tested for the effect of CNF\(_Y\) on Yop delivery. Cells were pretreated two hours with recombinant CNF\(_Y\) (3 \(\mu\)g/ml (25 nM)) or the same amount of PBS. The subsequent infection was performed with an MOI of 10 with the strain YP173 (YPIII-ETEM) grown overnight at 37°C to increase the expression of CNF\(_Y\). Blue and green cells were counted from fluorescent microscopic pictures. CNF\(_Y\) had a boosting effect on the Yop delivery also on the phagocytes, indicating a possible impact of CNF\(_Y\) on the innate immune cells *in vivo* (see Figure 3.3.9).

In addition, the Rho-GTPase responsible for the higher translocation rate induced by CNF\(_Y\) was determined. Previous publications showed that activation of Rac1 by YadA or invasin is required for the *Yersinia* uptake into epithelial cells (Wong & Isberg, 2005). However, the bacterial internalization as well as the Rac1 activation was not necessary to promote the Yop translocation into HeLa cells by *Y. pseudotuberculosis* (Mejia *et al.*, 2008). These data prompted the hypothesis that CNF\(_Y\) might induce the enhanced Yop delivery especially via RhoA activation. Hence, Rho-GTPase interacting bacterial toxins were used to specifically inhibit the different GTPases. For this purpose J774A.1 or RAW264.7 macrophages were pretreated two hours with (1) the C3 toxin (0.5 \(\mu\)g/ml, 1 \(\mu\)g/ml) of *C. botulinum* an ADP-ribosylating protein that specifically inhibits RhoA, B and C or (2) the toxin B (85 ng/ml, 250 ng/ml) from variant *C. difficile* serotype F strain 1470 (TcdBF), which specifically inhibits Rac, but not RhoA/B/C (Aktories & Hall, 1989; Huelsenbeck *et al.*, 2007b).

The toxin treated cells displayed typical actin cytoskeletal rearrangements and morphological changes, with no associated cell death (data not shown). Figure 3.3.9 shows the translocation rate into the macrophages after treatment with the different toxins. The RhoA/B/C inhibitor C3 led to a significantly diminished Yop translocation into the macrophages already at the lowest toxin concentration, particularly in the J774A.1 macrophages. However, even at high concentrations the Rac inhibitory toxin TcdBF had no effect on the amount of blue cells.

Taken together, these data indicate that the toxin CNF\(_Y\) enhances the Yop delivery into murine macrophages. The process leading to this boost seems to be mainly dependent on RhoA activation in the professional phagocytes, rather than Rac1.
Figure 3.3.9: CNFγ enhanced Yop delivery into murine macrophages is dependent on RhoA activation.

Bacteria were pregrown for infection overnight at 37°C to induce the CNFγ secretion. The murine macrophages J774A.1 and RAW264.7 were untreated or treated with Rho-GTPase modifying toxins: recombinant CNFγ (3 µg/ml (25 nM)), toxin C3 of C. botulinum (0.5 µg/ml/ 1 µg/ml) or toxin TcdBF of C. difficile (85 ng/ml/ 250 ng/ml) for 2 h prior infection for 1 h with Y. pseudotuberculosis YPIII-ETEM (YP173), YPIII or YP101 (∆yscS)-ETEM (YP174), using an MOI of 10. Cells were labeled with the dye CCF4-AM and analyzed for percentage of blue (translocated) cells among green (living) cells. Scatter dot plot represents the median of three independent experiments with 3 samples. For statistical analysis, a Mann-Whitney test was applied to determine significant differences in the numbers of translocated cells between cells without pretreatment and toxin (CNFγ, C3 or TcdBF)-treated cells. Asterisks indicate the significances, with ** (P<0.01) and *** (P<0.001).

3.3.5.2 YopE is not strong enough to counteract CNFγ

It is known that YopE of Y. pseudotuberculosis YPIII is a GTPase-activating protein (GAP) mainly targeting Rac1 and RhoA. Thus, it can be considered a counterplayer of CNFγ. The function of YopE seems to be important for the regulation of Yop translocation and modulation of host defences (Aili et al., 2002, 2006; Black & Bliska, 2000; Songsunghanthong et al., 2010).

This raised the question whether YopE and CNFγ interact or compete in Rho-GTPase activation and Yop delivery. To test the ability of YopE to counteract the activity of CNFγ, a yopE mutant strain was constructed. This strain was tested for its influence on RhoA/Rac1-GTP levels and for differences in the Yop translocation into murine macrophages with or without CNFγ pretreatment.
Results

For this purpose, murine macrophages were treated with recombinant CNF$_Y$ (25 nM) or the same amount of PBS for three hours and subsequently infected with an MOI of 100 with *Y. pseudotuberculosis* wild-type YPIII or the *yopE* mutant YP275 or left uninfected. The bacteria were grown at 37°C overnight to induce a high amount of CNF$_Y$ and to mimic the situation prior to host cell contact.

The uninfected cells without CNF$_Y$ pretreatment showed low activation levels of the tested GTPases (GTP-bound) (see Figure 3.3.10 A). Upon treatment with the toxin, a higher amount of activated RhoA/Rac1 could be detected as indicated by the ratio of GTP-bound to GDP-bound forms. As indicated by the RhoA-GTP/RhoA ratio, macrophages infected with a *yopE* mutant strain with or without CNF$_Y$ pretreatment show a slightly increased level of the GTP-bound form in comparison to wild-type-infected cells. However, Rac1-GTP levels seem to be unaffected or only minimally affected by the translocation of YopE.

Since RhoA was demonstrated to be mainly responsible for the CNF$_Y$-induced enhanced Yop delivery and YopE is supposed to counteract the activation, the ability of YopE to act against CNF$_Y$ in terms of Yop translocation was evaluated. In order to test this, murine macrophages were pretreated with recombinant CNF$_Y$ (25 nM) or the same amount of PBS for three hours and infected with the bacteria YPIII or YP275 (∆*yopE*) grown at 37°C overnight (MOI 100). The translocated Yop proteins were detected with an anti-serum directed against all Yop proteins. The ratios of the respective Yop to the actin control were calculated. As a negative control, cells were infected with a *yscS* mutant strain (YP101), unable to form a functional T3SS. However, loss of YopE had no or only a slight stimulatory effect on the translocation of YopD and YopH independently of the pretreatment with CNF$_Y$ (see Figure 3.3.10 B). Thus, the intracellular GAP activity of YopE seems to be insufficient to efficiently counteract CNF$_Y$ under the tested conditions, as indicated by the slightly higher activation of the GTPases and the higher amount of translocated Yop proteins when YopE is absent.
Results

Figure 3.3.10: Deletion of YopE induces slightly higher amounts of RhoA/Rac1-GTP and leads to a minimal increase in Yop delivery.

Murine macrophages RAW264.7 were incubated with 25 nM recombinant CNFγ or the same amount of PBS for 3 h prior to infection with an MOI 100. Bacteria were pregrown for infection at 37°C overnight. (A) Infection for 20 min was performed with *Y. pseudotuberculosis* strains YPIII or YP275 (ΔyopE) and PBS as negative control. Cells were lysed and aliquots taken for western blot analysis. The rest of the samples was used to isolate the activated GTPases Rac1-GTP or RhoA-GTP using PAK1- or rhotekin-coupled beads, respectively. Using specific antibodies against RhoA (24 kDa) and Rac1 (21 kDa), the activated form and total amount of the proteins in the lysates could be detected. (B) Infection was performed for 1 h with *Y. pseudotuberculosis* YPIII, YP275 (ΔyopE) or YP101 (ΔyscS). Cells were lysed and taken for western blot analysis, using an antiserum directed against all secreted Yops (α-Yop). Strain YP101 (ΔyscS) represents the negative control to rule out permeabilization of the membrane in the detergent solubility assay. A western blot analysis with a specific antibody directed against actin was used as loading control.
3.3.5.3 CNF\textsubscript{Y} enhances Yop delivery \textit{in vivo}\n
Due to the significant differences in the Yop translocation efficiency between the \textit{Y. pseudotuberculosis} wild-type strain and a cnf\textsubscript{Y} mutant strain \textit{in vitro}, further \textit{in vivo} analyses were performed. Former publications already reported that \textit{Y. pseudotuberculosis} selectively targets the Yop injection into professional phagocytes of the PP, MLNs and spleen during the oral infection route (Durand et al., 2010).

The following experiments were performed in cooperation with Dr. Devesha Kulkarni, formerly in the group „Experimental Immunology“ led by Prof. Dr. Jochen Hühn, of the Helmholtz Centre for Infection Research.

To analyze a possible influence of CNF\textsubscript{Y} on the YopE-\beta-lactamase delivery during the infection process, groups of 6 - 8 BALB/c mice were infected orally with 2×10^{9} bacteria of the strains YP173 (YPIII-ETEM) or YP217 (YP147 (\textit{\Delta}cnf\textsubscript{Y})-ETEM), and as negative controls with the strains YPIII and YP174 (YP101 (\textit{\Delta}yscS)-ETEM). Three days post infection, the mice were sacrificed, PP, MLNs and spleen isolated and the cells of single suspensions stained with fluorescently conjugated antibodies and the dye CCF4-AM. Before the staining, aliquots were removed for detection of the bacterial load in the different organs. The stained cells were acquired using a multi-colour flow cytometer and the Yop translocation into the different immune cell subsets (Gr1+CD11b+ neutrophils, CD11c macrophages, CD11c+ DCs, NKp46+ NK cells, CD19+ B cells and CD3+ T cells) was analyzed (see Figure S4).

The percentage of translocated (blue) cells among all living (green) cells was calculated. The PP contained overall the highest rate of translocated cells of the tested lymphatic tissues. The PP of mice infected with the strain YP173 (YPIII-ETEM) contained 4.5\% of blue cells among the living cells (see Figure S5 A). In contrast to that, the PP of YP217 (YP147 (\textit{\Delta}cnf\textsubscript{Y})-ETEM)-infected mice only contained around 1.5\% of blue cells among the living ones.

Because of the differences between the strains in bacterial colonization of the different organs, the data were additionally normalized to the bacterial load in the different organ/tissue (see Figure 3.3.11). The normalization is based on the assumption that the bacteria are infecting the different cells with the same MOI, but this is unknown. However, the \textit{cnf\textsubscript{Y}} mutant strain is significantly less able to translocate the Yop proteins into the cells of the PP, MLNs and spleen (see Figure 3.3.11 A; Figure S5 A).
Results

These data indicate that CNF\textsubscript{Y} enhances the Yop delivery also in vivo, yet the question remained if one cell subset is affected more frequently in the MLNs and spleen. Generally, the Yop proteins of \textit{Y. pseudotuberculosis} targeted all the analyzed immune cells with a higher efficiency in the presence of CNF\textsubscript{Y} (see Figure 3.3.11 B, Figure S5 B). Nevertheless, neutrophils in the MLNs and spleen showed a higher percentage of translocated cells, indicating a more frequently targeting of this cell type by the T3SS in these tissues. However, also macrophages, DCs and NK cells showed distinct blue/translocated populations, particularly in comparison to the T cells in both organs and the B cells in the spleen. These findings are in full agreement with former studies, which showed that YopH of \textit{Y. pseudotuberculosis} IP2666 was concentrated in neutrophils, macrophages and DCs of the MLNs and spleen (Durand \textit{et al.}, 2010).

The most significant reduction of Yop translocation was found for the cells of the MLNs in the absence of CNF\textsubscript{Y} (except for NK cells). However, significantly less translocation due to the loss of CNF\textsubscript{Y} was also detectable for neutrophils, B cells, and T cells in the spleen (see Figure 3.3.11 B). Additionally, lower percentages of Yop translocated cells were measured for macrophages and NK cells in the absence of CNF\textsubscript{Y} (see Figure S5 B). However, a slight reduction of the translocation rates due to the loss of \textit{cnfY} was visible with all the tested cell subsets.

Considering that \textit{Y. pseudotuberculosis} induces host cell death (Bergsbaken & Cookson, 2007) and CNF\textsubscript{Y} in particular seems to be involved in formation of necrotic spots in the spleen (see 3.3.2), it can be speculated that the amount of Yop translocated immune cells is probably higher in the presence of CNF\textsubscript{Y}. In summary, CNF\textsubscript{Y} enhances Yop delivery into host immune cells in vivo, in particular into professional phagocytes and thereby plays a significant role during infection of \textit{Y. pseudotuberculosis} YPIII.
Results

Comparison of organs

- YPIII-ETEM
- YP147 (ΔcnfY)-ETEM

Neutrophils

Macrophages

Dendritic cells

Natural killer cells

B cells

T cells
Results

Figure 3.3.11: Deletion of cnfY diminishes Yop delivery predominantly into neutrophils, macrophages and DCs in PP, MLNs and spleen in vivo.

Groups of 6 - 8 BALB/c mice were infected orally with 2 x 10⁹ bacteria of Y. pseudotuberculosis YPIII-ETEM (YP173), YP147 (∆cnfY)-ETEM (YP217), YP111 or YP101 (∆yscS)-ETEM (YP174). Three days after infection, mice were sacrificed and the organs (PP, MLNs, and spleen) isolated. Prepared cell suspensions were stained with fluorescently labeled antibodies to detect the different immune cells with flow cytometry: neutrophils (Gr1⁺/CD11b⁺), macrophages (CD11b⁺), DCs (CD11c⁺), NK cells (NKp46⁺), B cells (CD19⁺), and T cells (CD3⁺). Subsequently, cells were additionally dyed using CCF4-AM. The percentage of blue cells was analyzed by multi-colour flow cytometry of two independent experiments (see also Figure S5). Bacterial loads of the organs of 8 mice have been determined in parallel. These data were used for normalization to determine the Yop translocation efficiency. (A) Yop translocation efficiency into living cells of PP, MLNs, and spleen of mice infected with YPIII-ETEM (YP173) or YP147 (∆cnfY)-ETEM (YP217) is illustrated. (B) Yop translocation efficiency into different living immune cell subsets of MLNs and spleen of mice infected with YPIII-ETEM (YP173) or YP147 (∆cnfY)-ETEM (YP217) is illustrated. For statistical analysis, a Mann-Whitney test was applied to determine significant differences in translocation efficiency in (A) the different organs and (B) cell types between YPIII-ETEM (YP173)- and YP147 (∆cnfY)-ETEM (YP217)-infected mice. Asterisks indicate the significances, with * (P<0.05), ** (P<0.01) and *** (P<0.001).

3.3.6 Yop delivery-independent CNF₇ function

To test whether CNF₇ has an impact on the virulence of Y. pseudotuberculosis YP111 besides its influence on Yop delivery, further analyses were performed. For this purpose, a yscS single and a yscS cnfY double mutant strain were used. These strains lack the ability to translocate the Yop effector proteins due to the loss of the essential T3SS injectisome component YscS. Hence, an additional function of CNF₇ independently of the T3SS and the Yop effector proteins could be displayed with these strains. In order to test potential differences, the bacterial loads in the organs, the histopathology of the infected tissues, and the triggered immune response were analyzed three days post infection. This time-point was chosen to ensure bacterial colonization, considering that a mutant without the T3SS lacks the main defence mechanism against the host immune system and is rapidly eradicated.

3.3.6.1 Additional loss of cnfY in a yscS mutant leads to a efficient colonization of the gut

Organ burden experiments have been performed for the analysis of the bacterial loads in the different organs important in the enteropathogenic Yersinia infection route. Former studies already revealed that the pathogenicity of the Yersinia species is massively diminished without the virulence plasmid and thus the T3SS and the Yop effector proteins. These mutant bacteria are no longer able to reach the systemic organs liver and spleen (Cornelis et al., 1998; Straley et al., 1993).
In order to test the bacterial colonization of the organs three days post infection, groups of 5 BALB/c mice were infected orally with 2×10^8 bacteria of the strains YPIII, YP147 (ΔcnfY), YP101 (ΔyscS) or YP298 (ΔyscS ΔcnfY). The mice were sacrificed, the organs (small intestine, PP, caecum, colon, MLNs, spleen, and liver) isolated, and the organ homogenates plated to determine the colony forming units (CFU) per gram tissue.

Figure 3.3.12 shows the bacterial loads of the different organs. The data for the systemic organs spleen and liver are not plotted because no bacteria of the strains YP101 (ΔyscS) and YP298 (ΔyscS ΔcnfY) could be reisolated (data not shown). Similar amounts of all strains could be detected in the MLNs, whereas high variations between the strains were visible in the different intestinal tissues. Both bacterial strains without YscS are not able to colonize the gut as efficiently as the wild-type and the cnfY mutant bacteria. Interestingly, the double mutant strain YP298 (ΔyscS ΔcnfY) is significantly more able to colonize especially the small intestine, caecum, and colon compared to the yscS single mutant strain. To exclude growth deficiencies/differences between the different strains, growth of the strains was monitored at 25°C and 37°C, but no differences in the bacterial growth in vitro were detectable (data not shown). These data indicate that the functional CNF$_Y$ toxin in the absence/loss of the T3SS function is disadvantageous for the pathogen. Expression of a non-functional CNF$_Y$ toxin or deletions in the gene could be beneficial for Y. pseudotuberculosis to prevent inflammation and tissue damage.

In summary, the bacteria without a functional T3SS are less able to colonize the intestinal parts, show only slight differences in the colonization of the MLNs, and are not able to reach the underlying organs spleen and liver. Further, secretion of the CNF$_Y$ toxin seems to reduce colonization of the bacteria in the intestinal tissues in the absence of a functional T3SS. In the MLNs, however, the additional loss of CNF$_Y$ to YscS does not alter the colonizing ability of the bacteria.
Results

Small intestine

Peyer’s patches

Caecum

Colon

MLN

YP III
YP 147 (ΔcnfY)
YP 101 (ΔyncS)
YP 298 (ΔyncS ΔcnfY)

YP III
YP 147 (ΔcnfY)
YP 101 (ΔyncS)
YP 298 (ΔyncS ΔcnfY)

YP III
YP 147 (ΔcnfY)
YP 101 (ΔyncS)
YP 298 (ΔyncS ΔcnfY)

YP III
YP 147 (ΔcnfY)
YP 101 (ΔyncS)
YP 298 (ΔyncS ΔcnfY)

YP III
YP 147 (ΔcnfY)
YP 101 (ΔyncS)
YP 298 (ΔyncS ΔcnfY)

YP III
YP 147 (ΔcnfY)
YP 101 (ΔyncS)
YP 298 (ΔyncS ΔcnfY)

YP III
YP 147 (ΔcnfY)
YP 101 (ΔyncS)
YP 298 (ΔyncS ΔcnfY)

YP III
YP 147 (ΔcnfY)
YP 101 (ΔyncS)
YP 298 (ΔyncS ΔcnfY)

YP III
YP 147 (ΔcnfY)
YP 101 (ΔyncS)
YP 298 (ΔyncS ΔcnfY)

YP III
YP 147 (ΔcnfY)
YP 101 (ΔyncS)
YP 298 (ΔyncS ΔcnfY)

YP III
YP 147 (ΔcnfY)
YP 101 (ΔyncS)
YP 298 (ΔyncS ΔcnfY)
Results

Figure 3.3.12: Deletion of \textit{yscS} reduces colonization of intestinal tissues, whereby a \textit{yscS cnfY} double mutant strain more efficiently colonizes the intestinal tract than a \textit{yscS} single mutant.

Groups of 5 BALB/c mice were infected orally with 2×10^8 bacteria of \textit{Y. pseudotuberculosis} YPIII, YP101 (\textit{\textless yscS}), YP147 (\textit{\textless cnfY}) or YP298 (\textit{\textless yscS \textless cnfY}). Three days after infection, mice were sacrificed and the organs (small intestine, PP, caecum, colon, MLNs, spleen, and liver) were isolated. Homogenized organs were plated and the bacterial load (CFU) per gram tissue determined. The figure displays results of two independent experiments. For statistical analysis, a Mann-Whitney test was applied to determine significant differences in bacterial colonization of the organs between YPIII-, YP101 (\textit{\textless yscS}), YP147 (\textit{\textless cnfY}), and YP298 (\textit{\textless yscS \textless cnfY})-infected mice. Asterisks in tables below the graphs indicate the significances, with * (P<0.05), ** (P<0.01) and *** (P<0.001). n.s.: no significance

3.3.6.2 \textit{CNF}_Y \textit{causes slight inflammation in the intestine independent of the Yop machinery}

The organ burden experiments revealed differences in the colonizing abilities between the tested strains YP101 (\textit{\textless yscS}) and YP298 (\textit{\textless yscS \textless cnfY}) (see 3.3.6.1). Interestingly, the additional loss of \textit{cnfY} in the \textit{yscS} mutant led to higher bacterial colonization rates in the intestinal parts. To further analyze the infection, a histopathological analysis was performed by Dr. Marina C. Pils of the „Mouse Pathology, Animal Experimental Unit“ of the Helmholtz Centre for Infection Research.

Hence, groups of 4 BALB/c mice were infected orally with 2×10^8 bacteria, YPIII, YP147 (\textit{\textless cnfY}), YP101 (\textit{\textless yscS}) or YP298 (\textit{\textless yscS \textless cnfY}) for three days. Subsequently, the mice were sacrificed, the organs isolated, embedded in formaldehyde, the sections stained with H & E, and evaluated blindly. Only minor differences in the histopathology of the different tissues between YP101 (\textit{\textless yscS})- and YP298 (\textit{\textless yscS \textless cnfY})-infected mice could be detected in the intestine, particularly in the ileum and caecum already three days after infection.

Figure 3.3.13 shows representative pictures of the ileum of infected mice. The YPIII infection caused a severe diffuse ileitis already visible after three days of infection, which was observed before in mice infected for six days (see 3.3.2 for details). The infection with the \textit{cnfY} mutant strain caused a moderate granulomatous ulcerative ileitis and inflammation (neutrophilic invasion) in the PP, restricted to focal areas (observed before after six days of infection; see 3.3.2 for details).

However, the \textit{yscS} mutant strain induced only mild epithelial hyperplasia in the intestinal epithelium (extension of villi), whereas no alterations could be observed after infection with the double mutant strain YP298 (\textit{\textless yscS \textless cnfY}) when compared with uninfected mice (see Figure 3.3.13, scale). In summary, \textit{CNF}_Y \textit{causes a slight inflammation in the
Results

intestine. However, the inflammation is much less severe compared to strains expressing a functional T3SS machinery.

Figure 3.3.13: CNF₃ induces slight inflammation in the ileum independent of the T3SS.
Groups of 4 BALB/c mice were infected orally with 2 x 10⁸ bacteria of *Y. pseudotuberculosis* YPIII, YP147 (Δcnf₃), YP101 (ΔyscS) or YP298 (ΔyscS Δcnf₃). Mice were sacrificed three days post infection, the ileum isolated and sections stained with H & E. The figure shows representative light microscopic pictures of an ileum of a YPIII-, YP147 (Δcnf₃)-, YP101 (ΔyscS)- or YP298 (ΔyscS Δcnf₃)-infected or uninfected animal. YPIII induced severe diffuse neutrophilic ileitis. YP147 (Δcnf₃) induced a moderate focal ileitis and epithelial hyperplasia. YP101 (ΔyscS) induced mild to moderate epithelial hyperplasia. YP298 (ΔyscS Δcnf₃) induced no alteration of the ileum. Black bar represents 50 μm. M: muscularis mucosa; Scale: villi length of uninfected control.
3.3.6.3 Loss of \textit{cnfY} in a \textit{ΔyscS} mutant causes no significant alteration of the immune response

Loss of \textit{cnfY} in an \textit{yscS} mutant strain led to slightly, but not significantly higher colonization rates of this mutant strain in the PP, but no alteration in colonization of the MLNs. The growth curves \textit{in vitro} showed no differences in the growth of the bacterial strains, which suggested a change in the triggered immune response especially in the PP. Potential differences in the immune responses exclusively attributed to CNF\textsubscript{Y} should be analyzed. The PP, MLNs, and spleen were examined because these lymphatic tissues are the main sites for initiation of an immune response against enteric \textit{Yersinia} infections.

Hence, groups of 5 BALB/c mice were infected orally with \(2 \times 10^8\) bacteria, YPIII, YP147 (\textit{ΔcnfY}), YP101 (\textit{ΔyscS}) or YP298 (\textit{ΔyscS} \textit{ΔcnfY}) for three days. The mice were sacrificed, the organs PP, MLNs and spleen isolated, and single cell suspensions prepared. Cells were stained with fluorescently labeled antibodies to stain the different immune cells (neutrophils, macrophages, DCs, monocytes, NK cells, CD3+ T cells, CD4+ T cells, CD8+ T cells, and CD19+ B cells) and analyzed by multi-colour flow cytometry (see Figure S6 B). Figure 3.3.14 shows the amounts of isolated neutrophils (CD11b+Ly6G+), macrophages (F4/80hi), DCs (CD11c+), and monocytes (Ly6C+CD11b+) of the different tissues.

The strains YPIII and YP147 (\textit{ΔcnfY}) were able to colonize the PP more efficiently in comparison to the strains YP101 (\textit{ΔyscS}) or YP298 (\textit{ΔyscS} \textit{ΔcnfY}). The double mutant could even be detected with slightly, but not significant higher amounts than the \textit{yscS} single mutant (see Figure 3.3.12). However, the triggered innate immune response showed no differences as a result to the infection with the two \textit{yscS} mutant strains YP101 (\textit{ΔyscS}) or YP298 (\textit{ΔyscS} \textit{ΔcnfY}) in the PP (see Figure 3.3.14 A). A slight influx of neutrophils and monocytes could be detected in response to the infection with the \textit{yscS} single and \textit{yscS} \textit{cnfY} double mutant strains, yet the influx of these cell types upon infection with the \textit{cnfY} mutant strain was significantly higher. However, the highest influx of innate immune cells was detectable after infection with the wild-type strain harbouring both, YscS and CNF\textsubscript{Y}.

The bacterial numbers in the MLNs did differ only minorly between the four strains (see Figure 3.3.12). However, the infection with the wild-type strain caused generally a higher influx of all tested innate immune cells into the MLNs (see Figure 3.3.14 B). The loss of
Results

cnfY, yscS or both yscS and cnfY led to significantly reduced amounts of neutrophils, macrophages, DCs, and monocytes. Again, no significant differences in the amounts of the tested immune cells were measured between an yscS and a yscS cnfY double mutant strain. Nevertheless, the innate immune response to a mutant strain without yscS or both yscS and cnfY does not or only slightly differ from the response caused by the infection with YP147 (∆cnfY), indicating that the functional T3SS machinery and CNFγ combined lead to a changed immune response in the MLNs.

In general, only slightly higher amounts of neutrophils and macrophages could be detected upon infection with the cnfY mutant, the yscS mutant or the yscS cnfY double mutant strain in comparison to the amounts in the MLNs of untreated mice. These data indicate that all the analyzed mutant strains are less attacked by the immune system in the MLNs compared to YPIII. It can be assumed that neither CNFγ nor YscS (the Yop delivery) are exclusively responsible for the induction of the immune response in the MLNs, and a fine-tuned concerted function is needed to trigger Yop translocation and resulting effects on the immune system.

YP101 (∆yscS) and YP298 (∆yscS ∆cnfY) bacteria could not be reisolated out of the spleens of infected mice (see Figure 3.3.12). In agreement with this result, no significant differences in the immune reaction could be detected between the strains. However, overall slightly lower amounts of neutrophils, macrophages and monocytes and an even significant lower amount of DCs could be detected upon infection with YP298 (∆yscS ∆cnfY) in contrast to an YP101 (∆yscS) infection. The YP147 (∆cnfY) bacteria in contrast are able to colonize the spleen up to day three and induce a harsh influx predominantly of neutrophils and monocytes. In the wild-type the amounts are diminished, indicating that the combined activity of YscS and CNFγ is needed. In summary, YscS but not CNFγ is needed for the initial colonization of the spleen, but the concerted activity of YscS and CNFγ seems to be important for defending the bacteria against the host immune system to remain in this tissue, probably by enhancing the Yop delivery machinery.

Taken together, these data indicate that the major influence of CNFγ in vivo appears to be the enhancement of Yop delivery.
Results

A

Neutrophils

Macrophages

Dendritic cells

Monocytes

uninfected
YPIII
YP147 (ΔcnfY)
YP101 (ΔyscS)

CD11b+Ly6G- cells/PP

- **Neutrophils**
- **Macrophages**

CD11c+ cells/PP

- **Dendritic cells**
- **Monocytes**

Legend
- uninfected
- YPIII
- YP147 (ΔcnfY)
- YP101 (ΔyscS)
- YP298 (ΔyscS ΔcnfY)
- YP147 (ΔcnfY)
- YP298 (ΔyscS ΔcnfY)
Results

B

MLNs

Neutrophils

Macrophages

Dendritic cells

Monocytes

uninfected YPIII YP147 (ΔcnfY) YP101 (ΔyscS)

YP298 (ΔyscS ΔcnfY) ** *** n.s. n.s.

YP101 (ΔyscS) ** n.s. n.s.

YP147 (ΔcnfY) ** ***

YPIII ***

uninfected YPIII YP147 (ΔcnfY) YP101 (ΔyscS)

YP298 (ΔyscS ΔcnfY) n.s. *** n.s. n.s.

YP101 (ΔyscS) n.s. n.s. n.s.

YP147 (ΔcnfY) ** ***

YPIII ***

uninfected • YPIII ● YP101 (ΔyscS) YP147 (ΔcnfY) YP298 (ΔyscS ΔcnfY)

113
Figure 3.3.14: Additional loss of cnfY in a ΔyscS mutant does not change the triggered immune response.
Results

Groups of 5 BALB/c mice were infected orally with 2×10^8 bacteria of *Y. pseudotuberculosis* YPIII, YP101 ($\Delta yscS$), YP147 ($\Delta cnfY$) or YP298 ($\Delta yscS \Delta cnfY$). Three days after infection, mice were sacrificed and organs (PP, MLNs, and spleen) were isolated. Prepared cell suspensions were stained with fluorescently labeled antibodies to detect the different immune cells with flow cytometry: neutrophils (CD11b$^+$/Ly6G$^+$), macrophages (F4/80hi), DCs (CD11c$^+$), and monocytes (Ly6C$^+$CD11b$^+$). Data plotted on the y axis indicate the cell numbers isolated from uninfected, YPIII-, YP101 ($\Delta yscS$)-, YP147 ($\Delta cnfY$)-, and YP298 ($\Delta yscS \Delta cnfY$)-infected organs. Scatter dot plots show the median of two independent experiments for (A) PP, (B) MLNs, and (C) spleen. For statistical analysis, a Mann-Whitney test was applied to determine significant differences in the numbers of indicated cell types in the whole organ between YPIII-, YP101 ($\Delta yscS$)-, YP147 ($\Delta cnfY$)-, YP298 ($\Delta yscS \Delta cnfY$)-infected or uninfected mice. Asterisks in the tables below the graphs indicate the significances, with * (P<0.05), ** (P<0.01) and *** (P<0.001).

3.3.6.4 Proteins of the virulence plasmid decrease the membrane integrity

Previous studies of the CNF$_Y$ homolog of *E. coli*, CNF$_1$ revealed a strong increase of the membrane permeability of epithelial cells due to RhoA activation by CNF$_1$ (Schlegel et al., 2011). Since CNF$_Y$ is known to mainly activate RhoA in epithelial cells (Hoffmann et al., 2004), the influence of CNF$_Y$ on membrane permeability was tested.

For this purpose, Caco-2 cells were cultivated on a membrane until a polarized monolayer was formed (see 2.2.2.8). The cell monolayer was infected apically with 3×10^6 bacteria of YPIII, YP147 ($\Delta cnfY$), YP12 pYV- or YP150 pYV- ($\Delta cnfY$) for 8 hours. Every hour and prior to infection, the trans epithelial electrical resistance (TEER) and thus the membrane integrity was determined. After 8 hours, the pH increased in the presence of bacteria, making a reliable measurement impossible.

As visible in Figure 3.3.15 A, the strains containing the virulence plasmid YPIII and YP147 ($\Delta cnfY$) and thus a functional Yop delivery machinery, caused a fast destruction of the epithelial membrane, starting already two hours post infection. The monolayers infected with the strains YP12 pYV- or YP150 pYV- ($\Delta cnfY$) lacking the virulence plasmid stayed intact over 8 hours. These data suggest that the factors encoded on the virulence plasmid of *Y. pseudotuberculosis* YPIII diminish the membrane integrity.

To test whether CNF$_Y$ acts independently of other bacterial factors (e.g. the Yops), the recombinant toxin (50 nM) was used to intoxicate the cells basolaterally. The TEER was measured prior treatment and every second hour up to 22 hours (see Figure 3.3.15 B).

At a TEER value lower than 80% of the starting point, the membrane becomes leaky (permeability threshold) and is termed as permeable. These data show a slight impact of CNF$_Y$ on the membrane permeability, starting after four hours. However, this impact is not as significant as the one of the virulence plasmid-encoded factors.
Results

In summary, CNF\textsubscript{Y} seems to decrease the membrane integrity when applied in high concentrations. However, the T3SS and Yop effector proteins seem to play a predominant role in disrupting the membrane function.

Figure 3.3.15: Proteins of the virulence plasmid lead to destruction of an epithelial membrane, whereas CNF\textsubscript{Y} only causes a slight increase in membrane permeability.

Caco-2 cells were cultivated on a membrane till a dense monolayer was formed. (A) Bacteria were grown overnight at 25°C. Cells on the membrane stayed uninfected or were infected apical with approximately 3×10^6 bacteria of \textit{Y. pseudotuberculosis} YP\textsubscript{III}, YP\textsubscript{12 pYV}, YP\textsubscript{147 (ΔcnfY)} or YP\textsubscript{150 pYV (ΔcnfY)}. Graph represents data of three independent experiments with each 2 wells normalized to time point 0. The trans epithelial electrical resistance (TEER) was measured 8 hours every hour. (B) Cells were treated basolaterally with 50 nM recombinant CNF\textsubscript{Y} or the same amount of PBS over 22 hours. Graph represents data of three independent experiments with each 2 wells normalized to time point 0. TEER was measured every second hour. Green line indicates at which point the epithelial membrane starts being permeable.
3.4 CNF\textsubscript{Y} leads to long-term changes of the host immune system

Previous data suggested that the \textit{cnfY} mutant strain is able to colonize the caecum and to some extent also the PP over long periods after an oral infection (14, 28 and 80 days; data not shown). In order to test if avirulent \textit{Yersinia} mutant strains (YP12 p\textit{YV}, YP147 (\textit{\Delta cnfY}) or YP150 p\textit{YV} (\textit{\Delta cnfY})) possess different colonization abilities and induce different immune responses, long-term infections were performed for 28 days. Such experiments should allow to determine a possible effect of CNF\textsubscript{Y}, independently from the virulence plasmid (no Yop machinery). Since YPIII-infected mice would not survive long-term infections, the wild-type strain was not included in this experiment. The immune response in the PP, MLNs, and spleen was measured because these are the lymphatic tissues in which an immune response against \textit{Yersinia} is expected.

Groups of 5 BALB/c mice were infected orally with \(2 \times 10^8\) bacteria. At day 28, the mice were sacrificed, the organs (small intestine, PP, caecum, colon, MLNs, spleen, and liver) were isolated and single cell suspensions were prepared of PP, MLNs and spleen and aliquots were taken to determine the bacterial load. Furthermore, single cell suspensions were stained with fluorescently labeled antibodies to detect different immune cells (neutrophils, macrophages, DCs, monocytes, NK cells, CD3+ T cells, CD4+ T cells, CD8+ T cells, and CD19+ B cells) and analyzed with multi-colour flow cytometry (see Figure S6).

Neither YP12 p\textit{YV} nor YP150 p\textit{YV} (\textit{\Delta cnfY}) bacteria could be reisolated of the examined tissues, maybe due to the high detection limit. However, the \textit{cnfY} mutant strain could be detected in the caecum in 7 out of 9 mice (see Figure 3.4.1 A). The spleen weights of untreated mice still differed slightly from YP12 p\textit{YV}-infected and significantly from the YP147 (\textit{\Delta cnfY})- and YP150 p\textit{YV} (\textit{\Delta cnfY})-infected mice, thus indicating long-lasting changes in this organ (see Figure 3.4.1 B).
Only the *cnfY* mutant strain could be reisolated of the caecum 28 days post infection, yet the spleen weights still differ after infection with YP12 pYV, YP147 (*ΔcnfY*) or YP150 pYV (*ΔcnfY*).

Figure 3.4.1: Only the *cnfY* mutant strain could be reisolated of the caecum 28 days post infection, yet the spleen weights still differ after infection with YP12 pYV, YP147 (*ΔcnfY*) or YP150 pYV (*ΔcnfY*). Groups of 5 BALB/c mice were infected orally with 2 x 10⁸ bacteria of *Y. pseudotuberculosis* YP12 pYV, YP147 (*ΔcnfY*) or YP150 pYV (*ΔcnfY*) or the same amount of PBS. 28 days after infection, mice were sacrificed and the organs were isolated. An YPIII-infection control was not included since mice would not survive a long-term infection. (A) Homogenized organs were plated and the bacterial load (CFU) per gram of the tissue determined. The figure displays the results of two independent experiments of the caecum. No bacteria could be reisolated of the other tested organs (small intestine, PP, colon, MLNs, spleen, and liver). (B) Spleen weights were determined in two independent experiments. For statistical analysis, a Mann-Whitney test was applied to determine significant differences in (A) bacterial colonization in the caecum and (B) spleen weights between YP12 pYV-*, YP147 (*ΔcnfY*), YP150 pYV (*ΔcnfY*)-infected or uninfected mice. Asterisks indicate the significances, with ** (P<0.01) and *** (P<0.001).

Figure 3.4.2 represents the flow cytometry analysis of the organs PP, MLNs and spleen for the immune cells neutrophils (CD11b⁺Ly6G⁺), macrophages (F4/80hi), DCs (CD11c⁺), monocytes (Ly6C⁺CD11b⁺), NK cells (NKP46⁺), T cells (CD3⁺), and B cells (CD19⁺).

Analysis of the immune cell composition of the PP highlighted an ongoing immune response after infection with the three different strains in comparison to uninfected PP (see Figure 3.4.2 A). Significant differences could be measured for the DCs, monocytes, NK cells, T cells, and B cells without detectable bacterial numbers in this organ.

Also the MLNs showed differences in their immune cell composition after a long-term infection without measurable bacterial numbers. Significantly higher amounts of neutrophils, monocytes, NK cells, and B cells could be detected upon infection with YP12 pYV- and YP147 (*ΔcnfY*) (see Figure 3.4.2 B). In addition, significantly higher amounts of macrophages and DCs could be detected upon infection with YP12 pYV⁻, indicating an even stronger immune response due to infection with YP12 pYV⁻ than with
Results

YP147 (ΔcnfY). However, a long-term infection with the strain YP150 pYV (ΔcnfY) only led to increased levels of NK cells, T cells, and B cells in comparison to the levels in uninfected MLNs, and thus a very mild remodulation of the immune compartment. In summary, no bacteria could be detected in the MLNs after a long-term infection with the three strains. Yet, significantly increased amounts of most tested immune cells could be measured 28 days after infection with YP12 pYV$^-$ - the strain harbouring the toxin - when compared to uninfected MLNs.

As indicated by the differences in the spleen weights the mutant strains seem to have different impacts on the spleen (see Figure 3.4.1 B). However, an infection with the strains YP147 (ΔcnfY) and YP150 pYV$^-$ (ΔcnfY) did not or only slightly alter the immune cell contents in the spleen (see Figure 3.4.2 C). An infection with the strain YP12 pYV$^-$ in contrast led to significantly lower amounts of all tested immune cells, except for T cells and B cells in comparison to the contents of uninfected, YP147 (ΔcnfY)- or YP150 pYV$^-$ (ΔcnfY)-infected spleens. These data strongly indicate that CNF$_Y$ affects innate immune cell contents in the spleen independent of the T3SS machinery.

In summary, these strains (YP12 pYV$^-$, YP147 (ΔcnfY), YP150 pYV$^-$ (ΔcnfY)) affect the immune system of the host over long periods after an infection without detectable bacterial numbers in the intestinal tissues (except for the caecum of YP147 (ΔcnfY)-infected mice), MLNs, and organs. Additionally, CNF$_Y$ seems to be able to diminish the immune cell numbers in the spleen, independently from the virulence plasmid.
Results

A

PP

Neutrophils

Dendritic cells

Macrophages

Monocytes

Natural killer cells

T cells

B cells

CD11b+Ly6G+ cells/PP

R480+ cells/PP

Ly6C+CD11b+ cells/PP

CD3+ cells/PP

CD19+ cells/PP

UT

YP12 pYV−

YP147 (ΔcnfY)

YP150 pYV− (ΔcnfY)
Results

B

MLNs

- Neutrophils
- Dendritic cells
- Natural killer cells
- B cells
- Macrophages
- Monocytes
- T cells

[@][121]
Results

Figure 3.4.2: CNF\textsubscript{Y} induced reduction of immune cell numbers in the spleen is independently from the virulence plasmid and still detectable 28 days post infection.

Groups of 5 BALB/c mice were infected orally with 2×10^{8} bacteria of
\textit{Y. pseudotuberculosis} YP12 pYV+, YP147 (\textit{Δcnf}\textsubscript{Y}) or YP150 pYV− (\textit{Δcnf}\textsubscript{Y}) or the same amount of PBS. 28 days after infection, mice were sacrificed and organs (PP, MLNs, and spleen) were isolated. Prepared cell suspensions were stained with fluorescently labeled antibodies to detect the different immune cells with flow cytometry: neutrophils

C

<table>
<thead>
<tr>
<th></th>
<th>Neutrophils</th>
<th>Macrophages</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>**</td>
<td>**</td>
</tr>
<tr>
<td></td>
<td>***</td>
<td>***</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>***</td>
<td>***</td>
</tr>
</tbody>
</table>

Spleen

<table>
<thead>
<tr>
<th></th>
<th>Dendritic cells</th>
<th>Monocytes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>**</td>
<td>**</td>
</tr>
<tr>
<td></td>
<td>***</td>
<td>***</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Natural killer cells</th>
<th>T cells</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>**</td>
<td>**</td>
</tr>
<tr>
<td></td>
<td>***</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>B cells</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>**</td>
</tr>
</tbody>
</table>

UT
YP12 pYV+
YP147 (\textit{Δcnf}\textsubscript{Y})
YP150 pYV− (\textit{Δcnf}\textsubscript{Y})

122
Results

(CD11b^+Ly6G^+), macrophages (F4/80^hi), DCs (CD11c^+), monocytes (Ly6C^-CD11b^+), NK cells (NKp46^+), T cells (CD3^+), and B cells (CD19^+). Data plotted on the y axis indicate the cell numbers isolated from uninfected, YP12 pYV^-, YP147 (∆cnfY^-) or YP150 pYV (∆cnfY^-)-infected organs. Scatter dot plots show the median of two independent experiments for (A) PP, (B) MLNs, and (C) spleen. For statistical analysis, a Mann-Whitney test was applied to determine significant differences in the numbers of indicated cell types in the whole organ between YP12 pYV^-, YP147 (∆cnfY^-), YP150 pYV (∆cnfY^-)-infected or uninfected mice. Asterisks indicate the significances, with * (P<0.05), ** (P<0.01) and *** (P<0.001).
4 Discussion

The small Rho-GTPases are involved in different cellular processes, like the cell cycle progression, genetic information processing, organization of the cytoskeleton, and different host defence mechanisms (Etienne-Manneville & Hall, 2002; Lemonnier et al., 2007). Particularly the actin cytoskeleton plays a crucial role in bacterial pathogenesis, e.g. phagocytosis of pathogens. Different bacteria have evolved toxins and effector proteins targeting the small Rho-GTPases which enable them (1) to prevent their phagocytosis by macrophages, (2) to induce their phagocytosis into non-phagocytic cells or (3) to disrupt the epithelial barrier to reach the underlying tissue (Bhavsar et al., 2007; Cossart & Toledo-Arana, 2008; Gouin et al., 2005).

This study investigates the function of the Rho-GTPase-activating toxin CNF\textsubscript{Y}, produced by the clinical isolate \textit{Y. pseudotuberculosis} YPIII (Lockman et al., 2002). The molecular mechanism by which the toxin modulates cellular pathways and the cell morphology has already been addressed by several studies. However, the CNF\textsubscript{Y} role in the pathogenesis of \textit{Y. pseudotuberculosis} has not yet been dissected. To shed light upon this topic, the regulation of the \textit{cnfY} expression, the molecular function, and particularly the impact of a \textit{cnfY} deletion on the virulence of YPIII in a mouse gastrointestinal infection model were investigated.

4.1 CNF\textsubscript{Y} is present at infection relevant conditions

The significance of CNF\textsubscript{Y} for the pathogenesis of \textit{Y. pseudotuberculosis} YPIII was initially studied by the expression and secretion profile of the toxin \textit{in vitro} as well as \textit{in vivo}. Not much was known about the expression conditions of \textit{cnfY}. It was previously shown that \textit{cnfY} expression is not regulated by temperature, the growth phase or calcium (Lockman \textit{et al.}, 2002). However, this study tested broth supernatant and bacteria-free lysates on epithelial cells for CNF\textsubscript{Y} activity by monitoring the formation of multinucleated, giant cells.

Here, promoter fusions (\textit{P}_{cnfY}::\textit{lacZ}) were used to measure the expression of the toxin, which give more detailed information about the expression conditions. It could be demonstrated that \textit{cnfY} is predominantly expressed at 37°C during late stationary growth phase in nutrient rich media. Hence, the expression is temperature-, growth phase-, and nutrient-dependent, i.e. \textit{cnfY} is expressed under similar conditions to other virulence genes, e.g. the virulence-plasmid encoded \textit{yops} or \textit{yadA} (Cornelis & Wolf-
Discussion

Watz, 1997). This supported the assumption that CNF \(Y \) could be an additional virulence factor for \(Y. pseudotuberculosis \) YPIII, since 37°C and a nutrient rich environment are conditions found in the intestinal tract of the host. Furthermore, the expression \textit{in vitro} as well as \textit{in vivo} in all tested organs of the infection route was distinct and leads to the assumption that the toxin is active throughout the whole infection process in the different organs. Additionally, the high secretion level of CNF \(Y \) at 37°C suggests that a high concentration of the toxin is needed in the infection process for an adequate effect in the host.

Additionally, the \textit{cnfY} expression has been tested in dependence of different global virulence regulators crucial for temperature- or nutrient-dependent regulation of virulence gene expression in \(Y. pseudotuberculosis \). The \textit{cnfY} expression was independent of the ferric uptake regulator (Fur), indicating that CNF \(Y \) synthesis does not depend on the iron concentration in the surrounding of the bacteria. Oppositely, Crp (cAMP receptor protein) activated the \textit{cnfY} expression at the tested conditions, as \textit{cnfY} is significantly less expressed in a \textit{crp} mutant strain at 37°C in nutrient rich medium. The Crp protein controls the transcription of a variety of genes, e.g. \textit{invA} of \(Y. pseudotuberculosis \), and operons of the family \textit{Enterobacteriaceae}, depending on carbon sources in the surrounding (Saier, 1998; Zheng \textit{et al.} 2004; Heroven \textit{et al.} 2012). Hence, Crp probably regulates the \textit{cnfY} expression in response of the nutrients in the surrounding.

Previous data also revealed that \textit{cnfY} expression is controlled by the \textit{Yersinia} modulator \(A \) (YmoA) (J. Schweer, Master-thesis). The nucleoid-associated protein YmoA is an important modulator involved in different thermo-regulated virulence gene expressions, linking early and late virulence phases (Cornelis \textit{et al.}, 1991). The expression of \textit{cnfY} was repressed by YmoA at 25°C, particularly in the stationary growth phase, similarly to other late virulence genes like the \textit{yops} (Böhme, 2010; Cornelis \textit{et al.}, 1991), indicating that \textit{cnfY} is co-expressed with the \textit{yops} in the late virulence phase \textit{in vivo}.

Since different virulence-relevant factors are often regulated and encoded by the \textit{Yersinia} virulence plasmid \textit{pYV} (\textit{yadA}, \textit{yops}, and T3SS), the influence of \textit{pYV} on the expression and secretion of CNF \(Y \) was tested. The data showed neither a virulence plasmid-dependent expression, nor secretion of the toxin. Hence, the plasmid encoded global virulence regulator LcrF, crucial for \textit{yop} expression (Böhme \textit{et al.}, 2012; Lambert
Discussion

de Rouvroit *et al.*, 1992), plays no role in regulation of the toxin expression at the tested conditions.

Furthermore, the CNF\textsubscript{Y} secretion is independent of the virulence plasmid-encoded T3SS. The homologous toxin CNF\textsubscript{1} of *E. coli*, was shown to be secreted by outer membrane vesicles (OMVs) (Davis *et al.*, 2006). This could also be the case for CNF\textsubscript{Y}, enabling the toxin to be transported over long distances in the host - independent of the bacteria - to prime the eukaryotic cells before these cells encounter the *yersiniae*. Nevertheless, a recent work by Kolodziejek *et al.* indicated that *Y. pseudotuberculosis* might not produce OMVs, whereas *Y. pestis* was shown to secrete membrane vesicles at the experimental conditions (Kolodziejek *et al.*, 2013). These data and the sequence-identity to *cnf1* of only around 65% - also in the signal peptide region - suggest an OMV-independent secretion mechanism for CNF\textsubscript{Y}. Moreover, the CNF\textsubscript{Y} toxin does not harbour a conserved signal sequence at its N-terminus, suggesting a secretion mechanism different from other well described mechanisms.

A recent study of the typhoid toxin from *Salmonella* Typhi - also an A-B toxin - described a bacteriophage endolysin-like N-acetyl-\(\beta\)-D-muramidase, now termed as typhoid toxin secretion A (TtsA), which is essential for secretion of the typhoid toxin (Hodak & Galán, 2013). Endolysins are used by bacteriophages for lysis of the bacterial host to release the replicated phages. These peptides are secreted through the inner bacterial membrane and are able to cleave the peptidoglycan of the host (Borysowski *et al.*, 2006; Young, 2002). The secretion of the endolysins is established by holins, small pore forming membrane proteins (Young, 1992, 2002). TtsA contains unique amino acids at the predicted peptidoglycan-binding domain and thus is probably a secretion mechanism newly evolved from bacteria (Hodak & Galán, 2013). Database research at the National Center for Biotechnology Information (NCBI) revealed that also *Y. pseudotuberculosis* YPIII harbours homologous proteins to bacteriophage holins and endolysins in its genome. It can be speculated that the CNF\textsubscript{Y} toxin is secreted via a similar pathway as the typhoid toxin of *S. Typhi*.

126
4.2 CNF\textsubscript{Y} constitutively activates the small Rho-GTPases Rac1, Cdc42, and RhoA and causes inflammation

The Rho-GTPases are known to be the target of different virulence factors of pathogenic bacteria. Over 30 bacterial molecules directly or indirectly interacting with the GTPases were described (Symons & Settleman, 2000). All these factors help to ensure a successful infection of the pathogen. The CNF\textsubscript{Y} toxin of \textit{Y. pseudotuberculosis} YPIII is a Rho-GTPase constitutively activating toxin. In the present study, it was shown that intoxication of macrophages and epithelial cells with CNF\textsubscript{Y} under the tested conditions led to the activation of the three small Rho-GTPases Rac1, RhoA, and Cdc42, whereby the macrophages were more susceptible to the treatment than the epithelial cells. The activation in macrophages was accompanied by high contents of actin stress fibres, formation of filopodia, and lamellipodia, and additionally the formation of giant, multinucleated cells. Previous studies with epithelial cells already demonstrated that CNF intoxication leads to the inhibition of cytokinesis, mainly by activation of RhoA (Falzano \textit{et al.}, 2006; Huelsenbeck \textit{et al.}, 2009). Thus, the cells lose their ability to divide, whereas mitosis continues (Caprioli \textit{et al.}, 1984; Knust \textit{et al.}, 2009).

It was described previously that CNF\textsubscript{Y} is able to interact with the three GTPases Rac1, Cdc42, and RhoA. Yet, it was shown to predominantly activate RhoA in intoxicated epithelial cells (Hoffmann \textit{et al.}, 2004; Lockman \textit{et al.}, 2002). However, a recent study also observed CNF\textsubscript{Y}-mediated activation of Rac1 and Cdc42 additionally to RhoA, consistent with the data presented in this study (Wolters \textit{et al.}, 2013). Explanations for these variations in activation of the GTPases could be the intoxication periods, the toxin concentrations, and/or the employed cell lines in which CNFs may display different selectivity (e.g. different cellular receptors) and/or efficiency. As demonstrated for macrophages and epithelial cells, eukaryotic cells display a different susceptibility to the toxin treatment. Nevertheless, the Rho-GTPase activation pattern induced by CNF\textsubscript{Y} changes over time with a generally more distinct RhoA activation level over Rac1 and Cdc42 two hours after toxin addition (Wolters \textit{et al.}, 2013). Taken together these data suggest that CNF\textsubscript{Y} might induce RhoA predominantly at early time points and/or with low toxin concentrations, which are probably found in the host (see also 4.4).

Since these three GTPases are known to influence the activation state among each other, most probably depending on the requirement, the initial RhoA activation could also result in activation/blocking of the other GTPases. The exploitation of this interaction
between the GTPases by enteropathogenic yersiniae was described before. For instance, the activation of Rac1 by invasin is needed for the β1-integrin mediated invasion of *Yersinia*, which in turn inhibits RhoA activation. This interaction is needed, because RhoA was shown to block the β1-integrin-mediated invasion (Alrutz *et al.*, 2001; Wong *et al.*, 2006).

CNF\(_Y\)-induced changes in the activation pattern of the GTPases with different concentrations, incubation periods, and susceptibilities of the cells could be an advantage for the bacteria in the host, e.g. to induce/inhibit their cellular uptake. Previous studies demonstrated that phagocytes preferentially take up opsonised particles mostly by RhoA, but also Rac, and Cdc42-dependent pathways (Caron & Hall, 1998; Cox *et al.*, 1997), which might also be activated by CNF\(_Y\). Additionally, CNF\(_1\) was shown to exploit the ubiquitin-proteasome machinery to eliminate the constitutively active GTPases and thus facilitate the invasion of the bacteria into the host cells (Doye *et al.*, 2002). Furthermore, it has been reported that YPIII can initially survive in macrophages (Grabenstein *et al.*, 2004), prompting the hypothesis that the bacteria might use these phagocytes as vehicles to reach underlying tissues without being attacked by the immune system. This suggests a possible advantage for those bacteria carrying the Rho-GTPase activating CNF\(_Y\) toxin to induce their cellular uptake to reach the underlying tissue.

4.3 CNF\(_Y\) is crucial for virulence of *Y. pseudotuberculosis* YPIII

The high expression levels of *cnfY* and its regulation by known virulence regulators suggested a function for CNF\(_Y\) during the course of infection. The role of CNF\(_Y\) was tested in the mouse model with an isogenic *cnfY* mutant strain. With the loss of *cnfY*, the bacterium *Y. pseudotuberculosis* was unable to cause a severe disease. Similar effects were published for uropathogenic *E. coli* strains, showing attenuated virulence in urinary tract infections with the loss of CNF\(_1\) in a mouse model (Rippere-Lampe *et al.*, 2001a).

Additionally, a homolog to the catalytic domain of CNF\(_1\) and thus also of CNF\(_Y\), the toxin BPSL1549 (now termed *Burkholderia* lethal factor 1) of *B. pseudomallei*, is crucial for the virulence of this bacterium in a mouse model. This factor is a cytotoxin, which deamidates the glutamine of a translational factor and thereby inhibits translation (Cruz-Migoni *et al.*, 2011). These data display the importance of each individual bacterial toxin for their parental strain, as the deletion of one factor renders the bacterium avirulent. In general, such a dramatic influence on virulence by the loss of one single gene has only
been observed for important virulence genes or regulators of *Yersinia*: (1) with the absence of the global *yop* expression regulator LcrF (Böhme *et al.*, 2012) or (2) when different *yop* genes are deleted (Logsdon & Mecsas, 2003).

It is relevant to note that YopT (Viboud & Bliska, 2001), and the response regulator PhoP (Grabenstein *et al.*, 2004) are not expressed in the CNF$_Y^+$ *Y. pseudotuberculosis* strain YPIII, indicating that different strains may exert virulence through alternative mechanisms. The *cnfY* gene is only active in few *Y. pseudotuberculosis* strains. Large deletions over the whole gene in other *Y. pseudotuberculosis* as well as *Y. pestis* strains are frequently found. As the toxin is flanked by a transposase it can be assumed that this gene has been acquired from other bacterial strains (Lockman *et al.*, 2002). Presumably the strains with deletions in the *cnfY* gene did not utilise the gene and/or had even a disadvantage in their colonisation/persistence in the host by the toxin.

Yet, the clinical *Y. pseudotuberculosis* isolate YPIII was shown to be strongly attenuated in its virulence without the toxin. Due to mutations in the *phoP* gene, this strain is not able to replicate in macrophages (Grabenstein *et al.*, 2004). Other *Y. pseudotuberculosis* strains display a strongly attenuated virulence upon inactivation of PhoP (Fisher *et al.*, 2007; Grabenstein *et al.*, 2004; Oyston *et al.*, 2000). However, YPIII retains its virulence despite an unfunctional PhoP, which might be attributed to the activity of CNF$_Y$. Furthermore, a *phoP*$^+$ mutant of YPIII used in this study was also shown to lose its virulence without the functional *cnfY*, indicating a significant role for CNF$_Y$ during *Y. pseudotuberculosis* YPIII infection independent of PhoP.

One strain harbouring both the *cnfY* gene and the functional *phoP* was already identified, namely *Y. pseudotuberculosis* IP2666 (Pujol & Bliska, 2003). This strain was shown to be able to replicate within macrophages (Grabenstein *et al.*, 2004). Additionally, it was demonstrated that the wild-type strain IP2666 seems to be slightly more virulent than the wild-type strain YPIII (McCoy *et al.*, 2010). Thus, it can be hypothesized that the presence of both functional genes might be an advantage for this strain. However, this hypothesis is rather speculative as the two *Y. pseudotuberculosis* strains probably display several other differences.

Studies addressing the dissemination ability of *Y. pseudotuberculosis* YPIII to deeper tissues revealed a strong impact of the toxin in the colonization of the MLNs, spleen, and liver. The *cnfY* mutant bacteria were still able to reach the underlying tissue, but could not persist for longer than three to five days after infection. This phenomenon was also
observed with different yop single mutant strains, e.g. yopE or yopH (Logsdon & Mecsas, 2003), indicating a similar function for CNF\textsubscript{Y} in defending the bacteria against the immune system. The wild-type bacteria in contrast were able to replicate and led ultimately to the death of infected animals.

Moreover, compared to YPIII the cnf\textsubscript{Y} mutant strain did not induce the same release of proinflammatory cytokines into the serum of infected animals, resulting in a significantly lower inflammatory response. Particularly eotaxin, a chemokine involved in processes of allergic inflammation, was secreted in significantly higher amounts upon infection with YPIII, compared to the YP147 (Δcnf\textsubscript{Y}) infection. This cytokine was demonstrated to prime the production of reactive oxygen species (ROS) from eosinophils (Honda & Chihara, 1999), a process associated with cell- or tissue-damage (Bergamini et al., 2004). Interestingly, this reaction was inhibited by the pertussis toxin of Bordetella pertussis, an A-B toxin blocking the activation of GTPases probably involved in the eosinophil activation signal transduction (Honda & Chihara, 1999). Hence, this toxin exerts counteracting activities to CNF\textsubscript{Y}.

Data of this work showed that Y. pseudotuberculosis wild-type, which was demonstrated to be able to persist in the systemic organs, induces eotaxin secretion into the serum. Furthermore, recruitment of eosinophils into the gastrointestinal tract and PP by eotaxin was described (Mishra et al., 2000). It can be assumed that YPIII primes the production of ROS by eosinophils, leading to subsequent dramatic tissue damage in the infected animals probably mainly in the intestine. Further, CNF\textsubscript{Y} could enhance the production of ROS by activating GTPases involved in signaling pathways of the eosinophil activation. This hypothesis is in accordance with the histopathological analysis and the immune cell composition in the different infected tissues. These revealed a strong CNF\textsubscript{Y} involvement in the acute inflammatory response and host tissue damage during infection. Former studies of cnf1 uropathogenic E. coli deletion mutant strains revealed similar effects after mouse infection, using urinary tract and prostatitis infection models by subcutaneous injection (Rippere-Lampe et al., 2001a, b). It was shown that CNF\textsubscript{1} leads to highly inflamed bladders or prostates of the animals.

Notably the caecum and ileum of infected mice displayed severe signs of diffuse inflammation due to CNF\textsubscript{Y} with disrupted villi, thickened lamina propria, and resulting shortened gut lengths. With the loss of CNF\textsubscript{Y} the intestinal inflammation of mice was restricted to small foci and reversible, whereas with CNF\textsubscript{Y} the inflammation is more
Discussion

generalized. Similar impacts on the intestine of mice have been found with \textit{S. enterica} serovar Typhimurium (\textit{S. Typhimurium}) infections, revealing an advantage for these bacteria in the inflamed gut to compete with the intestinal microbiota, thus enhancing the growth of \textit{Salmonella} in the gut lumen (Stecher \textit{et al.}, 2007; Winter \textit{et al.}, 2010). \textit{S. Typhimurium} was demonstrated to being able to metabolize ethanolamine, provided by the host, which enables the bacterium to avoid competition with the microbiota, regarding nutrients (Thiennimitr \textit{et al.}, 2011). \textit{Yersinia} might also be able to metabolize substances produced in the inflamed gut, which the bacteria of the microbiota can not metabolize.

Additionally, it was shown that \textit{S. Typhimurium} exploits the inflammatory response (primarily of neutrophils), which results in disruption of the microbiota and the intestinal barrier, to reach the underlying tissues (Winter \textit{et al.}, 2010). Hence, it can be hypothesized that the CNF\textsubscript{Y} induced intestinal inflammation promotes the migration of the yersiniae through the gut by the disruption of the intestinal barrier.

The decreased immune cell content in the \textit{Y. pseudotuberculosis} wild-type infected spleens compared to the \textit{cnfY} mutant suggests an induction of apoptosis of immune cells in the presence of the toxin CNF\textsubscript{Y}; the histopathologic evaluation underlined this assumption, as the necrotic spots in this organ were not seen after infection with the \textit{cnfY} mutant strain. In YPIII infected spleens, cell death led to atrophy of the organ, displayed by shrinking and less red coloring, whereas infection with the \textit{cnfY} mutant led to hyperplasia of the white pulp (contains mainly lymphocytes) indicating a triggered immune response, which is also displayed by splenomegaly.

4.4 CNF\textsubscript{Y} functions as a Yop delivery enhancer

Professional phagocytes are preferentially targeted by the Yop effector proteins of \textit{Yersinia} (Durand \textit{et al.}, 2010). Since these cell types were shown to be mostly affected by CNF\textsubscript{Y}, testing the differences in Yop delivery rates into the immune cells caused by CNF\textsubscript{Y} presence was consequential. Furthermore, it was observed that a selective modulation of RhoA activity by \textit{Y. pseudotuberculosis} (e.g. by the binding of InvA to the β_1-integrins or signals triggered by the YopB/D translocon) leads to cellular changes, controlling the T3SS pore formation and Yop translocation (Mejía \textit{et al.}, 2008).

As discussed above, the CNF\textsubscript{Y} intoxication of eukaryotic cell lines predominantly induces the activation of RhoA. Overall significantly higher translocation rates due to CNF\textsubscript{Y} could
be detected in tested epithelial cells and macrophages. This is consistent with a recently published study in which CNF\textsubscript{Y} preincubation enhances the Yop delivery of a CNF\textsubscript{Y}-negative \textit{Y. enterocolitica} strain (Wolters \textit{et al.}, 2013). Wolters \textit{et al.} were able to demonstrate that mostly CNF\textsubscript{Y}-induced Rac1 activation is responsible for higher Yop translocation by \textit{Y. enterocolitica} (CNF\textsubscript{Y}- strain).

Contrary to that, CNF\textsubscript{Y} induced Yop translocation by \textit{Y. pseudotuberculosis} into macrophages was diminished after treatment with the Rho inhibitor C3-transferase of \textit{C. botulinum}, yet was unaffected by the Rac1 inhibitor TcdBF of \textit{C. difficile} even at high concentrations in this study. This demonstrated that the activation of RhoA by CNF\textsubscript{Y} is essential to enhance Yop translocation of \textit{Y. pseudotuberculosis} into macrophages. This is consistent with the study of Mej\textit{ía} \textit{et al.}, which showed that mostly RhoA controls the pore formation of the T3SS (Mej\textit{ía} \textit{et al.}, 2008). These discrepancies in between the study of Wolters \textit{et al.} and this current study regarding the impact of the different GTPases on Yop delivery could be due to differences in the experimental setups, likely the differences between the species \textit{Y. pseudotuberculosis} and \textit{Y. enterocolitica}. Factors causing these discrepancies might be differences in the YadA/InvA-promoted signaling events, in Yop protein abundance (e.g. the RhoA-inactivating YopT does not exist in YPIII), and in the regulation of Yop delivery by Rho-GTPases.

Furthermore, CNF\textsubscript{Y} influence on Yop translocation rates was observed for all cells of the lymphatic tissues PP, MLNs, and spleen \textit{in vivo}. Less Yop delivery into the different immune cells - mostly into phagocytes - was measured after infection with the \textit{cnfY} mutant strain, especially in the MLNs. Translocation rates into the splenocytes would probably differ more significantly between YPIII- and YP147 (\textit{ΔcnfY})-infected animals. However, it was shown that the YPIII infection causes necrosis and particularly reduced amounts of phagocytic cells in the spleen, resulting in overall lower numbers of living cells. As professional phagocytes are preferentially attacked by the Yop proteins (Durand \textit{et al.}, 2010) and some of these proteins cause cellular death (see 4.4.1) (Viboud & Bliska, 2005) identification of less Yop translocated cells could result since only living cells were analyzed. Taken together, CNF\textsubscript{Y} enhances Yop translocation by activation of Rho-GTPases, which is crucial for defence of \textit{Y. pseudotuberculosis} YPIII against the immune system in this mouse infection model.
4.4.1 CNF\textsubscript{Y} causes inflammation and increased cellular death

Gastrointestinal infections with enteropathogenic Yersinia lead to a biphasic inflammatory process. Initially, the bacteria are able to replicate, adhere to, and transmigrate through the gut epithelial layer accompanied only by a slight antibacterial defence response with little inflammation, e.g. IL-8 expression by epithelial cells. Subsequently, an acute influx and activation of phagocytes, cytokine production and tissue damage occurs (Autenrieth et al., 1993b; Dube et al., 2001, 2004). The invading yersiniae are recognized at first due to their LPS by Toll-like receptor 4 (TLR4) of naïve host macrophages. This initiates the production of proinflammatory cytokines by activation of the mitogen-activated protein kinase (MAPK) and NF-κB (Haase et al., 2003; Zhang & Bliska, 2003). YopJ was shown to inhibit the activation of MAPK and NF-κB after translocation into the eukaryotic cell, inducing an apoptotic signaling pathway, which includes the activation of initiator caspase-8 and the executioner caspase-3, -7, and -9 (Bergsbaken & Cookson, 2009; Philip & Brodsky, 2012; Zhang et al., 2005).

A yopJ mutant strain was observed to be deficient in spreading from PP to other lymphoid tissues (Monack et al., 1998) similar to the effect of a cnf\textsubscript{Y} deletion mutant. Hence, both YopJ and CNF\textsubscript{Y} are needed for the efficient systemic dissemination after oral infection. Moreover, the wild-type Yersinia infection was shown to induce apoptosis of macrophages in the spleen (Monack et al., 1998). YopJ seems to be mainly responsible for elimination of the immune cells in this organ and thereby decreases the triggered immune response against Yersinia. However, since CNF\textsubscript{Y} enhances Yop delivery predominantly into the innate immune cells, a higher amount of YopJ is also released into the cells and probably causes increased apoptosis. This effect is presumably displayed by the shrinking of the spleen and the decreased immune cell contents after infection with YPIII. Apoptotic macrophages are eliminated by other phagocytes, triggering the production of anti-inflammatory cytokines like IL-10 and TGF-β (Fink & Cookson, 2005; Savill et al., 2002).

Since CNF\textsubscript{Y} seems to enhance the apoptotic cell death of macrophages, the bacteria might be less attacked by these cells and subsequently are able to replicate uncontrollably. This would result in even higher CNF\textsubscript{Y} secretion, higher Yop translocation, and thus increased amounts of apoptotic cells. Generally, the apoptotic cell death is non-inflammatory, yet it is probably not completely immunologically silent particularly not if the amount of apoptotic cells increases significantly, e.g. phagocytosis
of apoptotic cells can prime other immunological responses like the activation of cytotoxic CD8+ T cells (Philip & Brodsky, 2012). During the process of the *Yersinia* infection, the contents of activated macrophages increase, whereas the contents of naïve macrophages decrease. Moreover, the infection induces cell death of naïve macrophages by apoptotic pathways, while it induces cell death of mature macrophages by proinflammatory pyroptosis (Bergsbaken & Cookson, 2007). Pyroptosis occurs due to activation of a multiprotein complex, the inflammasome, a platform for the autoprocessing and activation of the cysteine protease caspase-1. *Yersinia* was shown to induce caspase-1 activation and thus initiates pyroptosis by LPS, the T3SS, and the translocated YopJ (Brodsy *et al.*, 2010; Philip & Brodsky, 2012; Zheng *et al.*, 2011). The activation of caspase-1 induces the secretion of proinflammatory cytokines like IL-1α, IL-1β, and IL-18, which causes the cell death (Bergsbaken & Cookson, 2007).

The induction of the proinflammatory cell death (pyroptosis) is associated with the later infection phase of *Yersinia*. It is indeed very likely that CNF\textsubscript{Y} promotes cell death of activated phagocytes by pyroptosis in the spleen. In this study, necrotic spots were observed in spleens of YPIII-, but not of ΔcnfY-infected animals six days after infection. Additionally, the wild-type strain induced a harsh release of proinflammatory cytokines (TNF-α, IL-6, GM-CSF, and IL-12 (p40)) into the serum and caused severe inflammation of the intestine, especially the ileum and caecum. Moreover, CNF\textsubscript{Y} was shown to manipulate the immune cell contents in the spleen. Particularly macrophage-, monocyte-, and neutrophil-amounts were significantly diminished three days post infection. On the other hand, an infection with the cnf\textsubscript{Y} mutant strain resulted in a harsh influx of phagocytes into the spleen (in comparison to spleens of uninfected mice) and induces only minor inflammation, which strongly suggests that the increased translocation of YopJ into phagocytes in the presence of CNF\textsubscript{Y} stimulates proinflammatory cell death in the spleen during later stages of the infection.

Particularly striking was the effect of CNF\textsubscript{Y} on the NK cell contents in the spleen, which were significantly decreased when compared to the amounts in uninfected spleens. This reduction could either be caused by induced cell death or by migration of the NK cells from the spleen into other tissues. A deletion mutant of *cnf*\textsubscript{Y} in contrast led to no or even slightly increased amounts of these cells in the spleen when compared to uninfected mice. Furthermore, no differences in the amounts of NK cells could be detected in the PP and MLNs between YPIII- and Δcnf\textsubscript{Y}-infected animals. Hence, CNF\textsubscript{Y} seems to contribute to NK cell reduction in the spleen at this stage of the infection, by enhancing
cell death. A similar effect was observed with a yopM deficient Y. pestis mutant, which failed to decrease the global NK cell levels, whereas the wild-type strain led to a depletion of these cells (Kerschen et al., 2004). Hence, CNF\textsubscript{Y} seems to enhance the NK cell depletion by inducing a higher YopM translocation. These data propose that CNF\textsubscript{Y} secretion results in death of immune cells allowing an uncontrollably replication of the bacteria, which in turn secrete higher CNF\textsubscript{Y} amounts.

The secreted toxin leads to the activation of the small Rho-GTPases as mentioned above. It was recently reported that the effector SopE of Salmonella, which also activates Rac1 and Cdc42, triggered the NOD1 pathway (Keestra et al., 2013). NOD1 is a pattern recognition receptor sensing cytosolic microbial products (similar to NOD2), which monitors the activation states of the three small Rho-GTPases RhoA, Rac1, and Cdc42. Hence, the activation of the GTPases induced NOD1 signaling pathways, resulting in the RIP2-mediated triggering of the nuclear factor κB (NF-κB)-dependent proinflammatory responses (Keestra et al., 2013). Additional to that, all three Rho-GTPases were previously shown to activate the NF-κB pathway, but particularly CNF\textsubscript{1}-activated Rac1 has been reported to induce the NF-κB activation (Boyer et al., 2004). CNF\textsubscript{1} leads to the clustering of the NF-κB inhibitor IκB\textsubscript{α} and components of the IκB\textsubscript{α} E3-ubiquitin ligase into formed membrane ruffles. This indicates a similar effect for CNF\textsubscript{Y}, leading to even higher inflammatory responses, activation of phagocytes, and tissue damage. This would in turn presumably enable the bacteria to spread to the underlying tissues and additionally lead to the release of nutrients through the cell death.

4.4.2 YopE exerts counteracting effects to CNF\textsubscript{Y}

Since CNF\textsubscript{Y} was shown to enhance the Yop delivery by activating the small Rho-GTPases, also Yop proteins with counteracting effects on the GTPases are translocated more frequently (YopE, YopA/O, and YopT). Particularly YopE, a GTPase-activating protein (GAP), leading to the inactivation of the GTPases, seems to act as a counterplayer for CNF\textsubscript{Y}. YopE was previously shown to inhibit the Yop delivery by inactivation of RhoA and Rac1. Additionally, a yopE mutant strain was observed to cause increased translocation rates into epithelial cells compared to the wild-type (Aili et al., 2002, 2006, 2008; Songsunthong et al., 2010; Wong & Isberg, 2005). Thus, YopE acts as a regulator for the Yop delivery, like an intracellular control system, which measures and adjusts the amount of translocated Yop proteins during infection. A study
Discussion

of the effector YopJ demonstrated the importance for a tight regulation of the Yop delivery in the oral mouse infection: a higher YopJ translocation results in raised cytotoxicity rates of phagocytes, yet leads to a decreased virulence of *Y. pseudotuberculosis*, as does the complete loss of YopJ (Brodsky & Medzhitov, 2008). The YopJ hyper-secretion or deletion resulted in reduced proinflammatory cytokine levels in the serum of infected mice (e.g. TNF-α or IL-6), similar to the effect of an infection with the cnfY mutant strain observed in this study. It was hypothesized that the secretion of proinflammatory cytokines induced by the wild-type bacteria promotes tissue damage, which in turn would enable the bacteria to spread to deeper tissues (Brodsky & Medzhitov, 2008). Since the mutant strains did not induce the same inflammatory response like the wild-type, this could result in disadvantages in dissemination of the bacteria.

In this study it was demonstrated that the absence of yopE in a *Y. pseudotuberculosis* infection did not or only slightly increased the Rac1- or RhoA-GTP levels or the amount of translocated Yop proteins into murine macrophages with or without CNFγ pretreatment. This indicates that although YopE possesses counteracting activities compared to CNFγ, it is not strong enough to antagonize CNFγ intracellularly in murine macrophages at the tested conditions *in vitro*. A recently published study is supporting this observation, as it shows that none of the Rho-GTPase interacting Yop effector proteins (YopE, YopO, and YopT) were able to reduce the effect of CNFγ on Yop delivery of *Y. enterocolitica* into human epithelial cells (Wolters et al., 2013).

However, the Yop secretion is dependent on contact with eukaryotic host cells *in vivo* and calcium depletion *in vitro* (Forsberg et al., 1987, 1994; Goguen et al., 1984; Pettersson et al., 1996). Since CNFγ was shown to be secreted at infection relevant conditions, it can be assumed that CNFγ is priming the eukaryotic cells - most likely the professional phagocytes - by constitutively activating the Rho-GTPases, resulting in higher Yop delivery rates. However, it can be hypothesized that if sufficient counteracting Yop effectors (especially YopE) are translocated, the translocation is diminished, most likely to prevent proinflammatory cell death and thus the triggering of an increased inflammatory response (Aili et al., 2008). Nevertheless, counteraction of CNFγ by other cell functions cannot be excluded, e.g. the enhancement of deamidation and subsequent ubiquitin-dependent degradation of the activated GTPases, as it was observed after CNF1 intoxication (Doye et al., 2002).
4.4.3 Schematic model of CNF\textsubscript{Y}-enhanced Yop delivery

The results of this study highlight for the first time a dominant role of CNF\textsubscript{Y} during the course of an oral \textit{Y. pseudotuberculosis} YPIII infection. Based on these data, a basic model of the CNF\textsubscript{Y}-enhanced Yop delivery can be proposed (see Figure 4.4.1).

To the current knowledge, CNF\textsubscript{Y} is starting a cascade, resulting in the proinflammatory cell death pyroptosis and additional proinflammatory responses. In the first step during the early phase of the infection process, the secreted toxin is endocytosed by infiltrating innate immune cells (e.g. neutrophils, macrophages, DCs). The catalytic domain of CNF\textsubscript{Y} is secreted into the cytosol of the phagocytes in a pH-dependent manner and activates the Rho-GTPases, in particular RhoA, by deamidation. The constitutive activation of the GTPases induces actin-polymerization, leading to enhanced Yop delivery into the host cell. The translocated Yop effector proteins counteract the innate and adaptive immune responses by inhibition of the invading immune cells and the subsequent induction of apoptosis. In parallel, the bacteria can replicate uncontrollably, leading to the secretion of even higher CNF\textsubscript{Y} amounts. The resulting enhanced activation of the Rho-GTPases triggers proinflammatory responses like the NOD1-RIP2 (NF-\textkappa B) signaling pathway. Hence, the \textit{Yersinia} infection increases the numbers of activated macrophages. The interaction of the bacteria with these cells results in the proinflammatory cell death pyroptosis, inducing a strong inflammation and necrosis of the infected tissues during later phases of the infection.
Discussion

A

Yersinia pseudotuberculosis

\[\text{Phagocyte} \quad \text{RhoA-GTP} \quad \text{YopE} \quad \text{RhoA-GTP} \]

\[\text{Apoptosis} \]

B

Yersinia pseudotuberculosis

+ CNF\(_Y\)

\[\text{Phagocyte} \quad \text{RhoA} \quad \text{RhoA-GTP} \quad \text{YopM} \quad \text{YopE} \quad \text{YopO} \quad \text{YopJ} \quad \text{CNF} \]

\[\text{Early endosome} \quad \text{Late endosome} \]

\[\text{Inflammatory Cell Death} \]

138
Figure 4.4.1: Proposed model of CNF\(\gamma\)-enhanced Yop delivery.
(A) Adhesion of \textit{Y. pseudotuberculosis} to macrophages induces activation of RhoA, resulting in actin polymerization, which in turn leads to Yop delivery into the phagocyte by the T3SS. The translocated Yop effector proteins inhibit the phagocytosis and induce YopJ-mediated apoptotic cell death. (B) CNF\(\gamma\)-producing \textit{Y. pseudotuberculosis} strains secrete the toxin prior or parallel to the interaction with the macrophage. CNF\(\gamma\) is internalized, most likely by receptor-mediated endocytosis, into early endosomes. Due to acidification of the early endosomes, maturation to late endosomes occurs. The catalytic domain of CNF\(\gamma\) is translocated across the membrane of the endosome via its translocation domain. The toxin deamidates the small Rho-GTPases RhoA over Rac1, and Cdc42 and renders them constitutively active. The activation results in enhanced Yop delivery and subsequent cell death. The Rho-GTPase activation was demonstrated to promote pore formation of the T3SS, probably leading to caspase-1 activation (Brodsky \textit{et al.}, 2010; Mejía \textit{et al.}, 2008). Additionally, the induced cell death may lead to increased proinflammatory immune responses, resulting in raised levels of activated macrophages and the \textit{Yersinia}-triggered activation of caspase-1 (Bergsbaken & Cookson, 2007). This activation induces the release of proinflammatory cytokines and the proinflammatory cell death pyroptosis. Meanwhile, the bacteria replicate and the CNF\(\gamma\) levels increase, resulting in enhanced activation of the Rho-GTPases and thus increased inflammatory pyroptosis.

4.5 CNF\(\gamma\) exerts a minor impact on the epithelial layer permeability

An important factor for the host to prevent penetration or dissemination of bacteria is the maintenance of the intestinal epithelial barrier function. Different actin cytoskeleton-modifying bacterial toxins are known to destroy this barrier, like the GTPase inactivating (glycosylation) toxin A of \textit{C. difficile}, which causes severe inflammatory enterocolitis and diarrhea (Hecht \textit{et al.}, 1988; Shen, 2012; Triadafilopoulos \textit{et al.}, 1987). Similar effects were observed in the histopathological analysis of the small intestine after YPIII infections in this study.

The intoxication of a monolayer with the CNF\(_1\) toxin of \textit{E. coli} leads to the disruption of the barrier function mostly by the constitutive activation of RhoA, which affects the tight junction integrity (Schlegel \textit{et al.}, 2011). Since CNF\(\gamma\) was shown to predominantly activate RhoA, it was assumed that this toxin exerts an even stronger impact on the cell-cell contact of the monolayer than CNF\(_1\), thus enabling the bacteria to pass through the epithelial layer without the M-cells (paracytosis). Additionally, CNF\(\gamma\) was demonstrated to decrease the endothelial barrier integrity (Baumer \textit{et al.}, 2008), possibly enabling the bacteria to cross the endothelial layer of the blood vessels. However, incubation of an epithelial monolayer of Caco-2 cells with the CNF\(\gamma\) toxin revealed only a slight increase in permeability, shown by the measurement of the trans epithelial electrical resistance (TEER). This barrier breakdown was not as harsh as the disruption caused by the
proteins of the virulence plasmid (coding for T3SS and the Yop effector proteins), indicating a significant role for these proteins to facilitate the transmigration of the yersiniae across membranes in the host. Consistent with this assumption, it was recently shown that the virulence plasmid and particularly YopJ are needed to disrupt the intestinal barrier integrity in vivo. YopJ was shown to be able to subvert the NOD2/RICK/TAK1 pathway, activate caspase-1, and induce the secretion of IL-1β in the PP, thus increasing the epithelial barrier permeability (Jung et al., 2012; Meinzer et al., 2012). These results strongly suggest that CNFγ induces the disruption of the intestinal epithelial membrane by enhancing the delivery of YopJ. This would promote the dissemination of Yersinia by exploiting the mucosal inflammatory response.

4.6 CNFγ activity is detrimental to Y. pseudotuberculosis without activated T3SS

To detect an additional function of CNFγ besides the enhancement of Yop delivery during the course of infection, mutant strains without a functional T3SS were tested for colonizing abilities, histopathological changes, and the host immune response in both, the presence and absence of CNFγ.

It was observed that a functional T3SS of Y. pseudotuberculosis YPIII is crucial to efficiently colonize the gastrointestinal tract, as the bacteria without a functional T3SS are significantly less able to colonize. This is consistent with previous studies demonstrating that mutations in different genes encoding components of the T3SS lead to non-efficient colonization of the gastrointestinal tract (Mecsas et al., 2001). The mutant strains without the functional T3SS colonized the MLNs with equal amounts as the wild-type strain. It was described before that Y. pseudotuberculosis has a tropism for B cell and T cell zones in the MLNs, which seems to protect wild-type bacteria as well as T3SS mutant bacteria from the infiltrating phagocytes (Balada-Llasat & Mecsas, 2006).

However, three days post infection the exclusive loss of either the functional T3SS (∆yscS) or cnfY had no significant impact on the colonization of the MLNs by the bacteria in comparison to the colonization by the wild-type. Yet, decreased amounts of neutrophils and monocytes were detected after infection with either the cnfY or the yscS mutant strain in comparison to the amounts in the MLNs of YPIII-infected animals. This leads to the assumption that neither CNFγ nor the Yop machinery alone induce the increase of immune cells normally detected in the YPIII infection. Hence, it can be
hypothesized that the concerted presence of the Yop machinery and CNF\textsubscript{Y} (e.g. by enhancing the Yop delivery) is responsible for the higher contents of neutrophils and monocytes in the MLNs. Yet, the cnf\textit{Y} mutant strain is in the long-term probably more efficient in defending the immune system, due to the Yop proteins that are translocated.

Moreover, the yscS mutant strain failed to reach the systemic organs spleen and liver, indicating that the Yop machinery is essential for \textit{Y. pseudotuberculosis} YPIII to spread. Contrary to that, the cnf\textit{Y} mutant strain was able to colonize the spleen and liver, but was cleared rapidly. Hence, the Yop machinery is crucial to reach the systemic organs, whereas the Yop translocation enhancement of CNF\textit{Y} is presumably essential for \textit{Y. pseudotuberculosis} YPIII to efficiently colonize these organs.

Interestingly, the double mutant strain without cnf\textit{Y} and yscS was able to colonize the gastrointestinal tract better than the yscS single mutant strain, particularly the small intestine and the caecum. Thus, CNF\textit{Y} seems to be a disadvantage for those bacteria without a functional T3SS or under conditions in which the T3SS is not fully active. Former studies showed a decreased ability of single yop mutant strains to colonize the intestine and PP when co-infected with the wild-type strain, compared to single infections of the mutants (Logsdon & Mecsas, 2003, 2006). Regarding the yop mutant strains, their reduced ability to colonize is due to the inflammation of the gastrointestinal tract induced by the co-infected wild-type. Hence, immune cells (e.g. neutrophils) infiltrate and lead to the reduction of the mutant bacteria, as these bacteria are less able/unable to withstand the immune response.

Since CNF\textit{Y} was shown before to be immunogenic (Mou \textit{et al.}, 2012), it can be assumed that this toxin is leading to an infiltration of innate immune cells into the intestine. This attraction of immune cells would eradicate the bacteria, as the functional T3SS is missing. Additionally, CNF\textit{Y} of \textit{E. coli} has been shown to activate NF-\textit{κ}B by the constitutively activation of Rac1, which is causing inflammation (Boyer \textit{et al.}, 2004). CNF\textit{Y} could induce similar effects, since it was also shown to activate Rac1. Hence, CNF\textit{Y} could induce inflammatory responses by activating NF-\textit{κ}B pathways. This assumption was supported by the histopathological analysis, which displayed that the ileum of mice infected with the mutant without a functional T3SS, but CNF\textit{Y} showed sites of inflammation, whereas the ileum of mice infected with the double mutant strain (YscS−, CNF\textit{Y} −) was not inflamed and appeared like the uninfected control group. This supports the hypothesis that CNF\textit{Y} induces inflammation in the host’s intestine, resulting in a
faster eradication of the single mutant strain without a functional T3SS compared to the double mutant strain without the toxin and the T3SS.

Slightly higher amounts of the double mutant bacteria without the functional T3SS and CNF\textsubscript{Y} in comparison to the single mutant without a functional T3SS were reisolated of the PP. However, the differences in inflammation seen in the histopathological analysis of the ileum were not displayed in the analysis of the immune response in the PP. No significant differences in the recruitment of immune cells could be detected upon infection. Reasons therefore could be that the (1) differences are too minor to detect or (2) the time point of investigation three days after infection is too early.

4.6.1 CNF\textsubscript{Y} causes long-lasting modulation of the immune cell contents in the spleen

The detected bacterial loads of the cnf\textsubscript{Y} mutant strain in the different organs indicated the necessity of CNF\textsubscript{Y} for the effective colonization of the underlying tissues MLNs, spleen, and liver by \textit{Y. pseudotuberculosis} YPIII. However, no difference could be detected between YPIII and a \textit{cnfY} mutant in the colonization of the gut and gut-related tissues up to seven days after infection. So far, not much is known about persistence and long-term influence on the immune system after infection of mice with avirulent/low virulent \textit{Yersinia} strains. A long-range infection with a \textit{cnfY} mutant strain, a pYV-negative strain (e.g. without the T3SS and the Yop effector proteins), and a \textit{cnfY}, pYV-negative mutant strain was performed in this study to measure a possible exclusive long-term effect of CNF\textsubscript{Y}.

The \textit{cnfY} mutant strain could be reisolated of the caecum (not of the other tissues) of infected mice 28 days post infection. The pYV-negative mutant strains - with or without \textit{cnfY} - were initially able to colonize, but could not persist over 28 days in the caecum. Hence, not \textit{cnfY} but the virulence plasmid encoded genes are crucial for the persistence of the bacteria in detectable amounts over long time periods in the host’s intestine.

Increased levels of the immune cells DCs, monocytes, NK cells, T cells, and B cells could be measured in the PP of mice infected with the different strains (pYV- CNF\textsubscript{Y}+, pYV+ CNF\textsubscript{Y}-, and pYV- CNF\textsubscript{Y}-) in comparison to uninfected mice. Yet, the measured immune responses showed no significant differences among the strains. These data indicated an ongoing immune reaction even though no bacteria were detectable in this tissue.
However, the infection with the different avirulent/low virulent *Yersinia* strains resulted in different immune responses in the MLNs and spleens of the infected mice over a long period of infection. The MLNs contained slightly increased amounts of the immune cells upon infection with all tested strains (pYV\(^{-}\) CNF\(\text{Y}^{+}\), pYV\(^{+}\) CNF\(\text{Y}^{-}\) and pYV\(^{-}\) CNF\(\text{Y}^{-}\)) when compared to uninfected MLNs. However, the increase of the immune cells (neutrophils, macrophages, DCs, monocytes, NK cells, and B cells) was most significant in the presence of CNF\(\text{Y}\) and absence of the T3SS/Yop machinery. This leads to the hypothesis that CNF\(\text{Y}\) could be immunogenic and has a long-term influence on the immune system independent of the T3SS machinery. The hypothesis is supported by a study, where the CNF\(\text{Y}\) toxin of *Y. pseudotuberculosis* was administered subcutaneously to vaccinate mice. This vaccination entails immunity against a subsequent *Y. pseudotuberculosis* aerosol mouse infection (Mou *et al.*, 2012).

Since the splenic structure is mostly altered over long time periods, the spleen weights were recorded 28 days post infection to detect possible changes caused by necrosis or infiltrating immune cells. Significant differences in the spleen weights of uninfected and infected animals could be detected in the long-term infection. These data showed that the infection of mice with the strain harbouring CNF\(\text{Y}\) but not pYV caused slightly reduced spleen weights, whereas the infection with the strain harbouring pYV but not CNF\(\text{Y}\) caused significantly increased spleen weights, when compared to the spleen weights of uninfected mice. The spleen weights of mice infected with the double mutant, without pYV and CNF\(\text{Y}\), were significantly increased when compared to mice infected with the mutant harbouring CNF\(\text{Y}\), but not the Yop machinery. These effects could either be due to (1) long-term changes of the splenic structure by the secreted toxin or effectors, (2) an initially/ongoing infiltration of immune cells or (3) a bacterial colonization of the spleen below the detection limit.

Most strikingly, CNF\(\text{Y}\) seems to diminish the amount of immune cells in the spleen, as the infection with the strain carrying cnf\(\text{Y}\) but not the virulence plasmid resulted in significantly reduced immune cells (neutrophils, macrophages, DCs, monocytes, NK cells, and B cells) 28 days post infection. This effect was not detected upon infection with the strains without the toxin, no matter whether the virulence plasmid (CNF\(\text{Y}^{-}\) pYV\(^{+}\)) was present, proposing that the toxin caused the decreased amount of immune cells. Moreover, F4/80\(^{hi}\) macrophages are resident macrophages of the spleen (Lloyd *et al.*, 2008), thus CNF\(\text{Y}\) seems to eliminate the immune cells independently from the Yop machinery. Furthermore, the virulence plasmid of *Y. pseudotuberculosis* is crucial to
infect the systemic organs spleen and liver in the oral infection process (Balada-Llasat & Mecsas, 2006). Hence, the bacteria with CNF$_Y$, but without pYV are not able to reach the spleen, yet were shown to decrease the amount of residential immune cells in this organ, indicating that CNF$_Y$ reaches the spleen independently from the presence of the bacteria.

The toxin circulation could be via the blood, as it is described for other secreted bacterial toxins like the tetanus toxin of C. tetani (Schiavo et al., 2000). As described above, the toxin is secreted by an unknown mechanism and is able to increase the endothelial barrier permeability (Baumer et al., 2008), which could enable the toxin to enter the blood stream and circulate to the different tissues. It can be further hypothesized that the toxin induces the production of ROS, resulting in tissue damage. Additionally, data of this work indicate that CNF$_Y$ is able to eliminate immune cells without the Yop delivery machinery. Since the homologous toxin CNF$_1$ of E. coli was shown to induce necrosis of rabbit skin when injected subcutaneously (Caprioli et al., 1983), CNF$_Y$ could have a similar effect in the spleen.

The loss of cnfY was shown to cause an influx of immune cells into the spleen of the infected animals, resulting in splenomegaly, which was still measurable after 28 days of infection. Another avirulent enteropathogenic Yersinia strain also induces splenomegaly upon infection (Ruiz-Bravo et al., 2001). Further, it causes increased levels of CD3$^+$ T cells, CD4$^+$ helper T cells, CD8$^+$ cytotoxic T cells, and CD11b$^+$ phagocytic cells in the spleen, although the mice were not colonized, except for the feces. The phenomenon of fecal excretion without detectable bacteria colonization was described before for avirulent/low virulent enteropathogenic Yersinia strains (Kaneko & Hashimoto, 1983; Ricciardi et al., 1978). This prolonged bacteria shedding could be due to residing bacteria in the intestinal lumen like shown for L. monocytogenes, which is residing in the mucus (Travier et al., 2013). Hence, these residing bacteria could constantly stimulate the immune system, indicating a similar effect for the cnfY mutant strain, which is persisting in the caecum at least up to 28 days.

The infection with the avirulent Y. enterocolitica strain resulted in a resistance against a subsequent Listeria monocytogenes infection (Ruiz-Bravo et al., 2001). Furthermore, another low virulent Y. pseudotuberculosis strain (IP32680, originated from hare infection), which was able to persist at least 14 days in the PP, the feces, and the MLNs of infected mice also induces immunity against Y. pestis infections (Blisnick et al., 2008).
Moreover, a CNF\(\gamma^+\) \textit{Y. pseudotuberculosis} strain (IP2666) without the virulence plasmid is able to induce 100\% immunity against an oral \textit{Y. pseudotuberculosis} infection, whereas it induces only 50\% immunity against an intraperitoneal or intranasal infection with \textit{Y. pseudotuberculosis}, when administered six weeks prior infection (Balada-Llasat \textit{et al.}, 2007). Hence, it can be hypothesized that the tested avirulent/low virulent \textit{Y. pseudotuberculosis} strains of this study (pYV\(^-\) CNF\(\gamma^+\), pYV\(^+\) CNF\(\gamma^-\) and pYV\(^-\) CNF\(\gamma^-\)) could presumably also be applied as live attenuated vaccines as these were demonstrated to have long-term effects on the immune system.

However, the strain without the virulence plasmid, which secretes CNF\(\gamma\) is probably not the best choice for a live attenuated vaccine, as it was shown to diminish the immune cell contents in the spleen. A \textit{cnf}Y mutant with the virulence plasmid also is probably not the best alternative because it still causes mild symptoms of disease at the early infection and is able to persist over long periods in the host. The latter could cause a chronic infection or ongoing reinfections. Taken together, the best option for a live attenuated vaccine against more virulent pathogens is probably the strain lacking both, the \textit{cnf}Y gene and pYV. This strain was shown to trigger the immune response in the PP and MLNs without causing symptoms of disease and to be unable to efficiently persist in the tissues as no detectable amounts of bacteria were found after long periods of infection.
5 Outlook

CNF\textsubscript{Y} was demonstrated to be an important virulence factor for \textit{Y. pseudotuberculosis} YPIII, as it diminishes the immune cell amounts in the spleen by enhancing the translocation of Yop effector proteins into professional phagocytes and to a lesser extent also independent of the virulence plasmid and the bacteria.

Further experiments could focus on the aspect of CNF\textsubscript{Y}-induced inflammation. Extensive studies on the activation of the inflammasome and the induced signaling pathways could be conducted. In addition, intra-peritoneal or subcutaneous injection of the purified CNF\textsubscript{Y} toxin would provide information about the transport mechanism of the toxin in the host and the consequences of intoxication - regardless of the Yop machinery and presence of the bacteria - for a better understanding of the mode of action of this toxin. Histopathological and immune response analyses of intoxicated mice should be performed.

Moreover, regulation of the \textit{cnfY} expression, as well as the secretion mechanism of the toxin needs to be unravelled. Another important task for later studies would be to identify the cellular receptor of CNF\textsubscript{Y} on the eukaryotic cells, in order to detect those cells preferably approached by the toxin.

Furthermore, the effects of long-term changes of the immune response caused by infections with different avirulent/low virulent \textit{Y. pseudotuberculosis} strains (pYV+, \Delta\textit{cnfY} or \Delta\textit{cnfY} pYV) could be evaluated. These strains might be suitable to apply as live attenuated vaccines. A subsequent reinfection with \textit{Y. pseudotuberculosis} or other pathogenic bacteria would reveal if immunity was achieved. Furthermore, mechanisms of persistence and induction of chronic infection with long-term effects (e.g. arthritis) would be interesting to analyze.

A comparison regarding the \textit{cnfY} expression pattern, and impact on the virulence of different \textit{Y. pseudotuberculosis} wild-type strains (CNF\textsubscript{Y}+/CNF\textsubscript{Y}− & PhoP+/PhoP−) could provide some indications about advantages/disadvantages for the bacteria by harbouring the functional toxin gene. Mimicking a naturally occurring horizontal gene-transfer by bacteria, the \textit{cnfY} gene could be integrated into the genome of other CNF\textsubscript{Y}-negative pathogens. Possible effects for the pathogens could be examined, like an enhanced virulence and thus potentially resulting consequences for the population if a gene-transfer would occur naturally.
6 Summary

Several bacteria express various toxins to manipulate eukaryotic cells to their advantage. Some Y. pseudotuberculosis isolates produce the cytotoxic necrotizing factor CNF Y, which constitutively activates small Rho-GTPases, important molecular switches regulating different cellular functions. However, the role of CNF Y in host-pathogen interaction during infection was unknown.

Data of this study demonstrated that the cnfY gene of Y. pseudotuberculosis is temperature-, growth-phase-, and nutrient-dependently regulated and highly expressed in all lymphatic tissues of orally infected mice. Additionally, CNF Y is secreted and induces rearrangements of the actin cytoskeleton and the formation of giant, multinucleated cells by activation of the GTPases RhoA, Rac1, and Cdc42 in epithelial cells and macrophages.

Moreover, the deletion of cnfY leads to an avirulent phenotype of Y. pseudotuberculosis. The cnfY mutant strain reaches the underlying tissues MLNs, spleen, and liver, but the infection is rapidly cleared three to five days post infection. Presence of CNF Y stimulates an acute inflammatory response and induces the formation of necrotic areas in the lymphatic tissues. The secretion of CNF Y resulted in a strong reduction of professional phagocytes and NK cells, especially in the spleen, whereas the loss of CNF Y caused a strong influx of these cells, accompanied by rapid killing of the bacteria. Further, CNF Y was shown to enhance Yop delivery, mostly by RhoA activation, into eukaryotic cells in vitro and during the course of infection. This resulted in an increased ability of the bacteria to defend themselves against the host immune system. Moreover, CNF Y seems to play an additional role during late stages of the infection, as the toxin is sufficient to reduce immune cell contents in the spleen independent of the virulence plasmid even when the number of residing bacteria is very low.

In summary, the data of this study identified CNF Y as an important Rho-GTPase-activating toxin, crucial for virulence of Y. pseudotuberculosis YPIII. This toxin is essential for the establishment of a successful infection and determines the severity of the associated disease by modulating the inflammatory response.
References

163

Figure S1: Microcolonies of *Y. pseudotuberculosis* in the spleen.
Groups of 3 BALB/c mice were infected orally with 2 x 10^8 bacteria of *Y. pseudotuberculosis* YPIII of YP147 (∆cnfY), harbouring the plasmid pFU228 (P_{gapA::dsRed2}). Three days post infection, the mice were sacrificed and the spleen isolated. Cryosections (6 µm) have been prepared and analyzed by fluorescence microscopy. Sections were screened for bacteria expressing the reporter protein DsRed2. White bars indicate 20 µm.
Figure S2: Gating strategies for immune cell contents in PP, MLNs, and spleen after infection with \textit{Y. pseudotuberculosis} YPIII or YP147 (ΔcnfY).

Exemplary gating strategies of splenocytes from YP147 (ΔcnfY)-infected mice at day three post infection. (A) Lymphoid panel: T cells (CD19^−CD3^+), B cells (CD19^+CD3^−), NK cells (CD19^−CD3^NKp46^+). (B) Myeloid panel: neutrophils (CD49b^−CD19^−CD3^−Ly-6G^+CD11b^+), DCs (CD49b^−CD19^−CD3^Ly-6G^+CD11b^−Ly-6C^CD11c^), macrophages/monocytes (CD49b^−CD19^−CD3^Ly-6G^+CD11c^CD11b^+).
Supplementary material

C Spleen

Figure S3: CNF_Y modulates the host immune response in the infected mice.
Groups of 5 - 6 BALB/c mice were infected orally with 2 x 10\(^8\) bacteria of \(Y.\ pseudotuberculosis\) YPIII or YP147 (\(\Delta cnfY\)). Three days after infection, mice were sacrificed and organs (PP, MLNs, and spleen) isolated. Prepared cell suspensions were stained with fluorescently labeled antibodies to detect the different immune cells with flow cytometry: neutrophils (CD11b\(^+\)/Ly6G\(^+\)), macrophages/monocytes (CD11b\(^+\)/Ly6G\(-\)), DCs (CD11c\(^+\)), NK cells (NKP46\(^+\)), B cells (CD19\(^+\)), and T cells (CD3\(^+\)). Data plotted on the y axis indicate the percentages of the different immune cells isolated from uninfected, YPIII-infected or YP147 (\(\Delta cnfY\))-infected organs as the absolute cell amounts in the organs could differ due to tissue...
Supplementary material

damage or splenomegaly. Scatter dot plots show the median of two independent experiments for (A) PP, (B) MLNs, and (C) spleen. For statistical analysis, a Mann-Whitney test was applied to determine significant differences in the numbers of indicated cell types in the whole organ between YPIII-infected, YP147 (∆cnfY)-infected or uninfected mice. Asterisks indicate the significances, with * (P<0.05), ** (P<0.01) and *** (P<0.001).

Figure S4: Gating strategies for the analysis of CNF1 impact on Yop delivery.
Exemplary gating strategies of MLNs cells of YPIII-ETEM infected mice at day three post infection. Isolated cells were stained with fluorescently labeled antibodies and additional subjected to CCF4-AM treatment.
Living cells are „green”, Yop translocated cells are „blue”. (A) T cells (CD19 CD3), B cells (CD19 CD3), neutrophils (CD19 CD3 Ly-6G CD11b), DCs (CD19 CD3 CD11c), macrophages/monocytes (CD49b CD19 CD3 Ly-6G CD11b) (B) NK cells (CD19 CD3 NKp46).
Supplementary material

Figure S5: Deletion of cnfY diminishes Yop delivery predominantly into neutrophils, macrophages and DCs in MLNs and spleen in vivo.

Groups of 6 - 8 BALB/c mice were infected orally with \(2 \times 10^9\) bacteria of \(Y.\ pseudotuberculosis\) YPIII-ETEM (YP173), YP147 (\(\Delta\)cnfY)-ETEM (YP217), YPIII or YP101 (\(\Delta\)yscS)-ETEM (YP174). Three days after infection, mice were sacrificed and the organs (PP, MLNs, and spleen) isolated. Prepared cell suspensions were stained with fluorescently labeled antibodies to detect the different immune cells with flow cytometry: neutrophils (Gr1\(^+\)/CD11b\(^+\)), macrophages (CD11b\(^+\)), DCs (CD11c\(^+\)), NK cells (NKp46\(^+\)), B cells (CD19\(^+\)), and T cells (CD3\(^+\)). Subsequently, cells were additionally dyed using CCF4-AM. The percentage of blue cells was analyzed by multi-colour flow cytometry of two independent experiments. (A) Percentages of blue (translocated) cells among living cells of PP, MLNs, and spleen of mice infected with YPIII-ETEM (YP173) or YP147 (\(\Delta\)cnfY)-ETEM (YP217) are illustrated. (B) Percentages of blue (translocated) cells among different living immune cell subsets of MLNs and spleen of mice infected with YPIII-ETEM (YP173) or YP147 (\(\Delta\)cnfY)-ETEM (YP217) are illustrated. For statistical analysis, a Mann-Whitney test was applied to determine significant differences in translocation in (A) the different organs and (B) cell types between YPIII-ETEM (YP173)- and YP147 (\(\Delta\)cnfY)-ETEM (YP217)-infected mice. Asterisks indicate the significances, with * (\(P<0.05\)), ** (\(P<0.01\)) and *** (\(P<0.001\)).
Figure S6: Gating strategies for immune cell contents in PP, MLNs, and spleen after infection with different *Y. pseudotuberculosis* strains.

Danksagung

Zuerst möchte ich mich an dieser Stelle bei meiner Mentorin Prof. Dr. Petra Dersch bedanken. Danke dafür, dass du mich so freundlich in deiner Arbeitsgruppe willkommen geheißen hast, für dein Vertrauen in meine Arbeit sowie für die Betreuung und tatkräftige Unterstützung in jeglicher Hinsicht bei der Entstehung dieser Arbeit. Mein besonderer Dank gilt deinem Einsatz bei der Veröffentlichung meiner Ergebnisse.

Zusätzlich bedanke ich mich bei Prof. Dr. Michael Steinert für die Übernahme des Koreferates und die ständige Unterstützung durch die Teilnahme an meinen Thesis Committees. Ebenfalls möchte ich mich bei Prof. Dr. André Fleißner für die Teilnahme an der Promotionskommission und an meinem Thesis Committee bedanken.

Ein Danke auch an die „Helmholtz International Graduate School for Infection Research“ für die Finanzierung der Teilnahme an Konferenzen und Weiterbildungen.

Ein ganz besonderer Dank geht an meinen Partner André Hajek für die letzten neun Jahre fortwährender Unterstützung in allen Lebenslagen!