Some results connected to Dedekind's Zeta functions

Waal, Robert W. van der

Veröffentlicht in:
Abhandlungen der Braunschweigischen Wissenschaftlichen Gesellschaft Band 33, 1982, S.247-251

Verlag Erich Goltze KG, Göttingen
Some results connected to Dedekind's Zeta functions

By Robert W. van der Waall, Amsterdam

On behalf of the 150th anniversary of R. Dedekind's birthday on 6 October 1831 we present three results in which Dedekind zeta functions and Artin L-functions are involved. In a) we recall the main contents of our paper [4]. In b) the construction of a holomorphic Artin L-function $L(s,\chi, K/k)$ is given for which χ is a non-monomial irreducible character of a certain group G. In c) we regard the group $GL(2,3)$ and we construct some relations among Artin L-functions derived from it.

a) (1977, [F], pages 649–662; see also [4] in which the explicit proofs are given)

Let L be an algebraic number field (= extension field of finite degree of the rational field \mathbb{Q}). Let

$$\zeta_L(s) = \sum_a (Na)^{-s},$$

defined in the domain $\text{Re}(s)>1$, the summation being extended over all integral ideals of L. The function $\zeta_L(s)$, s complex variable, is called the zeta function of Dedekind. The zeta function $\zeta_L(s)$ converges absolutely and uniformly in the domain $\text{Re}(s) \geq 1+\delta$, any $\delta > 0$. It was E. Hecke, who found the functional equation for $\zeta_L(s)$ and he proved that $\zeta_L(s)$ has an analytic continuation over the whole complex plane, with the sole exception at the point $s=1$, where there is a simple pole. Notice that $\zeta_{\mathbb{Q}}(s)$ is just the ordinary Riemann zeta function.

In [1], E. Artin poses the following conjecture.

CONJECTURE. Let M be a finite extension of L. Then $\zeta_M(s)/\zeta_L(s)$ is holomorphic in the whole complex plane.

In my 1977-survey paper in [F] I gave some cases for which the conjecture becomes a theorem. The main result was the following

THEOREM. Let $\Omega \supseteq M \supseteq L$ be fields with $[\Omega : L]<\infty$. Suppose that Ω/L is a galois extension with $\text{Gal}(\Omega/L)$ a solvable group. Then $\zeta_M(s)/\zeta_L(s)$ is a holomorphic function.

The proof is based on the following proposition proved in [4].
PROPOSITION. Let \(X \triangleright Y \triangleright L \) be fields with \([X : L] < \infty \) and assume that \(X/L \) is a galois extension with galois group \(G = \text{Gal}(X/L) \). Furthermore assume that \(H = \text{Gal}(X/Y) \) is a maximal subgroup of \(G \) and that \(G = HA \), with \(A \) some normal abelian subgroup of \(G \) with \(H \cap A = \{1\} \). Let \(\psi \) be the principal character of \(H \). Then

\[
\psi^G = e + \sum_{i=1}^{t} \varepsilon_i,
\]

where \(e \) is the principal character of \(G \) and where the \(\varepsilon_i \) are non-principal monomial irreducible characters of \(G \); here \(t \geq 1 \) and \(\varepsilon_j \neq \varepsilon_m \) if \(j \neq m \). Therefore, by Artin's formalism,

\[
\zeta_Y(s)/\zeta_L(s) = \prod_{i=1}^{t} L(s, \varepsilon_i, X/L)
\]

is a holomorphic function.

b) Let \(r \) be a prime number with \(r \equiv 3 \pmod{4} \). Let \(E \) be an extra special \(r \)-group of order \(r^2 \) and of exponent \(r \), that is,

\[
E = \langle s, t, z \mid s^r = t^r = z^r = [s, z] = [t, z] = 1, z = [s, t] \rangle.
\]

The quaternion group \(Q \) of order 8 acts on \(E \) as follows. Let

\[
Q = \langle p, q \mid p^4 = 1, p^2 = q^2, q^{-1}pq = p^{-1} \rangle.
\]

It is well known that every element of any finite field is a sum of two squares in that field. Thus we can choose

\[
\alpha, \beta \in \mathbb{Z} \text{ with } \alpha^2 + \beta^2 = -1 \pmod{r}.
\]

Let \(G \) be the relative holomorph of \(E \) with \(Q \). The concept is clear. It follows that

\[
x^p = x, \text{ whence } Z(E) = Z(G).
\]

Let \(\chi \in \text{Irr } E \) be an irreducible character of \(E \) with \(\chi(1) = r \). Set \(s^p = s^{\alpha t^\beta}, t^p = s^{\beta t^{-\alpha}}, z^p = t, q^p = s^{-1}. \)

Let \(G \) be the relative holomorph of \(E \) with \(Q \). The concept is clear. It follows that

\[
x^p = x, \text{ whence } Z(E) = Z(G).
\]

Let \(\chi \in \text{Irr } E \) be an irreducible character of \(E \) with \(\chi(1) = r \). Set \(s^p = s^{\alpha t^\beta}, t^p = s^{\beta t^{-\alpha}}, s^p = t, t^q = s^{-1}. \)

Let \(\chi \in \text{Irr } E \) be an irreducible character of \(E \) with \(\chi(1) = r \). Set \(s^p = s^{\alpha t^\beta}, t^p = s^{\beta t^{-\alpha}}, s^p = t, t^q = s^{-1}. \)

Let \(\chi \in \text{Irr } E \) be an irreducible character of \(E \) with \(\chi(1) = r \). Set \(s^p = s^{\alpha t^\beta}, t^p = s^{\beta t^{-\alpha}}, s^p = t, t^q = s^{-1}. \)

Let \(\chi \in \text{Irr } E \) be an irreducible character of \(E \) with \(\chi(1) = r \). Set \(s^p = s^{\alpha t^\beta}, t^p = s^{\beta t^{-\alpha}}, s^p = t, t^q = s^{-1}. \)

Let \(\chi \in \text{Irr } E \) be an irreducible character of \(E \) with \(\chi(1) = r \). Set \(s^p = s^{\alpha t^\beta}, t^p = s^{\beta t^{-\alpha}}, s^p = t, t^q = s^{-1}. \)

Let \(\chi \in \text{Irr } E \) be an irreducible character of \(E \) with \(\chi(1) = r \). Set \(s^p = s^{\alpha t^\beta}, t^p = s^{\beta t^{-\alpha}}, s^p = t, t^q = s^{-1}. \)
irreducible character $\eta \in \text{Irr } E < p^2 >$ for any $i = 1, 2, 3, 4$ with $\eta = \chi$. Hence $\chi < p^2 > = \eta + (\eta \otimes \delta)$, where $\eta \otimes \delta \in \text{Irr } E < p^2 >$, $\eta \neq \eta \otimes \delta$, $\delta(f) = 1$ for all $f \in E$, $\delta(f) = -1$ for all $f \in E < p^2 > - E$. Let $\varphi \in \text{Irr } G$ have $\eta \otimes \delta$ in its restriction to $E < p^2 >$. Hence χ is contained in φ_E. Therefore $\varphi \in \{ \chi \otimes \psi_i | i = 1, 2, 3, 4, 5 \}$ and we see that $\varphi = \chi \otimes \psi_5$.

It follows that

$$((\chi \otimes \psi_5)_{E < p^2 >}, \eta) = (\chi \otimes \psi_5, \eta^G) = (\chi \otimes \psi_5, \sum_{i=1}^{4} (\chi \otimes \psi_i)) = 0.$$

Thus $(\chi \otimes \psi_5)_{E < p^2 >} = 2(\eta \otimes \delta)$. By Frobenius' reciprocity for groups we have now $(\eta \otimes \delta)^G = 2(\chi \otimes \psi_5) + \ldots$, but also $(\eta \otimes \delta)^G = 4(\eta \otimes \delta)(1) = 2((\chi \otimes \psi_5)(1))$. Hence $(\eta \otimes \delta)^G = 2(\chi \otimes \psi_5)$. Now $\mu < p^2 > = \chi < p^2 > = \eta + (\eta \otimes \delta) = (\mu^H) < p^2 > = \xi_1 < p^2 > + \xi_2 < p^2 >$. As $\eta \in \text{Irr } E < p^2 >$ and $\eta \otimes \delta \in \text{Irr } E < p^2 >$ we can choose $\xi_2 < p^2 > = \eta \otimes \delta$. Hence $\xi_2^G = (\eta \otimes \delta)^G = 2(\chi \otimes \psi_5)$. Let G be the galois group of the galois extension M/L. Let Ω be the invariant field for H. Then $L(s, \xi_2, M/\Omega) = L(s, \xi_2^G, M/L) = L(s, 2(\chi \otimes \psi_5), M/L) = (L(s, \chi \otimes \psi_5, M/L))^2$ is a holomorphic function as $L(s, \xi_2, M/\Omega)$ is a Hecke–Dirichlet L-function because of $\xi_2^G(1) = 1$. A result of R. Brauer yields that $L(s, \chi \otimes \psi_5, M/L)$ is a meromorphic function, see Theorem V.19.3 of [H]. Hence $L(s, \chi \otimes \psi_5, M/L)$ itself is now holomorphic. We have $(\chi \otimes \psi_5)(1) = 2r$. We shall show that G does not contain subgroups of index $2r$, that is, $\chi \otimes \psi_5$ is not a monomial character. Indeed, let $U \subset G$ be a subgroup of G with index $2r$. Since E is a normal subgroup of G, we have $EU/E = U/(E \cap U)$. If $G = UE$, then $2r = |G : U| = |UE : U| = |E : (E \cap U)|$ divides $|E| = r^3$, a contradiction. Therefore $G \neq UE$, i.e. $UE : U| = |E : (E \cap U)|$ divides $|E| = r^3$. Since E is the Sylow r-subgroup of G, $UE \neq U$. Thus $|G : UE| = 2$. Now UE is equal to $E < p >$, $E < q >$ or $E < pq >$ and this exhaust all possibilities. However, $< p >$, $< q >$ and $< pq >$ operate irreducibly by conjugation on $E/Z(E)$, as $p^2 = q^2 = (pq)^2$ inverts any element of $E/Z(E)$ and as $r \equiv 3 \pmod{4}$. Therefore such a group U does not exist.

Finally we note that the case $r = 3$ was found by J. G. Thompson (letter to J. P. Serre, dated July 27, 1974).

c) We refer to [3]. Let $G = \text{GL}(2, 3)$. The group G is solvable and $|G| = 48$. According to I. Schur (1907) G has the following character table.

<table>
<thead>
<tr>
<th>representant of</th>
<th>number of el.</th>
<th>ψ_1</th>
<th>ψ_2</th>
<th>ψ_3</th>
<th>ψ_4</th>
<th>ψ_5</th>
<th>ψ_6</th>
<th>ψ_7</th>
<th>ψ_8</th>
</tr>
</thead>
<tbody>
<tr>
<td>$^{(10)}$ 01</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>$^{(-10)}$ 01</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>-2</td>
<td>-2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>-4</td>
</tr>
<tr>
<td>$^{(0-1)}$ 10</td>
<td>6</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>-1</td>
<td>-1</td>
<td>0</td>
</tr>
<tr>
<td>$^{(01)}$ -11</td>
<td>8</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>-1</td>
<td></td>
</tr>
</tbody>
</table>
Let $b = (\begin{smallmatrix} 0 & 1 \\ 1 & 1 \end{smallmatrix})$. Hence $|\langle b \rangle| = 6$. Let $\alpha \in \text{Irr} \langle b \rangle$ with $\alpha(1) = \alpha(b^2) = \alpha(b^4) = 1$, $\alpha(b) = \alpha(b^3) = \alpha(b^5) = -1$. Notice that $b^2 = (\begin{smallmatrix} 1 & 1 \\ 1 & 1 \end{smallmatrix})$. It follows that $\alpha^G = 2\psi_8$. Let $e = e^{2\pi i/6}$. Define $\gamma(b^t) = e^t$ for $1 \leq t \leq 6$ and write $\bar{\gamma}(b^t) = \gamma(b^t)$; whence $\gamma, \bar{\gamma} \in \text{Irr} \langle b \rangle$.

We have

$$\gamma^G = \psi_3 + \psi_4 + \psi_8 = \bar{\gamma}^G.$$

Therefore $2(\psi_3 + \psi_4) = \gamma^G + \bar{\gamma}^G - \alpha^G$.

Next, let M/S be a galois extension with $G \cong \text{Gal}(M/S)$. Then it follows that

$$(L(s, \psi_3 + \psi_4, M/S))^2 = \frac{L(s, \gamma + \bar{\gamma}, M/U)}{L(s, \alpha, M/U)},$$

where U is the invariant field of the group $\langle b \rangle$, considered as subgroup of $\text{Gal}(M/S)$. The L-functions $L(s, \alpha, M/U)$ and $L(s, \gamma + \bar{\gamma}, M/U)$ are holomorphic, following Hecke. So not only for $\Re(s) \geq 1$, but also for any $s \in \mathbb{C}$ $(L(s, \psi_3 + \psi_4, M/S))^2$ is defined by the last formula. We know by a result of R. Brauer that $L(s, \psi_3 + \psi_4, M/S)$ is meromorphic, and it follows also that $L(s, \psi_8, M/S)$ is holomorphic, as ψ_8 is monomial. We drop the symbols M, S, U for the moment.

Now observe that $\alpha(b^3) = \gamma(b^3) = \bar{\gamma}(b^3) = -1$. Hence the functional equation for Artin L-functions as given in [2], page 306, gives the following formulae.

$$L(1-s, \gamma) = W(\gamma) \left(N^\mathbb{F} (\gamma, M/U) \right)^{-\frac{1}{2}} A(s, \gamma) L(s, \gamma) \quad \text{(x)}$$

$$L(1-s, \alpha) = W(\alpha) \left(N^\mathbb{F} (\alpha, M/U) \right)^{-\frac{1}{2}} A(s, \alpha) L(s, \alpha) \quad \text{(xx)}$$

Just as $\alpha(b^3) = \gamma(b^3)$, it follows that $A(s, \alpha) = A(s, \gamma)$. The reader is referred to the explicit formulae for $A(s, \gamma)$ (and for $A(s, \alpha)$) in [2]. We have $\alpha = \bar{\alpha}$ and $L(s, \gamma) = L(s, \bar{\gamma})$ by $\gamma^G = \bar{\gamma}^G$. Keep in mind that both $L(s, \alpha)$ and $L(s, \gamma)$ are zero-point-free in $\Re(s) \geq 1$.

It follows that

$$L(s, \alpha) A(s, \alpha) W(\alpha) \left(N^\mathbb{F} (\alpha, M/U) \right)^{-\frac{1}{2}} L(1-s, \gamma) =$$

$$= W(\gamma) \left(N^\mathbb{F} (\gamma, M/U) \right)^{-\frac{1}{2}} A(s, \gamma) L(s, \bar{\gamma}) L(1-s, \alpha).$$

As $A(s, \alpha) = \text{product of cos-, sin-, and } \Gamma$-functions, we see that

$$L(s, \alpha) W(\alpha) \left(N^\mathbb{F} (\alpha, M/U) \right)^{-\frac{1}{2}} L(1-s, \gamma) =$$

$$= W(\gamma) \left(N^\mathbb{F} (\gamma, M/U) \right)^{-\frac{1}{2}} L(s, \bar{\gamma}) L(1-s, \alpha) \quad \text{xx)}$$
Some results connected to Dedekind's Zeta functions

for those s for which $A(s, \alpha) \neq 0$. However, if $A(s_0, \alpha) = 0$, then $L(1-s_0, \alpha) = 0$ as $L(s, \alpha)$ is analytic for all $s \in \mathbb{C}$, following formula $x)$. The same holds for formula $x)$. Hence formula $\frac{1}{2}$ holds for all $s \in \mathbb{C}$. Notice that $L(s, \gamma) = L(s, \gamma) = L(s, \psi_3 + \psi_4) L(s, \psi_9)$ for all $s \in \mathbb{C}$. Further $L(s, \alpha) = (L(s, \psi_8))^2$ for any $s \in \mathbb{C}$. Hence we find that

$$L(s, \psi_8) L(1-s, \psi_8) \left\{ L(s, \psi_8) W(\alpha) \left(N \delta (\alpha, M/U) \right)^{s-\frac{1}{2}} L(1-s, \psi_3 + \psi_4) - W(\gamma) \left(N \delta (\gamma, M/U) \right)^{s-\frac{1}{2}} L(s, \psi_3 + \psi_4) L(1-s, \psi_8) \right\} = 0.$$

Write in short $L(s, \psi_8) L(1-s, \psi_8) A(s) = 0$. Now, if $L(s_1, \psi_8) = 0$ for $\frac{1}{2} \leq \text{Re}(s_1) < 1$, then also $L(1-s_1, \psi_8) = 0$ by the functional equation. Hence $A(s_1) = 0$. For $|\text{Re}(s_1)| \geq 1$ we can only have $L(1-s_1, \psi_8) = 0$ by the functional equation. Hence $A(s_1) = 0$. Look at $x)$. Then $L(1-s_1, \gamma) = 0$ and by $x)$ again, the order of the zero s_i in $L(1-s_1, \gamma)$ is equal to the order of the zero s_i in $L(1-s_1, \alpha)$. Therefore

$$\left(L(1-s_i, \psi_3 + \psi_4) \right)^2 = \frac{L(1-s_i, \gamma))^2}{L(1-s_i, \alpha)} = 0.$$

The final result is that $A(s) = 0$ for all $s \in \mathbb{C}$, as now $L(1-s_1, \psi_3 + \psi_4) = 0$.

Next we look at the several Artin root numbers involved here. By the corollary on page 18 of [F] we have

$$W(\gamma) = W(\psi_3 + \psi_4 + \psi_8) = W(\psi_3) W(\psi_4) W(\psi_8) \text{ and } W(\alpha) = W(2 \psi_8) = (W(\psi_8))^2.$$

The Artin root numbers are complex roots of unity and it holds that $W(\psi_4)$ is the complex conjugate to $W(\psi_3)$ as $\psi_4 = \overline{\psi_3}$. Hence $W(\psi_3) W(\psi_4) = 1$ and so $W(\gamma) = W(\psi_8)$. The character ψ_8 is afforded by a real representation of $GL(2, 3)$. Thus we can apply a theorem of A. Fröhlich and J. Querut, see [F] page 124, that says that in such a situation $W(\psi_8) = 1$. Hence $W(\gamma) = W(\psi_8) = 1 = (W(\psi_8))^2 = W(\alpha)$.

Therefore we have proved that

$$L(s, \psi_8) L(1-s, \psi_3 + \psi_4) \left(N \delta (\alpha, M/U) \right)^{s-\frac{1}{2}} = \frac{L(1-s, \psi_8) L(s, \psi_3 + \psi_4) \left(N \delta (\gamma, M/U) \right)^{s-\frac{1}{2}}}{L(1-s, \psi_8) L(s, \psi_3 + \psi_4) \left(N \delta (\gamma, M/U) \right)^{s-\frac{1}{2}}}.$$

References