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A new approach to the real numbers
(motivated by continued fractions)

By G.J. Rieger, Hannover

Introduction

There are several methods known of extending the ordered field Q of the rational
numbers to the complete ordered field R of the real numbers. In this paper we give a
new and very natural method for this extension; the motivation comes from the theory
of continued fractions. We define the set R\Q of the irrational numbers as the set of
all infinite sequences <ag,a,,8y,...> with age Z, 0<a;je Z (j>0). By this the set
R := QuU(R\Q) is given in an explicit and simple form at the very beginning and we
believe that this approach is an important advantage over all other extensions of Q
to R. After this we study ordering, completeness, and arithmetical operations for the
set R. It is clear that all methods of extending @ to R have some common features
since the result, namely R and its structure, is always the same.

In § 1 we bring known facts concerning the continued fraction expansion of
rational numbers. In § 2 we introduce R by our method as an ordered set which we
call K for caution’s sake and we prove the theorem of the supremum for K. After-
wards K can be made a commutative additive group with @ as subgroup in § 3, a
division ring with Q as subring in § 4, and finally a field with Q as subfield in § 5; there
addition, subtraction, multiplication, and division, as far as they go beyong Q, are
defined by using the supremum. Finally, we write R instead of K.

§ 1. Rational numbers and finite continued fractions

Let aeZ, belN; the fraction o is called reduced if and only if (a,b) = 1. Every
rational number can be written in exactly one way as a reduced fraction.

A finite sequence < ag, ay,...a,> with
nelNy:=NuU{0}, ageZ, a;eN (0<j=n)

is called a finite chain. The set of all finite chains we denote by E. A finite chain is
called normed, if and only if in case n>0 we have a,> 1. The set of all normed finite
chains we denote by E’. We have E’ = E. We define the map

(1.1)  ®(<ag,ay,...,a,>) 1= ag+ T
a1+a2+.

-
ta,
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the right hand side of this equation is called finite continued fraction. Let teqQ;
suppose the euclidean algorithm for a,b takes the form

a=bap+ 1y, 0<ry<b,
b=r1a1 + 15, 0<I'2<I'1,
Ty =123 + I3, 0<r3<1,,
Iy-2 = I'n-1dpn-1 +rn 0<rn<rn-1;

Iy1 =TIqa, +0;
we obtain a map

A: Q-F
by A(%):= <Qg,8y,...,85 >
Elimination in the euclidean algorithm gives

%=<I)(<a0,a1,...,an>).

Consequently, we have

AE 9 . 2,04,
Q Q, E’ Ea )
id id
— _

Especially, the restriction of ® to E’ is bijective. Since
®(<ag,..., 8.2, dgy, 1 >) = B(<ay,...,85.9, 851 +1>) (0n>0),

® itself is not injective. We are here mainly interested in Q; with respect to Q we do
not lose anything by

Convention 1. Any finite chain <ag,...,a,.3,8,.1, 1> with n>0 has to be replaced
by <aq,..., 8,2, 8,1 +1>€FE. Furthermore, we identify <ag,...,a,>€¢E and
d(<ag,...,a,>) e Q.

For o= <ay,...,2,>€Q, jeNp let

. <ap,a1,...,8;>> in case j<n
1.2) a@ :={ 1 j
(1.2) Q incase j=n;
let furthermore
po:=0, py:=1, pj:=2ap;1+pj2

1<j=n),
Qo:=1, q1:= a1, Q;:= G+ Q2 (1<i=m

D= Pns qj:= G (j>n).
We have
o =as+ & (iz0),
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PG — PG = (-1 (0<j=n),

Pi%2 — P2 =1 3 (1<j=n),
(13) 09=a@P=0¥=...20=...20¥=2a®=0"=a¥+1
(with = up to at most n+ 1 exceptions),

) — g0 = % (0=j<n).
Following Fibonacci let

Fo:=1, F,:=1, Fj:=F,,+F., (>1).
Induction gives

FF.22  (120);
by g;ZF; (j=0) we conclude
1.4) o8tV ~a@|=27 (jz0).

o=<ay,...,a,>€Q and B = <by,...,bn>€Q can easily be compared in size. In
order to avoid case distinctions in case n # m we introduce the symbol ® with the
property r < w or equivalently w>r (r e Q).

Convention 2. For every a = <a,...,a,> € Q let 3; := o (j>n) and hence
0= <Qgy...,a,, O, W, ...>.

Obviously we have
Lemma 1.1. Let

a=<ag,...,a; 0, ®,...> €0,

B=<b,,...,bn, 0, w,...>€Q,
a # f; we define k = k(a,B) €N, by

a;=b; (0=j<Kk), a, # by;

then we have

a,<by in case 2|k
a,>by in case 2/k.

(1.5) a<B©{

Here we have k(o) =k(B,a) = sup{n,m}.

§ 2. The ordered set K

We extend the set @ to the set K by adjoining as new elements all infinite sequences
<ag,a4,3,...> with age Z, 3;€ N (j>0).

For <ag,ay,a,,...>eK, melN we have
21 az=w=a=o0(>m).

Let a = <ag,a4,a,,...> €K, f = <bg,by,by,...> €K, a# . We extend the definition
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of k(a,B) of Lemma 1.1 to a.¢ Q v p ¢ Q. We have k(a,p) = k(B,0). For a¢ Qv PeQ
we use (1.5) as Definition 2.1 of a < or equivalently of §>a.

For a €K, €K we have

(2.2) a<fva=pva>B,exclusively.

Furthermore, let y € K; then we have

(2.3) (a<BAB<y)=>a<y (transitivity of <).

Let o= <ag,as,2z,...> € K\Q, j € Ny; we extend (1.2) and let
a¥ := <ag,a4,...,05>,

where we observe Convention 1 and possibly Convention 2; instead of (1.3) we have

(24) a@<a®P<a?®<..<a<..<a®<a®<aV=a@+1.

We have 0¢K since w=0eK gives the contradiction o =a@ +1€Z.

Leta€eK, ek, a#p, k:=k(a,p). (1.5) implies
a<p=(a¥=pY (0=j<k) A «?<p? (jzk)).
By (2.2) this implies

We need the consequences

@) <p@) (i= < @+) <RI+ (=
(2:5) 0=p < 0=p9, 0<p <« 0<p®.

Let McK, M # #; 1e K is called upper bound of M if and only if o =1 (0 € M); M is
called bounded above if and only if there exists at least one upper bound of M; an
upper bound ¢ of M is called supremum (or least upper bound) of M if and only if
every upper bound t of M satisfies =1. M has at most one supremum.

Theorem 2.1 of the supremum. Every Mc K, M # @, which is bounded above, has
exactly one supremum in K and we denote it by sup M.

Proof. We construct o =sup M. For MnQ we observe Convention 2. We use
repeatedly the well-ordering of Z. Let # # A < N; denote by v(A) the minimal ele-
ment of A; in case A is bounded above, denote by w(A) the maximal element of A;
in case A is not bounded above, let w(A):= w; let also

v(Au{w}) = v(A), v({w}) = o,
wAu{n}):=n, w{o}):= .
For o = <ag,a4,4p,...> € K we have

ao§<ao,a1,a2,...> <apg+1.
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M@ : =M is bounded above and so is
MO = {a;: a e M} cZ;
we have MI% = ¢; denote by s, the maximal element of M, Let
M = {ae M@: a5 =5,}.
We have ¢ # MM MO,
M= (a;: ae MO} #£0, s, := v(M").
In case sy = w we are done and put
0= <Sg, 0, O,...>.
In case sy # w we go on and let
M® = {aeM®: a, =5,}.
We have §f # M@ c MD),
M= {a,: e M@} #0, s, := w(MP)),
In case s, = ® we are done and put

oim <sg, S3, ®, ®,...> incases;>1
’ <sp+1, w, w, w,...> in case sy = 1.

In case s, # ® we go on and let

M® = {aeM®@: a, =s5,}.
We have §§ # M® c M@,

MB!:= {a;: aeMP} #0, s5:= v(MPD).
In case s; = © we are done and put

_ } <sps 81,82, W, ®,...> incase s, > 1
S0, 89+ 1, w, , ,...> in case s; = 1.

In case s3 # w we go on and let

M® ;= {0 e MP: a; =s,}.
We have §f # M® c M®,

M = (2, a eMPY 0, 5,:= w(MW),
In case s, = w we are done and put

. ] <s0,81, 82,85, 0, w,...> in case s3> 1
) <S$gy 81,52+ 1, 0, W, w,...> in case s3=1.

In case s, # w we go on. In this fashion we have defined

0 = <8, S1, 83,...~> €K
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by a terminating or non-terminating construction where w(') and v() have been used
alternately.

Let a. e M, a # o. For k:=k(a,0) (as after (2.1)) we have
(2.6) a;=s5(0=j<k), ax # 5;;

in the construction above M® appears by (2.1) and we have a.e M®; by definition of
s, we have

@.7) {

3, <8y incase 2|k
a,>s, in case 2/k;

hence a.< 0, and ¢ is an upper bound of M.

Let aeK, a<o; by a<o we have (2.6) and (2.7); since a, # o in case 2|k and since
s¢ # @ in case 2}k it follows s; # 0 (0=j<k) by (2.1), and in the construction above
certainly

M®  incase k=0
M®*Y in case 2{k
M®  incase 2|k Ak>0

appears.

Case k = 0. Every B e MV satisfies B> a.

Case 2/k. Every p e M&*" satisfies f > q.

Case 2|k A k>0. For M® we distinguish 3 possibilities. Let firstly s, = o € M[¥]; then
B = <Sg,S15.00s5101, ®, @,...> € MO

and B> 0. Let secondly s, = w ¢ M¥]; then there exist
B:= <sq,51,..,51, Dis Dict1,...> e M®

with arbitrarily large by €IN; for by, >a, we have > a. Let thirdly s, <w; then there
exist

B = <SD, S15.0458g, bk+1’ bk+2,'-->€M(k)

and we have > a. In every case we have found a f € M with > «, and hence there
exists no upper bound of M which is smaller than o.

This proves the theorem.

This proof gives beyond (2.4) also

(2.8) o=sup{a®:n=0} (aeK).

Theorem 2.2. For every o €K, f €K with a <@ we can find r e Q with a <r<f.

Proof. ForaeQafeQwetaker: =28 Teta¢QvPeQ, k := k(a,p),
a=<a°,a1,...>,B=<b0,b,,...>.
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Cuase 2| k. Then a, <by; in case by, <@ we choose
r:= <by, by,..., by, b1+ 1>; in case by =w we have fe Q, 0.¢ Q
and choose r := <ag, a4,..., A+1, Agra+ 1>

Cuase 2/k. Then a, >b,; in case a,.; <o we choose
r:= <ag, aq,..., a, ag+1+1>; in case ay .y = w we have 0. Q, f ¢ Q
and choose r : = <bg, by,..., by, b+ 1>,

§ 3. K as additive group
For a e Q, f € Q we have
3.1) a+p=sup{a® +p®V: n=0}.
Foraek, BeK, a¢ Qv ¢ Q we use (3.1) as Definition 3.1 of 0.+ f8; here we observe
a4 BEY < 4B (1 Z0)
by (1.3) and (2.4), and the Theorem of the supremum is applicable.
For a ek, B eK we have
at0=0+a=q,
(3.2) a+B=Pf+a (commutativity of addition).
For a, B, v, 8 from K we have
(B33) (0=BAY=8)=a+y=p+8 (monotonicity of addition);
indeed:
A== a® =pen (nZ0) by (2.5) } -
YES = yBV =3
a® 4 y@w <gen 4 @ (nz=0)=p+dby (3.1)
=a+y=p+9 by (3.1).
ForaeK,BeK and h, j, m, n from N, we have
(34) a® 4 B@ =g +p= @™+ 4 gE+Y
by (1.3), (2.4), (3.3).
Theorem 3.1. For a €K, B €K, yeK we have
(35) (a+P)+y=a+(P+y) (associativity of addition).
Proof. Ve make the assumption “<*; by Theorem 2.2 there exist re Q, se Q with
(a+B)+y<r<s<a+(f+9);
by (3.4) we have

a® 4+ eV =g +B, Y@V =y,
A= @@t By pE+D 4 y@atD) : (n=0);
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by (3.3) we obtain

A= a® +BEY +yCY=< (@ +B) +y,
0n 1= Q@) - BEHD 4 Y@= 4 (By) (n=0);

by (2.3) we obtain in Q on the one hand

A <r<s<Q, (n=0);
by (1.4) we have on the other hand

On— Ay <4'™ ' (nz0);

for all n €N with 4'™<=s—r this is a contradiction, Similarly the assumption “>* leads
to a contradiction. Finally (2.2) gives (3.5).

For a €K we have
—q@) = o) < _ O (nZ20);
by (1.3) and (2.4). For a.€ Q we have
(3.6) —a=sup{—a®*D:nz=0}
and a + (—a) = 0. For a.e K\Q we use (3.6) as Definition 3.2 of —a.
Theorem 3.2. For a €K we have a + (~a) = 0.

Proof. By (3.6) we have

—a®*=_q (nZ0).
By (1.3), (2.4) we have

@) = _g@ (jZ0,nZ0)
and by (3.6) hence

—a = —a® (n=0).
By (1.3), (2.4) we have

a@) = g = @+ (02 0).

Therefore (3.3) implies
a®) _ g@) < o 4 (Lg) = g@+) _ 20 (n=0).

The assumption 0<a + (-a) v o+ (-a) <0 leads by Theorem 2.2, (2.3), (1.4) in Q
to the contradiction

3 Y O<r<q®@*)_g@m<ygn
reQ, n=0

(2.2) gives the result.

Hence K is a commutative group with respect to + and has Q as subgroup.
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LetacK,peK,a—f:= o+ (-p). We have
B37 -Ca=a-(@+p)=(-a)+(-p)=-a-p.

Since
agﬁ = _B(2n+1) § _a(2n+1)

=>_[.3(2n+1) =-qa
=>-B=-a

we find

(38) o<Be-B<-a.

§ 4. Multiplication in K

For a e K we have

L _J aincase aZ0 .
la| := sup{a,-a} _{—a incase a<0 Y (3.8);
we have |a| = |-a|2 0. For a eK, f €K we have

la| =|B| < (@ =Bva=-p)

For a e @, € Q we have

sup{a®¥B®W: n=0} incase aZ0ABZ0

| =(a|-B) incase a <OAB>0
1) of= —(a-1BD incase a>0AB <0
laf - Bl incase a <0AB<O.

(n=0) by (2.5)
(n=0) by (3.6)
by (3.6)

For aeK, BeK, a¢ Qv p¢Q we use (4.1) as Definition 4.1 of o - B (or shorter af);

in the uppermost case we observe

aMpEn < RM

by (1.3), (2.4) and hence the Theorem of the supremum is applicable.

Let aeK, BeK; (4.1) gives

(42) ofp=Ppa  (commutativity of multiplication),
0a=0,1a=a by (2.8),

a>0=a®>0
B>O:B®>O}=aﬁ>0bya3)

(43)2 a<0AB>0 = af < 0 by (3.8)
a>0AB<0  =aB<0by(3.8)
a<0AB<O =aff >0,

aB=0<(a=0vp=0) by (2.2);

distinguishing 4 cases as in (4.1) we obtain
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(4.4) |aBl=al Bl

(indeed: for o =0 A B0 this says af = af}; for a <0 A p>0 we have

ap := —(|a|B) <0, |aB| = |a|B (by (3.7)) = |a| |B|; for >0 A B<0 we have
ap := —(a|B]) <0, |aB| = a|B| = |a| |B|; for a<0 A B<0 we have

af := |a] |B]|>0, |op| = |af |B];) and

4.5) (o)f=—(af)=0a(-P), (o) (-B) = 0.

For a, B, v, 6 from K we have

(4.6) (0=0=BAr0=y=8)=>0y=pd (monotonicity of multiplication);
indeed: we have 0= a@Vy®V =g@W3@» by (2.5) and hence ay=ps.
ForaeK,BeK,a=0,$=0 and h, j, m, n from N, we have

(4.7) 0=o@WRE =gf ==ty

by (1.3), (2.4), (4.6).

Theorem 4.1. For a e K, B K, yeK we have

(4.8) (af)y=a(By) (associativity of multiplication).

Proof. We consider first the special case a.>0, $>0, y>0; we make the assumption

“<“ (as in the proof of (3.5)); by Theorem 2.2 there exist r € Q, s € Q with
(aB)y<r<s<a(Bv);
by (4.7) we have

0= a®MBE = gB, 0 =y =y,
0<aq = a(2n+1)’ o= ﬁ,Y = B(2n+1),Y(2n+1)

by (4.6) we obtain

Dy s = a(z“)B(Z“)Y(zn) = (aB)y,
0n 1= QN TDR@ D@0+ = o (By)

by (2.3) we obtain in Q on the one hand
M<r<s<on

by (1.3), (2.4), (1.4) we have

(4.9) 0=a®*) _g®W =gm 0= @ =

and similarly for § and y; in Q this gives

On—Mp = (a(Zn) +4™) (B(zn) +4m (.Y(Zn) + 4™ — a(2n)ﬁ(2n),y(2n)
=470aM+1) BV+1) (v +1)

and for large n we have on the other hand
On— )"n <s-— r;
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this is a contradiction. Similarly the assumption “>“ leads to a contradiction; finally
(2.2) gives (4.8). We consider now the general case; by (4.4) and by the special case
we have

la| By| = Bl vl
using this and also (4.2), (4.3), (4.4), (4.5) we settle the remaining 7 cases.

Theorem 4.2. For a €K, K, y€K we have
(4.10) a(B+y)=cap+ay (distributivity).

Proof. We consider first the special case a>0, §>0, y>0; we shall show that the
assumption “<“ as well as the assumption “>“ gives a contradiction; then (2.2) gives
(4.10).

“<“. By Theorem 2.2 there exist r € Q, s € Q with
af+y) <r<s<of+tay;
by (1.3), (2.4), (2.5), (3.3), (4.6) and with
(4.11) Ay := a® (BED 4 y@) o .= q@rDRER+T 4 g+ @n+)
we obtain in Q at once
(4.12) M <r<s<p, (n=0);
by (4.9) this is a contradiction for large n.
“>“. By Theorem 2.2 there exist r € Q, s € Q with
aftay<r<s<alP+y);
with (4.11) we obtain in Q again (4.12).
We consider now the general case. Trivially we may suppose a # 0, §#0, y+# 0.
P 0 () = —alB ) =alB) + (1)
(~a)B + (~a)y = (o +ay) = a(-Pp) + (a(-Y)
by (4.5), (3.7) and since

A=pe-r=-p ek pek)
we have

(4.13) aB+y) =af+ay < (—a) B+y) =(-a)B + (-a)y
' < a((-B) + (~Y)) = a(=B) + a(=Y).

In the general case we may by (4.13) and by (-B) + (—y) = —(B+Y) also suppose
a>0, B+vy>0. By (3.2) it is sufficient to prove (4.10) for

a>0,B>0,y<0,B+y>0.
But then we have

Ai=—y>0,u:=p~A=p+y>0
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and (4.10) reads by (4.5) now
oapw=af —ah

or, by (3.5) and Theorem 3.2, equivalently
ap+ohr =a(u+\).

But this has been established in the special case.

Hence K is a commutative ring with respect to +, - without divisors of zero and has Q
as subring.

The axiom of (Eudoxos and) Archimedes for K can immediately be verified by
using Theorem 2.2, (4.6), (2.3).

§ 5. Division in K

For a €K, a>0 we have

0<a® =@+ < @) < oM by (1.3), (2.4),

0< v = ot = o S g (nZ0).
For e Q, o # 0 we have
sup lﬁ : niol in case 0.>0
6.1 o= *

—la|? in case a <0

and aa” ' = 1. For 0. e K\Q we use (5.1) as Definition 5.1 of o™".
Theorem 5.1. For a.e K, a # 0 we have oo™ = 1.
Proof. Let first a>0. By (5.1) we have

0< b =o” (n20).

By (1.3),(2.4) we have

0 <G = Garm (j20,n20)
and by (5.1), (2.3) hence

0<a’'= oy (nZ0).
By (1.3), (2.4) we have

0< @t 5 g = @t (n=0).

Therefore (4.6) implies

(2n+2) 2n+1
a < gyt < g®0
0< @ = o = e (n = 0),

By (1.3), (2.4), (1.4) we have

0< 1- ql@n+2)

<__1 < 1
@ = gag@ar) =4na(2) 3

<o®) 1o 1 < 1
0= pEre) 1: W: m (néO).
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The assumption 1<aa™ v ao™ <1 leads by Theorem 2.2, (2.3) in Q to the contra-
diction

B V I<r<l+zm.
reQ,nENo #a®

(2.2) gives the result. Let now a<0. By (3.8) we have |a| = —0>0 and therefore
|a| ol = 1. By (5.1) and (4.5) we obtain

aa” = (la]) (=|a[") = |a] la|" = 1.

Hence K is a field with respect to +, - and has Q as subfield.

Final remarks

Altogether K is a complete ordered field and has Q as subfield. The elements
<ag,ay,...> of K we call now real numbers and we write R instead of K.

At several occasions we have used a common principle: a theorem for Q is used to
suggest a definition for IR. This was done in passing from Q = E’ to R:=K and from
Lemma 1.1, (3.1), (3.6), (4.1), (5.1) to the corresponding definition.

Let a = <ay, a;,...> cR\Q; by (2.4), (1.4) we have
la—a®| <]|a®t — g®@|=2™ (nz0)
and hence

a=lim ao®;
n-— o«

by (1.1) this means
. 1
<ao,a1,a2,...>=ao+-——L—:=lim <a0+—————-—)

a1+-—1 n— o a1+"~ 1
az+. +4+ —

(infinite continued fraction).

This paper was written for the conference in honor of Richard Dedekind (1831~
1916), held in October 1981 in Braunschweig.
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