A new approach to the real numbers (motivated by continued fractions)

Rieger, Georg Johann

Veröffentlicht in:
Abhandlungen der Braunschweigischen Wissenschaftlichen Gesellschaft Band 33, 1982, S.205-217

Verlag Erich Goltze KG, Göttingen

A new approach to the real numbers (motivated by continued fractions)

By G.J. Rieger, Hannover

Introduction

There are several methods known of extending the ordered field \mathbb{Q} of the rational numbers to the complete ordered field \mathbb{R} of the real numbers. In this paper we give a new and very natural method for this extension; the motivation comes from the theory of continued fractions. We define the set $\mathbb{R} \backslash \mathbb{Q}$ of the irrational numbers as the set of all infinite sequences $<a_{0}, a_{1}, a_{2}, \ldots>$ with $a_{0} \in \mathbb{Z}, 0<a_{j} \in \mathbb{Z}(j>0)$. By this the set $\mathbb{R}:=\mathbf{Q} \cup(\mathbb{R} \backslash \mathbb{Q})$ is given in an explicit and simple form at the very beginning and we believe that this approach is an important advantage over all other extensions of \mathbb{Q} to \mathbb{R}. After this we study ordering, completeness, and arithmetical operations for the set \mathbb{R}. It is clear that all methods of extending \mathbb{Q} to \mathbb{R} have some common features since the result, namely \mathbb{R} and its structure, is always the same.

In § 1 we bring known facts concerning the continued fraction expansion of rational numbers. In $\S 2$ we introduce \mathbb{R} by our method as an ordered set which we call K for caution's sake and we prove the theorem of the supremum for K. Afterwards K can be made a commutative additive group with \mathbb{Q} as subgroup in § 3, a division ring with \mathbb{Q} as subring in $\S 4$, and finally a field with \mathbb{Q} as subfield in $\S 5$; there addition, subtraction, multiplication, and division, as far as they go beyong \mathbb{Q}, are defined by using the supremum. Finally, we write \mathbf{R} instead of K.

§ 1. Rational numbers and finite continued fractions

Let $a \in \mathbb{Z}, b \in \mathbb{N}$; the fraction $\frac{a}{b}$ is called reduced if and only if $(a, b)=1$. Every rational number can be written in exactly one way as a reduced fraction.

A finite sequence $<a_{0}, a_{1}, \ldots a_{n}>$ with

$$
\mathbf{n} \in \mathbb{N}_{0}:=\mathbf{N} \cup\{0\}, a_{0} \in \mathbb{Z}, a_{j} \in \mathbb{N}(0<j \leqq n)
$$

is called a finite chain. The set of all finite chains we denote by E. A finite chain is called normed, if and only if in case $n>0$ we have $a_{n}>1$. The set of all normed finite chains we denote by E '. We have $\mathrm{E}^{\prime} \subset \mathrm{E}$. We define the map
by

$$
\begin{align*}
& \Phi: E \rightarrow \mathbb{Q} \\
& \Phi\left(<a_{0}, a_{1}, \ldots, a_{n}>\right):=a_{0}+\frac{1}{a_{1}+\frac{1}{a_{2}+}} ; \tag{1.1}
\end{align*}
$$

the right hand side of this equation is called finite continued fraction. Let $\frac{\mathrm{a}}{\mathrm{b}} \in \mathbb{Q}$; suppose the euclidean algorithm for a, b takes the form

$$
\begin{array}{ll}
a=b a_{0}+r_{1}, & 0<r_{1}<b, \\
b=r_{1} a_{1}+r_{2}, & 0<r_{2}<r_{1}, \\
r_{1}=r_{2} a_{2}+r_{3}, & 0<r_{3}<r_{2}, \\
\quad \vdots & \\
r_{n-2}=r_{n-1} a_{n-1}+r_{n} & 0<r_{n}<r_{n-1}, \\
r_{n-1}=r_{n} a_{n}+0 ; &
\end{array}
$$

we obtain a map

$$
\Delta: \mathbb{Q} \rightarrow \mathrm{E}^{\prime}
$$

by

$$
\left.\Delta\left(\frac{a}{b}\right):=<a_{0}, a_{1}, \ldots, a_{n}\right\rangle
$$

Elimination in the euclidean algorithm gives

$$
\frac{\mathrm{a}}{\mathrm{~b}}=\Phi\left(<\mathrm{a}_{0}, \mathrm{a}_{1}, \ldots, \mathrm{a}_{\mathrm{n}}>\right)
$$

Consequently, we have

Especially, the restriction of Φ to E^{\prime} is bijective. Since

$$
\Phi\left(<a_{0}, \ldots, a_{n-2}, a_{n-1}, 1>\right)=\Phi\left(<a_{0}, \ldots, a_{n-2}, a_{n-1}+1>\right)(n>0),
$$

Φ itself is not injective. We are here mainly interested in \mathbf{Q}; with respect to \mathbb{Q} we do not lose anything by
Convention 1. Any finite chain $\left.<a_{0}, \ldots, a_{n-2}, a_{n-1}, 1\right\rangle$ with $n>0$ has to be replaced by $<a_{0}, \ldots, a_{n-2}, a_{n-1}+1>\in E^{\prime}$. Furthermore, we identify $<a_{0}, \ldots, a_{n}>\in E^{\prime}$ and $\Phi\left(<\mathrm{a}_{0}, \ldots, \mathrm{a}_{\mathrm{n}}>\right) \in \mathbf{Q}$.
For $\alpha=<a_{0}, \ldots, a_{\mathbf{n}}>\in \mathbb{Q}, j \in \mathbb{N}_{\mathbf{0}}$ let

$$
\alpha^{(j)}:= \begin{cases}<a_{0}, a_{1}, \ldots, a_{j}> & \text { in case } j<n \tag{1.2}\\ \alpha & \text { in case } j \geqq n ;\end{cases}
$$

let furthermore

$$
\begin{aligned}
& p_{0}:=0, p_{1}:=1, p_{j}:=a_{j} p_{j-1}+p_{j-2} \quad(1<j \leqq n), \\
& q_{0}:=1, q_{1}:=a_{1}, q_{j}:=a_{j} q_{j-1}+q_{j-2} \\
& p_{j}:=p_{n}, q_{j}:=q_{n}(j>n) .
\end{aligned}
$$

We have

$$
\alpha^{(j)}=a_{0}+\frac{p_{j}}{q_{j}} \quad(j \geqq 0)
$$

$$
\begin{align*}
& p_{j-1} q_{j}-p_{j} q_{j-1}=(-1)^{j} \quad(0<j \leqq n), \\
& p_{j} q_{j-2}-p_{j-2} q_{j}=(-1)^{j} a_{j} \quad(1<j \leqq n), \\
& \alpha^{(0)} \leqq \alpha^{(2)} \leqq \alpha^{(4)} \leqq \ldots \leqq \alpha \leqq \ldots \leqq \alpha^{(5)} \leqq \alpha^{(3)} \leqq \alpha^{(1)} \leqq \alpha^{(0)}+1 \tag{1.3}
\end{align*}
$$

(with $=u p$ to at most $n+1$ exceptions),

$$
\alpha^{(\mathrm{j}+1)}-\alpha^{(\mathrm{j})}=\frac{(-1)^{j}}{\mathrm{q}^{2} \mathrm{q}^{\mathrm{j}}} \mathbf{(1)}(0 \leqq \mathrm{j}<\mathrm{n}) .
$$

Following Fibonacci let

$$
\mathrm{F}_{0}:=1, \mathrm{~F}_{1}:=1, \mathrm{~F}_{\mathrm{j}}:=\mathrm{F}_{\mathrm{j}-1}+\mathrm{F}_{\mathrm{j}-2} \quad(\mathrm{j}>1) .
$$

Induction gives

$$
F_{j} F_{j+1} \geqq 2^{j} \quad(j \geqq 0) ;
$$

by $\mathrm{q}_{\mathrm{j}} \geqq \mathrm{F}_{\mathrm{j}}(\mathrm{j} \geqq 0)$ we conclude

$$
\begin{equation*}
\left|\alpha^{(j+1)}-\alpha^{(j)}\right| \leqq 2^{-j} \quad(j \geqq 0) \tag{1.4}
\end{equation*}
$$

$\alpha=<a_{0}, \ldots, a_{n}>\in \mathbb{Q}$ and $\beta=<b_{0}, \ldots, b_{m}>\in \mathbb{Q}$ can easily be compared in size. In order to avoid case distinctions in case $n \neq m$ we introduce the symbol ω with the property $r<\omega$ or equivalently $\omega>r(r \in \mathbb{Q})$.

Convention 2. For every $\alpha=<a_{0}, \ldots, a_{n}>\in \mathbb{Q}$ let $a_{j}:=\omega(j>n)$ and hence $\alpha=\left\langle a_{0}, \ldots, a_{n}, \omega, \omega, \ldots\right\rangle$.

Obviously we have
Lemma 1.1. Let

$$
\begin{aligned}
& \alpha=<a_{0}, \ldots, a_{n}, \omega, \omega, \ldots>\in \mathbb{Q} \\
& \beta=<b_{0}, \ldots, b_{m}, \omega, \omega, \ldots>\in \mathbb{Q}
\end{aligned}
$$

$\alpha \neq \beta$; we define $k=k(\alpha, \beta) \in \mathbb{N}_{0}$ by

$$
a_{j}=b_{j}(0 \leqq j<k), a_{k} \neq b_{k} ;
$$

then we have

$$
\alpha<\beta \Leftrightarrow\left\{\begin{array}{l}
a_{k}<b_{k} \text { in case } 2 \mid k \tag{1.5}\\
a_{k}>b_{k} \text { in case } 2 \nmid k .
\end{array}\right.
$$

Here we have $k(\alpha, \beta)=k(\beta, \alpha) \leqq \sup \{n, m\}$.

§ 2. The ordered set K

We extend the set \mathbb{Q} to the set K by adjoining as new elements all infinite sequences $<a_{0}, a_{1}, a_{2}, \ldots>$ with $a_{0} \in \mathbb{Z}, a_{j} \in \mathbb{N}(j>0)$.

For $<a_{0}, a_{1}, a_{2}, \ldots>\in K, m \in \mathbb{N}$ we have

$$
\begin{equation*}
a_{m}=\omega \Rightarrow a_{j}=\omega(j>m) \tag{2.1}
\end{equation*}
$$

Let $\alpha=<a_{0}, a_{1}, a_{2}, \ldots>\in K, \beta=<b_{0}, b_{1}, b_{2}, \ldots>\in K, \alpha \neq \beta$. We extend the definition
of $k(\alpha, \beta)$ of Lemma 1.1 to $\alpha \notin \mathbb{Q} \vee \beta \notin \mathbb{Q}$. We have $k(\alpha, \beta)=k(\beta, \alpha)$. For $\alpha \notin \mathbb{Q} \vee \beta \notin \mathbb{Q}$ we use (1.5) as Definition 2.1 of $\alpha<\beta$ or equivalently of $\beta>\alpha$.

For $\alpha \in K, \beta \in K$ we have

$$
\begin{equation*}
\alpha<\beta \vee \alpha=\beta \vee \alpha>\beta \text {, exclusively. } \tag{2.2}
\end{equation*}
$$

Furthermore, let $\gamma \in K$; then we have

$$
\begin{equation*}
(\alpha<\beta \wedge \beta<\gamma) \Rightarrow \alpha<\gamma(\text { transitivity of }<) \tag{2.3}
\end{equation*}
$$

Let $\alpha=<a_{0}, a_{1}, a_{2}, \ldots>\in K \backslash \mathbb{Q}, j \in N_{0}$; we extend (1.2) and let

$$
\mathrm{a}^{(\mathrm{j})}:=\left\langle\mathrm{a}_{0}, \mathrm{a}_{1}, \ldots, \mathrm{a}_{\mathrm{j}}\right\rangle
$$

where we observe Convention 1 and possibly Convention 2 ; instead of (1.3) we have

$$
\begin{equation*}
\alpha^{(0)}<\alpha^{(2)}<\alpha^{(4)}<\ldots<\alpha<\ldots<\alpha^{(5)}<\alpha^{(3)}<\alpha^{(1)} \leqq \alpha^{(0)}+1 \tag{2.4}
\end{equation*}
$$

We have $\omega \notin K$ since $\omega=\alpha \in K$ gives the contradiction $\omega \leqq \alpha^{(0)}+1 \in \mathbb{Z}$.
Let $\alpha \in \mathrm{K}, \beta \in \mathrm{K}, \alpha \neq \beta, \mathrm{k}:=\mathrm{k}(\alpha, \beta)$. (1.5) implies

$$
\alpha<\beta \Rightarrow\left(\alpha^{(j)}=\beta^{(j)}(0 \leqq j<k) \wedge \alpha^{(j)}<\beta^{(j)}(j \geqq k)\right) .
$$

By (2.2) this implies

$$
\left(\underset{i \in \mathbb{N}_{0}}{\exists} \alpha^{(i)}<\beta^{(i)}\right) \Rightarrow \alpha<\beta .
$$

We need the consequences

$$
\left\{\begin{array}{l}
\alpha^{(2 \mathrm{j})} \leqq \beta^{(2 \mathrm{j})}(\mathrm{j} \geqq 0) \Leftrightarrow \alpha \leqq \beta \Leftrightarrow \alpha^{(2 \mathrm{j}+1)} \leqq \beta^{(2 j+1)}(\mathrm{j} \geqq 0), \tag{2.5}\\
0 \leqq \beta \Leftrightarrow 0 \leqq \beta^{(0)}, 0<\beta \Leftrightarrow 0<\beta^{(2)} .
\end{array}\right.
$$

Let $M \subset K, M \neq \emptyset ; \tau \in K$ is called upper bound of M if and only if $\alpha \leqq \tau(\alpha \in M)$; M is called bounded above if and only if there exists at least one upper bound of M; an upper bound σ of M is called supremum (or least upper bound) of M if and only if every upper bound τ of M satisfies $\sigma \leqq \tau$. M has at most one supremum.

Theorem 2.1 of the supremum. Every $M \subset K, M \neq \emptyset$, which is bounded above, has exactly one supremum in K and we denote it by sup M.

Proof. We construct $\sigma=\sup \mathrm{M}$. For $\mathrm{M} \cap \mathbb{Q}$ we observe Convention 2 . We use repeatedly the well-ordering of \mathbb{Z}. Let $\emptyset \neq \mathrm{A} \subset \mathbb{N}$; denote by $\mathrm{v}(\mathrm{A})$ the minimal element of A; in case A is bounded above, denote by $w(A)$ the maximal element of A; in case A is not bounded above, let $w(A):=\omega$; let also

$$
\begin{aligned}
& \mathrm{v}(\mathrm{~A} \cup\{\omega\}):=\mathrm{v}(\mathrm{~A}), \quad \mathrm{v}(\{\omega\}):=\omega, \\
& \mathrm{w}(\mathrm{~A} \cup\{\omega\}):=\omega, \quad \mathrm{w}(\{\omega\}):=\omega .
\end{aligned}
$$

For $\alpha=<a_{0}, a_{1}, a_{2}, \ldots>\in K$ we have

$$
a_{0} \leqq<a_{0}, a_{1}, a_{2}, \ldots><a_{0}+1
$$

$\mathrm{M}^{(0)}:=\mathrm{M}$ is bounded above and so is

$$
\mathbf{M}^{[0]}:=\left\{\mathrm{a}_{0}: \alpha \in \mathbf{M}\right\} \subset \mathbb{Z} ;
$$

we have $M^{[0]} \neq \emptyset$; denote by s_{0} the maximal element of $M^{[0]}$. Let

$$
M^{(1)}:=\left\{\alpha \in M^{(0)}: a_{0}=s_{0}\right\} .
$$

We have $\emptyset \neq \mathrm{M}^{(1)} \subset \mathrm{M}^{(0)}$,

$$
M^{[1]}:=\left\{a_{1}: \alpha \in M^{(1)}\right\} \neq 0, s_{1}:=v\left(M^{[1]}\right) .
$$

In case $s_{1}=\omega$ we are done and put

$$
\sigma:=\left\langle\mathrm{s}_{0}, \omega, \omega, \ldots\right\rangle
$$

In case $s_{1} \neq \omega$ we go on and let

$$
M^{(2)}:=\left\{\alpha \in M^{(1)}: a_{1}=s_{1}\right\}
$$

We have $\emptyset \neq \mathrm{M}^{(2)} \subset \mathrm{M}^{(1)}$,

$$
\mathrm{M}^{[2]}:=\left\{\mathrm{a}_{2}: \alpha \in \mathrm{M}^{(2)}\right\} \neq 0, \mathrm{~s}_{2}:=\mathrm{w}\left(\mathrm{M}^{[2]}\right) .
$$

In case $\mathrm{s}_{2}=\omega$ we are done and put

$$
\sigma:=\left\{\begin{array}{l}
\left.\left\langle\mathrm{s}_{0}, \mathrm{~s}_{1}, \omega, \omega, \ldots\right\rangle \text { in case } \mathrm{s}_{1}\right\rangle 1 \\
\left.<\mathrm{s}_{0}+1, \omega, \omega, \omega, \ldots\right\rangle \text { in case } \mathrm{s}_{1}=1
\end{array}\right.
$$

In case $s_{2} \neq \omega$ we go on and let

$$
\mathrm{M}^{(3)}:=\left\{\alpha \in \mathrm{M}^{(2)}: \mathrm{a}_{2}=\mathrm{s}_{2}\right\}
$$

We have $\emptyset \neq \mathrm{M}^{(3)} \subset \mathrm{M}^{(2)}$,

$$
M^{[3]}:=\left\{a_{3}: \alpha \in M^{(3)}\right\} \neq 0, s_{3}:=v\left(M^{[3]}\right) .
$$

In case $s_{3}=\omega$ we are done and put

$$
\sigma:=\left\{\begin{array}{l}
\left\langle s_{0}, s_{1}, s_{2}, \omega, \omega, \ldots\right\rangle \text { in case } s_{2}>1 \\
\left.s_{0}, s_{1}+1, \omega, \omega, \omega, \ldots\right\rangle \text { in case } s_{2}=1
\end{array}\right.
$$

In case $s_{3} \neq \omega$ we go on and let

$$
M^{(4)}:=\left\{\alpha \in M^{(3)}: \mathrm{a}_{3}=\mathrm{s}_{3}\right\}
$$

We have $\emptyset \neq \mathbf{M}^{(4)} \subset \mathbf{M}^{(3)}$,

$$
M^{[4]}:=\left\{a_{4}: \alpha \in M^{(4)}\right\} \neq 0, s_{4}:=w\left(M^{[4]}\right)
$$

In case $s_{4}=\omega$ we are done and put

$$
\sigma:=\left\{\begin{array}{l}
\left\langle s_{0}, s_{1}, s_{2}, s_{3}, \omega, \omega, \ldots\right\rangle \text { in case } s_{3}>1 \\
\left\langle s_{0}, s_{1}, s_{2}+1, \omega, \omega, \omega, \ldots\right\rangle \text { in case } s_{3}=1
\end{array}\right.
$$

In case $s_{4} \neq \omega$ we go on. In this fashion we have defined

$$
\sigma=<s_{0}, s_{1}, s_{2}, \ldots>\in K
$$

by a terminating or non-terminating construction where w() and v() have been used alternately.
Let $\alpha \in \mathrm{M}, \alpha \neq \sigma$. For $\mathrm{k}:=\mathrm{k}(\alpha, \sigma)$ (as after (2.1)) we have

$$
\begin{equation*}
\mathrm{a}_{\mathrm{j}}=\mathrm{s}_{\mathrm{j}}(0 \leqq \mathrm{j}<\mathrm{k}), \mathrm{a}_{\mathrm{k}} \neq \mathrm{s}_{\mathrm{k}} ; \tag{2.6}
\end{equation*}
$$

in the construction above $M^{(k)}$ appears by (2.1) and we have $\alpha \in \mathrm{M}^{(\mathrm{k})}$; by definition of s_{k} we have

$$
\left\{\begin{array}{l}
a_{k}<s_{k} \text { in case } 2 \mid \mathbf{k} \tag{2.7}\\
a_{k}>s_{k} \text { in case } 2 \nmid k ;
\end{array}\right.
$$

hence $\alpha<\sigma$, and σ is an upper bound of M.
Let $\alpha \in K, \alpha<\sigma$; by $\alpha<\sigma$ we have (2.6) and (2.7); since $a_{k} \neq \omega$ in case $2 \mid \mathrm{k}$ and since $\mathrm{s}_{\mathrm{k}} \neq \omega$ in case $2 \nless \mathrm{k}$ it follows $\mathrm{s}_{\mathrm{j}} \neq \omega(0 \leqq \mathrm{j}<\mathrm{k})$ by (2.1), and in the construction above certainly

$$
\begin{cases}\mathrm{M}^{(1)} & \text { in case } \mathrm{k}=0 \\ \mathrm{M}^{(\mathrm{k}+1)} & \text { in case } 2 \nmid \mathrm{k} \\ \mathrm{M}^{(\mathrm{k})} & \text { in case } 2 \mid \mathrm{k} \wedge \mathrm{k}>0\end{cases}
$$

appears.
Case $\mathrm{k}=0$. Every $\beta \in \mathrm{M}^{(1)}$ satisfies $\beta>\alpha$.
Case $2 \nmid \mathbf{k}$. Every $\beta \in \mathbf{M}^{(\mathbf{k}+1)}$ satisfies $\beta>\alpha$.
Case $2 \mid \mathrm{k} \wedge \mathrm{k}>0$. For $\mathrm{M}^{(\mathrm{k})}$ we distinguish 3 possibilities. Let firstly $\mathrm{s}_{\mathrm{k}}=\omega \in \mathrm{M}^{[\mathrm{k}]}$; then

$$
\beta:=<s_{0}, s_{1}, \ldots, s_{k-1}, \omega, \omega, \ldots>\in M^{(k)}
$$

and $\beta>\alpha$. Let secondly $s_{k}=\omega \notin M^{[k]}$; then there exist

$$
\beta:=<s_{0}, s_{1}, \ldots, s_{k-1}, b_{k}, b_{k+1}, \ldots>\in M^{(k)}
$$

with arbitrarily large $b_{k} \in \mathbb{N}$; for $b_{k}>a_{k}$ we have $\beta>\alpha$. Let thirdly $s_{k}<\omega$; then there exist

$$
\beta:=<s_{0}, s_{1}, \ldots, s_{k}, b_{k+1}, b_{k+2}, \ldots>\in M^{(k)}
$$

and we have $\beta>\alpha$. In every case we have found a $\beta \in \mathrm{M}$ with $\beta>\alpha$, and hence there exists no upper bound of M which is smaller than σ.

This proves the theorem.
This proof gives beyond (2.4) also

$$
\begin{equation*}
\alpha=\sup \left\{\alpha^{(2 n)}: n \geqq 0\right\} \quad(\alpha \in K) \tag{2.8}
\end{equation*}
$$

Theorem 2.2. For every $\alpha \in K, \beta \in K$ with $\alpha<\beta$ we can find $r \in \mathbb{Q}$ with $\alpha<r<\beta$.
Proof. For $\alpha \in \mathbb{Q} \wedge \beta \in \mathbb{Q}$ we take $r:=\frac{\alpha+\beta}{2}$. Let $\alpha \notin \mathbb{Q} \vee \beta \notin \mathbb{Q}, \mathrm{k}:=\mathrm{k}(\alpha, \beta)$, $\left.\left.\alpha=<a_{0}, a_{1}, \ldots\right\rangle, \beta=<b_{0}, b_{1}, \ldots\right\rangle$.

Case $2 \mid \mathrm{k}$. Then $\mathrm{a}_{\mathrm{k}}<\mathrm{b}_{\mathrm{k}}$; in case $\mathrm{b}_{\mathrm{k}+1}<\omega$ we choose
$r:=\left\langle b_{0}, b_{1}, \ldots, b_{k}, b_{k+1}+1\right\rangle$; in case $b_{k+1}=\omega$ we have $\beta \in \mathbb{Q}, \alpha \notin \mathbb{Q}$ and choose $r:=\left\langle a_{0}, a_{1}, \ldots, a_{k+1}, a_{k+2}+1\right\rangle$.

Case $2 \nmid k$. Then $a_{k}>b_{k}$; in case $a_{k+1}<\omega$ we choose $r:=\left\langle a_{0}, a_{1}, \ldots, a_{k}, a_{k+1}+1\right\rangle$; in case $a_{k+1}=\omega$ we have $\alpha \in \mathbb{Q}, \beta \notin \mathbb{Q}$ and choose $r:=\left\langle b_{0}, b_{1}, \ldots, b_{k+1}, b_{k+2}+1\right\rangle$.

§ 3. K as additive group

For $\alpha \in \mathbb{Q}, \beta \in \mathbb{Q}$ we have

$$
\begin{equation*}
\alpha+\beta=\sup \left\{\alpha^{(2 n)}+\beta^{(2 n)}: n \geqq 0\right\} \tag{3.1}
\end{equation*}
$$

For $\alpha \in K, \beta \in K, \alpha \notin \mathbb{Q} \vee \beta \notin \mathbb{Q}$ we use (3.1) as Definition 3.1 of $\alpha+\beta$; here we observe

$$
\alpha^{(2 n)}+\beta^{(2 n)}<\alpha^{(1)}+\beta^{(1)} \quad(n \geqq 0)
$$

by (1.3) and (2.4), and the Theorem of the supremum is applicable.
For $\alpha \in K, \beta \in K$ we have

$$
\begin{align*}
& \alpha+0=0+\alpha=\alpha, \\
& \alpha+\beta=\beta+\alpha \quad \text { (commutativity of addition). } \tag{3.2}
\end{align*}
$$

For $\alpha, \beta, \gamma, \delta$ from K we have

$$
\begin{equation*}
(\alpha \leqq \beta \wedge \gamma \leqq \delta) \Rightarrow \alpha+\gamma \leqq \beta+\delta \quad \text { (monotonicity of addition); } \tag{3.3}
\end{equation*}
$$

indeed:

$$
\begin{array}{ll}
\alpha \leqq \beta \Rightarrow \alpha^{(2 n)} \leqq \beta^{(2 n)} & (n \leqq 0) \text { by }(2.5)\} \Rightarrow \\
\gamma \leqq \delta \Rightarrow \gamma^{(2 n)} \leqq \delta^{(2 n)} & (n \leqq 0) \leqq \beta+\delta \text { by }(3.1) \\
\alpha^{(2 n)}+\gamma^{(2 n)} \leqq \beta^{(2 n)}+\delta^{(2 n)} & \\
\Rightarrow \alpha+\gamma \leqq \beta+\delta \text { by }(3.1) . &
\end{array}
$$

For $\alpha \in K, \beta \in K$ and h, j, m, n from \mathbb{N}_{0} we have

$$
\begin{equation*}
\alpha^{(2 h)}+\beta^{(2 \mathrm{j})} \leqq \alpha+\beta \leqq \alpha^{(2 \mathrm{~m}+1)}+\beta^{(2 \mathrm{n}+1)} \tag{3.4}
\end{equation*}
$$

by (1.3), (2.4), (3.3).
Theorem 3.1. For $\alpha \in K, \beta \in K, \gamma \in K$ we have

$$
\begin{equation*}
(\alpha+\beta)+\gamma=\alpha+(\beta+\gamma) \quad \text { (associativity of addition). } \tag{3.5}
\end{equation*}
$$

Proof. We make the assumption " $<$ "; by Theorem 2.2 there exist $r \in \mathbb{Q}, \mathbf{s} \in \mathbb{Q}$ with

$$
(\alpha+\beta)+\gamma<\mathrm{r}<\mathrm{s}<\alpha+(\beta+\delta) ;
$$

by (3.4) we have

$$
\begin{align*}
& \alpha^{(2 n)}+\beta^{(2 n)} \leqq \alpha+\beta, \gamma^{(2 n)} \leqq \gamma, \\
& \alpha \leqq \alpha^{(2 n+1)}, \beta+\gamma \leqq \beta^{(2 n+1)}+\gamma^{(2 n+1)}
\end{align*}
$$

by (3.3) we obtain

$$
\begin{aligned}
& \lambda_{\mathrm{n}}:=\alpha^{(2 \mathrm{n})}+\beta^{(2 \mathrm{n})}+\gamma^{(2 \mathrm{n})} \leqq(\alpha+\beta)+\gamma \\
& \varrho_{\mathrm{n}}:=\alpha^{(2 \mathrm{n}+1)}+\beta^{(2 \mathrm{n}+1)}+\gamma^{(2 \mathrm{n}+1)} \geqq \alpha+(\beta+\gamma) \quad(\mathrm{n} \geqq 0) ;
\end{aligned}
$$

by (2.3) we obtain in \mathbf{Q} on the one hand

$$
\lambda_{\mathrm{n}}<\mathrm{r}<\mathrm{s}<\varrho_{\mathrm{n}}
$$

$$
(n \geqq 0) ;
$$

by (1.4) we have on the other hand

$$
\varrho_{n}-\lambda_{n}<4^{1-n}
$$

$$
(\mathrm{n} \geqq 0)
$$

for all $n \in \mathbb{N}$ with $4^{1-n} \leqq s-r$ this is a contradiction. Similarly the assumption " $>$ " leads to a contradiction. Finally (2.2) gives (3.5).

For $\alpha \in K$ we have

$$
-\alpha^{(2 n+1)} \leqq-\alpha^{(2 n+3)} \leqq-\alpha^{(0)}
$$

by (1.3) and (2.4). For $\alpha \in \mathbb{Q}$ we have
(3.6) $-\alpha=\sup \left\{-\alpha^{(2 n+1)}: n \geqq 0\right\}$
and $\alpha+(-\alpha)=0$. For $\alpha \in K \backslash \mathbb{Q}$ we use (3.6) as Definition 3.2 of $-\alpha$.
Theorem 3.2. For $\alpha \in K$ we have $\alpha+(-\alpha)=0$.
Proof. By (3.6) we have

$$
-\alpha^{(2 n+1)} \leqq-\alpha
$$

$$
(\mathrm{n} \geqq 0)
$$

By (1.3), (2.4) we have

$$
-\alpha^{(2 j+1)} \leqq-\alpha^{(2 n)}
$$

$$
(\mathrm{j} \geqq 0, \mathrm{n} \geqq 0)
$$

and by (3.6) hence

$$
-\alpha \leqq-\alpha^{(2 \mathrm{n})}
$$

$$
(\mathrm{n} \geqq 0) .
$$

By (1.3), (2.4) we have

$$
\alpha^{(2 n)} \leqq \alpha \leqq \alpha^{(2 n+1)}
$$

Therefore (3.3) implies

$$
\alpha^{(2 n)}-\alpha^{(2 n+1)} \leqq \alpha+(-\alpha) \leqq \alpha^{(2 n+1)}-\alpha^{(2 n)}
$$

$$
(\mathrm{n} \geqq 0) .
$$

The assumption $0<\alpha+(-\alpha) \vee \alpha+(-\alpha)<0$ leads by Theorem 2.2, (2.3), (1.4) in \mathbb{Q} to the contradiction

$$
\underset{\mathbf{r} \in \mathbb{Q}, \quad \underset{\mathrm{n} \geqq}{\exists} \quad 0<\mathrm{r}<\alpha^{(2 \mathrm{n}+1)}-\alpha^{(2 \mathrm{n})} \leqq 4^{-\mathrm{n}} ~}{\forall}
$$

(2.2) gives the result.

Hence K is a commutative group with respect to + and has \mathbb{Q} as subgroup.

Let $\alpha \in \mathrm{K}, \beta \in \mathrm{K}, \alpha-\beta:=\alpha+(-\beta)$. We have

$$
\begin{equation*}
-(-\alpha)=\alpha,-(\alpha+\beta)=(-\alpha)+(-\beta)=-\alpha-\beta \tag{3.7}
\end{equation*}
$$

Since

$$
\begin{align*}
\alpha \leqq \beta & \Rightarrow-\beta^{(2 n+1)} \leqq-\alpha^{(2 n+1)} \tag{2.5}\\
& \Rightarrow-\beta^{(2 n+1)} \leqq-\alpha \tag{3.6}\\
& \Rightarrow-\beta \leqq-\alpha \tag{3.6}
\end{align*}
$$

we find

$$
\begin{equation*}
\alpha<\beta \Leftrightarrow-\beta<-\alpha . \tag{3.8}
\end{equation*}
$$

§ 4. Multiplication in K

For $\alpha \in \mathrm{K}$ we have

$$
|\alpha|:=\sup \{\alpha,-\alpha\}=\left\{\begin{array}{r}
\alpha \text { in case } \alpha \geqq 0 \\
-\alpha \text { in case } \alpha<0
\end{array}\right. \text { by (3.8); }
$$

we have $|\alpha|=|-\alpha| \geqq 0$. For $\alpha \in K, \beta \in K$ we have

$$
|\alpha|=|\beta| \Leftrightarrow(\alpha=\beta \vee \alpha=-\beta) .
$$

For $\alpha \in \mathbb{Q}, \beta \in \mathbb{Q}$ we have

$$
\alpha \beta= \begin{cases}\sup \left\{\alpha^{(2 \mathrm{n})} \beta^{(2 \mathrm{n})}: \mathrm{n} \geqq 0\right\} & \text { in case } \alpha \geqq 0 \wedge \beta \geqq 0 \tag{4.1}\\ -(|\alpha| \cdot \beta) & \text { in case } \alpha<0 \wedge \beta>0 \\ -(\alpha \cdot|\beta|) & \text { in case } \alpha>0 \wedge \beta<0 \\ |\alpha| \cdot|\beta| & \text { in case } \alpha<0 \wedge \beta<0\end{cases}
$$

For $\alpha \in K, \beta \in K, \alpha \notin \mathbb{Q} \vee \beta \notin \mathbb{Q}$ we use (4.1) as Definition 4.1 of $\alpha \cdot \beta$ (or shorter $\alpha \beta$); in the uppermost case we observe

$$
\alpha^{(2 n)} \beta^{(2 n)} \leqq \alpha^{(1)} \beta^{(1)}
$$

by (1.3), (2.4) and hence the Theorem of the supremum is applicable.
Let $\alpha \in K, \beta \in K$; (4.1) gives
(4.2) $\alpha \beta=\beta \alpha \quad$ (commutativity of multiplication), $0 \alpha=0,1 \alpha=\alpha$ by (2.8) ,
(4.3) $\left\{\begin{array}{ll}\alpha>0 \Rightarrow \alpha^{(2)}>0 \\ \beta>0 \Rightarrow \beta^{(2)}>0\end{array}\right\} \Rightarrow \alpha \beta>0$ by (2.3) $\quad \begin{cases}\alpha<0 \wedge \beta>0 & \Rightarrow \alpha \beta<0 \text { by (3.8) } \\ \alpha>0 \wedge \beta<0 & \Rightarrow \alpha \beta<0 \text { by (3.8) } \\ \alpha<0 \wedge \beta<0 & \Rightarrow \alpha \beta>0,\end{cases}$

$$
\alpha \beta=0 \Leftrightarrow(\alpha=0 \vee \beta=0) \text { by (2.2); }
$$

distinguishing 4 cases as in (4.1) we obtain
(4.4) $\quad|\alpha \beta|=|\alpha||\beta|$
(indeed: for $\alpha \geqq 0 \wedge \beta \geqq 0$ this says $\alpha \beta=\alpha \beta$; for $\alpha<0 \wedge \beta>0$ we have
$\alpha \beta:=-(|\alpha| \beta)<0,|\alpha \beta|=|\alpha| \beta($ by $(3.7))=|\alpha||\beta| ;$ for $\alpha>0 \wedge \beta<0$ we have
$\alpha \beta:=-(\alpha|\beta|)<0,|\alpha \beta|=\alpha|\beta|=|\alpha||\beta|$; for $\alpha<0 \wedge \beta<0$ we have
$\alpha \beta:=|\alpha||\beta|>0,|\alpha \beta|=|\alpha||\beta| ;)$ and
(4.5) $\quad(-\alpha) \beta=-(\alpha \beta)=\alpha(-\beta),(-\alpha)(-\beta)=\alpha \beta$.

For $\alpha, \beta, \gamma, \delta$ from K we have
(4.6) ($0 \leqq \alpha \leqq \beta \wedge 0 \leqq \gamma \leqq \delta) \Rightarrow \alpha \gamma \leqq \beta \delta \quad$ (monotonicity of multiplication);
indeed: we have $0 \leqq \alpha^{(2 \mathrm{n})} \gamma^{(2 \mathrm{n})} \leqq \beta^{(2 \mathrm{n})} \delta^{(2 \mathrm{n})}$ by (2.5) and hence $\alpha \gamma \leqq \beta \delta$.
For $\alpha \in K, \beta \in K, \alpha \geqq 0, \beta \geqq 0$ and h, j, m, n from \mathbb{N}_{0} we have

$$
\begin{equation*}
0 \leqq \alpha^{(2 h)} \beta^{(2 j)} \leqq \alpha \beta \leqq \alpha^{(2 m+1)} \beta^{(2 n+1)} \tag{4.7}
\end{equation*}
$$

by (1.3), (2.4), (4.6).
Theorem 4.1. For $\alpha \in K, \beta \in K, \gamma \in K$ we have
(4.8) $\quad(\alpha \beta) \gamma=\alpha(\beta \gamma) \quad$ (associativity of multiplication).

Proof. We consider first the special case $\alpha>0, \beta>0, \gamma>0$; we make the assumption "<" (as in the proof of (3.5)); by Theorem 2.2 there exist $r \in \mathbb{Q}, s \in \mathbb{Q}$ with

$$
(\alpha \beta) \gamma<\mathrm{r}<\mathrm{s}<\alpha(\beta \gamma) ;
$$

by (4.7) we have

$$
0 \leqq \alpha^{(2 \mathrm{n})} \beta^{(2 \mathrm{n})} \leqq \alpha \beta, 0 \leqq \gamma^{(2 \mathrm{n})} \leqq \gamma,
$$

$$
0<\alpha \leqq \alpha^{(2 n+1)}, 0 \leqq \beta \gamma \leqq \beta^{(2 n+1)} \gamma^{(2 n+1)} \quad(n \geqq 0) ;
$$

by (4.6) we obtain

$$
\lambda_{\mathrm{n}}:=\alpha^{(2 \mathrm{n})} \beta^{(2 \mathrm{n})} \gamma^{(2 \mathrm{n})} \leqq(\alpha \beta) \gamma,
$$

$$
\varrho_{\mathrm{n}}:=\alpha^{(2 \mathrm{n}+1)} \beta^{(2 \mathrm{n}+1)} \gamma^{(2 \mathrm{n}+1)} \geqq \alpha(\beta \gamma) \quad(\mathrm{n} \geqq 0) ;
$$

by (2.3) we obtain in \mathbb{Q} on the one hand

$$
\lambda_{\mathrm{n}}<\mathrm{r}<\mathrm{s}<\mathrm{Q}_{\mathrm{n}}
$$

by (1.3), (2.4), (1.4) we have
(4.9) $\quad 0 \leqq \alpha^{(2 n+1)}-\alpha^{(2 n)} \leqq 4^{-n}, 0 \leqq \alpha^{(2 n)} \leqq \alpha^{(1)}$
and similarly for β and γ; in \mathbb{Q} this gives

$$
\begin{align*}
\varrho_{n}-\lambda_{n} & \leqq\left(\alpha^{(2 n)}+4^{-n}\right)\left(\beta^{(2 n)}+4^{-n}\right)\left(\gamma^{(2 n)}+4^{-n}\right)-\alpha^{(2 n)} \beta^{(2 n)} \gamma^{(2 n)} \\
& \leqq 4^{-n}\left(\alpha^{(1)}+1\right)\left(\beta^{(1)}+1\right)\left(\gamma^{(1)}+1\right)
\end{align*}
$$

and for large n we have on the other hand

$$
\varrho_{n}-\lambda_{n}<s-r
$$

this is a contradiction. Similarly the assumption " $>$ " leads to a contradiction; finally (2.2) gives (4.8). We consider now the general case; by (4.4) and by the special case we have

$$
|\alpha||\beta \gamma|=|\alpha \beta||\gamma| ;
$$

using this and also (4.2), (4.3), (4.4), (4.5) we settle the remaining 7 cases.
Theorem 4.2. For $\alpha \in K, \beta \in K, \gamma \in K$ we have
(4.10) $\alpha(\beta+\gamma)=\alpha \beta+\alpha \gamma \quad$ (distributivity).

Proof. We consider first the special case $\alpha>0, \beta>0, \gamma>0$; we shall show that the assumption "<" as well as the assumption " $>$ " gives a contradiction; then (2.2) gives (4.10).
"<". By Theorem 2.2 there exist $r \in \mathbb{Q}, s \in \mathbb{Q}$ with

$$
\alpha(\beta+\gamma)<\mathrm{r}<\mathrm{s}<\alpha \beta+\alpha \gamma
$$

by (1.3), (2.4), (2.5), (3.3), (4.6) and with
(4.11) $\lambda_{n}:=\alpha^{(2 n)}\left(\beta^{(2 n)}+\gamma^{(2 n)}\right), \varrho_{n}:=\alpha^{(2 n+1)} \beta^{(2 n+1)}+\alpha^{(2 n+1)} \gamma^{(2 n+1)}$
we obtain in \mathbb{Q} at once

$$
\text { (4.12) } \lambda_{n}<r<s<\varrho_{n}
$$

$$
(n \geqq 0) ;
$$

by (4.9) this is a contradiction for large n.
" $>$ ". By Theorem 2.2 there exist $\mathrm{r} \in \mathbb{Q}, \mathrm{s} \in \mathbb{Q}$ with

$$
\alpha \beta+\alpha \gamma<\mathrm{r}<\mathrm{s}<\alpha(\beta+\gamma)
$$

with (4.11) we obtain in \mathbb{Q} again (4.12).
We consider now the general case. Trivially we may suppose $\alpha \neq 0, \beta \neq 0, \gamma \neq 0$. Since

$$
\begin{aligned}
& (-\alpha)(\beta+\gamma)=-\alpha(\beta+\gamma)=\alpha((-\beta)+(-\gamma)) \\
& (-\alpha) \beta+(-\alpha) \gamma=-(\alpha \beta+\alpha \gamma)=\alpha(-\beta)+(\alpha(-\gamma)
\end{aligned}
$$

by (4.5), (3.7) and since

$$
\lambda=\mu \Leftrightarrow-\lambda=-\mu \quad(\lambda \in K, \mu \in K)
$$

we have

$$
\begin{align*}
\alpha(\beta+\gamma)=\alpha \beta+\alpha \gamma & \Leftrightarrow(-\alpha)(\beta+\gamma)=(-\alpha) \beta+(-\alpha) \gamma \tag{4.13}\\
& \Leftrightarrow \alpha((-\beta)+(-\gamma))=\alpha \cdot(-\beta)+\alpha(-\gamma) .
\end{align*}
$$

In the general case we may by (4.13) and by $(-\beta)+(-\gamma)=-(\beta+\gamma)$ also suppose $\alpha>0, \beta+\gamma>0$. By (3.2) it is sufficient to prove (4.10) for

$$
\alpha>0, \beta>0, \gamma<0, \beta+\gamma>0 .
$$

But then we have

$$
\lambda:=-\gamma>0, \mu:=\beta-\lambda=\beta+\gamma>0
$$

and (4.10) reads by (4.5) now

$$
\alpha \mu=\alpha \beta-\alpha \lambda
$$

or, by (3.5) and Theorem 3.2, equivalently

$$
\alpha \mu+\alpha \lambda=\alpha(\mu+\lambda) .
$$

But this has been established in the special case.
Hence \mathbf{K} is a commutative ring with respect to + , • without divisors of zero and has \mathbb{Q} as subring.

The axiom of (Eudoxos and) Archimedes for K can immediately be verified by using Theorem 2.2, (4.6), (2.3).

§ 5. Division in K

For $\alpha \in K, \alpha>0$ we have

$$
\begin{aligned}
& 0<\alpha^{(2)} \leqq \alpha^{(2 \mathrm{n}+3)} \leqq \alpha^{(2 \mathrm{n}+1)} \leqq \alpha^{(1)} \text { by (1.3), (2.4), } \\
& 0<\frac{1}{\alpha^{(1)}} \leqq \frac{1}{\alpha^{(2 n+1)}} \leqq \frac{1}{\alpha^{(2 n+3)}} \leqq \frac{1}{\alpha^{(2)}}
\end{aligned}
$$

For $\alpha \in \mathbb{Q}, \alpha \neq 0$ we have

$$
\alpha^{-1}= \begin{cases}\sup \left\{\frac{1}{\alpha^{(2 n+1)}}: n \geqq 0\right\} & \text { in case } \alpha>0 \tag{5.1}\\ -|\alpha|^{-1} & \text { in case } \alpha<0\end{cases}
$$

and $\alpha \alpha^{-1}=1$. For $\alpha \in K \backslash Q$ we use (5.1) as Definition 5.1 of α^{-1}.
Theorem 5.1. For $\alpha \in K, \alpha \neq 0$ we have $\alpha \alpha^{-1}=1$.
Proof. Let first $\alpha>0$. By (5.1) we have

$$
0<\frac{1}{\mathrm{a}^{(2 n+1)}} \leqq \alpha^{-1}
$$

$$
(n \geqq 0) .
$$

By (1.3), (2.4) we have

$$
0<\frac{1}{a^{(22+1)}} \leqq \frac{1}{a^{(2 n+2)}}
$$

$$
(\mathrm{j} \geqq 0, \mathrm{n} \geqq 0)
$$

and by (5.1), (2.3) hence

$$
0<\alpha^{-1} \leqq \frac{1}{\alpha^{\left(2 n_{n}+2\right)}}
$$

$$
(\mathrm{n} \geqq 0) .
$$

By (1.3), (2.4) we have

$$
0<\alpha^{(2 n+2)} \leqq \alpha \leqq \alpha^{(2 n+1)}
$$

$$
(n \geqq 0) .
$$

Therefore (4.6) implies

$$
0<\frac{\alpha^{(2 n+2)}}{\alpha^{(2 n+1)}} \leqq \alpha \alpha^{-1} \leqq \frac{\alpha^{(2 n+1)}}{\alpha^{(2 n+2)}}
$$

$$
(n \geqq 0) .
$$

By (1.3), (2.4), (1.4) we have

$$
\begin{aligned}
& 0<1-\frac{\alpha^{(2 n+2)}}{} \leqq \frac{1}{4^{(2 n+1)}} \leqq \frac{1}{4^{\left(2 \alpha^{(2)}\right.}}, \\
& 0 \leqq \frac{\alpha^{(2)^{2 n+1)}}}{a^{(2 n+2)}}-1 \leqq \frac{1}{4^{n} \alpha^{(2 n+2)}} \leqq \frac{1}{4^{n} a^{(2)}}
\end{aligned}
$$

$$
(n \geqq 0)
$$

The assumption $1<\alpha \alpha^{-1} \vee \alpha \alpha^{-1}<1$ leads by Theorem 2.2 , (2.3) in \mathbb{Q} to the contradiction

$$
\underset{\mathrm{r} \in \mathrm{Q}, \mathrm{n} \in \mathbb{N}_{0}}{\forall} 1<\mathrm{r}<1+\frac{1}{4^{\mathrm{n}} \mathrm{a}^{(2)}} .
$$

(2.2) gives the result. Let now $\alpha<0$. By (3.8) we have $|\alpha|=-\alpha>0$ and therefore $|\alpha||\alpha|^{-1}=1$. By (5.1) and (4.5) we obtain

$$
\alpha \alpha^{-1}=(-|\alpha|)\left(-|\alpha|^{-1}\right)=|\alpha||\alpha|^{-1}=1
$$

Hence K is a field with respect to,$+ \cdot$ and has \mathbb{Q} as subfield.

Final remarks

Altogether K is a complete ordered field and has \mathbb{Q} as subfield. The elements $<a_{0}, a_{1}, \ldots>$ of K we call now real numbers and we write \mathbb{R} instead of K.

At several occasions we have used a common principle: a theorem for \mathbb{Q} is used to suggest a definition for \mathbb{R}. This was done in passing from $\mathbb{Q}=E$ ' to $\mathbb{R}:=K$ and from Lemma 1.1, (3.1), (3.6), (4.1), (5.1) to the corresponding definition.

Let $\alpha=<a_{0}, a_{1}, \ldots>\in \mathbb{R} \backslash Q$; by (2.4), (1.4) we have

$$
\left|\alpha-\alpha^{(n)}\right|<\left|\alpha^{(n+1)}-\alpha^{(n)}\right| \leqq 2^{-n}
$$

and hence

$$
\alpha=\lim _{n \rightarrow \infty} \alpha^{(n)} ;
$$

by (1.1) this means

$$
<a_{0}, a_{1}, a_{2}, \ldots>=a_{0}+\frac{1}{a_{1}+\frac{1}{a_{2}+.}}:=\lim _{n \rightarrow \infty}\left(a_{0}+\frac{1}{a_{1}+. \cdot}\right)
$$

(infinite continued fraction).

This paper was written for the conference in honor of Richard Dedekind (18311916), held in October 1981 in Braunschweig.

