WAVE RESONANCES DETECTED IN A WAVE TANK AND IN THE FIELD

Fritz Buesching

Abstract: At Sylt Island/Germany, boundary conditions formed by a structured long shore bar, running roughly parallel to the shoreline, are found to be the reason for intense resonance absorption effects at storm surge conditions. Incoming waves interact with the water level deflections in the trough located between the bar and the beach in such a way that frequency components match a limited number of possible harmonics of the enclosed body of water. As there are significant energy densities to be found in the wave energy spectra at harmonic numbers 1 through 3 of the enclosed water body, this phenomenon is believed to be responsible for the tremendous coastal recessions at this island due to storm surge occurrences in the past. The existence of resonant seiching modes is deduced from intense low frequency anomalous dispersion effects (ADE), which had been found in the 1970s. Such effects - well known from resonant absorption of electromagnetic waves - recently also could be verified in a wave tank. Using a special technique of analysing composite spectra (containing information of incoming, reflected and re-reflected waves), it was possible to detect a set of partial standing waves existing simultaneously. As each partial clapotis is composed of a number of neighbouring frequency components comprising of nearly equal wave length, such components must obey an anomalous dispersion law \(dc/df > 0 \).

INTRODUCTION

The term wave resonance often is used in connection with the Bragg Scattering Phenomenon, originally observed in X-ray-crystallography by the Bragg brothers in 1913. With respect to shallow water waves Heathershaw (1982) impressively demonstrated that, at so-called Bragg resonance, a partially standing wave forms on the seaward side of a series of long-shore sandbars, linearly changing into a propagating wave at the landward side of the sandbar configuration. In particular a significant increase in reflected wave energy is due to multiple backscattering from neighboring bars, if the incident progressive waves are twice as long as the bar spacing. See also Mei (1989) and others.

By contrast the present study focuses on boundary conditions different from a periodic series of long-shore sandbars, i.e. a configuration merely consisting of a single...
sandbar running roughly parallel to the shoreline with the waves reflecting in-between. Actually the water body in the trough between the bar and the beach is looked upon as a resonator, which is able to execute different modes of natural oscillations; the resonator incited by the incident waves arriving from sea.

Nevertheless the author also refers to resonance phenomena known from electromagnetic waves (EM-waves): As is well known, both air and water exhibit strong resonant absorption of EM-waves in both the ultraviolet and infrared regions of the spectrum. The significant circumstances can best be demonstrated by the behaviour of the complex dielectric constant \(\varepsilon = \text{Re}[\varepsilon] + i \cdot \text{Im}[\varepsilon] \), which nearly corresponds to the square of the complex refractive index \(N = n + ik \). In Fig.01 the real and the imaginary part of the dielectric constant are plotted along with frequency. The real part \(\text{Re}[\varepsilon] \) describes the dispersion property \(\frac{d\varepsilon}{df} \), whereas the imaginary part \(\text{Im}[\varepsilon] \) represents an absorption quantity. It is well known, that the definition of the normal dispersion

Fig.01. Resonant Absorption of EM-Waves: Real and Imaginary Components of the Complex Dielectric Constant \(\varepsilon \) (schematically).

(representing the normal sequence of spectral colours according to \(\frac{dn}{df} > 0 \) or \(\frac{d\varepsilon}{df} > 0 \) respectively) stems from observations in the very narrow visible frequency band (merely comprising 2% of the total electromagnetic spectrum). It is, however, obvious, that the dispersion globally is anomalous in the range between long radio waves and high frequency X-rays, see dashed line. But most impressively the spots of resonance are assigned by maxima of the imaginary part and by oscillations of the real part of the dielectric constant, i.e. by strong anomalous dispersion \(\frac{d\varepsilon}{df} << 0 \) neighboured by maxima and minima right next to the resonance frequency. Therefore the statement applies that resonance, absorption and anomalous dispersion are inextricably connected phenomena. The one can not exist without the others.

In the figure shown the strong anomalous dispersion effects are due to ion-resonances in the IR-range and due to electron-resonances in the UV-range. Hence, the maxima of absorption at the same time represent maxima of energies, which are due to the
interaction of the exciting waves with ion-resonators or electron-resonators respectively.

In the remainder of this publication an analogue correlation of such phenomena also will be discussed for gravity waves in a wave tank (model) as well as in the field. In both cases the resonators are formed by confined water bodies, which are able to execute different modes of natural oscillations. Because of the lack of space here, the field measurements can not be addressed in detail. Missing information and additional discussion and conclusions can be found in Büsching (2003).

WAVE RESONANCE PHENOMENA IN A WAVE TANK

Model investigations had been carried out in a wave tank of Bielefeld University of Applied Sciences (BUAS), see Fig.02.
tests had been carried out comprising a rather big number of 91 wave probe stations positioned in front of the slope from station 0.79m to 9.79m, equally spaced 10cm, nearly all over the total length of the wave tank. The signals from the wave probes were recorded quasi synchronously and were processed by spectrum analyses confined to a total frequency range $0.03263 \leq f \leq 1.3997$ Hz. As an example in Fig.03 there are plots of spectra synchronously taken at 6 different gage locations, spaced 20cm, in front of the smooth plane slope. Actually those composite energy spectra (containing information of incoming waves, reflected waves and re-reflected waves) demonstrate the changes of energy content along the slope in the range extending from the slope toe (station 1.79m) to the zone of maximum breaker instability (stations 1.19m to 0.79m).

In the following 3 diagrams (Fig.04 – Fig.06) the values of all the integrated spectra IA (variance) are plotted along with the gauge station distance from the slope face, i.e., from the point IP of the still water level (SWL) intersecting the slope, which is also sketched in relation to the probe stations at the bottom of Fig.04.

![Diagram](http://www.digibib.tu-bs.de/?docid=00043938)

Fig. 04: Integral Values of Spectral Energy within $0.03 \leq f \leq 1.4$ Hz, Documenting the Existence of a Partial Clapotis in Front of the Slope 1:3.

Because the variance is proportional to the wave energy (of vertical water level deflections) contained in the respective frequency range, changes in those plots can be interpreted with respect to the actual position and dominance of a possible partial standing wave (partial clapotis) in relation to the sloping structure.

In Fig.04 the variation in the plot of the total energy indicates that the length of a “resultant partial Clapotis” is about $L_C = 3.65m$ (distance between the first and third minimum of energy). Although there are some disturbances to be seen in the plot, it will be shown that conclusions of good quality can be drawn from that data, provided that the total frequency range is subdivided into a number of smaller frequency ranges and the higher noise frequencies ($f > 1$ Hz) are discarded.

Because of insufficient graphic resolution, a respective presentation of all 256 frequency components separately (spaced $\Delta f = 0.00543$ Hz) was abandoned. The essential phenomenon, however, comes out clearly enough from Fig.05, where about 60 lines of energy relating to enlarged frequency intervals ($n \cdot \Delta f$) are calculated for a confined frequency range $0.45Hz \leq f \leq 0.66$ Hz.
It can be seen clearly that there are lines of energy, possessing similar energy distributions in the length expansion, relating to the distance from the sloping structure (point IP); i.e., they have nearly same distances between neighbouring energy minima or neighbouring energy maxima respectively and nearly same phase angles.

With respect to the frequency range $0.4015 \, \text{Hz} \leq f \leq 0.8030 \, \text{Hz}$, 82 energy lines were found, which could be assigned to 12 different partial clapotis lengths corresponding to 12 definable sub-frequency ranges, see Fig.06. Thus the partial clapotis, documented in Fig.04, can be recognized approximately as the resulting wave from 12 superimposing partial clapotis waves existing in the wave tank synchronously. In order to distinguish the resultant partial clapotis from its components in the
following the latter shall be named shortly “partial waves”. The general properties of such partial waves can be derived from their energy distribution in the length expansion (energy line) as shown in Fig. 07.

![Fig. 07: Sketch of Partial Standing Wave at a Slope.](image)

The particle movements at phases of the loops can be approximated by ellipses possessing bigger vertical principle axis and those at the node phases by ellipses possessing bigger horizontal principle axis. The orbital motions of partial waves approaching the slope may be described by increasing vertical ellipse axis at the loops and decreasing vertical ellipse axis at the nodes. Based on the respective 12 energy lines the author previously had published additional information on increasing reflection coefficients with frequencies decreasing (Büsching, 1992) and on the relative deformation of the partial clapotis waves approaching the slope (Büsching, 2001).

![Fig. 08: Component Lengths L, Phase Velocities c and Harmonic Numbers n Plotted with Frequency.](image)
The most striking outcome, however, with respect to the above data analysis, is the fact that partial waves – comprising of nearly equal component lengths - must obey an anomalous dispersion law $dc/df > 0$, because (at water depth being constant) the phase velocity $c = L \cdot f$ increases with frequency, see lower red curve of Fig.08.

In the upper part of Fig.08 the lengths associated with the 82 energy lines, mentioned above, are denoted L(AD)(f) (AD = anomalous dispersion), whereas L(ND)(f) (ND = normal dispersion; dashed line) refers to the classical dispersion relation according to water depth $d = 0.626$ m in the wave tank. Both curves can be named *Length Spectra*. Besides the mentioned (red) phase velocity spectrum $c(AD)(f)$ also the theoretical phase velocity spectrum $c(ND)(f)$ is shown in the lower part of the figure.

Because of the stepped structure of L(AD)(f), suggesting the existence of different oscillatory modes of the enclosed water body in the tank synchronously, in the following it will be shown that boundary conditions are compatible with higher harmonics. Natural frequencies of a water volume in a basin comprising of vertical walls can be calculated in using Merian’s formula (01):

$$f = \frac{(n+1) \cdot \frac{c}{2 \cdot D}}{\text{Hz}}$$

where $D = \text{horizontal wall distance}$; $c = \text{wave celerity}$; $n = \text{harmonic number}$. $n = 0$ denotes the fundamental oscillation and $n = 1, 2, 3...$ are named first, second, third harmonic etc. Solving formula (01) with respect to harmonic numbers $n[-]$, yields formula (02):

$$n(f)[-] = \frac{2 \cdot D \cdot f}{c} - 1$$

Applying $c = L \cdot f$ yields formula (03):

$$n(L)[-] = \frac{2 \cdot D}{L} - 1$$

At boundary conditions consisting of a slope at one side and a moving flap at the other (Fig.02) no distinct distance D can be suggested. That is why multiples of half-wave lengths of the 4 dominating longest partial waves (5.81m, 4.88m, 4.21m und 3.58m) were used in the formula together with the theoretical phase velocity, see Fig.02. As $D_1 = 4 \times 4.88/2 = 9.76$m approximately equals the minimum distance between wave maker and the toe of the slope, the distances $D_2 = 5 \times 4.21/2 = 10.525$m, $D_3 = 6 \times 3.58/2 = 10.74$m and $D_4 = 4 \times 5.81/2 = 11.62$m mark different points on the wet slope. Hence, according to such 4 distances there are also 4 different functions $n(f)$ in Fig.08. As a result it can be stated that the partial waves correspond to higher harmonic numbers $3 \leq n \leq 8$ of the enclosed water body. The fact that several harmonics obviously are linked by the same fundamental oscillation, actually confirms the existence of oscillatory modes pronounced by resonance. Thus intrinsic resonance frequency ranges are defined by frequency components comprising of nearly equal wave lengths. With respect to the function $c(AD)(f)$ deviating distinctly from $c(ND)(f)$ (Fig.08), the resonant components can be identified by the steps in the phase velocity function. *Portions of anomalous dispersion ($dc/df > 0$) are neighboured by portions of stronger normal dispersion ($dc/df << 0$).* It should be put stress on the fact that such a characteristic indeed resembles resonance features well known from EM-waves propagating through dielectrics, - although the frequency scales might be different, confer Fig.01. This feature is even more impressive in Fig.09, where the quantities of Fig.08 are also to be seen, however, transformed to the *wave lengths* axis, - in order to link dispersion characteristics additionally to the energy content of the partial waves. (Note that the horizontal axis is shown side-inverted in order to ease comparison with
Fig.08.) Referring to c(AD)(L), the respective deviation is documented by *jumps*. Here there is \(dc/dL << 0 \) tending to the limiting value \(dc/dL \to -\infty \), while in the wave lengths ranges between the discrete spots of resonance there are *stronger* gradients \(dc/dL > 0 \).

![Graph showing phase velocities, harmonic numbers, and energy plotted with lengths of partial waves]

Fig. 09: Phase Velocities \(c \), Harmonic Numbers \(n_i \) and Energy Plotted with Lengths of Partial Waves

Additionally the *values of energy* are allotted to the respective lengths of partial waves. It can be seen that maximum energies of nearly equal amount belong to partial wave lengths 4.21m and 3.58m. Calculating the arithmetic mean wave length from all partial waves (weighted with the energy) obviously such a wave length corresponds to the resultant partial clapotis length \(L_C = 3.65 \text{m} \) found from Fig.04. Finally the 4 functions of oscillatory mode numbers also are plotted as \(n_i(L) \) within Fig.09.

STORM WAVE RESONANCES AT A RIDGE COAST

Water level deflections \(\eta_{100}(t) \) and \(\eta_{85}(t) \) synchronously measured at two locations, 15m distant, on the beach (to be seen from Fig.10) had repeatedly been the matter of analyses carried out by the author previously. (Büsching, 1975, 1976)

![Gage location at the Beach of Westerland, Sylt Island, 1973](image)

Fig.10: Gage Location at the Beach of Westerland, Sylt Island, 1973.

With regard to the present topic the *phase velocity spectrum* \(c(f) \) and basing thereon the *lengths spectrum* \(L(f) \), are of special interest.

\[
c(f) = L \cdot f = \frac{xy}{\varphi_\nu(f)/2 \cdot \pi \cdot f}
\]

(04)
\[L(f) = \frac{x_y}{\varphi_{xy}(f)/2 \cdot \pi} \]

where \(\bar{x}_y = 15 \text{m} \) = distance between stations \(x \) and \(y \) in the coast normal control line and \(\varphi_{xy}(f) \) = phase difference between the Fourier components of frequencies \(f_i \) related to those stations.

As an example all the spectral functions of measurement number 04 (December 13, 1973, 17:00) are placed one beneath another in Fig.11 through 13. Because of space limitations, only this one out of five similar measurements at water depths \(d \geq 3.6 \text{m} \) can be shown here. The remaining measurements are contained in Büssing (2003, 2004).

Fig.11. Synchronously Measured Energy Spectra of Storm Waves at Stations 100m and 85m

In Fig.11 the considerable peak energy densities suggest that resonance phenomena might be effective. Accordingly a strong anomalous dispersion is to be seen from the phase velocities at the energy containing frequencies in Fig.12. Moreover the respective

Fig.12. Spectra of Phase Velocities \(c(f) \), Lengths \(L(f) \) and Coherence

...
frequency range is \textit{neighbored by portions of stronger normal dispersion}, as it is true to the resonant absorption phenomena of EM-waves and to the wave tank results as well.

Finally also the component wave lengths tend to be \textit{nearly constant} at the respective frequencies, see Fig.12 and Fig.13. Actually the calculated harmonic numbers $n[-]$ in Fig.13 suggest that the peak of the spectrum matches the first harmonic oscillatory mode of the enclosed water body and that higher harmonics ($n = 2, 3, 4$) as well as the fundamental oscillation ($n = 0$) might also be present.

\textbf{Fig.14. Phase Velocities $c(\text{ND})(L)$ and $c(\text{AD})(L)$, Harmonic Numbers $n(L)$ and Line Spectra of Energy Density $ED(L)$}

Similar to Fig.09 (model investigations) the spectra of phase velocities $c(\text{ND})(f)$ and $c(\text{AD})(f)$ (Fig.12) had been transferred into spectra $c(\text{ND})(L)$ and $c(\text{AD})(L)$ respectively, confer curves in the upper part of Fig.14. $c(\text{AD})(L)$ is shown, however, restricted to the frequency range $0.05Hz \leq f \leq 0.18Hz$ only, where mean coherence values are big enough (about $\gamma_{xy}^2 = 0.8$; not shown). As expected in the spectrum $c(\text{AD})(L)$ jumps ($dc/dL \rightarrow \infty$) also appear, by which the higher harmonics can be
identified. The corresponding harmonic numbers \(n_1(L) \) are shown in the lower part of the figure. Contrary to the model investigations, however, only adjacent to the first harmonic there are stronger gradients \(\frac{dc}{dL} > 0 \) compared to that of \(c(ND, d = 3.7m) \), while the total trend is \(\frac{dc}{dL} < 0 \), representing anomalous dispersion. Finally in Fig.14 and Fig.15 the line spectra of energy densities \(ED(L) \) are plotted with reference to stations 100m and 85m.

![Graph showing energy density spectra](image)

Fig.15. Energy Density Spectra Transferred to the Length Axis and Line Spectra of Energy Density \(ED(L) \)

Such spike values of energy density, related to discrete wave lengths, had been calculated by summing up the single amounts of energy densities of frequency components comprising of (nearly) equal wave lengths. With reference to station 100m the maximum energy density \(\text{max}ED(L) \approx 10m^2/Hz \) belongs to a wave length \(LP(AD) \approx 48m \). By contrast in the continuous frequency spectrum there is a maximum energy density of about \(\text{max}EP(f) \approx 3.6m^2/Hz \) and applying classical normal dispersion the corresponding wave length is \(LP(ND) \approx 63m > LP(AD) \approx 48m \), see Fig.15.

Actually such smaller wave lengths had been found applying zero crossing evaluation method on the respective analogue wave data.

SUMMARY OF FINDINGS

Resonance in a Wave Tank due to Re-reflection
- Different resonant seiching modes existing in a wave tank at the same time are characterized by the kinematics of partial standing waves (\(\rightarrow \) partial waves).
- Partial waves are composed of a number of neighbouring frequency components marked by approximately equal wave lengths and by this reason comprise of an anomalous dispersion property.
- Different resonant seiching modes can be understood as an ensemble of resonators absorbing energy densities from the input spectrum.

Storm Wave Resonance at a Ridge Coast
- *Wave lengths spectra \(L(f) \)*, calculated from measured anomalous phase speed spectra \(c(f) \), in general show smaller wave lengths at energy containing frequencies and comprise of a wavy or stepped structure.
- Different resonant seiching modes existing in the trough between sand bar and the beach at the same time correspond to neighbouring frequency components.
comprising of nearly equal component lengths. They can be arranged as a kind of line spectra ED(L) and be allotted to the geometry of the trough.

- Resonance absorption and anomalous dispersion form a combined phenomenon even with reference to water bodies enclosed imperfectly.
- There is an analogy in the general dispersion properties of gravity waves moving in water bodies enclosed imperfectly and of electromagnetic waves passing through dielectrics.

REFERENCES
Mei, C.C. 1989 Applied Dynamics of Ocean Surface Waves, World Scientific, Singapore 700pp
Excerpt of chapter 3 from:

Büsching, F.: PHASE JUMP DUE TO PARTIAL REFLECTION OF IRREGULAR WATER WAVES AT STEEP SLOPES,

3. Resonant basin oscillations

As mentioned above, the described data treatment had originally been applied with respect to the analysis of resonant basin oscillations (Büsching, 2005). This topic is, however, taken up here again, because the existence of a phase jump would lead to modified boundary conditions to be considered.

Differing from the author’s previous estimate (Büsching 2005), the natural frequencies of a basin, comprising a steep slope at the one end and a rigid flap type wave generator at the other, can obviously be calculated based on boundary conditions corresponding to an uneven number of quarter-wave lengths, see Fig. 9:

\[f \text{[Hz]} = \left(\frac{2n + 1}{4} \right) \frac{c}{D} \]

where,
\(D \) = horizontal distance between the hinge of the wave paddle and IP at the slope,
\(c \) = wave celerity and
\(n \) = harmonic number.
\(n = 0 \) denotes the fundamental oscillation and \(n = 1, 2, 3 \ldots \) are named first, second, third harmonic etc.

Solving formula [1] with respect to harmonic numbers \(n \)-[-], yields formula [2]:

\[n(f[-]) = \frac{2}{c} D \cdot f - 0.5 \]

Thus the present contribution provides the opportunity to improve some former findings on the harmonics, found in the wave tank.

With the horizontal distance \(D = 11.638 \mathrm{m} \) (between IP and the hinge of the wave maker) in formula [2], it is evident in Fig.10 that partial waves actually occurred as harmonics of ordinal numbers \(4 \leq n \leq 9 \). It is to be seen that the integer harmonic numbers correspond rather well to the frequency ranges, in which neighbouring component waves have (almost) equal wave lengths (according to Fig.05). Especially they are centred around the mean frequencies of partial waves with wave lengths 3.58m and 4.21m, which both carry maximum energies.

Moreover, the anomalous dispersion property of neighbouring frequency components is demonstrated in Fig.10. Due to the fact that the frequency components of the partial waves have nearly equal wave length, follows that there is an anomalous dispersion property within such wave packets, because the phase velocity, according to \(c = \frac{L}{f} \), increases with frequency. It is \(dc/df > 0 \).

In the upper part of Fig.10 the lengths associated with the 82 energy lines, mentioned above, are denoted \(\text{L(AD)(f)} \) (AD = anomalous dispersion; dashed line) refers to the classical dispersion relation according to water depth \(d = 0.626 \mathrm{m} \) in the wave tank.

Thus, both curves can be named Length Spectra. Besides the mentioned (red) phase velocity spectrum \(c(AD)(f) \) also the theoretical phase velocity spectrum \(c(ND)(f) \), derived from

Figure 9. The first 4 theoretical mode shapes of natural oscillations in a basin confined by a vertical wall at the front end and an inclined wall at the rear end.

Figure 10. Component length \(L \), phase velocities \(c \) and harmonic numbers \(n \) plotted with frequency.
\[\omega^2 = g \cdot k \cdot \tanh(k \cdot d) \] \[\text{[3]}\]

is shown in the lower part of the figure.

Hence, the combined appearance of resonance and anomalous dispersion, known from electromagnetic waves, might also be valid in this context.

http://hydromech.de/Veroeff/phase_jump_20101109.pdf

http://hydromech.de/Veroeff/phase_jump_20101116.pdf