Einfluss von Typ I IFN auf CD8$^+$ T-Zellen

Von der Fakultät für Lebenswissenschaften
der Technischen Universität Carolo-Wilhelmina
zu Braunschweig
zur Erlangung des Grades einer
Doktorin der Naturwissenschaften
(Dr. rer. nat.)
genehmigte
D i s s e r t a t i o n

von Berit Neumann
aus Blankenburg/Harz
1. Referent: Privatdozent Dr. Gerhard Gross
2. Referent: Professor Dr. Martin Korte
eingereicht am: 14.09.2011
mündliche Prüfung (Disputation) am: 08.12.2011

Druckjahr 2011
Vorveröffentlichungen der Dissertation

Teilergebnisse aus dieser Arbeit wurden mit Genehmigung der Fakultät für Lebenswissenschaften, vertreten durch den Mentor der Arbeit, in folgenden Beiträgen vorab veröffentlicht:

Tagungsbeiträge

Neumann B, Ksienzyk A, Hauser H, Kröger A. Type I IFNs exert negative effects on CD8⁺ T cells. (Poster) Research School for Infection Biology PhD Symposium, Braunschweig (2009)

Neumann B, Ksienzyk A, Hauser H, Kröger A. Type I IFNs exert negative effects on CD8⁺ T cells. (Poster). Summer School Helmholtz International Research School for Infection Biology, Rügen (2010)

Crosstalk between TCR- and IFN-signaling. (Vortrag) SYBILLA Workshop Imaging applications to Systems Biology, Magdeburg (2010)

Type I IFNs impair early and late events in CD8⁺ T cell activation. (Vortrag) Research School for Infection Biology PhD Symposium, Braunschweig (2010)
Inhaltsverzeichnis

1. Zusammenfassung .. 1

2. Einleitung .. 2
 2.1 Das Interferon-System .. 2
 2.1.1 Typ I IFN ... 3
 2.1.2 Typ II und Typ III IFN ... 5
 2.1.3 IFN-induzierte Signalwege ... 5
 2.2 CD8⁺ T-Zellen .. 8
 2.2.1 Die Aktivierung von T-Zellen ... 8
 2.2.2 Expansion und Ausbildung von Effektorfunktionen .. 10
 2.2.3 Differenzierung zu T-Gedächtniszellen .. 11
 2.2.4 Periphere Toleranzmechanismen .. 12
 2.2.5 Der T-Zell-Rezeptor-Signalweg ... 13
 2.3 Effekte von Typ I IFN auf CD8⁺ T-Zellen ... 19

2.4 Zielsetzung .. 21

3. Ergebnisse .. 22
 3.1 Einfluss von Typ I IFN auf die TZR-Stimulation naiver CD8⁺ T-Zellen .. 22
 3.2 Der Einfluss von Typ I IFN auf die TZR-induzierte Proliferation von naiven CD8⁺ T-Zellen 22
 3.2.1 Typ I IFN inhibiert die Proliferation von CD8⁺ T-Zellen ... 24
 3.2.2 Geringe Mengen IFN-β haben keinen Einfluss auf die Proliferation von CD8⁺ T-Zellen 26
 3.2.3 Einfluss von Zeitpunkt und Dauer einer IFN-Stimulation auf die Proliferation von T-Zellen ... 27
 3.2.4 Typ I IFN zeigt keine negativen Effekte nach TZR- und Co-Rezeptor-Stimulation 30
 3.2.5 Typ I IFN inhibiert die Proliferation von T-Zellen nach suboptimaler TZR-Stimulation . . . 31
 3.3 Einfluss von Typ I IFN auf das Überleben von T-Zellen ... 32
 3.4 Einfluss von Typ I IFN auf die Effektorfunktionen von CD8⁺ T-Zellen ... 34
 3.4.1 Typ I IFN inhibiert die Expression von IFN-γ und Granzym B ... 34
 3.4.2 Geringere Expression von FasL & TRAIL nach IFN-Stimulation ... 36
 3.4.3 IFN-vorstimulierte T-Zellen zeigen verminderte Zytotoxizität ... 37
 3.5 Einfluss von Typ I IFN auf den Aktivierungs- und Differenzierungszustand von T-Zellen 39
 3.5.1 Typ I IFN hat keinen negativen Einfluss auf die Expression des frühen Aktivierungsmarker CD69 39
 3.5.2 Die Expression der Aktivierungsmarker CD62L und CD25 wird durch Typ I IFN nicht beeinflusst 42
3.5.3 Einfluss von Typ I IFN auf die Differenzierung zu CD44hi T-Gedächtniszellen .. 43

3.6 Einfluss von Typ I IFN auf IL-2 ... 45

3.6.1 Typ I IFN hemmt die Induktion und Produktion von IL-2 ... 45

3.6.2 Die IFN-induzierte Inhibition der T-Zell-Proliferation kann durch externes IL-2 aufgehoben werden .. 47

3.7 Der Einfluss von Typ I IFN auf den TZR-Signalweg ... 48

3.7.1 Der Kalzium-Signalweg .. 48

3.7.2 Typ I IFN beeinflusst TZR-induzierte Signalmoleküle .. 57

3.8 Veränderte Geninduktion nach IFN- und TZR-Stimulation ... 60

3.8.1 Einfluss von Typ I IFN auf TZR-induzierte Gene ... 62

3.8.2 Typ I IFN induziert keine Toleranz-Mechanismen .. 66

3.8.3 Einfluss einer TZR-Stimulation auf IFN-induzierte Gene .. 69

3.9 Einfluss von Typ I IFN auf CD8+ T-Zellen nach TZR-Stimulation in vivo ... 71

4. Diskussion ... 78

4.1 Typ I IFN inhibiert die Proliferation von CD8+ T-Zellen ... 78

4.2 Der Einfluss von Typ I IFN auf die Aktivierung, Differenzierung und Effektorfunktion von CD8+ T-Zellen ... 81

4.3 „Crosstalk“ zwischen TZR- und IFN-induzierten Signalwegen .. 83

4.4 Einfluss des „Crosstalks“ zwischen IFN- und TZR-Signalwegen auf die Geninduktion 86

4.5 Relevanz der beobachteten IFN-Effekte ... 89

5. Material & Methoden ... 91

5.1 Geräte und Chemikalien .. 91

5.1.1 Geräte .. 91

5.1.2 Chemikalien ... 92

5.2 Zellkulturtmaterialien ... 92

5.3 Computerprogramme ... 92

5.4 Sterilisation .. 93

5.5 Zellkulturmedien und Zelllinien ... 93

5.5.1 Verwendete Zelllinien ... 93

5.5.2 Medien und Lösungen ... 93

5.5.3 Kultivierung von Zellen ... 94

5.6 Arbeiten mit isolierten murinen Immunzellen .. 94

5.6.1 Isolierung von Zellen aus der Milz ... 94

5.6.2 Isolation von Zellen aus Lymphknoten ... 95

5.6.3 Aufreinigung von T-Zellen mittels magnetischer Separation ... 95

5.6.4 Stimulation von murinen T-Zellen in vitro ... 96

5.6.5 CFSE-Proliferationsassay ... 97

5.6.6 In vitro CTL-Assay ... 97

5.7 Durchflusszytometrie (FACS) zur Analyse von Zellen und Sortierung von Zellen .. 98

5.7.1 Antikörper für Durchflusszytometrie zur Analyse von Zellen und Sortierung von Zellen .. 98
5.7.2 Durchflusszytometrie und Zell-Sortierung ... 99
5.7.3 Analyse von intrazellulären Zytokinen ... 100
5.7.4 Messung der Kalzium-Mobilisierung mittels Durchflusszytometrie 100
5.8 RNA-Analysen ... 101
5.8.1 Isolierung von Gesamt-RNA .. 101
5.8.2 RT-PCR ... 102
5.8.3 Quantitative Real-Time PCR .. 102
5.8.4 Microarray-Analysen ... 103
5.9 Proteinanalytik .. 103
5.9.1 Zellaufschluss .. 103
5.9.2 Proteinbestimmung (BCA-Assay) ... 104
5.9.3 Polyacrylamid-Gelelektrophorese ... 104
5.9.4 Western Blot .. 105
5.10 In vivo-Versuche ... 107
5.10.1 Verwendete Maus-Linien .. 107
5.10.2 In vivo-Modell ... 107
5.10.3 In vivo CTL (Cytotoxic T cell) Assay .. 108
5.11 Statistische Analysen .. 109

6. Literaturverzeichnis .. 110

7. Appendix .. 119
7.1 Abbildungsverzeichnis ... 119
7.2 Abkürzungen .. 121
7.3 Danksagung ... 125

Lebenslauf
1. Zusammenfassung

Insgesamt zeigen die Daten, dass ein „Crosstalk“ zwischen T-Zell-Rezeptor- und Typ I IFN-induzierten Signalwegen existiert und in Folge dessen T-Zell-Funktionen beeinflusst werden.
2. Einleitung

2.1 Das Interferon-System

Interferone gehören zu den Zytokinen, die nach viralen Infektionen, aber auch in Folge von Entzündungen oder bakteriellen Infektionen produziert werden. Sie wurden bereits 1957 aufgrund ihrer antiviralen Funktion durch Lindenmann und Isaacs entdeckt¹. Neben
antiviralen Aktivitäten vermitteln sie die Induktion von antitumoralen und immunmodulatorischen Effekten. Interferone können anhand ihrer Sequenzhomologien, der Bindung an entsprechende Rezeptoren sowie ihrer biologischen Aktivität in Typ I, II und III Interferon (IFN) unterteilt werden.

2.1.1 Typ I IFN

Typ I IFN (IFN-α, -β, -ω, -ε, -κ) wird nach viralen oder mikrobiellen Infektionen in großen Mengen von vielen Zellen, hauptsächlich jedoch von plasmazytoiden DCs (pDCs) produziert. Virale oder bakterielle Bestandteile werden durch „Pattern Recognition Receptors“ (PRRs) erkannt. Zu diesen gehören Mitglieder der „Retinoic acid Inducible Gene-1“ (RIG-I)-Familie und die Toll-like Rezeptoren TLR1, TLR2, TLR3, TLR4, TLR7, TLR8 und TLR9. RIG-I, die TLRs 3, 4, 7, 8 und 9 sowie zusätzliche Proteine, wie die „dsRNA-dependent protein kinase“ (PKR), induzieren daraufhin die Produktion von Typ I IFN über die Aktivierung der „TANK-Binding Kinase-1“ (TBK) und der „inducible IκB Kinase“ (IKK-i). TLR9 und TLR7 benötigen das Adapter-Protein „Myeloid Differentiation Factor-88“ (MyD88), während TLR4 „Toll/IL-1 receptor domain-containing adaptor inducing IFN-β (TRIF)“ benötigt, um Signale zu übermitteln. TBK-1 und IKK-i aktivieren daraufhin die „Interferon Regulatory Factors“ IRF3 und IRF7, die die Transkription von Typ I IFN induzieren (Abbildung 1).
Einleitung

Typ I IFN spielt über direkte und indirekte antivirale Effekte eine wichtige Rolle in der Abwehr einer Vielzahl verschiedener Viren. Zusätzlich führt es zur Activierung von Effektorzellen des angeborenen Immunsystems, wie NK-Zellen, DCs und Makrophagen⁴⁻⁶. Durch seinen Einfluss auf die Reifung von DCs sowie deren Potential, Antigene zu
Einleitung

präsentieren, wird Typ I IFN auch als Bindeglied zwischen angeborener und adaptiver Immunantwort betrachtet. Alle Typ I IFN-Subtypen binden an den Typ I IFN-Rezeptor (IFNAR), der von den meisten Zelltypen exprimiert wird7,8.

2.1.2 Typ II und Typ III IFN

Zu den Typ II IFN gehört ausschließlich IFN-\gamma, welches ebenfalls antivirale Wirkungen über die Bindung an den entsprechenden Rezeptor, dem IFN-\gammaR (IFNGR), vermittelt4,9,10. IFN-\gamma wird von aktivierten T- oder NK-Zellen produziert und ist notwendig für die Aktivierung von Makrophagen sowie die Differenzierung zu CD4+ T\textsubscript{h}1-Zellen10.

Die Mitglieder der IFN-\lambda- bzw. Interleukin (IL) 28/29-Familie stellen die dritte Gruppe, die Typ III IFN, dar11,12. Wie Typ I IFN werden sie nach viralen Infektionen produziert und zeigen antivirale Wirkungen. Sie unterscheiden sich jedoch strukturell von Typ I IFN und binden einen spezifischen Rezeptor, der aus dem IFN-\lambda1R bzw. IL28R und dem IL10R2 besteht. Die IL10R2-Untereinheit wird auch von IL-10, IL-22 und IL-26 zur Signaltransduktion genutzt. Die exakten Signalmoleküle und –wege, die nach Bindung von IFN-\lambda an den entsprechenden Rezeptor induziert werden, sind bis heute nicht vollständig geklärt. Es werden jedoch Moleküle zur Signaltransduktion genutzt, die auch durch Typ I IFN induziert werden können (Abbildung 2).

2.1.3 IFN-induzierte Signalwege

Die Bindung von Interferonen an die entsprechenden Rezeptoren führt zur Aktivierung des JAK/STAT-Signalweges sowie weiterer Signalwege. Alle Typ I IFN-Subtypen binden mit unterschiedlicher Affinität an den IFNAR, dessen Untereinheiten mit den Janus Protein
Tyrosin Kinasen TYK2 und JAK1 assoziiert sind. IFN-γ bindet an den IFNGR, dessen IFNGR-1 Untereinheit konstitutiv mit JAK1 und die IFNGR-2 Untereinheit mit JAK2 assoziiert ist9,13,14. Die Bindung beider IFN-Typen an die entsprechenden Rezeptoren führt zur Kreuz-Aktivierung der JAK Kinasen, die daraufhin STAT1 und STAT2, Mitgliedern der „Signal Transducer and Activation of Transcription“ (STAT)-Familie, phosphorylieren. Typ I IFN führen über die Phosphorylierung von STAT-Molekülen zur Bildung des heterotrimeren Komplexes „IFN-stimulated Gene Factor 3“ (ISGF3), der aus phosphorylierten STAT1, STAT2 und IRF9 besteht15. Die Bindung von Typ II IFN an den entsprechenden Rezeptor führt zur Bildung des „IFN-γ activated factor“ (GAF, auch „IFN-α activated factor“ AAF). GAF/AAF ist ein Homodimer aus phosphorylierten STAT1-Molekülen. Nach der Aktivierung von ISGF3 und GAF/AAF kommt es zur Kerntranslokation beider Komplexe und der Bindung an spezifische DNA-Sequenzen, den „IFN-stimulated regulatory elements“ (ISRE)16,17 sowie der „IFN-γ activated sequence“ (GAS)18,19. Dadurch wird eine Vielzahl von Zielgenen (IFN-stimulated genes, ISGs) induziert, die für die biologischen Aktivitäten von Interferonen notwendig sind (Abbildung 2).
Abbildung 2 Aktivierung des Jak/STAT-Signalweges und weiterer Signalkaskaden durch Interferone

Neben der Aktivierung des JAK/STAT-Signalweges durch Typ I IFN gibt es jedoch zunehmend Hinweise, dass auch andere Signalmoleküle und -kaskaden eine Rolle bei den IFN-vermittelten Effekten spielen. Hierzu gehören der „Mitogen activated Protein Kinase“ (MAPK), der Phosphatidylinositol 3-Kinase (PI3K) sowie der klassische als auch der

2.2 CD8\(^+\) T-Zellen

2.2.1 Die Aktivierung von T-Zellen

Naive T-Zellen werden nach Infektionen durch „Antigen-presenting cells“ (APCs), wie beispielsweise Dendritischen Zellen, aktiviert. DCs erkennen als so genannte „Wächter“ des Immunsystems infizierte Zellen. Zelluläre oder Pathogen-assozierte Proteine werden von den DCs prozessiert und spezifische Peptide via „Major Histocompatibility Class“ (MHC)-Molekülen den Zellen der adaptiven Immunantwort präsentiert. Dies geschieht in den sogenannten T-Zellzonen der drainierenden Lymphknoten, in die gewebs-residente DCs entlang eines Chemokingradienten nach ihrer Aktivierung einwandern. CD8\(^+\) T-Zellen

unterstützt die klonale Expansion und Differenzierung naiver CD8^+ T-Zellen zu Effektorzellen^{33}.

2.2.2 Expansion und Ausbildung von Effektorfunktionen

Einleitung

Abbildung 3 Das Töten von Zielzellen über Granzym B und Fas-vermittelte Apoptose-Induktion

2.2.3 Differenzierung zu T-Gedächtniszellen

Einleitung

12

2.2.4 Periphere Toleranzmechanismen

2.2.5 Der T-Zell-Rezeptor-Signalweg

Abbildung 4 T-Zell-Rezeptor-induzierte Signalwege

2.2.5.1 Der Kalzium-Signalweg

Der Kalzium-Signalweg ist entscheidend für Proliferation, Expression von Aktivierungsmarkern, Produktion von Zytokinen und Chemokinen, die Differenzierung von naiven zu Gedächtniszellen, aber auch für die Induktion von Anergie. Die Bindung von Antigenen an den TZR induziert über verschiedene Protein-Kinasen die Aktivierung der Phospholipase C-γ1 (PLC-γ1)\(^{45-47}\) (Abbildung 4). Diese hydrolysiert daraufhin Phosphatidylinositol-3,4-Bisphosphat (PIP\(_2\)) zu Diacylglycerol (DAG) und Inositol-1,4,5-Triphosphat (IP\(_3\)). IP\(_3\) bindet an IP\(_3\)-Rezeptoren, die als Kalzium-permeable Ionen-Kanäle in

Die Genexpression, die durch NFAT induziert wird, hängt stark von anhaltendem Ca\(^{2+}\)-Influx und der Aktivität von Calcineurin ab. Sobald die intrazelluläre Ca\(^{2+}\)-Konzentration abnimmt, wird NFAT durch NFAT-Kinasen rephosphoryliert und die NLS erneut maskiert. Dies führt zu einem raschen Export von NFAT aus dem Zellkern\(^{49}\) und einer exakten Regulierung der Ca\(^{2+}\)-abhängigen Geninduktion.
Abbildung 5 Der TZR-vermittelte Ca\(^{2+}\)-Signalweg
Die Aktivierung des TZR führt über Protein Tyrosin Kinasen, wie Lck und Zap70, zur Phosphorylierung und Aktivierung von PLC-\(\gamma\)1. PLC-\(\gamma\)1 hydrolysiert das Membran-gebundene Phospholipid PIP\(_2\) zu DAG und IP\(_3\). IP\(_3\) öffnet daraufhin IP\(_3\)-Rezeptoren im ER, wodurch Ca\(^{2+}\)-Ionen aus dem ER freigesetzt werden. Die verminderte Ca\(^{2+}\)-Konzentration im ER wird durch STIM-Sensoren detektiert, die daraufhin aggregieren und CRAC-Kanäle bestehend aus ORAI-Tetrameren aktivieren. Der resultierende Ca\(^{2+}\)-Influx erhöht die intrazelluläre Ca\(^{2+}\)-Konzentration und aktiviert u.a. den Calcineurin/NFAT-Signalweg und reguliert den CaMK-CREB-Signalweg. Zusammen mit weiteren Transkriptionsfaktoren induziert NFAT bestimmte Zielgene. (Oh-Hora & Rao 2008)

Neben der Aktivierung von NFAT über Calcineurin, können Ca\(^{2+}\)-Signale zur Proteolyse von I\(\kappa\)B und somit zur Aktivierung von NF\(\kappa\)B führen. Ca\(^{2+}\)-Ionen können auch innerhalb des Nukleus auf verschiedene Transkriptionsfaktoren, wie CREB und dem Ca\(^{2+}\)-sensitiven Co-Aktivator „CREB-binding Protein“ (CBP)\(^{50,51}\), oder regulierend auf den Ras/MAPK-Signalweg wirken\(^{52}\). Alle Ca\(^{2+}\)-abhängigen Transkriptionsfaktoren aktivieren eine Vielzahl von Genen. Dazu gehören IL-2 oder Fas und Fas Liganden. Dadurch werden Proliferation bzw. DNA-Synthese oder Apoptose induziert.
2.2.5.2 Der Ras/MAPK-Signalweg

Die Aktivierung der p38 MAPK- und JNK-Kaskade erfolgt über die Phosphorylierung des GEFs Vav durch Zap70, was zur Aktivierung von Rac-1 und Cdc42 führt. Eine Co-Stimulation von CD28 erhöht hierbei die Rekrutierung von Vav zu Lat und Zap-70 und verstärkt somit die Phosphorylierung von Vav durch Zap70. Rac-1 aktiviert die p38-MAPK-Kaskade, die indirekt über Protein Kinasen oder direkt zur Aktivierung von Transkriptionsfaktoren, wie CREB, „Activating transcription factor 1“ (ATF-1) und NFkB sowie STAT1 und STAT3 führt. Cdc42 führt zu Aktivierung von JNK, welches u.a. c-Jun phosphoryliert und damit die Aktivität des Transkriptionsfaktors AP-1 erhöht. Auch andere Transkriptionsfaktoren, wie NFAT oder anti-apoptotische Bel-2 Mitglieder werden durch JNK aktiviert. Sowohl die p38-MAPK- als auch die JNK-Kaskade spielen eine wichtige Rolle...
bei der Expression von Zytokinen, wie IFN-γ und IL-2 sowie bei Apoptose-regulierenden Prozessen44.

\subsection*{2.2.5.3 Die Aktivierung von NFκB}

Die genauen Mechanismen, die den NFκB-Signalweg nach TZR-Aktivierung initiieren sind nicht bekannt, scheinen aber die Rekrutierung der PKC-\(\theta\) zur TZR Synapse zu involvieren53. Das Signalmolekül Vav sowie Bestandteile des Zytoskeletts scheinen für die Rekrutierung von PKC-\(\theta\) notwendig zu sein. PKC-\(\theta\) wird durch DAG stimuliert, welches nach der Aktivierung von PLC-\(\gamma\)\textsubscript{1}, aber auch durch PI3K produziert wird. PKC-\(\theta\) wird daraufhin durch PDK1 phosphoryliert, wodurch die Bildung des so genannten CBM-Komplexes, bestehend aus CARMA1, Bcl10 und MALT1, induziert wird. Über Ubiquitinierung kommt es zur Aktivierung des NEMO/IκK-Komplexes. Die IκB Kinasen IκK-\(\alpha\) und IκK-\(\beta\) bilden hierbei über die nicht-katalytische Untereinheit IκK-\(\gamma\) Heterodimere54,55. Der aktivierte IκK-Komplex induziert die Phosphorylierung und proteolytische Degradation der inhibitorischen IκB-\(\alpha\) und IκB-\(\beta\)-Proteine. Dies führt zur Freisetzung der NFkB Transkriptionsfaktoren p65, c-Rel, RelA und p50, da diese ohne Stimulation im Zytosol an IκB-Proteinen gebunden vorliegen. Nach der Translokation in den Zellkern werden Gene induziert, die eine Rolle für die Proliferation und das Überleben von T-Zellen spielen44,54,55.
2.3 Effekte von Typ I IFN auf CD8⁺ T-Zellen

Eine IFN-Stimulation kann zur Rekrutierung von Lck, Zap70 und CD45 zum IFNAR führen, wodurch wichtige Signalmoleküle nicht für den TZR-Signalweg zur Verfügung stehen. Die Typ I IFN-induzierte und dsRNA-aktivierte Kinase PKR kann die Proliferation von T-Zellen...
entweder direkt über eine Inhibition der Proteinsynthese oder indirekt über die Produktion von IL-4 negativ regulieren76. Zusätzlich kann Typ I IFN den PI3K-Signalweg und daher über die Aktivierung von PKC-\(\theta\) sowohl die Aktivierung von NF\(\kappa\)B als auch JNK und p38 induzieren77. Dies und die beschriebenen Effekte von Typ I IFN auf T-Zellen lassen vermuten, dass sich IFN- und TZR-induzierte Signalwege gegenseitig beeinflussen können.
2.4 Zielsetzung

Ziel dieser Arbeit ist die Effekte von Typ I IFN auf CD8\(^+\) T-Zellen über die Charakterisierung des potentiellen „Crosstalks“ zwischen IFN- und TZR-induzierten Signalwegen zu verifizieren und die Konsequenz für die Aktivierung und Funktion der T-Zellen zu überprüfen.

Im Versuchsansatz wird hierfür der Einfluss des Typ I IFN auf antigenspezifisch-stimulierte TZR-transgene CD8\(^+\) T-Zellen in vitro untersucht. Daraus ergeben sich die folgenden experimentellen Vorgehensweisen:

3. Ergebnisse

3.1 Einfluss von Typ I IFN auf die TZR-Stimulation naiver CD8⁺ T-Zellen

Unterschiede in der Geninduktion sollten zudem potentielle Interaktionen zwischen IFNAR- und TZR-induzierten Signalwegen untersucht werden.

3.2 Der Einfluss von Typ I IFN auf die TZR-induzierte Proliferation von naiven CD8+ T-Zellen

3.2.1 Typ I IFN inhibiert die Proliferation von CD8+ T-Zellen

Um den Einfluss von Typ I IFN auf die Proliferation von naiven CD8+ T-Zellen zu untersuchen, wurden aufgereinigte, naive OT-I T-Zellen mit CFSE gefärbt, für eine Stunde mit 500U/mL IFN-β behandelt und anschließend der TZR mit SIINFEKL-Streptameren stimuliert. CFSE ist ein Farbstoff, der passiv in Zellen diffundiert, in diesen verbleibt und nach der Zellteilung zu gleichen Teilen an die Tochterzellen weitergegeben wird. Drei Tage nach der TZR-Stimulation wurde die Proliferation anhand der CFSE-Färbung mittels

Abbildung 6 Typ I Interferone inhibieren die Proliferation von CD8⁺ T-Zellen
2 x 10⁶ aufgereinigte OT-I CD8⁺ T-Zellen wurden mit CFSE gefärbt und für eine Stunde mit 500U/mL IFN-β stimuliert oder unbehandelt belassen. Anschließend wurden die Zellen mit SIINFEKL-Peptid beladenen CD11c⁺ DCs oder SIINFEKL-Streptameren für 72 Stunden stimuliert. Die Proliferation wurde anhand des CFSE-Gehalts der Zellen mittels Durchflusszytometrie bestimmt. Die Daten sind repräsentativ für 3 unabhängige Experimente.

Um zu überprüfen, ob die IFN-vermittelte Inhibition der Proliferation nicht auf eine mögliche, IFN-induzierte Internalisierung des TZR zurückzuführen ist, wurde die Expression des transgenen TZR von unbehandelten sowie für eine Stunde mit 500U/mL IFN-β stimulierten...

Abbildung 7 Typ I IFN-Stimulation führt nicht zur Internalisierung des TZR

2 x 10^6 aufgereinigte OT-I CD8⁺ T-Zellen wurden unbehandelt belassen (- IFN-β) oder für eine Stunde mit 500U/mL IFN-β stimuliert (1h IFN-β). Die Expression des transgenen TZR Vβ 5.1 wurde mittels Durchflusszytometrie bestimmt. Daten sind repräsentativ für zwei unabhängige Experimente.

3.2.2 Geringe Mengen IFN-β haben keinen Einfluss auf die Proliferation von CD8⁺ T-Zellen

Die Menge des produzierten IFNs nach Infektionen ist abhängig vom Pathogen. Auch bakterielle Infektionen können zur Induktion von Typ I IFN führen, die produzierte Menge ist dabei in der Regel geringer als nach viralen Infektionen. Es sollte untersucht werden, welche Konzentration an IFN-β die Proliferation von T-Zellen nach TZR-Stimulation hemmen. CFSE-gefärbte, naive OT-I T-Zellen wurden für eine Stunde mit 50U/mL IFN-β stimuliert oder unbehandelt belassen und anschließend mit SIINFEKL-Streptameren für 72 Stunden inkubiert. Zellen, die mit IFN vorstimuliert wurden, wiesen eine zur alleinigen TZR-Stimulation vergleichbare Proliferation auf (*Abbildung 8*). Geringe Mengen IFN-β haben somit keinen Effekt auf die Proliferation von T-Zellen.
Ergebnisse

Abbildung 8: Proliferation von CD8+ T-Zellen wird durch geringe Mengen IFN-β nicht beeinflusst.

2×10^6 aufgereinigte OT-I CD8+ T-Zellen wurden mit CFSE gefärbt und für eine Stunde mit 50U/mL IFN-β stimuliert oder unbehandelt belassen. Anschließend wurden die Zellen mit SIINFEKL-Streptameren für 72 Stunden stimuliert. Die Proliferation wurde anhand des CFSE-Gehalts der Zellen mittels Durchflusszytometrie bestimmt. Die Daten sind repräsentativ für 2 unabhängige Experimente.

3.2.3 Einfluss von Zeitpunkt und Dauer einer IFN-Stimulation auf die Proliferation von T-Zellen

OT-I T-Zellen, bei denen nach der einstündigen Stimulation mit IFN-β, das IFN nicht weggewaschen wurde, zeigten nur eine leicht verminderte Proliferation vergleichbar mit co-stimulierten Zellen (Abbildung 9).
Abbildung 9 Einfluss von Zeitpunkt und Dauer einer IFN-β-Stimulation auf die Proliferation von CD8⁺ T-Zellen

Diese Daten zeigen, dass neben der Konzentration, der Zeitpunkt und die Dauer einer IFN-Stimulation entscheidend für die Effekte auf die Proliferation von T-Zellen sind.
3.2.4 Typ I IFN zeigt keine negativen Effekte nach TZR- und Co-Rezeptor-Stimulation

T-Zellen werden nach Infektionen durch APCs stimuliert. Für eine optimale Aktivierung benötigen T-Zellen Signale über den TZR sowie co-stimulatorische Rezeptoren, wie z.B. CD28. Es sollte untersucht werden, welchen Effekt eine IFN-Stimulation auf die Proliferation von T-Zellen hat, nachdem diese mit DCs, die sowohl den TZR binden als auch Liganden für Co-Rezeptoren exprimieren, aktiviert wurden.

Typ I IFN kann die Präsentation von Antigenen durch DCs verbessern. Um ausschließlich IFN-vermittelte Effekte auf T-Zellen zu untersuchen, wurden CD11c\(^+\) DCs aus IFNAR-defizienten Mäusen isoliert und mit dem SIINFEKL-Peptid beladen. Aufgereinigte, CFSE-gefärbte OT-I CD8\(^+\) T-Zellen wurden für eine Stunde mit 500U/mL IFN-\(\beta\) stimuliert oder unbehandelt belassen und anschließend für 72 Stunden mit den DCs kultiviert.

![Graphik]

Abbildung 10 IFN-\(\beta\) hat keinen Effekt auf die Proliferation von T-Zellen nach Stimulation mit dendritischen Zellen

2 \(\times\) 10\(^6\) aufgereinigte OT-I CD8\(^+\) T-Zellen wurden mit CFSE gefärbt und für eine Stunde mit 500U/mL IFN-\(\beta\) behandelt oder unbehandelt gelassen. Anschließend wurden die Zellen mit SIINFEKL gepulsten CD11c\(^+\) DCs aus IFNAR\(^{-/-}\)-Mäusen für 72 Stunden stimuliert und die Proliferation der Zellen anhand des CFSE-Gehalts mittels Durchflusszytometrie bestimmt. Daten sind repräsentativ für 2 unabhängige Experimente.

Naive CD8\(^+\) T-Zellen, die mit SIINFEKL-Peptid-beladenen DCs inkubiert wurden, zeigten nach drei Tagen eine starke Proliferation. Eine IFN-Vorstimulation führte im Vergleich zu einer leicht verminderten Proliferation, die jedoch nicht als signifikant angesehen wird.
Ergebnisse (Abbildung 10). Während Typ I IFN die Proliferation von naiven CD8⁺ T-Zellen, die durch eine alleinige TZR-Stimulation aktiviert wurden, inhibieren kann, wird die Proliferation nach einer TZR-Stimulation mit der zusätzlichen Aktivierung co-stimulatorischer Rezeptoren nicht beeinflusst. Möglicherweise treten die beobachteten IFN-Effekte daher nur im Falle einer fehlenden oder suboptimalen Co-Stimulation auf.

3.2.5 Typ I IFN inhibiert die Proliferation von T-Zellen nach suboptimaler TZR-Stimulation

Stimulation zu beeinflussen. Im Gegensatz dazu inhibiert Typ I IFN die Proliferation von naiven T-Zellen nach suboptimaler TZR-Stimulation.

Abbildung 11 IFN-β Stimulation inhibiert die Proliferation bei suboptimaler T Zell Rezeptor Stimulation
2 x 10^6 aufgereinigte OT-I CD8⁺ T-Zellen wurden mit CFSE gefärbt und für eine Stunde mit 500U/mL IFNβ behandelt oder unbehandelt gelassen. Anschließend wurden die Zellen mit unterschiedlichen Konzentrationen (c) von immobilisierten CD3ε Antikörpern für 72 Stunden inkubiert. Die Proliferation wurde anhand des CFSE Gehalts der Zellen mittels Durchflusszytometrie analysiert. Daten sind repräsentativ für 2 unabhängige Experimente.

3.3 Einfluss von Typ I IFN auf das Überleben von T-Zellen

Die beobachtete Inhibition der Proliferation von CD8⁺ T-Zellen durch Typ I IFN könnte entweder auf einen verzögerten bzw. blockierten Zellzyklus oder auf einen verstärkten Zelltod zurückzuführen sein. Typ I IFN kann direkt nach Virus-Infektionen eine transiente Lymphopenie induzieren. Dabei zeigen speziell CD8⁺ T-Zellen einen erhöhten Zelltod durch die Induktion von Apoptose. Es sollte daher überprüft werden, ob eine IFN-Stimulation den Tod von T-Zellen induziert. OT-I T-Zellen wurden unbehandelt oder nach

Abbildung 12 IFN-β induziert Zelltod von OT-I CD8⁺ T-Zellen
2 x 10⁶ aufgereinigte OT-I CD8⁺ T-Zellen wurden für eine Stunde mit 500U/mL IFN-β stimuliert oder unbehandelt belassen und anschließend mit SIINFEKL-Peptid-beladenen CD11c⁺ DCs oder SIINFEKL-Streptameren für 72 Stunden stimuliert. Der Anteil toter Zellen wurde mittels 7-AAD-Färbung und Durchflusszytometrie bestimmt. Daten zeigen die Prozentzahlen von 7-AAD⁺ T-Zellen und sind repräsentativ für 3 unabhängige Experimente. **, p < 0,01
3.4 Einfluss von Typ I IFN auf die Effektorfunktionen von CD8⁺ T-Zellen

3.4.1 Typ I IFN inhibiert die Expression von IFN-γ und Granzym B

Verschiedene Publikationen zeigen, dass Typ I IFN durch eine verstärkte Expression der Effektormoleküle IFN-γ und Granzym B, die Fähigkeit Zielzellen zu töten verbessern kann²⁷,⁶². Es konnte jedoch auch gezeigt werden, dass Typ I IFN die IFN-γ-Expression abhängig vom IFNAR und STAT1 sowohl in NK- als auch in T-Zellen inhibiert⁷⁴.

Um den Effekt einer IFN-Vorstimulation auf die Expression von IFN-γ und Granzym B zu untersuchen, wurden OT-I T-Zellen mit CFSE gefärbt und für eine Stunde mit 500U/mL IFN-β stimuliert oder unbehandelt belassen. Anschließend wurden die Zellen mit SIINFEKL-Streptameren für 72 Stunden stimuliert und die Proliferation sowie IFN-γ- und Granzym B-Expression mittels intrazellulärer Zytokinfärbung analysiert. Um zu überprüfen, ob die beobachteten Effekte spezifisch auf Typ I IFN zurückzuführen sind, wurden naive CD8⁺ T-Zellen aus IFNAR-defizienten OT-I-Mäusen entsprechend stimuliert und analysiert.
Abbildung 13 Typ I IFN-Stimulation von CD8⁺ T-Zellen inhibiert die Expression von IFN-γ und Granzym B

OT-I T-Zellen, die nicht mit Typ I IFN stimuliert wurden, zeigten eine starke Proliferation, wobei mehr als die Hälfte aller Zellen IFN-γ exprimierte. Nur ein kleiner Anteil der CD8⁺ T-Zellen, die mit IFN-β vorstimuliert wurden, proliferierte und nur 6% aller Zellen produzierten

3.4.2 Geringere Expression von FasL & TRAIL nach IFN-Stimulation

Effektorzellen können über Todesrezeptoren Apoptose in Zielzellen induzieren. CD8⁺ T-Zellen exprimieren u.a. den Fas Liganden (FasL) und den TNF related apoptosis inducing ligand (TRAIL), die nach der Bindung an die entsprechenden Rezeptoren Caspase-abhängig Apoptose in Zielzellen induzieren[34]. Um den Einfluss von Typ I IFN auf die Expression von FasL und TRAIL zu untersuchen, wurden OT-I T-Zellen für eine Stunde mit 500U/mL IFN-β stimuliert oder unbehandelt belassen und anschließend mit SIINFEKL-Streptameren für 72 Stunden stimuliert. Mittels Durchflusszytometrie wurden daraufhin die Expression von FasL und TRAIL analysiert. Unstimulierte OT-I T-Zellen wiesen eine sehr geringe Expression von FasL und TRAIL auf, während T-Zellen, die nur über den TZR stimuliert wurden, eine starke Expression beider Liganden aufwiesen. IFN-vorstimulierte T-Zellen exprimierten ebenfalls FasL und TRAIL. Diese Expression war jedoch im Vergleich zu Zellen, die nicht mit IFN behandelt wurden, signifikant geringer (Abbildung 14). Typ I IFN inhibiert daher die
Expression der Todes-Liganden FasL und TRAIL. Dies lässt vermuten, dass IFN-stimulierte T-Zellen ein geringeres Potential, Zielzellen zu töten, aufweisen.

Abbildung 14 Typ I IFN vermindert die Expression der Todes-Liganden FasL und TRAIL

2 x 10⁶ aufgereinigte OT-I CD8⁺ T-Zellen wurden für eine Stunde mit 500U/mL IFN-β stimuliert oder unbehandelt belassen und anschließend für 72 Stunden mit SIINFEKL-Streptameren inkubiert. Die Expression von FasL und TRAIL wurde mittels Durchflusszytometrie bestimmt. Daten zeigen MFI ± SD (n=3) ** p < 0,01.

3.4.3 IFN-vorstimulierte T-Zellen zeigen verminderte Zytotoxizität

Abbildung 15 Verringerte Zytotoxizität von CD8⁺ T-Zellen nach IFN-Stimulation

3.5 Einfluss von Typ I IFN auf den Aktivierungs- und Differenzierungszustand von T-Zellen

3.5.1 Typ I IFN hat keinen negativen Einfluss auf die Expression des frühen Aktivierungsmarker CD69

Um zu überprüfen, welchen Einfluss Typ I IFN auf die Expression von CD69 nach TZR-Stimulation hat, wurden OT-I T-Zellen für eine Stunde mit 500U/mL IFN-β behandelt oder unbehandelt belassen und anschließend mit SIINFEKL-Streptameren aktiviert. Die Expression von CD69 wurde daraufhin zu verschiedenen Zeitpunkten nach TZR-Stimulation mittels Durchflusszytometrie analysiert.

Abbildung 16 Expression des frühen Aktivierungsmarkers CD69 nach TZR-Stimulation wird durch IFN-Stimulation nicht negativ beeinflusst

3.5.2 Die Expression der Aktivierungsmarker CD62L und CD25 wird durch Typ I IFN nicht beeinflusst

Während Typ I IFN die Proliferation und Effektorfunktion von CD8T T-Zellen hemmt, wird die Aktivierung von T-Zellen nicht beeinflusst.
Abbildung 17 Typ I IFN hat keinen Effekt auf die Expression der Aktivierungsmarker CD62L und CD25

3.5.3 Einfluss von Typ I IFN auf die Differenzierung zu CD44hi T-Gedächtniszellen

Um zu überprüfen, ob Typ I IFN die Expression von CD44 beeinflusst, wurden OT-I T-Zellen für eine Stunde mit 500U/mL IFN-β behandelt oder unbehandelt belassen und anschließend
für 72 Stunden mit SIIIFKEKL-Streptameren inkubiert. Daraufhin wurde der Anteil an T-Zellen, die einen CD44high-Phänotyp aufwiesen, mittels Durchflusszytometrie bestimmt.

Typ I IFN haben keinen Einfluss auf die Expression des T-Gedächtnis-Markers CD44 und somit auf die Differenzierung zu Gedächtniszellen.

Abbildung 18 Die Expression des Gedächtnis-Markers CD44 wird durch IFN-Stimulation nicht beeinflusst

2 x 106 aufgereinigte OT-I CD8+ T-Zellen wurden für eine Stunde mit 500U/mL IFN-β stimuliert oder unbehandelt belassen und anschließend mit SIIINFEKL-Streptameren für 72 Stunden inkubiert. Gefüllte Histogramme zeigen die Expression von CD44 in unstimulierten Zellen an Tag 0 der Stimulation. Gestrichelte Histogramme zeigen TZR-stimulierte T-Zellen mit und ohne IFN-Vorbehandlung. Die Expression von CD44 wurde mittels Durchflusszytometrie bestimmt. Daten sind repräsentativ für 3 unabhängige Experimente.
3.6 Einfluss von Typ I IFN auf IL-2

3.6.1 Typ I IFN hemmt die Induktion und Produktion von IL-2

Abbildung 19 Verminderte IL-2 mRNA Induktion und Expression nach IFN-Stimulation

Die Stimulation von T-Zellen mit Typ I IFN führt somit zu einer verminderten IL-2 mRNA-Induktion 12 Stunden nach TZR-Stimulation und daraus resultierend zu einer verminderten Expression 72 Stunden nach TZR-Stimulation. Die geringeren Mengen an produziertem IL-2 könnten ein möglicher Grund für die IFN-vermittelte Inhibition der Proliferation sein.
3.6.2 Die IFN-induzierte Inhibition der T-Zell-Proliferation kann durch externes IL-2 aufgehoben werden

IL-2 ist für die Proliferation von T-Zellen essentiell. Um zu überprüfen, ob die verminderte IL-2 mRNA-Induktion und Expression die Ursache für die Inhibition der Proliferation ist, wurden naive OT-I T-Zellen mit CFSE gefärbt und für eine Stunde mit 500U/mL IFN-β stimuliert oder unbehandelt belassen. Anschließend erfolgte die Stimulation mit SIINFEKL-Streptameren für 72 Stunden. Über die gesamte Stimulationsdauer wurden die Zellen in Anwesenheit von 10ng/mL IL-2 kultiviert. Bei dieser IL-2-Konzentration wird in unstimulierten T-Zellen keine Proliferation induziert, aber das Überleben gesichert. Die Proliferation wurde mittels Durchflusszytometrie analysiert.

T-Zellen, die mit SIINFEKL-Streptameren und IL-2 stimuliert wurden, wiesen eine starke Proliferation auf. Ungefähr 60% der T-Zellen hatten proliferiert. IFN-vorstimulierte T-Zellen, die ebenfalls zusätzlich mit IL-2 inkubiert wurden, zeigten eine vergleichbare Proliferation, während Zellen, die nicht mit IL-2 behandelt wurden, deutlich weniger proliferiert hatten. (Abbildung 20). Diese Daten lassen vermuten, dass die IFN-vermittelte Inhibition der T-Zell-Proliferation durch externe IL-2 aufgehoben werden kann.
Proliferation sowie das verminderte Überleben der T-Zellen auf die verminderte Produktion von IL-2 zurückzuführen ist.

3.7 Der Einfluss von Typ I IFN auf den TZR-Signalweg

Die Stimulation des TZR führt zur Aktivierung verschiedener Signalwege, wie z.B. dem Anstieg intrazellulären Kalziums oder der Aktivierung von Protein Kinase C, NFκB und Ras-MAP-Kinasen. Die induzierten Signalwege führen zur Aktivierung der Transkriptionsfaktoren AP-1, NFAT und Rel-Proteinen, die letztendlich die Expression von Genen induzieren, die Proliferation, Differenzierung, Anergie oder Apoptose regulieren. Typ I IFN induziert neben dem JAK-STAT-Signalweg auch Signalmoleküle, die vom TZR zur Signaltransduktion genutzt werden, wie CD45, Lck und Zap70 sowie PKC-θ. Es sollte daher überprüft werden, ob Typ I IFN TZR-induzierte Signalwege beeinflussen.

3.7.1 Der Kalzium-Signalweg

Die Bindung von Liganden an den TZR führt zur Aktivierung von PLCγ1, die PIP₂ zu IP₃ und DAG hydrolysiert. IP₃ induziert den Efflux von Ca²⁺-Ionen aus dem ER, was letztendlich zum Influx extrazellulärer Ca²⁺-Ionen führt. Dieser Ca²⁺-Influx aktiviert u.a. den Calcineurin/NFAT-Signalweg, der z.B. IL-2 induziert und somit entscheidend für die Proliferation von T-Zellen ist. Zusätzlich spielen Ca²⁺-Signale eine wichtige Rolle bei weiteren TZR-induzierten Signalwegen, wie der Ras-MAPK-Kaskade oder der Aktivierung von NFκB.
3.7.1.1 Typ I IFN inhibiert die TZR-vermittelte Kalzium-Mobilisierung

Aufgrund der beobachteten negativen Effekte einer IFN-Stimulation auf die Proliferation, Effektorfunktionen und die Produktion von IL-2 wurde geprüft, ob Typ I IFN den Kalzium-Signalweg als frühes Ereignis in der TZR-Signalkaskade beeinflusst.

Abbildung 21 IFN-β inhibiert den T-Zell-Rezeptor-vermittelten Kalzium Influx

3.7.1.2 Typ I IFN inhibiert spezifisch den TZR-vermittelten Ca^{2+}-Influx

OT-I T-Zellen wurden mit Indo-1 gefärbt und für eine Stunde mit 500U/mL IFN-β stimuliert oder unbehandelt gelassen. Anschließend wurde die Kalzium-Mobilisierung nach Ionomycin-Gabe mittels Durchflusszytometrie bestimmt. Die Zellen wurden mit unterschiedlichen...
Konzentrationen Ionomycin stimuliert. In unstimulierten T-Zellen induzierte eine Konzentration von 1µg/mL Ionomycin einen starken Ca²⁺-Influx. Auch geringere Mengen von 0,1µg/mL konnten eine, wenn auch geringere Ca²⁺-Mobilisierung induzieren. Eine Konzentration von 0,01µg/mL Ionomycin führte jedoch zu keinem Kalzium-Influx. Eine IFN-Stimulation vor der Gabe von Ionomycin hatte bei keiner eingesetzten Konzentration einen Einfluss auf die Mobilisierung von Ca²⁺-Ionen (Abbildung 22). Typ IFN hat somit keinen Einfluss auf den Transport von Ca²⁺-Ionen über Kalzium-Kanäle.

Abbildung 22 Unspezifische Ca²⁺-Mobilisation durch Ionomycin wird durch Typ I IFN nicht beeinflusst
3.7.1.3 Die Freisetzung von Ca2+-Ionen aus intrazellulären Speichern wird durch Typ I IFN beeinflusst

Die Vorstimulation mit IFN-β hatte keinen Einfluss auf den Influx von Ca2+-Ionen über Kalzium-Kanäle in der Plasmamembran. Es sollte daher überprüft werden, ob Typ I IFN die Freisetzung von Ca2+-Ionen aus intrazellulären Speichern beeinflusst. Hierfür wurden OT-I T-Zellen in EGTA-haltigen FACS-Puffer aufgenommen, um extrazellulär verfügbare Ca2+-Ionen zu binden und somit die Freisetzung von Ca2+-Ionen aus intrazellulären Speichern mittels Durchflusszytometrie zu untersuchen. Nach der Zugabe von SIINFEKL-Streptameren wurde Thapsigargin zu den Zellen gegeben. Thapsigargin blockiert in der ER-Membran befindliche SERCA-Pumpen, die für den Rücktransport von Ca2+-Ionen in das ER zuständig sind. Die Zugabe nach der Freisetzung von Ca2+-Ionen aus dem ER ermöglicht eine vollständige Entleerung dieses Kalzium-Speichers, sodass Aussagen über die Effizienz der Freisetzung von Ca2+-Ionen aus dem ER möglich sind. Am Ende jeder Messung wurden CaCl\textsubscript{2}-Ionen zu den Zellen gegeben, um extrazellulär wieder Ca2+-Ionen zuzuführen und den Influx extrazellulärer Ca2+-Ionen zu überprüfen.

Die Stimulation von naiven T-Zellen mit SIINFEKL-Streptameren führte zur Freisetzung von Ca2+-Ionen aus dem ER. Die Behandlung mit Thapsigargin ermöglichte eine vollständige Entleerung des intrazellulären Speichers. Die Zugabe von extrazellulären Ca2+-Ionen in Form von CaCl\textsubscript{2} führte daraufhin zum Ca2+-Influx extrazellulärer Ca2+-Ionen. Die Stimulation von IFN-vorbehandelten T-Zellen führte im Vergleich zu einer verzögerten und leicht verringerten Freisetzung von Ca2+-Ionen aus intrazellulären Speichern. Die Zugabe von Thapsigargin führte hier ebenfalls zur vollständigen Leerung des ERs. Nach der Zugabe von CaCl\textsubscript{2} wurde jedoch ein deutlich vermindelter Influx von extrazellulären Ca2+-Ionen in IFN-behandelten Zellen beobachtet (Abbildung 23). Typ I IFN führt somit zu einer verzögerten und verminderten Freisetzung von Ca2+-Ionen aus intrazellulären Speichern, die wiederum zu einem stark verminderten Influx extrazellulärer Ca2+-Ionen führt.
3.7.1.4 Geringe IFN-β-Konzentrationen vermindern den TZR-vermittelten Kalzium-Signalweg

Ergebnisse

54

Kalzium-Influx. Erst eine Vorstimulation mit einer sehr geringen Konzentration von 25U/mL IFN-β führte zu einem TZR-vermittelten \(\text{Ca}^{2+} \)-Influx, der jedoch im Vergleich zu unbehandelten Zellen vermindert war (Abbildung 24). Dies zeigt, dass im Gegensatz zur Inhibition der Proliferation bereits geringe Konzentrationen von IFN-β den TZR-vermittelten Kalzium-Signalweg inhibieren.

Abbildung 24 Geringe Konzentrationen IFN-β vermindern den T-Zell-Rezeptor-vermittelten Kalzium Influx

3.7.1.5 Inhibition des TZR-vermittelten \(\text{Ca}^{2+} \)-Signalwegs erfolgt spezifisch über den IFNAR

Die verschiedenen IFN-Typen binden an unterschiedliche Rezeptoren. Es sollte untersucht werden, ob der inhibitorische Effekt spezifisch für IFN-β ist, oder ob andere Typ I IFN-Subtypen oder andere IFN-Typen den TZR-vermittelten Kalzium-Signalweg inhibieren können. Dazu wurden OT-I T-Zellen mit Indo-1 gefärbt und für eine Stunde mit 100U/mL
IFN-γ, 1000U/mL IFN-α4 oder 500U/mL IFN-β inkubiert. Nach Zugabe von SIINFEKL-Streptameren wurde der TZR-vermittelte Ca²⁺-Influx mittels FACS-Analyse untersucht.

Die Stimulation der T-Zellen mit IFN-β führte zur Inhibition des TZR-induzierten Ca²⁺-Influx. Auch die Stimulation mit IFN-α4 inhibierte die Mobilisierung von Ca²⁺-Ionen. Im Gegensatz dazu hatte die Behandlung mit IFN-γ keinen Einfluss auf den Influx von Ca²⁺-Ionen (Abbildung 25). Diese Beobachtungen zeigen, dass die Inhibition des Kalzium-Signalweges spezifisch durch Stimulation mit Typ I, aber nicht durch Typ II IFN vermittelt wird.

Abbildung 25 Typ I IFN, aber nicht Typ II IFN führt zu vermindelter Kalzium-Mobilisierung

3.7.1.6 Zeitpunkt und Dauer einer IFN-Stimulation sind entscheidend für den Effekt auf den TZR-vermittelten Ca²⁺-Influx

Die Untersuchung der Proliferation hat gezeigt, dass die Effekte einer IFN-Stimulation auf T-Zellen abhängig vom Zeitpunkt des IFN-Stimulus sind. Während die Stimulation mit 500U/mL IFN-β eine Stunde vor der TZR-Stimulation die Proliferation von T-Zellen deutlich
inhibierte, hatte eine sechsständige IFN-Stimulation eine weniger verminderte Proliferation zur Folge (Abbildung 9). Es sollte untersucht werden, ob die Wirkung von IFN auf den Ca2+-Signalweg abhängig von der Dauer und dem Zeitpunkt einer IFN-Stimulation ist.

Abbildung 26 Unterschiedliche Dauer von IFN-Stimulationen hat verschiedene Effekte auf den T-Zell-Rezeptor-vermittelten Kalzium-Influx

2 x 106 aufgereinigte OT-I CD8+ T-Zellen wurden mit Indo-1 gefärbt und für eine (1h IFN-β) bzw. sechs Stunden (6h IFN-β) mit 500U/mL IFN-β stimuliert oder unbehandelt belassen. Zusätzlich wurden Zellen für eine Stunde mit 500U/mL IFN-β stimuliert, das IFN weggewaschen und die Zellen für 5 Stunden unstimuliert belassen (1h IFN-β Puls). Die Mobilisierung von Kalzium-Ionen wurde mittels Durchflusszytometrie bestimmt. Nach 20 Sekunden wurden SIINFEKL-Streptamere zu den Zellen gegeben und der TZM-vermittelte Kalzium-Influx gemessen. Zum Ende der Messung wurde Ionomycin zu den Zellen gegeben, um den maximalen Influx von Kalzium-Ionen zu erzielen.

Die Stimulation mit SIINFEKL-Streptameren führte zum TZM-vermittelten Ca2+-Influx. Während eine einstündige Stimulation mit IFN-β den TZM-vermittelten Kalzium-Influx inhibierte, führte eine sechsständige IFN-Stimulation nur zu einer leicht verminderten Ca2+-Mobilisierung (Abbildung 26, 1h IFN-β und 6h IFN-β). Auch eine kurzzeitige IFN-Stimulation, nach der die Zellen anschließend für fünf Stunden unbehandelt belassen wurden, führte zu einem leicht verminderten Ca2+-Influx (Abbildung 26, 1h IFN-β Puls). Diese Daten weisen darauf hin, dass sowohl die Dauer als auch der Zeitpunkt einer IFN-Stimulation
entscheidend für den Effekt auf eine T-Zell-Stimulation sind. Es könnte darauf hinweisen, dass eine IFN-Stimulation zu einer transienten Aktivierung regulatorischer Moleküle führt, die inhibitorisch auf den TZR-Signalweg wirken.

3.7.2 Typ I IFN beeinflusst TZR-induzierte Signalmoleküle

Eine Phosphorylierung von p38 konnte in allen Ansätzen beobachtet werden, wobei weder eine TZR- noch eine IFN-Stimulation einen Einfluss auf die Phosphorylierung von p38 hatte (Abbildung 27).

Abbildung 27 Einfluss von Typ I IFN auf die Phosphorylierung von Erk und p38
Abbildung 28 Einfluss von Typ I IFN auf die Phosphorylierung von IκBα und JNK

3.8 Veränderte Geninduktion nach IFN- und TZR-Stimulation

Die Stimulation des TZR induziert Signalwege, die zur Aktivierung und Kerntranslokation der Transkriptionsfaktoren AP-1, NFAT und NF-κB führen. Diese induzieren eine Vielzahl verschiedener Gene, die Aktivierung, Proliferation und Effektorfunktionen regulieren. Eine IFN-Vorstimulation inhibiert den TZR-induzierten Kalzium-Signalweg (Kapitel 3.6), die Aktivierung des Ras/MAPK-Signalweges und NFκB (Kapitel 3.7) und führt zur Inhibition von Proliferation und Effektorfunktionen. Dies lässt auf einen „Crosstalk“ zwischen IFN- und TZR-induzierten Signalwegen schließen.

Ergebnisse

Abbildung 29 Anzahl induzierter Gene nach IFN-, TZR- oder IFN-und TZR-Stimulation

3.8.1 Einfluss von Typ I IFN auf TZR-induzierte Gene

Typ I IFN führten zur Inhibition bestimmter Signalwege, sodass untersucht werden sollte, welchen Einfluss eine IFN-Stimulation auf TZR-induzierte Gene hat. Die Analyse zeigte, dass Typ I IFN die Induktion TZR-stimulierter Gene unterschiedlich beeinflusst. Neben TZR-induzierten Genen, die durch eine IFN-Vorstimulation nicht beeinflusst wurden, wurde die Induktion bestimmter Gene durch die IFN-Behandlung verstärkt oder vermindert (Abbildung 30).

Abbildung 30 Typ I IFN beeinflusst TZR-stimulierte Gene
485 Gene, die durch eine TZR-Stimulation induziert wurden, wurden durch eine IFN-Vorstimulation nicht beeinflusst. 17 TZR-induzierte Gene wurden durch eine IFN- und TZR-Stimulation noch verstärkt induziert, während 254 Gene durch die IFN-Vorstimulation nicht bzw. nur vermindert induziert wurden. Die Gene, die durch eine IFN-Stimulation nicht beeinflusst wurden, haben wahrscheinlich keinen Einfluss auf die IFN-vermittelten Effekte, während Gene, die durch eine IFN-Stimulation unterschiedlich reguliert wurden, eine Rolle spielen könnten. Diese Gene wurden daher näher analysiert.

3.8.1.1 Typ I IFN inhibieren TZR-induzierte Gene

Es konnte bereits gezeigt werden, dass Typ I IFN zu einer verminderten Aktivierung von NFκB führt, jedoch auch die Regulation der Expression dieses Transkriptionsfaktors ist für
Abbildung 31: Typ I IFN inhibiert Geninduktion TZR-stimulierter Gene

Abbildung 32 Typ I IFN inhibiert Gene des TZR-Signalweges
OT-I CD8⁺ T-Zellen wurden wie bereits beschrieben stimuliert und die induzierten Gene entsprechend der Angaben analysiert (Abb. 29). Abbildung zeigt funktionelle Klassifizierung mittels DAVID-Programm, dargestellt ist TZR-Signalweg.

3.8.2 Typ I IFN induziert keine Toleranz-Mechanismen

die Expression inhibitorischer Rezeptoren, wie PD-1 und Lag3, gekennzeichnet und weisen ein vermindertes Potential zur Proliferation und Zytokinexpression auf. Eine IFN-Stimulation führte zu einer verminderten Effektorfunktion von T-Zellen. Es sollte untersucht werden, ob Markergene für Toleranzmechanismen durch IFN reguliert werden.

Ergebnisse

Abbildung 33 Einfluss von TZR- und IFN-Stimulation auf bestimmte Anergie und Exhaustion-Marker

3.8.3 Einfluss einer TZR-Stimulation auf IFN-induzierte Gene

3.8.3.1 IFN-induzierte Gene, die nicht durch eine TZR-Stimulation beeinflusst werden

278 der 561 IFN-induzierten Gene wurden durch eine TZR-Stimulation nicht beeinflusst. Mit Hilfe von biostatistischen Analysen wurden Gene identifiziert, die durch eine IFN-Stimulation induziert wurden und bei denen die IFN-Vorstimulation mit anschließender TZR-Stimulation keinen Einfluss auf die Induktion dieser Gene zeigte (persönliche Mitteilung Razif Gabdouilline, Abbildung 34).

Abbildung 34 IFN-stimulierte Gene, die durch eine TZR-Stimulation nicht beeinflusst werden

3.8.3.2 IFN-induzierte Gene, deren Expression durch TZR-Stimulation verstärkt werden

Abbildung 35 IFN-induzierte Gene, die durch eine TZR-Stimulation stärker induziert werden
OT-I CD8^+ T-Zellen wurden wie bereits beschrieben stimuliert und die induzierten Gene entsprechend der Angaben analysiert (Abb. 30). Normalisierte Heat-Map einer Auswahl von 52 Genen, die durch IFN-Stimulation induziert und durch IFN-und TZR-Stimulation verstärkt induziert wurden.

3.8.5 Inhibition der Expression IFN-stimulierter Gene durch TZR-Stimulation

Eine Studie mit humanen CD4^+ T-Zellen hat gezeigt, dass eine IFN-Stimulation nach Aktivierung des TZR nicht zu antiproliferativen Effekten führt. Allerdings wurde eine zehnfach verminderte Induktion von ISGs beobachtet^97. Es sollte untersucht werden, ob nicht nur eine IFN-Stimulation die TZR-induzierten Signalwege beeinflusst, sondern auch eine TZR-Stimulation die Induktion von IFN-abhängigen ISGs. Die Analysen zeigten, dass 231 IFN-induzierte Gene, durch eine TZR-Stimulation nach IFNAR-Aktivierung...
herrunterreguliert bzw. nicht induziert wurden (persönliche Mitteilung Razif Gabdouilline, *Abbildung 36*).

Abbildung 36 Analyse von IFN-stimulierten Genen, die durch TZR-Stimulation runterreguliert wurden

Die Analyse der Microarray-Daten lässt vermuten, dass ein „Crosstalk“ zwischen Typ I IFN- und TZR-induzierten Signalwegen existiert, wobei inhibitorische und stimulatorische Wechselwirkungen identifiziert wurden.

3.9 Einfluss von Typ I IFN auf CD8⁺ T-Zellen nach TZR-Stimulation *in vivo*

Typ I IFN können die Reifung von DCs sowie deren Antigenpräsentation und Expression costimulatorischer Moleküle anregen und somit zu einer verbesserten Stimulation von T-Zellen führen56-60. Um den Effekt von IFN ausschließlich auf T-Zellen zu untersuchen, wurden CD11c+ DCs aus IFNAR-defizienten Mäusen isoliert und mit dem SIINFEKL-Peptid beladen. Die beladenen DCs wurden daraufhin i.v. in w.t. Mäuse injiziert. Thy1.1 x OT-I T-Zellen wurden mit CFSE gefärbt, für eine Stunde mit 500U/mL IFN-β stimuliert oder unbehandelt belassen und 24 Stunden nach dem Transfer der DCs i.v. in die w.t. Mäuse injiziert (Abbildung 37 A). Der Oberflächenmarker Thy1.1 dient dabei der Unterscheidung zwischen den transferierten Thy1.1+ OT-I T-Zellen und den Thy1.2+ T-Zellen der w.t. Mäuse. Es wurden Anzahl, Proliferation, Aktivierungszustand und Effektorfunktion der T-Zellen untersucht.

Die Analyse des Aktivierungszustands anhand der Expression von CD25 zeigte, dass alle transferierten Zellen aktiviert wurden. Der Aktivierungsstatus der Zellen wurde durch die IFN-Behandlung nicht beeinflusst (Abbildung 37 D) und bestätigt die Daten der \textit{in vitro} Experimente, die gezeigt haben, dass Typ I IFN die Aktivierung von CD8+ T-Zellen nicht beeinflusst.

Eine IFN-Vorstimulation führte \textit{in vitro} zu einer verminderten Effektorfunktion der T-Zellen, da diese eine geringere Expression des Effektormoleküle Granzym B und IFN-\textgamma (Abbildung

Abbildung 37 Typ I IFN führt zu vermindriger Aktivierung und Effektorfunktionen von in vivo stimulierten T-Zellen

Abbildung 38 Eine IFN-Stimulation führt nur vorübergehend zu einer verminderten Anzahl und Effektorfunktion von T-Zellen

5 x 10^5 SIINFEKL-Peptid-gepulste CD11c⁺ DCs aus IFNAR-defizienten Mäusen wurden i.v. in C57BL/6- Mäuse injiziert. 2 x 10^6 aufgereinigte Thy1.1 x OT-I CD8⁺ T-Zellen wurden mit CFSE gefärbt und für eine Stunde mit 500U/mL IFN-γ stimuliert oder unstimuliert belassen. 24 Stunden nach Injektion der DCs wurden die T-Zellen ebenfalls i.v. injiziert. 2, 3, 6, 11, 20, 40 und 60 Tage nach T-Zell-Injektion wurden die Anzahl von Thy1.1⁺CD8⁺ T-Zellen mittels FACS-Analyse untersucht. An den Tagen 20, 40 und 60 wurden 2 Tage vor der Analyse zusätzlich erneut SIINFEKL-Peptid-beladene CD11c⁺ DCs injiziert. A Schematische Darstellung des Experiments. B Anzahl Thy1.1⁺ CD8⁺ T-Zellen in der Milz. C IFN-γ-Expression von Thy1.1⁺ CD8⁺ T-Zellen. Daten zeigen MFI.

Typ I IFN kann TZR-Signalwege inhibieren und somit die Geninduktion verändern, wodurch Proliferation und Effektorfunktionen von CD8⁺ T-Zellen negativ beeinflusst werden. Entscheidend für diese Effekte sind der Zeitpunkt sowie die Menge an Typ I IFN. Auch bei
einer T-Zell-Aktivierung \textit{in vivo} kann eine vorherige IFN-Stimulation transient die Anzahl sowie Effektorfunktionen von CD8$^+$ T-Zellen herabsetzen.

Unsere Versuche lassen vermuten, dass Typ I IFN T-Zell-Antworten zunächst unterdrückt bzw. inhibiert, um möglicherweise unnötige oder unspezifische Reaktionen zu verhindern.
4. Diskussion

4.1 Typ I IFN inhibiert die Proliferation von CD8\(^+\) T-Zellen

Die Antigen-spezifische Stimulation des TZR naive T-Zellen führt zur Proliferation sowie Expansion der T-Zellen. Typ I IFN kann die Expansion von T-Zellen beeinflussen. Verschiedene Studien zeigen, dass die Anzahl IFNAR\(^+\) CD8\(^+\) T-Zellen, die nicht auf Typ I IFN reagieren können, nach LCMV-Infektionen deutlich vermindert ist\(^{56,63-65}\). Dabei beeinflussen direkte IFN-Signale nicht die Proliferation der T-Zellen, jedoch deren Überleben\(^64\). Die beschriebenen Effekte sind nach LCMV-Infektionen vorhanden, spielen jedoch nach Infektionen mit dem Vaccinia Virus oder Listerien nur eine untergeordnete Rolle\(^65\). In in vitro-Studien wurde Typ I IFN als drittes potenzielles Signal nach TZR- und Co-Rezeptor-Stimulation identifiziert, das zu einer verbesserten Proliferation führt\(^27\). Die beschriebenen Effekte von Typ I IFN auf die Proliferation von T-Zellen sind jedoch
widersprüchlich, da andere Studien zeigen, dass Typ I IFN die Proliferation von T-Zellen in vitro inhibiert. Viele dieser Studien wurden anhand von transformierten und immortalisierten T-Zell-Linien durchgeführt\(^7\). Bei primären T-Zellen führen erst sehr hohe Konzentrationen an Typ I IFN zu einer verminderten Proliferation\(^6\). Primäre T-Zellen, die in vivo mit IFN vorstimuliert werden, zeigen hingegen nach einer TZR-Stimulation in vitro eine verminderte Proliferation\(^6\). Zusätzlich konnten in IFNAR\(^{-/-}\)-Mäusen nach Vakzinierung verbesserte T-Zell-Antworten festgestellt werden\(^7\). Des Weiteren ist bekannt, dass Typ I IFN Immunreaktionen unterdrückt und die Proliferation von CD8\(^+\) T-Zellen inhibieren kann\(^7\).

Typ I IFN kann den Zellzyklus von T-Zellen beeinflussen. So wurde beschrieben, dass Typ I IFN die dsRNA-aktivierte Kinase PKR induziert. Diese kann die Proliferation von T-Zellen entweder direkt über eine generelle Inhibition der Proteinsynthese oder indirekt über die Produktion von IL-4 negativ regulieren\(^7\). Es konnte außerdem gezeigt werden, dass die IFN-vermittelte Inhibition der Proliferation über STAT1 reguliert wird. Als wichtiges Signalmolekül des IFN-Signalweges wird STAT1 nach Bindung von Typ I IFN an den IFNAR durch Janus-Kinasen phosphoryliert und aktiviert\(^8\). Es ist bekannt, dass STAT1\(^{-/-}\) CD8\(^+\) T-Zellen trotz hoher IFN-Konzentrationen in vitro proliferieren. Antigen-spezifische T-Zellen proliferieren nach LCMV-Infektionen, die mit einer starken IFN-Produktion
einhergehen. Im Rahmen dieser Studie wurde in T-Zellen, die nach einer LCMV-Infektion nicht proliferieren, eine im Vergleich zu den proliferierenden T-Zellen deutlich erhöhte Menge an STAT1-Protein nachgewiesen. Antigen-spezifische T-Zellen können somit die IFN-vermittelte Inhibition der Proliferation über die Menge an STAT1-Protein regulieren\(^6\). STAT1 und die antiproliferativen IFN-Effekte sind daher wichtige Faktoren, um die Proliferation von CD8\(^+\) T-Zellen frühzeitig nach viralen Infektionen zu regulieren. Die Stimulation von naiven OT-I CD8\(^+\) T-Zellen mit IFN-\(\beta\) führt zur Phosphorylierung und somit zur Aktivierung von STAT1 (Lucas Kemper, persönliche Mitteilung). Es ist daher möglich, dass die Phosphorylierung von STAT1 für die IFN-vermittelte Inhibition der Proliferation verantwortlich ist. Mit Hilfe von STAT1\(^{-/-}\) OT-I T-Zellen könnte diese Hypothese überprüft werden.

4.2 Der Einfluss von Typ I IFN auf die Aktivierung, Differenzierung und Effektorfunktion von CD8⁺ T-Zellen

CD8\(^+\) T-Zellen differenzieren nach ihrer Aktivierung zu Effektorzellen, deren Aufgabe darin besteht, veränderte Zellen sowie infizierte oder Tumor-Zellen zu eliminieren. Effektorzellen töten Zielzellen über verschiedene Mechanismen, wie der Expression von Zytotoxinen, wie

4.3 „Crosstalk“ zwischen TZR- und IFN-induzierten Signalwegen

Eine Bindung von Liganden an den TZR induziert eine Vielzahl verschiedener Signalwege, die u.a. zum Anstieg intrazellulärer Ca²⁺-Konzentrationen und zur Aktivierung von MAP-Kinasen führen. Über die Aktivierung von Transkriptionsfaktoren, wie AP-1, NFAT und NFκB werden Gene induziert, die Aktivierung, Proliferation, Effektorfunktion oder Apoptose regulieren. Typ I IFN induziert neben den Jak/STAT-Signalweg eine Vielzahl weiterer Signalwege. Diese Signalwege regulieren die Aktivierung von STAT-Molekülen oder arbeiten unabhängig von diesen²⁰, ⁷⁷. Zu diesen Signalwegen gehören der MAPK-, der PI3K-
sowie der NFκB-Signalweg77, die ebenfalls durch eine Stimulation des TZRs induziert werden.

Der Kalzium-Signalweg wird über die Stimulation des TZR induziert. Dies führt zunächst zur Freisetzung von Ca2+-Ionen aus dem ER und dadurch zum Influx extrazellulärer Ca2+-Ionen über in der Plasmamembran befindliche Kalziumkanäle. Neben der Aktivierung des Calcineurin/NFAT-Signalweges, werden der Ras/MAPK-Signalweg sowie die Aktivierung von NFκB beeinflusst47,48. Eine IFN-β-Vorstimulation inhibierte den TZR-induzierten Ca2+-Influx in OT-I CD8+ T-Zellen (Abbildung 21). Typ I IFN führte dabei nicht zur Inhibition von Kalzium-Kanälen, da der Influx von Ca2+-Ionen durch Ionomycin nicht beeinflusst wurde (Abbildung 22). Vielmehr führte eine IFN-Stimulation zu einer verzögerten sowie verminderten Freisetzung von Ca2+-Ionen aus dem ER (Abbildung 23), die für den Influx extrazellulärer Ca2+-Ionen notwendig ist. Die Inhibition des Ca2+-Influx erfolgt spezifisch durch Typ I IFN, während Typ II IFN keinen Einfluss auf den TZR-induzierten Kalzium-Signalweg hat. Typ I und Typ II IFN binden an unterschiedliche Rezeptoren und induzieren Signalkaskaden, an denen ähnliche Moleküle beteiligt sind, die aber zu unterschiedlichen Genexpressionsmustern führen. Obwohl STAT1-Moleküle durch Typ I und Typ II IFN induziert werden, kann IFN-γ den Ca2+ Influx nach TZR-Stimulation nicht inhibieren (Abbildung 25).

Ca2+-Signale sind essentiell für die Produktion von IL-2, welches entscheidend für die klonale Expansion und Differenzierung naive CD8+ T-Zellen zu Effektorzellen ist33. Die verminderte Induktion von IL-2, die zur verminderten Proliferation geführt hat, ist wahrscheinlich auf die Typ I IFN-vermittelte Inhibition des Kalzium-Signalweges zurückzuführen. Die Inhibition des Ca2+-Weges durch Typ I IFN, und damit die geringere Produktion von IL-2 scheinen daher essentiell für die inhibierenden Effekte von IFN auf CD8+ T-Zellen zu sein.

Die IFN-vermittelte Inhibition des Kalzium-Signalweges sowie der Aktivierung von Erk und NFκB lässt auf einen Crosstalk zwischen IFN- und TZR-induzierten Signalkaskaden schließen. Eine mögliche Erklärung für die beobachtete Inhibition bestimmter TZR-stimulierter Signalwege kann die nach IFN-Stimulation beschriebene Rekrutierung der Signalmoleküle Zap70, CD45 und Lck zum IFNAR sein⁷⁵. Wenn diese wichtigen Signalmoleküle nach einer TZR-Stimulation nicht zur Verfügung stehen, können bestimmte Signalwege nicht induziert werden. Eine IFN-Stimulation könnte jedoch auch Inhibitoren
induzieren, die direkt oder indirekt TZR-induzierte Signalwege hemmen. Die IFN-vermittelte Inhibition der TZR-induzierten Signalwege und daher der potentielle Crosstalk haben keinen Einfluss auf die Aktivierung von T-Zellen, führen jedoch zu einer verminderten Proliferation sowie Effektorfunktion von CD8⁺ T-Zellen.

4.4 Einfluss des „Crosstalks“ zwischen IFN- und TZR-Signalwegen auf die Geninduktion

negative Feedback-Mechanismen induziert werden (GO-Klassifizierung, persönliche Mitteilung Razif Gabdoulline, Biobase), die eine vollständige Aktivierung der TZR-Signalkaskade verhindern. Tatsächlich werden Proliferation und der Kalzium-Signalweg TZR-stimulierter T-Zellen nach einer sechsstündigen IFN-Stimulation nicht inhibiert (Abbildungen 9 & 26), was darauf hinweist, dass negative Regulationsmechanismen direkt durch IFN stimuliert werden und nur kurzfristig zur Inhibition des TZR-Signalkaskade führen.

verschiedener Signalwege, wie Ras, PI3K, p38 und IkB, die Transkriptionsfaktoren NFAT und NFκB sowie die Zytokine IL-2, IL-4, GM-CSF und TNF-α, die durch den TZR-Signalweg induziert werden. IL-2 und GM-CSF sind entscheidend für Homeostase und Proliferation von T-Zellen und könnten somit eine Ursache für die langfristigen Effekte der kurzzeitigen Veränderung in der Geninduktion sein.

synergistische Wechselwirkungen, da bestimmte Gene durch eine IFN- bzw. TZR-Stimulation verstärkt induziert wurden.

4.5 Relevanz der beobachteten IFN-Effekte

Eine unvollständige Antigenstimulation oder eine fehlende Co-Stimulation können in vivo Anergie induzieren. Co-Stimulationen über Rezeptoren, wie CD28, sind notwendig für die Ausbildung der immunologischen Synapse und um TZR-induzierte Signalwege zu verstärken. Infektionen mit verschiedenen Viren können jedoch die Reifung von DCs sowie deren Expression von MHC- und co-stimulatorischen Molekülen inhibieren. In unseren Versuchen hatte eine IFN-Vorstimulation keinen negativen Effekt auf die Proliferation, wenn CD8⁺ T-Zellen durch DCs, die Liganden für Co-Rezeptoren exprimieren, aktiviert wurden (Abbildung 10). Die Stimulation mit suboptimalen CD3ε Antikörper-Konzentrationen führte hingegen zu einer Inhibition der Proliferation (Abbildung 11). Die Typ I IFN-vermittelte Inhibition ist daher möglicherweise ein Schutzmechanismus, um T-Zellen davor zu schützen, durch eine unvollständige Stimulation anerg zu werden und somit verminderte T-Zell-
5. Material & Methoden

5.1. Geräte und Chemikalien

5.1.1 Geräte

<table>
<thead>
<tr>
<th>Gerät</th>
<th>Marke</th>
</tr>
</thead>
<tbody>
<tr>
<td>Autoklav</td>
<td>Belimed Dampfsterilisator 6-6-6 HS1, FD</td>
</tr>
<tr>
<td>Clean Benches</td>
<td>Heraeus, HeraSafe Typ HSB18, KS15 und HSP 18</td>
</tr>
<tr>
<td></td>
<td>Heraeus Sterilgard SG400E</td>
</tr>
<tr>
<td></td>
<td>BDK Laminar-Flow Typ BDK-S 1500 und KS12</td>
</tr>
<tr>
<td>Kühlzentrifugen</td>
<td>Thermo Scientific Jouan CR412</td>
</tr>
<tr>
<td></td>
<td>Sigma 2-16K Sartorius</td>
</tr>
<tr>
<td>Wasseraufbereitungsanlage</td>
<td>Millipore MilliQ</td>
</tr>
<tr>
<td>Durchflusszytometer</td>
<td>LSR II Becton Dickenson</td>
</tr>
<tr>
<td>Tischzentrifugen</td>
<td>Heraeus Biofuge pico Heraeus Sepatech Megafuge 1.0R</td>
</tr>
<tr>
<td>Vortexer</td>
<td>Heidolph REAX 2000</td>
</tr>
<tr>
<td>Wasserbad</td>
<td>Rowa Model Ro 3044</td>
</tr>
<tr>
<td>pH-Meter</td>
<td>M340, Beckman</td>
</tr>
<tr>
<td>Light Cycler</td>
<td>Light Cycler, Roche</td>
</tr>
<tr>
<td>Pipetten</td>
<td>Gilson Pipetman Labnet Biopette</td>
</tr>
<tr>
<td>Pipettierhilfen</td>
<td>Pipetboy IBS Integra Biosciences</td>
</tr>
<tr>
<td>autoMACS</td>
<td>Miltenyi</td>
</tr>
<tr>
<td>Netzgeräte</td>
<td>Biorad Power Pac 300</td>
</tr>
<tr>
<td>Blotapparatur</td>
<td>Transblot SD Semi-Dry Biorad</td>
</tr>
</tbody>
</table>
5.1.2 Chemikalien

5.2 Zellkulturmaterialien

Für das Arbeiten mit Zellen wurden Materialien von den Firmen Costar, Gibco, Greiner, Nunc und Seromed benutzt.

5.3 Computerprogramme

5.4 Sterilisation

Glasmaterialien wurden für 4h bei 180°C im Trockenschrank sterilisiert. Sämtliche Plastikwaren, wie Eppendorfgefäße, Pipettenspitzen und Lösungen wurden für 25min bei 121°C autoklaviert. Lösungen, die nicht autoklaviert werden konnten, wurden sterillfiltriert (0,22µm Filter).

5.5 Zellkulturmedien und Zelllinien

5.5.1 Verwendete Zelllinien

EL-4: murine T-Zell-Tumorlinie

5.5.2 Medien und Lösungen

RPMI Roswell Park Memorial Institute Medium: RPMI Pulver:
100mL 1M HEPES; 1,68 g/L NaHCO₃; pH 7,0-7,4

IMDM Isocove’s Modified Dulbecco’s Medium: 517,65 g/L IMDM-Pulver: 3,02g/L NaHCO₃; pH 7,0-7,4

Pen/Strep (100x) 1,212g Penicillin, 200mL (10.000U/mL) 2g Streptomycin, 200mL (10mg/mL); zum Lösen mit NaOH auf pH 7,4 einstellen (Lagerung bei -20°C)

Glutamine (100x) 29,23mg/mL Glutamine; Lagerung bei -20°C

FCS JRH Bioscience
5.5.3 Kultivierung von Zellen

Kultivierung in RPMI: primäre T-Zellen und dendritische Zellen

Kultivierung in IMDM: EL-4-Zellen

Primäre, aufgereinigte CD8⁺ T-Zellen wurden für die benannten Zeitpunkte mit den angegebenen Konzentrationen IFN-β, IFNα4 und IFN-γ (rekombinant, aus transfizierten BHK Zelllinien) stimuliert und anschließend mit PBS gewaschen. Zur Stimulation des T-Zell-Rezeptors wurden die Zellen anschließend mit immobilisierten CD3ε Antikörpern, mit SIINFEKL-Streptameren bzw. mit dem SIINFEKL-Peptid gepulsten dendritischen Zellen inkubiert. Die Zellen wurden in Medium mit 10% (v/v) FCS, 20mM Glutamine, 60µg/mL Penicillin und 100µg/mL Streptomycin (1% v/v) und β-Mercaptoethanol bei 37°C und 5% CO₂ inkubiert.

5.6 Arbeiten mit isolierten murinen Immunzellen

5.6.1 Isolierung von Zellen aus der Milz

Sämtliche Arbeiten wurden unter sterilen Bedingungen durchgeführt, um Kontaminationen mit Bakterien zu verhindern.

ACK Lyse-Puffer: 8,29g (0,15M) NH₄Cl; 1g KHCO₃ (10mM), 37,2g Na₂EDTA (0,1 mM); ad 1L H₂O; pH7,2 -7,4; sterilfiltriert

OT-l bzw. C57Bl/6-Mäuse wurden mittels CO₂ getötet, die Milz präpariert und in eine Petrischale mit 5mL PBS/EDTA (2mM) überführt. Die Milzen wurden in einem Zellsieb (40µm)
mit Hilfe des Stempels einer Spritze zerdrückt. Die dadurch gewonnenen Zellen wurden in ein 15mL Falcon überführt und bei 1200rpm für 10 Minuten zentrifugiert. Der Überstand wurde abgesaugt, das Zellpellet in 2mL ACK Lyse-Puffer resuspendiert und für 2 Minuten inkubiert, um Erythrozyten zu lysieren. Zum Abstoppen wurden 12mL PBS/EDTA (2mM) zugegeben und erneut zentrifugiert. Das Pellet wurde anschließend entweder in RPMI-Medium aufgenommen oder für die magnetische Aufreinigung von T-Zellen verwendet.

5.6.2 Isolation von Zellen aus Lymphknoten

OT-I bzw. C57Bl/6-Mäuse wurden mittels CO₂ getötet, die Lymphknoten präpariert und in eine Petri-Schale mit 5mL PBS/EDTA (2mM) überführt. Die Lymphknoten wurden durch ein Zellsieb (70µm) mit Hilfe des Stempels einer Spritze zerdrückt. Die gewonnenen Zellen wurden bei 1200rpm für 10 Minuten zentrifugiert, der Überstand abgesaugt und das Pellet in FACS- Puffer bzw. RPMI- Medium aufgenommen.

5.6.3 Aufreinigung von T-Zellen mittels magnetischer Separation

Isolierungs-Puffer: PBS, 2mM EDTA, 0,5% (w/v) BSA, pH 7,2

Die Aufreinigung von T-Zellen erfolgte mittels magnetischer Separation unter Verwendung des Pan T cell isolation KIT II (Miltenyi) sowie dem autoMACS (Miltenyi). Zunächst wurde die Zellzahl der isolierten Milzzellen bestimmt und die Zellen in der entsprechenden Menge Isolierungs-Puffer (40µL pro 10⁷ Zellen) aufgenommen, resuspendiert und gevortext. Anschließend wurden 10µL pro 10⁷ Zellen Antikörper-Cocktail zugegeben, erneut resuspendiert und gevortext. Nach zehnminütiger Inkubation auf Eis wurden 30µL pro 10⁷
Zellen Isolationspuffer sowie 20µL Microbeads pro 10^7 Zellen zugegeben, erneut resuspendiert, gevortext und für 15 Minuten auf Eis inkubiert. Daraufhin wurde mit Isolations-Puffer auf 14mL aufgefüllt und für 10min bei 1200rpm und 4°C zentrifugiert. Die Zellen wurden in 1,5mL Isolations-Puffer aufgenommen und die Separation der T-Zellen erfolgte mit Hilfe des autoMACS und dem Programm „Depletes“. Die erhaltenen Zellen wurden bei 1200rpm für 10 Minuten zentrifugiert und in RPMI-Medium aufgenommen.

5.6.4 Stimulation von murinen T-Zellen in vitro

5.6.5 CFSE-Proliferationsassay

Die Proliferation der T-Zellen wurde mittels CFSE (Carboxyfluorescein succinimidyl ester)-Färbung analysiert. CFSE diffundiert passiv in Zellen und ist zunächst farblos sowie nicht fluoreszierend. Intrazelluläre Esterasen führen zur Abspaltung von Acetat-Gruppen, wodurch CFSE fluoresziert. Durch die Bindung an intrazelluläre Amine verbleibt CFSE in den Zellen und wird bei der Zellteilung zu gleichen Teilen an die Tochterzellen weitergegeben. Aufgereinigte OT-I T-Zellen wurden zweimal mit PBS gewaschen und entsprechend der Herstellerangaben mit 2µM CFSE (Invitrogen) in PBS für zehn Minuten bei 37°C inkubiert. Anschließend wurde die Reaktion durch die Zugabe von Medium gestoppt, die Zellen zweimal mit Medium gewaschen und anschließend entsprechend der Angaben stimuliert. 72 Stunden nach der Stimulation wurde die Proliferation entsprechend der CFSE-Färbung mittels Durchflusszytometrie bestimmt.

5.6.6 In vitro CTL-Assay

5.7 Durchflusszytometrie (FACS) zur Analyse von Zellen und Sortierung von Zellen

5.7.1 Antikörper für Durchflusszytometrie zur Analyse von Zellen und Sortierung von Zellen

- anti-B220 APC-Cy7 anti-mouse B220 (1:150), ebioscience
- anti-CD3 FITC anti-mouse CD3 (1:300), BD Pharmingen
- anti-CD4 APC anti-mouse CD4 (1:300), BD Pharmingen
- anti-CD8 PE anti-mouse CD8 (1:800), ebioscience
 APC-Cy7 anti-mouse CD8 (1:300), ebioscience
 PerCPCy5.5 anti-mouse CD8 (1:400), ebioscience
- anti-CD11c PeCy7 anti-mouse CD11c (1:200), ebioscience
- anti-CD16/CD32, anti-CD16/CD32 (1:500) molecular immunology (Fc-Block)
- anti-CD25 PeCy5 anti-mouse CD25 (1:500), ebioscience
- anti-CD44 APC-AF750 anti-mouse CD44 (1:800), ebioscience
- anti-CD62L PeCy7 anti-mouse CD62L (1:200), ebioscience
 APC anti-mouse CD62L (1:4000), ebioscience
- anti-CD69 FITC anti-mouse CD69 (1:200), ebioscience
 PeCy7 anti-mouse CD69 (1:500), ebioscience
- anti-CD95 PE anti-mouse CD95 (1:500), ebioscience
- anti-CD95L PeCy7 anti-mouse CD95L (1:500), ebioscience
- anti-CD127 FITC anti-mouse CD127 (1:200), ebioscience
- anti-Granzyme B FITC anti-mouse Granzyme B (1:4000), ebioscience
 PeCy7 anti-mouse Granzyme B (1:800), ebioscience
Material & Methoden

- anti-IFNAR1 APC anti-mouse IFNAR1 (1:100), BioLegend
- anti-IFN-γ FITC anti-mouse IFN-γ (1:500), ebioscience
eFlour450 anti-mouse IFN-γ (1:400), ebioscience
- anti-IL-2 APC anti-mouse IL-2 (1:400), ebiosciencePacific Blue anti-mouse IL-2 (1:300), ebioscience
- anti-IL15R APC anti-mouse IL15R (1:800), ebioscience
- anti-Perforin APC anti-mouse Perforin (1:400), ebioscience
- anti-Thy1.1 PE anti-mouse Thy1.1 (1:2000), ebioscience
- anti-TRAIL PE anti-mouse TRAIL (1:300), ebioscience

5.7.2 Durchflusszytometrie und Zell-Sortierung

FACS-Puffer: PBS, 2% FCS

5 x 10^5 Zellen wurden in eine 96-well Platte mit V-Boden überführt und zweimal mit FACS-Puffer gewaschen. Um unspezifische Bindungen zu verhindern, wurden die Zellen für 20 Minuten bei Raumtemperatur im Dunkeln in 100µL Fc-Block inkubiert. Nach fünfminütiger Zentrifugation bei 1200 rpm wurden die Zellen mit 100µL konjugiertem Antikörper für 30 Minuten bei 4°C im Dunkeln inkubiert. Die Zellen wurden anschließend zweimal mit FACS-Puffer gewaschen, das Zellpellet in 300µL FACS-Puffer resuspendiert und die Zellen via LSR II (BD) analysiert oder ARIA (BD) sortiert. Um zwischen lebenden und toten Zellen zu unterscheiden, wurden die Zellen für 5 Minuten mit 5µL 7-AAD (ebioscience) inkubiert.
5.7.3 Analyse von intrazellulären Zytokinen

5.7.4 Messung der Kalzium-Mobilisierung mittels Durchflusszytometrie

Zur Messung von Ca^{2+}-Ionen wurden aufgereinigte OT-I CD8^{+} T-Zellen für 45 Minuten mit 1 µM Indo-1 AM (invitrogen) inkubiert. Indo-1 AM ist ein Ca^{2+}-sensitiver Farbstoff, der ohne gebundenes Ca^{2+} nach der Anregung im UV-Bereich blaue Fluoreszenz emittiert. Nach der Bindung von Ca^{2+}-Ionen erfolgt die Emission im violetten Farbbereich. Über das Verhältnis von Violett zu Blau kann die Mobilisierung von Ca^{2+}-Ionen über die Zeit dargestellt werden. Anschließend wurden die Zellen mit 500 U/mL IFN-β stimuliert oder unbehandelt gelassen. Mittels Durchflusszytometrie wurde die Freisetzung von Kalzium gemessen. Die Zellen wurden erwärmt und zunächst für 20 Sekunden gemessen. Daraufhin wurden SIINFEKL-
Material & Methoden

1.0 Streptamere zu den Zellen gegeben und für weitere vier bis fünf Minuten die Mobilisierung von Kalzium gemessen. Eine Minute vor dem Ende der Messung wurde 1µg/mL Ionomycin (Sigma) zu den Zellen gegeben, um eine vollständige Freisetzung von Kalzium-Ionen zu ermöglichen.

Um die Freisetzung von Kalzium-Ionen aus intrazellulären Speichern zu bestimmen, wurden die Zellen vor der Messung in EGTA-haltigem (3mM) FACS-Puffer aufgenommen, um extrazelluläre Kalzium-Ionen zu binden. Die Zellen wurden wiederum für 20 Sekunden ohne Stimulus gemessen und daraufhin die SIINFEKL-Streptamere zugegeben. Nach der Freisetzung der Kalzium-Ionen wurde 1µg/mL Thapsigargin (Alamone) zur Blockierung von SERCA-Pumpen zu den Zellen gegeben, um eine vollständige Entleerung der intrazellulären Speicher zu induzieren. Zum Ende der Messung wurden 2mM CaCl$_2$ zu den Zellen gegeben, um extrazelluläre Kalzium-Ionen wieder zur Verfügung zu stellen.

5.8 RNA-Analysen

5.8.1 Isolierung von Gesamt-RNA

5.8.2 RT-PCR

5.8.3 Quantitative Real-Time PCR

Verwendete Primer:

CD160 for 5´-GAGCTAACGTAAGCCAGTGGGAGTG-3´
CD160 rev 5´-CTCCTTTCTGGGATGCTGAG-3´

IL2 for 5´-CCCACTTCAAGCTCCACTTC-3´
IL-2 rev 5´-ATCCTGGGGAGTTTCAGGTT-3´

NFKB1 for 5´-CTGACCTGAGCCTTCTGGAC-3´
NFKB1 rev 5´-GCAGGCTATTGCTCATCACA-3´

Rel for 5´-TGCTGGACATTGAAGACTGC-3´
Rel rev 5´-CCCCTGACACTTCCACAGTT-3´
Material & Methoden

5.8.4 Microarray-Analysen

Die Gesamt-RNA wurde wie bereits beschrieben (s. 5.8.1) isoliert und die Microarray-Analysen an der MHH, Institut für Physiologische Chemie, durchgeführt. Der verwendete „Whole Mouse Genome Oligo Microarray“ (G4122F, AMADID 014868, Agilent Technologies) beinhaltete 45018 Oligonucleotide Probes und die abgeleiteten Datensätze wurden in eine Excel-Ergebnisdatei integriert. Zur weiteren Analyse wurden nur annotierte Gene verwendet, die eine Signalstärke in unstimulierten Zellen von über 100 aufwiesen.

5.9 Proteinanalytik

5.9.1 Zellaufschluss

Lysepuffer

| Lösung | 9930µL 250mM Tris HCL; pH7.5; 50µL Triton pure; 2µL 0,1M PMSF (Proteinase-Inhibitor) |

OT-I T-Zellen wurden wie bereits beschrieben aufgeregnet und stimuliert. Die Stimulation der Zellen wurde mit eiskaltem PBS abgestoppt, die Zellen bei 1200rpm für 10 Minuten...
zentrifugiert und das Pellet bei -20°C gelagert oder sofort zu Zellextrakten weiterverarbeitet. Das Pellet wurde in 20 bis 50 µL Lysepuffer resuspendiert und für 20 bis 30 Minuten auf Eis inkubiert. Daraufhin wurden die Zellen bei 10.000rpm für 10 Minuten bei 4°C zentrifugiert, der Überstand abgenommen und das Pellet bei -20°C gelagert.

5.9.2 Proteinbestimmung (BCA-Assay)

Lösung A 1g BCA (Bicinchoninsäure); 160mM Na₂CO₃ x H₂O (2g); 7mM Na₂-Tartrat (1,6g); 110mM NaHCO₃ (0,95g); 1N NaOH; pH 11,25, ad 100mL H₂O

Lösung B CuSO₄ x 5H₂O (4g), ad 100mL H₂O

Gebrauchslösung 15mL Lösung A + 0,3mL Lösung B

Lysozym-Stocklösung 3mg/mL

In der ersten Reihe einer Mikrotiterplatte für optische Tests wurden 190µL, in die anderen Reihen jeweils 100µL Gebrauchslösung vorgelegt. Daraufhin wurden 10µL der jeweiligen Proteinextrakte, der Standardproteinlösung (Lysozym 3mg/mL) sowie H₂O als Blank-Wert in die erste Reihe pipettiert. Mittels Multikanalpipette wurden die Proben resuspendiert und 100µL in die zweite Reihe pipettiert. In dieser Weise wurde zur weiteren Verdünnung bis zur letzten Reihe fortgefahren. Nach zehn- bis 30-minütiger Inkubation bei 50°C wurden die Proben mittels ELISA-Reader bei 562nm gemessen. Der Proteingehalt wurde anschließend anhand der Standardwerte der Lysozymlösung berechnet.
5.9.3 Polyacrylamid-Gelelektrophorese

Kathodenpuffer 20mM Tris/HCl (pH 8,25); 20mM Tricine; 0,02% SDS
Anodenpuffer 40mM Tris/HCl (pH 8,9)
Gelpuffer 3M Tris/HCl (pH 8,45); 0,3% SDS
Auftragspuffer 50mM Tris/HCl (pH 6,8); 4% SDS; 12% Glycerol; 2% β-
Mercaptoethanol; 0,01% Serva-Blue

Zur Herstellung eines 10%igen Trenngels wurden 7,1mL Acrylamid/Bis-Acrylamid
(49,5/1,5), 2mL Glycerin, 5mL Gelpuffer und 0,9mL H₂O vermischt und zur Polymerisierung
mit 15μL TEMED und 150μL 10%iges APS versetzt. Diese Lösung wurde zwischen
vorbereitete Glasplatten gegossen und mit Isopropanol überschichtet. Das Sammelgel wurde
aus 1,2mL Acrylamid/Bis-Acrylamid (49,5/1,5), 1,5mL Gelpuffer, 3,5mL H₂O sowie 10μL
TEMED und 100μL 10 %iges APS zur Polymerisation angesetzt. Nach der Polymerisation
des Trenngels wurde das Isopropanol entfernt, das Sammelgel in den verbleibenden Raum
gegossen und ein Kamm zur Taschenbildung eingesetzt. Nach der vollständigen
Polymerisation wurde das Gel in eine Elektrophoresekammer eingesetzt und der Anoden-
bzw. Kathodenpuffer eingefüllt. Die Proben wurden im Auftragspuffer für 3 Minuten bei 65°C
inkubiert und auf das Gel aufgetragen. Die Elektrophorese lief bis zum Erreichen des
Trenngels bei 80V und anschließend bei 125V.

5.9.4 Western Blot

Blotpuffer 25mM Tris/HCl; 192mM Glycin, 15% (v/v) Methanol
TBS-T 20mM Tris/HCl; pH 7,5; 137mM NaCl; 0,1% Tween-20
Verwendete Antikörper

Aktin Anti-Actin (mouse mAb), Calbiochem
Erk p44/42 MAP Kinase, Cell Signaling
Phospho-Erk phospho-p44/42 MAP-Kinase (Thr202/Tyr204), Cell Signaling
IkBα IkBα (44D4), Cell Signaling
Phospho-IkBα phosphor-IkBα (Ser32/36)
JNK JNK, Santa Cruz
Phospho-JNK phospho-JNK (Thr183/Tyr185)
p38 p38 MAP Kinase, Cell Signaling
Phospho-p38 phospho-p38 MAP Kinase (Thr180/Tyr182), Cell Signaling

5.10 In vivo-Versuche

5.10.1 Verwendete Maus-Linien

Um den Effekt einer IFN-Vorstimulation auf T-Zellen in vivo zu untersuchen, wurden Thy1.1 x OT-I-T-Zellen i.v. in Wild-Typ (w.t.) Mäuse injiziert. Die Aktivierung der T-Zellen erfolgte mittels sortierter CD11c⁺ DCs aus IFNAR⁻⁻-Mäusen. W.t. C57BL/6-Mäuse wurden von Harlan bezogen. OT-I, Thy1.1 x OT-I und IFNAR⁻⁻-Mäuse wurden am HZI Braunschweig gezüchtet.

5.10.2 In vivo-Modell

Für jedes Experiment wurden mindestens drei Mäuse pro Gruppe verwendet. CD11c⁺ DCs wurden aus den Milzen von IFNAR⁻⁻-Mäusen sortiert und 5 x 10⁵ Zellen pro w.t. Maus i.v. injiziert. Nach 24 Stunden wurden Thy1.1 x OT-I T-Zellen aus Milzen mittels magnetischer Separation aufgereinigt, mit CFSE gefärbt und für eine Stunde mit 500U/mL IFN-β stimuliert oder unbehandelt belassen. Pro w.t. Maus wurden 2 x 10⁶ T-Zellen i.v. injiziert. Nach zwei, drei, sechs und elf Tagen wurden die w.t. Mäuse mittels CO₂ getötet und die Milzen isoliert.
20, 40 und 60 Tage nach dem Transfer der Thy1.1 x OT-I T-Zellen wurden erneut 5 x 10^5
CD11c^+ DCs aus IFNAR^{−/−}-Mäusen i.v. in die w.t. Mäuse zur Restimulation der T-Zellen
injiziert. Nach jeweils zwei Tagen wurden die w.t. Mäuse mittels CO₂ getötet und die Milzen
isoliert. Die Anzahl der Thy1.1 x OT-I T-Zellen wurde mittels TruCount Beads (BD), die
Proliferation anhand der CFSE-Färbung und die Expression von Aktivierungsmarkern sowie
IFN-γ wurden mittels Durchflusszytometrie bestimmt.

5.10.3 In vivo CTL (Cytotoxic T cell) Assay

Um zu untersuchen, welchen Effekt eine IFN-Stimulation auf die Fähigkeit Zielzellen zu
töten hat, wurden in vivo CTL Assays durchgeführt. Wie bereits beschrieben wurden CD11c^+
DCs aus IFNAR^{−/−}-Mäusen i.v. in w.t. Mäuse injiziert und einen Tag später IFN-behandelte
oder unbehandelte Thy1.1 x OT-I T-Zellen injiziert. An Tag 1 nach dem T-Zell-Transfer
wurden Milzen aus naiven w.t. Mäusen isoliert und 20mL Zellsuspension hergestellt. 10mL
dieser Suspension wurden für 45 Minuten bei 37°C mit 10µL SIINFEKL-Peptid inkubiert,
während die anderen 10mL ohne Peptid belassen wurden. Anschließend wurde mit PBS auf
45mL aufgefüllt, bei 1200rpm für fünf Minuten zentrifugiert und die Pellets wurden in 5mL
PBS resuspendiert. Die Zellen, die mit dem Peptid inkubiert wurden, wurden mit hohen
Konzentrationen CFSE (1:2000, CFSE^{high}), die anderen Zellen mit niedrigen Konzentrationen
CFSE (1:20.000, CFSE^{low}) behandelt. Nach einer zehnminütigen Inkubation bei 37°C, wurden
10mL Medium zu den Zellen gegeben und für weitere fünf Minuten bei 4°C inkubiert. Nach
zwei Waschschritten wurden die Pellets in einer Endkonzentration von 2 x 10^7 Zellen pro
100µL in PBS aufgenommen. Beide Zellsuspensionen wurden 1:1 gemischt und 100µL i.v. in
w.t. Mäuse injiziert, in die ein Tag zuvor die T-Zellen transferiert wurden. 16 Stunden nach
der Injektion der CFSE-gefärbten Zellen wurden die Mäuse getötet, die Zellen aus den Milzen
isoliert und die CFSE-Färbung überprüft. Die Analyse mittels Durchflusszytometrie zeigte zwei Peaks entsprechend der hohen und niedrigen Konzentrationen an CFSE. Naive Mäuse, in die keine DCs und keine T-Zellen injiziert wurden, zeigten die gleichen Prozentzahlen an CFSEhigh und CFSElow Zellen. Bei Mäusen, in die Thy1.1 x OT-I T-Zellen injiziert wurden, verringerte sich der Anteil an CFSEhigh-Zellen, die mit dem SIINFEKL-Peptid beladen waren.

5.11 Statistische Analysen

Signifikanzen wurden mittels Student’s t-Test ermittelt. P-Werte unter 0,05 wurden als statistisch signifikant angesehen. * $p < 0,05$, ** $p < 0,01$, *** $p < 0,001$.
6. **Literaturverzeichnis**

Croft, M., Bradley, L.M., & Swain, S.L., Naive versus memory CD4 T cell response to antigen. Memory cells are less dependent on accessory cell costimulation and can respond to many antigen-presenting cell types including resting B cells. *J Immunol* 152 (6), 2675-2685 (1994).

Wijesundara, D.K., Kumar, S., Alsharifi, M., Mullbacher, A., & Regner, M., Antigen-specific activation thresholds of CD8+ T cells are independent of IFN-I-mediated partial lymphocyte activation. *Int Immunol* 22 (9), 757-767.

95 Terawaki, S. et al., IFN-alpha directly promotes programmed cell death-1 transcription and limits the duration of T cell-mediated immunity. *J Immunol* 186 (5), 2772-2779.

Abbildungen

7. Appendix

7.1 Abbildungsverzeichnis

Abbildung 1	Signalwege, die zur Produktion von Typ I IFN führen	4
Abbildung 2	Aktivierung des Jak/STAT-Signalweges und weiterer Signalkaskaden durch Interferone	7
Abbildung 3	Das Töten von Zielzellen über Granzym B und Fas-vermittelte Apoptose-Induktion	11
Abbildung 4	T-Zell-Rezeptor-induzierte Signalwege	14
Abbildung 5	Der TZR-vermittelte Ca²⁺-Signalweg	16
Abbildung 6	Typ I Interferone inhibieren die Proliferation von CD8⁺ T-Zellen	25
Abbildung 7	Typ I IFN-Stimulation führt nicht zur Internalisierung des TZR	26
Abbildung 8	Proliferation von CD8⁺ T-Zellen wird durch geringe Mengen IFN-β nicht beeinflusst	27
Abbildung 9	Einfluss von Zeitpunkt und Dauer der IFN-β-Stimulation auf die Proliferation von CD8⁺ T-Zellen	29
Abbildung 10	IFN-β hat keinen Effekt auf die Proliferation von T-Zellen nach Stimulation mit dendritischen Zellen	30
Abbildung 11	IFN-β Stimulation inhibiert die Proliferation bei suboptimaler T Zell Rezeptor Stimulation	32
Abbildung 12	IFN-β induziert Zelltod von OT-I CD8⁺ T-Zellen	33
Abbildung 13	Typ I IFN-Stimulation von CD8⁺ T-Zellen inhibiert die Expression von IFN-γ und Granzym B	35
Abbildung 14	Typ I IFN vermindert die Expression der Todes-Liganden FasL und TRAIL	37
Abbildung 15	Verringerte Zytotoxizität von CD8⁺ T-Zellen nach IFN-Stimulation	38
Abbildung 16	Expression des frühen Aktivierungsmarkers CD69 nach TZR-Stimulation wird durch IFN-Stimulation nicht negativ beeinflusst	41
Abbildung 17	Typ I IFN hat keinen Effekt auf die Expression der Aktivierungsmarker CD62L und CD25	43
Abbildung 18	Die Expression des Gedächtnis-Markers CD44 wird durch IFN-Stimulation nicht beeinflusst	44
Abbildung 19	Verminderte IL-2 mRNA Induktion und Expression nach IFN-Stimulation	46
Abbildung 20 IL-2 hebt die IFN-vermittelte Inhibition der Proliferation auf ..47
Abbildung 21 IFN-β inhibiert den T-Zell-Rezeptor-vermittelten Kalzium Influx50
Abbildung 22 Unspezifische Ca²⁺-Mobilisierung durch Ionomycin wird durch Typ I IFN nicht beeinflusst ... 51
Abbildung 23 IFN-β führt zu verzögerter Kalzium-Mobilisierung aus intrazellulären Kalzium-Speichern ... 53
Abbildung 24 Geringe Konzentrationen IFN-β vermindern den T-Zell-Rezeptor-vermittelten Kalzium Influx ... 54
Abbildung 25 Typ I IFN, aber nicht Typ II IFN führen zu vermindelter Kalzium- Mobilisierung .. 55
Abbildung 26 Unterschiedliche Dauer von IFN-Stimulationen hat verschiedene Effekte auf den T-Zell-Rezeptor-vermittelten Kalzium-Influx ... 56
Abbildung 27 Einfluss von Typ I IFN auf die Phosphorylierung von Erk und p3858
Abbildung 28 Einfluss von Typ I IFN auf die Phosphorylierung von IκBα und JNK59
Abbildung 29 Anzahl induzierter Gene nach IFN-, TZR- oder IFN-und TZR-Stimulation... 61
Abbildung 30 Typ I IFN beeinflusst TZR-stimulierte Gene ... 62
Abbildung 31 Typ I IFN inhibiert Geninduktion TZR-stimulierter Gene 65
Abbildung 32 Typ I IFN inhibiert Gene des TZR-Signalweges .. 66
Abbildung 33 Einfluss von TZR- und IFN-Stimulation auf bestimmte Anergie-Marker und Exhaustion-Marker .. 68
Abbildung 34 IFN-stimulierte Gene, die durch eine TZR-Stimulation nicht beeinflusst werden ... 69
Abbildung 35 IFN-induzierte Gene, die durch eine TZR-Stimulation stärker induziert werden .. 70
Abbildung 36 Analyse von IFN-stimulierten Genen, die durch TZR-Stimulation herrunterreguliert wurden ... 71
Abbildung 37 Typ I IFN führen zu vermindelter Aktivierung und Effektorfunktionen von in vivo stimulierten T-Zellen .. 74
Abbildung 38 Eine kurzzeitige IFN-Stimulation hat keine langfristigen Auswirkungen auf T-Zellen .. 76
7.2 Abkürzungen

* signifikant p < 0,05
** signifikant p < 0,01
*** signifikant p < 0,001

7-AAD 7-Aminoactinomycin
µg Mikrogramm
µL Mikroliter
µM Mikromolar
α alpha
AAF IFN-α activated factor
AP-1 Activator Protein-1
APC Allophycocyanin
APC Antigen-presenting cell
APS Ammoniumpersulfat
ATF-1 Activating transcription factor-1
ATP Adenosintriphosphat
β beta
BSA Rinderserumalbumin
cDNA komplementäre DNA
CD Cluster of Differentiation
CFSE Carboxyfluorescein Succinimidyl Ester
CpG Cytosin-phosphatidyl Guanin
CRAC Ca\(^{2+}\)-release activated Ca\(^{2+}\) channel
CREB cAMP response element binding
CTLA-4 Cytotoxic T-Lymphocyte Antigen 4
CTL zytotoxische T Lymphozyten
DAG Diacylglycerol
DC dendritische Zelle
DMEM Dulbecco’s modification of Eagle’s medium
DMSO Dimethylsulfoxid
DNA Desoxyribonukleinsäure
dNTP Desoxyribonukleotidtriphosphat
dsRNA double-stranded RNA
<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>EDTA</td>
<td>Ethylendiamintetraazid-Säure</td>
</tr>
<tr>
<td>EGTA</td>
<td>Ethylenglycoltetraazid-Säure</td>
</tr>
<tr>
<td>ER</td>
<td>Endoplasmatisches Retikulum</td>
</tr>
<tr>
<td>ERK</td>
<td>Extracellular signal-regulated Kinase</td>
</tr>
<tr>
<td>FACS</td>
<td>Fluorescence-activated cell sorting</td>
</tr>
<tr>
<td>FasL</td>
<td>Fas Ligand</td>
</tr>
<tr>
<td>FCS</td>
<td>Fötales Kälber-Serum</td>
</tr>
<tr>
<td>FITC</td>
<td>Fluorescein</td>
</tr>
<tr>
<td>FSC</td>
<td>Forward scatter</td>
</tr>
<tr>
<td>GADD</td>
<td>Growth arrest and DNA damage-inducible gene</td>
</tr>
<tr>
<td>GAF</td>
<td>IFN-γ activated factor</td>
</tr>
<tr>
<td>GAP</td>
<td>GTPase aktivierende Proteine</td>
</tr>
<tr>
<td>GDP</td>
<td>Guanindiphosphat</td>
</tr>
<tr>
<td>GEF</td>
<td>Guanine nucleotide exchange factor</td>
</tr>
<tr>
<td>GTP</td>
<td>Guanintriphosphat</td>
</tr>
<tr>
<td>h</td>
<td>Stunde</td>
</tr>
<tr>
<td>IFN</td>
<td>Interferon</td>
</tr>
<tr>
<td>IFN-α</td>
<td>Interferon-alpha</td>
</tr>
<tr>
<td>IFNAR</td>
<td>Typ I IFN Rezeptor</td>
</tr>
<tr>
<td>IFN-β</td>
<td>Interferon-beta</td>
</tr>
<tr>
<td>IFN-λ</td>
<td>Interferon-lamda</td>
</tr>
<tr>
<td>IFN-γ</td>
<td>Interferon-gamma</td>
</tr>
<tr>
<td>IFNGR</td>
<td>Interferon-γ Rezeptor</td>
</tr>
<tr>
<td>IKK-i</td>
<td>inducible IκB Kinase</td>
</tr>
<tr>
<td>IL</td>
<td>Interleukin</td>
</tr>
<tr>
<td>IP₃</td>
<td>Inositol-1,4,5-Triphosphat</td>
</tr>
<tr>
<td>IRF</td>
<td>Interferon-regulatory factor</td>
</tr>
<tr>
<td>ISG</td>
<td>IFN-stimulated gene</td>
</tr>
<tr>
<td>ISGF</td>
<td>IFN-stimulated gene factor</td>
</tr>
<tr>
<td>ISRE</td>
<td>IFN-stimulated response element</td>
</tr>
<tr>
<td>ITAMs</td>
<td>Immunoreceptor tyrosine-based activation motives</td>
</tr>
<tr>
<td>i.v.</td>
<td>intravenös</td>
</tr>
<tr>
<td>Jak</td>
<td>Janus Kinasen</td>
</tr>
<tr>
<td>JNK</td>
<td>c-Jun terminal Kinase</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>L</td>
<td>Liter</td>
</tr>
<tr>
<td>Lag3</td>
<td>Lymphocyte activation gene 3</td>
</tr>
<tr>
<td>LCMV</td>
<td>Lymphocytic Choriomeningitis Virus</td>
</tr>
<tr>
<td>LPS</td>
<td>Lipopolysaccharide</td>
</tr>
<tr>
<td>M</td>
<td>Molar</td>
</tr>
<tr>
<td>MAPK</td>
<td>Mitogen-activated Protein Kinase</td>
</tr>
<tr>
<td>MHC</td>
<td>Major histocompatibility complex</td>
</tr>
<tr>
<td>mRNA</td>
<td>messenger RNA</td>
</tr>
<tr>
<td>NFkB</td>
<td>Nuclear factor kappa B</td>
</tr>
<tr>
<td>NFAT</td>
<td>Nuclear factor of activated T cells</td>
</tr>
<tr>
<td>ng</td>
<td>Nanogramm</td>
</tr>
<tr>
<td>NK-Zellen</td>
<td>Natürliche Killer-Zellen</td>
</tr>
<tr>
<td>NLS</td>
<td>Nuclear Localization Sequence</td>
</tr>
<tr>
<td>nM</td>
<td>Nanomolar</td>
</tr>
<tr>
<td>nm</td>
<td>Nanomolar</td>
</tr>
<tr>
<td>PAGE</td>
<td>Polyacrylamid-Gelelektrophorese</td>
</tr>
<tr>
<td>PBS</td>
<td>Phosphate Buffer Saline</td>
</tr>
<tr>
<td>PCR</td>
<td>Polymerase-Kettenreaktion</td>
</tr>
<tr>
<td>PD-1</td>
<td>Programmed Cell Death-1</td>
</tr>
<tr>
<td>pDCs</td>
<td>plasmazytoide DCs</td>
</tr>
<tr>
<td>PE</td>
<td>Phycoerythrin</td>
</tr>
<tr>
<td>PI3K</td>
<td>Phosphatidylinositol 3-Kinase</td>
</tr>
<tr>
<td>PIP2</td>
<td>Phosphatidylinositol-3,4-Bisphosphat</td>
</tr>
<tr>
<td>PKC</td>
<td>Protein Kinase C</td>
</tr>
<tr>
<td>PKR</td>
<td>dsRNA-dependent protein kinase</td>
</tr>
<tr>
<td>PLC-γ1</td>
<td>Phospholipase C-γ1</td>
</tr>
<tr>
<td>PRR</td>
<td>Pattern recognition receptor</td>
</tr>
<tr>
<td>PTK</td>
<td>Protein Tyrosin Kinasen</td>
</tr>
<tr>
<td>qPCR</td>
<td>quantitative PCR</td>
</tr>
<tr>
<td>RIG-I</td>
<td>retinoic acid inducible gene-1</td>
</tr>
<tr>
<td>RNA</td>
<td>Ribonukleinsäure</td>
</tr>
<tr>
<td>RNase</td>
<td>Ribonuklease</td>
</tr>
<tr>
<td>RSV</td>
<td>Respiratory Syncitial Virus</td>
</tr>
<tr>
<td>RT-PCR</td>
<td>RealTime PCR</td>
</tr>
</tbody>
</table>
rpm
rotation per minute
s
Sekunde
SDS
Sodium-Dodecyl-Sulfat
SOCS
Store-operated Ca$^{2+}$ entry
SSC
Sideward scatter
ssRNA
single-stranded RNA
STAT
Signal Transducer and Activation of Transcription
TAE
Tris-Azetat-EDTA-Puffer
TBK1
TANK-binding kinase-1
TEMED
N, N, N’, N’-Tetramethylethyldiamin
TF
Transkriptionsfaktor
TLR
Toll-like Rezeptor
TNF-α
Tumor necrosis factor-α
TRAIL
TNF-related apoptosis-inducing ligand
TRIF
Toll/IL-1 receptor domain-containing adaptor inducing IFN
TZR
T-Zell Rezeptor
U
Unit
Zap70
ζ-chain-associated protein kinase of 70kd
7.3 Danksagung

Ich möchte mich für die erhaltende Unterstützung bei dem Erstellen dieser Doktorarbeit bedanken.

Bei Dr. Andrea Kröger möchte ich mich für die Betreuung meiner Doktorarbeit, die vielen Vorschläge und Hinweise und die kritische Lektüre meiner Doktorarbeit bedanken.

Des Weiteren möchte ich PD Dr. Gerhard Gross für die Übernahme der Mentorenschaft danken.

Martina Grashoff danke ich für die enorme Unterstützung bei der Anfertigung der Western Blots.

Zusätzlich möchte ich dem gesamten Labor D2.44 sowie dem Exil für die nette Zusammenarbeit danken.

Besonderer Dank gilt Antje und Ramya. Antje hat mir mit ihrem theoretischen und praktischen Wissen über die gesamte Dauer meiner Doktorarbeit zur Seite gestanden und hat sich immer die Zeit genommen, mit mir Probleme zu diskutieren. I wanna thank both, Ramya & Antje, for being really good colleagues and the nice time we spent together.

Lebenslauf

Persönliche Daten
Berit Neumann
Dr.Jasper-Str.10
06502 Timmenrode
Geboren am 19.07.1983 in Blankenburg/Harz

Schulbildung
1990-1994 Grundschule „Am Regenstein“
27.06.2003 Allgemeine Hochschulreife

Studium
2003-2008 Studium der Biologie (Diplom) an der Technischen Universität Carolo Wilhelmina Braunschweig
2008 Promotion am HZI Braunschweig, Thema: „Einfluss von Typ I IFN auf CD8+ T-Zellen“ betreut durch Dr. Hansjörg Hauser und Dr. Andrea Kröger

Publikationen
