Charakterisierung der Interaktion von *Streptococcus pneumoniae* mit humanem Endothel

Von der Fakultät für Lebenswissenschaften
der Technischen Universität Carolo-Wilhelmina
zu Braunschweig
zur Erlangung des Grades einer
Doktorin der Naturwissenschaften
(Dr. rer. nat.)
genehmigte
D i s s e r t a t i o n

von Melanie Lüttge
aus Wernigerode
1. Referentin: Privatdozentin Dr. Simone Bergmann
2. Referentin: Professorin Dr. Katharina Riedel
eingereicht am: 29.08.2011
mündliche Prüfung (Disputation) am: 17.11.2011

Druckjahr 2011
Vorveröffentlichungen der Dissertation

Teilergebnisse aus dieser Arbeit wurden mit Genehmigung der Fakultät für Lebenswissenschaften, vertreten durch die Mentorin der Arbeit, in folgenden Beiträgen vorab veröffentlicht:

Tagungsbeiträge

Inhaltsverzeichnis

1. Zusammenfassung ... 1
2. Einleitung .. 5
 2.1 Die Gattung Streptokokken .. 5
 2.2 Besondere Eigenschaften von *Streptococcus pneumoniae* ... 6
 2.3 Therapie und Prävention von Pneumokokkenerkrankungen ... 9
 2.4 Virulenzfaktoren von *Streptococcus pneumoniae* ... 11
 2.5 Aufbau und Funktion des Lungenendothels ... 16
 2.6 Weibel-Palade-bodies (WPBs) ... 20
 2.7 Die Hauptbestandteile der Weibel-Palade-bodies ... 21
 2.8 Ziele dieser Arbeit ... 23
3. Material & Methoden .. 25
 3.1 Materialien und Chemikalien ... 25
 3.1.1. Verwendete Bakterienstämme ... 25
 3.1.2 Kulturmedien für *Streptococcus pneumoniae* ... 26
 3.1.3 Kulturmedien für *Escherichia coli* ... 26
 3.1.4 Kulturmedien für weitere Bakterienstämme ... 27
 3.1.5 Eukaryotische Zellen und Zellkulturmedien ... 27
 3.1.6 Verwendete Antikörper und Antiseren ... 28
 3.1.7 Verwendete Kits ... 29
 3.1.8 Reagenzien und Puffer (sofern nicht in Methoden beschrieben) 29
 3.2 Mikrobiologische Methoden .. 30
 3.2.1 Kultivierung von *Streptococcus pneumoniae* .. 30
 3.2.2 Konservierung von *Streptococcus pneumoniae* .. 31
 3.2.3 Kultivierung von anderen Bakterienstämmen ... 31
 3.2.4 Hitzeinaktivierung von Pneumokokken ... 32
 3.3 Zellkulturmethoden ... 32
 3.3.1 Kultivierung von primären Endothelzellen .. 32
 3.3.2 Subkultivierung von primären Endothelzellen .. 33
Inhaltsverzeichnis

3.3.3 Kryokonservierung von primären Endothelzellen .. 33
3.3.4 Auftauen von eukaryotischen Zellen .. 34
3.3.5 Bestimmung der Zellzahl .. 34
3.4 Methoden zur Infektion von Endothelzellen mit Pneumokokken .. 35
 3.4.1 Aussaat der Endothelzellen für Standardinfektionen ... 35
 3.4.2 Durchführung der Zellkulturinfektion ... 35
 3.4.3 Durchführung der Plattierungsanalysen .. 36
 3.4.4 Weiterführende Analysen nach Zellkulturinfektion .. 37
3.5 Immunfluoreszenzfärbung (IF) und Mikroskopie ... 37
 3.5.1 Differentielle, indirekte Immunfluoreszenzfärbung von Pneumokokken 37
 3.5.2 Direkte Fluoreszenzfärbung von F-Aktin ... 38
 3.5.3 Indirekte Fluoreszenzfärbung von Weibel-Palade bodies .. 39
 3.5.4 Fluoreszenzmikroskopische Auswertung ... 39
 3.5.5 Transmissionselektronenmikroskopie (TEM) .. 40
3.6 Infektionsanalysen im Zweikammer-Transwell-System ... 41
3.7 Messung der Konfluenz von Endothelschichten ... 42
3.8 Präparation von Pneumokokkenmembranproteinen ... 44
3.9 Inkubation von HPMEC mit physiologischen Substanzen .. 45
3.10 Infektion von HPMEC mit verschiedenen Bakterienstämmen ... 46
3.11 Aufreinigung polyklonaler Antikörper .. 47
3.12 Biochemische Methoden .. 47
 3.12.1 Enzyme-linked Immunosorbent Assay (ELISA) zur Quantifizierung von VWF in Zellkulturüberständen .. 47
 3.12.2 Enzyme-linked Immunosorbent Assay (ELISA) zur Quantifizierung von Interleukin-8 (IL-8) in Zellkulturüberständen ... 48
 3.12.3 Zytotoxizitäts-Test ... 49
3.13 Durchflusszytometrie .. 50
3.14 Mikroarray-Analyse .. 52
3.15 Real time PCR ... 53
3.16 Statistische Auswertung .. 54

4. Ergebnisse .. 55
 4.1 Charakterisierung primärer, humaner Endothelzellen .. 55
Inhaltsverzeichnis

4.2 In-vitro-Infektionsstudien von Pneumokokken mit humanen Endothelzellen.......................... 60
 4.2.1 Interaktion von Pneumokokken mit Endothelzellen nach unterschiedlichen Infektionszeiten ... 60
 4.2.2 Adhärenz und Internalisierung von Pneumokokken in HPMEC und HUVEC nach Infektion mit unterschiedlicher MOI 63
 4.2.3 Visualisierung der Menge adhärenter und internalisierter Pneumokokken in HPMEC ... 66

4.3 Mikroarray-Analyse humaner Endothelzellen nach Infektion mit S. pneumoniae 68

4.4 Genexpressionsbestimmung von infizierten HPMEC im Vergleich zu nicht-infizierten HPMEC durch Real time PCR-Analyse ... 70

4.5 WPB-Bildung in humanen Lungenendothelzellen unterschiedlicher Konfluenzen und Quantifizierung des Konfluenzstatus der Zellen......................... 72
 4.5.1 Korrelation der WPB-Bildung mit der Konfluenz des Endothels .. 72
 4.5.2 Quantitative Bestimmung des Konfluenzstatus von HPMEC .. 74

4.6 Korrelation der Pneumokokkenadhärenz und der WPB-Menge in HPMEC 76
 4.6.1 Adhärenz von S. pneumoniae an WPB-positive HPMEC und WPB-negative HPMEC 76
 4.6.2 Anteil WPB-positiver und WPB-negativer HPMEC im Infektionsverlauf mit Pneumokokken .. 78
 4.6.3 Visualisierung der Menge adhärenter Pneumokokken und WPBs in infizierten Lungenendothelzellen ... 79

4.7 Quantifizierung von VWF und IL-8 Im Zellkulturüberstand von infizierten Endothelzellen ... 81

4.8 VWF-Sekretion durch Pneumokokkenmembranproteine ... 84

4.9 Induktion der WPB-Exozytose durch Hitze-inaktivierte Pneumokokken 86

4.10 Stimulierung der VWF-Sekretion durch bekapselte Serotyp 2 Pneumokokken 88

4.11 Stimulierung der VWF-Sekretion durch andere Bakterienstämme 89

4.12 Stimulierung der VWF-Sekretion durch sekretierte Pneumokokkenproteine 91

4.13 Funktion von Pneumolysin in der VWF-Sekretion ... 93

4.14 Vergleich der VWF- und IL-8-Konzentration im Zellkulturüberstand nach Infektion mit Pneumokokken und Inkubation mit Histamin, Thrombin und Pneumolysin ... 96

4.15 Zytotoxizitätsanalyse von infizierten Lungenendothelzellen ... 98

4.16 VWF- und IL-8-Sekretion von HPMEC nach apikaler und basaler Infektion mit Pneumokokken ... 102
Inhaltsverzeichnis

5. Diskussion .. 105
 5.1 Oberflächenprofile primärer Endothelzellen .. 105
 5.2 Adhärenz der Pneumokokken an humane Endothelzellen 108
 5.3 Genexpressionsanalyse humaner Lungenendothelzellen nach
 Infektion mit Pneumokokken .. 109
 5.4 Korrelation der Pneumokokkenadhärenz und der WPB-Menge in HPMEC 110
 5.5 Sekretion von VWF nach Infektion mit Pneumokokken .. 112
 5.6 IL-8-Sekretion nach Infektion mit Pneumokokken .. 114
 5.7 VWF-Sekretion nach Inkubation mit Pneumokokkenmembranproteinen 115
 5.8 Stimulierung der VWF-Sekretion durch stark bekapselte Serotyp 2
 Pneumokokken und andere Bakterienstämme ... 117
 5.9 Funktion von Pneumolysin in der WPB-Exozytose .. 118
 5.10 VWF- und IL-8-Sekretion von HPMEC nach apikaler und
 basaler Infektion mit Pneumokokken .. 120

6. Referenzen ... 123

Danksagung ... 139
Abbildungsverzeichnis

Abbildung 1: *Streptococcus pneumoniae* .. 7
Abbildung 2: Virulenzfaktoren von Pneumokokken ... 16
Abbildung 3: Blutgefäße der Lunge .. 18
Abbildung 4: Transmissionselektronenmikroskopische Aufnahmen von WPBs in der Endothelzelle .. 21
Abbildung 5: Modell der Immunfluoreszenzfärbung von Pneumokokken und Aktin 39
Abbildung 6: Das cellZscope® .. 44
Abbildung 7: Modell der Funktionsweise der Durchflusszytometrie .. 52
Abbildung 8: Expression spezifischer Proteine und Oberflächenrezeptoren von HPMEC und HUVEC in Passage 3 und 15 .. 57
Abbildung 9: Pneumokokkenadhärenz und -internalisierung in HPMEC und HUVEC nach unterschiedlichen Infektionszeiten ... 62
Abbildung 10: Interaktion von Pneumokokken mit humanen Endothelzellen nach Infektion mit unterschiedlicher MOI .. 65
Abbildung 11: Fluoreszenzmikroskopische Visualisierung der Anzahl adhärenter und internalisierter Pneumokokken in HPMEC .. 67
Abbildung 12: Dendrogramm der Mikroarray-Analyse von Pneumokokken-infizierten HPMEC im Vergleich zu nicht-infizierten HPMEC .. 69
Abbildung 13: Expression des *il-8*-Gens in HPMEC nach Infektion mit Pneumokokken 71
Abbildung 14: Mikroskopische Quantifizierung und Visualisierung von WPBs in HPMEC unterschiedlicher Zelldichten .. 73
Abbildung 15: Messung des elektrischen Widerstandes und der Kapazität von HPMEC während der Kultivierung ... 75
Abbildung 16: Adhäsente Pneumokokken an WPB-positiven und WPB-negativen Lungenendothelzellen ... 77
Abbildungsverzeichnis

Abbildung 17: Quantifizierung von WPB-positiven HPMEC nach Infektion mit Pneumokokken.. 78

Abbildung 18: Visualisierung adhärenter Pneumokokken an HPMEC und WPBs in den Zellen zu verschiedenen Zeiten der Infektion................................. 81

Abbildung 19: Quantitative Analyse sekretierter WPB-Bestandteile im Infektionsverlauf von HPMEC mit Pneumokokken.. 83

Abbildung 20: Quantifizierung der VWF-Konzentrationen im Zellkulturüberstand nach Inkubation von HPMEC mit Membranproteinen, LPS und LTA.......................... 86

Abbildung 21: Anteil der WPB-positiven HPMEC nach Inkubation mit Hitze-inaktivierten Pneumokokken... 90

Abbildung 23: Quantifizierung der VWF-Konzentrationen im Zellkulturüberstand nach Infektion von HPMEC mit verschiedenen Bakterienstämmen.. 102

Abbildung 24: VWF-Konzentration im Zellkulturmedium nach Stimulierung von HPMEC durch sekretierte Pneumokokkenfaktoren.. 88

Abbildung 25: VWF-Konzentration im Zellkulturüberstand nach Inkubation mit Pneumolysin.. 92

Abbildung 26: Stimulierung der VWF- und IL-8-Sekretion durch Pneumokokken, Histamin, Thrombin und rekombinantem Pneumolysin.. 94

Abbildung 27: Zellviabilität und WPB-Menge von HPMEC nach Inkubation mit Histamin, Thrombin und Pneumolysin.. 97

Abbildung 28: Sekretion von VWF und IL-8 nach apikaler und basolateraler Infektion von HPMEC... 104
Tabellenverzeichnis

Tabelle 1: Verwendete *Streptococcus pneumoniae*-Stämme……………………………………… 25
Tabelle 2: Weitere Bakterienstämmme………………………………………………………………… 25
Tabelle 3: Verwendete Endothelzellen………………………………………………………………… 27
Tabelle 4: Zellkulturmedien für Endothelzellen………………………………………………………… 28
Tabelle 5: Zusammenstellung der ungekoppelten Antikörper und Antiseren……………………… 28
Tabelle 6: Zusammenstellung der konjugierten Antikörper und Reagenzien………………………… 29
Tabelle 7: Auflistung der Kits…………………………………………………………………………… 29
Tabelle 8: Verwendete Reagenzien für Zellinkubationsversuche…………………………………… 29
Tabelle 9: Verwendete Antibiotika……………………………………………………………………… 30
1. Zusammenfassung

Zusammenfassung

Summary

The Gram-positive bacterium *Streptococcus pneumoniae* (pneumococcus) causes severe local infections including otitis media and sinusitis and life-threatening diseases such as community-acquired pneumonia, septicaemia and meningitis. Following the course of lung infection pneumococci can enter the air-blood-barrier and disseminate in the vascular system. The lung microvasculature is covered by pulmonary endothelial cells, the natural barrier between the flowing blood and the underlying tissues. This study demonstrates the interaction of pneumococci with primary human pulmonary microvascular endothelial cells (HPMEC). Primary human pulmonary endothelial cells (HPMEC) in an early and late passage were characterized in Flow cytometry analysis. Expression of different markers for endothelial cells, receptors and proteins on the surface of HPMEC were compared to primary human umbilical vein endothelial cells (HUVEC). Adhesion of *S. pneumoniae* to pulmonary endothelial cells is an essential first step for the establishment of colonization and invasive infections. Adherence and internalization of *S. pneumonia* wildtype bacteria and a pneumococcal mutant deficient in the expression of cytotoxic pneumolysin were shown in *in vitro* cell culture infection analysis and immunofluorescence microscopy. Microarray analyses monitored changes in gene expression of HPMEC induced by pneumococcal infections with a wildtype and a pneumolysin-mutant strain. Semi-quantitative gene expression analysis by Real Time RCR confirmed an up-regulation of interleukin-8 after pneumococcal infection. The vascular endothelium is characterized by its pivotal role in the control of vascular homeostasis also due to the presence of Weibel Palade bodies (WPB) as specialized intracellular storage granules for e.g. von Willebrand Factor (VWF) and interleukin-8 (IL-8). Double-label immunofluorescence staining after infection of HPMEC with pneumococci showed an inverse correlation between the number of adherent pneumococci and the amount of WPB-positive cells. The correlation between increased numbers of adherent pneumococci with subsequent reduction of WPB-positive cells provided strong evidence for pneumococcal contact-dependent WPB-exocytosis. ELISA analyses demonstrated that secretion of VWF and IL-8 was not only induced by adherence of living pneumococci to confluent HPMEC but also after incubation of HPMEC with bacterial membrane proteins. The role of pneumococcal adherence in the WPB-exocytosis was also analyzed by VWF-specific ELISA of HPMEC supernatants after infection with a highly capsulated serotype 2 pneumococcus. Results from transwell-based infection analyses demonstrated that, in addition to direct bacterial adherence, secreted pneumococcal factors induced VWF
secretion. The pore-forming cytotoxin pneumolysin is an important virulence factor of pneumococci. In-vitro cell culture infection analysis, performed with pneumolysin-mutants and purified pneumolysin showed that sublytical concentrations of pneumolysin stimulated secretion of VWF and IL-8. Moreover, the results showed that the effect of pneumococci on secretion of VWF and IL-8 is reaching similar levels compared to stimulation of HPMEC by physiological agonists like histamine or thrombin. The release of VWF and IL-8 was demonstrated after infection with pneumococci from both, the apical and the basal cell surfaces, which indicate a stimulation of WPB exocytosis from inside the vasculature and also from pulmonary tissue into the bloodstream. In conclusion, this study provides a detailed understanding of pathophysiological interaction of pneumococci with human endothelium during the course of invasive infections. Elucidation of pneumococcal mechanism of pathogenicity which leads to bacterial dissemination in the vascular system provides the development of new strategies to treat and prevent invasive pneumococcal infections.
2. Einleitung

2.1 Die Gattung Streptokokken

Einleitung

2.2 Besondere Eigenschaften von *Streptococcus pneumoniae*

Einleitung

Gegensatz konnte gezeigt werden, dass bekapselte Stämme von *S. pneumoniae* eine verminderte Adhärenz an eukaryotische Zellen zeigen (Talbot et al., 1996).

Abbildung 1: Streptococcus pneumoniae. A) Elektronenmikroskopische Aufnahme von *S. pneumoniae* A66 (Serotyp 3) mit ausgeprägter Polysaccharidkapsel B) Elektronenmikroskopische Aufnahme eines Schnittes durch ein stark bekapseltes Serotyp 2-Isolat *S. pneumoniae* D39 (Prof. Dr. M. Rohde, HZI Braunschweig).

2.3 Therapie und Prävention von Pneumokokkenerkrankungen

Pneumokokken und können zum Austausch von Resistenzgenen führen (Claverys et al., 2007).

2.4 Virulenzfaktoren von Streptococcus pneumoniae

Einleitung

Einleitung

Einleitung

Neben der direkten Adhärenz an humane Zellen findet bei Pneumokokken eine Interaktion mit Komponenten der extrazellulären Matrix (EZM) statt. Die extrazelluläre Matrix besteht aus fibrillären und netzwerkbildenden Kollagenen und unverzweigten Glykosaminoglykanen
Einleitung

Pneumokokken exprimieren Adhäsine, die spezifisch mit Fibronektin und Vitronektin interagieren (Kostrzynska and Wadstrom, 1992; Holmes et al., 2001; Bergmann und Hammerschmidt, 2006; Bergmann et al., 2009). Fibronektin und Vitronektin sind multifunktionelle Glykoproteine, die in der EZM und im Blutplasma nachweisbar sind (Preissner et al., 1985). Das nicht-klassisch verankerte oberflächenlokalisierte Protein pneumococcal adherence and virulence factor A (PavA) konnte als Adhäsin für das extrazelluläre Matrix-Protein Fibronektin identifiziert werden (Holmes et al., 2001). Studien von Bergmann und Kollegen demonstrierten, das Pneumokokken über Vitronektin an αVβ3-Integrine von humanen Endothelzellen binden (Bergmann et al., 2009). Diese Interaktion förderte die Internalisierung der Pneumokokken in humane Endothelzellen (Bergmann et al., 2009).
2.5 Aufbau und Funktion des Lungenendothels

Das Endothel bildet die innere Auskleidung von Blut- und Lymphgefäßen und damit eine semipermeable Grenzfläche zwischen dem zirkulierenden Blut bzw. der Lymphflüssigkeit und der Gefäßwand (Sumpio et al., 2002). Im humanen, adulten Körper besteht das Endothel aus circa 10 Billionen (10^{13}) Zellen und wiegt circa 1 kg (Augustin et al., 1994). Bis in die sechziger Jahre galt das Endothel als eine einreihige Zellschicht mit der Funktion, die Diffusion von Makromolekülen des vorbeifließenden Blutes in die darunter liegenden Gewebeschichten zu verhindern (Florey, 1966). In den letzten Jahrzehnten sind die

2.6 Weibel-Palade-bodies (WPBs)

WPBs sind sekretorische Organellen von Endothelzellen (Valentijn et al., 2008). Sie wurden erstmals 1964 von dem Schweizer Mediziner Prof. Ewald R. Weibel und dem rumänischen Physiologen Prof. George E. Palade beschrieben und im Folgenden nach ihren Entdeckern benannt (Weibel und Palade, 1964). Elektronenmikroskopische Aufnahmen visualisierten die Struktur und Form der WPBs (Abb. 4 A und B). Es sind zigarrenförmige, längliche Organellen von 1-5 µm Länge und 0,1-0,3 µm Breite mit charakteristischen länglichen Streifen (Valentijn et al., 2011). Sie sind durch eine Membran vom Zytosol der Zelle abgegrenzt (Valentijn et al., 2011). WPBs werden wie die sekretorischen Granula der endokrinen und neuroendokrinen Zellen am Transgolginetzwerk der Endothelzellen gebildet und reichern sich im Zytoplasma der Zellen an (Vischer et al., 1997; Michaux und Cutler, 2004).

Abbildung 4: Transmissionselektronenmikroskopische Aufnahmen von WPBs in der Endothelzelle. A) WPBs (Pfeil) in einer Endothelzelle der humanen Nabelschnurvene (Human umbilical vein endothelial cell, HUVEC) (aus Valentijn et al., 2008). B) WPB in einer humanen, mikrovaskulären Lungenendothelzelle (Human pulmonary microvascular endothelial cell, HPMEC) (Prof. Dr. M. Rohde, HZI, Braunschweig).
Zum Zeitpunkt ihrer Entdeckung waren der Inhalt und die biologische Funktion der WPBs noch unbekannt (Weibel und Palade, 1964). Ungefähr 20 Jahre später wurde erstmals gezeigt, das WPBs VWF enthalten (Wagner et al., 1982). VWF ist für die Bildung der WPBs essentiell (Valentijn et al., 2011). Inzwischen wurden verschieden andere Proteine in den WPBs identifiziert. Neben VWF sind die häufigsten Bestandteile der WPBs Interleukin-8, P-Selektin, Endothelin-1, Endothelin-converting enzyme, Gewebetyp-Plasminogenaktivator (t-PA), Eotaxin-3, Angiopoietin-2, Osteoprotegerin und Rab27A (Rondaij et al., 2006; Metcalf et al., 2008). Die Proteine werden in den Organellen gespeichert und durch externe Stimulation in den Blutstrom sekretiert (Michaux and Cutler, 2004; Metcalf et al., 2008; Romani De Wit et al., 2004; Goligorsky et al., 2009). Im Folgenden werden die Funktionen einiger Bestandteile der WPBs näher beschrieben.

2.7 Die Hauptbestandteile der Weibel-Palade-bodies

Der Hauptbestandteil der WPBs ist VWF (Wagner et al., 1990). Der VWF ist ein multi-Domänen Glykoprotein im Blutplasma von Säugetieren (Yamamoto et al., 1998; Valentijn et al., 2008). Die Konzentration von VWF im humanen Blutplasma betrug circa 50 nM (Borchiellini et al., 1996). Die VWF-mRNA der Transkription wird in ein pre-pro-Polypeptid (Monomer mit 350 kDa) translatiert und besteht aus einem Signalpeptid von 22 Aminosäuren, einem langen Propeptid von 741 Aminosäuren und einem Peptid mit 2050 Aminosäuren (Michaux und Cutler, 2004). Im Endoplasmatischen Retikulum erfolgt die Dimerisierung des VWF-Proteins über die Ausbildung von Disulfidbrücken (Sadler, 1998). Die VWF-Dimere werden zum Golgi-Apparat transportiert, das Propeptid abgespalten und die VWF-Dimere bilden über weitere Disulfidbrücken bis zu 20 Millionen Da-große lineare Multimere mit 80 VWF-Untereinheiten (Sadler, 1998). Die VWF-Multimere und das Propeptid kondensieren zu Tubuli und werden am Trans-Golgi-Netzwerk (TGN) in Clathrin/AP-1-Vesikel eingelagert (Lui-Roberts et al., 2005; Zenner et al., 2007). Aus diesen Vesikeln entstehen die WPBs (Wagner et al., 1991). Bei der Bildung der WPBs am TGN werden auch andere Proteine, wie P-Selektin oder Osteoprotegerin in die WPBs eingelagert (Harrison-Lavoie et al., 2006; Zannettino et al., 2005). Der Inhalt der WPBs wird zum Teil kontinuierlich und zum Teil nach Stimulierung der Endothelzellen in den Blutstrom sekretiert (Metcalf et al., 2008; Wagner et al., 1990). Die Exozytose der WPBs führt zu einer Freisetzung von bis zu einigen Millimetern langen VWF-Fäden in den Blutfluss (Dong et al., 2002). Die VWF-Moleküle werden durch die Plasma-Metalloprotease ADAMTS13 gespalten und das
Einleitung

Ein weiterer Bestandteil der WPBs ist Interleukin-8 (IL-8) (Rondaij et al., 2006; Metcalf et al., 2008). Das Protein hat ein Molekulargewicht von 8 kDa und gehört zur Familie der Chemokine (Baggiolini und Clark-Lewis, 1992). Nach der Sekretion in den Blutstrom ist IL-8 hauptsächlich an der chemotaktischen Rekrutierung neutrophiler Granulozyten zum Infektionsherd beteiligt (Romani de Wit et al., 2003; Oynebraten et al., 2004). In seiner Funktion als chemotaktisches Zytokin fördert IL-8 auch die Migration von Endothelzellen in die Extrazelluläre Matrix (EZM) des infizierten Gewebes (Li et al., 2003). Eine septische bakterielle Infektion führt zu einem signifikanten Anstieg der IL-8-Konzentration im Blutplasma (Franz et al., 1999). Die Konzentration von IL-8 im Blutplasma wird daher in der Diagnose der bakteriellen Sepsis Erwachsener und Neugeborener eingesetzt (Franz et al., 1999).

Das Transmembranprotein P-Selektin wird am TGN mit VWF in WPBs eingelagert (McEver et al., 1989; Bonfanti et al., 1989; Harrison-Lavoie et al., 2006). Es besteht aus einer großen luminalen Domäne und einer kurzen cytoplasmatischen Domäne (Harrison-Lavoie et al., 2006). Nach der Exozytose der WPBs bildet die luminale Domäne ein Zell-Adhäsionsmolekül
Einleitung

auf der Oberfläche von aktivierten Endothelzellen (Harrison-Lavoie et al., 2006). Darüber hinaus ist P-Selektin an der Rekrutierung von Leukozyten zum infizierten Gewebe beteiligt und trägt daher entscheidend zur Immunantwort während einer Infektion bei (Mayadas et al., 1993; Cambien and Wagner, 2004).

Weitere Komponenten der WPBs sind Endothelin-1 und das endothelin-converting enzyme. Diese Peptidhormone sind Vasokonstriktoren, die den Blutdruck regulieren und an der Kontrolle der vaskulären Tonizität beteiligt sind (Rondaij et al., 2006). Angiopoietin-2 ist ein angiogenetisches Peptid, das nach Aktivierung des Endothels durch WPB-Exozytose in den Blutstrom sekretiert wird (Davis et al., 2010). Es aktiviert Endothelzellen und erhöht die Entzündungsreaktion und die Permeabilität des Endothels (Davis et al., 2010).

2.8 Ziele dieser Arbeit

Einleitung

3. Material & Methoden

3.1 Materialien und Chemikalien

3.1.1. Verwendete Bakterienstämme

Tabelle 1: Verwendete *Streptococcus pneumoniae*-Stämme

<table>
<thead>
<tr>
<th>Bakterienstamm</th>
<th>Serotyp</th>
<th>Charakteristika</th>
<th>Herkunft/Referenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. p. 35A</td>
<td>35A</td>
<td>NCTC10319, schwach bekapselter Laborstamm</td>
<td>Pracht et al., 2005</td>
</tr>
<tr>
<td>S. p. D39</td>
<td>2</td>
<td>bekapseltes Isolat</td>
<td>Hammerschmidt et al., 2005</td>
</tr>
</tbody>
</table>

Tabelle 2: Weitere Bakterienstämme

<table>
<thead>
<tr>
<th>Bakterienstamm</th>
<th>Herkunft</th>
</tr>
</thead>
<tbody>
<tr>
<td>Echerischia coli DH5α</td>
<td>Stammsammlung der Abt. Medizinische Mikrobiologie, HZI Braunschweig</td>
</tr>
<tr>
<td>Pseudomonas aeruginosa PA1</td>
<td>Rolf Kramer, Abt. Vakzinologie, HZI Braunschweig</td>
</tr>
</tbody>
</table>
Material & Methoden

<table>
<thead>
<tr>
<th>Organismus</th>
<th>Herkunft</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neisseria meningitidis N4</td>
<td>Oliver Kurzai, Institut für Hygiene und Mikrobiologie, Universität Würzburg</td>
</tr>
<tr>
<td>Staphylococcus aureus st3</td>
<td>Stammsammlung der Abt. Infektionsimmunologie, HZI Braunschweig</td>
</tr>
<tr>
<td>Streptococcus canis G361</td>
<td>Stammsammlung der Abt. Medizinische Mikrobiologie, HZI Braunschweig</td>
</tr>
<tr>
<td>Streptococcus pyogenes S33</td>
<td>Stammsammlung der Abt. Medizinische Mikrobiologie, HZI Braunschweig</td>
</tr>
</tbody>
</table>

3.1.2 Kulturmedien für *Streptococcus pneumoniae*

Blutagarplatten (Becton Dickinson, USA)

THY-Medium (mit 1 % Hefe):

- 30,0 g/l Todd-Hewitt-Broth (Roth, Deutschland)
- 1,0 % (w/v) Hefeextrakt (Becton Dickinson, USA)
- auf 1 l mit dH₂O auffüllen

Das THY-Medium wurde vor Gebrauch 20 min bei 121 °C autoklaviert.

3.1.3 Kulturmedien für *Escherichia coli*

LB-Medium:

- 10,0 g Trypton (Becton Dickinson, USA)
- 5,0 g Hefeextrakt (Becton Dickinson, USA)
- 10,0 g NaCl (Roth, Deutschland)
- auf 1 l mit dH₂O auffüllen

Zur Nutzung als Festmedium wurde vor dem Autoklavieren 16,0 g/1 l Agar-Agar (Roth, Deutschland) zugefügt. Das LB-Medium wurde vor Gebrauch 20 min bei 121 °C autoklaviert.
3.1.4 Kulturmedien für weitere Bakterienstämmle

Blutagarplatten (Becton Dickinson)

THY-Medium (mit 0,5 % Hefe): 30,0 g/l Todd-Hewitt-Broth (Roth, Deutschland)

0,5 % (w/v) Hefeextrakt (Becton Dickinson, USA)

auf 1 l mit dH2O auffüllen

Zur Nutzung als Festmedium wurde vor dem Autoklavieren 16,0 g Agar-Agar (Roth, Deutschland)/1 l zugefügt. Das THY-Medium wurde vor Gebrauch 20 min bei 121 °C autoklaviert.

3.1.5 Eukaryotische Zellen und Zellkulturmedien

Tabelle 3: Verwendete Endothelzellen

<table>
<thead>
<tr>
<th>Name der Zellen</th>
<th>Charakteristika</th>
<th>Herkunft</th>
</tr>
</thead>
<tbody>
<tr>
<td>HPMEC (Human pulmonary microvascular endothelial cells)</td>
<td>Humane, mikrovaskuläre Lungenendothelzellen, vWF-positiv, CD31- positiv, Dil-Ac-LDL (Dil-markiertes, acetyliertes Low-Density-Lipoprotein)-Aufnahme positiv, smooth muscle alpha-actin negativ</td>
<td>C-12281, Passage 2, Promocell, Deutschland</td>
</tr>
<tr>
<td>HUVEC (Human umbilical vein endothelial cells)</td>
<td>Humane Endothelzellen der Nabelschnurvene (makrovaskulär), vWF- positiv, CD31-positiv, Dil-Ac-LDL (Dil-markiertes, acetyliertes Low-Density-Lipoprotein)-Aufnahme positiv, smooth muscle alpha-actin negativ</td>
<td>C-12200, Passage 1, Promocell, Deutschland</td>
</tr>
</tbody>
</table>
Material & Methoden

Tabelle 4: Zellkulturmedien für Endothelzellen

<table>
<thead>
<tr>
<th>Endothelzellen/Anwendung</th>
<th>Verwendetes Medium/Zusätze</th>
<th>Herkunft</th>
</tr>
</thead>
<tbody>
<tr>
<td>HPMEC Kultivierung</td>
<td>Endothelial Cell Growth Medium MV (ECGM MV = Endothelial Cell Basal Medium MV + supplement mix) + 100 U/ml Penicillin + 0,1 mg/ml Streptomycin</td>
<td>Promocell, Deutschland</td>
</tr>
<tr>
<td>HPMEC Infektion</td>
<td>Endothelial Cell Basal Medium MV + 2,0 % fetales Kälberserum</td>
<td>Promocell, Deutschland</td>
</tr>
<tr>
<td>HUVEC Kultivierung</td>
<td>Endothelial Cell Growth Medium 2 (ECGM 2 = Endothelial Cell Basal Medium 2 + supplement mix) + 100 U/ml Penicillin + 0,1 mg/ml Streptomycin</td>
<td>Promocell, Deutschland</td>
</tr>
<tr>
<td>HUVEC Infektion</td>
<td>Endothelial Cell Basal Medium 2 + 2,0 % fetales Kälberserum</td>
<td>Promocell, Deutschland</td>
</tr>
</tbody>
</table>

3.1.6 Verwendete Antikörper und Antiseren

Tabelle 5: Zusammenstellung der ungekoppelten Antikörper und Antiseren

<table>
<thead>
<tr>
<th>Antikörper/Serum</th>
<th>Herkunft</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kaninchen anti-\textit{S. pneumoniae} Serum (generiert gegen hitze-inaktivierte Pneumokokken, Protein A aufgereinigt, siehe 3.4.7)</td>
<td>Pineda, Deutschland</td>
</tr>
<tr>
<td>Maus anti-Von Willebrand Faktor IgG</td>
<td>sc-73268, Santa Cruz, USA</td>
</tr>
<tr>
<td>Maus anti-Pecam-1 (CD 31) IgG</td>
<td>sc-13537, Santa Cruz, USA</td>
</tr>
<tr>
<td>Kaninchen anti-PAF-R IgG</td>
<td>sc-20732, Santa Cruz, USA</td>
</tr>
<tr>
<td>Kaninchen anti-LYVE-1 IgG</td>
<td>sc-28190, Santa Cruz, USA</td>
</tr>
<tr>
<td>Maus anti-uPAR IgG</td>
<td>sc-13522, Santa Cruz, USA</td>
</tr>
<tr>
<td>Maus anti-β₁-Integrin IgG</td>
<td>MAB2253, Millipore, USA</td>
</tr>
<tr>
<td>Maus anti-β₃-Integrin IgG</td>
<td>MAB2023Z, Millipore, USA</td>
</tr>
<tr>
<td>Maus anti-α₁β₃-Integrin IgG</td>
<td>MAB1976Z, Millipore, USA</td>
</tr>
<tr>
<td>Maus anti-α₂-Integrin IgG</td>
<td>AB1936, Millipore, USA</td>
</tr>
<tr>
<td>Kaninchen anti-Fibrinogen IgG</td>
<td>Dr. S. R. Talay, HZI Braunschweig</td>
</tr>
</tbody>
</table>
Material & Methoden

Tabelle 6: Zusammenstellung der konjugierten Antikörper und Reagenzien

<table>
<thead>
<tr>
<th>Antikörper/Serum</th>
<th>Herkunft</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ziege anti-vWF-IgG Peroxidase-konjugiert</td>
<td>GAVWF-HRP, Affinity Biologicals, USA (Vertrieb Hämochrom Diagnostika, Deutschland)</td>
</tr>
<tr>
<td>Ziege anti-Kaninchen IgG Alexa Fluor® 488-konjugiert</td>
<td>A11008, Invitrogen, USA</td>
</tr>
<tr>
<td>Ziege anti-Kaninchen IgG Alexa Fluor® 568-konjugiert</td>
<td>A11011, Invitrogen, USA</td>
</tr>
<tr>
<td>Ziege anti-Maus IgG Alexa Fluor® 488-konjugiert</td>
<td>A11001, Invitrogen, USA</td>
</tr>
<tr>
<td>Phalloidin Alexa Fluor® 488-konjugiert</td>
<td>A12379, Invitrogen, USA</td>
</tr>
<tr>
<td>Phalloidin Alexa Fluor® 488-konjugiert</td>
<td>A12380, Invitrogen, USA</td>
</tr>
</tbody>
</table>

3.1.7 Verwendete Kits

Tabelle 7: Auflistung der Kits

<table>
<thead>
<tr>
<th>Name des Kits</th>
<th>Herkunft</th>
</tr>
</thead>
<tbody>
<tr>
<td>OptEIA™ Human IL-8 ELISA Set</td>
<td>Becton Dickinson, USA</td>
</tr>
<tr>
<td>Cyto Tox 96® Non-Radioactive Cytotoxicity Assay</td>
<td>Promega, USA</td>
</tr>
<tr>
<td>RNeasy® Mini Kit</td>
<td>QIAGEN, Deutschland</td>
</tr>
<tr>
<td>TECHNOZYM® vWF:Ag Calibrator Set</td>
<td>Technoclone, Österreich (Vertrieb Hämochrom Diagnostika, Deutschland)</td>
</tr>
</tbody>
</table>

3.1.8 Reagenzien und Puffer (sofern nicht in Methoden beschrieben)

Tabelle 8: Verwendete Reagenzien für Zellinkubationsversuche

<table>
<thead>
<tr>
<th>Reagenz</th>
<th>Herkunft</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thrombin</td>
<td>Calbiochem, Deutschland</td>
</tr>
<tr>
<td>Histamin</td>
<td>Sigma-Aldrich, USA</td>
</tr>
<tr>
<td>Pneumolysin</td>
<td>Prof. T. J. Mitchell, Biomedical Research Centre, Glasgow, UK</td>
</tr>
</tbody>
</table>
Material & Methoden

<table>
<thead>
<tr>
<th>Material & Indikatoren</th>
<th>Herkunft</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lipopolysaccharide (LPS) von Salmonella typhimurium</td>
<td>Sigma-Aldrich, USA</td>
</tr>
<tr>
<td>Lipoteichonsäuren (LTA) von Staphylococcus aureus</td>
<td>Sigma-Aldrich, USA</td>
</tr>
</tbody>
</table>

Tabelle 9: Verwendete Antibiotika

<table>
<thead>
<tr>
<th>Antibiotikum</th>
<th>Verwendete Endkonzentration</th>
<th>Herkunft</th>
</tr>
</thead>
<tbody>
<tr>
<td>Erythromycin</td>
<td>12,5 µg/ml (zur S. pneumoniae-Kultivierung)</td>
<td>Sigma-Aldrich, USA</td>
</tr>
<tr>
<td>Kanamycin</td>
<td>50,0 µg/ml (zur S. pneumoniae-Kultivierung)</td>
<td>Roth, Deutschland</td>
</tr>
<tr>
<td>Penicillin G</td>
<td>10 µg/ml (für Plattierungsversuche)</td>
<td>Sigma-Aldrich, USA</td>
</tr>
<tr>
<td>Gentamycin</td>
<td>100 µg/ml (für Plattierungsversuche)</td>
<td>Sigma-Aldrich, USA</td>
</tr>
</tbody>
</table>

Phosphatpuffer (PBS):

0,2 g KCl
8,0 g NaCl
0,2 g KH₂PO₄
1,43 g Na₂HPO₄
auf 1 l mit dH₂O auffüllen
pH 7,4

Das PBS wurde vor Gebrauch 20 min bei 121 °C autoklaviert.

3.2 Mikrobiologische Methoden

3.2.1 Kultivierung von *Streptococcus pneumoniae*

S. pneumoniae Stämme wurden ausgehend von Glycerolkonserven, unter Verwendung der entsprechenden Antibiotika, auf Blutagarplatten (Becton Dickinson) angeimpft und bei 37 °C...
und 5 % CO₂ in einem Begasungsinkubator (Thermo Scientific) für 6 Std. inkubiert. Nach der Kultivierung wurde mit einer Impföse etwas Bakterienmaterial abgenommen und damit eine weitere Blutagarplatte beimpft und diese bei 37 °C und 5 % CO₂ in einem Begasungsinkubator (Thermo Scientific) über Nacht inkubiert. Die Anzucht der Pneumokokken in Flüssigkultur erfolgte in Todd-Hewitt Broth (Roth, Deutschland) mit 1 % Hefeextrakt (THY) und 10 % fötalem Kälberserum (FCS). Die Bestimmung der Bakteriendichte der Flüssigkulturen erfolgte photometrisch durch Messung der optischen Dichte bei 600 nm. Die Flüssigkulturen wurden mit einer Start-OD_{600} von 0,1 angeimpft und im Wasserbad bei 37 °C, bis zum Erreichen einer OD_{600} von 0,35 inkubiert.

3.2.2 Konservierung von *Streptococcus pneumoniae*

Zur längerfristigen Lagerung von *Streptococcus pneumoniae* wurden Kulturen in 25 % (v/v) Glycerin in THY resuspendiert. Hierfür wurden die Pneumokokkenstämme auf Blutagarplatten kultiviert, mit einem Wattestab abgenommen, in 1 ml 25 % Glycerin in THY in Einfrierröhrchen resuspendiert und bei -80 °C gelagert.

3.2.3 Kultivierung von anderen Bakterienstämmen

Zur Untersuchung der VWF-Freisetzung aus HPMEC durch verschiedene Bakterienstämmen, wurden *Escherichia coli* DH5α, *Pseudomonas aeruginosa* PA1, *Neisseria meningitidis* N4, *Staphylococcus aureus* st3, *Streptococcus canis* G361 und *Streptococcus pyogenes* S33 verwendet. *Escherichia coli* DH5α wurde aus einer Glycerolkonservierung auf LB-Agar angeimpft und bei 37 °C in einem Inkubator (Thermo Scientific) über Nacht inkubiert. Die Kultivierung von *Escherichia coli* DH5α in Flüssigkultur erfolgte in LB-Medium. *Pseudomonas aeruginosa* PA1, *Streptococcus canis* G361 und *Streptococcus pyogenes* S33 wurden über Nacht auf THY (0,5 % Hefeextrakt)-Agar kultiviert, während *Neisseria meningitidis* N4 und *Staphylococcus aureus* st3 auf Blutagarplatten kultiviert wurden. Zur Erstellung von Flüssigkulturen wurden die Bakterien mit einem Wattestab von der Agarplatte abgenommen und in einer OD_{600} von 0,35 in THY (0,5 % Hefeextrakt) mit 10 % fötalem Kälberserum (FCS)
3.2.4 Hitzeinaktivierung von Pneumokokken

Zur Hitzeinaktivierung von Pneumokokken wurden diese zunächst wie unter 3.2.1 Kultivierung von *Streptococcus pneumoniae* beschrieben, bis zum Erreichen einer OD\textsubscript{600} von 0,35 kultiviert. Die Kulturen wurden anschließend zentrifugiert (10 min, 3000 \times \text{g}, Heraeus Biofuge 15R), die Sedimente mit 10 ml PBS gewaschen und nach erneuter Zentrifugation in 1 ml PBS resuspendiert. Ausgehend von dieser Suspension wurden die Pneumokokken photometrisch auf eine Konzentration von \(1 \times 10^9\) Pneumokokken/ml in PBS eingestellt. Diese Bakterien wurden im Anschluss für 5 min bei 65 °C inkubiert. Diese kurze Hitzeinaktivierung tötete die Pneumokokken.

3.3 Zellkulturmethoden

3.3.1 Kultivierung von primären Endothelzellen

Die Kultivierung der primären Endothelzellen erfolgte in einem Begasungsinubator (Thermo Scientific) bei 37 °C und 5 % CO\(_2\). Die Zellkulturarbeiten wurden an einer sterilen Werkbank durchgeführt. Vor dem Gebrauch wurden die Materialien sterilisiert und die Medien auf RT vorgewärmt. Das Wachstum und die Morphologie der Zellen wurden am Mikroskop (Axiovert 25, Zeiss) kontrolliert.
3.3.2 Subkultivierung von primären Endothelzellen

HPMEC und HUVEC wurden von Promocell direkt nach der Isolation und Aufreinigung kryokonserviert (2. Passage) oder bereits proliferiert (3. Passage) geliefert. Die Zellen wurden in Zellkulturschalen (Durchmesser 10 cm, TPP) in zellspezifischem Medium (siehe 3.1.4) kultiviert. Das Medium wurde in Abständen von 2-3 Tagen gewechselt. Bei Erreichen einer subkonfluenten Zellschicht wurden die Zellen subkultiviert.

Zur Subkultivierung wurden HPMEC zunächst mit 5 ml HepesBSS (Promocell, Deutschland) gewaschen, um Medienreste und tote Zellen zu entfernen. Anschließend wurden die Zellen für maximal 5 min mit 3 ml Trypsin/EDTA 2 (EDTA= Ethylen diamintetraacetat) (Promocell, Deutschland) inkubiert, bis sich die Mehrzahl der Zellen abgerundet hatte. Dann wurden 7 ml Medium zugegeben, um die Trypsinwirkung zu neutralisieren. Anschließend werden die Zellen mit einer Pipette von der Zellkulturschale gespült, bei 900 x g für 10 min zentrifugiert (Hereus Megafuge 1.0) und in 3 ml Medium resuspendiert. Zur weiteren Kultivierung wurden 4 x 10⁵ Zellen in 10 cm-Zellkulturschalen in Zellkulturmedium ausgesät (Zellzahlbestimmung, siehe 3.3.5). Zur Kultivierung in 6 cm-Zellkulturschalen wurden 2 x 10⁵ Zellen in Zellkulturmedium ausgesät. Die Subkultivierung der HPMEC erfolgte bis zum Erreichen der sechsten Passage.

HUVEC wurden zur Subkultivierung mit 5 ml Hepes BSS (Promocell) gewaschen und anschließend mit 3 ml Trypsin/EDTA (Promocell, Deutschland) für maximal 5 min inkubiert. Die Proteolyse des Trypsins wurde durch Zugabe von 7 ml Medium inhibiert und die Zellen von der Zellkulturschale gespült. Nach Zentrifugation der Zellsuspension bei 900 x g für 10 min (Hereus Megafuge 1.0) wurden die HUVEC in 4,0 ml Medium aufgenommen. Zur weiteren Kultivierung wurden 4 x 10⁵ Zellen in 10 cm-Zellkulturschalen mit Medium ausgesät (Zellzahlbestimmung, siehe 3.3.5). Die Subkultivierung der HUVEC erfolgte bis zum Erreichen der achten Passage.

3.3.3 Kryokonservierung von primären Endothelzellen

Durch Lagerung in flüssigem Stickstoff werden eukaryotische Zellen langfristig konserviert. Zur Vorbereitung der Kryokonservierung wurde die nahezu konfluente Zellschicht der HPMEC mit Trypsin/EDTA 2 abgelöst (siehe 3.3.2.) und nach Zentrifugation in 900 µl
Medium mit 20 % FCS aufgenommen. Die Zellsuspension wurde in Konservierungsröhrchen mit Dimethylsulfoxid (DMSO, Endkonzentration 10 %) vereinigt und für 24 Std. bei -80 °C in einem mit Isopropanol gefülltem Behälter eingefroren (Nalgene™ Cryo 1 °C Freezing Container). Der Behälter verhindert die Bildung von zellschädigenden Eiskristallen durch die kontrollierte Abkühlung von 1 °C/min. Die Menge einer konfluent bewachsenen Zellkulturschale mit HUVEC wurde auf zwei Einfrierröhrchen mit je 900 µl Zellkulturmedium mit 20 % FCS aufgeteilt, mit 10 % DMSO versetzt und ebenfalls bei -80 °C in einem mit Isopropanol gefülltem Behälter eingefroren. Nach 24 Std. wurden die Konservierungsröhrchen mit den Zellen in flüssigem Stickstoff eingelagert.

3.3.4 Auftauen von eukaryotischen Zellen

Zur Kultivierung wurden die im flüssigen Stickstoff gelagerten Zellen im Konservierungsröhrchen im Wasserbad bei 37 °C fast vollständig aufgetaut. Um die zellschädigende Wirkung des DMSO zu mindern, wurden die Zellen zügig mit 1 ml vorgewärmtem Zellkulturmedium versetzt und die Suspension vorsichtig in eine Zellkulturschale (TPP, Deutschland) mit vorgewärmtem Zellkulturmedium überführt und bei 37 °C und 5 % CO₂ inkubiert. Nach Anheften der Zellen auf dem Boden der Zellkulturschale, wurde ein Medienwechsel durchgeführt.

3.3.5 Bestimmung der Zellzahl

Material & Methoden

3.4 Methoden zur Infektion von Endothelzellen mit Pneumokokken

3.4.1 Aussaat der Endothelzellen für Standardinfektionen

Für Infektions- oder Inkubationsversuche wurde die Zellzahl der abtrypsinisierten Zellen bestimmt (siehe 3.3.5) und die Zellen anschließend in 4-well oder 24-well-Platten (TPP, Deutschland) ausgesät. Für spätere Immunfluoreszenz-Färbungen oder elektronenmikroskopische Untersuchungen wurden die Endothelzellen auf Deckgläschchen (Durchmesser 12 mm) ausgesät. HPMEC wurden in einer Konzentration von 3 x 10⁴ Zellen in 500 µl Zellkulturmedium pro well ausgesät und für 72 Std. bis zum Erreichen der Konfluenz kultiviert. HUVEC wurden mit einer Konzentration von 2 x 10⁴ Zellen in 500 µl Zellkulturmedium pro well ausgesät und für 48 Std. bis zum Erreichen einer konfluenten Zellschicht kultiviert. Die Konfluenz der Zellschicht wurde durch Messung des elektrischen Widerstandes und der Kapazität mit dem cellZscope® (Nanoanalytics) bestimmt.

3.4.2 Durchführung der Zellkulturinfektion

Zur Vorbereitung von Infektionsversuchen wurden die Pneumokokkenstämmе der Blutagarplatte in Flüssigkulturen angeimpft. Die Anzucht erfolgte mit einer Start-OD₆₀₀ von 0,1 in Todd-Hewitt Broth (Roth) mit 1 % Hefeextrakt (THY) und 10 % fōtalem Kälberserum. Die Flüssigkulturen wurden im Wasserbad bei 37 °C bis zu einer OD₆₀₀ von 0,3-0,4 inkubiert. Anschließend wurden die Kulturen zentrifugiert (10 min, 3000 x g, Heraeus Biofuge 15R), die Sedimente mit 10,0 ml PBS gewaschen und nach erneuter Zentrifugation in 1 ml PBS resuspendiert. Ausgehend von dieser Suspension wurden die Pneumokokken photometrisch auf 1 x 10⁸ Pneumokokken/ml in antibiotikafreiem Endothelial Cell Basal Medium MV (Promocell, Deutschland) mit 2 % fōtalem Kälberserum, eingestellt. Zur Kontrolle der eingestellten Bakterienmenge wurde das Inokulum in einer Verdünnungsreihe bis 100 Bakterien/ml auf Blutagar ausplattiert und bei 37 °C im Begasungsinkubator (Thermo Scientific) kultiviert.

Vor der Infektion wurden die Endothelzellen dreimal mit 37 °C-warmen, antibiotikafreiem Infektionsmedium (siehe 3.1.5) gewaschen und mit den vorbereiteten Pneumokokken in der entsprechenden MOI (multiplicity of infection) infiziert. Die Inkubation der infizierten
Material & Methoden

Endothelzellen erfolgte bei 37 °C und 5 % CO₂ in einem Begasungsinkubator (Thermo Scientific).

3.4.3 Durchführung der Plattierungsanalysen

Saponin-Lösung: 1 % Saponin in Infektionsmedium sterilfiltriert
3.4.4 Weiterführende Analysen nach Zellkulturinfektion

Im Anschluss an die Zellkulturinfektion erfolgte die Vorbereitung der Zellen für die Immunfluoreszenzmikroskopie. Dazu wurden die Zellen dreimal mit PBS gewaschen und die Deckgläschen in den Wells mit 1 ml Fixierungspuffer fixiert. Zur Immunfluoreszenzfärbung von VWF wurden die Zellen für 20 min bei 4 °C fixiert. Bei anderen Färbungen erfolgte die Fixierung bei 4 °C bis zur Weiterverarbeitung.

Fixierungspuffer IF: 1 % Paraformaldehyd in PBS
Sterilfiltriert

Zur Vorbereitung weiterführender Proteindetektion wurden die Zellkulturüberstände der infizierten Zellen direkt zur Detektion in ELISA-Analysen verwendet oder in sterilen Eppendorf-Reaktionsgefäßen bei -80 °C eingefroren.

3.5 Immunfluoreszenzfärbung (IF) und Mikroskopie

3.5.1 Differentielle, indirekte Immunfluoreszenzfärbung von Pneumokokken

Zur mikroskopischen Visualisierung wurden die adhärenten und internalisierten Pneumokokken mit Fluoreszenzfarbstoffen markiert. Die differentielle Immunfluoreszenzfärbung ermöglicht eine Unterscheidung von extrazellulären und intrazellulären Pneumokokken. Für die Immunfluoreszenzfärbung wurden die Deckgläschen mit den infizierten und fixierten HPMEC aus den Wells der Zellkulturplatte entnommen, dreimal in PBS gewaschen und in einer feuchten Kammer mit den jeweiligen Antikörpern für jeweils 20 min unter Lichtausschluss inkubiert. Um eine unspezifische Bindung der Antikörper zu vermeiden wurden die fixierten Zellen zunächst für 15 min mit 50 µl Absättigungspuffer inkubiert. Extrazelluläre Pneumokokken wurden durch Inkubation mit 50 µg/ml Kaninchen anti-Pneumokokken IgG für 20 min bei RT markiert. Nach dreimaligem Waschen mit PBS erfolgte die Inkubation mit 10 µg/ml Ziege anti-Kaninchen IgG Alexa Fluor® 488-konjugiert (siehe Abb. 5 B). Nach weiterem dreimaligem Waschen wurden die Zellen durch 5-minütige Inkubation mit 0,1 % Triton-X-100 permeabilisiert. Die Markierung der intrazellulären...
Pneumokokken, die durch die Permeabilisierung für Antikörper zugänglich waren, erfolgte durch Inkubation der Zellen mit 50 µg/ml Kaninch en anti-Pneumokokken IgG für 20 min bei RT, gefolgt von der Inkubation mit 6,7 µg/ml Ziege anti-Kaninchen IgG Alexa Fluor® 568-konjugiert für 20 min bei RT (siehe Abb. 5 C).

Absättigungspuffer: 10 % fötales Kälberserum in PBS

3.5.2 Direkte Fluoreszenzfärbung von F-Aktin

Zur Fluoreszenzmarkierung der Aktin-Fasern der HPMEC-Zellen wurden die Deckgläsch en mit 4 U/ml Alexa Fluor® 488-Phalloidin oder 4 U/ml Alexa Fluor® 568-Phalloidin für 20 min bei RT inkubiert (siehe Abb. 5 D). Das Toxin Phalloidin des Knollenblätterpilzes lagert sich an F-Aktin und verhindert dadurch eine Depolymerisation der Aktin-Faser.

Abbildung 5: Modell der Immunfluoreszenzfärbung von Pneumokokken und Aktin. A) HPMEC mit extrazellulären und intrazellulären Pneumokokken B) Färbung der
extrazellulären, adhärenten Pneumokokken mit Kaninchen anti-Pneumokokken IgG und Ziege Anti-Kaninchen IgG Alexa Fluor® 488-konjugiert (grün) C) Permeabilisierung der HPMEC mit Triton-X 100 und Färbung der intrazellulären und extrazellulären Pneumokokken mit Kaninchen anti-Pneumokokken IgG und Ziege Anti-Kaninchen IgG Alexa Fluor® 568-konjugiert (rot) D) Färbung der Aktin-Fasern mit Phalloidin Alexa Fluor® 488-konjugiert (grün).

3.5.3 Indirekte Fluoreszenzfärbung von Weibel-Palade bodies

Nach den Inkubationen zur Färbung der verschiedenen Zellkomponenten wurden die Deckgläschen mit den infizierten Zellen zur Langzeitaufbewahrung und mikroskopischen Analyse dreimal gewaschen und in 3 µl ProLong® Gold antifade reagent eingebettet, mit Nagellack versiegelt und bei 4 °C dunkel gelagert.

3.5.4 Fluoreszenzmikroskopische Auswertung

Zur Visualisierung von adhärenten und internalisierten Pneumokokken wurde eine differentielle Immunfluoreszenzfärbung durchgeführt (siehe 3.5.1) und die Infektionsexperimente am Fluoreszenzmikroskop ausgewertet. Die Fluoreszenzmikroskopie basiert auf der Anregung von Fluoreszenzfarbstoffen (Fluorochrome), die an Antikörper oder andere Proteine gekoppelt sind, mit Licht einer bestimmten Wellenlänge. Dadurch fluoreszieren die Fluorochrome, d. h. sie emittieren Licht einer größeren Wellenlänge als der Anregungswellenlänge (Madigan, 2003). Die Anregung der Fluorochrome erfolgt mit einer
Material & Methoden

3.5.5 Transmissionselektronenmikroskopie (TEM)

Für die Visualisierung von WPBs in HPMEC wurde ein Transmissionselektronenmikroskop benutzt. HPMEC in Passage 3 wurden wie in 3.3.2 beschrieben in 6 cm-Zellkulturschalen
ausgesät und bei 37 °C und 5 % CO₂ bis zur Konfluenz kultiviert. Für die Untersuchungen am Transmissionselektronenmikroskop wurden die HPMEC in 5 ml TEM-Fixierungspuffer für 1,0 Std. bei 4 °C fixiert. Die weitere Aufbereitung der Proben wurde von Ina Schleicher (Abt. Medizinische Mikrobiologie, HZI Braunschweig) durchgeführt. Es erfolgte eine Ferrocyanid-Osmium-Fixierung mit TCH, die Entwässerung der Proben in einem aufsteigenden Aceton-Gradienten (10 %, 30 %, 50 %, 70 %, 90 %, 100 %), eine kritische Punkttrocknung in flüssigem CO₂ und anschließend die Einbettung der Proben in Spurr-Harz (Spurr et al., 1969). Nach Polymerisierung des Harzes wurden Dünnschnitte der Probe angefertigt und nach Nachkontrastierung am TEM untersucht. Die Untersuchungen und Aufnahmen am Transmissionselektronenmikroskop erfolgten durch Prof. Dr. Manfred Rohde (Abt. medizinische Mikrobiologie, HZI Braunschweig).

Cacodylatpuffer:

100 mM Cacodylat

90 mM Saccharose

10 mM MgCl₂

10 mM CaCl

in dH₂O

pH 6,9

Fixierungspuffer TEM:

100 mM Cacodylatpuffer

2 % Glutaraldehyd

5 % Paraformaldehyd

3.6 Infektionsanalysen im Zweikammer-Transwell-System

Das Zweikammer-Transwell-System von Becton Dickinson Bioscience (USA) unterteilt das well einer 24-well-Zellkulturplatte in zwei Kammern, die durch eine semipermeable Membran (0,4 μm Porendurchmesser) getrennt sind. Ein Porendurchmesser von 0,4 μm verhindert die
Material & Methoden

Das Zweikammer-Transwell-System mit einer semipermeablen Membran der Porengröße von 3,0 µm (Becton Dickinson Bioscience, USA) ermöglicht die Kultivierung einer polarisierten Endothelbarriere und erlaubt die endotheliale Transmigration von Pneumokokken. Um das Anheften der Zellen auf der semipermeablen Membran zu fördern wurde die Membran vor der Aussaat der Zellen mit 0,1 % Gelatine-Lösung bei 37 °C für 1,0 Std. inkubiert und die Gelatine anschließend durch Inkubation mit 0,5 % Glutaraldehyd-Lösung für 25 min bei RT quervernetzt. Für Infektionen der HPMEC von der apikalen Seite der polarisierten Zellschicht wurden 3×10^4 HPMEC je Transwell-Einsatz in die obere Kammer auf der Gelatine-Membran ausgesät und bis zum Erreichen einer konfluenten Zellschicht bei 37 °C und 5 % CO$_2$ in einem Begasungsinkubator (Thermo Scientific) kultiviert. Für Infektionen der HPMEC von der basalen Seite der polarisierten Zellschicht wurden die HPMEC mit einer Konzentration von 3×10^4 Zellen/Transwell-Einsatz auf der Membranunterseite des Transwell-Einsatzes ausgesät und bei 37 °C und 5 % CO$_2$ in einem Begasungsinkubator (Thermo Scientific) invers kultiviert. Nach Erreichen einer konfluenten HPMEC-Zellschicht wurden die Zellen wie in 3.4.3 beschrieben mit 5×10^6 Pneumokokken für 4,5 Std. infiziert. Nach der Inkubationszeit wurde der zelluläre Überstand der oberen bzw. unteren Kammer abgenommen und für ELISA-Analysen (siehe 3.4.7) verwendet.

3.7 Messung der Konfluenz von Endothelschichten

Die Morphologie und Konfluenz der HPMECs wurde in jedem Versuch mikroskopisch kontrolliert. Eine genauere Bestimmung der Zellkonfluenz erfolgte durch Messung des
elektrischen Widerstandes (TER) und der Kapazität (C_{cl}) mit dem cellZscope® (NanoAnalytics, Deutschland).

Material & Methoden
der Messung werden basierend auf einem Algorithmus des Systems evaluiert (Anleitung des cellZscope®, NanoAnalytics, Deutschland).

3.8 Präparation von Pneumokokkenmembranproteinen

Zur Isolierung der Membranproteine von S. pneumoniae st35A und S. pneumoniae st35A∆ply wurden beide Stämme in jeweils 400 ml THY mit 10 % fötalem Kälberserum bis zu einer OD₆₀₀ von 0,6 kultiviert (siehe 3.2.1). Die Flüssigkulturen wurden zentrifugiert (4000 x g, 15 min, 4 °C, Thermo Scientific), mit 10 mM Tris-Puffer (pH 7,2) gewaschen und das Sediment in 10 mM Tris-Puffer (pH 8,0) mit 1 mM Proteaseinhibitor Phenylmethylsulfonylfluorid (PMSF) und 5000 U/ml Mutanolysin resuspendiert. Die Suspension wurde dreimal in einer FrenchPress-Zelle (Amicon) mechanisch lysiert und noch intakte Bakterien wurden durch Zentrifugieren (10000 x g, 50 min, 4 °C, Thermo Scientific) entfernt. Die Überstände dieser Zentrifugation wurden bei 10000 x g für 60 min zentrifugiert. Das Sediment enthielt Pneumokokkenmembran- und Zellwandproteine. Die Proteine wurden
in 500 µl CHAPS ([(3-cholamidopropyl)-dimethylammonio]1-propansulfo-nat)-Puffer mit 1 mM PMSF resuspendiert und zum Lösen der Membranproteine für 30 min mit dem zwitterionischen Detergenz schrittweise inkubiert (5 mM, 10 mM, 20 mM und 50 mM CHAPS). Die Suspensionen wurden zentrifugiert, die Überstände vereinigt und die erhaltenen Proteine bei 4 °C in PBS dialysiert. Zur Bestimmung der Proteinmenge wurde eine Bradford-Proteinbestimmung mit Bradford-Reagenz (Bio Rad) nach Protokoll des Herstellers durchgeführt.

0,01 M Tris-Puffer: 0,01 M Tris in dH₂O
pH 8,0

CHAPS-Puffer: 150 mM KCl
10 mM EDTA
0,1 M Kaliumphosphatpuffer
pH 7,2

3.9 Inkubation von HPMEC mit physiologischen Substanzen

Verschiedene biologische Substanzen induzieren eine Freisetzung von WPB-Komponenten aus Endothelzellen (Vischer et al., 1997). Zur Untersuchung der WPB-Exozytose aus humanen Lungenendothelzellen nach Inkubation mit verschiedene biologischen Substanzen wurden HPMEC wie in 3.4.1 beschrieben kultiviert und mit 1 U/ml Thrombin, 1 mM Histamin, 1 ng/ml und 3 ng/ml Pneumolysin, sowie 4 µg/ml Lipopolysaccharide (LPS) von Salmonella typhimurium und 4 µg/ml Lipoteichonsäuren von Staphylococcus aureus für 2,5 Std. inkubiert. Darüber hinaus wurde die induzierende Wirkung von 1 U/ml Thrombin, 1 mM Histamin und 3 ng/ml Pneumolysin im Zeitverlauf von 0,5 Std. bis 4,5 Std. untersucht. Zur Eingrenzung des bakteriellen Auslösers der WPB-Exozytose wurden Pneumokokkenmembranproteine von S. pneumoniae st35A und S. pneumoniae st35AΔply prépariert (siehe 3.4.5) und jeweils 4 µg/ml für 2,5 Std. mit HPMEC inkubiert. Nach der Inkubation der Zellen mit den biologischen Substanzen und den
Material & Methoden

Pneumokokkenmembranproteinen wurden die Zellkulturüberstände abgenommen und zur Detektion von IL-8 und VWF in ELISA-Analysen verwendet.

3.10 Infektion von HPMEC mit verschiedenen Bakterienstämmen

Material & Methoden

3.11 Aufreinigung polyklonaler Antikörper

Elutionspuffer:

0,1 M Glycin in dH₂O

pH 3,0

Neutralisierungspuffer:

1,5 M Tris-HCl in dH₂O

pH 8,8

3.12 Biochemische Methoden

3.12.1 Enzyme-linked Immunosorbert Assay (ELISA) zur Quantifizierung von VWF in Zellkulturüberständen

Ziege verwendet. Als Proteinstandard wurde das TECHNOZYM® vWF:Ag Calibrator Set (Technoclone, Österreich) verwendet. Zunächst wurden 5 µg/ml Maus anti-von Willebrand Faktor IgG in 0,05 M NaHCO$_3$-Puffer über Nacht in 96-well-Patten (ELISA-Platte Microdon 96w, Greiner Bio-one) immobilisiert. Nach der Immobilisierung wurden die wells dreimal mit PBS-T gewaschen. Um unspezifische Bindungsstellen zu blockieren, wurden die wells für eine Stunde bei RT mit 200 µl Absättigungspuffer inkubiert. Nach erneutem Waschen mit PBS-T wurden 50 µl des zu testenden Zellkulturüberstandes (siehe 3.4.4) und parallel eine Verdünnungreihe des VWF-Standards mit 0; 0,04; 0,08; 0,15; 0,32; 0,68 U/ml pro well pipettiert und über Nacht bei 4 °C inkubiert. Am nächsten Tag wurden die Wells mit PBS-T sechsmal gewaschen und der gebundene VWF mit 2,5 µg/ml Peroxidase-konjugierten anti-vWF-IgG aus der Ziege für 1,0 Std. bei RT und unter Lichtausschluss detektiert. Die Substratreaktion erfolgte durch TMB Single Solution (Invitrogen). Die Adsorption der Proben und des Standards wurden bei 450 nm zur Referenz von 570 nm mit einem Adsorptionsphotometer Sunrise, RC TW (Tecan, Schweiz) und der Software Magellan 3 (Tecan, Schweiz) gemessen und mit Hilfe der Standardgeraden in µg/ml umgerechnet.

0,05 M NaHCO$_3$-Puffer:
0,05 M NaHCO$_3$
mit dH$_2$O auffüllen
pH 9,5

PBS-T:
0,05 % Tween-20 in PBS

Absättigungspuffer:
10 % fötales Kälberserum in PBS

3.12.2 Enzyme-linked Immunosorbent Assay (ELISA) zur Quantifizierung von Interleukin-8 (IL-8) in Zellkulturüberständen

Für die Quantifizierung von humanem IL-8 im Zellkulturüberstand von infizierten HPMEC wurde das Kit OptEIA™ Human IL-8 ELISA Set (Beckton Dickinson, USA) nach Anleitung des Herstellers verwendet. Vor der Inkubation der Zellkulturüberstände wurden sie 1:20 in Absättigungspuffer verdünnt. Die Absorption der Proben und des IL-8-Proteinstandards wurden mit einem Adsorptionsphotometer (Sunrise, RC TW Tecan, Schweiz) bei 450 nm
Material & Methoden

(Referenz 570 nm) gemessen. Anhand der Standardgeraden wurden die Absorptions-Werte in µg/ml umgerechnet.

0,1 M NaHCO$_3$-Puffer: 0,1 M NaHCO$_3$
mit dH$_2$O auffüllen
pH 9,5

PBS-T: 0,05 % Tween-20 in PBS

Absättigungspuffer: 10 % fötales Kälberserum in PBS

3.12.3 Zytotoxizitäts-Test

3.13 Durchflusszytometrie

Zur Erstellung eines Rezeptorprofils von verschiedenen primären Endothelzellen wurden durchflusszytometrische Analysen durchgeführt. Dazu wurden die Rezeptorprofile von HPMEC und HUVEC in Passage 3 und Passage 15 verglichen. Die Endothelzellen wurden in Zellkulturschalen in der zu untersuchenden Passage bis zum Erreichen einer konfluente Zellschicht kultiviert (siehe 3.3.2). Nach dem Waschen der Zellen mit Hepes BSS (Promocell, Deutschland) wurden sie mit 0,2 % EDTA in PBS vom Boden der Zellkulturschale abgelöst. Der Chelatbildner EDTA besitzt eine hohe Affinität für zweifach geladene Kationen, wie Ca\(^{2+}\). Der Kalziumentzug löst Zellanheftungsstrukturen und führt zur Vereinzelung der Zellen (Boxberger, 2007). Die Wirkung des EDTA wurde mit Zellkulturmedium abgestoppt und die Zellsuspension bei 900 \(\times \) g für 10 min zentrifugiert (Haereus, Biofuge 15R). Das Zellsediment wurde in 1 ml PBS resuspendiert und die Zellzahl bestimmt (siehe 3.3.5). Pro Ansatz wurden 4 x 10^4 Zellen entnommen und das Volumen auf 100 µl mit PBS mit 1 % FCS aufgefüllt. Die Zellen wurden mit 0,1 µg/ml des primären Antikörpers für 20 min bei 4 °C inkubiert. Nach dreimaligem Waschen mit PBS mit 1 % FCS wurde das Zellsediment in 100 µl PBS mit 1 % FCS resuspendiert und mit 6,7 µg/ml anti-Kaninch en IgG Alexa Fluor® 488-konjugiert aus der Ziege oder anti-Maus IgG Alexa Fluor® 488-konjugiert aus der Ziege (je nach Spezies des primären Antikörpers) für 20 min bei 4 °C unter Lichtausschluss inkubiert. Nach erneutem dreimaligem Waschen wurde das Zellsediment in 300 µl 1 % Paraformaldehyd in PBS resuspendiert und in FACS (=fluorescence activated cell sorting) -Röhrchen (Becton Dickinson) überführt. Nach 1 Std. Inkubation bei 4 °C unter Lichtausschluss wurden die Proben am Durchflusszytometer (FACSCalibur, Cell Quest Pro, Becton Dickinson) analysiert.

Die durchflusszytometrische Analyse wurde mit folgenden Antikörpern durchgeführt:

- anti-VWF IgG aus der Maus
- anti-Pecam-1 *(platelet endothelial cell adhesion molecule)* IgG aus der Maus
- anti-PAF-R *(platelet activating factor receptor)* IgG aus dem Kaninchen
- anti-LYVE-1 *(Lymphatic vascular endothelial hyaluronan receptor-1)* IgG aus dem Kaninchen
- anti-uPAR *(urokinase-type plasminogen activating receptor)* IgG aus der Maus
- anti-β\(_1\)-Integrin IgG aus der Maus
- anti-β\(_3\)-Integrin IgG aus der Maus
- anti-α\(_v\)β\(_3\)-Integrin IgG aus der Maus
Material & Methoden

- anti-α2-Integrin IgG aus der Maus
- anti-Fibrinogen IgG aus dem Kaninchen

Material & Methoden

![Abbildung 7: Modell der Funktionsweise der Durchflusszytometrie](image)

3.14 Mikroarray-Analyse

Material & Methoden

3.15 Real time PCR

Zur Evaluierung der Ergebnisse der Mikroarrayanalyse wurde eine Real time Polymerase-Kettenreaktionen des Interleukin-8-Gens durchgeführt. Hierfür wurden HPMEC bis zum Erreichen einer konfluierenden Zellschicht in Zellkulturschalen (Durchmesser 6 cm) kultiviert (siehe 3.3.2). In jeder Zellkulturschale befanden sich zwei Deckgläsen, die nach der
Material & Methoden

Die RNS-Aufreinigung mit dem RNeasy Mini Kit (Qiagen) und die cDNS-Synthese wurden von Astrid Dröge (Abt. Medizinische Mikrobiologie, HZI, Braunschweig) durchgeführt.

Die Durchführung der Real time PCR erfolgte im Rahmen einer Kooperation durch die Plattform „Genexpressionsanalyse“ des HZI Braunschweig unter Leitung von Dr. Robert Geffers.

Die Auswertung der Analyse wurde von PD Dr. Simone Bergmann (Institut für Mikrobiologie, Technische Universität Braunschweig) durchgeführt.

3.16 Statistische Auswertung

Sämtliche Experimente wurden mindestens dreimal unabhängig voneinander durchgeführt, jeder Versuch in Dreifachwerten. Die Signifikanz der Daten wurde mit dem *students t-test* bestimmt. Eine Signifikanz von $p<0.05$ wurde als statistisch signifikant erachtet.
4. Ergebnisse

4.1 Charakterisierung primärer, humaner Endothelzellen

Ergebnisse

A

HPMEC Passage 3

sekundäre, fluoreszierende Antikörper
primäre Antikörper

B

HUVEC Passage 3

sekundäre, fluoreszierende Antikörper
primäre Antikörper
Abbildung 8: Expression spezifischer Proteine und Oberflächenrezeptoren von HPMEC und HUVEC in Passage 3 und 15. Die Endothelzellen HPMEC und HUVEC wurden in Passage 3 (A, B) und 15 (C, D) mit spezifischen Antikörpern inkubiert. Die
Antikörper detektierten folgende Proteine: platelet endothelial cell adhesion molecule-1 (PECAM-1), lymphatic vascular endothelial hyaluronan receptor-1 (LYVE-1), β₁-Integrin, β₃-Integrin, αᵥβ₃-Integrin, α₂-Integrin, platelet activating factor receptor (PAFr), von Willebrand Faktor (VWF), urokinase plasminogen activating receptor (uPAR) und extrazelluläres Fibronektin. Die Detektion der Proteine auf der Zelloberfläche erfolgte mit fluoreszenzmarkierten Zweiantikörpern. Die Fluoreszenzsignale wurden durchflusszytometrisch bestimmt. Zur Kontrolle wurden HPMEC und HUVEC jeweils mit den Zweiantikörpern inkubiert. Zur Analyse wurden drei unabhängige Experimente durchgeführt und aus den Experimenten der Mittelwert und die Standardabweichung der Fluoreszenzintensität für 10.000 Zellen (geometric mean fluorescence intensity (GMFI) x gated events) berechnet. Die dargestellten Diagramme zeigen die GMFI x gated events in Relation zu dem Endothelzellmarker PECAM-1 (Faktor 1,0). Die Signale der sekundären, fluoreszierenden Antikörper beschreiben unspezifische Hintergrundsignale.

* Signifikanz der Fluoreszenzintensität von 10.000 Zellen (GMFI x gated events) im Bezug zur Fluoreszenzintensität der sekundären, fluoreszierenden Antikörper (p<0,05).

Die Ergebnisse der Durchflusszytometrie der Endothelzellen in Passage 3 zeigten eine vergleichbare Proteinexpression bei HPMEC im Vergleich zu HUVEC (Abb. 8 A und B). Bei beiden Endothelzelltypen wurde PECAM-1 signifikant auf der Oberfläche der Zellen nachgewiesen (Abb. 8 A und B). Die Werte der detektierten Oberflächenproteine sind in Relation zu der Expression des PECAM-1 angegeben (Faktor 1,0 für PECAM-1). Auf der Oberfläche der Lungenendothelzellen wurden vergleichbare Proteinnengen von PECAM-1 und β₁-Integrin mit einem Faktor von 0,9 ± 0,29 detektiert (Abb. 8 A). Die Proteinnenge der β₁-Integrine mit 0,63 ± 0,33 auf der Oberfläche der HUVEC war etwas geringer als die Expression des PECAM-1 (Abb. 8 B). Die Hintergrundfluoreszenz der sekundären Antikörper war im Vergleich zu PECAM-1 bei beiden Endothelzelltypen sehr gering mit 0,13 ± 0,12 für den Kaninchen-spezifischen Antikörper und 0,14 ± 0,09 für den Maus-spezifischen Antikörper bei HPMEC und 0,07 ± 0,004 für den Kaninchen-spezifischen Antikörper und 0,15 ± 0,07 für den Maus-spezifischen Antikörper bei HUVEC (Abb. 8 A und B). Die Expression von α₂-Integrinen wurde in vergleichbarer Menge wie bei β₁-Integrin detektiert (Faktor 0,68 ± 0,05 bei HPMEC und Faktor 0,75 ± 0,16 bei HUVEC). In beiden Zelltypen erreichte die detektierte Menge an β₃-Integrinen mit einem Faktor von 0,54 ± 0,28 bei HPMEC und 0,5 ± 0,17 bei HUVEC und αᵥβ₃-Integrinen mit einem Faktor von 0,42 ± 0,13 bei HPMEC und 0,47 ± 0,12 bei HUVEC nur circa 50 % der PECAM-1-Proteinnenge (Abb. 8 A und B).

Die Expression von LYVE-1, PAFr, VWF und uPAR auf der Oberfläche der Endothelzellen war geringer als die Expression von PECAM-1 und erreichte Werte im Bereich der
Ergebnisse

unspezifischen Antikörper-Bindung. Die Werte betragen 0,15 ± 0,07 (HPMEC) bzw. 0,18 ± 0,12 (HUVEC) für PAFr, 0,16 ± 0,11 (HPMEC) bzw. 0,17 ± 0,09 (HUVEC) für LYVE-1, 0,19 ± 0,12 (HPMEC) bzw. 0,17 ± 0,1 (HUVEC) für VWF und 0,13 ± 0,13 (HPMEC) bzw. 0,11 ± 0,07 (HUVEC) für uPAR (Abb. 8 A und B). Bei beiden Endothelzelltypen konnte eine geringe Expression von extrazellulärem Fibronectin auf der Oberfläche der Zellen detektiert werden (0,26 ± 0,13 bei HPMEC und 0,35 ± 0,07 bei HUVEC). Die Analysen der Endothelzellen in Passage 15 resultierten in teilweise stark veränderten Expressionsprofilen der untersuchten Zellen. Darüber hinaus sind im Gegensatz zur frühen Passage Unterschiede in der Expression einzelner Proteine zwischen HUVEC und HPMEC zu erkennen (Abb. 8 C und D). Der Endothelzellmarker PECAM-1 wurde bei HPMEC und HUVEC in Passage 15 im Vergleich zu den anderen Proteinen in geringerer Menge exprimiert (Abb. 8 A und B). Zum Vergleich der Profile in Passage 15 mit den Expressionsprofilen der Passage 3 sind die Werte der Proteine in Relation zu der Expression des PECAM-1 angegeben (Faktor 1,0 für PECAM-1). Die Werte der Hintergrundfluoreszenz der sekundären Antikörper waren geringer als die Werte für PECAM-1 (0,4 ± 0,39 (HPMEC) bzw. 0,12 ± 0,07 (HUVEC) für den Kaninchen-spezifischen Antikörper und 0,47 ± 0,28 (HPMEC) bzw. 0,29 ± 0,27 (HUVEC) für den Maus-spezifischen Antikörper). Darüber hinaus sind diese Werte der unspezifischen Bindung der sekundären Antikörper höher als in der Analyse der frühen Passagen. Im Vergleich zur Expression des PECAM-1 war die Expression von LYVE-1 in beiden Endothelzelltypen sehr hoch (Faktor 2,27 ± 1,29 bei HPMEC und 0,74 ± 0,62 bei HUVEC). In Passage 15 wurde das α2-Integrin in beiden Zelltypen am stärksten exprimiert (Faktor 3,28 ± 3,21 bei HPMEC und 1,84 ± 2,28 bei HUVEC). Die Expression von extrazellulärem Fibronectin war mit 2,12 ± 1,28 in HPMEC und mit 1,12 ± 0,81 in HUVEC höher als die Expression von PECAM-1. Die Proteinmengen von PAFr, VWF, uPAR, β1-Integrin, β3-Integrin und αvβ3-Integrin lagen bei beiden Endothelzelltypen im Bereich der Expression von PECAM-1 (1,06 ± 0,11 (HPMEC) bzw. 1,26 ± 1,2 (HUVEC) für PAFr 1,04 ± 0,16 (HPMEC) bzw. 0,63 ± 0,41 (HUVEC) für VWF, 1,15 ± 0,78 (HPMEC) bzw. 0,45 ± 0,65 (HUVEC) für uPAR, 1,53 ± 0,61 (HPMEC) bzw. 0,87 ± 0,3 (HUVEC) für β1-Integrin, 0,97 ± 0,24 (HPMEC) bzw. 0,67 ± 0,33 (HUVEC) für β3-Integrin und 1,31 ± 0,46 (HPMEC) bzw. 0,45 ± 0,04 (HUVEC) für αvβ3-Integrin). Insgesamt zeigen diese Ergebnisse, dass die Endothelzellen HPMEC und HUVEC ein vergleichbares Proteinexpressionsprofil in niedrigen Kulturpassagen aufweisen, während nach häufiger Subkultivierung die Proteineexpression beider Endothelzelltypen deutlich voneinander abweicht. In den weiteren Infektionsstudien wurden die HPMEC nur in niedrigen Kulturpassagen im differenzierten Status verwendet.
4.2 In-vitro-Infektionsstudien von Pneumokokken mit humanen Endothelzellen

4.2.1 Interaktion von Pneumokokken mit Endothelzellen nach unterschiedlichen Infektionszeiten

Zur Bestimmung von Adhärenz- und Internalisierungsraten von Pneumokokken wurden HPMEC und HUVEC mit *S. pneumoniae* st35A und *S. pneumoniae* st35A∆ply mit einer MOI 50 infiziert (2,0 Std. + 2,5 Std. bzw. 3,0 Std. + 1,5 Std.). Zur Verringerung von Zellschäden durch bakterielle Toxine wurden die Zellen nach 2,0 Std. bzw. 3,0 Std. mit Infektionsmedium gewaschen. Dadurch wurden nicht-adhäsente Pneumokokken entfernt. Die anschließende Inkubationszeit von 2,0 Std. bzw. 1,5 Std. ermöglichte eine weitere Internalisierung adhäsenter Pneumokokken in die Zellen. Im Anschluss wurden Immunfluoreszenzfärbungen mit Pneumokokken-spezifischen Antikörpern und fluoreszierenden Zweitantikörpern durchgeführt und die Menge an adhäsenten und internalisierten Pneumokokken fluoreszenzmikroskopisch bestimmt. Diese Quantifizierungsmethode unterscheidet nicht zwischen lebenden und toten Pneumokokken. In weiteren Experimenten wurden die Zellen nach der Infektion lysiert und auf Blutagarplatten kultiviert. Dies ermöglichte die Quantifizierung der internalisierten, lebenden Pneumokokken von jeweils 2,0 x10⁵ Endothelzellen.
Ergebnisse

A HPMEC

B HUVEC

C HPMEC

D HUVEC

Infektionszeit [Std.]

Die Anzahl adhärenter Pneumokokken an HPMEC war bei beiden Pneumokokkenstämmen vergleichbar und stieg von 11 ± 3 Bakterien (S. pneumoniae st35A) bei 2,0 Std. + 2,5 Std. auf 30 ± 11 Bakterien bei 3,0 Std. + 1,5 Std. und 14 ± 2 Pneumokokken (S. pneumoniae st35A\(\Delta\)ply) bei 2,0 Std. + 2,5 Std. auf 31 ± 7 Pneumokokken bei 3,0 Std. + 1,5 Std. (Abb. 9 A). Die Adhärenzzahlen des Wildtyps an Endothelzellen der Nabelschnur stiegen von 8 ± 1 Wildtyp-Pneumokokken bei 2,0 Std. + 2,5 Std. auf 14 ± 8 Wildtyp-Pneumokokken bei 3,0 Std. + 1,5 Std. und 13 ± 6 Pneumolysin-defizierte Pneumokokken bei 2,0 Std. + 2,5 Std. auf 16 ± 5 Pneumolysin-defizierte Pneumokokken bei 3,0 Std. + 1,5 Std. (Abb. 9 B). Beide
Ergebnisse

Pneumokokkenstämmme zeigten in fluoreszenzmikroskopischen Analysen eine geringe, aber ebenfalls zeitabhängige Internalisierung in HPMEC und HUVEC. Die Anzahl internalisierter Pneumokokken in HPMEC war mit 3 ± 1 Wildtyp-Pneumokokken und 2 ± 0 Pneumolysin-defizienten Pneumokokken bei $3,0 \text{ Std.} + 1,5 \text{ Std.}$ am höchsten (Abb. 9 C). In HUVEC internalisierten weniger Bakterien als in HPMEC. Die höchsten Internalisierungszahlen wurden bei $3,0 \text{ Std.} + 1,5 \text{ Std.}$ quantifiziert (2 ± 1 *S. pneumoniae* st35A und 2 ± 1 *S. pneumoniae* st35A∆ply) (siehe Abb. 9 D). Die Anzahl internalisierter Pneumokokken wurde zusätzlich in Zellkulturinfektionen nach unterschiedlichen Infektionszeiten durch Lyse der Zellen und Kultivierung auf Blutagar untersucht. Im Unterschied zur Immunfluoreszenz-Methode können ausschließlich die lebenden, internalisierten Pneumokokken quantifiziert werden. Die Quantifizierung erfolgte durch Auszählung der Kolonie-bildenden Einheiten (KBE). Die Anzahl internalisierter Pneumokokken in HPMEC erreichte bei $3,0 \text{ Std.} + 1,5 \text{ Std.}$ ein Maximum von 8358 ± 1148 *S. pneumoniae* st35A/2 x 10^5 Zellen und 6375 ± 3837 *S. pneumoniae* st35A∆ply/2 x 10^5 Zellen (Abb. 9 E). Die höchsten Internalisierungszahlen in HUVEC betrugen 4630 ± 1671 Wildtyp-Pneumokokken/2 x 10^5 Zellen und 1853 ± 923 Pneumokokken-Mutanten/2 x 10^5 Zellen und wurden bei $3,0 \text{ Std.} + 1,5 \text{ Std.}$ erreicht (Abb. 9 F).

4.2.2 Adhärenz und Internalisierung von Pneumokokken in HPMEC und HUVEC nach Infektion mit unterschiedlicher MOI

Zur Charakterisierung der Interaktion von *S. pneumoniae* mit humanen Endothelzellen in Abhängigkeit von der im Infektionsexperiment verwendeten Bakterienmenge (MOI) wurden HPMEC und HUVEC mit *S. pneumoniae* st35A und *S. pneumoniae* st35A∆ply für $3,0 \text{ Std.} + 1,5 \text{ Std.}$ mit einer MOI von 25, 50 und 75 infiziert. Die Quantifizierung der adhärenen und internalisierten Pneumokokken erfolgte wie in den Untersuchungen zur Interaktion von Pneumokokken bei unterschiedlichen Infektionszeiten (siehe 4.2.1).
Ergebnisse

A. HPMEC

B. HUVEC

C. HPMEC

D. HUVEC

Adhäsente Bakterien/Zelle

Internalsierte Bakterien/Zelle

Bakterienmenge

Bakterienmenge

MOI 25 MOI 50 MOI 75

MOI 25 MOI 50 MOI 75

st35A

st35AΔply

st35A

st35AΔply
Ergebnisse

Ergebnisse

S. pneumoniae st35A∆ply bei MOI 75 (Abb. 10 D). Die Menge internalisierter Pneumokokken bei unterschiedlichen MOI wurde zusätzlich zur fluoreszenzmikroskopischen Quantifizierung in Plattierungsanalysen untersucht. Durch Plattierung der lysierten, infizierten Zellen auf Blutagar wurde die Anzahl der lebenden, internalisierten Bakterien bestimmt. Die Quantifizierung wurde wie in den Infektionsexperimenten zur Interaktion von Pneumokokken bei unterschiedlichen Infektionszeiten (4.2.1) durchgeführt. Die Menge der internalisierten Pneumokokken in HPMEC betrug bei MOI 25 nur die Hälfte im Vergleich zur MOI 75. Bei MOI 75 erreicht die Anzahl der internalisierten Bakterien ein Maximum von 5310 ± 851*S. pneumoniae* st35A/2,0 x 10⁵ Zellen und 4133 ± 2960*S. pneumoniae* st35A∆ply/2,0 x 10⁵ Zellen. In HUVEC waren die Zahlen der internalisierten Bakterien deutlich geringer als in HPMEC. Die Internalisierungsrate erreichte beim Wildtyp ein Maximum von 1008 ± 506 Pneumokokken/2,0 x 10⁵ Zellen bei MOI 25 und bei der Pneumolysinmutante ein Maximum von 960 ± 564 Pneumokokken/2,0 x 10⁵ Zellen bei MOI 50.

4.2.3 Visualisierung der Menge adhärenter und internalisierter Pneumokokken in HPMEC

Die mikroskopische Visualisierung der infizierten Zellen veranschaulichte die Menge der adhärenten und internalisierten Pneumokokken in HPMEC. Eine Schädigung der Zellstruktur durch die Infektion mit *S. pneumoniae* st35AΔply konnte bei einer Infektionszeit von 3,0 Std. + 1,5 Std. mit einer MOI von 50 nicht beobachtet werden.

4.3 Mikroarray-Analyse humaner Endothelzellen nach Infektion mit S. pneumoniae

4.4 Genexpressionsbestimmung von infizierten HPMEC im Vergleich zu nicht-infizierten HPMEC durch Real time PCR-Analyse

Ergebnisse

umgeschrieben und in der Real time-PCR- eingesetzt. Die Genexpression aus drei unabhängigen Experimenten wurde mit der Genexpression von RPS9, einem housekeeping Gen, verglichen.

Ergebnisse

4.5 WPB-Bildung in humanen Lungenendothelzellen unterschiedlicher Konfluenzen und Quantifizierung des Konfluenzstatus der Zellen

4.5.1 Korrelation der WPB-Bildung mit der Konfluenz des Endothels

Abbildung 14: Mikroskopische Quantifizierung und Visualisierung von WPBs in HPMEC unterschiedlicher Zelldichten. A) Das Excel-Diagramm zeigt den Prozentanteil an WPB-positiven HPMEC in nicht konfluenten, sub-konfluenten und konfluenten in-vitro-Zellkulturen. Dargestellt sind die Mittelwerte und die Standardabweichung aus drei unabhängigen Experimenten. B-E) Visualisierung der WPBs in nicht konfluenten (B) sub-konfluenten (C) und konfluenten (D und E) HPMEC-Schichten. Abbildung E ist ein Ausschnitt aus Abbildung D. Die Immunfluoreszenzfärbung der WPBs erfolgte mit VWF-
Ergebnisse

In nicht konfluent gewachsenen HPMEC lagen die Zellen einzeln und die Menge an WPB-positiven Zellen betrug nur 7,0 % ± 3,1 % der bewerteten Zellen (Abb. 14 A und B). In semi-konfluent gewachsenen HPMEC enthielten 33,31 % ± 8,03 % der gesamten Zellen WPBs (Abb. 14 A und C), während bei einer konfluen ten HPMEC-Zellschicht 68,03 % ± 6,05 % der quantifizierten Zellen WPB-positiv waren (Abb. 14 A, D und E). Diese Ergebnisse unterstützen die Studien von Howell und Kollegen und zeigen, dass die WPB-Bildung in Endothelzellen mit der Konfluenz der Endothelschicht korreliert.

4.5.2 Quantitative Bestimmung des Konfluenzstatus von HPMEC

Abbildung 15: Messung des elektrischen Widerstandes und der Kapazität von HPMEC während der Kultivierung. HPMEC wurden im Zweikammer-Transwell-System im CellZscope-Modul für 240 Std. kontinuierlich bei 37 °C und 5% CO₂ kultiviert und der elektrische Widerstand (A) und die elektrische Kapazität (B) der proliferierenden Zellschicht automatisiert in 1 Std.-Intervallen gemessen. Die Diagramme zeigen den Verlauf der Messungen mit HPMEC (schwarze Linie) und mit Zellkulturmedium (orange Linie). Während der Kultivierung wurde dreimal das Zellkulturmedium gewechselt (MW).
Ergebnisse

Im Verlauf der Kultivierung der HPMEC war ein Anstieg des transendothelialen Widerstandes zu beobachten. Beim zellfreien Zellkulturmedium erfolgte auch nach 240 Std. kein Anstieg des Widerstandes. Nach Kultivierungszeiträumen von 75 Std., 120 Std. und 175 Std. wurde das Zellkulturmedium gewechselt (siehe MW in Abb. 15 A und B). Nach 230 Std. erreichten die Widerstandswerte der HPMEC ein Plateau von $25 \pm 0,5 \Omega/cm^2$ (Abb. 15 A). Der elektrische Widerstand des Zellkulturmediums erreichte einen Maximalwert von $8 \pm 1 \Omega/cm^2$, der weitaus geringer war als der elektrische Widerstand der HPMEC (Abb. 15 A). Die Kapazitätswerte zeigten ebenfalls deutliche Unterschiede in der Messung der HPMEC zur Messung des Zellkulturmediums. Die elektrische Kapazität der HPMEC betrug $0,5 \mu F/cm^2 \pm 0,12 \mu F/cm^2$, während die zellfreie Kontrolle eine Kapazität von $14 \mu F/cm^2 \pm 0,5 \mu F/cm^2$ aufwies (Abb. 15 B).

4.6 Korrelation der Pneumokokkenadhärenz und der WPB-Menge in HPMEC

4.6.1 Adhärenz von S. pneumoniae an WPB-positive HPMEC und WPB-negative HPMEC

Ergebnisse

Die Menge adhärenter Pneumokokken an WPB-negativen HPMEC war bei beiden Bakterienstämmen größer als an WPB-positiven HPMEC. Die Zahlen adhärenter S. pneumoniae st35A an WPB-negative HPMEC stiegen im Infektionsverlauf zwischen 0,5 Std. bis 2,0 Std. an und betrugen 2,5 Std. nach Infektion 9 ± 1 Bakterien pro Zelle (Abb. 16 A). Die Pneumolysin-defizierte Mutante adhärte in vergleichbaren Mengen an WPB-negative HPMEC und erreichte 2,0 Std. nach Infektion maximale Zahl der adhärenen Bakterien von 9 ± 1 Bakterien pro Zelle (Abb. 16 B). Nach einer Infektionsdauer von 3,0 Std. wurden die Mengen der adhärenen Pneumokokken an WPB-negativen Zellen bei beiden Bakterienstämmen weniger. Die niedrigsten Anzahlen adhärenter Bakterien an WPB-negativen Zellen nach mehr als 2,5 Std. der Infektion wurden beim Wildtyp 3,5 Std. nach Infektionsstart und bei der Mutante 3,0 Std. nach dem Infektionsstart quantifiziert. Die Mengen der adhärenen Bakterien betragen 7 ± 1 Wildtyp-Bakterien nach Infektion von 3,5 Std. und 5 ± 2 Pneumolysin-defizierte Pneumokokken nach Infektion von 3,5 Std. (Abb. 16 A
und B). Die Zahl der adhäsrenten Bakterien des Wildtyps und der Mutante an WPB-positive Endothelzellen stieg zu jedem Infektionszeitpunkt nicht über 2 ± 1 Wildtyp-Pneumokokken pro Zelle bzw. 4 ± 1 Pneumolysin-defizierte Pneumokokken pro Zelle (Abb. 16 A und B).

4.6.2 Anteil WPB-positiver und WPB-negativer HPMEC im Infektionsverlauf mit Pneumokokken

Abbildung 17: Quantifizierung von WPB-positiven HPMEC nach Infektion mit Pneumokokken. Darstellung des Anteils der WPB-positiven Zellen für die Zeitpunkte der Infektion von 0,5 Std. bis 4,5 Std. (rote Linie) im Vergleich zum Anteil der WPB-positiven Zellen nicht-infizierter Zellen (grüne Linie). **A)** Anteil WPB-positiver HPMEC nach Infektion
Ergebnisse

mit *S. pneumoniae* st35A und B) nach Infektion mit *S. pneumoniae* st35A_ply. Die Detektion der WPBs erfolgte durch Immunfluoreszenzmarkierung von VWF. Die Standardabweichungen wurden aus drei unabhängigen Experimente berechnet.

Im Verlauf der Infektion mit *S. pneumoniae* st35A nahm der Anteil der WPB-positiven HPMEC in Relation zur Gesamtzellzahl von 54,14 % ± 6,23 % auf 33,27 % ± 6,54 % bis zur Infektionsdauer von 4,5 Std. ab (Abb. 17 A). Der prozentuale Anteil der WPB-positiven Zellen nahm im Infektionsverlauf mit der Pneumokokken-Mutante von 61,29 % ± 2,78 % beim Infektionsstart auf 31,04 % ± 1,58 % zwischen 1,5 Std. und 2,0 Std. nach Infektionsstart ab (Abb. 17 B). Zwischen 3,0 Std. und 3,5 Std. nach Infektionsstart stieg die prozentuale Menge der WPB-positiven Zellen im Bezug zur Gesamtzellzahl auf 43,77% ± 10,66% beim Wildtyp und 58,8% ± 9,98% bei der Mutante und sank nach 4,0 Std. wieder auf 33,84 % ± 7,61 % beim Wildtyp und 41,87% ± 9,98% bei der Mutante (Abb. 17 A und B). Nach 4,5 Std. Infektion mit dem Wildtyp war der prozentuale Anteil der WPB-positiven Zellen vergleichbar mit dem Wert nach 4,0 Std. und lag bei 33,27% ± 6,54% (Abb. 17 A). Bei der Pneumolysin-defizienten Mutante stieg der Wert der WPB-positiven Zellen im Bezug zur Gesamtzellzahl wieder auf 53,33% ± 11,24% an (Abb. 17 B).

4.6.3 Visualisierung der Menge adhärenter Pneumokokken und WPBs in infizierten Lungenendothelzellen

Abbildung 18: Visualisierung adhärenter Pneumokokken an HPMEC und WPBs in den Zellen zu verschiedenen Zeiten der Infektion. Die Abbildungen zeigen die Menge adhärenter *S. pneumoniae* st35A und *S. pneumoniae* st35A∆ply sowie die Menge der WPBs.
Ergebnisse

4.7 Quantifizierung von VWF und IL-8 Im Zellkulturüberstand von infizierten Endothelzellen

Die Untersuchung zur Adhärenz von Pneumokokken an WPB-positive und -negative Zellen und die Untersuchung des Anteils von WPB-positiven Zellen nach Infektion mit Pneumokokken deuten darauf hin, dass die Pneumokokkenadhärenz die WPB-Exozytose aus HPMEC stimuliert. Um diese These näher zu untersuchen, wurden quantitative Analysen zur Detektion sekretierter WPB-Komponenten durchgeführt. WPBs enthalten das Zytokin IL-8 und VWF, ein multimeres Glykoprotein mit essentiellen Funktionen in der Hämostase (Fiedler et al., 2004; Valentijn et al., 2011; Rondaij et al., 2006). Zur Bestimmung der VWF- und IL-8-Konzentrationen im Zellkulturüberstand von Pneumokokken-infizierten HPMEC wurden die Zellen im Zeitverlauf von 0,5 Std. bis 4,5 Std. mit dem Pneumokokken-Wildtyp und der Mutante infiziert und die VWF- und IL-8-Konzentrationen im Zellkulturüberstand
Ergebnisse
durch ELISA-basierte Analysen quantifiziert. Zur Kontrolle wurden die VWF- und IL-8-Konzentrationen im Zellkulturüberstand von nicht-infizierten HPMEC bestimmt.

Abbildung 19: Quantitative Analyse sekretierter WPB-Bestandteile im Infektionsverlauf von HPMEC mit Pneumokokken. HPMEC wurden mit *S. pneumoniae* st35A (rote Linie)
Ergebnisse

und *S. pneumoniae* st35A∆ply (blaue Linie) im Zeitverlauf von 0,5 Std. bis 4,5 Std. infiziert. Anschließend wurde die Konzentration von VWF (A) und IL-8 (B) im Zellkulturüberstand der infizierten Zellen in ELISA-basierten Analysen mit spezifischen Antikörpern quantifiziert. Die grüne Linie zeigt die VWF- und IL-8-Konzentrationen im Zellkulturüberstand von nicht-infizierten HPMEC. Die Quantifizierung der VWF-Konzentrationen im Zellkulturüberstand erfolgte durch VWF-ELISA-Analysen. Die VWF-Konzentrationen wurden in U/ml bestimmt. Die IL-8-Konzentrationen wurde in ng/ml mit dem IL-8-ELISA Kit von Becton Dickinson bestimmt. Die Diagramme zeigen die Mittelwerte und die Standardabweichungen der Konzentrationen aus drei unabhängigen Analysen.

Die Ergebnisse der ELISA-Analysen zeigen den Anstieg der VWF-Konzentration im Zellkulturüberstand der Infektion von HPMEC mit *S. pneumoniae* st35A und *S. pneumoniae* st35A∆ply (Abb. 19 A, rote und blaue Linie). Der erste Anstieg der VWF-Konzentration erfolgte nach 1,5 Std. Infektion von 0,06 U/ml ± 0,01 U/ml beim Start der Infektion mit *S. pneumoniae* st35A auf 0,44 U/ml ± 0,03 U/ml nach 2,5 Std. Infektion und von 0,06 U/ml ± 0,01 U/ml beim Start der Infektion auf 0,35 U/ml ± 0,04 U/ml nach 2,5 Std. Infektion mit *S. pneumoniae* st35A∆ply (Abb. 19 A). Nach 3,0 Std. Infektion mit dem Wildtyp und der Pneumolysinmutante war die VWF-Konzentration im Zellkulturüberstand geringer als 0,5 Std. zuvor und betrug 0,35 U/ml ± 0,04 U/ml beim Wildtyp und 0,29 U/ml ± 0,02 U/ml bei der Mutante (Abb. 19 A, st35A und st35A∆ply). Im weiteren Verlauf der Infektion stieg die Menge an VWF auf ein Maximum von 0,52 U/ml ± 0,03 U/ml nach 4,5 Std. Infektion mit dem Wildtyp und 0,43 U/ml ± 0,01 U/ml nach 4,5 Std. Infektion mit der Mutante (Abb. 19 A). Die VWF-Konzentration im Zellkulturüberstand von nicht-infizierten HPMEC stieg von 0,12 U/ml ± 0,03 U/ml beim Inkubationsstart auf 0,23 U/ml ± 0,02 U/ml nach 2,0 Std. Inkubation an, verlief dann konstant bis zu einem Wert von 0,19 U/ml ± 0,04 U/ml nach 4,5 Std. (Abb. 19 A, grüne Linie). Die Konzentration des VWF in infizierten HPMEC war ab einer Infektionsdauer von 2,0 Std. bis zu 4,5 Std. signifikant höher als in nicht-infizierten Zellen (Abb. 19 A). Des Weiteren führte die Infektion von HPMEC mit Pneumokokken zu einem Anstieg der IL-8-Konzentration im Zellkulturüberstand (Abb. 19 B, rote und blaue Linie). Die IL-8-Konzentration im Zellkulturüberstand betrug beim Infekionsstart 0,25 ng/ml ± 0,01 ng/ml beim Wildtyp und 0,22 ng/ml ± 0,08 ng/ml bei der Pneumolysin-defizienten Mutante (Abb. 19 B). Nach 4,5 Std. der Infektion mit *S. pneumoniae* st35A betrug die IL-8-Konzentration 1,07 ng/ml ± 0,01 ng/ml und erreichte 4,5 Std. nach der Infektion mit *S. pneumoniae* st35A∆ply eine vergleichbare Konzentration von 0,98 ng/ml ± 0,003 ng/ml (Abb. 19 B). Die IL-8-Konzentration der nicht-infizierten HPMEC zeigte einen leichten Anstieg von 0,2 ng/ml ± 0,05 ng/ml beim Start der Inkubation auf 0,41 ng/ml ± 0,002 ng/ml.
Ergebnisse

nach 4,5 Std. (Abb. 19 B, grüne Linie). Die IL-8-Konzentration im Zellkulturüberstand der infizierten HPMEC war über die gesamte Infektionsdauer von 0,5 Std. bis 4,5 Std. signifikant höher als die IL-8-Konzentration der nicht-infizierten HPMEC (Abb. 19 B). Die Ergebnisse deuten darauf hin, dass die Adhärenz von Pneumokokken die WPB-Exozytose von HPMEC induziert.

4.8 VWF-Sekretion durch Pneumokokkenmembranproteine

Die Inkubation von HPMEC mit Pneumokokkenmembranproteinen führte zu signifikant höheren VWF-Konzentrationen im Zellkulturüberstand im Vergleich zu infizierten und nicht-infizierten Zellen (Abb. 20). Im Zellkulturüberstand von HPMEC, die mit S. pneumoniae st35A infiziert waren, wurden 0,66 U/ml ± 0,1 U/ml VWF quantifiziert (Abb. 20). Bei der Mutante betrug die VWF-Konzentration im Zellkulturüberstand 0,35 U/ml ± 0,01 U/ml VWF (Abb. 20). Die Bestimmung der VWF-Konzentration im Zellkulturüberstand nach Inkubation mit Pneumokokkenmembranproteinen des Wildtyps ergab die dreifache Menge VWF im Zellkulturüberstand als bei HPMEC nach Infektion mit dem Wildtyp. Die Konzentration des VWF nach Inkubation der Zellen mit Wildtyp-Membranproteinen betrug 2,10 U/ml ± 0,09 U/ml
Ergebnisse

(Abb. 20). Die Quantifizierung der VWF-Konzentration im Zellkulturüberstand von HPMEC, die mit Membranproteinen der Mutante inkubiert waren, ergab eine mehr als zweifache Konzentration von 0,96 U/ml ± 0,13 U/ml VWF als nach Infektion mit der Mutante (Abb. 20). Im Gegensatz zu den hohen Werten der VWF-Menge durch die Pneumokokkenmembranproteine, ist die VWF-Konzentration im Zellkulturüberstand nach Inkubation mit LPS und LTA geringer. Die VWF-Konzentration betrug nach Inkubation mit LPS 0,38 U/ml ± 0,05 U/ml VWF und nach Inkubation mit LTA 0,44 U/ml ± 0,04 U/ml VWF (Abb. 20). Die VWF-Konzentrationen im Zellkulturüberstand nach Inkubation mit LPS oder LTA waren im Vergleich zu der VWF-Konzentration im Zellkulturüberstand von nicht-infizierten Zellen signifikant höher (p<0,05).

4.9 Induktion der WPB-Exozytose durch Hitze-inaktivierte Pneumokokken

Ergebnisse

Ergebnisse

4.10 Stimulierung der VWF-Sekretion durch bekapselte Serotyp 2 Pneumokokken

Ergebnisse

Konzentration im Überstand nicht-infizierter HPMEC untersucht. *) Signifikanz der Unterschiede der VWF-Konzentration im Zellkulturüberstand infizierter Zellen im Vergleich zu nicht-infizierten Zellen ($p<0.05$).

4.11 Stimulierung der VWF-Sekretion durch andere Bakterienstämme

In den bisherigen Experimenten wurde die Stimulierung der VWF-Sekretion durch Pneumokokken gezeigt. Zur Untersuchung der Stimulierung der VWF-Sekretion von Lungenendothelzellen durch verschiedene Bakterienstämme, wurden HPMEC mit *Echerischia coli* DH5α, *Pseudomonas aeruginosa* PA1, *Neisseria meningitidis* N4,
Ergebnisse

Die Infektion von HPMEC mit verschiedenen Bakterienstämmen führte bei jedem Bakterienstamm zu einer signifikant höheren VWF-Konzentration im Zellkulturüberstand im Vergleich zur VWF-Konzentration im Zellkulturüberstand von nicht-infizierten Zellen (Abb. 23). Die VWF-Konzentrationen im Zellkulturüberstand der Bakterienstämme waren sehr unterschiedlich. Die höchste VWF-Konzentration von 2,0 U/ml ± 0,05 U/ml induzierte *S. aureus* st3, die niedrigste Konzentration von 0,24 U/ml ± 0,02 U/ml VWF induzierte *N. meningitidis* N4 (Abb. 23). Die VWF-Konzentration im Zellkulturüberstand nach Infektion mit *S. aureus* st3 ist doppelt so hoch wie die VWF-Konzentration nach der Infektion mit dem Pneumokokken-Wildtyp. Die Infektion mit *S. pneumoniae* st35A stimulierte die HPMEC zur Sekretion von 0,8 U/ml ± 0,1 U/ml VWF (Abb. 23). Diese Konzentration ist vergleichbar mit der VWF-Konzentration von 0,8 U/ml ± 0,15 U/ml nach Infektion mit *P. aeruginosa* (Abb. 23). Die Infektion mit der Pneumokokken-Mutante führte zu einer Konzentration von 0,36 U/ml ± 0,05 U/ml VWF im Zellkulturüberstand und war vergleichbar mit den Konzentrationen nach Infektion mit *E. coli* DH5α, *S. canis* G361 und *S. pyogenes* S33. Die VWF-Konzentration nach Infektion mit *E. coli* DH5α betrug 0,36 U/ml ± 0,03 U/ml, nach Infektion mit *S. canis* G361 0,33 U/ml ± 0,03 U/ml und nach Infektion mit *S. pyogenes* S33 0,3 U/ml ± 0,01 U/ml (Abb. 23).

4.12 Stimulierung der VWF-Sekretion durch sekretierte Pneumokokkenproteine

Ergebnisse

Die VWF-Konzentration im Zellkulturmedium der mit S. pneumoniae st35A-infizierten Zellen betrug 0,67 U/ml ± 0,02 U/ml VWF (Abb. 24, st35Awt), während die VWF-Konzentration nach der Infektion mit der Mutante 0,34 U/ml ± 0,02 U/ml VWF betrug (Abb. 24, st45A∆ply). In den Zellkulturüberständen der Zellen, die während der Infektion von den Pneumokokken durch die semipermeable Membran getrennt waren, wurden niedrigere VWF-Konzentrationen quantifiziert als im Zellkulturüberstand der infizierten HPMEC (Abb. 24). Die VWF-Konzentrationen im HPMEC-Zellkulturüberstand ohne direkten Kontakt zu den Pneumokokken betrugen 0,39 U/ml ± 0,03 U/ml VWF nach Inkubation mit dem Wildtyp (Abb. 24, st35Awt im TW) und 0,25 U/ml ± 0,04 U/ml VWF nach Inkubation mit der Mutante (Abb. 24, st35A∆ply im TW). Die Werte der VWF-Konzentrationen im Transwell-System waren
Ergebnisse

niedriger als die Werte der VWF-Konzentrationen der infizierten HPMEC ohne Trennung von Bakterien und Zellen, aber signifikant höher als die VWF-Konzentration im Medium der nicht-infizierten Zellen (Abb. 24). Diese Ergebnisse verdeutlichen, dass die Sekretion von VWF durch sekretierte Pneumokokkenfaktoren stimuliert wird.

4.13 Funktion von Pneumolysin in der VWF-Sekretion

Ergebnisse

HPMEC mit der Mutante und mit 1,0 ng/ml Pneumolysin bzw. 3,0 ng/ml Pneumolysin koinkubiert. B) VWF-Konzentrationen im Zellkulturmedium nach Inkubation mit 3,0 ng/ml Pneumolysin in 30-Minuten-Intervallen von 0,5 Std. bis 4,5 Std. *) Signifikanz der Unterschiede in den VWF-Konzentrationen in den Zellkulturüberständen der Pneumokokken-infizierten und Pneumolysin-inkubierte Zellen zu nicht-infizierten HPMEC (p<0,05).

Nach Infektion der HPMEC mit *S. pneumoniae* st35A (st35A wt) betrug die VWF-Konzentration im Zellkulturüberstand 0,4 U/ml ± 0,1 U/ml und nach Infektion mit der Mutante 0,29 U/ml ± 0,11 U/ml (Abb. 25 A). Die Konzentration des VWF im Zellkulturüberstand von HPMEC nach Inkubation mit 1 ng/ml Pneumolysin oder 3,0 ng/ml Pneumolysin ist geringer als nach Infektion mit dem Wildtyp oder der Mutante. Die VWF-Konzentration nach Inkubation mit 1,0 ng/ml Pneumolysin betrug 0,15 U/ml ± 0,02 U/ml und nach Inkubation mit 3,0 ng/ml Pneumolysin 0,26 U/ml ± 0,1 U/ml (Abb. 25 A). Diese Werte sind signifikant höher als die VWF-Konzentration von nicht-infizierten Zellen mit 0,09 U/ml ± 0,02 U/ml (Abb. 25 A). Die Koinkubation von HPMEC mit der Pneumolysin-defizienten Mutante und Pneumolysin führte zu höheren VWF-Konzentrationen im Zellkulturüberstand im Vergleich zu den VWF-Konzentrationen nach Infektion mit der Mutante oder nach Inkubation mit Pneumolysin. Die VWF-Konzentration im Zellkulturüberstand nach Koinkubation von Mutante und 1,0 ng/ml Pneumolysin betrug 0,33 U/ml ± 0,03 U/ml und nach Koinkubation von Mutante und 3,0 ng/ml Pneumolysin 0,38 U/ml ± 0,04 U/ml (Abb. 25 A). Die VWF-Konzentration nach Koinkubation von Mutante und 3,0 ng/ml Pneumolysin ist vergleichbar mit der VWF-Konzentration im Zellkulturüberstand nach Infektion mit dem Wildtyp (Abb. 25 A). Abbildung 25 B zeigt eine steigende VWF-Konzentration im Zellkulturüberstand von HPMEC, die mit 3,0 ng/ml Pneumolysin in 30-Minuten-Intervallen inkubierte wurden. Die Konzentration des VWF erreichte bei 4,5 Std. ein Maximum von 0,4 U/ml ± 0,12 U/ml (Abb. 25 B). Diese Untersuchungen zeigen, dass rekombinantes Pneumolysin die VWF-Sekretion der Endothelzellen stimuliert.
4.14 Vergleich der VWF- und IL-8-Konzentration im Zellkulturüberstand nach Infektion mit Pneumokokken und Inkubation mit Histamin, Thrombin und Pneumolysin

Physiologische Agonisten, wie Thrombin und Histamin stimulieren die WPB-Exozytose aus Endothelzellen, z. B. bei Gefäßverletzungen (Rondaij et al., 2006). Zum Vergleich der VWF- und IL-8-Sekretion nach Infektion von HPMEC mit Pneumokokken und nach Inkubation mit Pneumolysin mit der VWF- und IL-8-Sekretion nach Inkubation mit Thrombin und Histamin wurden HPMEC mit \textit{S. pneumoniae} st35A (st35A wt), \textit{S. pneumoniae} st35A\textasciitilde ply (st35A\textasciitilde ply), 1 U/ml Thrombin, 1 mM Histamin und 3,0 ng/ml Pneumolysin für 2,5 Std. infiziert bzw. inkubiert. In ELISA-basierten Analysen wurden die VWF- und IL-8-Konzentrationen der Zellkulturüberstände quantifiziert. Darüber hinaus wurde die VWF-Sekretion von HPMEC nach Inkubation mit 1 U/ml Thrombin und 1 mM Histamin in 30-Minuten-Intervallen von 0,5 Std. bis 4,5 Std. analysiert.
Abbildung 26: Stimulierung der VWF-und IL-8-Sekretion durch Pneumokokken, Histamin, Thrombin und rekombinantem Pneumolysin. A) VWF-Konzentration im Zellkulturüberstand von HPMEC nach 2,5 Std. Infektion mit \textit{S. pneumoniae} st35A (st35Awt) und \textit{S. pneumoniae} st35AΔply (st35AΔply) im Vergleich zu der VWF-Konzentration nach Inkubation von HPMEC mit 1 mM Histamin (His), 1 U/ml Thrombin (Thr) sowie 3,0 ng/ml Pneumolysin (Ply) B) IL-8-Konzentration im Zellkulturmedium nach Infektion mit Wildtyp und Mutante im Vergleich zu der Konzentration nach Inkubation mit 1 mM Histamin (His), 1 U/ml Thrombin (Thr) sowie 3,0 ng/ml Pneumolysin (Ply). Die Liniendiagramme zeigen die VWF-Konzentrationen im Zellkulturüberstand von HPMEC nach Inkubation mit 1 U/ml Thrombin (C) und 1 mM Histamin (D) in 30 Minuten-Intervallen von 0,5 Std. bis 4,5 Std. *) Signifikanz der VWF-und IL-8-Konzentrationen im Zellkulturüberstand der infizierten und inkubierten HPMEC im Bezug zu der VWF- und IL-8-Konzentration im Zellkulturüberstand von nicht-infizierten Zellen ($p<0,05$).

Die Inkubation von HPMEC mit Histamin, Thrombin und Pneumolysin führte zu signifikant höheren VWF- und IL-8-Konzentrationen im Zellkulturüberstand im Vergleich mit den VWF- und IL-8-Konzentrationen im Zellkulturüberstand von nicht-infizierten Zellen (Abb. 26 A und B). Die VWF-Konzentration nach Inkubation der HPMEC mit Histamin betrug 0,49 U/ml ± 0,11 U/ml und ist vergleichbar mit der VWF-Konzentration von 0,52 U/ml ± 0,07 U/ml nach Inkubation mit Thrombin (Abb. 26 A). Nach Inkubation der Zellen mit 3,0 ng/ml Pneumolysin betrug die Konzentration an VWF 0,63 U/ml ± 0,12 U/ml (Abb. 26 A). Die Konzentrationswerte von VWF nach Inkubation mit Histamin, Thrombin und Pneumolysin sind vergleichbar mit der VWF-Konzentration nach Infektion der HPMEC mit dem
Pneumokokken-Wildtyp. Die Infektion mit dem Wildtyp stimuliert die Sekretion von 0,58 U/ml ± 0,03 U/ml VWF in den Zellkulturüberstand der HPMEC (Abb. 26 A). Die VWF-Konzentration nach Infektion mit der Mutante war 0,35 U/ml ± 0,12 U/ml (Abb. 26 A). Die IL-8-Konzentration von 0,33 ng/ml ± 0,09 ng/ml im Zellkulturmedium nach Infektion mit dem Pneumokokken-Serotyp 35A ist vergleichbar mit der IL-8-Konzentration von 0,28 ng/ml ± 0,05 ng/ml nach Infektion mit der Mutante (Abb. 26 B). Die Inkubation der Zellen mit Histamin, Thrombin und Pneumolysin führte zu vergleichbaren IL-8-Konzentrationen im Zellkulturmedium wie die Infektion der Zellen mit dem Pneumokokken-Wildtyp und der Mutante. Die Inkubation mit Histamin induzierte die Sekretion von 0,25 ng/ml ± 0,02 ng/ml IL-8 in das Zellkulturmedium, die Inkubation mit Thrombin 0,25 ng/ml ± 0,12 ng/ml IL-8, während die Pneumolysin-Inkubation zu 0,29 ng/ml ± 0,04 ng/ml IL-8 im Zellkulturüberstand führte (Abb. 26 B). Die VWF-Konzentrationen im Zellkulturüberstand stiegen durch Inkubation mit Thrombin von 0,01 U/ml ± 0,01 U/ml zum Inkubationsstartpunkt auf 0,26 U/ml ± 0,08 U/ml nach 4,5 Std. (Abb. 26 C), während die VWF-Konzentration im Zellkulturüberstand von HPMEC nach Inkubation mit 1 U/ml Histamin von 0,05 U/ml ± 0,01 U/ml VWF zum Startpunkt der Inkubation auf 0,42 U/ml ± 0,05 U/ml nach 4,5 Std. anstiegen (Abb. 26 D).

4.15 Zytotoxizitätsanalyse von infizierten Lungenendothelzellen

Ergebnisse

fluoreszenzmikroskopischen Aufnahmen wurden das Aktin-Zytoskelett und die WPB-Menge von HPMEC nach Inkubation mit 1 U/ml Thrombin, 1 mM Histamin und 3,0 ng/ml Pneumolysin visualisiert. Das Aktin-Zytoskelett der HPMEC wurde mit rot fluoreszierendem Phalloidin und die WPBs mit VWF-spezifischen primären Antikörpern und grün fluoreszierenden Zweitantikörpern markiert.
Ergebnisse

Nach der Infektion von HPMEC mit dem Serotyp 35A (wt) und dem Serotyp 35A\textsubscript{Δply} (\textsubscript{Δply}) und der Inkubation mit Thrombin; Histamin oder Pneumolysin für 2,5 Std. oder 4,5 Std. wurden im Vergleich zu lysierten HPMEC signifikant geringere Mengen LDH im Zellkulturüberstand detektiert. Die Detektion von LDH im Zellkulturüberstand von lysierten HPMEC führte zu Absorptionswerten von 0,88 ± 0,05 und ist vergleichbar mit der Absorption von 0,8 ± 0,04 von boviner LDH (Abb. 27 A). Die Absorption der LDH nach Infektion der Zellen mit dem Pneumokokken-Wildtyp betrug 0,14 ± 0,02 nach 2,5 Std.-Infektion und 0,14 ± 0,01 nach 4,5 Std.-Infektion (Abb. 27 A) und war vergleichbar mit den Absorptionswerten der Zytotoxizitätsanalyse von nicht-infizierten Zellen. Die Absorptionswerte von nicht-infizierten Zellen betrug 0,15 ± 0,02 nach 2,5 Std.-Infektion im Infektionsmedium und 0,13 ± 0,01 nach 4,5 Std.-Infektion im Infektionsmedium (Abb. 27 A). Nach Infektion der HPMEC mit der Mutante wurde bei der Zytotoxizitätsanalyse eine Absorption von 0,12 ± 0,01 nach 2,5 Std.-Infektion und 0,15 ± 0,02 nach 4,5 Std.-Infektion detektiert (Abb. 27 A). Die Absorption der LDH nach Infektion mit Pneumokokken war vergleichbar mit der Absorption nach Inkubation der Zellen mit Histamin, Thrombin und Pneumolysin. Die Inkubation der HPMEC mit Histamin führte zu einer Absorption von 0,12 ± 0,01 nach 2,5 Std.-Infektion und 0,13 ± 0,01 nach 4,5 Std.-Infektion (Abb. 27 A). Die Absorption der LDH im Zellkulturüberstand nach Inkubation mit Thrombin betrug 0,12 ± 0,004 nach 2,5 Std.-Infektion und 0,13 ± 0,01 nach 4,5 Std.-Infektion (Abb. 27 A). Die Inkubation der Zellen mit Pneumolysin führte zu einer Absorption von 0,11 ± 0,002 nach 2,5 Std.-Infektion und 0,19 ± 0,07 nach 4,5 Std.-Infektion (Abb. 27 A). Die Absorption der LDH bei den Positiv-Kontrollen war signifikant höher als die Absorption in nicht-infizierten Zellen bzw. den infizierten oder inkubierten Zellen (Abb. 27 A). Der Nachweis geringer LDH-Mengen im Zellkulturüberstand von HPMEC nach Infektion mit \textit{S. pneumoniae} st35A (wt) und \textit{S. pneumoniae} st35A\textsubscript{Δply} (\textsubscript{Δply}) und Inkubation mit 1 mM Histamin, 1 U/ml Thrombin und 3,0 ng/ml Pneumolysin deutet auf keine Schädigung der Zellen durch die Infektion oder die Inkubation. Die Visualisierung der mit Histamin, Thrombin oder Pneumolysin-inkubierten HPMEC bestätigte die Aussage des Zytotoxizitätstests. Die Zellen wiesen ein intaktes Aktin-Zytoskelett und keine erkennbare Schädigung der Zellstruktur auf (Abb. 27 B-E). Darüber hinaus zeigte die fluoreszenzmikroskopische Analyse, dass HPMEC nach Inkubation mit 1 mM Histamin, 1 U/ml Thrombin und 3,0 ng/ml Pneumolysin weniger WPBs enthalten als nicht-infizierte HPMEC (Abb. 27 B-E).
4.16 VWF- und IL-8-Sekretion von HPMEC nach apikaler und basaler Infektion mit Pneumokokken

Die Infektion der basalen Seite der HPMEC mit *S. pneumoniae* st35A (st35Awt) führte zu vergleichbaren VWF-Konzentrationen im Zellkulturüberstand wie die Infektion von der apikalen Seite der HPMEC. Nach basolateraler Infektion mit dem Wildtyp betrug die VWF-Konzentration im Zellkulturüberstand 0,76 U/ml ± 0,31 U/ml und nach apikaler Infektion 0,6 U/ml ± 0,21 U/ml (Abb. 28 C). Die VWF-Konzentration nach Infektion mit *S. pneumoniae* st35A∆ply (st35A∆ply) von der basalen Seite betrug 0,53 U/ml ± 0,1 U/ml und nach Infektion von der apikalen Seite 0,48 U/ml ± 0,17 U/ml VWF (Abb. 28 C). Die VWF-Konzentration bei nicht-infizierten Zellen ist signifikant geringer als die VWF-Konzentration nach Infektion mit dem Wildtyp und der Mutante und betrug 0,11 U/ml ± 0,05 U/ml nach basaler Infektion und 0,29 U/ml ± 0,05 U/ml nach apikaler Infektion. Die IL-8-Konzentrationen nach apikaler und basaler Infektion mit dem Wildtyp und der Mutante sind signifikant höher als die IL-8-Konzentration von nicht-infizierten Zellen nach apikaler und basaler Kultivierung (Abb. 28 D).
Ergebnisse

Im Zellkulturüberstand von nicht-infizierten Zellen wurde eine IL-8-Konzentration von 0,1 ng/ml ± 0,02 ng/ml IL-8 nach basaler Kultivierung und 0,28 ng/ml ± 0,02 ng/ml IL-8 nach apikaler Kultivierung detektiert. Die IL-8-Konzentrationen nach der basalen Infektion der Zellen mit Wildtyp und Mutante waren signifikant geringer als nach apikaler Infektion der Zellen mit Wildtyp und Mutante und betrugen 0,28 ng/ml ± 0,08 ng/ml IL-8 nach basaler Infektion mit *S. pneumoniae* st35A und 0,2 ng/ml ± 0,06 ng/ml IL-8 nach basaler Infektion mit *S. pneumoniae* st35AΔply (Abb. 28 D). Die Infektion von der apikalen Seite führte zu IL-8-Konzentrationen im Zellkulturüberstand von 1,18 ng/ml ± 0,3 ng/ml IL-8 nach Infektion mit dem Wildtyp und 0,8 ng/ml ± 0,04 ng/ml IL-8 nach Infektion mit der Mutante (Abb. 28 D). Die Ergebnisse zeigen, dass die Sekretion von VWF und IL-8 sowohl nach Infektion von apikaler Zellseite als auch von basaler Zellseite erfolgt.
5. Diskussion

5.1 Oberflächenprofile primärer Endothelzellen

Die Expression des lymphatic vascular endothelial hyaluronan receptor-1 (LYVE-1) auf der Oberfläche der HPMEC und HUVEC in früher Passage war im Vergleich zu der Expression von PECAM-1 sehr niedrig. In Passage 15 beider Endothelzelligtypen war die Expression des LYVE-1 im Vergleich zu PECAM-1 sehr hoch. LYVE-1 ist ein Marker für lymphatische Endothelzellen und wird von vaskulären Endothelzellen nur in sehr geringen Mengen exprimiert (Podgrabinska et al., 2002). Die geringe Expression von LYVE-1 auf der Oberfläche der HPMEC und HUVEC in früher Passage bestätigt den vaskulären Ursprung und den hohen Differenzierungsstatus der beiden Zelltypen. Die hohe Expression von LYVE-
Diskussion

1 und die niedrige Expression von PECAM-1 in späten Passagen der HPMEC und HUVEC verstärkt die These zum Verlust des Endothelzellcharakters der Zellen in späten Passagen.

Darüber hinaus wurde die Expression der Oberflächenrezeptoren β_1-Integrin, β_3-Integrin, $\alpha_v \beta_3$-Integrin, α_2-Integrin, des platelet activating factor receptor (PAFr) und des urokinase plasminogen activating receptor (uPAR) auf der Oberfläche der Endothelzellen untersucht. Zusätzlich wurde die Expression von extrazellulärem Fibronectin und von Willebrand Faktor (VWF) detektiert. Besonders auffallend bei HPMEC und HUVEC in Passage 3 ist die starke Expression der detektierten Integrine. Die Analyse zeigte eine sehr hohe Expression von β_1-Integrin und $\alpha_v \beta_3$-Integrin im Vergleich zu PECAM-1. Nach mehrmaliger Subkultur der Zellen war die Integrinexpression im Vergleich zur Expression von PECAM-1 deutlich niedriger als in Passage 3. Integine sind Transmembranproteine von eukaryotischen Zellen, die dauerhaft in der Zellmembran verankert sind (Evans und Calderwood, 2007). Sie verbinden Endothelzellen untereinander und mit der extrazellulären Matrix. Sie sind daher am Aufbau der Endothelbarriere beteiligt (Evans und Calderwood, 2007). Kallmann und Kollegen untersuchten die Genexpression zwei verschiedener Endothelzelltypen und detektierten bei beiden Endothelzelltypen eine hohe Expression mehrerer Integrine, insbesondere β_1-, α_v- und α_3-Integrin (Kallmann et al., 2002). Die Ergebnisse der Expressionsstudie dieser Arbeit sind den Ergebnissen von Kallmann und Kollegen sehr ähnlich und deuten auf eine hohe Expression von verschiedenen Integrinen bei differenzierten, konfluenten Endothelzellen. Die niedrige Expression der Integine in späteren Passagen weist auf den Verlust des Differenzierungsstatus der Endothelzellen.

Die Expression des platelet activating factor receptor (PAFr), des von Willebrand Faktor (VWF), des urokinase plasminogen activating receptor (uPAR) und von extrazellulärem Fibronectin war in Passage 3 im Vergleich zu PECAM-1 sehr niedrig. In Passage 15 war die Expression dieser Proteine ähnlich hoch wie die Expression von PECAM-1. Diese Ergebnisse verdeutlichen erneut die Veränderung in der Proteinexpression von HPMEC und HUVEC nach mehrmaliger Subkultur der primären Zellen.

physiologischen Bedingungen entspricht, wurden die Endothelzellen nur in frühen Passagen verwendet.

5.2 Adhärenz der Pneumokokken an humane Endothelzellen

Auf Grund der Ergebnisse der Adhärenzstudien mit HPMEC und HUVEC wurden für die weiteren Experimente Lungenendothelzellen verwendet. Um den Einfluss von Zellschäden...
Diskussion
durch hohe Bakterienmengen oder lange Infektionszeiten zu mindern, wurden die folgenden Infektionen bei 3,0 Std. + 1,5 Std. und einer MOI von 50 durchgeführt.

5.3 Genexpressionsanalyse humaner Lungenendothelzellen nach Infektion mit Pneumokokken

Diskussion

5.4 Korrelation der Pneumokokkenadhärenz und der WPB-Menge in HPMEC

Das Zytokin IL-8 wird in Endothelzellen in spezifischen Organellen, den Weibel-Palade bodies (WPBs) gespeichert (Rondaïj et al., 2006; Valentijn et al., 2011). Die WPB-Bildung in Endothelzellen korreliert mit der Konfluenz des Endothels und wurde als ein wichtiger Parameter für den Differenzierungsstatus von Endothelzellen der Nabelschnur beschrieben (Howell et al., 2004). Um für die nachfolgenden Analysen gleiche Ausgangsbedingungen zu schaffen, wurde zunächst die konfluenzabhängige WPB-Bildung in HPMEC untersucht. Dazu wurde der Anteil an WPB-positiven Zellen in HPMEC-Zellschichten nach Kultivierung bis

Die Ergebnisse zur konfluenzabhängigen WPB-Bildung demonstrierten, dass eine konfluente Zellschicht Lungenendothelzellen aus mehr als zwei Drittel WPB-positiven- und demzufolge weniger als ein Drittel WPB-negativen Zellen besteht. In fluoreszenzmikroskopischen Analysen wurde die Adhärenz von S. pneumoniae st35A und S. pneumoniae st35Aply an

5.5 Sekretion von VWF nach Infektion mit Pneumokokken

Bei der Exozytose von WPBs werden die WPB-Bestandteile in die Umgebung der Endothelzelle sekretiert (Rondaij et al., 2006). Neben IL-8 enthalten WPBs noch weitere Proteine, z. B. von Willebrand Faktor (VWF), ein multimeres Glykoprotein mit essentiellen Funktionen in der Hämostase (Fiedler et al., 2004; Valentijn et al., 2011). Die Bestimmung
Diskussion

der Pneumokokkenadhärenz an WPB-positive und -negative Zellen und die Untersuchung
der Menge der WPB-positiven Zellen nach Infektion mit Pneumokokken deuteten darauf hin,
dass die Pneumokokkenadhärenz die WPB-Exozytose aus HPMEC stimuliert. Um die These
der WPB-Exozytose nach Pneumokokkeninfektion zu überprüfen, wurden quantitative
Analysen zur Detektion der VWF-Konzentration im Zellkulturüberstand von infizierten
HPMEC durchgeführt. Im Zellkulturüberstand von Pneumokokken-infizierten HPMEC
konnten signifikant höhere VWF-Konzentrationen im Vergleich zum Zellkulturüberstand von
nicht-infizierten HPMEC nachgewiesen werden. In Untersuchungen von Sporn und Kollegen
wurde die VWF-Sekretion von HUVEC nach Infektion mit Rickettsien analysiert (Sporn et al.,
Zellen kein VWF nachzuweisen war (Sporn et al., 1991). Eine Infektion von humanen
Endothelzellen mit dem Herpes Simplex Virus (HSV) führte ebenfalls zur Sekretion von
VWF-Molekülen (Etingin et al., 1993). In Übereinstimmung mit den Studien von Sporn und
Kollegen, sowie mit den Ergebnissen von Etingin und Kollegen konnte gezeigt werden, dass
die Infektion von Lungenendothelzellen mit Pneumokokken zur Sekretion von VWF führt. Der
Nachweis von höheren VWF-Konzentrationen im Zellkulturüberstand von infizierten Zellen im
Vergleich zu nicht-infizierten Zellen bestätigt die These, dass die Adhärenz von
Pneumokokken die WPB-Exozytose induziert.

Im humanen Organismus führt die Exozytose von WPBs zu einer Sekretion von bis zu
einigen Millimetern langen VWF-Fäden in das Blutplasma (Dong et al., 2002). Im Blutplasma
ist VWF ein wichtiger Faktor der primären und sekundären Hämostase (Wagner, 1990). Die
Infektion von Endothelzellen mit Rickettsien führte sowohl zu höheren VWF-Konzentrationen,
as auch zu höheren Fibrinogen-Konzentrationen im Plasma (Sporn et al., 1991). Eine starke
Schädigung des Endothels und die Aktivierung der Hämostase führen zur disseminierten,
intravasalen Koagulopathie, in deren Folge durch übermäßigen Verbrauch an
Gerinnungsfaktoren eine starke Blutungsneigung resultiert (Sporn et al., 1991; McKay,
1965). Ähnliche klinische Symptome, wie z. B. die fibrine Hepatisierung der Lunge, eine
Nekrose des Lungengewebes, wurden für eine Pneumokokken-induzierte
Lungenentzündung beschrieben (Wollheim, 1913, Blake, 1920). Diese Feststellungen
können darauf hinweisen, dass in Pneumokokken-induzierten Lungenentzündungen eine
Stimulierung des Lungenendothels erfolgt, die zur Sekretion von VWF in den Blutstrom führt.

Die Stimulierung von Endothelzellen mit den physiologischen Agonisten Thrombin und
Histamin führt zur Exozytose von WPBs (Rondaij et al., 2006). Die VWF-Konzentrationen im
Zellkulturüberstand von HPMEC nach Infektion mit Pneumokokken wurden mit den
sekretierten VWF-Konzentrationen nach Inkubation der Zellen mit Histamin und Thrombin
verglichen. Die Ergebnisse veranschaulichen, dass die Infektion von HPMEC mit
Diskussion

Darüber hinaus zeigte die fluoreszenzmikroskopische Analyse, dass HPMEC nach Inkubation mit Histamin und Thrombin weniger WPBs enthalten als nicht-infizierte HPMEC. Dieses Ergebnis bestätigt die Studien zur Induktion der WPB-Exozytose mit Histamin oder Thrombin.

5.6 IL-8-Sekretion nach Infektion mit Pneumokokken

Zur Bestätigung der WPB-Exozytose nach Infektion mit Pneumokokken wurde die IL-8-Sekretion von infizierten Lungenendothelzellen untersucht. Dazu wurde die IL-8-Konzentration im Zellkulturüberstand von HPMEC nach Infektion mit Pneumokokken quantifiziert. Die Infektion der Lungenendothelzellen mit Pneumokokken führte zu signifikant hohen IL-8-Konzentrationen im Zellkulturüberstand der Zellen im Vergleich zu nicht-infizierten Zellen. Das Zytokin IL-8 ist ubiquitär im Zytoplasma von Endothelzellen vorhanden und wird in die WPBs der Endothelzellen eingelagert. Nach Aktivierung der Endothelzellen wird IL-8 in den Blutstrom sekretiert (Fiedler et al., 2004; Valentijn et al., 2011; Rondaij et al., 2006; Metcalf et al., 2008). Die Hauptfunktion von IL-8 besteht in der Förderung der
Diskussion

Chemotaxis von Granulozyten (Bagnioli und Clark-Lewis, 1992; Romani de Wit et al., 2003). Während einer Infektion wandern vor allem neutrophile Granulozyten anhand des IL-8-Gradienten zum Infektionsherd (Brat et al., 2005). Als chemotaktisches Zytokin fördert IL-8 die Migration von Endothelzellen in die extrazelluläre Matrix (EZM) des infizierten Gewebes (Li et al., 2003). IL-8 ist auch maßgeblich an der Immunabwehr von Pneumokokken beteiligt (Madsen et al., 2000). In Studien von Madsen und Kollegen induzierte die Adhärenz von Pneumokokken die IL-8-Produktion in humanen Lungenepithelzellen und bestätigt damit die Beteiligung von IL-8 in invasiven Pneumokokkeninfektionen (Madsen et al., 2000).

Zusammengefasst zeigen die Ergebnisse, dass eine Infektion von Lungenendothelzellen mit Pneumokokken die Sekretion der WPB-Komponenten VWF und IL-8 induziert.

5.7 VWF-Sekretion nach Inkubation mit Pneumokokkenmembranproteinen

Diskussion

darauf hin, dass Pneumokokkenmembranproteine ein Hauptauslöser der WPB-Exozytose sind.

5.8 Stimulierung der VWF-Sekretion durch stark bekapselte Serotyp 2 Pneumokokken und andere Bakterienstämme

5.9 Funktion von Pneumolysin in der WPB-Exozytose

Diskussion

dass neben der Adhärenz der Pneumokokken das Zytotoxin Pneumolysin die Exozytose von WPBs stimuliert.

5.10 VWF- und IL-8-Sekretion von HPMEC nach apikaler und basaler Infektion mit Pneumokokken

Eine invasive Pneumokokkeninfektion beginnt mit der Kolonisierung des oberen respiratorischen Atmungstraktes, der Ausbreitung der Pneumokokken in die Bronchien,
Diskussion

Diskussion

vaskulären System trägt maßgeblich dazu bei, neue Strategien in der Krankheitsvorsorge und Therapie von invasiven Pneumokokkeninfektionen zu entwickeln.
6. Referenzen

Bergey’s Manual of Systematic Bacteriology (1986)

Pneumovax 23 http://www.merckvaccines.com/Products/pneumovax23/Pages/home.aspx

Referenzen

Danksagung

Die vorliegende Dissertation wurde in der Abteilung Medizinische Mikrobiologie des Helmholtz-Zentrums für Infektionsforschung unter Leitung von Prof. Dr. G. S. Chhatwal durchgeführt.

Mein besonderer Dank gilt Prof. Dr. G. S. Chhatwal für die Möglichkeit meine Dissertation in der Arbeitsgruppe Medizinische Mikrobiologie anfertigen zu können.

Ganz besonders danke ich mir bei PD Dr. Simone Bergmann für die Übernahme des Referates und die interessante Themenstellung, die engagierte und umfassende Betreuung dieser Arbeit, sowie die vielen Anregungen und Diskussionen, die wesentlich zur Anfertigung dieser Arbeit beigetragen haben.

Bedanken möchte ich mich auch bei Prof. Dr. Katharina Riedel für die Übernahme des zweiten Referats.

Darüber hinaus geht mein Dank an Dr. Andreas Nerlich für die Hilfestellung und Unterstützung in allen Belangen der Mikroskopie und Bildbearbeitung.

Dr. Robert Geffers und Petra Hagendorff von der Arbeitsgruppe Genomanalytik des Helmholtz Zentrums für Infektionsforschung danke ich für die experimentelle Durchführung und Unterstützung bei der Auswertung der Microarray- und Real time PCR- Analysen.

Des Weiteren möchte ich Prof. Dr. Manfred Rohde und Ina Schleicher für die Anfertigung der elektronenmikroskopischen Aufnahmen, sowie Astrid Dröge für die Durchführung der Real time PCR- Analysen und der Pneumokokkenmembranprotein-Präparation danken.

Bedanken möchte ich mich an dieser Stelle auch bei den Mitgliedern der Abteilungen Medizinische Mikrobiologie und Infektionsimmunologie für das angenehme Arbeitsklima und die Hilfsbereitschaft im Laboralltag. Meinem Kollegen Dr. Marcus Fulde, Angela Hitzmann und Astrid Dröge danke ich für zahlreiche praktische Hinweise und hilfreiche Diskussionen. Mein Dank geht ebenso an Dr. Daniel Patric Nitsche-Schmitz, Dr. Susanne Talay, Katja Mummenbrauer und Melanie Tillig, die für jedes Problem ein offenes Ohr hatten.

Ganz besonders bedanken möchte ich mich bei Nina Janze, Dr. Silvana Reißmann, Dr. René Bergmann, Angela Hitzmann, Silva Amelung, Nadine Nachtigall, Katja Branitzki-Heinemann, Anja Grützner, Andreas Raschka und Franziska Voigt für die familiäre Atmosphäre und den vielen hilfreichen Gesprächen in- und außerhalb des Labors.

Mein ganz persönlicher Dank gilt meiner Familie und meinen Freunden für den verständnisvollen Rückhalt und die Unterstützung während meines Studiums und meiner Promotion. Sandra danke ich ganz besonders für ihre Geduld und ihr Verständnis über all die Jahre hinweg.