Vergleichende Analyse pathogener Oralstreptokokkenisolate mit Hilfe eines virulenzfaktorbasierten DNS-Microarrays

Von der Fakultät für Lebenswissenschaften der Technischen Universität Carolo-Wilhelmina zu Braunschweig zur Erlangung des Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.) genehmigte Dissertation

von Andreas Itzek aus Halberstadt
1. Referentin oder Referent: apl. Professor Dr. Gursharan Singh Chhatwal
2. Referentin oder Referent: Professor Dr. Dieter Jahn
eingereicht am: 08.05.2009
mündliche Prüfung (Disputation) am: 26.10.2009
Druckjahr: 2010
Inhaltsverzeichnis

1 Zusammenfassung ... 1

2 Einleitung .. 2
 2.1 Der Lebensraum Mundhöhle .. 2
 2.2 Die Gruppe der Oralstreptokokken .. 3
 2.2.1 Oralstreptokokken als Kommensale ... 6
 2.2.2 Oralstreptokokken als Pathogene ... 7
 2.3 Ziele dieser Arbeit ... 10

3 Material und Methoden .. 11
 3.1 Verwendete Materialien ... 11
 3.2 Verwendete Bakterienstämme ... 11
 3.2.1 Klinische Oralstreptokokkenisolate .. 11
 3.2.2 Weitere Streptokokkenstämme .. 12
 3.3 Mikrobiologische Methoden .. 12
 3.3.1 Langzeitstammhaltung .. 12
 3.3.2 Kultivierung der Bakterien ... 13
 3.3.3 Zellaufschluss ... 13
 3.4 Molekularbiologische Methoden .. 14
 3.4.1 Allgemeine Techniken ... 14
 3.4.1.1 Präparation genomischer DNS ... 14
 3.4.1.2 Aufreinigung von Nukleinsäuren ... 14
 3.4.1.3 Agarosegelelektrophorese ... 14
 3.4.1.4 Polymerasekettenreaktion ... 15
 3.4.1.5 Sequenzierung von Nukleinsäuren ... 16
 3.4.2 Methoden für Microarrayanalysen .. 16
 3.4.2.1 Drucken und Blocken der Microarrayslides ... 17
 3.4.2.2 Partieller enzymatischer Verdau genomischer DNS ... 17
 3.4.2.3 Konzentrationsbestimmung fragmentierter DNS .. 19
 3.4.2.4 Biotinylierung fragmentierter DNS ... 19
 3.4.2.5 Erstellung des Hybridisierungsgemisches .. 19
 3.4.2.6 Hybridisierung .. 20
 3.4.2.7 Färbung und Signaldetektion .. 20
 3.5 EDV Methoden .. 21
 3.5.1 Selektion der Streptokokkengene für den Microarray ... 21
 3.5.1.1 Auswahl von Genen extrazellulärer Proteine .. 21
 3.5.1.2 Auswahl zusätzlicher Gene .. 21
 3.5.2 Sequenzanalysen ... 22
4 Ergebnisse .. 24
 4.1 Entwicklung des Microarrays ... 24
 4.1.1 Auswahl der Streptokokkengene .. 24
 4.1.2 Entwicklung interner Kontrollen ... 25
 4.1.2.1 Genomkontrollen ... 26
 4.1.2.2 Markierungskontrollen ... 26
 4.1.2.3 Hybridisierungskontrollen .. 27
 4.1.2.4 Spezifitätstests ... 28
 4.1.3 Sonderanordnung innerhalb des Microarrays ... 29
 4.1.4 Testhybridisierungen .. 30
 4.1.4.1 Einstellung der Hybridisierungsmenge der genomischen DNS 31
 4.1.4.2 Überprüfung der Genomkontrollen ... 32
 4.1.5 Berechnungen zur Signalintensität .. 35
 4.1.5.1 Signalnormalisierung .. 37
 4.1.5.2 Schwellenwertberechnung ... 43
 4.2 Microarrayanalysen klinischer Isolate .. 46
 4.2.1 Auswahl und Analyse klinischer Oralstreptokokkenisolate 46
 4.2.2 Clusteranalysen der Microarraysignale ... 48
 4.2.2.1 Spezietypisierung mit Hilfe tierischer Clusteranalysen 48
 4.2.2.2 Phylogenetische Analysen .. 51
 4.2.3 Vorkommen und Verbreitung virulenzrelevanter Gene 54
 4.2.3.1 Überblick über Ursprung und Verbreitung virulenzrelevanter Gene ... 54
 4.2.3.2 Betrachtung einzelner Virulenzfaktorgruppen 58
 4.2.4 Identifizierung diagnostischer Sonder ... 66

5 Diskussion .. 67

6 Anhang ... 74
 6.1 Projektübersicht ... 74
 6.2 Programme und Datenbanken .. 75
 6.3 Literaturverzeichnis ... 75
 6.3.1 Fachbücher ... 75
 6.3.2 Methodenliteratur ... 76
 6.3.3 Artikel aus Fachzeitschriften ... 76
 6.4 Stammsammlungsliste .. 84
 6.5 Genliste ... 86

7 Danksagung .. 100
Abbildungsverzeichnis

2.2 Phylogenetische Beziehungen zwischen 34 Arten der Gattung *Streptococcus* 4
3.4.1.4 Nukleinsäuresequenzen der 16S-rRNA-Gen-spezifischen Oligonukleotide.... 15
3.4.2.2 Partieller enzymatischer Verdau genomischer DNS 18
4.1.1 Genauswahl für den Microarray ... 25
4.1.2.1 Nukleinsäuresequenzen der Genomkontrollsonden 26
4.1.2.2.1 Nukleinsäuresequenzen der Markierungskontrollsonden 27
4.1.2.2.2 Nukleinsäuresequenzen der Markierungskontrolloligonukleotide 27
4.1.2.3.1 Nukleinsäuresequenzen der Hybridisierungskontrollsonden 28
4.1.2.3.2 Nukleinsäuresequenzen der Hybridisierungskontrolloligonukleotide 28
4.1.2.4 Nukleinsäuresequenzen der Spezifitätskontrollsonden 29
4.1.3.1 Schematische Darstellung eines Microarrayslides 29
4.1.3.2 Schematische Darstellung eines Pinarrays .. 30
4.1.4.1 Einfluss der Hybridisierungsmenge der genomischen DNS auf die Fluoreszenzintensität der Spezifitätskontrollen ... 31
4.1.4.2 Testhybridisierung zur Überprüfung der Genomkontrollen 32
4.1.4.3.1 Optimierung der Spiked-In Kontrollen ... 33
4.1.4.3.2 Gegenüberstellung der Fluoreszenzintensitäten der Spiked-In Kontrollen und des Fluoreszenzintensitätsbereichs der Gensonden 34
4.1.5 Vergleich der Fluoreszenzsignale von zwei Microarrays 36
4.1.5.1.1 Beschreibung der interexperimentellen Abweichungen 38
4.1.5.1.2 Normalisierung der Fluoreszenzsignale der Kontrollenreihe aus Hybridisierungskontrollsonden und Druckpufferkontrolle 39
4.1.5.1.3 Auswirkung der Normalisierung auf die Signale der Gensonden 41
4.1.5.1.4 Vergleich der Fluoreszenzintensitäten der Kontrollsonden aus 49 Hybridisierungsexperimenten ... 42
4.1.5.1.5 Vergleich der Fluoreszenzintensitäten der Kontrollsonden aus 49 Hybridisierungsexperimenten nach Normalisierung ... 43
4.1.5.2.1. Ermittlung des Schwellenwertes.. 44
4.1.5.2.2 Pinarraybasierte Schwellenwertberechnung .. 45
4.2.2.1. Clusteranalyse von 49 klinischen Bakterienisolaten 49
4.2.2.2. Gegenüberstellung der phylogenetischen Analysen 52
4.2.3.1.1 Gegenüberstellung der Isolatanzahl
und der Anzahl positiver Signale pro analysierter Streptokokkenart 55
4.2.3.1.2 Überblick über Ursprung und Verteilung virulenzrelevanter Gene
innerhalb der analysierten Streptokokkenarten 56
4.2.3.2.1 Verteilung der Signale für Gene von Adhäsinen 59
4.2.3.2.2 Verteilung der Signale für Gene antiphagozytischer Faktoren,
Hämolsyne und Exotoxine .. 60
4.2.3.2.3 Verteilung der Signale für Gene von Spreading-Faktoren 62
4.2.3.2.4 Verteilung der Signale für Gene hypothetischer Proteine 65
4.2.4 Verteilung der Signale spezies- oder gruppenspezifischer Sonden 66
6.1 Projektübersicht .. 75

Tabellenverzeichnis

3.2.2 Verwendete Teststämme aus der Gattung Streptococcus 12
3.4.1.4.1 Zusammensetzung der Polymerasekettenreaktion.......................... 15
3.4.1.4.2 Programm der Polymerasekettenreaktion 16
3.4.2.2 Berechnung der durchschnittlichen Länge eines Streptokokkengens 17
3.4.2.4 Zusammensetzung der Biotinylierungsreaktion 19
3.4.2.5 Zusammensetzung des Hybridisierungsgemisches 20
4.2.1 Auswahl klinischer Oralstreptokokkenisolate für die Microarrayanalysen 47
4.2.2 Schwer typisierbare Isolate innerhalb der Auswahl 48
6.4 Sammlung klinischer Oralstreptokokkenisolate 84
6.5 Gensonden des entwickelten DNS-Microarrays 86
Abkürzungsverzeichnis

Alu Arthrobacter luteus
bp Basenpaare
BSA Rinderserumalbumin
CBS Center For Biological Sequence Analysis (Technic)
Cy5 Cyanin 5
dATP Desoxyadenosintriphosphat
dCTP Desoxycytidintriphosphat
dGTP Desoxyguanosintriphosphat
dH₂O deionisiertes Wasser
DNS Desoxyrribonukleinsäure
DTT Dithiothreitol
dNTP Mischung aus dATP, dCTP, dGTP und dTTP
dTTP Desoxythymidintriphosphat
EDTA Ethylendiamintetraessigsäure
et al. et alii
lat. lateinisch
NEB New England Biolabs
PBS phoshatgepufferte Salzlösung
PCR Polymerasekettenreaktion
RNase Ribonuklease
rpm Umdrehungen pro Minute
rRNA ribosomale Ribonukleinsäure
S. Streptococcus
TAE Tris Acetat EDTA
Taq Thermus aquaticus
THB Todd Hewitt Broth
THY Todd Hewitt Yeast
Tris Tris(hydroxymethyl)-Aminomethan
Tris-HCl Tris(hydroxymethyl)-Aminomethan-Lösung titriert mit HCl
U Unit (1 U = Umsatz von 1 M Substrat / min)
1 Zusammenfassung

2 Einleitung

Viele Bereiche des menschlichen Körpers, die dauerhaft der Umwelt ausgesetzt sind, werden von Mikroorganismen bevölkert. Dabei stellt die Mundhöhle mit durchschnittlich 10^9 Bakterien pro Milliliter Speichel neben dem Dickdarm die am dichtesten besiedelte Körperregion dar. In der Mundhöhle eines Erwachsenen lassen sich 500 bis 700 verschiedene bakterielle Spezies nachweisen, von denen einige Mitglieder der Gattung *Streptococcus* am häufigsten isoliert werden. Diese zur Gruppe der Oralstreptokokken zusammengefassten Spezies kolonisieren als Kommensale alle Bereiche der menschlichen Mundhöhle (2.2.1). Die ständige Auseinandersetzung mit dem Immunsystem des Wirtes und kontinuierliche hygienische Reinigungsmaßnahmen des Mundraums sind dafür verantwortlich, dass sich diese Bakterien nicht ungehindert vermehren und ausbreiten (2.1). Dennoch kommt es immer wieder vor, dass Oralstreptokokken auch aus Regionen des menschlichen Körpers isoliert werden, die nicht ihrem natürlichen Lebensraum entsprechen und wo sie als Pathogene agieren (2.2.2). Die vorliegende Arbeit liefert einen neuen experimentellen Ansatz zur speziesübergreifenden Untersuchung von Oralstreptokokkenisolaten und trägt so dazu bei, die Pathogenität von Oralstreptokokken besser zu verstehen (2.3).

2.1 Der Lebensraum Mundhöhle

Zu den erfolgreichsten Besiedlern der menschlichen Mundhöhle gehören einige Arten der Gattung *Streptococcus*, die unter der Bezeichnung Oralstreptokokken zusammengefasst werden.

2.2 Die Gruppe der Oralstreptokokken

Abbildung 2.2: Phylogenetische Beziehungen zwischen 34 Arten der Gattung *Streptococcus*. Dargestellt sind die phylogenetischen Beziehungen von 34 Arten der Gattung *Streptococcus* ermittelt anhand vergleichender 16S-rRNA-Gensequenzanalysen nach der neighbor-joining Methode. Die Darstellung nach Kawamura et al., 1995, wurde durch farbliche Kennzeichnung der Oralstreptokokken modifiziert. Die Farbdarstellung fasst die Oralstreptokokkenarten nach Gruppierungen innerhalb der Gattung *Streptococcus* zusammen. Unterschieden werden Mitisgruppe (gelb), Anginosusgruppe (violett), Salivariusgruppe (blau) und Mutansgruppe (grün).

Im Gegensatz zu den Oralstreptokokkenarten der Mutansgruppe, die spezifisch die Zahnhartsubstanz kolonisieren oder der Salivariusgruppe, die hauptsächlich auf den Schleimhäuten zu finden sind, lassen sich die Oralstreptokokken der Mitisgruppe aus nahezu jedem Bereich der menschlichen Mundhöhle isolieren. Durchschnittlich 60% der Bakterien in frischem Zahnplaque sind der Mitisgruppe zuzuordnen (Nyvad et al., 1990). Deshalb gelten sie als Pionierbesiedler der Zahnhartsubstanz und Auslöser der Plaquebildung. Die Zugehörigkeit von *Streptococcus pneumoniae* zur Gruppe der Oralstreptokokken ist streitbar. Phylogenetisch ist *Streptococcus pneumoniae* sehr eng mit den Mitgliedern der Mitisgruppe *Streptococcus mitis* und
Streptococcus oralis verwandt, was durch 16S-rRNA-Gensequenzvergleiche (Kawamura et al., 1995) und DNS-Hybridisierungsexperimente (Hakenbeck et al., 2001) belegt wurde. Die Gruppe der Oralstreptokokken umfasst per Definition jedoch nur Streptokokkenarten, deren natürlicher Lebensraum die menschliche Mundhöhle ist und die daher regelmäßig aus dieser isoliert werden können. Streptococcus pneumoniae kolonisiert bevorzugt die Schleimhäute des Nasopharynx und kann in der Mundhöhle nur als transiter Keim nachgewiesen werden. Daher wurde diese Spezies in der vorliegenden Arbeit nicht zur Gruppe der Oralstreptokokken gezählt.

Die Anginosusgruppe umfasst die drei Arten Streptococcus anginosus, Streptococcus constellatus und Streptococcus intermedius, die alle zur Gruppe der Oralstreptokokken gezählt werden. Die drei Arten sind regelmäßig, aber nur in geringen Keimzahlen aus Zahnplaque und von oralen Schleimhautoberflächen isolierbar. Darüber hinaus besiedelt Streptococcus anginosus den menschlichen Urogenital- und Gastrointestinaltrakt, während Streptococcus constellatus auch im Respirationstrakt zu finden ist. Für alle drei Arten der Anginosusgruppe existieren Isolate, die auf Blutagarplatten eine für Oralstreptokokken ansonsten untypische β-Hämolyse zeigen.

2.2.1 Oralstreptokokken als Kommensale

Die Persistenz der Oralstreptokokken in der menschlichen Mundhöhle wird durch eine ganze Reihe bakterieller Faktoren ermöglicht. Pionierbesiedler der Mitisgruppe produzieren eine Protease, die spezifisch sekretorisches IgA1 inaktiviert (IgA1 protease) (Cole et al., 1994). Dadurch wird die Agglutination der Bakterien unterbunden und die Kolonisierung oraler Oberflächen erleichtert (Tyler et al., 1998). Da die rasche Adhäsion an Mundraumboberflächen für Oralstreptokokken überlebenswichtig ist, besitzen sie eine ganze Reihe verschiedener Adhäsionsmechanismen. Am weitesten verbreitet sind Adhäsine der Antigen I/II Proteinfamilie (Ma et al., 1991). Diese wurden bei Streptococcus mutans (SpaP, PAc, B, P1, SR, IF), Streptococcus sobrinus (SpaA, PAg), Streptococcus gordonii (SspA, SspB), Streptococcus oralis (SpaA), Streptococcus sanguinis (SSP-5, p130) und Streptococcus intermedius (PAs) nachgewiesen. Sie vermitteln nicht nur die Bindung an verschiedene Pellikelbestandteile und ermöglichen die spezifische Adhäsion an Zahnoberflächen, sondern leiten auch die Plaquebildung ein, indem sie die Interaktion der Streptokokken mit anderen Mundraumbakterien ermöglichen (Jakubovics et al., 2005). Streptococcus mutans verwendet saccharoseabhängige Mechanismen zur Adhäsion an die Zahnoberfläche (Rölla et al., 1983). Dazu produziert das Bakterium verschiedene Arten von Glukosyltransferasen, die sowohl auf der Zahnoberfläche (GtfC und GtfD) als auch auf der Bakterienoberfläche (GtfB) Glukane aus Saccharose bilden und damit eine Adhäsion ermöglichen (Vacca-Smith et al., 1998). Glukanzusatzproteine (GbpA bis GbpD) fixieren die gebildeten Glukane auf der Bakterienoberfläche und unterstützen den Adhäsionsprozess (Matsumura et al., 2003). Zudem dienen die extrazellulären Glukane als Schutzkapsel
Einleitung

Oralstreptokokkenarten der Mitisgruppe besitzen Oberflächenproteine zur Bindung von Amylase (AbpA und AbpB) (Brown et al., 1999). Amylase tritt nicht nur gelöst im Speichel auf, sondern ist auch Bestandteil des Pellikels. Somit wird über dieses Enzym die Adhäsion an orale Oberflächen ermöglicht. Bei *Streptococcus gordonii* wurde zudem ein Oberflächenprotein nachgewiesen (Hsa), das direkt an ein Speichelmuzin des Pellikels bindet (Takahasi et al., 2002). Die Pionierbesiedler der Mitisgruppe besitzen darüber hinaus spezifische Adhäsine, die Interaktionen mit anderen Mundraumbakterien ermöglichen, denen Pellikel-adhäsionsmechanismen fehlen. Vor allem bei membrangebundenen Lipoproteinen der SsaB Familie, die in *Streptococcus gordonii* (SarA und ScaA), *Streptococcus sanguinis* (SsaB) und *Streptococcus parasanguinis* (FimA) vorkommen, konnte diese Funktion nachgewiesen werden (Ganeshkumar et al., 1991). Auch die Oberflächenproteine CshA und CshB aus *Streptococcus gordonii* ermöglichen Interaktionen mit anderen Mundraumbakterien und fördern die Plaquebildung (McNab et al., 1996).

2.2.2 Oralstreptokokken als Pathogene

Oralstreptokokken sind nicht in der Lage, den Pellikel und die oralen Schleimhäute aktiv zu durchdringen. Verletzungen der Schleimhautoberflächen führen jedoch dazu, dass die Bakterien in das darunterliegende Gewebe und den Blutstrom gelangen, was häufig zu Oralstreptokokkenbacteriämien führt. Diese treten nicht nur bei schwerwiegenden Eingriffen wie Zahnextraktionen (Bahrani-Mougeot et al., 2008) oder Tonsillektomien (Soldado et al., 1998) auf, sondern auch beim täglichen mechanischen Reinigen der Zahnoberflächen (Lucas et al., 2008). Das Immunsystem bekämpft solche Bakteriämien in den meisten Fällen so effektiv, dass sich im Normalfall keine Infektionsherde manifestieren können (Tomáš et al., 2007). Dennoch werden immer wieder Fälle bekannt, in denen Oralstreptokokken schwerwiegende Erkrankungen wie Sepsis (Chen et al., 2006), streptokokkeninduziertes Toxisches Schocksyndrom (Lu et al., 2003), Endokarditis (Lick et al., 2005) oder Gewebsabszesse
Einleitung

(Ulivieri et al., 2007) hervorrufen. Trotz intensiver Forschungsarbeit konnten die Mechanismen, die zu diesen Krankheitsbildern führen, bisher nur teilweise aufgeklärt werden. Der Ausbruch von streptokokkeninduziertem Toxischem Schocksyndrom in der Jiangsuprovinz in China wurde hervorgerufen durch ein Streptococcus mitis Isolat und konnte auf ein bisher unbekanntes Exotoxin zurückgeführt werden (Lu et al., 2003). Wie das Gen des Toxins in dieses Oralstreptokokkenisolat gelangt ist, bleibt ungeklärt. Der genetische Austausch zwischen Bakterien in der menschlichen Mundhöhle stellt jedoch eine mögliche Ursache dar.

Oralstreptokokken gehören auch zu den Haupterreger der infektiösen Endokarditis (Iga et al., 1991). Die Arten der Mitisgruppe Streptococcus sanguinis, Streptococcus oralis und Streptococcus gordonii werden dabei am häufigsten isoliert (Douglas et al., 1993; Westling et al., 2008). Erreicht eine Oralstreptokokkenbakteriämie über den Blutstrom das Herz, so besteht besonders bei vorgeschädigtem Herzkloppengewebe die Gefahr, dass die Bakterien dortadhärieren und das Gewebe kolonisieren (Barrau et al., 2004).

Es werden zwei Mechanismen zur Adhäsion an geschädigtes Herzkloppengewebe diskutiert. Ist das Gewebe derart geschädigt, dass Bestandteile der extrazellulären Matrix zugänglich werden, können die Bakterien direkt an diese Schadstelle binden. Für Streptococcus gordonii sind Oberflächenproteine beschrieben, die Bindung an Laminin und Fibronectin (FbpA) vermitteln (Sommer et al., 1992; Christie et al., 2002). Zudem besitzen einige Adhäsine, die im natürlichen Lebensraum von Streptococcus gordonii für Interaktionen mit anderen Mundraumbakterien verantwortlich sind, im Blutstrom weitere Funktionen. Für CshA ist die Bindung an immobilisiertes Fibronectin beschrieben (McNab et al., 1996), während die Adhäsine der Antigen I/II Familie SspA und SspB die Bindung an Kollagen vermitteln (Love et al., 1997). Ähnliche Adhäsionsmechanismen, die die Bindung an Proteine der extrazellulären Matrix nutzen, wurden auch für andere Oralstreptokokkenarten beschrieben (Petersen et al., 2002; Allen et al., 2002; Sato et al., 2004). Ist das geschädigte Gewebe bereits durch Bildung eines Thrombus geschützt, so sind einige Oralstreptokokken dennoch in der Lage, zu adhären. Für Streptococcus parasanguinis ist ein Oberflächenprotein beschrieben, das die Bindung an den Hauptbestandteil des Thrombus, das Fibrin, vermittelt (Burnette-Curley et al., 1995). Auch Streptococcus gordonii kann direkt an einen Thrombus binden (Bensing et al., 2004). Das Adhäsin Hsa, das im Mundraum die Bindung an ein Speichelmuzin vermittelt und somit die Kolonisierung oraler Oberflächen einleitet, besitzt im Blutstrom die Funktion eines Thrombozytenadhäsin (Takahashi et al., 2004). Demgegenüber ist Streptococcus sanguinis nicht nur in der Lage, an einen Thrombus zu adhären (SsaB) (Herzberg et al., 1996), sondern kann auch die Bildung eines Thrombus induzieren. Es wurde ein Oberflächenprotein beschrieben (PAAP), mit dessen Hilfe Streptococcus sanguinis nicht nur spezifisch an Thrombozyten bindet, sondern diese auch aktivieren kann (Erickson et al., 1987, 1990, 1993). Die Bedeutung dieses Mechanismus für die Entwicklung einer infektiösen Endokarditis konnte im Tiermodell bestätigt werden (Herzberg et al., 1992).
Diese Adhäsionsmechanismen, die nicht nur von Oberflächenproteinen vermittelt werden, die im natürlichen Lebensraum der Oralstreptokokken die Kolonisierung der oralen Oberflächen einleiten, sondern auch von spezifischen Bindungsproteinen, die erst nach dem Eintritt in den Blutstrom exprimiert werden (Erickson et al., 1995) (Sommer et al., 1992), können die Pathogenese der infektiösen Endokarditis nur zum Teil erklären. Die Fähigkeit zur Bindung von Thrombozyten ist nur für Streptococcus sanguinis und Streptococcus gordonii beschrieben. Weiterhin konnte die Aktivierung von Thrombozyten nur bei Streptococcus sanguinis Isolaten nachgewiesen werden (Douglas et al., 1990). Die Pathogenese anderer bedeutender Endokarditiserreger wie Streptococcus mitis oder Streptococcus oralis bleibt weiter ungeklärt. Zudem stellt sich bei vielen Erkrankungen, die von Oralstreptokokken hervorgerufen werden, die Frage, wie die Bakterien die Abwehrmechanismen des Immunsystems im Blutstrom und Gewebe umgehen. Ob die Bindung an Thrombozyten auch einen antiphagozytischen Mechanismus darstellt, ist nicht geklärt. Über die Ursachen der Entstehung von Gewebsabszessen in inneren Organen wie der Leber (Wagner et al., 2006), der Milz (Lombardi et al., 2008) oder dem Gehirn (Ulivieri et al., 2007), die in den meisten Fällen durch Oralstreptokokken der Anginosusgruppe verursacht werden, ist weiterhin wenig bekannt.

Für obligat pathogene Streptokokkenarten wie Streptococcus pyogenes, Streptococcus agalactiae oder Streptococcus pneumoniae ist hingegen eine ganze Reihe von Adhäsinen, antiphagozytischen Oberflächenproteinen und Exotoxinen beschrieben, auf die die Pathogenität dieser Bakterien zurückgeführt wird (Cunningham, 2000; Liu et al., 2004; Jedrzejas, 2004). Oberflächenproteine, die die Bindung an Bestandteile der extrazellulären Matrix wie Fibronektin (SfbI, SfbII, Fnz, Fnb, GfbA), Kollagen (Cpa) oder Laminin (Lmb) vermitteln, erlauben die Anheftung an menschliche Gewebstrukturen und leiten somit die Kolonisierung ein (Molinari et al., 1997; Rocha et al., 1997; Lindmark et al., 1996; Lindgren et al., 1994; Kline et al., 1996; Kreikemeyer et al., 2005; Spellerberg et al., 1999; Nitsche-Schmitz et al., Molecular Biology of Streptococci, 2007). Um der Phagozytose zu entgehen, reichern viele obligat pathogene Streptokokken Fibrinogen durch Bindung an das M-Protein auf der Bakterienoberfläche an (Whitnack et al., 1982; Johansson et al., 2004). Zahlreiche pathogene Streptokokken der pyogenen Gruppe sind darüber hinaus in der Lage, der Opsonisierung durch Immunglobuline aktiv entgegen zu wirken. Es wurden Oberflächenproteine beschrieben, die humane Immunglobuline so auf der Bakterienoberfläche binden (Protein G, Mag, Mig), dass die opsonisierende Wirkung verloren geht (Björck et al., 1984; Nitsche-Schmitz et al., 2007; Jonsson et al., 1994; Vasi et al., 1999). Zudem wurden extrazelluläre bakterielle Proteasen beschrieben (ScpA, ScpB,CppA), die Schlüsselfaktoren des Komplementsystems proteolytisch inaktivieren (Cleary et al., 1992; Angel et al., 1994). Hämolysine stellen einen weiteren antiphagozytischen Mechanismus dar, der bei pathogenen Streptokokken der pyogenen Gruppe beschrieben wurde. Hämolysine aus Streptococcus pyogenes (SLO, SLS) sind nicht nur in der Lage, Erythrozyten zu lysieren und die für diese Bakterien typische ß-Hämolysin zu verursachen, sondern wirken auch auf Zellen des...
Einleitung

Immunsystems zytotoxisch (Goldmann et al., 2009; Timmer et al., 2009). Einige pathogene Streptokokken der pyogenen Gruppe verhindern die effektive Bekämpfung bakterieller Infektionen durch das Immunsystem, indem sie eine überschießende Immunantwort (streptokokkeninduziertes Toxisches Schocksyndrom) induzieren (Proft et al., 2007). Dazu sezernieren die Bakterien sogenannte pyogene Exotoxine und Superantigene (SpeA, SpeC, SpeJ). Um eine schnelle Ausbreitung im Gewebe zu ermöglichen, sezernieren viele obligat pathogene Streptokokken gewebedegradierende Enzyme, die unter dem Begriff Spreading-Faktoren zusammengefasst werden. Dazu gehören unter anderem Proteine (Streptokinasen), die Plasminogen in seine aktive Form überführen und somit kaskadenartig wirksame Proteolysesysteme aktivieren (Lähteenmäki et al., 2001). Ebenfalls zu den Spreading-Faktoren zu zählen sind Hyaluronidasen, die das strukturgebende Hyaluronsäurenetzwerk der extrazellulären Matrix degradieren (Starr et al., 2006), und sezernierte Proteasen, die nicht nur Strukturproteine abbauen, sondern auch Signalmoleküle des Immunsystems inaktivieren können (Hidalgo-Grass et al., 2006; Collin et al., 2003).

Die Suche nach solchen oder ähnlichen Virulenzmechanismen in klinisch auffälligen Oralstreptokokkenisolaten stellt neben der Untersuchung der Verteilung bekannter Pathogenitätsfaktoren der Oralstreptokokken einen Ansatz dar, um die Pathogenese dieser Organismengruppe besser verstehen zu lernen.

2.3 Ziele dieser Arbeit

Im Rahmen der vorliegenden Arbeit sollte eine Sammlung klinischer Oralstreptokokkenisolate mit Hilfe eines zu entwickelnden speziessübergreifenden Virulenzfaktormicroarrays charakterisiert werden. Die Genauigkeitstätigkeit des Microarrays sollte sowohl Aussagen über die Verteilung bekannter Pathogenitätsfaktoren aus Oralstreptokokken als auch die Detektion homologer Virulenzmechanismen aus obligat pathogenen Streptokokkenarten erlauben. Zu diesem Zweck mussten interne Kontrollen und Normalisierungsprotokolle entwickelt werden, die eine eindeutige Unterscheidung positiver und negativer Sondenstriche ermöglichen und die Vergleichbarkeit einzelner Hybridisierungsexperimente für Clusteranalysen gewährleisten. Dies sollte nicht nur einen Einblick in das Repertoire an Pathogenitätsmechanismen der Oralstreptokokken ermöglichen, sondern auch zur Aufklärung der komplexen phylogenetischen Beziehungen innerhalb dieser Gruppe beitragen.
3 Material und Methoden

3.1 Verwendete Materialien

Alle Lösungen und Puffer wurden mit deionisiertem Wasser (dH₂O) aus einem Milli-Q-System (Millipore) angesetzt.

3.2 Verwendete Bakterienstämmme

Ziel der vorliegenden Arbeit war es, einen Einblick in Vorkommen und Verteilung von Virulenzfaktoren innerhalb der Gruppe der Oralstreptokokken zu erlangen. Zu diesem Zweck sollten die Genome humanpathogener Oralstreptokokkenisolate (3.2.1) mit Hilfe eines selbstentwickelten, speziesübergreifenden Microarray nach bekannten und vorhergesagten Virulenzfaktoren aus der Gattung Streptococcus durchsucht werden. Für die Entwicklung des Microarrays war zusätzlich eine Auswahl von Bakterienstämmen anderer Streptokokkenarten notwendig (3.2.2).

3.2.1 Klinische Oralstreptokokkenisolate

3.2.2 Weitere Streptokokkenstämme

Für Testhybridisierungen und zu Vergleichszwecken wurden weitere Stämme verschiedener Arten der Gattung *Streptococcus* benötigt. Diese wurden der Stammsammlung der Abteilung Mikrobielle Pathogenität des Helmholtz Zentrum für Infektionsforschung entnommen und sind in Tabelle 3.2.2 aufgeführt.

Tabelle 3.2.2: Verwendete Teststämme aus der Gattung *Streptococcus*.

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Spezies</th>
<th>Referenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>MGAS315</td>
<td>Streptococcus pyogenes</td>
<td>Beres et al., 2002</td>
</tr>
<tr>
<td>A909</td>
<td>Streptococcus agalactiae</td>
<td>Tettelin et al., 2005</td>
</tr>
<tr>
<td>R6</td>
<td>Streptococcus pneumoniae</td>
<td>Hoskins et al., 2001</td>
</tr>
<tr>
<td>UA159</td>
<td>Streptococcus mutans</td>
<td>Ajdic et al., 2002</td>
</tr>
</tbody>
</table>

3.3 Mikrobiologische Methoden

Für die Analyse der Genome der klinischen Oralstreptokokkenisolaten war es notwendig, die erhaltenen Bakterienstämme über einen längeren Zeitraum verlustfrei zu lagern (3.3.1). Die Gewinnung der genomischen DNS aus den Bakterien setzte die Vermehrung (3.3.2) und den Aufschluss der Zellen (3.3.3) voraus.

3.3.1 Langzeitstammhaltung

Für die Erstellung einer Stammsammlung der aus dem Universitätsklinikum Leipzig erhaltenen Streptokokkenisolate wurden diese zunächst auf Blutagarplatten ausgestrichen und über Nacht bei 37°C und 5% CO₂ in einem Feuchtrauminkubator (Thermo Scientific) kultiviert. Die Ausstriche wurden in 15ml THY-Flüssigkulturen überimpft, die Kulturröhrchen fest verschlossen und über Nacht stehend bei 37°C in einem Brutschrank (Heraeus) inkubiert (3.3.2). Die Bakterien wurden durch Zentrifugation für 10min bei 4000×g pelletiert (Eppendorf Centrifuge 5804R), einmal mit PBS gewaschen und in 1ml PBS resuspendiert. Ein Aliquot von 750µl der Baktierensuspension wurde mit 250µl steriler Glycerinlösung (87%) vermengt und bei -80°C gelagert.

PBS

1,44 g/l Na₂HPO₄ (pH7,4)
0,24 g/l KH₂PO₄
8,00 g/l NaCl
0,20 g/l KCl
in dH₂O

Vor der Verwendung wurde der Puffer durch Autoklavieren für 15min bei 121°C und 1bar Überdruck sterilisiert.
3 Material und Methoden

3.3.2 Kultivierung der Bakterien

THY 30 g/l THB Fertigmischung
5 g/l Hefeextrakt
in dH₂O

Vor Gebrauch wurde das Komplexmedium durch Autoklavieren für 15 min bei 121°C und 1 bar Überdruck sterilisiert.

3.3.3 Zellaufschluss

Der Aufschluss der Bakterienzellen erfolgte in Anlehnung an das Protokoll des DNeasy® Tissue-Kit (QIAGEN) für den Aufschluss grampositiver Zellen auf enzymatisch-chemischem Wege (DNeasy® Tissue Handbook). Die Übernachtkultur (3.3.2) wurde in einer Tischzentrifuge (Eppendorf Centrifuge 5804R) bei 4000 × g für 10 min zentrifugiert und der Medienüberstand verworfen. Das Bakterienpellet wurde in 460 µl Zellaufschlusspuffer resuspendiert und stehend für 10 bis 50 min in einem Wasserbad bei 37°C inkubiert. Die Inkubationszeit für den Zellaufschluss wurde für jedes Isolat optimiert, um die Präparation möglichst hochmolekularer genomischer DNS zu ermöglichen (3.4.1.1).

Zellaufschlusspuffer 20 mM Tris-HCl (pH 8,0)
2 mM EDTA
1,2% TritonX-100
in dH₂O

Vor der Verwendung wurde der Puffer durch Autoklavieren für 15 min bei 121°C und 1 bar Überdruck sterilisiert. Direkt vor dem Zellaufschluss wurden jeweils 50 µl Mutanolysin sowie RNase A hinzugefügt.

Mutanolysin 5000 U/ml
in 0,1 M KH₂PO₄-KOH (pH 6,2)
in dH₂O

RNase A 1 mg/ml
in 10 mM Tris-HCl (pH 7,5) 15 mM NaCl
in dH₂O
3.4 Molekularbiologische Methoden

Für die Microarrayanalysen der klinischen Oralstreptokokkenisolate waren sowohl allgemeine molekularbiologische Techniken (3.4.1) als auch spezialisierte Methoden der Microarraytechnologie (3.4.2) notwendig.

3.4.1 Allgemeine Techniken

Bei den allgemeinen Techniken der Molekularbiologie, die im Vorfeld der Microarrayanalysen angewandt wurden, handelte es sich um Methoden zur Gewinnung (3.4.1.1), Reinigung (3.4.1.2) und Analyse (3.4.1.3, 3.4.1.4, 3.4.1.5) von bakterieller genomischer DNS.

3.4.1.1 Präparation genomischer DNS

Die Präparation bakterieller genomischer DNS aus den Zellextrakten (3.3.3) erfolgte mit Hilfe des DNeasy® Tissue-Kit (QIAGEN). Die Aufreinigung wurde nach Herstellerangaben durchgeführt (DNeasy® Blood & Tissue Handbook) und die aufgereinigte DNS bei -80°C gelagert.

3.4.1.2 Aufreinigung von Nukleinsäuren

3.4.1.3 Agarosegelelektrophorese

Die Agarosegelelektrophorese ist eine Methode, die DNS nach Molekülgröße auftrennt. Dies erfolgte in einer HORIZON® 58 Gelkammer (Gibco) in Gelen mit 1% Agarose im TAE-Puffersystem. Ein Probenaliquot von 6 µl wurde mit 1 µl Ladepuffer gemischt und in die Taschen des Gels pipettiert. Als Größenstandard diente der GeneRuler™ DNA Ladder Mix (Fermentas). Die elektrophoretische Auftrennung erfolgte für 40 min bei einer konstanten Spannung von 100V. Zur Detektion der DNS-Moleküle wurde das Gel für 5 min in einem Ethidiumbromidbad gefärbt und anschließend für 5 min in dH2O gewaschen. Ein UV-Transilluminator (Herolab UVT 2020) machte die Ethidiumbromidmoleküle, die sich in die DNS eingelagert hatten, sichtbar. Das Gelbild wurde mit einem EASY-System (Herolab) dokumentiert.

TAE

<table>
<thead>
<tr>
<th>Komponente</th>
<th>Konzentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>50mM Tris-HCl (pH 7,4)</td>
<td></td>
</tr>
<tr>
<td>150mM NaCl</td>
<td></td>
</tr>
<tr>
<td>1mM EDTA</td>
<td></td>
</tr>
<tr>
<td>in dH2O</td>
<td></td>
</tr>
</tbody>
</table>
3 Material und Methoden

Ladepuffer
- TAE
 - 40% Glyzerin
 - 0,05% Xylen cyanol
 - in dH₂O

Ethidiumbromidbad
- 10 µg/ml Ethidiumbromid
 - in dH₂O

3.4.1.4 Polymerasekettenreaktion

Die Polymerasekettenreaktion diente der Vervielfältigung definierter DNS-Sequenzbereiche des 16S-rRNA-Gens mit Hilfe zweier sequenzspezifischer Oligonukleotide. Die Sequenzen der verwendeten Oligonukleotide sind in Abbildung 3.4.1.4 gezeigt.

16S-rRNA-fwd AGAGTTTGATCCTGGCTC 54°C
16S-rRNA-rev GGTTACCTTGTTACGACTT 54°C

Abbildung 3.4.1.4: Nukleinsäuresequenzen der 16S-rRNA-Gen-spezifischen Oligonukleotide. Dargestellt sind die beiden sequenzspezifischen Oligonukleotide zur Amplifikation eines ~1500bp großen Bereichs des 16S-rRNA-Gens. Die korrespondierende Schmelztemperatur der Oligonukleotide ist rechts angegeben.

Das Reaktionsvolumen der Polymerasekettenreaktion pro Ansatz wurde auf 50 µl eingestellt. Die Zusammensetzung des Reaktionsgemisches ist in Tabelle 3.4.1.4.1 angegeben.

Tabelle 3.4.1.4.1: Zusammensetzung der Polymerasekettenreaktion.

<table>
<thead>
<tr>
<th>Bestandteil</th>
<th>Konzentration</th>
<th>Volumen</th>
</tr>
</thead>
<tbody>
<tr>
<td>16S-rRNA-fwd</td>
<td>10 pmol</td>
<td>1,0 µl</td>
</tr>
<tr>
<td>16S-rRNA-rev</td>
<td>10 pmol</td>
<td>1,0 µl</td>
</tr>
<tr>
<td>genomische DNS</td>
<td>10 ng/µl</td>
<td>1,0 µl</td>
</tr>
<tr>
<td>dNTPs</td>
<td>10 mM</td>
<td>5,0 µl</td>
</tr>
<tr>
<td>MgCl₂</td>
<td>25 mM</td>
<td>5,0 µl</td>
</tr>
<tr>
<td>PCR-Puffer</td>
<td>10 x</td>
<td>5,0 µl</td>
</tr>
<tr>
<td>Taq-Polymerase</td>
<td>5 U/µl</td>
<td>0,8 µl</td>
</tr>
<tr>
<td>dH₂O</td>
<td></td>
<td>32,2 µl</td>
</tr>
</tbody>
</table>

Die Polymerasekettenreaktion wurde in einem PCR-Thermocycler (Biometra) durchgeführt. Der Reaktionsablauf ist der Tabelle 3.4.1.3.2 zu entnehmen.
Tabelle 3.4.1.4.2: Programm der Polymerasekettenreaktion.

<table>
<thead>
<tr>
<th>Reaktionsschritt</th>
<th>Reaktionstemperatur</th>
<th>Reaktionszeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anfangsdenaturierung</td>
<td>94°C</td>
<td>4 min</td>
</tr>
<tr>
<td>Denaturierung</td>
<td>94°C</td>
<td>40 s</td>
</tr>
<tr>
<td>Anlagerung</td>
<td>52°C</td>
<td>30 s</td>
</tr>
<tr>
<td>Verlängerung</td>
<td>72°C</td>
<td>100 s</td>
</tr>
<tr>
<td>Endverlängerung</td>
<td>72°C</td>
<td>5 min</td>
</tr>
<tr>
<td>Lagerung</td>
<td>4°C</td>
<td>∞</td>
</tr>
</tbody>
</table>

3.4.1.5 Sequenzierung von Nukleinsäuren

Der Sequenzierung der amplifizierten 16S-rRNA-Genbereiche (3.4.1.4) ging eine Kontrolle (3.4.1.3) und Aufreinigung (3.4.1.2) der Amplifikate voraus (Daten nicht gezeigt). Die Sequenzierung erfolgte mit dem 16S-rRNA-Gen-spezifischen Oligonukleotid 16S-rRNA-fwd (Abbildung 3.4.1.4) nach der Big Dye Terminator Methode mit einem ABI Prism® 377 DNA Sequencer (Applied Biosystems) und wurde von der Abteilung Genomanalyse des Helmholtz Zentrums für Infektionsforschung durchgeführt. Für jedes analysierte Isolat konnte eine Nukleinsäuresequenz des 16S-rRNA-Gens mit einer Länge von 680 bp ausgewertet werden (3.5.2)

3.4.2 Methoden für Microarrayanalysen

Die Analyse bakterieller genomischer DNS mit einem Microarray erforderte eine Reihe spezieller molekularbiologischer Methoden. Die Nukleinsäuresonden wurden in einer zweckorientierten Anordnung auf den Glasträgern (Slides) immobilisiert (3.4.2.1). Die hochmolekulare, genomische DNS wurde definiert fragmentiert (3.4.2.2), um eine exakte Konzentrationsbestimmung (3.4.2.3) und die Herstellung markierter DNS-Fragmente geeigneter Größe und definiertem Menge (3.4.2.4) zu ermöglichen. Nach Zugabe der markierten DNS-Fragmente in das Hybridisierungsmedium (3.4.2.5) erfolgte die Hybridisierungsreaktion (3.4.2.6), die Färbung der Slides (3.4.2.8) sowie die Detektion der Fluoreszenzsignale (3.4.2.8).
3.4.2.1 Drucken und Blocken der Microarrayslides

3.4.2.2 Partieller enzymatischer Verdau genomischer DNS

Die Hybridisierung genomischer DNS auf einem Microarray zwecks Detektion der Präsenz einzelner Gene erforderte eine Fragmentierung der hochmolekularen DNS auf die Länge eines repräsentativen Gens des Spenderorganismus. Da die klinischen Oralstreptokokkenisolate unterschiedlichen bakteriellen Spezies angehörten, von denen zum Zeitpunkt der Studie nur wenige Sequenzinformationen vorlagen, wurden Genomlänge und Genanzahl der vier Streptokokkenstämme, auf denen das Design des Microarrays beruhte, für die Abschätzung benutzt. Tabelle 3.4.2.2 zeigt, dass sich daraus ein Schätzwert für die durchschnittliche Länge eines Streptokokkengens von ~1000 bp ergibt.

Tabelle 3.4.2.2: Berechnung der durchschnittlichen Länge eines Streptokokkengens.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Genomlänge</td>
<td>1900521</td>
<td>2127839</td>
<td>2038615</td>
<td>2030921</td>
</tr>
<tr>
<td>Genanzahl</td>
<td>1951</td>
<td>2136</td>
<td>2116</td>
<td>2042</td>
</tr>
<tr>
<td>durchschnittliche Genlänge [bp]</td>
<td>~874</td>
<td>~896</td>
<td>~963</td>
<td>~995</td>
</tr>
</tbody>
</table>

Für den Restriktionsverdau wurde die TypII Restriktionsendonuklease AluI benutzt, da diese durch ihre kurze Erkennungssequenz von n=4 im Durchschnitt nach 4^n=256 Basenpaaren schneidet und keine überhängenden Enden hinterlässt. Abbildung 3.4.2.2 zeigt, wie durch partiellen enzymatischen Verdau die hochmolekulare genomische DNS auf Fragmentgrößen zwischen 1000 bp und 500 bp eingestellt wurde.
Abbildung 3.4.2.2: Partieller enzymatischer Verdau genomischer DNS. Dargestellt sind Gelbilder von Agarosegelelektrophoresen, die den Fortschritt eines enzymatischen Verdaus bakterieller genomischer DNS des Oralstreptokokkenisolates *Streptococcus constellatus* SV99 mit der Restriktionsendonuklease AluI zeigen. Die Inkubation der genomischen DNS mit dem Restriktionsenzym wurde nach 30 min, 70 min und 90 min unterbrochen und ein Aliquot elektrophoretisch aufgetrennt, um den Fortschritt der Reaktion zu untersuchen. Auf jedem Gelbild ist links der Größenstandard GeneRuler™ Ladder Mix (Fermentas) und rechts die Probe genomischer DNS zu sehen. Die Skalierung des Größenstandards ist ganz links angegeben.

Ein Aliquot von 176 µl der genomischen DNS (3.4.1.1) wurde mit 20 µl NEB2-Puffer und 4 µl des Restriktionsenzymes AluI (1:100 in Enzympuffer verdünnt) vermischt und für 25 min bei 37°C unter Schütteln (1000 rpm) in einem Heizblock inkubiert. Die Verdaureaktion wurde durch Kühlung in einem Eiswasserbad gestoppt, ein Aliquot von 6 µl wurde mit 1 µl Ladepuffer vermengt und auf einem 1%igen Agarosegel elektrophoretisch aufgetrennt (3.4.1.3), um den Fortschritt der Reaktion zu untersuchen. Der enzymatische Verdau wurde fortgesetzt und durch stichprobenartige Agarosegelelektrophoresen kontrolliert, bis die Fragmentgrößen dem gewünschten Wert zwischen 1000 bp und 500 bp entsprachen. Anschließend wurde das Restriktionsenzym durch Inkubation der Ansätze in einem Heizblock für 20 min bei 80°C deaktiviert.
Enzympuffer
10 mM Tris-HCl (pH 7,4)
100 mM KCl
1 mM DTT
0,1 mM EDTA
200 µg/ml BSA
50% Glycerin
in dH₂O

3.4.2.3 Konzentrationsbestimmung fragmentierter DNS

Die Konzentration hochmolekularer genomischer DNS lässt sich photometrisch nicht fehlerfrei bestimmen. Die Messung wurde daher an der enzymatisch fragmentierten DNS (3.4.2.2) vorgenommen. Um eine korrekte Messung zu gewährleisten, wurde die partiell verdaute DNS vorher von Kontaminationen gereinigt (3.4.1.2). Die Konzentration der partiell verdauten und gereinigten genomischen DNS wurde mit einem BioPhotometer (Eppendorf) bestimmt.

3.4.2.4 Biotinylierung fragmentierter DNS

Die Detektion hybridisierter Gene auf dem Microarray wurde durch die Herstellung biotinylierter Abschriften der fragmentierten genomischen DNS ermöglicht. Hierfür wurde das BioPrime® DNA Labeling System (Invitrogen) benutzt. Die Zusammensetzung der Biotinylierungsreaktion ist in Tabelle 3.4.2.4 angegeben. Die Reaktion wurde nach Herstellerangaben (BioPrime® DNA Labeling System) durchgeführt, die biotinylierte DNS nach der Reaktion aufgereinigt (3.4.1.2) und dem Hybridisierungsgemisch (3.4.2.5) hinzugefügt.

Tabelle 3.4.2.4: Zusammensetzung der Biotinylierungsreaktion.

<table>
<thead>
<tr>
<th>Bestandteil</th>
<th>Konzentration</th>
<th>Volumen</th>
</tr>
</thead>
<tbody>
<tr>
<td>fragmentierte gereinigte DNS</td>
<td>37,5 ng/µl</td>
<td>20 µl</td>
</tr>
<tr>
<td>Markierungskontrolloligonukleotid H2NC000006</td>
<td>31,25 pg/µl</td>
<td>2 µl</td>
</tr>
<tr>
<td>Markierungskontrolloligonukleotid H2NC000009</td>
<td>125 pg/µl</td>
<td>2 µl</td>
</tr>
<tr>
<td>Random Primers Solution</td>
<td>2,5 ×</td>
<td>20 µl</td>
</tr>
<tr>
<td>dNTP Mixture</td>
<td>10 ×</td>
<td>5 µl</td>
</tr>
<tr>
<td>Klenow Fragment</td>
<td>40 U/µl</td>
<td>1 µl</td>
</tr>
</tbody>
</table>

3.4.2.5 Erstellung des Hybridisierungsgemisches

Die Hybridisierung der fragmentierten, biotinylierten, gereinigten DNS mit den Sonden des Microarrays erfolgte in einem Puffer gemisch, dessen Bestandteile stabilisierend auf die DNS wirkten und unspezifische Interaktionen verminderten. Zudem enthielt das Hybridisierungsgemisch, dessen genaue Zusammensetzung Tabelle 3.4.2.5 zu entnehmen ist, die unterschiedlich konzentrierten Hybridisierungskontrolloligonukleotide gelöst in dH₂O (4.1.4.3).
Tabelle 3.4.2.5: Zusammensetzung des Hybridisierungsgemisches.

<table>
<thead>
<tr>
<th>Bestandteil</th>
<th>Konzentration</th>
<th>Volumen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hybridisierungspuffer</td>
<td>2×</td>
<td>125µl</td>
</tr>
<tr>
<td>Acetylated BSA</td>
<td>50 mg/ml</td>
<td>2,5 µl</td>
</tr>
<tr>
<td>DNA from salmon testes</td>
<td>10 mg/ml</td>
<td>2,5 µl</td>
</tr>
<tr>
<td>fragmentierte biotinylierte gereinigte DNS</td>
<td>~15 ng/µl</td>
<td>50 µl</td>
</tr>
<tr>
<td>Hybridisierungskontrolloligonukleotid H2NC000001</td>
<td>15,625 pg/µl</td>
<td>2 µl</td>
</tr>
<tr>
<td>Hybridisierungskontrolloligonukleotid H2NC000002</td>
<td>31,25 pg/µl</td>
<td>2 µl</td>
</tr>
<tr>
<td>Hybridisierungskontrolloligonukleotid H2NC000003</td>
<td>62,5 pg/µl</td>
<td>2 µl</td>
</tr>
<tr>
<td>Hybridisierungskontrolloligonukleotid H2NC000004</td>
<td>125 pg/µl</td>
<td>2 µl</td>
</tr>
<tr>
<td>Hybridisierungskontrolloligonukleotid H2NC000005</td>
<td>250 pg/µl</td>
<td>2 µl</td>
</tr>
<tr>
<td>dH₂O</td>
<td>60 µl</td>
<td></td>
</tr>
</tbody>
</table>

Die Denaturierung der doppelsträngigen DNS-Fragmente erfolgte in einem Thermocycler (Biometra) für 5 min bei 95°C. Ein Aliquot von 25 µl des Hybridisierungsgemisches wurde für die Hybridisierung eines Microarrays eingesetzt (3.4.2.6).

3.4.2.6 Hybridisierung

3.4.2.7 Färbung und Signaldetektion

3.5 EDV-Methoden

Die Entwicklung und Anwendung des speziesübergreifenden Microarrays erforderte die Verwendung verschiedener Computerprogramme und Datenbanken für die Selektion der Gene (3.5.1), die Analyse von Nukleinsäuresequenzen (3.5.2) und die Auswertung der Hybridisierungsergebnisse (3.5.3).

3.5.1 Selektion der Streptokokkengene für den Microarray

3.5.1.1 Auswahl von Genen extrazellulärer Proteine

3.5.1.2 Auswahl zusätzlicher Gene

Zusätzlich wurden Streptokokkengene in die Auswahl aufgenommen, die für beschriebene extrazelluläre Proteine oder Virulenzfaktoren codieren. Dafür wurden die Protein- und Gendatenbanken von Oralstreptokokken der Arten *Streptococcus mitis, Streptococcus oralis, Streptococcus gordonii, Streptococcus sanguinis, Streptococcus parasanguinis, Streptococcus anginosus, Streptococcus intermedius, Streptococcus constellatus* und *Streptococcus salivarius* sowie von *Streptococcus dysgalactiae spp. equisimilis* und *Streptococcus equi spp. zooepidemicus* aus der Gruppe der G- und C-Streptokokken durchsucht.
3 Material und Methoden

3.5.2 Sequenzanalysen

3.5.3 Signalverarbeitung

Nachdem die Sondensignale der hybridisierten Microarrayslides ausgelesen waren (3.4.2.8), lagen sie in Form von digitalen Bilddaten vor. Für die Analyse der Hybridisierungsergebnisse wurden die Fluoreszenzsignale zu Datensätzen bestehend aus Sondenbezeichnung und korrespondierenden Intensitätswerten für Signal und Hintergrund umgeformt (3.5.3.1). Diese Datensätze wurden für vergleichende Clusteranalysen normalisiert (3.5.3.2) oder für die Einzelgenauswertung in binäre Präsenz-Absenz-Daten umgeformt (3.5.3.3).

3.5.3.1 Auslesen der Fluoreszenzintensitäten

3.5.3.2 Normalisierung und Clusteranalysen

Um die Beziehungen zwischen den verschiedenen Streptokokkenarten analysieren zu können, wurde die Vergleichbarkeit der Hybridisierungsergebnisse verschiedener Microarrayanalysen auf mathematischem Wege ermöglicht (4.1.5.1). Dafür wurden Tabellenvorlagen für das Programm Excel 2000 (Microsoft®) entwickelt, in die die

3.5.3.3 Schwellenwertberechnungen und Einzelgenauswertung

Um Vorkommen und Verteilung von virulenzrelevanten Genen innerhalb der analysierten Streptokokkenisolate zu untersuchen, war eine Umformung der Fluoreszenzintensitäten in eindeutige Präsent-Absenz-Aussagen nötig (4.1.5.2). Tabellenvorlagen für das Programm Excel 2000 (Microsoft®) wurden entwickelt, in die die bereinigten Datensätze (3.5.3.1) geladen wurden. Die Signalinformationen wurden automatisch nach Pinarray und Genbezeichnung sortiert. Die vier Replikate jeder Gen- und Kontrollsonde wurden durch Berechnung des arithmetischen Mittelwerts zusammengefasst. Für jeden Pinarray wurde der Schwellenwert als das 1,5-fache des arithmetischen Mittelwertes aller Replikate der vier Spezifitätskontrollen festgelegt (4.1.5.2). Alle Gene, deren arithmetischer Mittelwert der vier Gensondenreplikate, reduziert um die korrespondierende Standardabweichung, größer war, als der berechnete Schwellenwert, wurden als im Genom vorhanden gewertet. Die Datensätze wurden dadurch in eine binäre Form umgeschrieben, die die weitere Auswertung ermöglichte. Die Auswertung und grafische Darstellung der digitalisierten Datensätze (3.5.3.3) erfolgte mit Hilfe verschiedener Filter-, Zähl- und Sortierfunktionen des Programms Excel 2000 (Microsoft®).
4 Ergebnisse

Ziel der vorliegenden Arbeit war es, einen Einblick in die phylogenetischen Beziehungen und das Repertoire an Pathogenitätsmechanismen der Oralstreptokokken zu erlangen. Hierfür wurde ein speziesübergreifender Virulenzfaktormicroarray entwickelt (4.1) und eine Sammlung klinischer Oralstreptokokkenisolate mit diesem untersucht (4.2). Eine zusammenfassende Projektübersicht ist im Anhang dieser Arbeit (6.1) zu finden.

4.1 Entwicklung des Microarrays

Die Entwicklung des speziesübergreifenden Virulenzfaktormicroarrays kann zu fünf Schritten zusammengefasst werden. Die Gene, deren Präsenz in bakteriellen Genomen mit Hilfe des Microarrays untersucht werden sollte, wurden ausgewählt (4.1.1). Es wurden interne Kontrollen entwickelt, die die Vergleichbarkeit der Microarrayanalysen gewährleisteten und eine eindeutige Interpretation ermöglichten (4.1.2). Eine zweckdienliche Anordnung der entwickelten Streptokokkengensonden und Kontrollsonden innerhalb des Microarrays wurde ausgearbeitet (4.1.3). Im Rahmen der Methodenentwicklung der Hybridisierung wurden durch Testhybridisierungen die Kontrollen eingestellt sowie die optimale Menge an genomischer DNS pro Hybridisierung ermittelt (4.1.4). Mathematische Methoden zur Signalkomparierung und Auswertung wurden entwickelt (4.1.5).

4.1.1 Auswahl der Streptokokkengene

Streptococcus agalactiae A909, Streptococcus pneumoniae R6 sowie Streptococcus mutans UA159, die das Grundgerüst der Genauswahl bildeten (Methode 1). Die zusätzlich ausgewählten Virulenzfaktorgene aus anderen Streptokokkenarten (Methode 2) stellten zusammen ~20% der Gesamtauswahl dar. Abbildung 4.1.1. zeigt die Verteilung der Genauswahl, die nach Ursprungsspezies der Gene geordnet ist.

4.1.2 Entwicklung interner Kontrollen

Der speziesübergreifende Microarray wurde für zwei Aufgabenstellungen entwickelt. Zum einen für vergleichende Betrachtungen, um die phylogenetischen Beziehungen zwischen den untersuchten Streptokokkenarten zu analysieren, zum anderen, um Einblicke in Genvorkommen und Genverteilung innerhalb der analysierten Isolate zu ermöglichen. Für die Bearbeitung der ersten Aufgabenstellung war es unerlässlich, eine Vergleichbarkeit der Daten aus verschiedenen Hybridisierungsexperimenten herzustellen. Dazu mussten Kontrollen, die einen Ausgleich experimenteller Abweichungen ermöglichen, entwickelt werden (4.1.2.1 bis 4.1.2.3). Für die Bearbeitung der zweiten Aufgabenstellung waren weitere Kontrollen nötig, die es erlaubten, zwischen spezifischen und unspezifischen Signalen zu unterscheiden. Mit diesen Kontrollen sollte die Berechnung eines Schwellenwertes ermöglicht werden, um Fluoreszenzintensitäten in eindeutige Präsenz-Absenz-Aussagen umformen zu können (4.1.2.4).
4 Ergebnisse

4.1.2.1 Genomkontrollen

<table>
<thead>
<tr>
<th>16S-rRNA-Sonde</th>
<th>Streptococcus pyogenes MGAS315</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[AminoC6]AAGCGGTGGAGCATGTGGTTTAATTCGAAGCAACGCGAAGAACCTTACCAGGTCTTGACATC</td>
</tr>
<tr>
<td>Streptococcus agalactiae A909</td>
<td></td>
</tr>
<tr>
<td>Streptococcus pneumoniae R6</td>
<td></td>
</tr>
<tr>
<td>Streptococcus mutans UA159</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>23S-rRNA-Sonde</th>
<th>Streptococcus pyogenes MGAS315</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[AminoC6].CGCGCGTAACGTAAACGGTCCTAAGGTAGCGAAATTCCTTGTCGGGTAAGTTCCG</td>
</tr>
<tr>
<td>Streptococcus agalactiae A909</td>
<td></td>
</tr>
<tr>
<td>Streptococcus pneumoniae R6</td>
<td></td>
</tr>
<tr>
<td>Streptococcus mutans UA159</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>eno-Sonde</th>
<th>Streptococcus pyogenes MGAS315</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[AminoC6]TTACAGC-TACCTTGGTGATTCAAACCTAAAGTCTCTTGGTTAAGTTCCG</td>
</tr>
<tr>
<td>Streptococcus agalactiae A909</td>
<td></td>
</tr>
<tr>
<td>Streptococcus pneumoniae R6</td>
<td></td>
</tr>
<tr>
<td>Streptococcus mutans UA159</td>
<td></td>
</tr>
</tbody>
</table>

4.1.2.2 Markierungskontrollen

Fluoreszenzsignale ermöglichten Detektion und Vergleich der hybridisierten DNS-Fragmente. Die Intensität dieser Signale ist abhängig von der Effizienz der Markierung der DNS-Fragmente. Um die Vergleichbarkeit zwischen verschiedenen Hybridisierungsexperimenten herzustellen, wurde die Markierungseffizienz der fragmentierten bakteriellen Genome durch sogenannte Spiked-In Kontrollen überprüft. Dabei handelte es sich um zwei Oligonukleotidsonden, die nicht mit bekannten Sequenzen aus der Gattung Streptococcus hybridisieren (Abbildung
4.1.2.2.1). Oligonukleotide derselben Sequenz (Abbildung 4.1.2.2.2) wurden in
definierten Mengen in dH$_2$O gelöst der Markierungsreaktion hinzugefügt, sodass
komplementäre biotinylierte Oligonukleotide synthetisiert wurden. Die
Fluoreszenzintensitäten dieser zwei Kontrollen nach Hybridisierung und
Färberreaktion erlaubten Rückschlüsse auf die Markierungseffizienz der
fragmentierten bakteriellen Genome. Abweichungen in den Signalintensitäten,
hervorgerufen durch Varianzen im experimentellen Ablauf der Markierungsreaktion,
konnten dadurch überwacht und mathematisch ausgeglichen werden.

Abbildung 4.1.2.2.1: Nukleinsäuresequenzen der Markierungskontrollsonden. Dargestellt sind die
69 bp-langen Nukleinsäuresequenzen der Markierungskontrollsonden, die über einen AminoC6-
Anker auf dem Slide immobilisiert wurden.

Abbildung 4.1.2.2.2: Nukleinsäuresequenzen der Markierungskontrolloligonukleotide. Dargestellt
sind die 68 bp-langen Nukleinsäuresequenzen der Markierungskontrolloligonukleotide, die vor der
Markierungsreaktion in verschiedenen Mengen der fragmentierten genomischen DNS
hinzugefügt wurden.

4.1.2.3 Hybridisierungskontrollen

Die experimentelle Durchführung der Hybridisierungsreaktion stellte eine weitere
Quelle für interexperimentelle Signalabweichungen dar. Um die Vergleichbarkeit
verschiedener Hybridisierungsexperimente zu gewährleisten, wurde die
experimentelle Durchführung mit Hilfe von fünf Spiked-In Kontrollen überwacht.
Die Nukleinsäuresequenzen dieser Sonden wurden so gewählt, dass keine
Hybridisierung mit bekannten Sequenzen aus Streptokokken stattfand (Abbildung
4.1.2.3.1). Vor jeder Hybridisierung wurden standardisierte Mengen der in dH$_2$O
gelösten komplementären 5’-biotinylierten Oligonukleotide in das Hybridisierungs-
gemisch gegeben. Anhand der Fluoreszenzintensitäten dieser Kontrollen wurden
Varianzen in den Signalintensitäten verschiedener Hybridisierungsexperimente
erkannt und mathematisch ausgeglichen (4.1.5.1)
4 Ergebnisse

H2NC0000001-Sonde
[AminoC6]GTACACATGGGATGAGCCTCCTTCTATGAAATCCGGAGCAGCGATGTGTT

H2NC0000002-Sonde
[AminoC6]TGATGACTGGAGACTGCACTGAGGCTCTATGAGGAGGCTCAGTATTT

H2NC0000003-Sonde
[AminoC6]CTTCGATCTCCGACATCCGGCTATGAGGCTCTAGGCTAGTACTGCTGAGGG

H2NC0000004-Sonde
[AminoC6]TTGGTATATGGCAACACATGCGG

H2NC0000005-Sonde
[AminoC6]TTGGGTATATGCAAGAC

Abbildung 4.1.2.3.1: Nukleinsäuresequenzen der Hybridisierungskontrollsonden. Dargestellt sind die 69 bp-langen Nukleinsäuresequenzen der Markierungskontrollsonden, die über einen AminoC6-Anker auf dem Slide immobilisiert wurden.

H2NC0000001-Oligonukleotid
[5′Biotin]ACCATCCGCTCTGGGCTTCGCACTTACTAGTTACGTAAGGAGGTGGGACGATTA

H2NC0000002-Oligonukleotid
[5′Biotin]GCAAATGAATGCACTGATGCTGAGACAATGACGATGCTGATG

H2NC0000003-Oligonukleotid
[5′Biotin]CCGAGTTCAGCGATAACCGTGACCAGTAACGGTACCCTAGCGCATAGCGCGGATGTCCGAGTCAAGAA

H2NC0000004-Oligonukleotid
[5′Biotin]GAAGATATGCTGGGCAGTACACTGTAAGGAGGTGGGACGATTA

H2NC0000005-Oligonukleotid
[5′Biotin]GTCTTGCATATACCCACCGCATGTTGCTCGTCGCGACATAAACGACGATACCTCATATAGCAAGAC

Abbildung 4.1.2.3.2: Nukleinsäuresequenzen der Hybridisierungskontrolloligonukleotide. Dargestellt sind die 68 bp-langen Nukleinsäuresequenzen der 5′-biotinylierten Hybridisierungskontrolloligonukleotide, die vor der Hybridisierung in verschiedenen Mengen dem Hybridisierungsmedium hinzugefügt wurden.

4.1.2.4 Spezifitätskontrollen

hybridisierten DNS-Fragmenten und Druckpufferkomponenten. Zum anderen lieferten sie die Nullpunktwerte für die mathematische Korrektur experimenteller Varianzen (4.1.5.1).

Abbildung 4.1.2.4: Nukleinsäuresequenzen der Spezifitätskontrollsonden. Dargestellt sind die Nukleinsäuresequenzen der Spezifitätskontrollsonden, die über einen AminoC6-Anker auf dem Slide immobilisiert wurden.

4.1.3 Sondenanordnung innerhalb des Microarrays

umfasste ein Microarray 1016 verschiedene Oligonukleotidsonden. Der benutzte Druckroboter konnte innerhalb eines Microarrays Pinarrays mit einer Kantenlänge von maximal 16×16 Spots drucken, was einer Gesamtheit von 4096 Spots pro Microarray entspricht. Somit war es möglich, jede Oligonukleotidsonde in vier Replikaten zu drucken. Um eine automatisierte Bildauswertung zu ermöglichen, wurden die Kontrollsonden in Form eines Rahmens um jeden Pinarray gedruckt, was die optische Separation der sehr nah beieinanderliegenden Pinarrays erleichterte. Die Anordnung der vier Replikate der Kontrollsonden innerhalb eines Pinarray wird in Abbildung 4.1.3.2 verdeutlicht.

Abbildung 4.1.3.2: Schematische Darstellung eines Pinarrays. Dargestellt ist die Anordnung der Genomkontrollsonden (grün), Markierungskontrollsonden (violett), Hybridisierungskontrollsonden (blau), Spezifitätkontrollsonden (rot) sowie der Druckpufferkontrolle (gelb). Die auf der rechten Seite aufgeführte Anordnung wiederholt sich auf den anderen drei Außenkanten des Pinarrays. Der innere Bereich des Pinarrays beinhaltet die Gensonden (weiss).

4.1.4 Testhybridisierungen

Nachdem die theoretischen Arbeiten am Design des Microarray abgeschlossen waren, wurden Testhybridisierungen durchgeführt. Die optimale Menge an bakterieller DNS pro Hybridisierungsexperiment wurde bestimmt (4.1.4.1). Es wurde überprüft, ob die entwickelten speziesübergreifenden Genomkontrollen zuverlässig arbeiteten (4.1.4.2). Für die Spiked-In Kontrollen musste die optimale Menge an Oligonukleotiden bestimmt werden, um die Markierungsreaktion und die Hybridisierung effizient überwachen zu können (4.1.4.3). Da der größte Teil der Gene auf dem Microarray aus den vier Streptokokkenstämmen *Streptococcus pyogenes* MGAS315, *Streptococcus agalactiae* A909, *Streptococcus pneumoniae* R6 sowie *Streptococcus mutans* UA159 stammte, wurden die Testhybridisierungen mit der genomischen DNS dieser vier Teststämme durchgeführt.
4.1.4.1 Einstellung der Hybridisierungsmenge der genomischen DNS

Um den Intensitätsbereich des Fluoreszenzdetektors (3.4.2.8) mit den Signalen der hybridisierten DNS-Fragmente effizient zu nutzen, wurde die Menge an bakterieller DNS pro Hybridisierungsreaktion optimiert. Verschiedene Massen fragmentierter genomischer DNS wurden in die Markierungsreaktion (3.4.2.4) eingesetzt. Bei der anschließenden Aufreinigung (3.4.1.2) wurde das Volumen der biotinylierten Oligonukleotide so eingestellt, dass diese vollständig in das Hybridisierungsgemisch (3.4.2.5) übernommen werden konnten. Abbildung 4.1.4.1 zeigt die Fluoreszenzintensitäten der Spezifitätskontrollen, der Druckpufferkontrollen sowie korrespondierender Hintergrundaktivitäten der Hybridisierungen von jeweils 25µl des Hybridisierungsgemisches (3.4.2.5), zu dessen Herstellung jeweils 750ng der fragmentierten genomischen DNS der vier Teststämme (MGAS315, A909, R6, UA159) in die Markierungsreaktion (3.4.2.4) eingesetzt wurden.

Abbildung 4.1.4.1: Einfluss der Hybridisierungsmenge der genomischen DNS auf die Fluoreszenzintensität der Spezifitätskontrollen. Dargestellt sind die arithmetischen Mittelwerte sowie Standardabweichungen der Fluoreszenzsignale aller Spezifitätskontrollen (rot), Druckpufferkontrollen (gelb), und korrespondierender Hintergrundaktivitäten (grau) gemittelt über den gesamten Microarray. Jeweils 750ng der fragmentierten genomischen DNS der vier Teststämme (MGAS315, A909, R6, UA159) wurden in die Markierungsreaktion eingesetzt und anschließend 25µl des Hybridisierungsgemisches auf jeweils einem Microarray hybridisiert.

4.1.4.2 Überprüfung der Genomkontrollen

Die phylogenetischen Abstände zwischen Streptococcus pyogenes MGAS315, Streptococcus agalactiae A909, Streptococcus pneumoniae R6 und Streptococcus mutans UA159 stellten für den entwickelten Microarray Extreme dar, die eine umfassende Erprobung der speziesübergreifenden Genomkontrollen ermöglichten. Abbildung 4.1.4.2 zeigt die Fluoreszenzsignale der Genomkontrollen nach Hybridisierung von 25 µl des Hybridisierungsgemisches (3.4.2.5), zu dessen Herstellung jeweils 750 ng der fragmentierten genomischen DNS der vier Teststämme (MGAS315, A909, R6, UA159) in die Markierungsreaktion (3.4.2.4) eingesetzt wurden.

Abbildung 4.1.4.2: Testhybridisierung zur Überprüfung der Genomkontrollen. Dargestellt sind die arithmetischen Mittelwerte sowie Standardabweichungen der Fluoreszenzsignale aller Genomkontrollen (grün) und korrespondierender Hintergrundaktivitäten (grau) gemittelt über den gesamten Microarray. Proben von 750 ng der fragmentierten genomischen DNS der vier Teststämme (MGAS315, A909, R6, UA159) wurden getrennt biotinyliert und 25 µl des Hybridisierungsgemisches auf jeweils einem Microarray hybridisiert.
4 Ergebnisse

Die 16S-rRNA-Sonde sowie die 23S-rRNA-Sonde zeigten als Positivkontrollen deutliche Fluoreszenzsignale, die die speziessübergreifende Funktionalität dieser Genomkontrollen bestätigten. Im Vergleich zu den rRNA-Sonden erzeugte die eno-Sonde deutlich schwächere Signale. Dies kann sowohl auf die nichtkonservierten Bereiche in der eno-Sondensequenz als auch auf das Vorhandensein mehrerer Genkopien der rRNA-Gene in den Genomen der Teststämme zurückgeführt werden.

4.1.4.3 Einstellung der Spiked-In Kontrollen

Um mögliche Einflüsse der experimentellen Durchführung auf die Vergleichbarkeit der Hybridisierungsergebnisse feststellen und ausgleichen zu können, wurden verschiedene Spiked-In Kontrollen entwickelt (4.1.2.2 und 4.1.2.3). Damit diese effizient arbeiteten, mussten die Kontrolloligonukleotide in Mengen eingesetzt werden, die in Fluoreszenzintensitäten resultieren, die gleichmäßig verteilt den gesamten Fluoreszenzintensitätsbereich der Gensonden abdeckten. Abbildung 4.1.4.3.1 zeigt die experimentell optimierten Mengen der Kontrolloligonukleotide und die daraus resultierenden Fluoreszenzintensitäten der einzelnen Kontrollsonden bei einer Testhybridisierung mit dem Genom von Streptococcus pyogenes MGAS315.

Abbildung 4.1.4.3.1: Optimierung der Spiked-In Kontrollen. Eine Probe von 750 ng der fragmentierten genomischen DNS von Streptococcus pyogenes MGAS315 wurde zusammen mit 62,5 pg und 250 pg der Markierungskontrolloligonukleotide biotinyliert und zusammen mit 31,25 pg, 62,5 pg, 125 pg, 250 pg sowie 500 pg der Hybridisierungskontrolloligonukleotide in das Hybridisierungsmedium gegeben (Massenangabe in Klammern). Ein Aliquot von 25 µl des Hybridisierungsmisches wurde auf dem Microarray hybridisiert. Dargestellt sind die arithmetischen Mittelwerte sowie Standardabweichungen der Fluoreszenzsignale aller Hybridisierungskontrollen (blau), Markierungs- kontrollen (violet), Druckpufferkontrollen (gelb) und korrespondierender Hintergrundaktivitäten (grau) gemittelt über den Microarray.
Ausgehend von der Druckpufferkontrolle, deren Fluoreszenzintensität nahe der Hintergrundaktivität blieb, wurde eine exponentielle Massenverteilung der Hybridisierungskontrolloligonukleotide sowie der Markierungskontrolloligonukleotide gewählt, die dementsprechend in einer exponentiellen Verteilung der Fluoreszenzintensitäten der Kontrollsonden resultierte. Abbildung 4.1.4.3.1 zeigt eine Gegenüberstellung der Fluoreszenzintensitäten der optimierten Spiked-In Kontrollsonden und der Fluoreszenzsignalverteilung der Gensonden einer Testhybridisierung.

Abbildung 4.1.4.3.2: Gegenüberstellung der Fluoreszenzintensitäten der Spiked-In Kontrollen und des Fluoreszenzintensitätsbereichs der Gensonden. Eine Probe von 750 ng der fragmentierten genomischen DNS von *Streptococcus pyogenes* MGAS315 wurde zusammen mit 62,5 pg und 250 pg der Markierungskontrolloligonukleotide biotinyliert und zusammen mit 31,25 pg, 62,5 pg, 125 pg, 250 pg sowie 500 pg der Hybridisierungskontrolloligonukleotide in das Hybridisierungsgemisch gegeben (Massenangabe in Klammern). Ein Aliquot von 25 µl des Hybridisierungsgemisches wurde auf dem Microarray hybridisiert. Dargestellt sind die arithmetischen Mittelwerte der Fluoreszenzsignale aller Gensonden geordnet nach Intensität (schwarz) sowie die Hybridisierungskontrollen (blau), Markierungskontrollen (violett) und Druckpufferkontrollen (gelb) gemittelt über den Microarray.

4.1.5 Berechnungen zur Signalintensität

Für die Auswertung der Ergebnisse des speziesübergreifenden Microarrays (4.1.2) wurden Kontrollen entwickelt, mit denen interexperimentelle Schwankungen ausgeglichen werden konnten, um die Vergleichbarkeit der Ergebnisse einzelner Hybridisierungsexperimente herzustellen (4.1.2.2 und 4.1.2.3). Außerdem wurden Kontrollen benötigt, mit deren Hilfe Schwellenwerte berechnet werden konnten, die die Unterscheidung zwischen spezifischen und unspezifischen Signalen ermöglichten (4.1.2.4).

Anhand der integrierten Spiked-In Kontrollen (4.1.2.2 und 4.1.2.3) wurden Ursachen interexperimenteller Variabilität in den Signalintensitäten gesucht. Vergleichende Testhybridisierungen, durchgeführt mit einem Gemisch der genomischen DNS von Streptococcus pyogenes MGAS315, Streptococcus agalactiae A909, Streptococcus pneumoniae R6 und Streptococcus mutans UA159, sollten Einflüsse des experimentellen Ablaufs anhand der integrierten Kontrollen erkennen lassen. Abbildung 4.1.5.1 zeigt die Fluoreszenzintensitäten der Testhybridisierung auf zwei Microarrays eines Slides in einer Gegenüberstellung.

Für die Untersuchung der Genverteilung in verschiedenen Streptokokkenisolaten war eine Umformung der Fluoreszenzsignale in eindeutige Präsenz-Absenz-Aussagen nötig. Mit Hilfe der Spezifitätskontrollen (4.1.2.4) wurden Schwellenwerte ermittelt, die für jede Gensonde die Unterscheidung von spezifischen und unspezifischen Fluoreszenzsignalen ermöglichte. Dafür wurde eine signalabhängige pinarraybezogene Schwellenwertberechnung entwickelt (4.1.5.2).

4.1.5.1 Signalnormalisierung

Die Gegenüberstellung der Fluoreszenzintensitäten der Gen- und Kontrollsonden zeigte eine Verlagerung der Signale in den Bereich rechts von der Diagonalen. Dieser Effekt war bei niedriger Signalintensität sehr gering und steigerte sich mit zunehmender Signalstärke. Die Verlagerung, die die interexperimentelle Abweichung der Fluoreszenzintensitäten der beiden Microarrays voneinander beschreibt, wurde durch verschiedene Trendlinien verdeutlicht. Die Tatsache, dass die Regressionen der Trendlinienpolynome sowohl für die Gensonden als auch für die Kontrollenreihe aus Hybridisierungskontrollen und Druckpufferkontrolle ein
höheres Bestimmtheitsmaß aufwiesen als die Regressionen der linearen Trendlinien, zeigte an, dass sich die experimentellen Einflüsse mit zunehmender Signalintensität nicht linear auswirkten. Zum Ausgleich dieser Effekte musste folglich ein nichtlineares Modell angewendet werden. Abbildung 4.1.5.1.2 verdeutlicht die Normalisierung am Beispiel der Fluoreszenzsignale der Hybridisierungskontrollen sowie der Druckpufferkontrolle der bereits beschriebenen Testhybridisierung (Abbildung 4.1.5.1.1).

4 Ergebnisse

Die Gegenüberstellung zeigt die Abweichung der Fluoreszenzintensitäten der Hybridisierungskontrollen (blaue Punkte) sowie der Druckpufferkontrollen (gelber Punkt) der beiden Microarrayhybridisierungen voneinander. Ein Polynom zweiten Grades wurde mit Hilfe der Methode der kleinsten Fehlerquadrate als Trendlinie der sechs Punkte berechnet (blaue Linie). Die Funktion dieses Polynoms drückt die Abweichung der Signalintensitäten des oberen Microarrays (y) von den Signalintensitäten des unteren Microarrays (x) aus.

\[y = -0,000018x^2 + 0,8063x + 85,66 \]

Anhand dieser Funktion konnten die mit den Kontrollpunkten (blaue Punkte und gelber Punkt) korrespondierenden Abweichpunkte (grüne Punkte) berechnet werden. Diese stellten für jeden Kontrollpunkt die Differenz aus der Signalintensität des oberen und unteren Microarrays (y) in Abhängigkeit von der Signalintensität des unteren Microarrays (x) dar. Diese Abhängigkeit wurde als Polynom zweiten Grades durch sechs Abweichpunkte ausgedrückt. (grüne Linie).

\[y = 0,00005x^2 + 0,2020x - 88,84 \]

Die Funktion dieser Abweichkurve beschreibt die Differenz zwischen den Fluoreszenzintensitäten des oberen und unteren Microarrays. Folglich konnte durch Addition eine signalabhängige Normalisierung der abweichenden Werte (blaue Punkte und gelber Punkt) durchgeführt werden. Wie Abbildung 4.1.5.1.2 zeigt, kommen die normalisierten Werte der Kontrollpunkte auf der Diagonalen zu liegen (rote Punkte).

\[y = (0,00005x^2 + 0,2020x - 88,84) + x \]

Anhand dieser Methode war es möglich, für jedes Hybridisierungsexperiment eine Korrekturformel zu berechnen, die die Abweichung eines Signals in Abhängigkeit von seiner Fluoreszenzintensität ausgleicht. Abbildung 4.1.5.1.3 verdeutlicht die Auswirkungen der Normalisierung auf die Fluoreszenzsignale der Gensonden.

Der Vergleich der Signalverteilung in Abbildung 4.1.5.1.3 mit der Verteilung vor der Normalisierung in Abbildung 4.1.5.1.1 zeigte deutlich den Effekt der Normalisierung auf die Daten. Die normalisierten Fluoreszenzsignale der Kontrollenreihe aus Hybridisierungskontrollen und Druckpufferkontrolle lagen im Vergleich zu den nicht normalisierten Werten nahe der Diagonalen, die Formel der eingefügten Trendlinie \(y = -0.0000006 x^2 + 1.0015 x + 0.33 \) näherte sich der Diagonalen \((x = y) \) an. Die Signale der Gensonden verteilt sich nach der Normalisierung deutlich

Wie oben beschrieben, wurden zur Veranschaulichung der Auswirkungen der entwickelten Normalisierung die Signalintensitäten des oberen Microarrays anhand der Signale des unteren Microarrays korrigiert. Die Normalisierung umfangreicherer Datensätze (4.2.1) bezog sich hingegen auf den arithmetischen Mittelwert der einzelnen Kontrollpunkte gemittelt über den gesamten Datensatz aus 49 Hybridisierungsexperimenten. Abbildung 4.1.5.1.4 und 4.1.5.1.5 verdeutlichen den Einfluss der Normalisierung auf einen Datensatz aus 49 hybridisierten Isolaten (4.2.1).

Die Fluoreszenzsignale der Kontrollsonden der einzelnen Hybridisierungen zeigten vor der Normalisierung deutliche Abweichungen voneinander. Die Ursache dieser Variationen waren, wie bereits gezeigt (Abbildung 4.1.5.1), interexperimentelle Abweichungen zwischen den Hybridisierungsreaktionen. Bestätigt wurde diese Beobachtung durch das Signalverhalten der Genomkontrollen und der Markierungs-
kontrollen, die den wellenförmigen Signalvariationen der Hybridisierungskontrollen folgten.

4.1.5.2 Schwellenwertberechnung

Die Anwendung des speziesübergreifenden Microarrays zur Untersuchung der genetischen Ausstattung einzelner Streptokokkenisolate sollte einen Einblick in genetische Ähnlichkeiten und den genetischen Austausch innerhalb der Gattung
Streptococcus ermöglichen. Dafür wurden anhand der Spezifitätskontrollen Schwellenwerte berechnet, die es ermöglichen, für jede Gensonde zwischen spezifischen und unspezifischen Fluoreszenzsignalen zu unterscheiden, um eindeutige Präsenz-Absenz-Aussagen (binäre Aussage) treffen zu können. Da sowohl das 16S-rRNA-Gen als auch das 23S-rRNA-Gen bei Streptokokken in mehreren Kopien im Genom vorhanden ist, waren die Signalintensitäten dieser Genomkontrollen für die Optimierung der Schwellenwertberechnung ungeeignet. Die Signalintensitäten der eno-Sonde, deren korrespondierendes Gen im Genom der vier Teststämme (MGAS315, A909, R6, UA159) nur jeweils einmal vorkommt und teilweise Sequenzfehlpaarungen aufweist (Abbildung 4.1.2.1.2), wurde als Referenz für das Signalverhalten der Gensonden bei der Berechnung des optimalen Schwellenwertes eingesetzt. Daher musste eine Schwellenwertberechnung entwickelt werden, die auf den Signalintensitäten der Spezifitätskontrollen beruht und die Signale der eno-Sonden als im Genom vorhanden klassifiziert. Um des weiteren sicherzustellen, dass ausschließlich Gensonden signifikant starker Signalintensität als positiv gewertet wurden, wurden die arithmetischen Mittelwerte der vier Replikate jeder Gensonde um die korrespondierende Standardabweichung reduziert. Abbildung 4.1.5.2.1 zeigt die Mittelwerte und Standardabweichungen der Fluoreszenzintensitäten der eno-Sonde, der Spezifitätskontrollen sowie der berechneten Schwellenwerte für die hybridisierte genomische DNS der vier Teststämme (MGAS315, A909, R6, UA159) für den gesamten Microarray.

Abbildung 4.1.5.2.1: Ermittlung des Schwellenwertes. Dargestellt sind die arithmetischen Mittelwerte sowie die korrespondierenden Standardabweichungen der Fluoreszenzintensitäten der eno-Sonde (grün) und der Spezifitätskontrollen (rot) der Hybridisierung der genomischen DNS von Streptococcus pyogenes MGAS315, Streptococcus agalactiae A909, Streptococcus pneumoniae R6 sowie Streptococcus mutans UA159 gemittelt über den gesamten Microarray. Als Schwellenwert (schwarzer Balken) wurden 150% des arithmetischen Mittelwertes der Spezifitätskontrollen festgelegt.
Ein Schwellenwert von 150% des arithmetischen Mittelwertes der Spezifitätskontrollen erwies sich als geeignet. Selbst nach Abzug der Standardabweichung waren die Signale der eno-Sonden deutlich oberhalb der berechneten Schwellenwerte. Zudem befanden sich die Schwellenwerte in ausreichendem Abstand zum Signalvarianzbereich der Spezifitätskontrollen, was Falschwertungen durch Schwankungen der Signalintensität der Kontrollsonden vorbeugte.

4 Ergebnisse

4.2 Microarrayanalysen klinischer Isolate

Ziel dieser Arbeit war es, den speziesübergreifenden Virulenzfaktormicroarray einzusetzen, um einen Einblick in die Pathogenität innerhalb der Gruppe der Oralstreptokokken zu erhalten. Dazu wurde eine Auswahl klinischer Isolate mit Hilfe des entwickelten Microarraysystems analysiert (4.2.1), um anhand von Vorkommen und Verteilung virulenzrelevanter Gene mögliche Ursachen für die Pathogenität der Oralstreptokokken aufzuklären (4.2.3). Zudem wurde mit Hilfe der Microarrayanalysen eine eindeutige Spezieszuordnung der ausgewählten Isolate gewährleistet (4.2.2.1). Dies sollte nicht nur der Bewertung des entwickelten Microarraysystems als Speziestypisierungsmethode dienen, sondern auch Einblicke in die phylogenetischen Beziehungen zwischen den analysierten Isolaten ermöglichen (4.2.2.2). Die Identifizierung gruppen- und speziesspezifischer Gensonden stellt zudem eine Vorarbeit zur Entwicklung eines diagnostischen Microarraysystems und anderer hybridisierungsbasierter Diagnosemethoden (fluorescence in situ hybridization, PCR) dar (4.2.4).

4.2.1 Auswahl und Analyse klinischer Oralstreptokokkenisolate

Aus einer Sammlung klinischer Isolate, erstellt vom Institut für Mikrobiologie und Infektionsepidemiologie des Universitätsklinikums Leipzig (3.2.1), wurden 45 Isolate für die Microarrayanalysen ausgewählt. Da der Beitrag einzelner Spezies zur Pathogenese multibakterieller Infektionen schwer zu analysieren ist, wurden bei der Auswahl Isolate aus Monoinfektionen bevorzugt. Um eine eindeutige Spezieszuordnung der ausgewählten Isolate zu gewährleisten, wurden die Spezietypisierungen der biochemischen Analytik des API® 20 Strep Systems und der PCR-Tests durch 16S-rRNA-Gensequenzanalysen erweitert. Dazu wurden definierte Bereiche des 16S-rRNA-Gens aller ausgewählten Streptokokkenisolate aus der genomischen DNS (3.4.1.1) amplifiziert (3.4.1.4), aufgereinigt (3.4.1.2) und sequenziert (3.4.1.5). Durch einen Datenbankvergleich der amplifizierten 16S-rRNA-Gensequenzen (3.5.2) lagen somit die Ergebnisse einer dritten Spezietypisierungsmethode vor.

Anhand der durchgeführten Typisierungen konnten die ausgewählten Isolate in zwei Gruppen aufgeteilt werden. Tabelle 4.2.1 zeigt alle Isolate, die durch die PCR-Tests und die 16S-rRNA-Gensequenzanalysen eindeutig einer Spezies zugeordnet werden konnten. Um die Anwendbarkeit des entwickelten Microarraysystems als Methode zur Spezietypisierung zu überprüfen, wurden auch Isolate untersucht, bei denen die biochemischen Analysen, PCR-Tests und 16S-rRNA-Gensequenzanalysen keine übereinstimmende Spezieszuordnung lieferten. Diese Isolate sind in Tabelle 4.2.2 aufgeführt.
Die Farbgebung der Speziestypisierungsergebnisse teilt die Isolate nach Gruppierungen innerhalb der Gattung *Streptococcus* ein. Unterschieden werden Mitisgruppe (*gelb*), Anginosusgruppe (*violett*), Salivarivusgruppe (*blau*) sowie pyogene Gruppe (*rot*).

Tabelle 4.2.1.1: Auswahl klinischer Oralstreptokokkenisolate für die Microarrayanalysen.

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>16S-rRNA-Typisierung**</th>
<th>PCR-Typisierung**</th>
<th>API 20 Strep-Typisierung**</th>
<th>Isolation</th>
</tr>
</thead>
<tbody>
<tr>
<td>SV111*</td>
<td>Streptococcus mitis</td>
<td>Streptococcus mitis</td>
<td>Streptococcus mitis</td>
<td>Ohrabstrich</td>
</tr>
<tr>
<td>SV112*</td>
<td>Streptococcus mitis</td>
<td>Streptococcus mitis</td>
<td>Streptococcus mitis</td>
<td>Wundabstrich</td>
</tr>
<tr>
<td>SV113*</td>
<td>Streptococcus mitis</td>
<td>Streptococcus mitis</td>
<td>Streptococcus mitis</td>
<td>Wundabstrich</td>
</tr>
<tr>
<td>SV114</td>
<td>Streptococcus mitis</td>
<td>Streptococcus mitis</td>
<td>Streptococcus mitis</td>
<td>Zahnleistenpunktat</td>
</tr>
<tr>
<td>SV115</td>
<td>Streptococcus mitis</td>
<td>Streptococcus mitis</td>
<td>Streptococcus mitis</td>
<td>Blutkultur</td>
</tr>
<tr>
<td>SV5</td>
<td>Streptococcus oralis</td>
<td>Streptococcus oralis</td>
<td>Streptococcus oralis</td>
<td>Blutkultur</td>
</tr>
<tr>
<td>SV12</td>
<td>Streptococcus oralis</td>
<td>Streptococcus oralis</td>
<td>Streptococcus oralis</td>
<td>Wundabstrich</td>
</tr>
<tr>
<td>SV116</td>
<td>Streptococcus oralis</td>
<td>Streptococcus oralis</td>
<td>Streptococcus oralis</td>
<td>Blutkultur</td>
</tr>
<tr>
<td>SV117</td>
<td>Streptococcus oralis</td>
<td>Streptococcus oralis</td>
<td>Streptococcus oralis</td>
<td>Blutkultur</td>
</tr>
<tr>
<td>SV55</td>
<td>Streptococcus gordonii</td>
<td>Streptococcus gordonii</td>
<td>Streptococcus mitis</td>
<td>Blutkultur</td>
</tr>
<tr>
<td>SV118</td>
<td>Streptococcus gordonii</td>
<td>Streptococcus gordonii</td>
<td>Streptococcus gordonii</td>
<td>Abszessmaterial</td>
</tr>
<tr>
<td>SV119</td>
<td>Streptococcus gordonii</td>
<td>Streptococcus gordonii</td>
<td>Streptococcus gordonii</td>
<td>Blutkultur</td>
</tr>
<tr>
<td>SV20</td>
<td>Streptococcus sanguinis</td>
<td>Streptococcus sanguinis</td>
<td>Streptococcus anginosus</td>
<td>Wundabszess</td>
</tr>
<tr>
<td>SV21</td>
<td>Streptococcus sanguinis</td>
<td>Streptococcus sanguinis</td>
<td>Streptococcus sanguinis</td>
<td>Blutkultur</td>
</tr>
<tr>
<td>SV22</td>
<td>Streptococcus sanguinis</td>
<td>Streptococcus sanguinis</td>
<td>Streptococcus parasanguinis</td>
<td>Wangenabszess</td>
</tr>
<tr>
<td>SV23</td>
<td>Streptococcus sanguinis</td>
<td>Streptococcus sanguinis</td>
<td>Streptococcus sanguinis</td>
<td>Blutkultur</td>
</tr>
<tr>
<td>SV25</td>
<td>Streptococcus sanguinis</td>
<td>Streptococcus sanguinis</td>
<td>Streptococcus mitis</td>
<td>Abszessmaterial</td>
</tr>
<tr>
<td>SV26</td>
<td>Streptococcus parasanguinis</td>
<td>Streptococcus parasanguinis</td>
<td>Streptococcus parasanguinis</td>
<td>Abszessmaterial</td>
</tr>
<tr>
<td>SV27</td>
<td>Streptococcus parasanguinis</td>
<td>Streptococcus parasanguinis</td>
<td>Streptococcus oralis</td>
<td>Wundabstrich</td>
</tr>
<tr>
<td>SV28</td>
<td>Streptococcus parasanguinis</td>
<td>Streptococcus parasanguinis</td>
<td>Streptococcus oralis</td>
<td>Drainagespitze</td>
</tr>
<tr>
<td>SV33</td>
<td>Streptococcus anginosus</td>
<td>Streptococcus anginosus</td>
<td>Streptococcus anginosus</td>
<td>Blutkultur</td>
</tr>
<tr>
<td>SV52*</td>
<td>Streptococcus anginosus</td>
<td>Streptococcus anginosus</td>
<td>Streptococcus anginosus</td>
<td>Abszessmaterial</td>
</tr>
<tr>
<td>SV66</td>
<td>Streptococcus anginosus</td>
<td>Streptococcus anginosus</td>
<td>Streptococcus anginosus</td>
<td>Blutkultur</td>
</tr>
<tr>
<td>SV75</td>
<td>Streptococcus anginosus</td>
<td>Streptococcus anginosus</td>
<td>Streptococcus anginosus</td>
<td>Fistelabstrich</td>
</tr>
<tr>
<td>SV91</td>
<td>Streptococcus anginosus</td>
<td>Streptococcus anginosus</td>
<td>Streptococcus equi</td>
<td>Punktat</td>
</tr>
<tr>
<td>SV21</td>
<td>Streptococcus constellatus</td>
<td>Streptococcus constellatus</td>
<td>Streptococcus constellatus</td>
<td>Abszessmaterial</td>
</tr>
<tr>
<td>SV94*</td>
<td>Streptococcus constellatus</td>
<td>Streptococcus constellatus</td>
<td>Streptococcus mitis</td>
<td>Abszessmaterial</td>
</tr>
<tr>
<td>SV95</td>
<td>Streptococcus constellatus</td>
<td>Streptococcus constellatus</td>
<td>Streptococcus constellatus</td>
<td>Abstrich</td>
</tr>
<tr>
<td>SV99</td>
<td>Streptococcus constellatus</td>
<td>Streptococcus constellatus</td>
<td>Streptococcus constellatus</td>
<td>Abszessmaterial</td>
</tr>
<tr>
<td>SV102</td>
<td>Streptococcus constellatus</td>
<td>Streptococcus constellatus</td>
<td>Streptococcus anginosus</td>
<td>Ohrmuschelabszess</td>
</tr>
<tr>
<td>SV101</td>
<td>Streptococcus intermedius</td>
<td>Streptococcus intermedius</td>
<td>Streptococcus intermedius</td>
<td>Blutkultur</td>
</tr>
<tr>
<td>SV103</td>
<td>Streptococcus intermedius</td>
<td>Streptococcus intermedius</td>
<td>Streptococcus anginosus</td>
<td>Blutkultur</td>
</tr>
<tr>
<td>SV105</td>
<td>Streptococcus intermedius</td>
<td>Streptococcus intermedius</td>
<td>Streptococcus constellatus</td>
<td>Blutkultur</td>
</tr>
<tr>
<td>SV106</td>
<td>Streptococcus intermedius</td>
<td>Streptococcus intermedius</td>
<td>Streptococcus oralis</td>
<td>Blutkultur</td>
</tr>
<tr>
<td>SV41*</td>
<td>Streptococcus salivarius</td>
<td>Streptococcus salivarius</td>
<td>Streptococcus mitis</td>
<td>Abstrich</td>
</tr>
<tr>
<td>SV69*</td>
<td>Streptococcus salivarius</td>
<td>Streptococcus salivarius</td>
<td>Streptococcus intermedius</td>
<td>Blutkultur</td>
</tr>
<tr>
<td>SV87*</td>
<td>Streptococcus salivarius</td>
<td>Streptococcus salivarius</td>
<td>Streptococcus salivarius</td>
<td>Abstrich</td>
</tr>
<tr>
<td>SV107*</td>
<td>Streptococcus salivarius</td>
<td>Streptococcus salivarius</td>
<td>Streptococcus vestibularis</td>
<td>Blutkultur</td>
</tr>
<tr>
<td>SV109</td>
<td>Streptococcus salivarius</td>
<td>Streptococcus salivarius</td>
<td>Streptococcus oralis</td>
<td>Blutkultur</td>
</tr>
</tbody>
</table>

* Die gekennzeichneten Isolate wurden zusammen mit anderen Bakterienarten isoliert und stellen somit keine Isolate aus Monoinfektionen dar.

** Die Farbgebung der Spezietypisierungsergebnisse teilt die Isolate nach Gruppierungen innerhalb der Gattung *Streptococcus* ein. Unterschieden werden Mitisgruppe (*gelb*), Anginosusgruppe (*violett*), Salivarivusgruppe (*blau*) sowie pyogene Gruppe (*rot*).
Tabelle 4.2.1.2: Schwer typisierbare Isolate innerhalb der Auswahl.

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>16S-rRNA-Typisierung**</th>
<th>PCR-Typisierung**</th>
<th>API 20 Strep-Typisierung**</th>
<th>Isolation</th>
</tr>
</thead>
<tbody>
<tr>
<td>SV51</td>
<td>Streptococcus mitis</td>
<td>Streptococcus oralis</td>
<td>Streptococcus oralis</td>
<td>Abszessmaterial</td>
</tr>
<tr>
<td>SV73*</td>
<td>Streptococcus sanguinis</td>
<td>Streptococcus gordonii</td>
<td>Streptococcus mitis</td>
<td>Wundabstrich</td>
</tr>
<tr>
<td>SV120</td>
<td>Enterococcus faecium</td>
<td>Streptococcus gordonii</td>
<td>Streptococcus oralis</td>
<td>Blutkultur</td>
</tr>
<tr>
<td>SV76</td>
<td>Streptococcus australis</td>
<td>Streptococcus parasanguinis</td>
<td>Streptococcus mitis</td>
<td>Blutkultur</td>
</tr>
<tr>
<td>SV98</td>
<td>Staphylococcus pasteurii</td>
<td>Streptococcus constellatus</td>
<td>Lactococcus lactis</td>
<td>Blutkultur</td>
</tr>
</tbody>
</table>

* Das gekennzeichnete Isolat wurde zusammen mit anderen Bakterienarten isoliert und stellt somit kein Isolat aus einer Monoinfektion dar.

** Die Farbgebung der Speziestypisierungsergebnisse unterteilt die Isolate nach Streptokokken der Mitisgruppe (gelb) und Spezies, die nicht zur Gattung Streptococcus gehören (schwarz).

Zu Vergleichszwecken wurden zusätzlich zu den 45 klinischen Isolaten die vier Teststämme Streptococcus pyogenes MGAS315, Streptococcus agalactiae A909, Streptococcus pneumoniae R6 sowie Streptococcus mutans UA159 (3.2.2) für die Microarray-analysen herangezogen.

4.2.2 Clusteranalysen der Microarraysignale

Die Hybridisierungsergebnisse der 49 Isolate wurden vergleichenden Clusteranalysen unterzogen, um die Anwendbarkeit des entwickelten Microarraysystems als Speziestypisierungsmethode zu untersuchen (4.2.2.1). Die phylogenetischen Beziehungen zwischen den analysierten Isolaten, die sich aus der Clusteranalyse der Microarraysignale ergaben, wurden einer vergleichenden 16S-rRNA-Gensequenzanalyse gegenübergestellt (4.2.2.2).

4.2.2.1 Speziestypisierung mit Hilfe hierarchischer Clusteranalysen

Die hierarchische Clusteranalyse basierend auf den Microarraysignalen vergleicht die 49 Isolate anhand der normalisierten Signalintensitäten aller 776 Gensonden des Microarrays mit Hilfe eines mathematischen Algorithmus und setzt sie in hierarchisch dichotome Beziehung zueinander (3.5.3.2). Diese wurde in Baumform dargestellt. Die Verwendung normalisierter Signalintensitäten (3.5.3.2) ermöglichte im Gegensatz zu den erzeugten Binärdaten (3.5.3.3) Clusteranalysen deutlich höherer Spezifität (Daten nicht gezeigt). Abbildung 4.2.2.1 zeigt die vergleichende Clusteranalyse aller 49 hybridisierten Bakterienisolate.
4 Ergebnisse

Trotz der geringen Anzahl deutlich positiver Signale, die vor allem bei Genen aus den Streptokokkenarten der pyogenen Gruppe *Streptococcus pyogenes* und *Streptococcus agalactiae* zu beobachten war, war die Clusteranalyse in der Lage, anhand der normalisierten Signalintensitäten aller 776 Gensonden einen Großteil der analysierten Isolate entsprechend ihrer Spezies in distinkte Gruppen einzuteilen. Die Ergebnisse dieser Speziestypisierung der eindeutig typisierbaren Isolate der Arten *Streptococcus mitis*, *Streptococcus oralis*, *Streptococcus sanguinis*, *Streptococcus anginosus*, *Streptococcus constellatus*, *Streptococcus intermedius* und *Streptococcus salivarius* entsprachen den Ergebnissen der PCR-Tests und der 16S-rRNA-Gensequenzanalysen. Dies verdeutlicht die Funktionalität des entwickelten Microarraysystems und der angewandten Normalisierungsmethode und zeigt, dass eine Speziestypisierung anhand der Hybridisierungsergebnisse von 776 Genen eine Alternative oder Ergänzung zu bestehenden Typisierungsmethoden darstellt.

Die Darstellung der Clusteranalyse in Abbildung 4.2.1 ermöglichte nicht nur die Zuordnung der analysierten Isolate zu speziesspezifischen Gruppen, sondern auch einen Einblick in die phylogenetischen Beziehungen zwischen den Isolaten, wie sie
sich anhand der genetischen Ausstattung mit Genen extrazellulärer Proteine darstellten. Die Speziestypisierung der klinischen Oralstreptokokkenisolate basierend auf der Clusteranalyse der Microarrayergebnisse konnte überwiegend durch 16S-rRNA-Gensequenzanalysen bestätigt werden. Dennoch zeigten sich beim Vergleich der hierarchischen Baumdarstellung der Clusteranalyse (Abbildung 4.2.2.1) deutliche Unterschiede zur Darstellung der phylogenetischen Beziehungen innerhalb der Gruppe der Oralstreptokokken basierend auf vergleichenden 16S-rRNA-Gensequenzanalysen (Abbildung 2.1). Eine Gegenüberstellung der Ergebnisse der Clusteranalysen und der Ergebnisse der 16S-rRNA-Gensequenzanalysen sollte einen umfassenden Einblick in die phylogenetischen Beziehungen innerhalb der analysierten Isolate ermöglichen (4.2.2.2).

4.2.2.2 Phylogenetische Analysen

Um einen umfassenden Einblick in die phylogenetischen Beziehungen innerhalb der analysierten Isolate zu erhalten, wurden in Abbildung 4.2.2.2 die Ergebnisse der phylogenetischen Analysen basierend auf den Clusteranalysen der Microarrayergebnisse (4.2.2.1) und auf 16S-rRNA-Gensequenzanalysen (4.2.1) gegenübergestellt.
Abbildung 4.2.2.2: Gegenüberstellung der phylogenetischen Analysen. Dargestellt sind die hierarchisch dichotomen Baumdarstellungen der Beziehungen zwischen den analysierten Streptokokkenisolate erstellt durch Clusteranalysen der Microarrayergebnisse (oben) sowie durch vergleichende Sequenzanalysen anhand eines 680bp-1angen Bereichen des 16S-rRNA-Gens (unten). Die analysierten Streptokokkenisolate wurden mit Spezies und Stammsammlungsnummer bezeichnet. Für die fünf nicht eindeutig typisierbaren Isolate wurde die Spezieszuordnung der analysierten Isolate nach Gruppierungen innerhalb der Gattung Streptococcus ein. Unterschieden werden Mitisgruppe (gelb), Anginosusgruppe (violett), Salivariusgruppe (blau), Mutansgruppe (grün) sowie pyogene Gruppe (rot).

Anhand der vergleichenden 16S-rRNA-Gensequenzenanalysen konnte ebenfalls ein Großteil der analysierten Isolate in distinkte Gruppen eingeteilt und somit einer Spezies zugeordnet werden. Abgesehen von den fünf schwer typisierbaren Isolaten SV51, SV73, SV120, SV76 und SV98, den Isolaten der Spezies Streptococcus gordonii sowie dem Streptococcus parasanguinis Isolat SV134, entsprach die Gruppeneinteilung der analysierten Isolate anhand der 16S-rRNA-Gensequenzenanalysen den Ergebnissen der Clusteranalyse.

4.2.3 Vorkommen und Verbreitung virulenzrelevanter Gene

Um einen Überblick über den Ursprung und die Verbreitung virulenzrelevanter Gene innerhalb der verschiedenen Streptokokkenarten der Oralstreptokokken zu ermöglichen (4.2.3.1), wurden die Signalintensitäten der Virulenzgensonden (3.5.3.1) der 40 eindeutig typisierbaren Oralstreptokokkenisolate (Tabelle 4.2.1) in binäre Präsenz-Absenz-Daten umgerechnet (3.5.3.3). Die Auswertung dieses Datensatzes sollte nicht nur einen tieferen Einblick in die Resultate der phylogenetischen Analysen (4.2.2.2) ermöglichen, sondern auch anhand einer funktionsbezogenen Analyse der Gensignale Ansätze zur Aufklärung der Pathogenität der analysierten klinischen Oralstreptokokkenisolate liefern (4.2.3.2).

4.2.3.1 Überblick über Ursprung und Verbreitung virulenzrelevanter Gene

Abbildung 4.2.3.1.1 verdeutlicht, dass für einen Überblick über die Verteilung virulenzrelevanter Gene innerhalb der analysierten Arten der Oralstreptokokken die Vergleichbarkeit der Anzahl der Sondesignale für die einzelnen Streptokokkenarten hergestellt werden musste.
Abbildung 4.2.3.1.1: Gegenüberstellung der Isolatanzahl und der Anzahl positiver Signale pro analysierter Streptokokkenart. Dargestellt ist die Anzahl der in die Analyse einfließenden Isolate pro Spezies (rot) und die korrespondierende Anzahl positiver Gensignale (blau).

Für die vier Spezies *Streptococcus pyogenes*, *Streptococcus agalactiae*, *Streptococcus pneumoniae* sowie *Streptococcus mutans* wurde zu Vergleichszwecken jeweils der Teststamm hybridisiert, der auch bei der Entwicklung des Microarrays benutzt wurde (3.5.1.1). Die hohe Anzahl positiver Signale der vier Teststämme erklärt sich anhand der Genausstattung des entwickelten Microarray (4.1.1). Die Anzahl der positiven Signale der Oralstreptokokkenarten korrelierte annähernd mit der Anzahl der Isolate, die für jede Spezies analysiert wurde. Um eine Vergleichbarkeit der Signalverteilungen der einzelnen Streptokokkenarten zu ermöglichen, wurde für die weitere Analyse die durchschnittliche Anzahl positiver Gensignale pro Isolat für jede Spezies berechnet. Dafür wurde die Anzahl der positiven Signale durch die Anzahl der für diese Spezies analysierten Isolate geteilt.

Um einen möglichst umfassenden Überblick über die Verteilung virulenzrelevanter Gene innerhalb der verschiedenen Oralstreptokokkenarten zu erhalten, sollte auch die Information der Spezies, aus der die Virulenzfaktorgene selektiert wurden, in die Auswertung einfließen. Abbildung 4.1.1 verdeutlichte, dass die Anzahl der selektierten Gene pro Streptokokkenart deutliche Unterschiede aufwies. Um in dieser zweiten Dimension ebenfalls eine Vergleichbarkeit der Sondensignale zu ermöglichen, wurde die bereits berechnete durchschnittliche Anzahl positiver Gensignale pro Isolat für jede Spezies durch die Anzahl der Gensonden pro Genursprungsspezies geteilt. Abbildung 4.2.3.1.2 zeigt die daraus resultierende Gegenüberstellung, in der die durchschnittliche Anzahl der positiven Gensignale pro Isolat für jede analysierte Spezies relativ zur Anzahl der spezieszugehörigen Gene ausgedrückt wurde.

Die Aufschlüsselung der Signale nach Spezies und Genursprung in Abbildung 4.2.3.1.2 erlaubte nicht nur einen ausführlichen Überblick über Ursprung und

Bereits die Clusteranalyse (4.2.2.2) wies darauf hin, dass die genetische Ähnlichkeit zwischen den klinischen Oralstreptokokkenisolaten und den zwei Teststämmen aus der pyogenen Gruppe *Streptococcus pyogenes* MGAS315 und *Streptococcus agalactiae* A909 gering ist. Dies konnte anhand der Abbildung 4.2.3.1.2 bestätigt werden. Die beiden Teststämme *Streptococcus pyogenes* MGAS315 und *Streptococcus agalactiae* A909 erzeugten eine große Anzahl positiver Signale bei ihren eigenen Genen, zeigten aber vergleichsweise wenige Signale bei Genen aus anderen Streptokokkenarten. Bei *Streptococcus pyogenes* MGAS315 wurden jedoch einige Signale für Gene aus der Gruppe der G- und C-Streptokokkenart *Streptococcus dysgalactiae* nachgewiesen.

Die Separation des Teststammes *Streptococcus mutans* UA159 von den übrigen Oralstreptokokkenisolaten der Clusteranalyse entsprach nicht den Ergebnissen der 16S-rRNA-Gensequenzanalyse (4.2.2.2). Diese Einordnung anhand der Clusteranalyse konnte ebenfalls auf die große Anzahl positiver Signale für Gene aus diesem Teststamm zurückgeführt werden.

Die Isolate der Arten *Streptococcus anginosus*, *Streptococcus constellatus* und *Streptococcus intermedius* fanden sich in der Clusteranalyse zur Anginosusgruppe zusammen (4.2.2.2). Ein Grund dafür war, dass alle drei Streptokokkenarten dieser Gruppe eine hohe Anzahl positiver Signale für Gene aus allen drei Anginosusgruppenspezies zeigten. Innerhalb der Anginosusgruppe ermöglichten Unterschiede in der Verteilung der Signale dieser Anginosusgruppengene eine Aufteilung der Isolate nach Spezieszugehörigkeit.

Die Aufteilung der Mitisgruppe in zwei Untergruppen, wie sie sowohl in der Clusteranalyse als auch bei den 16S-rRNA-Gensequenzvergleichen zu beobachten war (4.2.2.2), konnte anhand der vorliegenden Abbildung auf die Signalverteilung der Gene aus den Streptokokkenarten der ersten Mitisuntergruppe *Streptococcus oralis, Streptococcus mitis* und *Streptococcus pneumoniae* zurückgeführt werden. Die Isolate dieser drei Streptokokkenarten zeigten eine hohe Anzahl positiver Signale für alle Gene dieser drei Spezies. Dies war bei den Isolaten der zweiten Mitisuntergruppe *Streptococcus gordonii, Streptococcus parasanguinis* und *Streptococcus sanguinis* nicht zu beobachten. Diese zeigten vergleichsweise wenig positive Signale bei Genen aus Streptokokkenarten der Mitisgruppe, waren aber für Gene aus der eigenen Spezies weitgehend positiv. Die Signalverteilung bei den Genen, die aus den drei Streptokokkenarten der ersten Mitisuntergruppe selektiert wurden, beeinflußte nicht nur die Aufteilung der Mitisgruppe in die beiden Untergruppen, sondern konnte auch die deutliche Separation der Isolate der ersten Mitisuntergruppe von den übrigen Oralstreptokokkenisolaten in der Clusteranalyse erklären (4.2.2.2). Da die drei Spezies der ersten Mitisuntergruppe eine hohe Anzahl positiver Signale bei
Genen der ersten Mitisuntergruppe erzeugten, was bei allen anderen analysierten Oralstreptokokkenarten nicht zu beobachten war, separierte sich die erste Mitisuntergruppe deutlich von den übrigen Isolaten.

Der Teststamm *Streptococcus pneumoniae* R6, der eindeutig der ersten Mitisuntergruppe zugeordnet wurde (4.2.2.2), wurde durch die 16S-rRNA-Gensequenzanalysen innerhalb der *Streptococcus mitis* Isolate dargestellt. Die Clusteranalyse der Microarrayergebnisse ordnete das *Streptococcus pneumoniae* Isolat R6 jedoch hierarchisch außerhalb der *Streptococcus mitis* und *Streptococcus oralis* Isolate ein, ein Hinweis auf deutliche genetische Unterschiede in Bezug auf extrazelluläre Virulenzfaktoren.

Die Untersuchung verdeutlichte, dass die Gruppenbildung, die sich in der Clusteranalyse (4.2.2.2) abzeichnete, hauptsächlich auf der Verteilung von Oralstreptokokkengenen beruhte. Gensonden aus phylogenetisch von den klinischen Oralstreptokokkenisolaten weit entfernten Spezies wie *Streptococcus pyogenes*, *Streptococcus agalactiae*, *Streptococcus dysgalactiae* und *Streptococcus equi* hatten kaum Einfluss auf die Clusterbildung, da sie vergleichsweise wenig positive Signale erzeugten. Die zusammenfassende Darstellung der Microarrayergebnisse in Abbildung 4.2.3.1.2 reduziert jedoch die Informationen der Daten bezüglich der Diversität in der genetischen Ausstattung einzelner Isolate. Daher konnte in dieser Darstellung die Verteilung einzelner Gene und funktioneller Gengruppen nicht wiedergegeben werden. Ein Großteil der Gene des entwickelten Microarray ließ sich jedoch anhand der beschriebenen Funktionen der von den Genen codierten Proteine zu Gruppen zusammenfassen. Dies ermöglichte eine virulenzfaktorgerichtete Auswertung der binären Datensätze (4.2.3.2).

4.2.3.2 Betrachtung einzelner Virulenzfaktorgruppen

Die Bindung von Streptokokken an feste Oberflächen ist sowohl für das Überleben in der menschlichen Mundhöhle (2.1) als auch für das Überleben im menschlichen Blutstrom von großer Bedeutung. Durch Adhäsion wird die Kolonisierung und die Entwicklung schützender sessiler Gemeinschaften (Biofilme) eingeleitet. Abbildung 4.2.3.4 zeigt eine Auflistung aller Sonden des Microarray, deren Gene für Adhäsine codieren.

Oralstreptokokken erhalten von ihrem natürlichen Lebensraum der menschlichen Mundhöhle aus regelmäßig Zugang zum Blutkreislauf (2.2.2). Das Immunsystem bekämpft solche Oralstreptokokkenbakteriämien äußerst effektiv. Dennoch werden immer wieder Fälle beschrieben, in denen Oralstreptokokken im Blutkreislauf persistieren und Infektionen hervorrufen. Abbildung 4.2.3.5 zeigt eine Auflistung aller Sonden, deren Gene für Faktoren codieren, die das Überleben der Bakterien im menschlichen Blutstrom und Gewebe ermöglichen.

Abbildung 4.2.3.5: Verteilung der Signale für Gene antiphagozytischer Faktoren, Hämolysine und Exotoxine. Dargestellt ist die Verteilung der positiven Signale für Sonden, deren Gene für Proteine codieren, die eine antiphagozytische Funktion besitzen (oben) und die als Hämolysine (mitte) oder Exotoxine (unten) beschrieben sind. Die Farbdarstellung unterteilt die Arten nach Gruppierungen innerhalb der Gattung *Streptococcus*. Unterschieden werden Mitisgruppe (gelb), Anginosusgruppe (violet), Salivariusgruppe (blau), Mutansgruppe (grün) sowie pyogene Gruppe (rot). Die Spezieszugehörigkeit der analysierten Isolate wurde unterhalb der Abbildung angegeben. Gensonden mit auffälliger Signalverteilung wurden rechts der Abbildung mit Genbezeichnung, Beschreibung des Genproduktes und Gennummer aufgelistet.

Oralstreptokokken sind nicht in der Lage, den Pellikel und die oralen Schleimhäute aktiv zu durchdringen, um daraufhin das darunterliegende Gewebe zu kolonisieren. Infektionen innerer Organe hervorgerufen durch Oralstreptokokken gehen jedoch mit einer allmählichen Schädigung des umliegenden Gewebes einher, was die weitere Ausbreitung der Bakterien ermöglicht. Abbildung 4.2.3.6 zeigt eine Auflistung aller Sonden, deren Gene für sogenannte Spreading-Faktoren codieren, die die Mobilität der Bakterien im menschlichen Gewebe erhöhen.

Oralstreptokokken erzeugen nicht die dramatischen Gewebeschädigungen, wie sie einige Streptokokken der pyogenen Gruppe durch Aktivierung von Plasminogen hervorrufen (nekrotisierende Fasziitis). Dies steht im Einklang mit den Ergebnissen

<table>
<thead>
<tr>
<th>Spezieszugehörigkeit der Gene</th>
<th>Spezieszugehörigkeit der Isolate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Streptococcus dysgalactiae</td>
<td>Collagenase (SAK_0867)</td>
</tr>
<tr>
<td>Streptococcus pyogenes</td>
<td>Collagenase (SAK_0868)</td>
</tr>
<tr>
<td>Streptococcus agalactiae</td>
<td>Putative protease (SpyM3_0418)</td>
</tr>
<tr>
<td>Streptococcus pneumoniae</td>
<td>Gcp secreted endopeptidase</td>
</tr>
<tr>
<td>Streptococcus pneumoniae</td>
<td>Putative metallopeptidase</td>
</tr>
<tr>
<td>Streptococcus pyogenes</td>
<td>ClpP hydrolyses proteins to peptides</td>
</tr>
<tr>
<td>Streptococcus mutans</td>
<td>HtpX putative metalloprotease</td>
</tr>
<tr>
<td>Streptococcus pneumoniae</td>
<td>Gcp secreted endopeptidase</td>
</tr>
<tr>
<td>Streptococcus pneumoniae</td>
<td>PrtA cellwall associated proteinase</td>
</tr>
</tbody>
</table>

Abbildung 4.2.3.2.3: Verteilung der Signale für Gene von Spreading-Faktoren. Dargestellt ist die Verteilung der positiven Signale für Sonden, deren Gene für Proteine codieren, für die eine plasminogenaktivierende Funktion beschrieben ist (oben) und die als Hyaluronidase (mitte) oder Protease (unten) beschrieben sind. Die Farbdarstellung unterteilt die Arten nach Gruppierungen innerhalb derGattung Streptococcus. Unterschieden werden Mitisgruppe (gelb), Anginosusgruppe (violett), Salivariusgruppe (blau), Mutansgruppe (grün) sowie pyogene Gruppe (rot). Die Spezieszugehörigkeit der analysierten Isolate wurde unterhalb, die Spezieszugehörigkeit der ausgewählten Gene links der Abbildung angegeben. Gensonden mit auffälliger Signalverteilung wurden rechts der Abbildung mit Genbezeichnung, Beschreibung des Genproduktes und Gennummer aufgelistet.

Oralstreptokokken erzeugen nicht die dramatischen Gewebeschädigungen, wie sie einige Streptokokken der pyogenen Gruppe durch Aktivierung von Plasminogen hervorrufen (nekrotisierende Fasziitis). Dies steht im Einklang mit den Ergebnissen
der Microarrayanalysen. Nur eines der Gene, die für plasminogenaktivierende Proteine codieren (skc), erzeugte vereinzelt positive Signale bei den analysierten Oralstreptokokkenisolaten (obere Abbildung).

Im Rahmen der Studie konnten zudem Hinweise auf mehrere Gene extrazellulärer Proteasen bei den analysierten Oralstreptokokkenisolaten erkannt werden (untere Abbildung). Viele dieser Proteasen sind bisher jedoch nicht auf eine Funktion als Virulenzfaktor untersucht. Aufgaben als Spreading-Faktoren und in der Manipulation der Immunantwort liegen aber nahe. Deshalb empfehlen sich dahingehende Untersuchung.
Ergebnisse

Spezieszugehörigkeit der Gene

- Streptococcus pneumoniae
 - 567 bp hypothetischer Protein (spr0174)
 - 861 bp hypothetischer Protein (spr0428)
 - 168 bp hypothetischer Protein (spr0586)
 - 186 bp hypothetischer Protein (spr0587)
 - 402 bp hypothetischer Protein (spr0615)
 - 1611 bp hypothetischer Protein (spr1584)
 - 297 bp hypothetischer Protein (spr1728)

- Streptococcus mutans
 - 585 bp hypothetischer Protein (SMU.690)
 - 849 bp hypothetischer Protein (SMU.1071)

- Streptococcus pyogenes
 - 186 bp hypothetischer Protein (spr0587)
 - 297 bp hypothetischer Protein (spr1584)

- Streptococcus agalactiae
 - 186 bp hypothetischer Protein (spr0587)

- Streptococcus salivarius

- Streptococcus gordonii

- Streptococcus constellatus

- Streptococcus intermedius

- Streptococcus oralis

- Streptococcus mitis

- Streptococcus parasanguinis

- Streptococcus sanguinis

- Streptococcus pneumoniae

- Streptococcus mutans

- Streptococcus pyogenes

Zusammenfassend ist zu sagen, dass nur die Isolate der Spezies *Streptococcus mitis* und *Streptococcus oralis* eine hohe genetische Ähnlichkeit in Bezug auf virulenzassozierte Gene zu einer obligat pathogenen Streptokokkenart (*Streptococcus pneumoniae*) aufwiesen. Dies legt nahe, dass die übrigen Vertreter aus der Gruppe der Oralstreplokokken eigenständige Virulenzmechanismen besitzen, von denen bisher nur wenige bekannt sind.
4.2.4 Identifizierung diagnostischer Sonden

Anhand der durchgeführten Microarrayanalysen wurde eine große Anzahl synthetischer Oligonukleotidsonden mit Hilfe der Sammlung klinischer Viridansstreptokokkensio late auf eine spezies- oder gruppenspezifische Verteilung der Gensignale durchsucht. Abbildung 4.2.4 zeigt eine Auswahl von Sonden, die bei der angewendeten Schwellenwertberechnung (4.1.5.2) diesen Kriterien entsprachen.

5 Diskussion

Oralstreptokokken gehören zur natürlichen Mundraumflora des Menschen (2.1). Von den zwölf Arten der Gattung *Streptococcus*, die unter dem Begriff Oralstreptokokken zusammengefasst werden, stellt *Streptococcus mutans* als Haupterreger von Zahnkaries die einzige Spezies dar, die in der Mundhöhle des Menschen als Pathogen eingestuft werden muss (2.2.1). Gelangen Oralstreptokokken aus ihrem natürlichen Lebensraum in andere Regionen des menschlichen Körpers, können sie dort jedoch ein beachtliches pathogenes Potenzial entfalten und schwere Infektionen verursachen (2.2.2). Wie Oralstreptokokken die Abwehrmechanismen des menschlichen Immunsystems umgehen, im Blutkreislauf persistieren und Gewebestrukturen des menschlichen Körpers kolonisieren, ist trotz intensiver Forschungsarbeit heute noch weitgehend unbekannt. Ziel der vorliegenden Arbeit war es, einen speziesübergreifenden Virulenzfaktormicroarray zu entwickeln und mit dessen Hilfe einen Einblick in die phylogenetischen Beziehungen und das Repertoire der Pathogenitätsmechanismen der Oralstreptokokken zu erlangen (2.3).

Um anhand von Clusteranalysen der Microarraysignale einen Einblick in die phylogenetischen Beziehungen der analysierten Oralstreptokokkenisolate zu bekommen, wurde die Vergleichbarkeit der Daten verschiedener Hybridisierungsversuche hergestellt. Dazu wurden Kontrollen in den entwickelten Microarray integriert, die es ermöglichten, interexperimentelle Abweichungen zwischen den Hybridisierungen zu detektieren und mathematisch auszugleichen. Die in Abbildung 4.1.5 beobachteten Abweichungen zwischen den Signalen der Testhybridisierung einer Probe auf den beiden Microarrays eines Slides konnten auf die experimentelle Durchführung der Hybridisierungsreaktion zurückgeführt werden. Die genaue Ursache der Variabilität der Hybridisierungsergebnisse wurde nicht identifiziert. Vorversuche hatten allerdings gezeigt, dass die Diffusion des Hybridisierungsgemisches zwischen Microarrayslide und Deckgläsern einen deutlichen Einfluss auf die Signalintensitäten hatte. Dieser Effekt konnte praktisch jedoch nicht beeinflusst werden (Daten nicht gezeigt). Der Ausgleich der interexperimentellen Abweichungen erfolgte deshalb anhand der integrierten Hybridisierungskontrollen (4.1.2.3). Dazu wurde eine geeignete mathematische Signalnormalisierungsmethode entwickelt, die den nichtlinearen Fehler anhand einer Kontrollenreihe aus Hybridisierungskontrollen und Druckpufferkontrolle signalabhängig ausgleichen konnte (4.1.5.1). Die Effizienz dieser neuentwickelten Normalisierungsmethode konnte sowohl durch die Ergebnisse der Testhybridisierung (Abbildung 4.1.5.1.3) als auch durch den Einfluss der Normalisierung auf den gesamten Datensatz der 49 analysierten Isolate (Abbildung 4.1.5.1.5) bestätigt werden.

Der Einblick in die phylogenetischen Beziehungen zwischen den analysierten Isolaten, den die Clusteranalysen der normalisierten Microarraysignale ermöglichten, wurde mit den Ergebnissen der phylogenetischen Analyse der 16S-rRNA-Gensequenzanalysen verglichen (4.2.2.2). Die Einordnung der Isolate in speziesspezifische Gruppen, wie sie durch die arraybasierte Clusteranalyse erfolgte, deckte sich größtenteils mit den Ergebnissen der 16S-rRNA-Gensequenzanalysen. Die beiden Analysemethoden zeigten jedoch auffällige Unterschiede bei der hierarchischen Einordnung der Mitisgruppe sowie der Teststämme Streptococcus pneumoniae R6 und Streptococcus mutans UA159. Sowohl die Ergebnisse der 16S-rRNA-Gensequenzanalyse als auch die Clusteranalyse der Microarraysignale unterteilten die Mitisgruppe in eine Untergruppe, die nur Isolate der Arten Streptococcus oralis, Streptococcus mitis und Streptococcus pneumoniae umfasst (erste Mitisuntergruppe), und in eine Untergruppe, die Isolate der Arten Streptococcus gordonii, Streptococcus parasanguinis sowie Streptococcus sanguinis enthält (zweite Mitisuntergruppe). Während die 16S-rRNA-Gensequenzanalyse die beiden Untergruppen in phylogenetischer Nähe zueinander darstellte, separierte die arraybasierte Clusteranalyse die Isolate der ersten Mitisuntergruppe deutlich von den Isolaten der zweiten Mitisuntergruppe. Abbildung 4.2.3.1.2 verdeutlicht die sehr ausgeprägte genetische Ähnlichkeit der drei Spezies Streptococcus oralis, Streptococcus mitis und Streptococcus pneumoniae, die zu dieser hierarchischen Separation führt.

Die Ergebnisse dieser Betrachtungen verdeutlichen, dass das entwickelte Microarraysystem eine neue Untersuchungsmethode zur kombinierten Analyse der phylogenetischen und ökologischen Beziehungen innerhalb der Gruppe der Oralstreptokokken darstellt. Die dadurch gewonnenen Erkenntnisse geben Anlass, die phylogenetische Einteilung innerhalb der Oralstreptokokken weitergehend zu überprüfen. Der Einfluss der Genausstattung des entwickelten Microarraysystems auf die Clusteranalyse darf jedoch bei der Interpretation der Ergebnisse nicht außer Acht gelassen werden und bedarf weiterer Analysen.

Viele der Virulenzfaktoren aus der Gruppe der pyogenen Streptokokken, die für *Streptococcus pyogenes*, *Streptococcus agalactiae* sowie für Gruppe G- und C-Streptokokken beschrieben sind, konnten in den analysierten Oralstreptokokkenisolaten nicht nachgewiesen werden. Signale für spezifische Adhäsine aus der pyogenen Gruppe, die mit Bestandteilen der extrazellulären Matrix wie Fibronektin, Kollagen oder Laminin interagieren und so die Bindung an Gewebestrukturen vermitteln, wurden in den analysierten Isolaten nur sehr vereinzelt detektiert. Selbst die für einige Oralstreptokokken beschriebenen Adhäsine für Extrazellulärmatrixproteine
Diskussion

Oralstreptokken besitzen nicht die hocheffektiven Mechanismen zur Plasminogenaktivierung (Streptokinase), die bei obligat pathogenen Streptokokken für effiziente Dissemination und dramatische Gewebedegradation verantwortlich sind. Dennoch konnten anhand der Microarrayergebnisse Hinweise auf die Präsenz extrazellulärer gewebedegradierender Enzyme und anderer Spreading-Faktoren in den analysierten Oralstreptokokkenisolaten gewonnen werden. Mehrere Gene extrazellulärer Hyaluronidasen und Proteasen, darunter auch Kollagenasen, wurden bei den analysierten Isolaten nachgewiesen. Der anzunehmende Einfluss dieser Faktoren auf die Pathogenese der Oralstreptokokken muss in weiterführenden Analysen geklärt werden.

Der entwickelte speziesübergreifende Virulenzfaktormicroarray war anhand der Analysen klinischer Isolate nicht nur in der Lage, sein Potential als Spezies-typisierungsmethode unter Beweis zu stellen und neue Einblicke in die phylogenetischen Beziehungen innerhalb der Gruppe der Oralstreptokokken zu liefern, sondern konnte auch Hinweise auf eine Reihe von Virulenzfaktoren in Oralstreptokokken geben, die voraussichtlich wichtige Beiträge zum pathogenen Potential dieser Organismengruppe leisten und daher weiterführende molekular-biologische und funktionelle Untersuchungen motivieren.
6 Anhang

6.1 Projektübersicht

Auswahl der Streptokokkengene (4.1.1)

Entwicklung der Markierungskontrollen (4.1.2.2)
Entwicklung der Hybridisierungskontrollen (4.1.2.3)
Entwicklung der Genomkontrollen (4.1.2.1)
Entwicklung der Spezifitätskontrollen (4.1.2.4)

Sondenanordnung innerhalb des Microarrays (4.1.3)

Einstellung der Spiked-In Kontrollen (4.1.4.3)
Überprüfung der Genomkontrollen (4.1.4.2)
Einstellung der Hybridisierungsmenge der genomischen DNS (4.1.4.1)

Signalnormalisierung (4.1.5.1)
Schwellenwertberechnung (4.1.5.2)

Auswahl und Analyse klinischer Oralstreptokokkenisolate (4.2.1)

Speziestypisierung mit Hilfe hierarchischer Clusteranalysen (4.2.2.1)
Phylogenetische Analysen (4.2.2.2)

Überblick über Ursprung und Verbreitung virulenzrelevanter Gene (4.2.3.1)
Betrachtung einzelner Virulenzfaktorgruppen (4.2.3.2)
Identifizierung diagnostischer Sonden (4.2.4)
Abbildung 6.1 (vorherige Seite): Projektübersicht. Dargestellt ist ein Flussdiagramm zur Einordnung der einzelnen Schritte der Entwicklung (4.1) und Anwendung (4.2) des speziesübergreifenden Virulenzfaktormicroarrays

6.2 Programme und Datenbanken

SignalP 3.0 Center for Biological Sequence Analysis
http://www.cbs.dtu.dk/services/SignalP/

SOSUI/G 1.1 Mitaku Group
http://bp.nuap.nagoya-u.ac.jp/sosui/sosuiG/sosuigsubmit.html

blastn National Center for Biotechnology Information

Genomdatenbank National Center for Biotechnology Information

Nukleinsäuredatenbank National Center for Biotechnology Information

Proteindatenbank National Center for Biotechnology Information

6.3 Literaturverzeichnis

6.3.1 Fachbücher

6.3.2 Methodenliteratur

BioPrime® DNA Labeling System. Invitrogen
http://tools.invitrogen.com/content/sfs/manuals/18094011.pdf

Dneasy® Blood & Tissue Handbook. Qiagen
http://www1.qiagen.com/HB/DNeasyBloodTissueKit_EN

Instructions CodeLink Gene Expression System. GE Healthcare

QIAquick Spin Handbook. Qiagen
http://www1.qiagen.com/HB/QIAquickGelExtractionKit_EN

User Guide CodeLink Activated Slides. GE Healthcare

User Guide SlideBooster™ SB800. Advalytix

6.3.3 Artikel aus Fachzeitschriften

Proft T., Fraser J.D. Streptococcal superantigens. Chem Immunol Allergy. 2007;93:1-23. Review

6.4 Stammsammlungsliste

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>PCR-Typisierung</th>
<th>API 20 Strep-Typisierung</th>
<th>Isolation</th>
<th>Datum</th>
</tr>
</thead>
<tbody>
<tr>
<td>SV4</td>
<td>Streptococcus mitis</td>
<td>Streptococcus mitis</td>
<td>Hornhautulkusabstrich</td>
<td>02.04.04</td>
</tr>
<tr>
<td>SV5</td>
<td>Streptococcus oralis</td>
<td>Streptococcus oralis</td>
<td>Blutkultur</td>
<td>24.03.04</td>
</tr>
<tr>
<td>SV7</td>
<td>Streptococcus mitis/oralis</td>
<td>Streptococcus mitis</td>
<td>Blutkultur</td>
<td>27.06.04</td>
</tr>
<tr>
<td>SV8</td>
<td>Streptococcus parasanguinis</td>
<td>Streptococcus parasanguinis</td>
<td>Blutkultur</td>
<td>15.07.04</td>
</tr>
<tr>
<td>SV9</td>
<td>Streptococcus oralis</td>
<td>Streptococcus oralis</td>
<td>Blutkultur</td>
<td>22.07.04</td>
</tr>
<tr>
<td>SV11</td>
<td>Streptococcus oralis</td>
<td>Streptococcus oralis</td>
<td>Blutkultur</td>
<td>24.03.04</td>
</tr>
<tr>
<td>SV12</td>
<td>Streptococcus oralis</td>
<td>Streptococcus oralis</td>
<td>Wundabszess</td>
<td>02.07.04</td>
</tr>
<tr>
<td>SV13</td>
<td>Streptococcus parasanguinis</td>
<td>Streptococcus parasanguinis</td>
<td>Abszessmaterial</td>
<td>01.04.04</td>
</tr>
<tr>
<td>SV14</td>
<td>Streptococcus mitis</td>
<td>Streptococcus mitis</td>
<td>Hornhautulkusabstrich</td>
<td>02.04.04</td>
</tr>
<tr>
<td>SV15</td>
<td>Streptococcus anginosus</td>
<td>Streptococcus constellatus</td>
<td>Abszessmaterial</td>
<td>06.04.04</td>
</tr>
<tr>
<td>SV16</td>
<td>Streptococcus anginosus</td>
<td>Streptococcus constellatus</td>
<td>Abszessmaterial</td>
<td>13.04.04</td>
</tr>
<tr>
<td>SV18</td>
<td>Streptococcus oralis</td>
<td>Streptococcus oralis</td>
<td>Abszessmaterial</td>
<td>02.05.04</td>
</tr>
<tr>
<td>SV19*</td>
<td>Streptococcus constellatus</td>
<td>Streptococcus constellatus</td>
<td>Punktag</td>
<td>21.05.04</td>
</tr>
<tr>
<td>SV20</td>
<td>Streptococcus sanguinis</td>
<td>Streptococcus anginosus</td>
<td>Wundabszess</td>
<td>22.05.04</td>
</tr>
<tr>
<td>SV21</td>
<td>Streptococcus constellatus</td>
<td>Streptococcus constellatus</td>
<td>Abszessmaterial</td>
<td>13.06.04</td>
</tr>
<tr>
<td>SV22*</td>
<td>Streptococcus oralis</td>
<td>Streptococcus oralis</td>
<td>Abszessmaterial</td>
<td>12.03.04</td>
</tr>
<tr>
<td>SV23</td>
<td>Streptococcus oralis</td>
<td>Streptococcus oralis</td>
<td>Abszessmaterial</td>
<td>14.03.04</td>
</tr>
<tr>
<td>SV24</td>
<td>Streptococcus mitis/oralis</td>
<td>Streptococcus mitis</td>
<td>Abstrich</td>
<td>31.03.04</td>
</tr>
<tr>
<td>SV25*</td>
<td>Streptococcus constellatus</td>
<td>Streptococcus constellatus</td>
<td>Oberlippenpunktat</td>
<td>31.03.04</td>
</tr>
<tr>
<td>SV26*</td>
<td>Streptococcus mitis/oralis</td>
<td>Streptococcus mitis</td>
<td>Wundabszess</td>
<td>19.03.04</td>
</tr>
<tr>
<td>SV27*</td>
<td>Streptococcus oralis</td>
<td>Streptococcus oralis</td>
<td>Abszessmaterial</td>
<td>01.07.04</td>
</tr>
<tr>
<td>SV28</td>
<td>Streptococcus mitis</td>
<td>Streptococcus mitis</td>
<td>Blutkultur</td>
<td>11.08.04</td>
</tr>
<tr>
<td>SV29*</td>
<td>Streptococcus anginosus</td>
<td>Streptococcus constellatus</td>
<td>Abszessmaterial</td>
<td>09.08.04</td>
</tr>
<tr>
<td>Bezeichnung</td>
<td>PCR-Typisierung</td>
<td>API 20 Strep-Typisierung</td>
<td>Isolation</td>
<td>Datum</td>
</tr>
<tr>
<td>--</td>
<td>---------------------------------</td>
<td>---------------------------------</td>
<td>-------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>SV30*</td>
<td>Streptococcus oralis</td>
<td>Streptococcus oralis</td>
<td>Abszessmaterial</td>
<td>09.08.04</td>
</tr>
<tr>
<td>SV31*</td>
<td>Streptococcus parasanguinis</td>
<td>Streptococcus mitis</td>
<td>Abszessmaterial</td>
<td>17.06.04</td>
</tr>
<tr>
<td>SV32*</td>
<td>Streptococcus salivarius</td>
<td>Streptococcus salivarius</td>
<td>Abstrich</td>
<td>09.08.04</td>
</tr>
<tr>
<td>SV33*</td>
<td>Streptococcus anginosus</td>
<td>Streptococcus anginosus</td>
<td>Pleurapunktat</td>
<td>07.09.04</td>
</tr>
<tr>
<td>SV34*</td>
<td>Streptococcus mitis/ oralis</td>
<td>Streptococcus mitis</td>
<td>Abstrich</td>
<td>28.09.04</td>
</tr>
<tr>
<td>SV35*</td>
<td>Streptococcus intermedius</td>
<td>Streptococcus sanguinis</td>
<td>Abstrich</td>
<td>28.09.04</td>
</tr>
<tr>
<td>SV36*</td>
<td>Streptococcus parasanguinis</td>
<td>Streptococcus oralis</td>
<td>Abszessmaterial</td>
<td>24.09.04</td>
</tr>
<tr>
<td>SV37*</td>
<td>Streptococcus salivarius</td>
<td>Streptococcus salivarius</td>
<td>Abstriss</td>
<td>24.09.04</td>
</tr>
<tr>
<td>SV41*</td>
<td>Streptococcus salivarius</td>
<td>Streptococcus mitis</td>
<td>Abstrich</td>
<td>10.07.04</td>
</tr>
<tr>
<td>SV42*</td>
<td>Streptococcus salivarius</td>
<td>Streptococcus salivarius</td>
<td>Abstrich</td>
<td>10.07.04</td>
</tr>
<tr>
<td>SV46*</td>
<td>Streptococcus anginosus</td>
<td>Streptococcus anginosus</td>
<td>Wundabszess</td>
<td>19.03.04</td>
</tr>
<tr>
<td>SV47*</td>
<td>Streptococcus mitis</td>
<td>Streptococcus mitis</td>
<td>Blutkultur</td>
<td>15.06.04</td>
</tr>
<tr>
<td>SV48*</td>
<td>Streptococcus anginosus</td>
<td>Streptococcus anginosus</td>
<td>Blutkultur</td>
<td>02.08.04</td>
</tr>
<tr>
<td>SV49*</td>
<td>Streptococcus mitis</td>
<td>Streptococcus mitis</td>
<td>Tonsillenabstrich</td>
<td>06.10.04</td>
</tr>
<tr>
<td>SV50*</td>
<td>Streptococcus parasanguinis</td>
<td>Streptococcus parasanguinis</td>
<td>Drainagespitze</td>
<td>28.10.04</td>
</tr>
<tr>
<td>SV51*</td>
<td>Streptococcus oralis</td>
<td>Streptococcus oralis</td>
<td>Abstriss</td>
<td>05.11.04</td>
</tr>
<tr>
<td>SV52*</td>
<td>Streptococcus anginosus</td>
<td>Streptococcus anginosus</td>
<td>Abszessmaterial</td>
<td>04.11.04</td>
</tr>
<tr>
<td>SV53*</td>
<td>Streptococcus oralis</td>
<td>Streptococcus oralis</td>
<td>Blutkultur</td>
<td>05.11.04</td>
</tr>
<tr>
<td>SV54*</td>
<td>Streptococcus oralis</td>
<td>Streptococcus oralis</td>
<td>Blutkultur</td>
<td>06.11.04</td>
</tr>
<tr>
<td>SV55*</td>
<td>Streptococcus gordoni</td>
<td>Streptococcus gordoni</td>
<td>Blutkultur</td>
<td>25.10.04</td>
</tr>
<tr>
<td>SV56*</td>
<td>Streptococcus mitis/ oralis</td>
<td>Streptococcus mitis</td>
<td>Blutkultur</td>
<td>25.10.04</td>
</tr>
<tr>
<td>SV57*</td>
<td>Streptococcus parasanguinis</td>
<td>Streptococcus parasanguinis</td>
<td>Abstriss</td>
<td>15.09.04</td>
</tr>
<tr>
<td>SV58*</td>
<td>Streptococcus mitis/ oralis</td>
<td>Streptococcus oralis</td>
<td>Abstriss Cavum uteri</td>
<td>27.10.04</td>
</tr>
<tr>
<td>SV59*</td>
<td>Streptococcus oralis</td>
<td>Streptococcus oralis</td>
<td>Lungenpunktat</td>
<td>12.11.04</td>
</tr>
<tr>
<td>SV60*</td>
<td>Streptococcus mitis/ oralis</td>
<td>Streptococcus mitis</td>
<td>Fistelabstrich</td>
<td>09.01.05</td>
</tr>
<tr>
<td>SV61*</td>
<td>Streptococcus anginosus</td>
<td>Streptococcus constellatus</td>
<td>Fistelabstrich</td>
<td>19.11.04</td>
</tr>
<tr>
<td>SV62*</td>
<td>Streptococcus anginosus</td>
<td>Streptococcus constellatus</td>
<td>Abszessmaterial</td>
<td>07.11.04</td>
</tr>
<tr>
<td>SV63*</td>
<td>Streptococcus parasanguinis</td>
<td>Streptococcus parasanguinis</td>
<td>Pankreaspseudozyste</td>
<td>15.01.05</td>
</tr>
<tr>
<td>SV64*</td>
<td>Streptococcus oralis</td>
<td>Streptococcus oralis</td>
<td>Halsabstrich</td>
<td>18.11.04</td>
</tr>
<tr>
<td>SV65*</td>
<td>Streptococcus oralis</td>
<td>Streptococcus mitis</td>
<td>Blutkultur</td>
<td>17.12.04</td>
</tr>
<tr>
<td>SV66*</td>
<td>Streptococcus anginosus</td>
<td>Streptococcus anginosus</td>
<td>Blutkultur</td>
<td>28.12.04</td>
</tr>
<tr>
<td>SV67*</td>
<td>Streptococcus mitis/ oralis</td>
<td>Streptococcus mitis</td>
<td>Blutkultur</td>
<td>15.01.05</td>
</tr>
<tr>
<td>SV68*</td>
<td>Streptococcus oralis</td>
<td>Streptococcus oralis</td>
<td>Abstriss</td>
<td>17.01.05</td>
</tr>
<tr>
<td>SV69*</td>
<td>Streptococcus salivarius</td>
<td>Streptococcus intermedius</td>
<td>Blutkultur</td>
<td>15.01.05</td>
</tr>
<tr>
<td>SV70*</td>
<td>Streptococcus mitis</td>
<td>Streptococcus mitis</td>
<td>Punktat</td>
<td>23.12.04</td>
</tr>
<tr>
<td>SV71*</td>
<td>Streptococcus mitis/ oralis</td>
<td>Streptococcus mitis</td>
<td>Abstriss</td>
<td>11.01.05</td>
</tr>
<tr>
<td>SV72*</td>
<td>Streptococcus bovis</td>
<td>Streptococcus bovis</td>
<td>Ascites</td>
<td>23.02.05</td>
</tr>
<tr>
<td>SV73*</td>
<td>Streptococcus gordoni</td>
<td>Streptococcus mitis</td>
<td>Wundabstrich</td>
<td>04.03.05</td>
</tr>
<tr>
<td>SV74*</td>
<td>Streptococcus anginosus</td>
<td>Streptococcus anginosus</td>
<td>Milzabszess</td>
<td>19.02.05</td>
</tr>
<tr>
<td>SV75*</td>
<td>Streptococcus anginosus</td>
<td>Streptococcus anginosus</td>
<td>Fistelabstrich</td>
<td>21.03.05</td>
</tr>
<tr>
<td>SV76*</td>
<td>Streptococcus parasanguinis</td>
<td>Streptococcus mitis</td>
<td>Blutkultur</td>
<td>01.03.05</td>
</tr>
<tr>
<td>SV77*</td>
<td>Streptococcus parasanguinis</td>
<td>Streptococcus parasanguinis</td>
<td>Abszessmaterial</td>
<td>03.03.05</td>
</tr>
<tr>
<td>SV79*</td>
<td>Streptococcus oralis</td>
<td>Streptococcus sanguinis</td>
<td>Blutkultur</td>
<td>04.03.05</td>
</tr>
<tr>
<td>SV80*</td>
<td>Streptococcus mitis/ oralis</td>
<td>Streptococcus mitis</td>
<td>Wundabstrich</td>
<td>14.03.05</td>
</tr>
<tr>
<td>SV81*</td>
<td>Streptococcus oralis</td>
<td>Streptococcus mitis</td>
<td>Abszessmaterial</td>
<td>15.03.05</td>
</tr>
<tr>
<td>SV82*</td>
<td>Streptococcus oralis</td>
<td>Streptococcus oralis</td>
<td>VKS</td>
<td>15.03.05</td>
</tr>
<tr>
<td>SV83*</td>
<td>Streptococcus oralis</td>
<td>Streptococcus oralis</td>
<td>Wundabstrich</td>
<td>22.03.05</td>
</tr>
<tr>
<td>SV84*</td>
<td>Streptococcus anginosus</td>
<td>Streptococcus anginosus</td>
<td>Blutkultur</td>
<td>09.03.05</td>
</tr>
<tr>
<td>SV85*</td>
<td>Streptococcus bovis</td>
<td>Streptococcus bovis</td>
<td>Ascites</td>
<td>16.03.05</td>
</tr>
<tr>
<td>SV86*</td>
<td>Streptococcus oralis</td>
<td>Streptococcus parasanguinis</td>
<td>Abszessmaterial</td>
<td>20.03.05</td>
</tr>
<tr>
<td>SV87*</td>
<td>Streptococcus salivarius</td>
<td>Streptococcus salivarius</td>
<td>Abstrich</td>
<td>01.04.05</td>
</tr>
<tr>
<td>SV91*</td>
<td>Streptococcus anginosus</td>
<td>Streptococcus equi</td>
<td>Punktat</td>
<td>28.11.05</td>
</tr>
<tr>
<td>SV92*</td>
<td>Streptococcus anginosus</td>
<td>Streptococcus anginosus</td>
<td>Blutkultur</td>
<td>17.06.05</td>
</tr>
<tr>
<td>SV93*</td>
<td>Streptococcus anginosus</td>
<td>Streptococcus anginosus</td>
<td>Blutkultur</td>
<td>26.02.06</td>
</tr>
<tr>
<td>SV94*</td>
<td>Streptococcus constellatus</td>
<td>Streptococcus mitis</td>
<td>Abszessmaterial</td>
<td>11.04.05</td>
</tr>
<tr>
<td>SV95*</td>
<td>Streptococcus constellatus</td>
<td>Streptococcus constellatus</td>
<td>Abstriss</td>
<td>06.06.05</td>
</tr>
<tr>
<td>SV96*</td>
<td>Streptococcus constellatus</td>
<td>Streptococcus constellatus</td>
<td>Abszessmaterial</td>
<td>24.01.05</td>
</tr>
<tr>
<td>SV97*</td>
<td>Streptococcus constellatus</td>
<td>Streptococcus constellatus</td>
<td>Abszessmaterial</td>
<td>27.03.06</td>
</tr>
<tr>
<td>SV98*</td>
<td>Streptococcus constellatus</td>
<td>Lactococcus lactis</td>
<td>Blutkultur</td>
<td>07.07.06</td>
</tr>
<tr>
<td>SV99*</td>
<td>Streptococcus constellatus</td>
<td>Streptococcus constellatus</td>
<td>Abszessmaterial</td>
<td>14.07.06</td>
</tr>
</tbody>
</table>
Tabelle 6.5: Gensonden des entwickelten DNS-Microarrays

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Genbezeichnung</th>
<th>Gen</th>
<th>Genursprungsspezies</th>
<th>Genursprungsstamm</th>
</tr>
</thead>
<tbody>
<tr>
<td>SV100*</td>
<td>SMU.22</td>
<td>sagA</td>
<td>Streptococcus mutans</td>
<td>UA159</td>
</tr>
<tr>
<td>SV101</td>
<td>SMU.33</td>
<td></td>
<td>Streptococcus mutans</td>
<td>UA159</td>
</tr>
<tr>
<td>SV102</td>
<td>SMU.71</td>
<td></td>
<td>Streptococcus mutans</td>
<td>UA159</td>
</tr>
<tr>
<td>SV103</td>
<td>SMU.78</td>
<td>fruA</td>
<td>Streptococcus mutans</td>
<td>UA159</td>
</tr>
<tr>
<td>SV104</td>
<td>SMU.79</td>
<td>fruB</td>
<td>Streptococcus mutans</td>
<td>UA159</td>
</tr>
<tr>
<td>SV105</td>
<td>SMU.133c</td>
<td></td>
<td>Streptococcus mutans</td>
<td>UA159</td>
</tr>
<tr>
<td>SV106</td>
<td>SMU.160</td>
<td></td>
<td>Streptococcus mutans</td>
<td>UA159</td>
</tr>
<tr>
<td>SV107*</td>
<td>SMU.178</td>
<td></td>
<td>Streptococcus mutans</td>
<td>UA159</td>
</tr>
<tr>
<td>SV108*</td>
<td>SMU.182</td>
<td>sloA</td>
<td>Streptococcus mutans</td>
<td>UA159</td>
</tr>
<tr>
<td>SV109</td>
<td>SMU.184</td>
<td>sloC</td>
<td>Streptococcus mutans</td>
<td>UA159</td>
</tr>
<tr>
<td>SV110</td>
<td>SMU.200c</td>
<td>uppF</td>
<td>Streptococcus mutans</td>
<td>UA159</td>
</tr>
<tr>
<td>SV111*</td>
<td>SMU.232</td>
<td></td>
<td>Streptococcus mutans</td>
<td>UA159</td>
</tr>
</tbody>
</table>

* Die gekennzeichneten Isolate wurden zusammen mit anderen Bakterienarten isoliert und stellen somit keine Isolate aus Monoinfektionen dar.

6.5 Genliste

Tabelle 6.5: Gensonden des entwickelten DNS-Microarrays

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>PCR-Typisierung</th>
<th>API 20 Strep-Typisierung</th>
<th>Isolation</th>
<th>Datum</th>
</tr>
</thead>
<tbody>
<tr>
<td>SV100*</td>
<td>Streptococcus intermedium</td>
<td>Streptococcus sanguinis</td>
<td>Abszessmaterial</td>
<td>23.04.05</td>
</tr>
<tr>
<td>SV101</td>
<td>Streptococcus intermedium</td>
<td>Streptococcus intermedium</td>
<td>Blutkultur</td>
<td>29.04.05</td>
</tr>
<tr>
<td>SV102</td>
<td>Streptococcus constellatus</td>
<td>Streptococcus aginosus</td>
<td>Ohnmuschelabszess</td>
<td>14.10.05</td>
</tr>
<tr>
<td>SV103</td>
<td>Streptococcus intermedium</td>
<td>Streptococcus anginosus</td>
<td>Blutkultur</td>
<td>14.10.05</td>
</tr>
<tr>
<td>SV104</td>
<td>Streptococcus intermedium</td>
<td>Streptococcus anginosus</td>
<td>Peritonissabzess</td>
<td>06.12.05</td>
</tr>
<tr>
<td>SV105</td>
<td>Streptococcus intermedium</td>
<td>Streptococcus constellatus</td>
<td>Blutkultur</td>
<td>26.05.06</td>
</tr>
<tr>
<td>SV106</td>
<td>Streptococcus intermedium</td>
<td>Streptococcus oralis</td>
<td>Blutkultur</td>
<td>26.05.06</td>
</tr>
<tr>
<td>SV107*</td>
<td>Streptococcus salivarius</td>
<td>Streptococcus vestibularis</td>
<td>Blutkultur</td>
<td>05.07.05</td>
</tr>
<tr>
<td>SV108*</td>
<td>Streptococcus salivarius</td>
<td>Streptococcus vestibularis</td>
<td>Blutkultur</td>
<td>09.10.05</td>
</tr>
<tr>
<td>SV109</td>
<td>Streptococcus salivarius</td>
<td>Streptococcus oralis</td>
<td>Blutkultur</td>
<td>18.10.05</td>
</tr>
<tr>
<td>SV110</td>
<td>Streptococcus salivarius</td>
<td>Streptococcus vestibularis</td>
<td>Ascites</td>
<td>23.04.06</td>
</tr>
<tr>
<td>SV111*</td>
<td>Streptococcus mitis</td>
<td>Streptococcus mitis</td>
<td>Ohrabstrich</td>
<td>15.11.05</td>
</tr>
<tr>
<td>SV112*</td>
<td>Streptococcus mitis</td>
<td>Streptococcus oralis</td>
<td>Wundabstrich</td>
<td>29.04.05</td>
</tr>
<tr>
<td>SV113*</td>
<td>Streptococcus mitis</td>
<td>Streptococcus mitis</td>
<td>Wundabstrich</td>
<td>06.06.05</td>
</tr>
<tr>
<td>SV114</td>
<td>Streptococcus mitis</td>
<td>Streptococcus oralis</td>
<td>Zahnleistenpunkt</td>
<td>14.08.05</td>
</tr>
<tr>
<td>SV115</td>
<td>Streptococcus mitis</td>
<td>Streptococcus oralis</td>
<td>Blutkultur</td>
<td>10.01.06</td>
</tr>
<tr>
<td>SV116</td>
<td>Streptococcus mitis</td>
<td>Streptococcus oralis</td>
<td>Blutkultur</td>
<td>06.06.05</td>
</tr>
<tr>
<td>SV117</td>
<td>Streptococcus mitis</td>
<td>Streptococcus oralis</td>
<td>Blutkultur</td>
<td>03.03.06</td>
</tr>
<tr>
<td>SV118</td>
<td>Streptococcus gordonii</td>
<td>Streptococcus gordonii</td>
<td>Abszess material</td>
<td>09.04.06</td>
</tr>
<tr>
<td>SV119</td>
<td>Streptococcus gordonii</td>
<td>Streptococcus gordonii</td>
<td>Blutkultur</td>
<td>12.05.06</td>
</tr>
<tr>
<td>SV120</td>
<td>Streptococcus gordonii</td>
<td>Streptococcus oralis</td>
<td>Blutkultur</td>
<td>13.07.06</td>
</tr>
<tr>
<td>SV121</td>
<td>Streptococcus sanguinis</td>
<td>Streptococcus sanguinis</td>
<td>Blutkultur</td>
<td>08.07.05</td>
</tr>
<tr>
<td>SV122</td>
<td>Streptococcus sanguinis</td>
<td>Streptococcus parasanguinis</td>
<td>Wangenabszess</td>
<td>03.12.05</td>
</tr>
<tr>
<td>SV123</td>
<td>Streptococcus sanguinis</td>
<td>Streptococcus sanguinis</td>
<td>Blutkultur</td>
<td>10.12.05</td>
</tr>
<tr>
<td>SV124*</td>
<td>Streptococcus sanguinis</td>
<td>Streptococcus mitis</td>
<td>Abszessmaterial</td>
<td>07.02.06</td>
</tr>
<tr>
<td>SV125</td>
<td>Streptococcus sanguinis</td>
<td>Streptococcus mitis</td>
<td>Blutkultur</td>
<td>02.07.06</td>
</tr>
<tr>
<td>SV126</td>
<td>Streptococcus parasanguinis</td>
<td>Streptococcus parasanguinis</td>
<td>Abszessmaterial</td>
<td>29.04.05</td>
</tr>
<tr>
<td>SV127</td>
<td>Streptococcus parasanguinis</td>
<td>Streptococcus oralis</td>
<td>Wundabstrich</td>
<td>20.05.05</td>
</tr>
<tr>
<td>SV128</td>
<td>Streptococcus parasanguinis</td>
<td>Streptococcus parasanguinis</td>
<td>Pankreaszyste</td>
<td>12.08.05</td>
</tr>
<tr>
<td>SV129</td>
<td>Streptococcus parasanguinis</td>
<td>Streptococcus oralis</td>
<td>Wundabstrich</td>
<td>13.12.05</td>
</tr>
<tr>
<td>SV130</td>
<td>Streptococcus parasanguinis</td>
<td>Streptococcus parasanguinis</td>
<td>Abszessmaterial</td>
<td>16.02.06</td>
</tr>
<tr>
<td>SV131</td>
<td>Streptococcus parasanguinis</td>
<td>Streptococcus mitis</td>
<td>Wundabstrich</td>
<td>15.03.06</td>
</tr>
<tr>
<td>SV132</td>
<td>Streptococcus parasanguinis</td>
<td>Streptococcus oralis</td>
<td>Drainagespitze</td>
<td>19.03.06</td>
</tr>
<tr>
<td>SV133</td>
<td>Streptococcus parasanguinis</td>
<td>Streptococcus mitis</td>
<td>Abszessmaterial</td>
<td>25.04.06</td>
</tr>
<tr>
<td>SV134</td>
<td>Streptococcus parasanguinis</td>
<td>Streptococcus mitis</td>
<td>Blutkultur</td>
<td>27.04.06</td>
</tr>
<tr>
<td>SV135</td>
<td>Streptococcus mitis/ oralis</td>
<td>Streptococcus anginosus</td>
<td>Abszessmaterial</td>
<td>18.05.05</td>
</tr>
<tr>
<td>Sondenbezeichnung</td>
<td>Genbezeichnung</td>
<td>Gen</td>
<td>Genursprungspezies</td>
<td>Genursprungsstamm</td>
</tr>
<tr>
<td>------------------</td>
<td>---------------</td>
<td>-----</td>
<td>--------------------</td>
<td>--------------------</td>
</tr>
<tr>
<td>5124</td>
<td>SMU.253</td>
<td>dacA</td>
<td>Streptococcus mutans</td>
<td>UA159</td>
</tr>
<tr>
<td>5125</td>
<td>SMU.255</td>
<td>oppA</td>
<td>Streptococcus mutans</td>
<td>UA159</td>
</tr>
<tr>
<td>5126</td>
<td>SMU.259</td>
<td>oppF</td>
<td>Streptococcus mutans</td>
<td>UA159</td>
</tr>
<tr>
<td>5127</td>
<td>SMU.287</td>
<td></td>
<td>Streptococcus mutans</td>
<td>UA159</td>
</tr>
<tr>
<td>5128</td>
<td>SMU.299c</td>
<td></td>
<td>Streptococcus mutans</td>
<td>UA159</td>
</tr>
<tr>
<td>5129</td>
<td>SMU.318</td>
<td></td>
<td>Streptococcus mutans</td>
<td>UA159</td>
</tr>
<tr>
<td>5130</td>
<td>SMU.360</td>
<td>gapC</td>
<td>Streptococcus mutans</td>
<td>UA159</td>
</tr>
<tr>
<td>5131</td>
<td>SMU.448</td>
<td></td>
<td>Streptococcus mutans</td>
<td>UA159</td>
</tr>
<tr>
<td>5132</td>
<td>SMU.455</td>
<td>pbp2x</td>
<td>Streptococcus mutans</td>
<td>UA159</td>
</tr>
<tr>
<td>5133</td>
<td>SMU.467</td>
<td>pbp1a</td>
<td>Streptococcus mutans</td>
<td>UA159</td>
</tr>
<tr>
<td>5134</td>
<td>SMU.474</td>
<td>luxS</td>
<td>Streptococcus mutans</td>
<td>UA159</td>
</tr>
<tr>
<td>5135</td>
<td>SMU.475</td>
<td></td>
<td>Streptococcus mutans</td>
<td>UA159</td>
</tr>
<tr>
<td>5136</td>
<td>SMU.503c</td>
<td></td>
<td>Streptococcus mutans</td>
<td>UA159</td>
</tr>
<tr>
<td>5137</td>
<td>SMU.510c</td>
<td></td>
<td>Streptococcus mutans</td>
<td>UA159</td>
</tr>
<tr>
<td>5138</td>
<td>SMU.515</td>
<td></td>
<td>Streptococcus mutans</td>
<td>UA159</td>
</tr>
<tr>
<td>5139</td>
<td>SMU.540</td>
<td>dpr</td>
<td>Streptococcus mutans</td>
<td>UA159</td>
</tr>
<tr>
<td>5140</td>
<td>SMU.562</td>
<td>clpE</td>
<td>Streptococcus mutans</td>
<td>UA159</td>
</tr>
<tr>
<td>5141</td>
<td>SMU.569</td>
<td>feoA</td>
<td>Streptococcus mutans</td>
<td>UA159</td>
</tr>
<tr>
<td>5142</td>
<td>SMU.570</td>
<td>feoB</td>
<td>Streptococcus mutans</td>
<td>UA159</td>
</tr>
<tr>
<td>5143</td>
<td>SMU.583</td>
<td></td>
<td>Streptococcus mutans</td>
<td>UA159</td>
</tr>
<tr>
<td>5144</td>
<td>SMU.588</td>
<td></td>
<td>Streptococcus mutans</td>
<td>UA159</td>
</tr>
<tr>
<td>5145</td>
<td>SMU.591c</td>
<td></td>
<td>Streptococcus mutans</td>
<td>UA159</td>
</tr>
<tr>
<td>5146</td>
<td>SMU.597</td>
<td>pbp2b</td>
<td>Streptococcus mutans</td>
<td>UA159</td>
</tr>
<tr>
<td>5147</td>
<td>SMU.610</td>
<td>spaP</td>
<td>Streptococcus mutans</td>
<td>UA159</td>
</tr>
<tr>
<td>5148</td>
<td>SMU.629</td>
<td>sod</td>
<td>Streptococcus mutans</td>
<td>UA159</td>
</tr>
<tr>
<td>5149</td>
<td>SMU.630</td>
<td></td>
<td>Streptococcus mutans</td>
<td>UA159</td>
</tr>
<tr>
<td>5150</td>
<td>SMU.651c</td>
<td></td>
<td>Streptococcus mutans</td>
<td>UA159</td>
</tr>
<tr>
<td>5151</td>
<td>SMU.654</td>
<td>mutF</td>
<td>Streptococcus mutans</td>
<td>UA159</td>
</tr>
<tr>
<td>5152</td>
<td>SMU.655</td>
<td>mutE1</td>
<td>Streptococcus mutans</td>
<td>UA159</td>
</tr>
<tr>
<td>5153</td>
<td>SMU.656</td>
<td>mutE2</td>
<td>Streptococcus mutans</td>
<td>UA159</td>
</tr>
<tr>
<td>5154</td>
<td>SMU.657</td>
<td>mutG</td>
<td>Streptococcus mutans</td>
<td>UA159</td>
</tr>
<tr>
<td>5155</td>
<td>SMU.690</td>
<td></td>
<td>Streptococcus mutans</td>
<td>UA159</td>
</tr>
<tr>
<td>5156</td>
<td>SMU.704c</td>
<td></td>
<td>Streptococcus mutans</td>
<td>UA159</td>
</tr>
<tr>
<td>5157</td>
<td>SMU.707c</td>
<td></td>
<td>Streptococcus mutans</td>
<td>UA159</td>
</tr>
<tr>
<td>5158</td>
<td>SMU.711</td>
<td></td>
<td>Streptococcus mutans</td>
<td>UA159</td>
</tr>
<tr>
<td>5159</td>
<td>SMU.745</td>
<td>lmrB</td>
<td>Streptococcus mutans</td>
<td>UA159</td>
</tr>
<tr>
<td>5160</td>
<td>SMU.759</td>
<td></td>
<td>Streptococcus mutans</td>
<td>UA159</td>
</tr>
<tr>
<td>5161</td>
<td>SMU.761</td>
<td></td>
<td>Streptococcus mutans</td>
<td>UA159</td>
</tr>
<tr>
<td>5162</td>
<td>SMU.764</td>
<td>ahbC</td>
<td>Streptococcus mutans</td>
<td>UA159</td>
</tr>
<tr>
<td>5163</td>
<td>SMU.765</td>
<td></td>
<td>Streptococcus mutans</td>
<td>UA159</td>
</tr>
<tr>
<td>5164</td>
<td>SMU.771c</td>
<td></td>
<td>Streptococcus mutans</td>
<td>UA159</td>
</tr>
<tr>
<td>5165</td>
<td>SMU.772</td>
<td>gbpD</td>
<td>Streptococcus mutans</td>
<td>UA159</td>
</tr>
<tr>
<td>5166</td>
<td>SMU.814</td>
<td>mutT</td>
<td>Streptococcus mutans</td>
<td>UA159</td>
</tr>
<tr>
<td>5167</td>
<td>SMU.830</td>
<td>rgpF</td>
<td>Streptococcus mutans</td>
<td>UA159</td>
</tr>
<tr>
<td>5168</td>
<td>SMU.843</td>
<td></td>
<td>Streptococcus mutans</td>
<td>UA159</td>
</tr>
<tr>
<td>5169</td>
<td>SMU.862</td>
<td></td>
<td>Streptococcus mutans</td>
<td>UA159</td>
</tr>
<tr>
<td>5170</td>
<td>SMU.879</td>
<td>msmF</td>
<td>Streptococcus mutans</td>
<td>UA159</td>
</tr>
<tr>
<td>5171</td>
<td>SMU.880</td>
<td>msmG</td>
<td>Streptococcus mutans</td>
<td>UA159</td>
</tr>
<tr>
<td>5172</td>
<td>SMU.882</td>
<td>msmK</td>
<td>Streptococcus mutans</td>
<td>UA159</td>
</tr>
<tr>
<td>5173</td>
<td>SMU.883</td>
<td>dexB</td>
<td>Streptococcus mutans</td>
<td>UA159</td>
</tr>
<tr>
<td>5174</td>
<td>SMU.889</td>
<td>pbpX</td>
<td>Streptococcus mutans</td>
<td>UA159</td>
</tr>
<tr>
<td>5175</td>
<td>SMU.924</td>
<td>tpx</td>
<td>Streptococcus mutans</td>
<td>UA159</td>
</tr>
<tr>
<td>5176</td>
<td>SMU.940c</td>
<td></td>
<td>Streptococcus mutans</td>
<td>UA159</td>
</tr>
<tr>
<td>5177</td>
<td>SMU.949</td>
<td>clpX</td>
<td>Streptococcus mutans</td>
<td>UA159</td>
</tr>
<tr>
<td>5178</td>
<td>SMU.956</td>
<td>clp</td>
<td>Streptococcus mutans</td>
<td>UA159</td>
</tr>
<tr>
<td>5179</td>
<td>SMU.963c</td>
<td></td>
<td>Streptococcus mutans</td>
<td>UA159</td>
</tr>
<tr>
<td>5180</td>
<td>SMU.981</td>
<td>hglB1</td>
<td>Streptococcus mutans</td>
<td>UA159</td>
</tr>
<tr>
<td>5181</td>
<td>SMU.982</td>
<td>hglB2</td>
<td>Streptococcus mutans</td>
<td>UA159</td>
</tr>
<tr>
<td>5182</td>
<td>SMU.985</td>
<td>hglA</td>
<td>Streptococcus mutans</td>
<td>UA159</td>
</tr>
<tr>
<td>5183</td>
<td>SMU.1004</td>
<td>gtfB</td>
<td>Streptococcus mutans</td>
<td>UA159</td>
</tr>
<tr>
<td>Sondenbezeichnung</td>
<td>Genbezeichnung</td>
<td>Gen</td>
<td>Genursprungspezies</td>
<td>Genursprungsstamm</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------------</td>
<td>-----------</td>
<td>---------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>5184</td>
<td>SMU.1005</td>
<td>gtfC</td>
<td>Streptococcus mutans</td>
<td>UA159</td>
</tr>
<tr>
<td>5185</td>
<td>SMU.1071c</td>
<td>srtA</td>
<td>Streptococcus mutans</td>
<td>UA159</td>
</tr>
<tr>
<td>5186</td>
<td>SMU.1113c</td>
<td></td>
<td>Streptococcus mutans</td>
<td>UA159</td>
</tr>
<tr>
<td>5187</td>
<td>SMU.1118c</td>
<td>srtA</td>
<td>Streptococcus mutans</td>
<td>UA159</td>
</tr>
<tr>
<td>5188</td>
<td>SMU.1119c</td>
<td>srtA</td>
<td>Streptococcus mutans</td>
<td>UA159</td>
</tr>
<tr>
<td>5189</td>
<td>SMU.1120c</td>
<td></td>
<td>Streptococcus mutans</td>
<td>UA159</td>
</tr>
<tr>
<td>5190</td>
<td>SMU.1131c</td>
<td>srtA</td>
<td>Streptococcus mutans</td>
<td>UA159</td>
</tr>
<tr>
<td>5191</td>
<td>SMU.1143c</td>
<td>srtA</td>
<td>Streptococcus mutans</td>
<td>UA159</td>
</tr>
<tr>
<td>5192</td>
<td>SMU.1148c</td>
<td></td>
<td>Streptococcus mutans</td>
<td>UA159</td>
</tr>
<tr>
<td>5193</td>
<td>SMU.1149c</td>
<td></td>
<td>Streptococcus mutans</td>
<td>UA159</td>
</tr>
<tr>
<td>5194</td>
<td>SMU.1150c</td>
<td></td>
<td>Streptococcus mutans</td>
<td>UA159</td>
</tr>
<tr>
<td>5195</td>
<td>SMU.1153c</td>
<td></td>
<td>Streptococcus mutans</td>
<td>UA159</td>
</tr>
<tr>
<td>5196</td>
<td>SMU.1159c</td>
<td></td>
<td>Streptococcus mutans</td>
<td>UA159</td>
</tr>
<tr>
<td>5197</td>
<td>SMU.1160c</td>
<td></td>
<td>Streptococcus mutans</td>
<td>UA159</td>
</tr>
<tr>
<td>5198</td>
<td>SMU.1161c</td>
<td></td>
<td>Streptococcus mutans</td>
<td>UA159</td>
</tr>
<tr>
<td>5199</td>
<td>SMU.1162c</td>
<td></td>
<td>Streptococcus mutans</td>
<td>UA159</td>
</tr>
<tr>
<td>5200</td>
<td>SMU.1163c</td>
<td></td>
<td>Streptococcus mutans</td>
<td>UA159</td>
</tr>
<tr>
<td>5201</td>
<td>SMU.1164c</td>
<td></td>
<td>Streptococcus mutans</td>
<td>UA159</td>
</tr>
<tr>
<td>5202</td>
<td>SMU.1165c</td>
<td></td>
<td>Streptococcus mutans</td>
<td>UA159</td>
</tr>
<tr>
<td>5203</td>
<td>SMU.1166c</td>
<td></td>
<td>Streptococcus mutans</td>
<td>UA159</td>
</tr>
<tr>
<td>5204</td>
<td>SMU.1167c</td>
<td></td>
<td>Streptococcus mutans</td>
<td>UA159</td>
</tr>
<tr>
<td>5205</td>
<td>SMU.1168c</td>
<td></td>
<td>Streptococcus mutans</td>
<td>UA159</td>
</tr>
<tr>
<td>5206</td>
<td>SMU.1169c</td>
<td></td>
<td>Streptococcus mutans</td>
<td>UA159</td>
</tr>
<tr>
<td>5207</td>
<td>SMU.1170c</td>
<td></td>
<td>Streptococcus mutans</td>
<td>UA159</td>
</tr>
<tr>
<td>5208</td>
<td>SMU.1171c</td>
<td></td>
<td>Streptococcus mutans</td>
<td>UA159</td>
</tr>
<tr>
<td>5209</td>
<td>SMU.1172c</td>
<td></td>
<td>Streptococcus mutans</td>
<td>UA159</td>
</tr>
<tr>
<td>5210</td>
<td>SMU.1173c</td>
<td></td>
<td>Streptococcus mutans</td>
<td>UA159</td>
</tr>
<tr>
<td>5211</td>
<td>SMU.1174c</td>
<td></td>
<td>Streptococcus mutans</td>
<td>UA159</td>
</tr>
<tr>
<td>5212</td>
<td>SMU.1175c</td>
<td></td>
<td>Streptococcus mutans</td>
<td>UA159</td>
</tr>
<tr>
<td>5213</td>
<td>SMU.1176c</td>
<td></td>
<td>Streptococcus mutans</td>
<td>UA159</td>
</tr>
<tr>
<td>5214</td>
<td>SMU.1177c</td>
<td></td>
<td>Streptococcus mutans</td>
<td>UA159</td>
</tr>
<tr>
<td>5215</td>
<td>SMU.1178c</td>
<td></td>
<td>Streptococcus mutans</td>
<td>UA159</td>
</tr>
<tr>
<td>5216</td>
<td>SMU.1179c</td>
<td></td>
<td>Streptococcus mutans</td>
<td>UA159</td>
</tr>
<tr>
<td>5217</td>
<td>SMU.1180c</td>
<td></td>
<td>Streptococcus mutans</td>
<td>UA159</td>
</tr>
<tr>
<td>5218</td>
<td>SMU.1181c</td>
<td></td>
<td>Streptococcus mutans</td>
<td>UA159</td>
</tr>
<tr>
<td>5219</td>
<td>SMU.1182c</td>
<td></td>
<td>Streptococcus mutans</td>
<td>UA159</td>
</tr>
<tr>
<td>5220</td>
<td>SMU.1183c</td>
<td></td>
<td>Streptococcus mutans</td>
<td>UA159</td>
</tr>
<tr>
<td>5221</td>
<td>SMU.1184c</td>
<td></td>
<td>Streptococcus mutans</td>
<td>UA159</td>
</tr>
<tr>
<td>5222</td>
<td>SMU.1185c</td>
<td></td>
<td>Streptococcus mutans</td>
<td>UA159</td>
</tr>
<tr>
<td>5223</td>
<td>SMU.1186c</td>
<td></td>
<td>Streptococcus mutans</td>
<td>UA159</td>
</tr>
<tr>
<td>5224</td>
<td>SMU.1187c</td>
<td></td>
<td>Streptococcus mutans</td>
<td>UA159</td>
</tr>
<tr>
<td>5225</td>
<td>SMU.1188c</td>
<td></td>
<td>Streptococcus mutans</td>
<td>UA159</td>
</tr>
<tr>
<td>5226</td>
<td>SMU.1189c</td>
<td></td>
<td>Streptococcus mutans</td>
<td>UA159</td>
</tr>
<tr>
<td>5227</td>
<td>SMU.1190c</td>
<td></td>
<td>Streptococcus mutans</td>
<td>UA159</td>
</tr>
<tr>
<td>5228</td>
<td>SMU.1191c</td>
<td></td>
<td>Streptococcus mutans</td>
<td>UA159</td>
</tr>
<tr>
<td>5229</td>
<td>SMU.1192c</td>
<td></td>
<td>Streptococcus mutans</td>
<td>UA159</td>
</tr>
<tr>
<td>5230</td>
<td>SMU.1193c</td>
<td></td>
<td>Streptococcus mutans</td>
<td>UA159</td>
</tr>
<tr>
<td>5231</td>
<td>SMU.1194c</td>
<td></td>
<td>Streptococcus mutans</td>
<td>UA159</td>
</tr>
<tr>
<td>5232</td>
<td>SMU.1195c</td>
<td></td>
<td>Streptococcus mutans</td>
<td>UA159</td>
</tr>
<tr>
<td>5233</td>
<td>SMU.1196c</td>
<td></td>
<td>Streptococcus mutans</td>
<td>UA159</td>
</tr>
<tr>
<td>5234</td>
<td>SMU.1197c</td>
<td></td>
<td>Streptococcus mutans</td>
<td>UA159</td>
</tr>
<tr>
<td>5235</td>
<td>SMU.1198c</td>
<td></td>
<td>Streptococcus mutans</td>
<td>UA159</td>
</tr>
<tr>
<td>5236</td>
<td>SMU.1199c</td>
<td></td>
<td>Streptococcus mutans</td>
<td>UA159</td>
</tr>
<tr>
<td>5237</td>
<td>SMU.1200c</td>
<td></td>
<td>Streptococcus mutans</td>
<td>UA159</td>
</tr>
<tr>
<td>5238</td>
<td>SMU.1201c</td>
<td></td>
<td>Streptococcus mutans</td>
<td>UA159</td>
</tr>
<tr>
<td>5239</td>
<td>SMU.1202c</td>
<td></td>
<td>Streptococcus mutans</td>
<td>UA159</td>
</tr>
<tr>
<td>5240</td>
<td>SMU.1203c</td>
<td></td>
<td>Streptococcus mutans</td>
<td>UA159</td>
</tr>
<tr>
<td>5241</td>
<td>SMU.1204c</td>
<td></td>
<td>Streptococcus mutans</td>
<td>UA159</td>
</tr>
<tr>
<td>5242</td>
<td>SMU.1205c</td>
<td></td>
<td>Streptococcus mutans</td>
<td>UA159</td>
</tr>
<tr>
<td>5243</td>
<td>SMU.1206c</td>
<td></td>
<td>Streptococcus mutans</td>
<td>UA159</td>
</tr>
<tr>
<td>Sondenbezeichnung</td>
<td>Genbezeichnung</td>
<td>Gen</td>
<td>Genursprungsspezies</td>
<td>Genursprungsstamm</td>
</tr>
<tr>
<td>------------------</td>
<td>---------------</td>
<td>-----</td>
<td>---------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>5244</td>
<td>SMU.2112</td>
<td>gbpA</td>
<td>Streptococcus mutans</td>
<td>UA159</td>
</tr>
<tr>
<td>5245</td>
<td>SMU.2164</td>
<td>htrA</td>
<td>Streptococcus mutans</td>
<td>UA159</td>
</tr>
<tr>
<td>5246</td>
<td>spr0008</td>
<td>strH</td>
<td>Streptococcus pneumoniae</td>
<td>R6</td>
</tr>
<tr>
<td>5247</td>
<td>spr0057</td>
<td>capD</td>
<td>Streptococcus pneumoniae</td>
<td>R6</td>
</tr>
<tr>
<td>5248</td>
<td>spr0075</td>
<td>capD</td>
<td>Streptococcus pneumoniae</td>
<td>R6</td>
</tr>
<tr>
<td>5249</td>
<td>spr0092</td>
<td>capD</td>
<td>Streptococcus pneumoniae</td>
<td>R6</td>
</tr>
<tr>
<td>5250</td>
<td>spr0096</td>
<td>capD</td>
<td>Streptococcus pneumoniae</td>
<td>R6</td>
</tr>
<tr>
<td>5251</td>
<td>spr0108</td>
<td>capD</td>
<td>Streptococcus pneumoniae</td>
<td>R6</td>
</tr>
<tr>
<td>5252</td>
<td>spr0121</td>
<td>capD</td>
<td>Streptococcus pneumoniae</td>
<td>R6</td>
</tr>
<tr>
<td>5253</td>
<td>spr0131</td>
<td>capD</td>
<td>Streptococcus pneumoniae</td>
<td>R6</td>
</tr>
<tr>
<td>5254</td>
<td>spr0156</td>
<td>capD</td>
<td>Streptococcus pneumoniae</td>
<td>R6</td>
</tr>
<tr>
<td>5255</td>
<td>spr0174</td>
<td>capD</td>
<td>Streptococcus pneumoniae</td>
<td>R6</td>
</tr>
<tr>
<td>5256</td>
<td>spr0229</td>
<td>PTS-EIIA</td>
<td>Streptococcus pneumoniae</td>
<td>R6</td>
</tr>
<tr>
<td>5257</td>
<td>spr0247</td>
<td>pulA</td>
<td>Streptococcus pneumoniae</td>
<td>R6</td>
</tr>
<tr>
<td>5258</td>
<td>spr0286</td>
<td>hyaA</td>
<td>Streptococcus pneumoniae</td>
<td>R6</td>
</tr>
<tr>
<td>5259</td>
<td>spr0299</td>
<td>hyaA</td>
<td>Streptococcus pneumoniae</td>
<td>R6</td>
</tr>
<tr>
<td>5260</td>
<td>spr0304</td>
<td>pbpX</td>
<td>Streptococcus pneumoniae</td>
<td>R6</td>
</tr>
<tr>
<td>5261</td>
<td>spr0311</td>
<td>pbpX</td>
<td>Streptococcus pneumoniae</td>
<td>R6</td>
</tr>
<tr>
<td>5262</td>
<td>spr0327</td>
<td>aliA</td>
<td>Streptococcus pneumoniae</td>
<td>R6</td>
</tr>
<tr>
<td>5263</td>
<td>spr0328</td>
<td>aliA</td>
<td>Streptococcus pneumoniae</td>
<td>R6</td>
</tr>
<tr>
<td>5264</td>
<td>spr0329</td>
<td>pbpX</td>
<td>Streptococcus pneumoniae</td>
<td>R6</td>
</tr>
<tr>
<td>5265</td>
<td>spr0337</td>
<td>cbpF</td>
<td>Streptococcus pneumoniae</td>
<td>R6</td>
</tr>
<tr>
<td>5266</td>
<td>spr0348</td>
<td>cbpF</td>
<td>Streptococcus pneumoniae</td>
<td>R6</td>
</tr>
<tr>
<td>5267</td>
<td>spr0350</td>
<td>cbpG</td>
<td>Streptococcus pneumoniae</td>
<td>R6</td>
</tr>
<tr>
<td>5268</td>
<td>spr0351</td>
<td>cbpG</td>
<td>Streptococcus pneumoniae</td>
<td>R6</td>
</tr>
<tr>
<td>5269</td>
<td>spr0428</td>
<td>ppcP</td>
<td>Streptococcus pneumoniae</td>
<td>R6</td>
</tr>
<tr>
<td>5270</td>
<td>spr0440</td>
<td>ppcP</td>
<td>Streptococcus pneumoniae</td>
<td>R6</td>
</tr>
<tr>
<td>5271</td>
<td>spr0447</td>
<td>xerD</td>
<td>Streptococcus pneumoniae</td>
<td>R6</td>
</tr>
<tr>
<td>5272</td>
<td>spr0451</td>
<td>xerD</td>
<td>Streptococcus pneumoniae</td>
<td>R6</td>
</tr>
<tr>
<td>5273</td>
<td>spr0474</td>
<td>pncP</td>
<td>Streptococcus pneumoniae</td>
<td>R6</td>
</tr>
<tr>
<td>5274</td>
<td>spr0534</td>
<td>glnH</td>
<td>Streptococcus pneumoniae</td>
<td>R6</td>
</tr>
<tr>
<td>5275</td>
<td>spr0545</td>
<td>ABC-SBP</td>
<td>Streptococcus pneumoniae</td>
<td>R6</td>
</tr>
<tr>
<td>5276</td>
<td>spr0551</td>
<td>brnQ</td>
<td>Streptococcus pneumoniae</td>
<td>R6</td>
</tr>
<tr>
<td>5277</td>
<td>spr0554</td>
<td>brnQ</td>
<td>Streptococcus pneumoniae</td>
<td>R6</td>
</tr>
<tr>
<td>5278</td>
<td>spr0561</td>
<td>prtA</td>
<td>Streptococcus pneumoniae</td>
<td>R6</td>
</tr>
<tr>
<td>5279</td>
<td>spr0565</td>
<td>bgaA</td>
<td>Streptococcus pneumoniae</td>
<td>R6</td>
</tr>
<tr>
<td>5280</td>
<td>spr0576</td>
<td>bgaA</td>
<td>Streptococcus pneumoniae</td>
<td>R6</td>
</tr>
<tr>
<td>5281</td>
<td>spr0577</td>
<td>msrA</td>
<td>Streptococcus pneumoniae</td>
<td>R6</td>
</tr>
<tr>
<td>5282</td>
<td>spr0581</td>
<td>zmpB</td>
<td>Streptococcus pneumoniae</td>
<td>R6</td>
</tr>
<tr>
<td>5283</td>
<td>spr0583</td>
<td>zmpB</td>
<td>Streptococcus pneumoniae</td>
<td>R6</td>
</tr>
<tr>
<td>5284</td>
<td>spr0586</td>
<td>zmpB</td>
<td>Streptococcus pneumoniae</td>
<td>R6</td>
</tr>
<tr>
<td>5285</td>
<td>spr0587</td>
<td>zmpB</td>
<td>Streptococcus pneumoniae</td>
<td>R6</td>
</tr>
<tr>
<td>5286</td>
<td>spr0596</td>
<td>zmpB</td>
<td>Streptococcus pneumoniae</td>
<td>R6</td>
</tr>
<tr>
<td>5287</td>
<td>spr0600</td>
<td>zmpB</td>
<td>Streptococcus pneumoniae</td>
<td>R6</td>
</tr>
<tr>
<td>5288</td>
<td>spr0615</td>
<td>zmpB</td>
<td>Streptococcus pneumoniae</td>
<td>R6</td>
</tr>
<tr>
<td>5289</td>
<td>spr0621</td>
<td>ABC-SBP</td>
<td>Streptococcus pneumoniae</td>
<td>R6</td>
</tr>
<tr>
<td>5290</td>
<td>spr0659</td>
<td>livj</td>
<td>Streptococcus pneumoniae</td>
<td>R6</td>
</tr>
<tr>
<td>5291</td>
<td>spr0674</td>
<td>sodA</td>
<td>Streptococcus pneumoniae</td>
<td>R6</td>
</tr>
<tr>
<td>5292</td>
<td>spr0693</td>
<td>sodA</td>
<td>Streptococcus pneumoniae</td>
<td>R6</td>
</tr>
<tr>
<td>5293</td>
<td>spr0799</td>
<td>sodA</td>
<td>Streptococcus pneumoniae</td>
<td>R6</td>
</tr>
<tr>
<td>5294</td>
<td>spr0831</td>
<td>lytD</td>
<td>Streptococcus pneumoniae</td>
<td>R6</td>
</tr>
<tr>
<td>5295</td>
<td>spr0856</td>
<td>celA</td>
<td>Streptococcus pneumoniae</td>
<td>R6</td>
</tr>
<tr>
<td>5296</td>
<td>spr0857</td>
<td>celA</td>
<td>Streptococcus pneumoniae</td>
<td>R6</td>
</tr>
<tr>
<td>5297</td>
<td>spr0868</td>
<td>celB</td>
<td>Streptococcus pneumoniae</td>
<td>R6</td>
</tr>
<tr>
<td>5298</td>
<td>spr0884</td>
<td>celB</td>
<td>Streptococcus pneumoniae</td>
<td>R6</td>
</tr>
<tr>
<td>5299</td>
<td>spr0890</td>
<td>celB</td>
<td>Streptococcus pneumoniae</td>
<td>R6</td>
</tr>
<tr>
<td>5300</td>
<td>spr0901</td>
<td>celB</td>
<td>Streptococcus pneumoniae</td>
<td>R6</td>
</tr>
<tr>
<td>5301</td>
<td>spr0903</td>
<td>ccdA</td>
<td>Streptococcus pneumoniae</td>
<td>R6</td>
</tr>
<tr>
<td>5302</td>
<td>spr0904</td>
<td>ccdA</td>
<td>Streptococcus pneumoniae</td>
<td>R6</td>
</tr>
<tr>
<td>5303</td>
<td>spr0905</td>
<td>yfnA</td>
<td>Streptococcus pneumoniae</td>
<td>R6</td>
</tr>
<tr>
<td>Sondenbezeichnung</td>
<td>Genbezeichnung</td>
<td>Gen</td>
<td>Genursprungsspezies</td>
<td>Genursprungsstamm</td>
</tr>
<tr>
<td>------------------</td>
<td>---------------</td>
<td>-----</td>
<td>---------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>5304</td>
<td>spr0906</td>
<td>lmb</td>
<td>Streptococcus pneumoniae</td>
<td>R6</td>
</tr>
<tr>
<td>5305</td>
<td>spr0907</td>
<td>phID</td>
<td>Streptococcus pneumoniae</td>
<td>R6</td>
</tr>
<tr>
<td>5306</td>
<td>spr0908</td>
<td>phrE</td>
<td>Streptococcus pneumoniae</td>
<td>R6</td>
</tr>
<tr>
<td>5307</td>
<td>spr0931</td>
<td></td>
<td>Streptococcus pneumoniae</td>
<td>R6</td>
</tr>
<tr>
<td>5308</td>
<td>spr0936</td>
<td>ABC-MSP</td>
<td>Streptococcus pneumoniae</td>
<td>R6</td>
</tr>
<tr>
<td>5309</td>
<td>spr0973</td>
<td>ftsW</td>
<td>Streptococcus pneumoniae</td>
<td>R6</td>
</tr>
<tr>
<td>5310</td>
<td>spr0975</td>
<td>ABC-SBP</td>
<td>Streptococcus pneumoniae</td>
<td>R6</td>
</tr>
<tr>
<td>5311</td>
<td>spr1036</td>
<td>eno</td>
<td>Streptococcus pneumoniae</td>
<td>R6</td>
</tr>
<tr>
<td>5312</td>
<td>spr1042</td>
<td>iga</td>
<td>Streptococcus pneumoniae</td>
<td>R6</td>
</tr>
<tr>
<td>5313</td>
<td>spr1140</td>
<td></td>
<td>Streptococcus pneumoniae</td>
<td>R6</td>
</tr>
<tr>
<td>5314</td>
<td>spr1178</td>
<td></td>
<td>Streptococcus pneumoniae</td>
<td>R6</td>
</tr>
<tr>
<td>5315</td>
<td>spr1251</td>
<td>glnH</td>
<td>Streptococcus pneumoniae</td>
<td>R6</td>
</tr>
<tr>
<td>5316</td>
<td>spr1257</td>
<td>ptsS</td>
<td>Streptococcus pneumoniae</td>
<td>R6</td>
</tr>
<tr>
<td>5317</td>
<td>spr1267</td>
<td></td>
<td>Streptococcus pneumoniae</td>
<td>R6</td>
</tr>
<tr>
<td>5318</td>
<td>spr1274</td>
<td>spsA</td>
<td>Streptococcus pneumoniae</td>
<td>R6</td>
</tr>
<tr>
<td>5319</td>
<td>spr1284</td>
<td></td>
<td>Streptococcus pneumoniae</td>
<td>R6</td>
</tr>
<tr>
<td>5320</td>
<td>spr1304</td>
<td>cppA</td>
<td>Streptococcus pneumoniae</td>
<td>R6</td>
</tr>
<tr>
<td>5321</td>
<td>spr1333</td>
<td>pgdA</td>
<td>Streptococcus pneumoniae</td>
<td>R6</td>
</tr>
<tr>
<td>5322</td>
<td>spr1382</td>
<td>aliB</td>
<td>Streptococcus pneumoniae</td>
<td>R6</td>
</tr>
<tr>
<td>5323</td>
<td>spr1400</td>
<td></td>
<td>Streptococcus pneumoniae</td>
<td>R6</td>
</tr>
<tr>
<td>5324</td>
<td>spr1403</td>
<td></td>
<td>Streptococcus pneumoniae</td>
<td>R6</td>
</tr>
<tr>
<td>5325</td>
<td>spr1418</td>
<td></td>
<td>Streptococcus pneumoniae</td>
<td>R6</td>
</tr>
<tr>
<td>5326</td>
<td>spr1428</td>
<td></td>
<td>Streptococcus pneumoniae</td>
<td>R6</td>
</tr>
<tr>
<td>5327</td>
<td>spr1494</td>
<td>psaA</td>
<td>Streptococcus pneumoniae</td>
<td>R6</td>
</tr>
<tr>
<td>5328</td>
<td>spr1527</td>
<td>ABC-SBP</td>
<td>Streptococcus pneumoniae</td>
<td>R6</td>
</tr>
<tr>
<td>5329</td>
<td>spr1528</td>
<td>PTS-EII</td>
<td>Streptococcus pneumoniae</td>
<td>R6</td>
</tr>
<tr>
<td>5330</td>
<td>spr1531</td>
<td>nanB</td>
<td>Streptococcus pneumoniae</td>
<td>R6</td>
</tr>
<tr>
<td>5331</td>
<td>spr1534</td>
<td>ABC-SBP</td>
<td>Streptococcus pneumoniae</td>
<td>R6</td>
</tr>
<tr>
<td>5332</td>
<td>spr1549</td>
<td></td>
<td>Streptococcus pneumoniae</td>
<td>R6</td>
</tr>
<tr>
<td>5333</td>
<td>spr1584</td>
<td></td>
<td>Streptococcus pneumoniae</td>
<td>R6</td>
</tr>
<tr>
<td>5334</td>
<td>spr1652</td>
<td></td>
<td>Streptococcus pneumoniae</td>
<td>R6</td>
</tr>
<tr>
<td>5335</td>
<td>spr1697</td>
<td></td>
<td>Streptococcus pneumoniae</td>
<td>R6</td>
</tr>
<tr>
<td>5336</td>
<td>spr1728</td>
<td></td>
<td>Streptococcus pneumoniae</td>
<td>R6</td>
</tr>
<tr>
<td>5337</td>
<td>spr1764</td>
<td></td>
<td>Streptococcus pneumoniae</td>
<td>R6</td>
</tr>
<tr>
<td>5338</td>
<td>spr1771</td>
<td>nisP</td>
<td>Streptococcus pneumoniae</td>
<td>R6</td>
</tr>
<tr>
<td>5339</td>
<td>spr1780</td>
<td>epuA</td>
<td>Streptococcus pneumoniae</td>
<td>R6</td>
</tr>
<tr>
<td>5340</td>
<td>spr1782</td>
<td></td>
<td>Streptococcus pneumoniae</td>
<td>R6</td>
</tr>
<tr>
<td>5341</td>
<td>spr1861</td>
<td>cglD</td>
<td>Streptococcus pneumoniae</td>
<td>R6</td>
</tr>
<tr>
<td>5342</td>
<td>spr1875</td>
<td></td>
<td>Streptococcus pneumoniae</td>
<td>R6</td>
</tr>
<tr>
<td>5343</td>
<td>spr1915</td>
<td></td>
<td>Streptococcus pneumoniae</td>
<td>R6</td>
</tr>
<tr>
<td>5344</td>
<td>spr1925</td>
<td></td>
<td>Streptococcus pneumoniae</td>
<td>R6</td>
</tr>
<tr>
<td>5345</td>
<td>spr1945</td>
<td>pcpA</td>
<td>Streptococcus pneumoniae</td>
<td>R6</td>
</tr>
<tr>
<td>5346</td>
<td>spr1961</td>
<td></td>
<td>Streptococcus pneumoniae</td>
<td>R6</td>
</tr>
<tr>
<td>5347</td>
<td>spr1965</td>
<td></td>
<td>Streptococcus pneumoniae</td>
<td>R6</td>
</tr>
<tr>
<td>5348</td>
<td>spr1995</td>
<td>pspC</td>
<td>Streptococcus pneumoniae</td>
<td>R6</td>
</tr>
<tr>
<td>5349</td>
<td>spr2003</td>
<td></td>
<td>Streptococcus pneumoniae</td>
<td>R6</td>
</tr>
<tr>
<td>5350</td>
<td>spr2006</td>
<td>cbpD</td>
<td>Streptococcus pneumoniae</td>
<td>R6</td>
</tr>
<tr>
<td>5351</td>
<td>spr2021</td>
<td>gsp-781</td>
<td>Streptococcus pneumoniae</td>
<td>R6</td>
</tr>
<tr>
<td>5352</td>
<td>spr2023</td>
<td>mreC</td>
<td>Streptococcus pneumoniae</td>
<td>R6</td>
</tr>
<tr>
<td>5353</td>
<td>spr2045</td>
<td>spsitra</td>
<td>Streptococcus pneumoniae</td>
<td>R6</td>
</tr>
<tr>
<td>5354</td>
<td>SMU.01</td>
<td>dnaA</td>
<td>Streptococcus mutans</td>
<td>UA159</td>
</tr>
<tr>
<td>5355</td>
<td>SMU.120</td>
<td></td>
<td>Streptococcus mutans</td>
<td>UA159</td>
</tr>
<tr>
<td>5356</td>
<td>SMU.650</td>
<td></td>
<td>Streptococcus mutans</td>
<td>UA159</td>
</tr>
<tr>
<td>5357</td>
<td>SMU.671</td>
<td>citZ</td>
<td>Streptococcus mutans</td>
<td>UA159</td>
</tr>
<tr>
<td>5358</td>
<td>SMU.867</td>
<td>rimM</td>
<td>Streptococcus mutans</td>
<td>UA159</td>
</tr>
<tr>
<td>5359</td>
<td>SMU.1114</td>
<td>gyrA</td>
<td>Streptococcus mutans</td>
<td>UA159</td>
</tr>
<tr>
<td>5360</td>
<td>SMU.1115</td>
<td>ldh</td>
<td>Streptococcus mutans</td>
<td>UA159</td>
</tr>
<tr>
<td>5361</td>
<td>SMU.1673</td>
<td>upp</td>
<td>Streptococcus mutans</td>
<td>UA159</td>
</tr>
<tr>
<td>5362</td>
<td>SMU.2009</td>
<td>rpsE</td>
<td>Streptococcus mutans</td>
<td>UA159</td>
</tr>
<tr>
<td>5363</td>
<td>SMU.2157</td>
<td>guaB</td>
<td>Streptococcus mutans</td>
<td>UA159</td>
</tr>
<tr>
<td>Genenbezeichnung</td>
<td>Sondenbezeichnung</td>
<td>Gen</td>
<td>Genursprungspezies</td>
<td>Genursprungsstamm</td>
</tr>
<tr>
<td>-----------------</td>
<td>-------------------</td>
<td>-----</td>
<td>--------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>5364</td>
<td>AF248236</td>
<td>psaA</td>
<td>Streptococcus mitis</td>
<td>NCTC 12261</td>
</tr>
<tr>
<td>5365</td>
<td>DQ004563</td>
<td>iga</td>
<td>Streptococcus mitis</td>
<td>SK564</td>
</tr>
<tr>
<td>5366</td>
<td>AB181235</td>
<td>aliA</td>
<td>Streptococcus mitis</td>
<td>J22</td>
</tr>
<tr>
<td>5367</td>
<td>AB181235</td>
<td>aliB</td>
<td>Streptococcus mitis</td>
<td>J22</td>
</tr>
<tr>
<td>5368</td>
<td>AB181234</td>
<td>dexB</td>
<td>Streptococcus oralis</td>
<td></td>
</tr>
<tr>
<td>5369</td>
<td>AB106539</td>
<td>srtA</td>
<td>Streptococcus oralis</td>
<td>ATCC 10557</td>
</tr>
<tr>
<td>5370</td>
<td>AF248237</td>
<td>psaA</td>
<td>Streptococcus oralis</td>
<td>NCTC 11427</td>
</tr>
<tr>
<td>5371</td>
<td>S81768</td>
<td>spaA</td>
<td>Streptococcus oralis</td>
<td>NCTC 7864</td>
</tr>
<tr>
<td>5372</td>
<td>Y13224</td>
<td>iga</td>
<td>Streptococcus oralis</td>
<td>SK23</td>
</tr>
<tr>
<td>5373</td>
<td>AE100426</td>
<td>fapA</td>
<td>Streptococcus parasanguinis</td>
<td>FW213</td>
</tr>
<tr>
<td>5374</td>
<td>M26130</td>
<td>fimA</td>
<td>Streptococcus parasanguinis</td>
<td>FW213</td>
</tr>
<tr>
<td>5375</td>
<td>AJ273241</td>
<td>cpsH</td>
<td>Streptococcus salivarius</td>
<td>FI9186</td>
</tr>
<tr>
<td>5376</td>
<td>AJ273241</td>
<td>cpsD</td>
<td>Streptococcus salivarius</td>
<td>FI9186</td>
</tr>
<tr>
<td>5377</td>
<td>AJ273241</td>
<td>cpsC</td>
<td>Streptococcus salivarius</td>
<td>FI9186</td>
</tr>
<tr>
<td>5378</td>
<td>AJ273241</td>
<td>cpsB</td>
<td>Streptococcus salivarius</td>
<td>FI9186</td>
</tr>
<tr>
<td>5379</td>
<td>LO8445</td>
<td>ftf</td>
<td>Streptococcus salivarius</td>
<td>ATCC 25975</td>
</tr>
<tr>
<td>5380</td>
<td>AF333638</td>
<td>cspB</td>
<td>Streptococcus salivarius</td>
<td>ATCC 25975</td>
</tr>
<tr>
<td>5381</td>
<td>AF333638</td>
<td>cspA</td>
<td>Streptococcus salivarius</td>
<td>ATCC 25975</td>
</tr>
<tr>
<td>5382</td>
<td>AY072742</td>
<td>cssA</td>
<td>Streptococcus sanguinis</td>
<td>NCTC 10904</td>
</tr>
<tr>
<td>5383</td>
<td>M63481</td>
<td>cssB</td>
<td>Streptococcus sanguinis</td>
<td>12</td>
</tr>
<tr>
<td>5384</td>
<td>Y13461</td>
<td>cssA</td>
<td>Streptococcus sanguinis</td>
<td>SK85</td>
</tr>
<tr>
<td>5385</td>
<td>L11577</td>
<td>cssA</td>
<td>Streptococcus gordini</td>
<td>PK488</td>
</tr>
<tr>
<td>5386</td>
<td>AE035817</td>
<td>abpA</td>
<td>Streptococcus gordini</td>
<td>NCTC 7868</td>
</tr>
<tr>
<td>5387</td>
<td>AB029393</td>
<td>hsa</td>
<td>Streptococcus gordini</td>
<td>DL1</td>
</tr>
<tr>
<td>5388</td>
<td>X65164</td>
<td>cssB</td>
<td>Streptococcus gordini</td>
<td></td>
</tr>
<tr>
<td>5389</td>
<td>X65164</td>
<td>fbpA</td>
<td>Streptococcus gordini</td>
<td></td>
</tr>
<tr>
<td>5390</td>
<td>U40025</td>
<td>sspA</td>
<td>Streptococcus gordini</td>
<td>M5</td>
</tr>
<tr>
<td>5391</td>
<td>AF485860</td>
<td>emm</td>
<td>Streptococcus anginosus</td>
<td>NSRT24</td>
</tr>
<tr>
<td>5392</td>
<td>AF248235</td>
<td>psaA</td>
<td>Streptococcus anginosus</td>
<td>NCTC 10713</td>
</tr>
<tr>
<td>5393</td>
<td>AF385683</td>
<td>emm</td>
<td>Streptococcus constellatus</td>
<td>ATCC 27823</td>
</tr>
<tr>
<td>5394</td>
<td>AY686729</td>
<td>emm</td>
<td>Streptococcus constellatus</td>
<td></td>
</tr>
<tr>
<td>5395</td>
<td>AF485859</td>
<td>emm</td>
<td>Streptococcus constellatus</td>
<td>NSRT23</td>
</tr>
<tr>
<td>5396</td>
<td>AE192470</td>
<td>emm</td>
<td>Streptococcus constellatus</td>
<td>NCTC 10708</td>
</tr>
<tr>
<td>5397</td>
<td>AF385684</td>
<td>emm</td>
<td>Streptococcus intermedius</td>
<td>ATCC 27335</td>
</tr>
<tr>
<td>5398</td>
<td>AB045410</td>
<td>pas</td>
<td>Streptococcus intermedius</td>
<td>GAI-1157</td>
</tr>
<tr>
<td>5399</td>
<td>AB029317</td>
<td>ily</td>
<td>Streptococcus intermedius</td>
<td>UNS46</td>
</tr>
<tr>
<td>5400</td>
<td>AF157015</td>
<td>cyIE</td>
<td>Streptococcus agalactiae</td>
<td>COH1</td>
</tr>
<tr>
<td>5401</td>
<td>AF157015</td>
<td>cyIK</td>
<td>Streptococcus agalactiae</td>
<td>COH1</td>
</tr>
<tr>
<td>5402</td>
<td>U15050</td>
<td>hyI</td>
<td>Streptococcus agalactiae</td>
<td>3502</td>
</tr>
<tr>
<td>5403</td>
<td>AB028896</td>
<td>cplAI</td>
<td>Streptococcus agalactiae</td>
<td>A909</td>
</tr>
<tr>
<td>5404</td>
<td>AB028896</td>
<td>cplAI</td>
<td>Streptococcus agalactiae</td>
<td>A909</td>
</tr>
<tr>
<td>5405</td>
<td>AB028896</td>
<td>neuA</td>
<td>Streptococcus agalactiae</td>
<td>A909</td>
</tr>
<tr>
<td>5406</td>
<td>AB028896</td>
<td>bca</td>
<td>Streptococcus agalactiae</td>
<td>A909</td>
</tr>
<tr>
<td>5407</td>
<td>AE163333</td>
<td>cplA</td>
<td>Streptococcus agalactiae</td>
<td>COH1</td>
</tr>
<tr>
<td>5408</td>
<td>AE163333</td>
<td>cplE</td>
<td>Streptococcus agalactiae</td>
<td>COH1</td>
</tr>
<tr>
<td>5409</td>
<td>X72274</td>
<td>bca</td>
<td>Streptococcus agalactiae</td>
<td>R268</td>
</tr>
<tr>
<td>5410</td>
<td>M97256</td>
<td>bca</td>
<td>Streptococcus agalactiae</td>
<td>A909</td>
</tr>
<tr>
<td>5411</td>
<td>U56908</td>
<td>scpB</td>
<td>Streptococcus agalactiae</td>
<td>78-471</td>
</tr>
<tr>
<td>5412</td>
<td>AF485279</td>
<td>spbI</td>
<td>Streptococcus agalactiae</td>
<td>874391</td>
</tr>
<tr>
<td>5413</td>
<td>U58333</td>
<td>rib</td>
<td>Streptococcus agalactiae</td>
<td>BM110</td>
</tr>
<tr>
<td>5414</td>
<td>AY069949</td>
<td>prfA</td>
<td>Streptococcus agalactiae</td>
<td>A909</td>
</tr>
<tr>
<td>5415</td>
<td>AY069949</td>
<td>ponA</td>
<td>Streptococcus agalactiae</td>
<td>A909</td>
</tr>
<tr>
<td>5416</td>
<td>SAG0499</td>
<td>fgb</td>
<td>Streptococcus agalactiae</td>
<td>2603V / R</td>
</tr>
<tr>
<td>5417</td>
<td>AE010402</td>
<td>manL</td>
<td>Streptococcus agalactiae</td>
<td>2603V / R</td>
</tr>
<tr>
<td>8728</td>
<td>A04926</td>
<td>skc</td>
<td>Streptococcus dysgalactiae</td>
<td></td>
</tr>
<tr>
<td>8729</td>
<td>AB050249</td>
<td>slo</td>
<td>Streptococcus dysgalactiae</td>
<td>H46A</td>
</tr>
<tr>
<td>8730</td>
<td>AB051299</td>
<td>samhPaf</td>
<td>Streptococcus mitis</td>
<td>Nm-65</td>
</tr>
<tr>
<td>8731</td>
<td>AB093370</td>
<td>fnz2</td>
<td>Streptococcus equi</td>
<td>VGU111</td>
</tr>
<tr>
<td>8732</td>
<td>AB093371</td>
<td>fnz</td>
<td>Streptococcus equi</td>
<td>VGU111</td>
</tr>
<tr>
<td>8733</td>
<td>AB093373</td>
<td>psaA</td>
<td>Streptococcus equi</td>
<td>VGU111</td>
</tr>
<tr>
<td>Sondenbezeichnung</td>
<td>Genbezeichnung</td>
<td>Gen</td>
<td>Genursprungsspezies</td>
<td>Genursprungsstamm</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------------</td>
<td>-----</td>
<td>---------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>8734</td>
<td>AB105077</td>
<td>spegg1</td>
<td>Streptococcus dysgalactiae</td>
<td>NDMC1</td>
</tr>
<tr>
<td>8735</td>
<td>AB217854</td>
<td>naplr</td>
<td>Streptococcus dysgalactiae</td>
<td></td>
</tr>
<tr>
<td>8736</td>
<td>AB271060</td>
<td>lcl</td>
<td>Streptococcus intermedius</td>
<td></td>
</tr>
<tr>
<td>8737</td>
<td>AB326213</td>
<td>fimL</td>
<td>Streptococcus intermedius</td>
<td>1208-1</td>
</tr>
<tr>
<td>8738</td>
<td>AB326999</td>
<td>lcl</td>
<td>Streptococcus anginosus</td>
<td>IMU114</td>
</tr>
<tr>
<td>8739</td>
<td>AF009908</td>
<td>prfF15</td>
<td>Streptococcus pyogenes</td>
<td>EF1949</td>
</tr>
<tr>
<td>8740</td>
<td>AF023876</td>
<td></td>
<td>Streptococcus dysgalactiae</td>
<td></td>
</tr>
<tr>
<td>8741</td>
<td>AF091393</td>
<td>R28</td>
<td>Streptococcus pyogenes</td>
<td>AL368</td>
</tr>
<tr>
<td>8742</td>
<td>AF104300</td>
<td>skc</td>
<td>Streptococcus dysgalactiae</td>
<td>89-272</td>
</tr>
<tr>
<td>8743</td>
<td>AF128264</td>
<td>msrA</td>
<td>Streptococcus gordonii</td>
<td>CH1</td>
</tr>
<tr>
<td>8744</td>
<td>AF354648</td>
<td>abpB</td>
<td>Streptococcus pyogenes</td>
<td>IMU114</td>
</tr>
<tr>
<td>8745</td>
<td>AF414053</td>
<td></td>
<td>Streptococcus equi</td>
<td></td>
</tr>
<tr>
<td>8746</td>
<td>AF466962</td>
<td></td>
<td>Streptococcus equi</td>
<td>ATCC 35246</td>
</tr>
<tr>
<td>8747</td>
<td>AF519492</td>
<td></td>
<td>Streptococcus equi</td>
<td>SEZ0012177D</td>
</tr>
<tr>
<td>8748</td>
<td>AJ002290</td>
<td>pbp1a</td>
<td>Streptococcus mitis</td>
<td>B6</td>
</tr>
<tr>
<td>8749</td>
<td>AJ240617</td>
<td>xpt</td>
<td>Streptococcus oralis</td>
<td>11427</td>
</tr>
<tr>
<td>8750</td>
<td>AJ240618</td>
<td>xpt</td>
<td>Streptococcus mitis</td>
<td>12261</td>
</tr>
<tr>
<td>8751</td>
<td>AJ252191</td>
<td>lytA</td>
<td>Streptococcus mitis</td>
<td>COL15</td>
</tr>
<tr>
<td>8752</td>
<td>AJ300679</td>
<td>DRS</td>
<td>Streptococcus pyogenes</td>
<td>AC-2353</td>
</tr>
<tr>
<td>8753</td>
<td>AJ319589</td>
<td>lmb</td>
<td>Streptococcus dysgalactiae</td>
<td>LMG 15845</td>
</tr>
<tr>
<td>8754</td>
<td>AJ557010</td>
<td>speM</td>
<td>Streptococcus dysgalactiae</td>
<td></td>
</tr>
<tr>
<td>8755</td>
<td>AJ605745</td>
<td>gfbA</td>
<td>Streptococcus dysgalactiae</td>
<td>NS3572</td>
</tr>
<tr>
<td>8756</td>
<td>AJ605760</td>
<td>gfbA</td>
<td>Streptococcus dysgalactiae</td>
<td>59G</td>
</tr>
<tr>
<td>8757</td>
<td>AJ851826</td>
<td>ssm</td>
<td>Streptococcus equi</td>
<td>122</td>
</tr>
<tr>
<td>8758</td>
<td>AJ870429</td>
<td>ltyB</td>
<td>Streptococcus mitis</td>
<td>NCTC 12261</td>
</tr>
<tr>
<td>8759</td>
<td>AO028382</td>
<td>secA</td>
<td>Streptococcus gordonii</td>
<td>M99</td>
</tr>
<tr>
<td>8760</td>
<td>AO033399_1873-2419</td>
<td>sagC</td>
<td>Streptococcus dysgalactiae</td>
<td>VASD1</td>
</tr>
<tr>
<td>8761</td>
<td>AO033399_375-900</td>
<td>sagA</td>
<td>Streptococcus dysgalactiae</td>
<td>VASD1</td>
</tr>
<tr>
<td>8762</td>
<td>AO033399_926-1876</td>
<td>sagB</td>
<td>Streptococcus dysgalactiae</td>
<td>VASD1</td>
</tr>
<tr>
<td>8763</td>
<td>AO049745</td>
<td>speA</td>
<td>Streptococcus dysgalactiae</td>
<td>4951</td>
</tr>
<tr>
<td>8764</td>
<td>AO072743</td>
<td>osbB</td>
<td>Streptococcus gordonii</td>
<td>Challis DL1</td>
</tr>
<tr>
<td>8765</td>
<td>AO120874</td>
<td>SfbX</td>
<td>Streptococcus pyogenes</td>
<td></td>
</tr>
<tr>
<td>8766</td>
<td>AO289800</td>
<td>pbp2b</td>
<td>Streptococcus constellatus</td>
<td>MM9889a</td>
</tr>
<tr>
<td>8767</td>
<td>AO289801</td>
<td>pbp2b</td>
<td>Streptococcus intermedius</td>
<td>ATCC 27336</td>
</tr>
<tr>
<td>8768</td>
<td>AO289802</td>
<td>pbp2b</td>
<td>Streptococcus anginosus</td>
<td>MAS625</td>
</tr>
<tr>
<td>8769</td>
<td>AO302595</td>
<td></td>
<td>Streptococcus anginosus</td>
<td>MAS624</td>
</tr>
<tr>
<td>8770</td>
<td>AO302596</td>
<td></td>
<td>Streptococcus constellatus</td>
<td>MM9889a</td>
</tr>
<tr>
<td>8771</td>
<td>AO907345</td>
<td>dysA</td>
<td>Streptococcus dysgalactiae</td>
<td>W2580</td>
</tr>
<tr>
<td>8772</td>
<td>DQ217837</td>
<td>salA1</td>
<td>Streptococcus dysgalactiae</td>
<td>4003</td>
</tr>
<tr>
<td>8773</td>
<td>DQ363208</td>
<td>fnz-protein</td>
<td>Streptococcus equi</td>
<td>ATCC 35246</td>
</tr>
<tr>
<td>8774</td>
<td>DQ380235S1</td>
<td>alp</td>
<td>Streptococcus dysgalactiae</td>
<td></td>
</tr>
<tr>
<td>8775</td>
<td>DQ380235S2</td>
<td>alp</td>
<td>Streptococcus dysgalactiae</td>
<td></td>
</tr>
<tr>
<td>8776</td>
<td>DQ826037</td>
<td>ideZ</td>
<td>Streptococcus equi</td>
<td>ZV</td>
</tr>
<tr>
<td>8777</td>
<td>EF066519</td>
<td>mitilysin</td>
<td>Streptococcus mitis</td>
<td>R751</td>
</tr>
<tr>
<td>8778</td>
<td>EF406087</td>
<td>sodA</td>
<td>Streptococcus equi</td>
<td>ATCC 43079</td>
</tr>
<tr>
<td>8779</td>
<td>EF989012</td>
<td></td>
<td>Streptococcus mitis</td>
<td></td>
</tr>
<tr>
<td>8780</td>
<td>EMM_cs</td>
<td>emm</td>
<td>Streptococcus sp.</td>
<td></td>
</tr>
<tr>
<td>8781</td>
<td>EU082206</td>
<td>hyl</td>
<td>Streptococcus equi</td>
<td>cvcc23362</td>
</tr>
<tr>
<td>8782</td>
<td>MOA_cs</td>
<td>moa</td>
<td>Streptococcus anginosus</td>
<td>SV52</td>
</tr>
<tr>
<td>8783</td>
<td>S46536</td>
<td>SKC-2</td>
<td>Streptococcus dysgalactiae</td>
<td>ATCC 9542</td>
</tr>
<tr>
<td>8784</td>
<td>85398</td>
<td>sarA</td>
<td>Streptococcus gordonii</td>
<td></td>
</tr>
<tr>
<td>8785</td>
<td>S85398</td>
<td>sarA</td>
<td>Streptococcus gordonii</td>
<td></td>
</tr>
<tr>
<td>8786</td>
<td>S85398</td>
<td>sarA</td>
<td>Streptococcus gordonii</td>
<td></td>
</tr>
<tr>
<td>8787</td>
<td>SAK_0008</td>
<td>mfd</td>
<td>Streptococcus agalactiae</td>
<td>A909</td>
</tr>
<tr>
<td>8788</td>
<td>SAK_0050</td>
<td>pcsB</td>
<td>Streptococcus agalactiae</td>
<td>A909</td>
</tr>
<tr>
<td>8789</td>
<td>SAK_0064</td>
<td>zooA</td>
<td>Streptococcus agalactiae</td>
<td>A909</td>
</tr>
<tr>
<td>8790</td>
<td>SAK_0065</td>
<td>sip</td>
<td>Streptococcus agalactiae</td>
<td>A909</td>
</tr>
<tr>
<td>8791</td>
<td>SAK_0083</td>
<td></td>
<td>Streptococcus agalactiae</td>
<td>A909</td>
</tr>
<tr>
<td>8792</td>
<td>SAK_0084</td>
<td></td>
<td>Streptococcus agalactiae</td>
<td>A909</td>
</tr>
<tr>
<td>8793</td>
<td>SAK_0137</td>
<td></td>
<td>Streptococcus agalactiae</td>
<td>A909</td>
</tr>
<tr>
<td>Sondenbezeichnung</td>
<td>Genbezeichnung</td>
<td>Gen</td>
<td>Genursprungspezies</td>
<td>Genursprungsstamm</td>
</tr>
<tr>
<td>------------------</td>
<td>---------------</td>
<td>-----</td>
<td>--------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>8794</td>
<td>SAK_0143</td>
<td></td>
<td>Streptococcus agalactiae</td>
<td>A909</td>
</tr>
<tr>
<td>8795</td>
<td>SAK_0144</td>
<td></td>
<td>Streptococcus agalactiae</td>
<td>A909</td>
</tr>
<tr>
<td>8796</td>
<td>SAK_0158</td>
<td></td>
<td>Streptococcus agalactiae</td>
<td>A909</td>
</tr>
<tr>
<td>8797</td>
<td>SAK_0166</td>
<td>rbsB</td>
<td>Streptococcus agalactiae</td>
<td>A909</td>
</tr>
<tr>
<td>8798</td>
<td>SAK_0175</td>
<td></td>
<td>Streptococcus agalactiae</td>
<td>A909</td>
</tr>
<tr>
<td>8799</td>
<td>SAK_0186</td>
<td>bag</td>
<td>Streptococcus agalactiae</td>
<td>A909</td>
</tr>
<tr>
<td>8800</td>
<td>SAK_0188</td>
<td></td>
<td>Streptococcus agalactiae</td>
<td>A909</td>
</tr>
<tr>
<td>8801</td>
<td>SAK_0192</td>
<td></td>
<td>Streptococcus agalactiae</td>
<td>A909</td>
</tr>
<tr>
<td>8802</td>
<td>SAK_0204</td>
<td></td>
<td>Streptococcus agalactiae</td>
<td>A909</td>
</tr>
<tr>
<td>8803</td>
<td>SAK_0205</td>
<td></td>
<td>Streptococcus agalactiae</td>
<td>A909</td>
</tr>
<tr>
<td>8804</td>
<td>SAK_0206</td>
<td></td>
<td>Streptococcus agalactiae</td>
<td>A909</td>
</tr>
<tr>
<td>8805</td>
<td>SAK_0220</td>
<td></td>
<td>Streptococcus agalactiae</td>
<td>A909</td>
</tr>
<tr>
<td>8806</td>
<td>SAK_0222</td>
<td></td>
<td>Streptococcus agalactiae</td>
<td>A909</td>
</tr>
<tr>
<td>8807</td>
<td>SAK_0228</td>
<td></td>
<td>Streptococcus agalactiae</td>
<td>A909</td>
</tr>
<tr>
<td>8808</td>
<td>SAK_0232</td>
<td></td>
<td>Streptococcus agalactiae</td>
<td>A909</td>
</tr>
<tr>
<td>8809</td>
<td>SAK_0242</td>
<td></td>
<td>Streptococcus agalactiae</td>
<td>A909</td>
</tr>
<tr>
<td>8810</td>
<td>SAK_0252</td>
<td></td>
<td>Streptococcus agalactiae</td>
<td>A909</td>
</tr>
<tr>
<td>8811</td>
<td>SAK_0301</td>
<td></td>
<td>Streptococcus agalactiae</td>
<td>A909</td>
</tr>
<tr>
<td>8812</td>
<td>SAK_0330</td>
<td></td>
<td>Streptococcus agalactiae</td>
<td>A909</td>
</tr>
<tr>
<td>8813</td>
<td>SAK_0337</td>
<td></td>
<td>Streptococcus agalactiae</td>
<td>A909</td>
</tr>
<tr>
<td>8814</td>
<td>SAK_0359</td>
<td>pbpX</td>
<td>Streptococcus agalactiae</td>
<td>A909</td>
</tr>
<tr>
<td>8815</td>
<td>SAK_0362</td>
<td></td>
<td>Streptococcus agalactiae</td>
<td>A909</td>
</tr>
<tr>
<td>8816</td>
<td>SAK_0370</td>
<td></td>
<td>Streptococcus agalactiae</td>
<td>A909</td>
</tr>
<tr>
<td>8817</td>
<td>SAK_0399</td>
<td></td>
<td>Streptococcus agalactiae</td>
<td>A909</td>
</tr>
<tr>
<td>8818</td>
<td>SAK_0442</td>
<td></td>
<td>Streptococcus agalactiae</td>
<td>A909</td>
</tr>
<tr>
<td>8819</td>
<td>SAK_0445</td>
<td></td>
<td>Streptococcus agalactiae</td>
<td>A909</td>
</tr>
<tr>
<td>8820</td>
<td>SAK_0457</td>
<td></td>
<td>Streptococcus agalactiae</td>
<td>A909</td>
</tr>
<tr>
<td>8821</td>
<td>SAK_0466</td>
<td></td>
<td>Streptococcus agalactiae</td>
<td>A909</td>
</tr>
<tr>
<td>8822</td>
<td>SAK_0478</td>
<td></td>
<td>Streptococcus agalactiae</td>
<td>A909</td>
</tr>
<tr>
<td>8823</td>
<td>SAK_0479</td>
<td>galU</td>
<td>Streptococcus agalactiae</td>
<td>A909</td>
</tr>
<tr>
<td>8824</td>
<td>SAK_0502</td>
<td></td>
<td>Streptococcus agalactiae</td>
<td>A909</td>
</tr>
<tr>
<td>8825</td>
<td>SAK_0517</td>
<td></td>
<td>Streptococcus agalactiae</td>
<td>A909</td>
</tr>
<tr>
<td>8826</td>
<td>SAK_0530</td>
<td></td>
<td>Streptococcus agalactiae</td>
<td>A909</td>
</tr>
<tr>
<td>8827</td>
<td>SAK_0532</td>
<td></td>
<td>Streptococcus agalactiae</td>
<td>A909</td>
</tr>
<tr>
<td>8828</td>
<td>SAK_0553</td>
<td></td>
<td>Streptococcus agalactiae</td>
<td>A909</td>
</tr>
<tr>
<td>8829</td>
<td>SAK_0556</td>
<td></td>
<td>Streptococcus agalactiae</td>
<td>A909</td>
</tr>
<tr>
<td>8830</td>
<td>SAK_0600</td>
<td>tlyA</td>
<td>Streptococcus agalactiae</td>
<td>A909</td>
</tr>
<tr>
<td>8831</td>
<td>SAK_0604</td>
<td></td>
<td>Streptococcus agalactiae</td>
<td>A909</td>
</tr>
<tr>
<td>8832</td>
<td>SAK_0605</td>
<td></td>
<td>Streptococcus agalactiae</td>
<td>A909</td>
</tr>
<tr>
<td>8833</td>
<td>SAK_0652</td>
<td></td>
<td>Streptococcus agalactiae</td>
<td>A909</td>
</tr>
<tr>
<td>8834</td>
<td>SAK_0656</td>
<td></td>
<td>Streptococcus agalactiae</td>
<td>A909</td>
</tr>
<tr>
<td>8835</td>
<td>SAK_0672</td>
<td></td>
<td>Streptococcus agalactiae</td>
<td>A909</td>
</tr>
<tr>
<td>8836</td>
<td>SAK_0685</td>
<td>adcA</td>
<td>Streptococcus agalactiae</td>
<td>A909</td>
</tr>
<tr>
<td>8837</td>
<td>SAK_0714</td>
<td></td>
<td>Streptococcus agalactiae</td>
<td>A909</td>
</tr>
<tr>
<td>8838</td>
<td>SAK_0722</td>
<td></td>
<td>Streptococcus agalactiae</td>
<td>A909</td>
</tr>
<tr>
<td>8839</td>
<td>SAK_0763</td>
<td></td>
<td>Streptococcus agalactiae</td>
<td>A909</td>
</tr>
<tr>
<td>8840</td>
<td>SAK_0768</td>
<td></td>
<td>Streptococcus agalactiae</td>
<td>A909</td>
</tr>
<tr>
<td>8841</td>
<td>SAK_0771</td>
<td></td>
<td>Streptococcus agalactiae</td>
<td>A909</td>
</tr>
<tr>
<td>8842</td>
<td>SAK_0776</td>
<td></td>
<td>Streptococcus agalactiae</td>
<td>A909</td>
</tr>
<tr>
<td>8843</td>
<td>SAK_0777</td>
<td></td>
<td>Streptococcus agalactiae</td>
<td>A909</td>
</tr>
<tr>
<td>8844</td>
<td>SAK_0778</td>
<td></td>
<td>Streptococcus agalactiae</td>
<td>A909</td>
</tr>
<tr>
<td>8845</td>
<td>SAK_0779</td>
<td></td>
<td>Streptococcus agalactiae</td>
<td>A909</td>
</tr>
<tr>
<td>8846</td>
<td>SAK_0780</td>
<td></td>
<td>Streptococcus agalactiae</td>
<td>A909</td>
</tr>
<tr>
<td>8847</td>
<td>SAK_0786</td>
<td></td>
<td>Streptococcus agalactiae</td>
<td>A909</td>
</tr>
<tr>
<td>8848</td>
<td>SAK_0803</td>
<td></td>
<td>Streptococcus agalactiae</td>
<td>A909</td>
</tr>
<tr>
<td>8849</td>
<td>SAK_0804</td>
<td></td>
<td>Streptococcus agalactiae</td>
<td>A909</td>
</tr>
<tr>
<td>8850</td>
<td>SAK_0807</td>
<td></td>
<td>Streptococcus agalactiae</td>
<td>A909</td>
</tr>
<tr>
<td>8851</td>
<td>SAK_0808</td>
<td></td>
<td>Streptococcus agalactiae</td>
<td>A909</td>
</tr>
<tr>
<td>8852</td>
<td>SAK_0809</td>
<td></td>
<td>Streptococcus agalactiae</td>
<td>A909</td>
</tr>
<tr>
<td>8853</td>
<td>SAK_0814</td>
<td></td>
<td>Streptococcus agalactiae</td>
<td>A909</td>
</tr>
<tr>
<td>Sondenbezeichnung</td>
<td>Genbezeichnung</td>
<td>Gen</td>
<td>Genursprungsspezies</td>
<td>Genursprungsstamm</td>
</tr>
<tr>
<td>------------------</td>
<td>---------------</td>
<td>-----</td>
<td>----------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>8854</td>
<td>SAK_0829</td>
<td></td>
<td>Streptococcus agalactiae</td>
<td>A909</td>
</tr>
<tr>
<td>8855</td>
<td>SAK_0840</td>
<td></td>
<td>Streptococcus agalactiae</td>
<td>A909</td>
</tr>
<tr>
<td>8856</td>
<td>SAK_0843</td>
<td></td>
<td>Streptococcus agalactiae</td>
<td>A909</td>
</tr>
<tr>
<td>8857</td>
<td>SAK_0848</td>
<td></td>
<td>Streptococcus agalactiae</td>
<td>A909</td>
</tr>
<tr>
<td>8858</td>
<td>SAK_0860</td>
<td></td>
<td>Streptococcus agalactiae</td>
<td>A909</td>
</tr>
<tr>
<td>8859</td>
<td>SAK_0865</td>
<td></td>
<td>Streptococcus agalactiae</td>
<td>A909</td>
</tr>
<tr>
<td>8860</td>
<td>SAK_0867</td>
<td></td>
<td>Streptococcus agalactiae</td>
<td>A909</td>
</tr>
<tr>
<td>8861</td>
<td>SAK_0868</td>
<td></td>
<td>Streptococcus agalactiae</td>
<td>A909</td>
</tr>
<tr>
<td>8862</td>
<td>SAK_0881</td>
<td></td>
<td>Streptococcus agalactiae</td>
<td>A909</td>
</tr>
<tr>
<td>8863</td>
<td>SAK_0890</td>
<td></td>
<td>Streptococcus agalactiae</td>
<td>A909</td>
</tr>
<tr>
<td>8864</td>
<td>SAK_0896</td>
<td></td>
<td>Streptococcus agalactiae</td>
<td>A909</td>
</tr>
<tr>
<td>8865</td>
<td>SAK_0901</td>
<td></td>
<td>Streptococcus agalactiae</td>
<td>A909</td>
</tr>
<tr>
<td>8866</td>
<td>SAK_0910</td>
<td></td>
<td>Streptococcus agalactiae</td>
<td>A909</td>
</tr>
<tr>
<td>8867</td>
<td>SAK_0913</td>
<td>sodA</td>
<td>Streptococcus agalactiae</td>
<td>A909</td>
</tr>
<tr>
<td>8868</td>
<td>SAK_0920</td>
<td></td>
<td>Streptococcus agalactiae</td>
<td>A909</td>
</tr>
<tr>
<td>8869</td>
<td>SAK_0929</td>
<td>pepB</td>
<td>Streptococcus agalactiae</td>
<td>A909</td>
</tr>
<tr>
<td>8870</td>
<td>SAK_0932</td>
<td></td>
<td>Streptococcus agalactiae</td>
<td>A909</td>
</tr>
<tr>
<td>8871</td>
<td>SAK_0955</td>
<td></td>
<td>Streptococcus agalactiae</td>
<td>A909</td>
</tr>
<tr>
<td>8872</td>
<td>SAK_0956</td>
<td></td>
<td>Streptococcus agalactiae</td>
<td>A909</td>
</tr>
<tr>
<td>8873</td>
<td>SAK_0980</td>
<td></td>
<td>Streptococcus agalactiae</td>
<td>A909</td>
</tr>
<tr>
<td>8874</td>
<td>SAK_0990</td>
<td></td>
<td>Streptococcus agalactiae</td>
<td>A909</td>
</tr>
<tr>
<td>8875</td>
<td>SAK_0991</td>
<td></td>
<td>Streptococcus agalactiae</td>
<td>A909</td>
</tr>
<tr>
<td>8876</td>
<td>SAK_1009</td>
<td></td>
<td>Streptococcus agalactiae</td>
<td>A909</td>
</tr>
<tr>
<td>8877</td>
<td>SAK_1038</td>
<td></td>
<td>Streptococcus agalactiae</td>
<td>A909</td>
</tr>
<tr>
<td>8878</td>
<td>SAK_1044</td>
<td></td>
<td>Streptococcus agalactiae</td>
<td>A909</td>
</tr>
<tr>
<td>8879</td>
<td>SAK_1049</td>
<td></td>
<td>Streptococcus agalactiae</td>
<td>A909</td>
</tr>
<tr>
<td>8880</td>
<td>SAK_1056</td>
<td></td>
<td>Streptococcus agalactiae</td>
<td>A909</td>
</tr>
<tr>
<td>8881</td>
<td>SAK_1058</td>
<td></td>
<td>Streptococcus agalactiae</td>
<td>A909</td>
</tr>
<tr>
<td>8882</td>
<td>SAK_1066</td>
<td></td>
<td>Streptococcus agalactiae</td>
<td>A909</td>
</tr>
<tr>
<td>8883</td>
<td>SAK_1068</td>
<td></td>
<td>Streptococcus agalactiae</td>
<td>A909</td>
</tr>
<tr>
<td>8884</td>
<td>SAK_1074</td>
<td></td>
<td>Streptococcus agalactiae</td>
<td>A909</td>
</tr>
<tr>
<td>8885</td>
<td>SAK_1079</td>
<td></td>
<td>Streptococcus agalactiae</td>
<td>A909</td>
</tr>
<tr>
<td>8886</td>
<td>SAK_1087</td>
<td></td>
<td>Streptococcus agalactiae</td>
<td>A909</td>
</tr>
<tr>
<td>8887</td>
<td>SAK_1091</td>
<td></td>
<td>Streptococcus agalactiae</td>
<td>A909</td>
</tr>
<tr>
<td>8888</td>
<td>SAK_1100</td>
<td></td>
<td>Streptococcus agalactiae</td>
<td>A909</td>
</tr>
<tr>
<td>8889</td>
<td>SAK_1102</td>
<td></td>
<td>Streptococcus agalactiae</td>
<td>A909</td>
</tr>
<tr>
<td>8890</td>
<td>SAK_1109</td>
<td></td>
<td>Streptococcus agalactiae</td>
<td>A909</td>
</tr>
<tr>
<td>8891</td>
<td>SAK_1114</td>
<td></td>
<td>Streptococcus agalactiae</td>
<td>A909</td>
</tr>
<tr>
<td>8892</td>
<td>SAK_1126</td>
<td></td>
<td>Streptococcus agalactiae</td>
<td>A909</td>
</tr>
<tr>
<td>8893</td>
<td>SAK_1142</td>
<td></td>
<td>Streptococcus agalactiae</td>
<td>A909</td>
</tr>
<tr>
<td>8894</td>
<td>SAK_1158</td>
<td></td>
<td>Streptococcus agalactiae</td>
<td>A909</td>
</tr>
<tr>
<td>8895</td>
<td>SAK_1193</td>
<td></td>
<td>Streptococcus agalactiae</td>
<td>A909</td>
</tr>
<tr>
<td>8896</td>
<td>SAK_1206</td>
<td></td>
<td>Streptococcus agalactiae</td>
<td>A909</td>
</tr>
<tr>
<td>8897</td>
<td>SAK_1213</td>
<td></td>
<td>Streptococcus agalactiae</td>
<td>A909</td>
</tr>
<tr>
<td>8898</td>
<td>SAK_1225</td>
<td></td>
<td>Streptococcus agalactiae</td>
<td>A909</td>
</tr>
<tr>
<td>8899</td>
<td>SAK_1235</td>
<td></td>
<td>Streptococcus agalactiae</td>
<td>A909</td>
</tr>
<tr>
<td>8900</td>
<td>SAK_1252</td>
<td></td>
<td>Streptococcus agalactiae</td>
<td>A909</td>
</tr>
<tr>
<td>8901</td>
<td>SAK_1253</td>
<td></td>
<td>Streptococcus agalactiae</td>
<td>A909</td>
</tr>
<tr>
<td>8902</td>
<td>SAK_1254</td>
<td></td>
<td>Streptococcus agalactiae</td>
<td>A909</td>
</tr>
<tr>
<td>8903</td>
<td>SAK_1255</td>
<td></td>
<td>Streptococcus agalactiae</td>
<td>A909</td>
</tr>
<tr>
<td>8904</td>
<td>SAK_1256</td>
<td></td>
<td>Streptococcus agalactiae</td>
<td>A909</td>
</tr>
<tr>
<td>8905</td>
<td>SAK_1257</td>
<td></td>
<td>Streptococcus agalactiae</td>
<td>A909</td>
</tr>
<tr>
<td>8906</td>
<td>SAK_1260</td>
<td></td>
<td>Streptococcus agalactiae</td>
<td>A909</td>
</tr>
<tr>
<td>8907</td>
<td>SAK_1277</td>
<td></td>
<td>Streptococcus agalactiae</td>
<td>A909</td>
</tr>
<tr>
<td>8908</td>
<td>SAK_1284</td>
<td></td>
<td>Streptococcus agalactiae</td>
<td>A909</td>
</tr>
<tr>
<td>8909</td>
<td>SAK_1293</td>
<td></td>
<td>Streptococcus agalactiae</td>
<td>A909</td>
</tr>
<tr>
<td>8910</td>
<td>SAK_1300</td>
<td></td>
<td>Streptococcus agalactiae</td>
<td>A909</td>
</tr>
<tr>
<td>8911</td>
<td>SAK_1302</td>
<td></td>
<td>Streptococcus agalactiae</td>
<td>A909</td>
</tr>
<tr>
<td>8912</td>
<td>SAK_1313</td>
<td></td>
<td>Streptococcus agalactiae</td>
<td>A909</td>
</tr>
<tr>
<td>8913</td>
<td>SAK_1320</td>
<td>scpB</td>
<td>Streptococcus agalactiae</td>
<td>A909</td>
</tr>
<tr>
<td>Sondenbezeichnung</td>
<td>Genbezeichnung</td>
<td>Gen</td>
<td>Genursprungspezies</td>
<td>Genursprungsstamm</td>
</tr>
<tr>
<td>------------------</td>
<td>---------------</td>
<td>-----</td>
<td>--------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>8914</td>
<td>SAK_1350</td>
<td></td>
<td>Streptococcus agalactiae</td>
<td>A909</td>
</tr>
<tr>
<td>8915</td>
<td>SAK_1358</td>
<td></td>
<td>Streptococcus agalactiae</td>
<td>A909</td>
</tr>
<tr>
<td>8916</td>
<td>SAK_1364</td>
<td></td>
<td>Streptococcus agalactiae</td>
<td>A909</td>
</tr>
<tr>
<td>8917</td>
<td>SAK_1381</td>
<td></td>
<td>Streptococcus agalactiae</td>
<td>A909</td>
</tr>
<tr>
<td>8918</td>
<td>SAK_1394</td>
<td></td>
<td>Streptococcus agalactiae</td>
<td>A909</td>
</tr>
<tr>
<td>8919</td>
<td>SAK_1404</td>
<td></td>
<td>Streptococcus agalactiae</td>
<td>A909</td>
</tr>
<tr>
<td>8920</td>
<td>SAK_1407</td>
<td></td>
<td>Streptococcus agalactiae</td>
<td>A909</td>
</tr>
<tr>
<td>8921</td>
<td>SAK_1426</td>
<td>fluD</td>
<td>Streptococcus agalactiae</td>
<td>A909</td>
</tr>
<tr>
<td>8922</td>
<td>SAK_1438</td>
<td></td>
<td>Streptococcus agalactiae</td>
<td>A909</td>
</tr>
<tr>
<td>8923</td>
<td>SAK_1439</td>
<td></td>
<td>Streptococcus agalactiae</td>
<td>A909</td>
</tr>
<tr>
<td>8924</td>
<td>SAK_1440</td>
<td></td>
<td>Streptococcus agalactiae</td>
<td>A909</td>
</tr>
<tr>
<td>8925</td>
<td>SAK_1454</td>
<td></td>
<td>Streptococcus agalactiae</td>
<td>A909</td>
</tr>
<tr>
<td>8926</td>
<td>SAK_1466</td>
<td></td>
<td>Streptococcus agalactiae</td>
<td>A909</td>
</tr>
<tr>
<td>8927</td>
<td>SAK_1475</td>
<td></td>
<td>Streptococcus agalactiae</td>
<td>A909</td>
</tr>
<tr>
<td>8928</td>
<td>SAK_1493</td>
<td></td>
<td>Streptococcus agalactiae</td>
<td>A909</td>
</tr>
<tr>
<td>8929</td>
<td>SAK_1501</td>
<td></td>
<td>Streptococcus agalactiae</td>
<td>A909</td>
</tr>
<tr>
<td>8930</td>
<td>SAK_1503</td>
<td></td>
<td>Streptococcus agalactiae</td>
<td>A909</td>
</tr>
<tr>
<td>8931</td>
<td>SAK_1504</td>
<td></td>
<td>Streptococcus agalactiae</td>
<td>A909</td>
</tr>
<tr>
<td>8932</td>
<td>SAK_1513</td>
<td>secG</td>
<td>Streptococcus agalactiae</td>
<td>A909</td>
</tr>
<tr>
<td>8933</td>
<td>SAK_1521</td>
<td></td>
<td>Streptococcus agalactiae</td>
<td>A909</td>
</tr>
<tr>
<td>8934</td>
<td>SAK_1532</td>
<td></td>
<td>Streptococcus agalactiae</td>
<td>A909</td>
</tr>
<tr>
<td>8935</td>
<td>SAK_1542</td>
<td>nikA</td>
<td>Streptococcus agalactiae</td>
<td>A909</td>
</tr>
<tr>
<td>8936</td>
<td>SAK_1556</td>
<td>mtsA</td>
<td>Streptococcus agalactiae</td>
<td>A909</td>
</tr>
<tr>
<td>8937</td>
<td>SAK_1580</td>
<td></td>
<td>Streptococcus agalactiae</td>
<td>A909</td>
</tr>
<tr>
<td>8938</td>
<td>SAK_1625</td>
<td></td>
<td>Streptococcus agalactiae</td>
<td>A909</td>
</tr>
<tr>
<td>8939</td>
<td>SAK_1638</td>
<td></td>
<td>Streptococcus agalactiae</td>
<td>A909</td>
</tr>
<tr>
<td>8940</td>
<td>SAK_1655</td>
<td></td>
<td>Streptococcus agalactiae</td>
<td>A909</td>
</tr>
<tr>
<td>8941</td>
<td>SAK_1656</td>
<td></td>
<td>Streptococcus agalactiae</td>
<td>A909</td>
</tr>
<tr>
<td>8942</td>
<td>SAK_1660</td>
<td></td>
<td>Streptococcus agalactiae</td>
<td>A909</td>
</tr>
<tr>
<td>8943</td>
<td>SAK_1695</td>
<td></td>
<td>Streptococcus agalactiae</td>
<td>A909</td>
</tr>
<tr>
<td>8944</td>
<td>SAK_1784</td>
<td></td>
<td>Streptococcus agalactiae</td>
<td>A909</td>
</tr>
<tr>
<td>8945</td>
<td>SAK_1789</td>
<td></td>
<td>Streptococcus agalactiae</td>
<td>A909</td>
</tr>
<tr>
<td>8946</td>
<td>SAK_1796</td>
<td></td>
<td>Streptococcus agalactiae</td>
<td>A909</td>
</tr>
<tr>
<td>8947</td>
<td>SAK_1808</td>
<td></td>
<td>Streptococcus agalactiae</td>
<td>A909</td>
</tr>
<tr>
<td>8948</td>
<td>SAK_1809</td>
<td>dltD</td>
<td>Streptococcus agalactiae</td>
<td>A909</td>
</tr>
<tr>
<td>8949</td>
<td>SAK_1813</td>
<td>dltS</td>
<td>Streptococcus agalactiae</td>
<td>A909</td>
</tr>
<tr>
<td>8950</td>
<td>SAK_1842</td>
<td></td>
<td>Streptococcus agalactiae</td>
<td>A909</td>
</tr>
<tr>
<td>8951</td>
<td>SAK_1870</td>
<td></td>
<td>Streptococcus agalactiae</td>
<td>A909</td>
</tr>
<tr>
<td>8952</td>
<td>SAK_1880</td>
<td></td>
<td>Streptococcus agalactiae</td>
<td>A909</td>
</tr>
<tr>
<td>8953</td>
<td>SAK_1892</td>
<td></td>
<td>Streptococcus agalactiae</td>
<td>A909</td>
</tr>
<tr>
<td>8954</td>
<td>SAK_1897</td>
<td></td>
<td>Streptococcus agalactiae</td>
<td>A909</td>
</tr>
<tr>
<td>8955</td>
<td>SAK_1898</td>
<td></td>
<td>Streptococcus agalactiae</td>
<td>A909</td>
</tr>
<tr>
<td>8956</td>
<td>SAK_1901</td>
<td>cpdB</td>
<td>Streptococcus agalactiae</td>
<td>A909</td>
</tr>
<tr>
<td>8957</td>
<td>SAK_1905</td>
<td></td>
<td>Streptococcus agalactiae</td>
<td>A909</td>
</tr>
<tr>
<td>8958</td>
<td>SAK_1914</td>
<td></td>
<td>Streptococcus agalactiae</td>
<td>A909</td>
</tr>
<tr>
<td>8959</td>
<td>SAK_1921</td>
<td></td>
<td>Streptococcus agalactiae</td>
<td>A909</td>
</tr>
<tr>
<td>8960</td>
<td>SAK_1927</td>
<td></td>
<td>Streptococcus agalactiae</td>
<td>A909</td>
</tr>
<tr>
<td>8961</td>
<td>SAK_1961</td>
<td></td>
<td>Streptococcus agalactiae</td>
<td>A909</td>
</tr>
<tr>
<td>8962</td>
<td>SAK_1963</td>
<td></td>
<td>Streptococcus agalactiae</td>
<td>A909</td>
</tr>
<tr>
<td>8963</td>
<td>SAK_1964</td>
<td></td>
<td>Streptococcus agalactiae</td>
<td>A909</td>
</tr>
<tr>
<td>8964</td>
<td>SAK_1983</td>
<td>cfb</td>
<td>Streptococcus agalactiae</td>
<td>A909</td>
</tr>
<tr>
<td>8965</td>
<td>SAK_1988</td>
<td>metE</td>
<td>Streptococcus agalactiae</td>
<td>A909</td>
</tr>
<tr>
<td>8966</td>
<td>SAK_1991</td>
<td>cspA</td>
<td>Streptococcus agalactiae</td>
<td>A909</td>
</tr>
<tr>
<td>8967</td>
<td>SAK_1994</td>
<td></td>
<td>Streptococcus agalactiae</td>
<td>A909</td>
</tr>
<tr>
<td>8968</td>
<td>SAK_2002</td>
<td></td>
<td>Streptococcus agalactiae</td>
<td>A909</td>
</tr>
<tr>
<td>8969</td>
<td>SAK_2005</td>
<td>pbp2A</td>
<td>Streptococcus agalactiae</td>
<td>A909</td>
</tr>
<tr>
<td>8970</td>
<td>SAK_2007</td>
<td></td>
<td>Streptococcus agalactiae</td>
<td>A909</td>
</tr>
<tr>
<td>8971</td>
<td>SAK_2017</td>
<td></td>
<td>Streptococcus agalactiae</td>
<td>A909</td>
</tr>
<tr>
<td>8972</td>
<td>SAK_2057</td>
<td></td>
<td>Streptococcus agalactiae</td>
<td>A909</td>
</tr>
<tr>
<td>8973</td>
<td>SAK_2062</td>
<td></td>
<td>Streptococcus agalactiae</td>
<td>A909</td>
</tr>
<tr>
<td>Sondenbezeichnung</td>
<td>Genbezeichnung</td>
<td>Gen</td>
<td>Genursprungsspezies</td>
<td>Genursprungsstamm</td>
</tr>
<tr>
<td>------------------</td>
<td>---------------</td>
<td>-----</td>
<td>---------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>8974</td>
<td>SAK_2099</td>
<td></td>
<td>Streptococcus agalactiae</td>
<td>A909</td>
</tr>
<tr>
<td>8975</td>
<td>SAK_2105</td>
<td></td>
<td>Streptococcus agalactiae</td>
<td>A909</td>
</tr>
<tr>
<td>8976</td>
<td>SAK_2106</td>
<td></td>
<td>Streptococcus agalactiae</td>
<td>A909</td>
</tr>
<tr>
<td>8977</td>
<td>SAK_2125</td>
<td>arcC</td>
<td>Streptococcus agalactiae</td>
<td>A909</td>
</tr>
<tr>
<td>8978</td>
<td>SAK_2135</td>
<td>htrA</td>
<td>Streptococcus agalactiae</td>
<td>A909</td>
</tr>
<tr>
<td>8979</td>
<td>SPy_1006</td>
<td>lys</td>
<td>Streptococcus pyogenes</td>
<td>SF370</td>
</tr>
<tr>
<td>8980</td>
<td>SPy_1007</td>
<td>speI</td>
<td>Streptococcus pyogenes</td>
<td>SF370</td>
</tr>
<tr>
<td>8981</td>
<td>SPy_1008</td>
<td>speH</td>
<td>Streptococcus pyogenes</td>
<td>SF370</td>
</tr>
<tr>
<td>8982</td>
<td>SPy_1054</td>
<td></td>
<td>Streptococcus pyogenes</td>
<td>SF370</td>
</tr>
<tr>
<td>8983</td>
<td>SPy_1436</td>
<td>mf3</td>
<td>Streptococcus pyogenes</td>
<td>SF370</td>
</tr>
<tr>
<td>8984</td>
<td>SPy_1983</td>
<td>scl</td>
<td>Streptococcus pyogenes</td>
<td>SF370</td>
</tr>
<tr>
<td>8985</td>
<td>SPy_1998</td>
<td>smeZ</td>
<td>Streptococcus pyogenes</td>
<td>SF370</td>
</tr>
<tr>
<td>8986</td>
<td>SPy_2016</td>
<td>sic</td>
<td>Streptococcus pyogenes</td>
<td>SF370</td>
</tr>
<tr>
<td>8987</td>
<td>STRMAG</td>
<td>mag</td>
<td>Streptococcus dysgalactiae</td>
<td></td>
</tr>
<tr>
<td>8988</td>
<td>STRBP2BA</td>
<td>penA</td>
<td>Streptococcus sanguis</td>
<td>1907</td>
</tr>
<tr>
<td>8989</td>
<td>STRBP2BC</td>
<td>penA</td>
<td>Streptococcus oralis</td>
<td></td>
</tr>
<tr>
<td>8990</td>
<td>STRPRH</td>
<td></td>
<td>Streptococcus pyogenes</td>
<td></td>
</tr>
<tr>
<td>8991</td>
<td>SpyM3_0009</td>
<td></td>
<td>Streptococcus pyogenes</td>
<td>MGAS315</td>
</tr>
<tr>
<td>8992</td>
<td>SpyM3_0014</td>
<td></td>
<td>Streptococcus pyogenes</td>
<td>MGAS315</td>
</tr>
<tr>
<td>8993</td>
<td>SpyM3_0025</td>
<td></td>
<td>Streptococcus pyogenes</td>
<td>MGAS315</td>
</tr>
<tr>
<td>8994</td>
<td>SpyM3_0074</td>
<td>pbp1B</td>
<td>Streptococcus pyogenes</td>
<td>MGAS315</td>
</tr>
<tr>
<td>8995</td>
<td>SpyM3_0080</td>
<td>comYC</td>
<td>Streptococcus pyogenes</td>
<td>MGAS315</td>
</tr>
<tr>
<td>8996</td>
<td>SpyM3_0081</td>
<td></td>
<td>Streptococcus pyogenes</td>
<td>MGAS315</td>
</tr>
<tr>
<td>8997</td>
<td>SpyM3_0082</td>
<td></td>
<td>Streptococcus pyogenes</td>
<td>MGAS315</td>
</tr>
<tr>
<td>8998</td>
<td>SpyM3_0083</td>
<td>comYD</td>
<td>Streptococcus pyogenes</td>
<td>MGAS315</td>
</tr>
<tr>
<td>8999</td>
<td>SpyM3_0084</td>
<td></td>
<td>Streptococcus pyogenes</td>
<td>MGAS315</td>
</tr>
<tr>
<td>9000</td>
<td>SpyM3_0098</td>
<td>cbp</td>
<td>Streptococcus pyogenes</td>
<td>MGAS315</td>
</tr>
<tr>
<td>9001</td>
<td>SpyM3_0100</td>
<td></td>
<td>Streptococcus pyogenes</td>
<td>MGAS315</td>
</tr>
<tr>
<td>9002</td>
<td>SpyM3_0104</td>
<td></td>
<td>Streptococcus pyogenes</td>
<td>MGAS315</td>
</tr>
<tr>
<td>9003</td>
<td>SpyM3_0126</td>
<td></td>
<td>Streptococcus pyogenes</td>
<td>MGAS315</td>
</tr>
<tr>
<td>9004</td>
<td>SpyM3_0128</td>
<td>nga</td>
<td>Streptococcus pyogenes</td>
<td>MGAS315</td>
</tr>
<tr>
<td>9005</td>
<td>SpyM3_0130</td>
<td>slo</td>
<td>Streptococcus pyogenes</td>
<td>MGAS315</td>
</tr>
<tr>
<td>9006</td>
<td>SpyM3_0131</td>
<td></td>
<td>Streptococcus pyogenes</td>
<td>MGAS315</td>
</tr>
<tr>
<td>9007</td>
<td>SpyM3_0132</td>
<td></td>
<td>Streptococcus pyogenes</td>
<td>MGAS315</td>
</tr>
<tr>
<td>9008</td>
<td>SpyM3_0154</td>
<td></td>
<td>Streptococcus pyogenes</td>
<td>MGAS315</td>
</tr>
<tr>
<td>9009</td>
<td>SpyM3_0155</td>
<td>speG</td>
<td>Streptococcus pyogenes</td>
<td>MGAS315</td>
</tr>
<tr>
<td>9010</td>
<td>SpyM3_0160</td>
<td>hasC.2</td>
<td>Streptococcus pyogenes</td>
<td>MGAS315</td>
</tr>
<tr>
<td>9011</td>
<td>SpyM3_0180</td>
<td></td>
<td>Streptococcus pyogenes</td>
<td>MGAS315</td>
</tr>
<tr>
<td>9012</td>
<td>SpyM3_0197</td>
<td>prgA</td>
<td>Streptococcus pyogenes</td>
<td>MGAS315</td>
</tr>
<tr>
<td>9013</td>
<td>SpyM3_0213</td>
<td></td>
<td>Streptococcus pyogenes</td>
<td>MGAS315</td>
</tr>
<tr>
<td>9014</td>
<td>SpyM3_0214</td>
<td>dacA</td>
<td>Streptococcus pyogenes</td>
<td>MGAS315</td>
</tr>
<tr>
<td>9015</td>
<td>SpyM3_0215</td>
<td>oppA</td>
<td>Streptococcus pyogenes</td>
<td>MGAS315</td>
</tr>
<tr>
<td>9016</td>
<td>SpyM3_0232</td>
<td>atmA</td>
<td>Streptococcus pyogenes</td>
<td>MGAS315</td>
</tr>
<tr>
<td>9017</td>
<td>SpyM3_0233</td>
<td>atmB</td>
<td>Streptococcus pyogenes</td>
<td>MGAS315</td>
</tr>
<tr>
<td>9018</td>
<td>SpyM3_0241</td>
<td>lemA</td>
<td>Streptococcus pyogenes</td>
<td>MGAS315</td>
</tr>
<tr>
<td>9019</td>
<td>SpyM3_0245</td>
<td>csrS</td>
<td>Streptococcus pyogenes</td>
<td>MGAS315</td>
</tr>
<tr>
<td>9020</td>
<td>SpyM3_0276</td>
<td>hlyX</td>
<td>Streptococcus pyogenes</td>
<td>MGAS315</td>
</tr>
<tr>
<td>9021</td>
<td>SpyM3_0282</td>
<td>flusD.1</td>
<td>Streptococcus pyogenes</td>
<td>MGAS315</td>
</tr>
<tr>
<td>9022</td>
<td>SpyM3_0305</td>
<td></td>
<td>Streptococcus pyogenes</td>
<td>MGAS315</td>
</tr>
<tr>
<td>9023</td>
<td>SpyM3_0307</td>
<td></td>
<td>Streptococcus pyogenes</td>
<td>MGAS315</td>
</tr>
<tr>
<td>9024</td>
<td>SpyM3_0316</td>
<td></td>
<td>Streptococcus pyogenes</td>
<td>MGAS315</td>
</tr>
<tr>
<td>9025</td>
<td>SpyM3_0318</td>
<td>mtsA</td>
<td>Streptococcus pyogenes</td>
<td>MGAS315</td>
</tr>
<tr>
<td>9026</td>
<td>SpyM3_0321</td>
<td>cypB</td>
<td>Streptococcus pyogenes</td>
<td>MGAS315</td>
</tr>
<tr>
<td>9027</td>
<td>SpyM3_0331</td>
<td></td>
<td>Streptococcus pyogenes</td>
<td>MGAS315</td>
</tr>
<tr>
<td>9028</td>
<td>SpyM3_0332</td>
<td></td>
<td>Streptococcus pyogenes</td>
<td>MGAS315</td>
</tr>
<tr>
<td>9029</td>
<td>SpyM3_0339</td>
<td></td>
<td>Streptococcus pyogenes</td>
<td>MGAS315</td>
</tr>
<tr>
<td>9030</td>
<td>SpyM3_0343</td>
<td></td>
<td>Streptococcus pyogenes</td>
<td>MGAS315</td>
</tr>
<tr>
<td>9031</td>
<td>SpyM3_0345</td>
<td></td>
<td>Streptococcus pyogenes</td>
<td>MGAS315</td>
</tr>
<tr>
<td>9032</td>
<td>SpyM3_0351</td>
<td></td>
<td>Streptococcus pyogenes</td>
<td>MGAS315</td>
</tr>
<tr>
<td>9033</td>
<td>SpyM3_0408</td>
<td></td>
<td>Streptococcus pyogenes</td>
<td>MGAS315</td>
</tr>
<tr>
<td>Sondenbezeichnung</td>
<td>Genbezeichnung</td>
<td>Gen</td>
<td>Genursprungspezies</td>
<td>Genursprungsstamm</td>
</tr>
<tr>
<td>------------------</td>
<td>---------------</td>
<td>-------</td>
<td>--------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>9034</td>
<td>SpyM3_0414</td>
<td></td>
<td>Streptococcus pyogenes</td>
<td>MGAS315</td>
</tr>
<tr>
<td>9035</td>
<td>SpyM3_0415</td>
<td></td>
<td>Streptococcus pyogenes</td>
<td>MGAS315</td>
</tr>
<tr>
<td>9036</td>
<td>SpyM3_0417</td>
<td></td>
<td>Streptococcus pyogenes</td>
<td>MGAS315</td>
</tr>
<tr>
<td>9037</td>
<td>SpyM3_0418</td>
<td></td>
<td>Streptococcus pyogenes</td>
<td>MGAS315</td>
</tr>
<tr>
<td>9038</td>
<td>SpyM3_0425</td>
<td></td>
<td>Streptococcus pyogenes</td>
<td>MGAS315</td>
</tr>
<tr>
<td>9039</td>
<td>SpyM3_0427</td>
<td></td>
<td>Streptococcus pyogenes</td>
<td>MGAS315</td>
</tr>
<tr>
<td>9040</td>
<td>SpyM3_0466</td>
<td>adcA</td>
<td>Streptococcus pyogenes</td>
<td>MGAS315</td>
</tr>
<tr>
<td>9041</td>
<td>SpyM3_0480</td>
<td>sagA</td>
<td>Streptococcus pyogenes</td>
<td>MGAS315</td>
</tr>
<tr>
<td>9042</td>
<td>SpyM3_0481</td>
<td>sagB</td>
<td>Streptococcus pyogenes</td>
<td>MGAS315</td>
</tr>
<tr>
<td>9043</td>
<td>SpyM3_0482</td>
<td>sagC</td>
<td>Streptococcus pyogenes</td>
<td>MGAS315</td>
</tr>
<tr>
<td>9044</td>
<td>SpyM3_0489</td>
<td></td>
<td>Streptococcus pyogenes</td>
<td>MGAS315</td>
</tr>
<tr>
<td>9045</td>
<td>SpyM3_0504</td>
<td>endA</td>
<td>Streptococcus pyogenes</td>
<td>MGAS315</td>
</tr>
<tr>
<td>9046</td>
<td>SpyM3_0515</td>
<td></td>
<td>Streptococcus pyogenes</td>
<td>MGAS315</td>
</tr>
<tr>
<td>9047</td>
<td>SpyM3_0534</td>
<td></td>
<td>Streptococcus pyogenes</td>
<td>MGAS315</td>
</tr>
<tr>
<td>9048</td>
<td>SpyM3_0551</td>
<td></td>
<td>Streptococcus pyogenes</td>
<td>MGAS315</td>
</tr>
<tr>
<td>9049</td>
<td>SpyM3_0555</td>
<td></td>
<td>Streptococcus pyogenes</td>
<td>MGAS315</td>
</tr>
<tr>
<td>9050</td>
<td>SpyM3_0563</td>
<td></td>
<td>Streptococcus pyogenes</td>
<td>MGAS315</td>
</tr>
<tr>
<td>9051</td>
<td>SpyM3_0569</td>
<td></td>
<td>Streptococcus pyogenes</td>
<td>MGAS315</td>
</tr>
<tr>
<td>9052</td>
<td>SpyM3_0581</td>
<td></td>
<td>Streptococcus pyogenes</td>
<td>MGAS315</td>
</tr>
<tr>
<td>9053</td>
<td>SpyM3_0583</td>
<td></td>
<td>Streptococcus pyogenes</td>
<td>MGAS315</td>
</tr>
<tr>
<td>9054</td>
<td>SpyM3_0589</td>
<td></td>
<td>Streptococcus pyogenes</td>
<td>MGAS315</td>
</tr>
<tr>
<td>9055</td>
<td>SpyM3_0591</td>
<td></td>
<td>Streptococcus pyogenes</td>
<td>MGAS315</td>
</tr>
<tr>
<td>9056</td>
<td>SpyM3_0594</td>
<td></td>
<td>Streptococcus pyogenes</td>
<td>MGAS315</td>
</tr>
<tr>
<td>9057</td>
<td>SpyM3_0603</td>
<td></td>
<td>Streptococcus pyogenes</td>
<td>MGAS315</td>
</tr>
<tr>
<td>9058</td>
<td>SpyM3_0619</td>
<td></td>
<td>Streptococcus pyogenes</td>
<td>MGAS315</td>
</tr>
<tr>
<td>9059</td>
<td>SpyM3_0632</td>
<td></td>
<td>Streptococcus pyogenes</td>
<td>MGAS315</td>
</tr>
<tr>
<td>9060</td>
<td>SpyM3_0633</td>
<td></td>
<td>Streptococcus pyogenes</td>
<td>MGAS315</td>
</tr>
<tr>
<td>9061</td>
<td>SpyM3_0652</td>
<td></td>
<td>Streptococcus pyogenes</td>
<td>MGAS315</td>
</tr>
<tr>
<td>9062</td>
<td>SpyM3_0653</td>
<td></td>
<td>Streptococcus pyogenes</td>
<td>MGAS315</td>
</tr>
<tr>
<td>9063</td>
<td>SpyM3_0665</td>
<td>hylA</td>
<td>Streptococcus pyogenes</td>
<td>MGAS315</td>
</tr>
<tr>
<td>9064</td>
<td>SpyM3_0670</td>
<td></td>
<td>Streptococcus pyogenes</td>
<td>MGAS315</td>
</tr>
<tr>
<td>9065</td>
<td>SpyM3_0725</td>
<td>hylP.1</td>
<td>Streptococcus pyogenes</td>
<td>MGAS315</td>
</tr>
<tr>
<td>9066</td>
<td>SpyM3_0738</td>
<td>selB</td>
<td>Streptococcus pyogenes</td>
<td>MGAS315</td>
</tr>
<tr>
<td>9067</td>
<td>SpyM3_0747</td>
<td></td>
<td>Streptococcus pyogenes</td>
<td>MGAS315</td>
</tr>
<tr>
<td>9068</td>
<td>SpyM3_0755</td>
<td></td>
<td>Streptococcus pyogenes</td>
<td>MGAS315</td>
</tr>
<tr>
<td>9069</td>
<td>SpyM3_0756</td>
<td></td>
<td>Streptococcus pyogenes</td>
<td>MGAS315</td>
</tr>
<tr>
<td>9070</td>
<td>SpyM3_0767</td>
<td>potD</td>
<td>Streptococcus pyogenes</td>
<td>MGAS315</td>
</tr>
<tr>
<td>9071</td>
<td>SpyM3_0769</td>
<td></td>
<td>Streptococcus pyogenes</td>
<td>MGAS315</td>
</tr>
<tr>
<td>9072</td>
<td>SpyM3_0773</td>
<td></td>
<td>Streptococcus pyogenes</td>
<td>MGAS315</td>
</tr>
<tr>
<td>9073</td>
<td>SpyM3_0811</td>
<td></td>
<td>Streptococcus pyogenes</td>
<td>MGAS315</td>
</tr>
<tr>
<td>9074</td>
<td>SpyM3_0813</td>
<td></td>
<td>Streptococcus pyogenes</td>
<td>MGAS315</td>
</tr>
<tr>
<td>9075</td>
<td>SpyM3_0815</td>
<td>hlyIII</td>
<td>Streptococcus pyogenes</td>
<td>MGAS315</td>
</tr>
<tr>
<td>9076</td>
<td>SpyM3_0833</td>
<td>cteE</td>
<td>Streptococcus pyogenes</td>
<td>MGAS315</td>
</tr>
<tr>
<td>9077</td>
<td>SpyM3_0844</td>
<td></td>
<td>Streptococcus pyogenes</td>
<td>MGAS315</td>
</tr>
<tr>
<td>9078</td>
<td>SpyM3_0868</td>
<td></td>
<td>Streptococcus pyogenes</td>
<td>MGAS315</td>
</tr>
<tr>
<td>9079</td>
<td>SpyM3_0881</td>
<td>pstS</td>
<td>Streptococcus pyogenes</td>
<td>MGAS315</td>
</tr>
<tr>
<td>9080</td>
<td>SpyM3_0885</td>
<td>spxA</td>
<td>Streptococcus pyogenes</td>
<td>MGAS315</td>
</tr>
<tr>
<td>9081</td>
<td>SpyM3_0905</td>
<td>cfa</td>
<td>Streptococcus pyogenes</td>
<td>MGAS315</td>
</tr>
<tr>
<td>9082</td>
<td>SpyM3_0906</td>
<td></td>
<td>Streptococcus pyogenes</td>
<td>MGAS315</td>
</tr>
<tr>
<td>9083</td>
<td>SpyM3_0911</td>
<td>sipC</td>
<td>Streptococcus pyogenes</td>
<td>MGAS315</td>
</tr>
<tr>
<td>9084</td>
<td>SpyM3_0920</td>
<td>ssa</td>
<td>Streptococcus pyogenes</td>
<td>MGAS315</td>
</tr>
<tr>
<td>9085</td>
<td>SpyM3_0923</td>
<td></td>
<td>Streptococcus pyogenes</td>
<td>MGAS315</td>
</tr>
<tr>
<td>9086</td>
<td>SpyM3_0928</td>
<td></td>
<td>Streptococcus pyogenes</td>
<td>MGAS315</td>
</tr>
<tr>
<td>9087</td>
<td>SpyM3_0929</td>
<td>hylP.2</td>
<td>Streptococcus pyogenes</td>
<td>MGAS315</td>
</tr>
<tr>
<td>9088</td>
<td>SpyM3_0983</td>
<td>malE</td>
<td>Streptococcus pyogenes</td>
<td>MGAS315</td>
</tr>
<tr>
<td>9089</td>
<td>SpyM3_1032</td>
<td>grab</td>
<td>Streptococcus pyogenes</td>
<td>MGAS315</td>
</tr>
<tr>
<td>9090</td>
<td>SpyM3_1035</td>
<td>inlA</td>
<td>Streptococcus pyogenes</td>
<td>MGAS315</td>
</tr>
<tr>
<td>9091</td>
<td>SpyM3_1044</td>
<td></td>
<td>Streptococcus pyogenes</td>
<td>MGAS315</td>
</tr>
<tr>
<td>9092</td>
<td>SpyM3_1059</td>
<td>prsA</td>
<td>Streptococcus pyogenes</td>
<td>MGAS315</td>
</tr>
<tr>
<td>9093</td>
<td>SpyM3_1071</td>
<td>sodM</td>
<td>Streptococcus pyogenes</td>
<td>MGAS315</td>
</tr>
<tr>
<td>Sondenbezeichnung</td>
<td>Genbezeichnung</td>
<td>Gen</td>
<td>Genursprungsspezies</td>
<td>Genursprungsstamm</td>
</tr>
<tr>
<td>------------------</td>
<td>----------------</td>
<td>-----</td>
<td>---------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>9094</td>
<td>SpyM3_1074</td>
<td>comEA</td>
<td>Streptococcus pyogenes</td>
<td>MGAS315</td>
</tr>
<tr>
<td>9095</td>
<td>SpyM3_1095</td>
<td>mf4</td>
<td>Streptococcus pyogenes</td>
<td>MGAS315</td>
</tr>
<tr>
<td>9096</td>
<td>SpyM3_1102</td>
<td>pblB</td>
<td>Streptococcus pyogenes</td>
<td>MGAS315</td>
</tr>
<tr>
<td>9097</td>
<td>SpyM3_1104</td>
<td>pblA</td>
<td>Streptococcus pyogenes</td>
<td>MGAS315</td>
</tr>
<tr>
<td>9098</td>
<td>SpyM3_1117</td>
<td></td>
<td>Streptococcus pyogenes</td>
<td>MGAS315</td>
</tr>
<tr>
<td>9099</td>
<td>SpyM3_1147</td>
<td></td>
<td>Streptococcus pyogenes</td>
<td>MGAS315</td>
</tr>
<tr>
<td>9100</td>
<td>SpyM3_1148</td>
<td></td>
<td>Streptococcus pyogenes</td>
<td>MGAS315</td>
</tr>
<tr>
<td>9101</td>
<td>SpyM3_1150</td>
<td></td>
<td>Streptococcus pyogenes</td>
<td>MGAS315</td>
</tr>
<tr>
<td>9102</td>
<td>SpyM3_1153</td>
<td>hlyA</td>
<td>Streptococcus pyogenes</td>
<td>MGAS315</td>
</tr>
<tr>
<td>9103</td>
<td>SpyM3_1182</td>
<td>dpr</td>
<td>Streptococcus pyogenes</td>
<td>MGAS315</td>
</tr>
<tr>
<td>9104</td>
<td>SpyM3_1187</td>
<td></td>
<td>Streptococcus pyogenes</td>
<td>MGAS315</td>
</tr>
<tr>
<td>9105</td>
<td>SpyM3_1191</td>
<td>arcC</td>
<td>Streptococcus pyogenes</td>
<td>MGAS315</td>
</tr>
<tr>
<td>9106</td>
<td>SpyM3_1204</td>
<td>sla</td>
<td>Streptococcus pyogenes</td>
<td>MGAS315</td>
</tr>
<tr>
<td>9107</td>
<td>SpyM3_1205</td>
<td>speK</td>
<td>Streptococcus pyogenes</td>
<td>MGAS315</td>
</tr>
<tr>
<td>9108</td>
<td>SpyM3_1214</td>
<td>hylP.4</td>
<td>Streptococcus pyogenes</td>
<td>MGAS315</td>
</tr>
<tr>
<td>9109</td>
<td>SpyM3_1227</td>
<td></td>
<td>Streptococcus pyogenes</td>
<td>MGAS315</td>
</tr>
<tr>
<td>9110</td>
<td>SpyM3_1265</td>
<td></td>
<td>Streptococcus pyogenes</td>
<td>MGAS315</td>
</tr>
<tr>
<td>9111</td>
<td>SpyM3_1267</td>
<td>msrA.1</td>
<td>Streptococcus pyogenes</td>
<td>MGAS315</td>
</tr>
<tr>
<td>9112</td>
<td>SpyM3_1268</td>
<td></td>
<td>Streptococcus pyogenes</td>
<td>MGAS315</td>
</tr>
<tr>
<td>9113</td>
<td>SpyM3_1287</td>
<td></td>
<td>Streptococcus pyogenes</td>
<td>MGAS315</td>
</tr>
<tr>
<td>9114</td>
<td>SpyM3_1289</td>
<td></td>
<td>Streptococcus pyogenes</td>
<td>MGAS315</td>
</tr>
<tr>
<td>9115</td>
<td>SpyM3_1294</td>
<td>hyl</td>
<td>Streptococcus pyogenes</td>
<td>MGAS315</td>
</tr>
<tr>
<td>9116</td>
<td>SpyM3_1301</td>
<td>specA3</td>
<td>Streptococcus pyogenes</td>
<td>MGAS315</td>
</tr>
<tr>
<td>9117</td>
<td>SpyM3_1313</td>
<td></td>
<td>Streptococcus pyogenes</td>
<td>MGAS315</td>
</tr>
<tr>
<td>9118</td>
<td>SpyM3_1324</td>
<td></td>
<td>Streptococcus pyogenes</td>
<td>MGAS315</td>
</tr>
<tr>
<td>9119</td>
<td>SpyM3_1376</td>
<td></td>
<td>Streptococcus pyogenes</td>
<td>MGAS315</td>
</tr>
<tr>
<td>9120</td>
<td>SpyM3_1390</td>
<td>pbp1A</td>
<td>Streptococcus pyogenes</td>
<td>MGAS315</td>
</tr>
<tr>
<td>9121</td>
<td>SpyM3_1401</td>
<td>pbp2X</td>
<td>Streptococcus pyogenes</td>
<td>MGAS315</td>
</tr>
<tr>
<td>9122</td>
<td>SpyM3_1409</td>
<td>sdn</td>
<td>Streptococcus pyogenes</td>
<td>MGAS315</td>
</tr>
<tr>
<td>9123</td>
<td>SpyM3_1413</td>
<td></td>
<td>Streptococcus pyogenes</td>
<td>MGAS315</td>
</tr>
<tr>
<td>9124</td>
<td>SpyM3_1418</td>
<td>hylP.6</td>
<td>Streptococcus pyogenes</td>
<td>MGAS315</td>
</tr>
<tr>
<td>9125</td>
<td>SpyM3_1431</td>
<td></td>
<td>Streptococcus pyogenes</td>
<td>MGAS315</td>
</tr>
<tr>
<td>9126</td>
<td>SpyM3_1469</td>
<td></td>
<td>Streptococcus pyogenes</td>
<td>MGAS315</td>
</tr>
<tr>
<td>9127</td>
<td>SpyM3_1493</td>
<td></td>
<td>Streptococcus pyogenes</td>
<td>MGAS315</td>
</tr>
<tr>
<td>9128</td>
<td>SpyM3_1506</td>
<td></td>
<td>Streptococcus pyogenes</td>
<td>MGAS315</td>
</tr>
<tr>
<td>9129</td>
<td>SpyM3_1534</td>
<td></td>
<td>Streptococcus pyogenes</td>
<td>MGAS315</td>
</tr>
<tr>
<td>9130</td>
<td>SpyM3_1561</td>
<td></td>
<td>Streptococcus pyogenes</td>
<td>MGAS315</td>
</tr>
<tr>
<td>9131</td>
<td>SpyM3_1562</td>
<td>isp.2</td>
<td>Streptococcus pyogenes</td>
<td>MGAS315</td>
</tr>
<tr>
<td>9132</td>
<td>SpyM3_1568</td>
<td>ndo8</td>
<td>Streptococcus pyogenes</td>
<td>MGAS315</td>
</tr>
<tr>
<td>9133</td>
<td>SpyM3_1598</td>
<td>cppA</td>
<td>Streptococcus pyogenes</td>
<td>MGAS315</td>
</tr>
<tr>
<td>9134</td>
<td>SpyM3_1616</td>
<td>gcp</td>
<td>Streptococcus pyogenes</td>
<td>MGAS315</td>
</tr>
<tr>
<td>9135</td>
<td>SpyM3_1625</td>
<td>lppC</td>
<td>Streptococcus pyogenes</td>
<td>MGAS315</td>
</tr>
<tr>
<td>9136</td>
<td>SpyM3_1631</td>
<td></td>
<td>Streptococcus pyogenes</td>
<td>MGAS315</td>
</tr>
<tr>
<td>9137</td>
<td>SpyM3_1670</td>
<td></td>
<td>Streptococcus pyogenes</td>
<td>MGAS315</td>
</tr>
<tr>
<td>9138</td>
<td>SpyM3_1673</td>
<td></td>
<td>Streptococcus pyogenes</td>
<td>MGAS315</td>
</tr>
<tr>
<td>9139</td>
<td>SpyM3_1694</td>
<td>pulA</td>
<td>Streptococcus pyogenes</td>
<td>MGAS315</td>
</tr>
<tr>
<td>9140</td>
<td>SpyM3_1698</td>
<td>ska</td>
<td>Streptococcus pyogenes</td>
<td>MGAS315</td>
</tr>
<tr>
<td>9141</td>
<td>SpyM3_1702</td>
<td>scdA</td>
<td>Streptococcus pyogenes</td>
<td>MGAS315</td>
</tr>
<tr>
<td>9142</td>
<td>SpyM3_1703</td>
<td>scdA</td>
<td>Streptococcus pyogenes</td>
<td>MGAS315</td>
</tr>
<tr>
<td>9143</td>
<td>SpyM3_1718</td>
<td>dppA</td>
<td>Streptococcus pyogenes</td>
<td>MGAS315</td>
</tr>
<tr>
<td>9144</td>
<td>SpyM3_1726</td>
<td>scpA</td>
<td>Streptococcus pyogenes</td>
<td>MGAS315</td>
</tr>
<tr>
<td>9145</td>
<td>SpyM3_1731</td>
<td>isp.1</td>
<td>Streptococcus pyogenes</td>
<td>MGAS315</td>
</tr>
<tr>
<td>9146</td>
<td>SpyM3_1732</td>
<td></td>
<td>Streptococcus pyogenes</td>
<td>MGAS315</td>
</tr>
<tr>
<td>9147</td>
<td>SpyM3_1736</td>
<td></td>
<td>Streptococcus pyogenes</td>
<td>MGAS315</td>
</tr>
<tr>
<td>9148</td>
<td>SpyM3_1737</td>
<td></td>
<td>Streptococcus pyogenes</td>
<td>MGAS315</td>
</tr>
<tr>
<td>9149</td>
<td>SpyM3_1740</td>
<td>prsA</td>
<td>Streptococcus pyogenes</td>
<td>MGAS315</td>
</tr>
<tr>
<td>9150</td>
<td>SpyM3_1742</td>
<td>speB</td>
<td>Streptococcus pyogenes</td>
<td>MGAS315</td>
</tr>
<tr>
<td>9151</td>
<td>SpyM3_1745</td>
<td>mf</td>
<td>Streptococcus pyogenes</td>
<td>MGAS315</td>
</tr>
<tr>
<td>9152</td>
<td>SpyM3_1751</td>
<td></td>
<td>Streptococcus pyogenes</td>
<td>MGAS315</td>
</tr>
<tr>
<td>9153</td>
<td>SpyM3_1756</td>
<td></td>
<td>Streptococcus pyogenes</td>
<td>MGAS315</td>
</tr>
<tr>
<td>Sondenbezeichnung</td>
<td>Genbezeichnung</td>
<td>Gen</td>
<td>Genursprungsspezies</td>
<td>Genursprungsstamm</td>
</tr>
<tr>
<td>------------------</td>
<td>----------------</td>
<td>-----</td>
<td>---------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>9154</td>
<td>SpyM3_1758</td>
<td>pbp2A</td>
<td>Streptococcus pyogenes</td>
<td>MGAS315</td>
</tr>
<tr>
<td>9155</td>
<td>SpyM3_1762</td>
<td></td>
<td>Streptococcus pyogenes</td>
<td>MGAS315</td>
</tr>
<tr>
<td>9156</td>
<td>SpyM3_1763</td>
<td></td>
<td>Streptococcus pyogenes</td>
<td>MGAS315</td>
</tr>
<tr>
<td>9157</td>
<td>SpyM3_1784</td>
<td>pepO</td>
<td>Streptococcus pyogenes</td>
<td>MGAS315</td>
</tr>
<tr>
<td>9158</td>
<td>SpyM3_1830</td>
<td></td>
<td>Streptococcus pyogenes</td>
<td>MGAS315</td>
</tr>
<tr>
<td>9159</td>
<td>SpyM3_1837</td>
<td></td>
<td>Streptococcus pyogenes</td>
<td>MGAS315</td>
</tr>
<tr>
<td>9160</td>
<td>SpyM3_1843</td>
<td></td>
<td>Streptococcus pyogenes</td>
<td>MGAS315</td>
</tr>
<tr>
<td>9161</td>
<td>SpyM3_1851</td>
<td>hasA</td>
<td>Streptococcus pyogenes</td>
<td>MGAS315</td>
</tr>
<tr>
<td>9162</td>
<td>SpyM3_1853</td>
<td>hasC</td>
<td>Streptococcus pyogenes</td>
<td>MGAS315</td>
</tr>
<tr>
<td>9163</td>
<td>SpyM3_1864</td>
<td>degP</td>
<td>Streptococcus pyogenes</td>
<td>MGAS315</td>
</tr>
<tr>
<td>9164</td>
<td>Spy_0436</td>
<td>spej</td>
<td>Streptococcus pyogenes</td>
<td>SF370</td>
</tr>
<tr>
<td>9165</td>
<td>Spy_0711</td>
<td>speC</td>
<td>Streptococcus pyogenes</td>
<td>SF370</td>
</tr>
<tr>
<td>9166</td>
<td>Spy_0737</td>
<td>efp</td>
<td>Streptococcus pyogenes</td>
<td>SF370</td>
</tr>
<tr>
<td>9167</td>
<td>U25852</td>
<td></td>
<td>Streptococcus equi</td>
<td>Z5</td>
</tr>
<tr>
<td>9168</td>
<td>U31980</td>
<td>PrtF2</td>
<td>Streptococcus pyogenes</td>
<td>100076</td>
</tr>
<tr>
<td>9169</td>
<td>U40026</td>
<td>sspB</td>
<td>Streptococcus gordonii</td>
<td>M5</td>
</tr>
<tr>
<td>9170</td>
<td>U50357_2448-3680</td>
<td>zif</td>
<td>Streptococcus equi</td>
<td>4881</td>
</tr>
<tr>
<td>9171</td>
<td>U50357_3915-4784</td>
<td>zooA</td>
<td>Streptococcus equi</td>
<td>4881</td>
</tr>
<tr>
<td>9172</td>
<td>X06173</td>
<td></td>
<td>Streptococcus sp.</td>
<td>G148</td>
</tr>
<tr>
<td>9173</td>
<td>X17241</td>
<td>sdc</td>
<td>Streptococcus dysgalactiae</td>
<td>H46A</td>
</tr>
<tr>
<td>9174</td>
<td>X67947</td>
<td>SibI</td>
<td>Streptococcus pyogenes</td>
<td>DSM 2071</td>
</tr>
<tr>
<td>9175</td>
<td>X78216</td>
<td>pbpX</td>
<td>Streptococcus mitis</td>
<td>10712</td>
</tr>
<tr>
<td>9176</td>
<td>X78217</td>
<td>pbpX</td>
<td>Streptococcus oralis</td>
<td>M3</td>
</tr>
<tr>
<td>9177</td>
<td>X83303</td>
<td>SbII</td>
<td>Streptococcus pyogenes</td>
<td>A75</td>
</tr>
<tr>
<td>9178</td>
<td>Y12602</td>
<td>lppC</td>
<td>Streptococcus dysgalactiae</td>
<td>H46A</td>
</tr>
<tr>
<td>9179</td>
<td>Z12624</td>
<td>has</td>
<td>Streptococcus dysgalactiae</td>
<td>D181</td>
</tr>
<tr>
<td>9180</td>
<td>Z22186</td>
<td>pbp2b</td>
<td>Streptococcus mitis</td>
<td>K208</td>
</tr>
<tr>
<td>9181</td>
<td>Z22219</td>
<td>PAM</td>
<td>Streptococcus pyogenes</td>
<td>AP53</td>
</tr>
<tr>
<td>9182</td>
<td>Z29088</td>
<td>fnb</td>
<td>Streptococcus dysgalactiae</td>
<td>Se165</td>
</tr>
<tr>
<td>9183</td>
<td>Z29666</td>
<td>mig</td>
<td>Streptococcus dysgalactiae</td>
<td>SC1</td>
</tr>
<tr>
<td>9184</td>
<td>Z05895</td>
<td>sodA</td>
<td>Streptococcus argininosus</td>
<td>ATCC 33397</td>
</tr>
<tr>
<td>9185</td>
<td>Z05897</td>
<td>sodA</td>
<td>Streptococcus constellatus</td>
<td>ATCC 27823</td>
</tr>
<tr>
<td>9186</td>
<td>Z05904</td>
<td>sodA</td>
<td>Streptococcus dysgalactiae</td>
<td>ATCC 35666</td>
</tr>
<tr>
<td>9187</td>
<td>Z05908</td>
<td>sodA</td>
<td>Streptococcus intermedius</td>
<td>ATCC 27335</td>
</tr>
<tr>
<td>9188</td>
<td>Z05909</td>
<td>sodA</td>
<td>Streptococcus mitis</td>
<td>NCTC 12261</td>
</tr>
<tr>
<td>9189</td>
<td>Z05912</td>
<td>sodA</td>
<td>Streptococcus oralis</td>
<td>ATCC 10557</td>
</tr>
<tr>
<td>9190</td>
<td>Z05918</td>
<td>sodA</td>
<td>Streptococcus sanguis</td>
<td>ATCC 10556</td>
</tr>
<tr>
<td>9191</td>
<td>Z09190</td>
<td>sodA</td>
<td>Streptococcus gordonii</td>
<td>NEM666</td>
</tr>
<tr>
<td>9192</td>
<td>Z09196</td>
<td>sodA</td>
<td>Streptococcus parasanguinis</td>
<td>NEM895</td>
</tr>
<tr>
<td>9193</td>
<td>spyM18_0126</td>
<td>chp</td>
<td>Streptococcus pyogenes</td>
<td>MGAS8232</td>
</tr>
<tr>
<td>9194</td>
<td>spyM18_1238</td>
<td>speL</td>
<td>Streptococcus pyogenes</td>
<td>MGAS8232</td>
</tr>
<tr>
<td>9195</td>
<td>spyM18_1239</td>
<td>speM</td>
<td>Streptococcus pyogenes</td>
<td>MGAS8232</td>
</tr>
<tr>
<td>9196</td>
<td>spyM18_2046</td>
<td>spa</td>
<td>Streptococcus pyogenes</td>
<td>MGAS8232</td>
</tr>
</tbody>
</table>
7 Danksagung

Mein besonderer Dank gilt Prof. Dr. Gursharan Singh Chhatwal für die Bereitstellung der Thematik und die Möglichkeit, meine Doktorarbeit in der Arbeitsgruppe Mikrobielle Pathogenität anfertigen zu können sowie für die Übernahme des Referats.

Bedanken möchte ich mich auch bei Prof. Dr. Dieter Jahn für die Übernahme des zweiten Referats dieser Arbeit.

Mein ganz besonderer Dank gilt Dr. Daniel Patric Nitsche-Schmitz für die ausgezeichnete Betreuung, zahllose konstruktive Diskussionen und seinen unerschütterlichen Optimismus. Die Anfertigung dieser Arbeit wäre ohne sein großes persönliches Engagement nicht möglich gewesen.

Beim Leiter des Instituts für Mikrobiologie und Infektionsepidemiologie des Universitätsklinikum Leipzig Prof. Dr. Arne C. Rodloff und seinen Mitarbeitern Dr. Claudia Friedrichs, Dr. Kristina Fickweiler, Annett Henning-Rolle und Gelimmer Genzel möchte ich mich für die hervorragende Zusammenarbeit und die Erstellung der Sammlung klinischer Streptokokkenisolate bedanken.

Dr. Robert Geffers und Claudia Wylegalla von der Microarrayplattform des Helmholtz Zentrums für Infektionsforschung danke ich für die Unterstützung bei der experimentellen Durchführung der Microarrayanalysen.

Bedanken möchte ich mich auch bei Silvana Reißmann, die die Oligonukleotide für die 16S-rRNA-spezifischen Polymerasekettenreaktionen zur Verfügung stellte.

Meinem geschätzten Kollegen Dr. Andreas Nerlich danke ich für zahlreiche praktische Hinweise und hilfreiche Diskussionen.

Ein großes Dankeschön geht auch an Katja Mummenbrauer, Nina Janze, Sabine Lehne, Dr. Oliver Goldmann und alle anderen Mitglieder der Abteilung Mikrobielle Pathogenität für die Schaffung einer familiären Arbeitsatmosphäre und die Unterstützung bei der Umschiftung zahlloser Untiefen des Laboralltags.

Meinen Eltern, die mir das Studium und somit auch die Anfertigung dieser Arbeit ermöglichten, danke ich ganz herzlich für all die vielen Hilfestellungen, die man leider gern als selbstverständlich betrachtet.

Sarah danke ich vor allem für ihre Geduld und die Unterstützung über all die Jahre hinweg.