Structural and Biochemical Investigation
of the *Yersinia enterocolitica* Type III
Secretion Export Apparatus

Von der Fakultät für Lebenswissenschaften
der Technischen Universität Carolo-Wilhelmina
zu Braunschweig
zur Erlangung des Grades eines
Doktors der Naturwissenschaften
(Dr. rer. nat.)
genehmigte
D i s s e r t a t i o n

von Ulrich Andreas Philipp Wiesand
aus Füssen
1. Referent: Honorarprofessor Prof. Dr. Dirk Heinz
2. Referent: Professor Dr. Michael Steinert
eingereicht am: 31.03.2010
mündliche Prüfung (Disputation) am: 16.06.2010
Druckjahr 2010
Vorveröffentlichungen der Dissertation

Teilergebnisse aus dieser Arbeit wurden mit Genehmigung der Fakultät für Lebenswissenschaften, vertreten durch den Mentor der Arbeit, in folgenden Beiträgen vorab veröffentlicht:

Publikation

Tagungsbeiträge

Content

Content ... I

Abbreviations ... IV

Zusammenfassung ... 1

Summary ... 3

1 Introduction ... 5
 1.1 Yersinia - one of the most dangerous pathogens 5
 1.2 The pVY plasmid is necessary for Yersina’s virulence 7
 1.3 Yersinia outer proteins prevent phagoytosis ... 8
 1.4 Bacterial secretion systems ... 9
 1.5 Type III secretion system and flagellum are related 11
 1.6 Architecture of the injectisome .. 12
 1.7 Assembly of the type III secretion system ... 17
 1.8 The inner membrane proteins YscU and YscV 19

2 Aim of this thesis ... 20

3 Materials and methods ... 21
 3.1 Standard materials .. 21
 3.1.1 Chemicals, enzymes and antibodies ... 21
 3.1.2 Molecular weight standards and kits .. 22
 3.1.3 Crystallization screens ... 22
 3.1.4 Oligonucleotides .. 22
 3.1.5 Plasmids ... 23
 3.1.6 Bacterial strains ... 25
 3.1.7 Media and Buffer .. 25
 3.2 Molecular cloning .. 27
 3.3 Protein production and purification ... 27
 3.3.1 Expression and purification of YscU C .. 27
 3.3.2 Expression and purification of YscV C .. 28
 3.4 Protein analytical methods .. 29
 3.4.1 Discontinuous SDS-polyacrylamide gel electrophoresis 29
 3.4.2 Limited proteolysis .. 29
3.4.3 pH-dependent cleavage of YscU variants 30
3.4.4 Western blot and immunodetection .. 30
3.4.5 Qualitative determination of accessible Sulfhydryl groups 30
3.4.6 Mass spectroscopy ... 30
3.4.7 N-terminal sequencing .. 31
3.4.8 ThermoFluor assay ... 31
3.4.9 Epitope scan ... 31
3.4.10 Dynamic light scattering ... 33
3.4.11 Asymmetric flow field flow fractionation .. 33
3.5 In vivo analyses .. 34
 3.5.1 LcrV secretion and immunoblotting .. 34
 3.5.2 Electron microscopy .. 35
3.6 Protein crystallization ... 35
3.7 X-ray structure analysis ... 36
 3.7.1 Phase determination via anomalous diffraction 37
 3.7.2 Model building, refinement and validation .. 40
 3.7.3 Structure determination of YscU .. 41
3.8 Protein nuclear magnetic resonance spectroscopy 42
 3.8.1 Investigation of conformational change with protein NMR 42
 3.8.2 The 15N, 1H HMQC experiment .. 43
3.9 Bioinformatics and figure representation .. 43
3.10 Molecular orbital diagram .. 44
4 Results ... 45
 4.1 The type III secretion recognition protein YscU 45
 4.1.1 Design of the YscUC construct .. 45
 4.1.2 Preparation of YscUC ... 46
 4.1.3 Crystallization of YscUC ... 50
 4.1.4 Data collection and space group determination 51
 4.1.5 Fluorescence scan for MAD phasing .. 51
 4.1.6 Structure determination of YscUC ... 53
 4.1.7 Validation of the YscUC structures .. 56
 4.1.8 Crystal structure of uncleaved YscUC ... 58
 4.1.9 Linker α-helix 0 is pinched due to crystal contacts 59
 4.1.10 Structural basis for autocleavage of YscU 61
4.1.11 Cleavage does not affect the overall structure of wild-type YscU^C........63
4.1.12 The role of conserved amino acids in YscU^C cleavage in vitro.............64
4.1.13 Cleavage of some autocleavage-deficient YscU^C mutants is partially
restored at high pH ...66
4.1.14 YscU mutants that are not cleaved in vitro do not export the LcrV
translocator ..66
4.1.15 The T3SS injectisome needle length is influenced strongly by YscU
mutations ..67
4.2 The type III secretion apparatus protein YscV ...68
4.2.1 Design of the YscV^C construct ..68
4.2.2 Preparation of YscV^C ..69
4.2.3 Oligomerisation state of YscV^C is ambiguous71
4.2.4 Crystallization of YscV^C ..73
4.2.5 Limited proteolysis of YscV^C created a new crystallization construct ...75
4.2.6 Protein preparation and crystallization of YscV^C₃₅₆..........................76
4.3 Interaction analysis between YscU^C and YscV^C ..80
5 Discussion ..85
5.1 YscU - a type III secretion recognition protein ...85
5.1.1 YscU is poised for autocatalytic cleavage ..85
5.1.2 Needle length in a non-cleavable YscU mutant is controlled even
without YscP over-expression ..89
5.1.3 The flexible linker region is composed of two hinged α-helices89
5.2 The inner membrane protein YscV ..92
5.3 Interaction analysis between YscU^C and YscV^C94
6 Outlook ...96
7 Bibliography ...98
8 Overview: Yersinia injectisome ...108
Danksagung ..109
Lebenslauf ...111
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Absorption</td>
</tr>
<tr>
<td>Å</td>
<td>Ångstrøm (0.1 nm)</td>
</tr>
<tr>
<td>AF4</td>
<td>Asymmetric flow field flow fractionation</td>
</tr>
<tr>
<td>AO</td>
<td>Atomic orbital</td>
</tr>
<tr>
<td>AU</td>
<td>a) Absorption unit; b) Asymmetric unit</td>
</tr>
<tr>
<td>CC</td>
<td>Correlation coefficient</td>
</tr>
<tr>
<td>CCP4</td>
<td>Collaborative Computational Project No. 4</td>
</tr>
<tr>
<td>CV</td>
<td>Column volume</td>
</tr>
<tr>
<td>Da</td>
<td>Dalton</td>
</tr>
<tr>
<td>DLS</td>
<td>Dynamic light scattering</td>
</tr>
<tr>
<td>DTT</td>
<td>Dithiotheritol</td>
</tr>
<tr>
<td>EHEC</td>
<td>Enterohemorrhagic E. coli</td>
</tr>
<tr>
<td>EM</td>
<td>Electron microscopy</td>
</tr>
<tr>
<td>EPEC</td>
<td>Enteropathogenic E. coli</td>
</tr>
<tr>
<td>Flh</td>
<td>Flagellar homolog</td>
</tr>
<tr>
<td>GPC</td>
<td>Gel permeation chromatography</td>
</tr>
<tr>
<td>GST</td>
<td>Glutathione S-transferase</td>
</tr>
<tr>
<td>HMQC</td>
<td>Heteronuclear multiple quantum coherence</td>
</tr>
<tr>
<td>HRP</td>
<td>Horse radish peroxidase</td>
</tr>
<tr>
<td>IEC</td>
<td>Ion exchange chromatography</td>
</tr>
<tr>
<td>IPTG</td>
<td>Isopropyl-β-D-thiogalactoside</td>
</tr>
<tr>
<td>LCAO</td>
<td>Linear combination of atomic orbitals</td>
</tr>
<tr>
<td>MAD</td>
<td>Multiple wave length anomalous dipersion</td>
</tr>
<tr>
<td>MO</td>
<td>Molecular orbital</td>
</tr>
<tr>
<td>Mr</td>
<td>Molecular mass</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>MR</td>
<td>Molecular Replacement</td>
</tr>
<tr>
<td>MWCO</td>
<td>Molecular weight cut off</td>
</tr>
<tr>
<td>NMR</td>
<td>Nuclear magnetic resonance</td>
</tr>
<tr>
<td>OD<sub>λ</sub></td>
<td>Optical density at wavelength λ</td>
</tr>
<tr>
<td>PCR</td>
<td>Polymerase chain reaction</td>
</tr>
<tr>
<td>PDB</td>
<td>Protein Data Bank</td>
</tr>
<tr>
<td>pI</td>
<td>Isoelectric point</td>
</tr>
<tr>
<td>R<sub>h</sub></td>
<td>Hydrodynamic radius</td>
</tr>
<tr>
<td>r.m.s.d.</td>
<td>Root mean square diviation</td>
</tr>
<tr>
<td>rpm</td>
<td>Rounds per minute</td>
</tr>
<tr>
<td>SDS</td>
<td>Sodium dodecyl sulphate</td>
</tr>
<tr>
<td>SDS-PAGE</td>
<td>SDS-polyacrylamid gel electrophoresis</td>
</tr>
<tr>
<td>SeMet</td>
<td>Selenomethione</td>
</tr>
<tr>
<td>SLS</td>
<td>Static light scattering</td>
</tr>
<tr>
<td>STEM</td>
<td>Scanning transmission electron microscopy</td>
</tr>
<tr>
<td>TCEP</td>
<td>Tris(2-carboxyethyl)phosphine</td>
</tr>
<tr>
<td>TxS</td>
<td>Type x secretion</td>
</tr>
<tr>
<td>TxSS</td>
<td>Type x secretion system</td>
</tr>
<tr>
<td>V<sub>e</sub></td>
<td>Elution volume</td>
</tr>
<tr>
<td>V<sub>M</sub></td>
<td>Matthews coefficient</td>
</tr>
<tr>
<td>Y.</td>
<td>Yersinia</td>
</tr>
<tr>
<td>Yop</td>
<td>Yersinia outer protein</td>
</tr>
<tr>
<td>Ysc</td>
<td>Yersinia secretion</td>
</tr>
<tr>
<td>YscU<sup>C</sup></td>
<td>Yersinia secretion protein U (aa 211-354)</td>
</tr>
<tr>
<td>YscV<sup>C</sup></td>
<td>Yersinia secretion protein V (aa 322-704)</td>
</tr>
<tr>
<td>YscV<sup>C</sup><sub>356</sub></td>
<td>Yersinia secretion protein V (aa 356-704)</td>
</tr>
</tbody>
</table>
Zusammenfassung

Das in der inneren Membran lokalisierte Protein YscU spielt eine wichtige Rolle während des Aufbaus der äußeren Komponenten des *injectisoms*. Die cytoplasmatische Domäne von YscU (YscUC) erkennt porenbildende Proteine (Translokatoren) als spezifisches Substrat in der Exporthierarchie. Zur Aktivierung wird YscU in einem konservierten Aminosäuremotiv der Sequenz Asn-Pro-Thr-His (NPTH) autokatalytisch gespalten. Modifikationen dieses Motivs verhindern die Spaltung von YscU, so dass die Translokatoren nicht mehr als Exportsubstrate erkannt werden und nicht mehr exportiert werden. Als Folge werden überdurchschnittlich lange Nadeln gebildet. Die Kristallstrukturen der nicht geschliffenen Varianten YscUC N263A und N263D wurden bei einer Auflösung von 2.05 Å beziehungsweise 1.55 Å gelöst. Die globuläre Domäne des Proteins besteht aus einem zentralen, gemischten β-Faltblatt, das von α-Helices umgeben wird. Das NPTH Motiv bildet einen Typ II β-turn, der zwei benachbarte β-Stränge miteinander

Summary

The enteric pathogen *Yersinia enterocolitica* uses a sophisticated injection machinery called an injectisome or type III secretion system (T3SS) to translocate effector proteins across eukaryotic cell membranes. Upon contact with the eukaryotic host cell, e.g. a macrophage, a set of effector proteins is translocated into the macrophage’s cytoplasm. There the effectors subvert macrophage cellular functions to inhibit phagocytosis of the pathogen. The supramolecular structure of the T3SS, found in many Gram-negative pathogenic or symbiotic bacteria including *Salmonella* spp., *Shigella* spp. and enteropathogenic *Escherichia coli* is evolutionarily related to the bacterial flagellum, which uses the export channel for assembling of its outer components. The protein export itself is managed by the export apparatus, consisting of five conserved integral membrane proteins YscR/S/T/U/V, and the ATPase system. Two of the integral membrane proteins, YscU and YscV, consist of large cytoplasmic domains that play an important role during the export process. Within this thesis the structures of these domains should be determined and their function within the export process should be analyzed.

The inner-membrane protein YscU plays an important role during the assembly of the outer components of the injectisome. Its cytoplasmic domain (YscU\(^C\)) recognizes tip- and pore-forming proteins (translocators) as individual substrates in the export hierarchy. Activation of YscU entails autocleavage at a conserved amino acid sequence Asn-Pro-Thr-His (NPTH) motif. Modification of this motif markedly changes the properties of YscU including cessation of translocator export and production of longer injectisome needles. The crystal structures of the uncleaved variants N263A and N263D of YscU\(^C\) were determined at 2.05 Å and 1.55 Å resolution, respectively. The globular domain is found to consist of a central mixed \(\beta\)-sheet surrounded by \(\alpha\)-helices. The NPTH motif forms a type II \(\beta\)-turn connecting two \(\beta\)-strands. NMR analysis of cleaved and uncleaved YscU\(^C\) indicates that the global structure of the protein is retained in cleaved YscU\(^C\). The structure of YscU\(^C\) variant N263D reveals that wild-type YscU\(^C\) is poised for cleavage due to an optimal reaction geometry for nucleophilic attack of the scissile bond by the side-chain of Asn263. *In vivo* analysis of N263Q and H266A/R314A YscU variants showed a phenotype that combines the absence of translocator secretion with normal needle-length control. Comparing the
structure of YscU to those of related proteins reveals that the linker domain between the N-terminal transmembrane domain and the autocleavage domain can switch from an extended to a largely α-helical conformation, allowing for optimal positioning of the autocleavage domain during the export process.

The integral membrane protein YscV is the largest component within the type III secretion apparatus. Similar to YscU, YscV consists of an N-terminal transmembrane part and a C-terminal cytoplasmic part. The cytoplasmic part of the homologues flagellar protein FlhA\(^C\) has been shown to interact with FlhB\(^C\) (YscU\(^C\)) as well as the ATPase and its regulator. Thus it has been proposed that YscV\(^C\) and YscU\(^C\) together form a platform for docking the ATPase-substrate complex. Limited proteolysis showed that YscV\(^C\) consists of a linker region and a globular cytoplasmic domain. Furthermore, expression and a purification scheme were established yielding pure and sufficient amounts of protein. Although YscV\(^C\) and its shorter variant YscV\(^C\)\(_{356}\) crystallize in various conditions, as yet an X-ray analysis was not possible due to poor crystal quality.
1 Introduction

The World Health Organisation (WHO) monitors the worldwide (re)emergence of bacterial pathogens causing foodborne diseases (WHO, Fact sheet No 124). The most common pathogens inflicted in these diseases are Yersinia enterocolitica, Salmonella spp., Vibrio cholerae, Listeria monocytogenes and pathogenic E. coli. In Germany over 200,000 cases of disease per year are reported to be caused by consumption of contaminated food (Bundesinstiut für Riskobewertung, Germany). New foodborne disease threats occur for a number of reasons. These include a steady increase in international travel and trade, pathogen resistance against antibiotics, changes in food production process, as well as human demographics and behaviour. Therefore an understanding of bacterial pathogenesis is important for developing new antibiotics and strategies against these diseases.

1.1 Yersinia - one of the most dangerous pathogens

The genus Yersinia is a coccobacillus-shaped Gram-negative bacterium, which belongs to the family of Enterobacteriaceae. Eleven different species are known of which three are pathogenic for humans: Yersina pestis and the two enteropathogenic species Yersinia pseudotuberculosis and Yersinia enterocolitica (Bergsbaken & Cookson, 2009; Wren, 2003).

Yersinia enterocolitica is one of the most common cause of foodborne gastrointestinal diseases, whereas Yersinia pseudotuberculosis is primarily an animal pathogen that rarely causes diseases in humans (Trulzsch et al., 2007). Both species are found widely in the environment and cause infection (Figure 1), after the consumption of contaminated food or water (Wren, 2003). Once the bacteria reach the small intestine, they enforce their uptake into M cells by several non-fimbrial adhesins such as invasin and the Yersina adhesion A (YadA) (Dersch, 2003; Isberg & Barnes, 2001; Trulzsch et al., 2007). Both of these proteins interact with β 1 integrins of eukaryotic cells and are believed to mediate adherence and invasion of M cells (Isberg & Barnes, 2001). After penetrating the intestinal epithelium, the bacteria are transcytosed into Peyer’s patches and migrate to the mesenteric lymph nodes.
Subsequently, the bacteria colonize liver and spleen, where they replicate externally (Wren, 2003). As a consequence, a rapid inflammation ensues and the disease may manifest in enteritis, terminal ileitis, or mesenteric lymphadenitis with watery or sometimes bloody diarrhoea (Trulzsch et al., 2007). The collective form of the different symptoms is also called yersiniosis.

![Figure 1: Path of infection of *Yersinia* spp.](image)

Plague is caused either by a flea bite or respiratory droplets from humans. In contrast, the yersiniose is caused by the uptake contaminated food or water (Wren, 2003).

The most known species *Y. pestis* is the causative agent of plague, which has killed millions of people during three large pandemics: the Justinian plague (5th-7th centuries), the mediaeval Black Death (13th-15th centuries) and the modern plague (1870s to present) (Perry & Fetherston, 1997). Although *Y. pestis* evolved from *Y. pseudotuberculosis* just 1,500-20,000 years ago (Achtman et al., 1999), it has developed a markedly different infection pathway compared to its enteropathogenic relatives (Figure 1). *Y. pestis* established a transmission way to non infected mammalian reservoirs (primarily rodents) using fleas as carrier. Due to additional flea plasmids, *Y. pestis* is able to survive in flea and is successfully transmitted during the
next bite into the mammalian host (Perry & Fetherston, 1997; Wren, 2003). Occasionally, the bacteria are injected into a human body, where they can enter the lymphatic system and cause a haemorrhaging inflammation. The resulting characteristic painfully swollen lymph nodes (bubo) are associated with this disease (bubonic plague) (Bergsbaken & Cookson, 2009; Rollins et al., 2003). From the lymphatic system the bacteria can enter the bloodstream, which distributes them through the whole body. In the following septicemic plague, bacterial endotoxins cause disseminated intraveasacular coagulations (clots) resulting in necrosis. The infection can also progress with the bloodstream to the lung, causing the highly infectious pneunonic plague, which allows spread from person-to-person through respiratory droplets (Wren, 2003). If the plague is not treated with antibiotics on time, the mortality rate is close to 100% (Prentice & Rahalison, 2007). Due to a better hygiene and effective antibiotics, the plague is not a common health problem today.

1.2 The pVY plasmid is necessary for Yersina’s virulence

The first line of defence in humans against invading bacterial pathogens is the innate immune system. Bacteria possess so-called pathogen-associated molecular patterns (PAMPs) which are recognised by specific sensor proteins (pattern-recognition receptor, PRR) on the surface of immune cells. Upon detection the innate immune system activates macrophages and dendritic cells, which in turn take up the pathogens by phagocytosis and induce inflammation by releasing cytokines. Furthermore, activation of the innate immune system also set off the adaptive immune system finally to eradicate the infection (Shao, 2008). However, all three pathogenic Yersinia spp. seems to be largely untouched from this immune defence machinery. Genetic studies revealed that pathogenic Yersinia carry an extra 70 kbp plasmid, pVY, which encodes specific effectors and a type III secretion system (T3SS). The T3SS enables the bacteria to inject the effectors into the host cell and thus overcome the immune defence machinery (Cornelis et al., 1998; Wren, 2003). Several other Gram-negative bacteria, like Salmonella, Shigella and enteropathogenic Escherichia coli, use the same nano machinery also for their infection (Cornelis, 2006).
1.3 *Yersinia* outer proteins prevent phagocytosis

During infection *Yersinia*’s T3SS delivers at least six effector proteins, which are known as Yops (*Yersina* outer proteins), into the host’s cytoplasm. These Yops work efficiently together and prevent host phagocytosis by inducing macrophage cell death. Further, the production of cytokines is suppressed, which leads to reduced inflammation and immune response (Shao, 2008; Trosky *et al.*, 2008).

The major function of YopE, YopT and YopO (YpkA in *Y. pestis* and *Y. pseudotuberculosis*) is the disassembly of actin filaments (Navarro *et al.*, 2007; Von Pawel-Rammingen *et al.*, 2000). They inactivate members of the family of Rho GTPases by modulating the GTP/GDP-bound states (YopE and YopO) or detach Rho GTPases from the membrane (YopT) by cleaving off the membrane anchor (Shao *et al.*, 2003). YopO also blocks signalling pathways of G-proteins by phosphorylation of the Gαq subunit (Navarro *et al.*, 2007). The tyrosine phosphatase YopH functions as an antiphagocytic effector by dephosphorylating several components of the focal adhesion complex and thus preventing actin polymerisation (Viboud & Bliska, 2005).
MAPK (mitogen activated protein kinase) and NF-κB (nuclear factor-κB) pathways are down-regulated by the YopP (YopJ in Y. pestis and Y. pseudotuberculosis) catalysed acetylation of MAPK kinases and IKKs (IκB kinase), which results in a suppression of cytokine production (Ruckdeschel et al., 2001). The role of YopM is still unclear, as effects on gene transcription revealed only contradicting results (Trosky et al., 2008). However, in vitro assays showed that the two cellular kinases protein kinase C-like 2 (PRK2) and ribosomal S6 protein kinase (RSK1) act as binding partners for YopM (McDonald et al., 2003). Although the kinases' activities are stimulated by binding, there is no evidence that these kinases interact during normal cellular activities (Shao, 2008).

1.4 Bacterial secretion systems

Secretion is an essential process for bacteria to modulate their environment, especially, if they interact with other organisms as symbionts or pathogens. For this purpose, bacteria have evolved a variety of molecular machineries that transport cargoes such as proteins, DNA and drugs across the bacterial membrane(s) and in some cases even across the host cell membrane. As yet, six different types of secretion systems (T1SS-T6SS) are known in Gram-negative bacteria (Figure 3). Gram-positive bacteria share some of these secretion systems and display additionally the Gram-positive specific T7SS (Tseng et al., 2009).

The T1SS transport proteins of diverse sizes (10-900 kDa) and functions in a single step over both bacterial membranes (Wooldridge, 2009). Thereby secretion usually depends on the presence of a specific C-terminal secretion signal. Many of the exported proteins are important for bacterial pathogenesis. The machine is made up of only three proteins: an ATPase binding cassette (ABC) transporter, an outer membrane factor (OMF) and a membrane fusion protein (MFP). T1SS also exports non-proteinaceous substrates such as cyclic β-glucans and polysaccharides (Delepelaire, 2004).
Translocation via T2SS and T5SS requires at least two steps. At first substrates are exported into the periplasm by the universal Sec or two-arginine (Tat) pathways and then translocated across the outer membranes. Both systems are required for export of several virulence factors. The T2SS is composed of 12 to 16 Gsp (General secretion pathway) proteins, which build a large structure (secretion) that spans the whole periplasm and is thought to connect the inner and outer membrane (Cianciotto, 2005). The T5SSs are divided into three sub-classes (T5aSS-T5cSS). All possess an outer membrane β-barrel protein domain, through which secretion of effector molecules is achieved (Henderson et al., 2004). The autotransporters (T5aSS) and the trimeric autotransporters (T5cSS) consist of an additional N-terminal passenger domain (40-400 kDa) that is exported into the extra-cellular space. In some cases, such as the adhesion protein YadA from *Y. enterocolitica*, the passenger domain remains attached to the transporter. In other cases, domains are cleaved off from the transporter and build enzymes or toxins. In the two partner secretion system (T5bSS) effector and translocator are synthesized as separate proteins that associate in the periplasm (Henderson et al., 2004).

T3SS (discussed below), T4SS and T6SS translocate their substrates at least over three membranes directly into their host cells, therefore constituting virulence determinants. In comparison to the other secretion systems, the T4SS has the ability to transport DNA or protein/DNA complexes. *Agrobacterium tumefaciens* uses the machinery to inject tumor inducing plasmids (Ti-plasmid) into the host cell. The resulting crown gall tumors produce opines (amine derivatives of amino acids and
INTRODUCTION

sugars), which serve as a carbon source for the pathogen (Tseng et al., 2009). The overall architecture can be divided into a pilus and a core complex, which spans both membranes. The entire core complex (1.05 MDa) consists of multiple copies of three proteins. Recently, the crystal structure of the outer membrane channel (~0.6 MDa) has been determined at atomic resolution (Chandran et al., 2009). Transport energy is provided by three ATPases, which are anchored in the inner membrane (Chandran et al., 2009; Fronzes et al., 2009). The T6S machinery has been recently characterized and appears to constitute a phage-tail spike-like injectisome that induces its effectors directly into the host’s cytoplasm. A model has been proposed that includes a cytoplasmic chaperone with ATPase activity, a channel bridging both membranes and a needle that is topped by a pore structure (Shrivastava & Mande, 2008).

The T7SS is a specialized secretion system for Gram-positive bacteria like mycobacteria. In these bacteria substrates also have to be transport across the bacterial cell wall (mycomembrane), as it is heavily modified with lipids (Tseng et al., 2009). Structure and function of the system are still poorly understood, but a first model suggests the presence of channels in both membranes. The effector substrates are bound to chaperone-like ATPases and exported invariably as heterodimers (Abdallah et al., 2007).

1.5 Type III secretion system and flagellum are related

To inhibit phagocytosis, Yops have to be transported into macrophage by Yersinia. For this purpose, they are equipped with a T3SS, which is also called injectisome as it works like a molecular syringe. The T3SS consists of the injectisome apparatus itself, secreted proteins (translocators and effectors), chaperones and cytoplasmic regulators. About 25 Yop secretion (Ysc) proteins are required to build up this injection machinery (Cornelis, 2006). Nine of these Ysc proteins (YscC, J, N, Q, R, S, T, U, V) are highly conserved among the seven known injectisome families. Eight of them, in turn, share significant similarity with components of the flagellum, which is obvious by the overall structural similarity of T3SS and flagellum (Figure 4). Phylogenetic studies also suggest that injectisome and flagellum derive from a common ancestor (Gophna et al., 2003; Pallen et al., 2005; Troisfontaines &
The flagellar system uses T3S for sequential export of its outer components (rod, hook and filament). Under special conditions, the flagellar system has the ability to also export non-flagellar proteins (Young et al., 1999).

Figure 4: Schematic representation of the flagellum and the Yersinia injectisome. IM, inner membrane; OM, outer membrane; PG, peptidoglycan. The C-ring of the Yersinia injectisome is represented in dashed lines as information on this component is still scarce (Cornelis, 2006).

1.6 Architecture of the injectisome

As it is difficult to orientate in between the different T3SS proteins and their homologs, a pull-out page can be found at the end of the thesis (see appendix Figure 55). It contains a schematic drawing and sizes of the Yersinia type III secretion system. Further, it provides an overview on several Yersinia proteins and their homologues variants, which are discussed here.

Although some parts of the injectisome still remain elusive, considerable progress in structural information has been made to get insights into structure and function of the
INTRODUCTION

T3SS. The molecular architecture can be roughly divided into an external part, a membrane embedded basal body, which harbors also the T3S apparatus, an ATPase complex and a proposed C-ring attached to the basal body (Cornelis, 2006) (Figure 4).

Needle, tip and pore

Depending on the injectisome the basal body is topped by a needle (Blocker et al., 1999; Hoiczyk & Blobel, 2001; Kubori et al., 1998; Marlovits et al., 2004), a filament (Van Gijsegem et al., 2000) or a pilus (Crepin et al., 2005; Daniell et al., 2001; Knutton et al., 1998). In Y. enterocolitica (strain E40, Figure 5 A and B) the injectisome is equipped with a 65 ± 10 nm long hollow stiff needle (Journet et al., 2003) (needle length varies from 49 ± 6 nm to 87 ± 11 nm for different strains (Wagner et al., 2009)), which is helically polymerised by the protein YscF. The helical parameters (5.6 units per turn, 2.4 nm helical pitch) are very similar to the flagellar hook, although the needle subunits (~ 9kDa) are significantly smaller than the hook subunits (~40 kDa) (Cordes et al., 2005). At the upper end the needle is terminated by a pentameric tip complex (Figure 5 A), which is made up of translocator protein LcrV. It is suggested that the tip complex serves as a scaffold or assembly platform for the translocation platform, which is made up of the translocators YopB and YopD (Mueller et al., 2005).
Figure 5: Structural components of the T3SS. (A) Projection average (top) of STEM images of the tip complex and transmission electron micrograph of *Y. enterocolitica* with a protruding needle (Cornelis, 2006). (B) Molecular model of T3S needle from *Shigella flexneri* (PDB accession number: 2V6L (Deane et al., 2006)). (C) Cutaway view of the needle complex of *Salmonella* obtained from cryo-EM (EmDep accession number 1224 (Marlovits & Stebbins, 2010)).

Basal body and C-ring

Three dimensional reconstruction of single particle cryo-EM of the needle complexes from *Salmonella* (Marlovits et al., 2004) and *Shigella* (Hodgkinson et al., 2009) provided a detailed view on the basal body and the needle base (Figure 5 C). The basal body is made up of several rings, which are embedded in the outer and inner membrane and connected by a central rod. A cutaway view of the *Salmonella* complex showed an inner channel (Ø ~ 2-3 nm) which is anchored to a socket-like structure and traverses the whole chamber of the needle complex (Marlovits & Stebbins, 2010). Analysis of the basal body revealed that the scaffold is made up of only three proteins, which are called in the *Yersinia* system YscC, D and J (Galan & Wolf-Watz, 2006; Spreter et al., 2009). The outer membrane rings are formed by 12 to 14 of YscC monomers that belong to the secretin family (Blocker et al., 2001; Burghout et al., 2004b; Koster et al., 1997; Tamano et al., 2000). For proper membrane insertion the assistance of lipoproteins (YscW family) is required (Burghout et al., 2004a). The inner membrane rings are proposed to be built by two proteins, which belong to the conserved lipoprotein family YscJ and the less
conserved family YscD (Spreter et al., 2009). The crystal structure of the periplasmic domain of EscJ (Yip et al., 2005), the EPEC ortholog of YscJ, allowed the modelling of a 24mer inner membrane ring, whereas YscD seems to be packed onto this ring (Spreter et al., 2009). Within the last years, several periplasmic domain structures of all three proteins were determined and revealed common ring building motifs documenting a close evolutionary relationship between the injectisomes (Marlovits & Stebbins, 2010; Spreter et al., 2009).

Adjacent to the basal body a C(ytosolic)-ring, which is made up by the proteins of the YscQ family, has been proposed (Cornelis, 2006). However, up to now a C-ring was observed only in the flagellar system, in which it is an essential component of the rotation switch (Macnab, 2003). Furthermore, an interaction between the C-ring component FliN (flagellar C-ring consists of two proteins FliM and FliN) and FliI (ATPase) -FliH (ATPase regulator) complex suggested that the C-ring serves as a platform recruiting the ATPase complex (Gonzalez-Pedrajo et al., 2002).

Export apparatus

In the 3D reconstructed EM picture of the Salmonella basal body (Figure 5) a socket-like structure, which is believed to anchor the inner rod, is found within the inner membrane ring. As it still unknown, which proteins build this structure, it is proposed to be made up of the export apparatus proteins, which build the translocation channel (Deane et al., 2010). However, this hypothesis remains to be verified. The export apparatus (Figure 6) itself is made up of five highly conserved trans-membrane proteins: YscR, -S, -T, -U and -V (Cornelis, 2006). Not much known is about YscR, -S and -T so far, the cytoplasmic domains of YscU and YscV (formally known as LcrD), however, are well investigated.
In YscU the cytoplasmic domain is autocleavable (Lavander et al., 2002) and is part of the substrate specificity switch (Sorg et al., 2007) discussed below. Furthermore, it has been shown that YscU interacts with YscK (Docking of ATPase to the C-ring), YscL (ATPase regulator) and YscQ (proposed C-ring) (Riordan & Schneewind, 2008). The cytoplasmic domain of FlhA, the flagellar homologue of YscV, was shown to interact with FlhB (YscU), FlhI (ATPase) and Flh (ATPase regulator) and Flj (general chaperone) indicating an important role during T3S (McMurry et al., 2004; Minamino et al., 2010).

Figure 6: Proteins of the export apparatus. The orientation in the membrane of YscS and YscT still remains elusive.
Bioenergetics and the ATPase system

For proper T3S an ATPase (YscN family) is required (Woestyn et al., 1994). YscN has been shown to interact with YscQ, YscK and YscL (Blaylock et al., 2006; Riordan & Schneewind, 2008), but so far it is not clear how the proteins work together. EM and X-ray analyses of HrcN (ATPase of Pseudomonas syringae) revealed a ring structure, which is formed by two hexameric rings stacked onto each other (Pozidis et al., 2003). Analysis of EscN (EPEC homologue) showed that the T3SS ATPases share similarity with the F1 ATPases, but structural and sequence differences indicate a unique role during secretion (Zarivach et al., 2007). The ATPase InvC from Salmonella enterica SPI-1 has been shown to bind and dissociate chaperone-effector complexes. Further, InvC unfolds effectors by spending ATP (Akeda & Galan, 2005). The unfolding activity seems to be crucial for energizing the secretion process, but a proton motive force has been found to be equally important for the export (Wilharm et al., 2004). So it has been suggested that the ATPase activity is needed for both substrate recruitment and unfolding. Possibly it also supports initial transfer into the export channel, but it is believed that the proton motive force provides the energy source for the export process.

1.7 Assembly of the type III secretion system

The assembly of the injectisome can be roughly divided into two steps: the formation of the basal body including the T3S apparatus and the formation of the outer components including the needle, tip and pore. The first stage, formation of the basal body, has not been investigated so far for the T3SS, instead the flagellar system is rather very well studied (Macnab, 2004). Following the flagellar assembly scheme it is believed that basal body formation is achieved by sequential insertion of the membrane components, for example the secretin, via the Sec pathway (Sorg et al., 2007).
Figure 7: Assembly of the Yersinia injectisome: The ruler model. Once the basal body has been built completely, the T3S apparatus has to discriminate between different types of substrate. Early substrates such as needle subunits and the molecular ruler are transported until the needle has reached its final length. Then a switching event changes the substrate specificity to middle substrates, forming the tip and pore complex. Upon host cell contact a second switching event is triggered exporting the effectors into the host cell. HM, host cell membrane; OM, outer bacterial membrane; PG, peptido glycan layer; IM, inner bacterial membrane (Cornelis, 2006; Deane et al., 2010).

Once the basal body has been inserted into the membrane, further components are transported by the T3SS in the second stage. Therefore the T3S apparatus has to discriminate between different export substrates. Needle assembly depends on the export of early substrates such as the needle subunits YscF and the length control protein YscP (Cornelis, 2006). How the needle length is controlled has been discussed intensely. Two models are currently discussed: the ruler/tape model (Yersinia) and the rod assembly model (Salmonella). The latter model suggests that complementation of the inner rod terminates needle assembly by triggering the substrate specificity switch (Marlovits et al., 2006). In the ruler/tape model, needle length is tightly controlled by the so-called molecular ruler YscP. When the needle has reached its final length, YscP triggers the substrate specificity to intermediate (translocators) substrates (Cornelis, 2006). The second protein, which is thought be involved in this switching event, is the inner membrane protein YscU, which is likely to interact directly with YscP (Cornelis, 2006; Deane et al., 2010). Finally, late
substrates (effectors) are translocated into the host in a second switch event (Deane et al., 2010).

1.8 The inner membrane proteins YscU and YscV

As mentioned above, the highly conserved inner membrane proteins YscU and YscV are part of the T3S apparatus and comprise 354 (~40.3 kDa) and 704 (~77.8 kDa) amino acid residues, respectively. The exact localization of the proteins is not entirely clear. They might be part of the inner ring in the basal body (Deane et al., 2010). Both proteins share a similar domain architecture consisting of a N-terminal trans-membrane region and a cytoplasmic domain (Saijo-Hamano et al., 2005; Sorg et al., 2007). YscU and YscV are anchored into the membrane with four and six trans-membrane helices and the cytoplasmic domains comprise amino acid residues 211-354 (=YscUC) and 322-704 (=YscVC), respectively (Allaoui et al., 1994). The cytoplasmic domain of YscV seems to play an important role during the export process. The flagellar homologue FlhA was shown to interact with several components of the ATPase complex indicating a role in ATPase-complex recruitment. However, the mechanism of export is not clear yet.

The cytoplasmic domain of YscU, which was originally found in the C-terminal cytoplasmic domain of the Salmonella flagellar YscU homolog, FlhB (Minamino & Macnab, 2000a), is cleaved autoproteolytically within a highly conserved NPTH motif (Lavander et al., 2003). It has been shown that autocleavage is crucial for secretion in both injectisome and flagellum. Abrogated autocleavage, which can be induced by substituting either Asn or Pro by Ala, leads to a poly-hook phenotype in the flagellum (Fraser et al., 2003) and longer and less regulated needles in the injectisome (Sorg et al., 2007). Further, there is no export of translocators (YopB, YopD and LcrV), whereas effectors are not affected. This lack of translocator export is due to a lack of recognition in non cleaved YscU indicating a role of YscU not only in the substrate specificity switch (see Chapter 1.7), but also during substrate recognition (Sorg et al., 2007). Additionally, it was shown that cleaved GST-YscUC, purified from the Yersinia cytoplasm, bound to YscK/L/Q, also indicating a role in recruitment of the ATPase complex (Riordan & Schneewind, 2008).
2 Aim of this thesis

In the current Yersinia export model, the T3SS has to discriminate between different substrate classes to assemble this complex molecular machinery. Therefore, the so-called substrate specificity switch has been proposed to involve the “molecular ruler protein” YscP and the apparatus protein YscU. For proper function the cytoplasmic domain of YscU is cleaved autoproteolytically within a conserved NPTH motif. Bacterial mutants carrying a non-cleavable mutation no longer export translocator proteins, whereas export of effector proteins is not affected. Cleaved YscU thus appears to discriminate between translocator and effector proteins. As the cleavage event and the resulting structural changes might be important for the recognition of different export substrates, the structure of YscuC in its cleaved and uncleaved form was the first aim of this thesis. Furthermore, based on the structures, a detailed analysis of the autocleavage should reveal its functionality.

Besides YscU, YscV also plays an essential role in T3S. Its flagellar homologue FlhA was shown to interact with several components: FlhB (YscU), FliI (ATPase), FliH (ATPase regulator) and FliJ (general chaperone). In the flagellar export model the cytoplasmic domains of FlhB and FlhA form a docking platform for the ATPase/substrate complex. Thus, the second aim of this thesis was the structural characterization of YscVC and biophysical analyses of potential interactions between YscUC and YscVC.
3 Materials and methods

3.1 Standard materials

Molecular-biological methods used in this work are adapted from standard collections of methods and protocols (Ausubel, 2007; Coligan, 2002; Sambrook, 2000). Only variations of standard protocols are described below.

3.1.1 Chemicals, enzymes and antibodies

All chemicals were purchased from the following companies, if not stated otherwise: Difco, Eurofins MWG Operon, Fermentas, Fluka, GE-Healthcare, Hampton Research, Invitrogen, Merck, Millipore, Qiagen, Riedel de Haen, Roche, Roth, Sigma-Aldrich and Stratagene. The quality standard was “pro analysis” (p.a.).

Table 1: Enzymes and antibodies used

<table>
<thead>
<tr>
<th>Enzyme</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benzonase</td>
<td>Novagen</td>
</tr>
<tr>
<td>DNase I</td>
<td>Roche</td>
</tr>
<tr>
<td>PreScission® Protease</td>
<td>GE Healthcare / HZI</td>
</tr>
<tr>
<td>Trypsin</td>
<td>Sigma</td>
</tr>
<tr>
<td>α-Chymotrypsin</td>
<td>Sigma</td>
</tr>
<tr>
<td>Endoproteinase GluC</td>
<td>Sigma</td>
</tr>
<tr>
<td>T4 DNA Ligase</td>
<td>New England Biolabs</td>
</tr>
<tr>
<td>Platinum Pfx DNA Polymerase</td>
<td>Invitrogen</td>
</tr>
<tr>
<td>Pfu turbo polymerase</td>
<td>Stratagene</td>
</tr>
<tr>
<td>Vent DNA polymerase</td>
<td>New England Biolabs</td>
</tr>
<tr>
<td>Restriction endonucleases:</td>
<td>New England Biolabs</td>
</tr>
<tr>
<td>BamHI, EcoRI, NotI</td>
<td></td>
</tr>
</tbody>
</table>

Antibody

<table>
<thead>
<tr>
<th>Antibody</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anti-GST-HRP Conjugate</td>
<td>GE Healthcare</td>
</tr>
<tr>
<td>α-YscU211-354 (Rabbit)</td>
<td>G.C. Cornelis, (University Basel, Switzerland)</td>
</tr>
<tr>
<td>α-LcrV (Rabbit)</td>
<td>G.C. Cornelis, (University Basel, Switzerland)</td>
</tr>
</tbody>
</table>
3.1.2 Molecular weight standards and kits

Table 2: Enzymes and antibodies used

<table>
<thead>
<tr>
<th>Molecular weight standard</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smart Ladder (DNA)</td>
<td>Eurogentec</td>
</tr>
<tr>
<td>Low molecular weight (Protein)</td>
<td>Fermentas</td>
</tr>
<tr>
<td>Precision Plus Protein All Blue</td>
<td>BIO-RAD</td>
</tr>
</tbody>
</table>

Kits

- QIAprep® Spin Miniprep Kit Qiagen
- QIAquick® PCR Purification Kit Qiagen
- QuikChange® Site-Directed Stratagene
- Mutagenesis Kit

3.1.3 Crystallization screens

The following commercial screens (QIAGEN) were used to screen for initial crystallization conditions:

- The AmSO₄
- The Anions ProComplex
- The Cations JCSG+
- The Classics JCSG Core I
- The Cryo JCSG Core II
- The MbClass JCSG Core III
- The MPD JCSG Core IV
- The PEGs SM I
- The pHClear SM II

3.1.4 Oligonucleotides

Table 3: Sequences of primers used in PCR and site directed mutagenesis. Restriction- and mutation-sites are bold and underlined in the sequence. For mutagenesis only forward primers are listed.

<table>
<thead>
<tr>
<th>Designation</th>
<th>Sequence (5’→3’)</th>
<th>Restriction site</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primers used in polymerase chain reactions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GST-6His-YscU211-354-fwd</td>
<td>aaggagggatccatcaccatcaccatcattaaggaacttaaatgagcaagg</td>
<td>BamH1</td>
</tr>
<tr>
<td>GST-6His-YscU211-354-rev</td>
<td>aaggagggcgcctataacattcgcgaatgtttc</td>
<td>NotI</td>
</tr>
</tbody>
</table>
MATERIALS AND METHODS

GST-6His-YscV356-704-fwd
```
aaggag**gaattc**catcaccatcaccatcaacgcaaacaagggccgactagg  
```
EcoRI

GST-6His-YscV356-704-rev
```
aaggag**gcccgcgt**ctataagc aaaactgtctcaagtg  
```
NotI

3704
gatc**gaattc**ttataacatttcggaatg
EcoRI

3724
gatc**ccatgg**ccacggagaaaagacagag
NcoI

Primers used for mutagenesis in E.coli

<table>
<thead>
<tr>
<th>Primers used for mutagenesis in E.coli</th>
<th>Mutation</th>
</tr>
</thead>
<tbody>
<tr>
<td>YscU<sup>C</sup>- N263D-fwd</td>
<td>catcagtgggttagcgtacccgacccatattgctattg</td>
</tr>
<tr>
<td>YscU<sup>C</sup>- N263Q-fwd</td>
<td>catcagtgggttagctcagccgacccatattgctattg</td>
</tr>
<tr>
<td>YscU<sup>C</sup>- P264A-fwd</td>
<td>gttgtgtagctaatcagccgacccatattgctattg</td>
</tr>
<tr>
<td>YscU<sup>C</sup>- P264G-fwd</td>
<td>ctctacagtgggttagctaatgagccgacccatattgctattg</td>
</tr>
<tr>
<td>YscU<sup>C</sup>- H266A-fwd</td>
<td>gttgtagctaatccgagccgagattgtattttatatttcagc</td>
</tr>
<tr>
<td>YscU<sup>C</sup>- R296A-fwd</td>
<td>cccagttcagacttgtgccaaatatcagacaagaagaggg</td>
</tr>
<tr>
<td>YscU<sup>C</sup>- R314A-fwd</td>
<td>caacgtagccattagccggtcgttttatattggagatgcgtcg</td>
</tr>
</tbody>
</table>

Primers used for mutagenesis in Yersinia

<table>
<thead>
<tr>
<th>Primers used for mutagenesis in Yersinia</th>
<th>Mutation</th>
</tr>
</thead>
<tbody>
<tr>
<td>4842 atcccattagccgtcgttttatattgg</td>
<td>R314A</td>
</tr>
<tr>
<td>4956 gttgtgtagctcagccgacccatattg</td>
<td>N263Q</td>
</tr>
<tr>
<td>4958 gctaatccgacccgtctatattgctattg</td>
<td>H266A</td>
</tr>
<tr>
<td>5031 gtcctcaggtggtagctaatgagccgacccatattgctatttgattttatatttcagc</td>
<td>P264G</td>
</tr>
<tr>
<td>5033 cgatgcggaatgtgacgactggagaaatatcagacaagaagaggg</td>
<td>R296A</td>
</tr>
</tbody>
</table>

3.1.5 Plasmids

Table 4: Plasmids used.

<table>
<thead>
<tr>
<th>Plasmids</th>
<th>Current strain designation</th>
<th>Genotype and derivation</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>pYV plasmids</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pYV40</td>
<td>WT</td>
<td>pYV plasmid from Y. enterocolitica</td>
<td>Sory et al., 1995</td>
</tr>
<tr>
<td>pYVe22703</td>
<td>pYVe22703</td>
<td>pYV plasmid from Y. enterocolitica</td>
<td>Cornelis et al., 1987</td>
</tr>
<tr>
<td>pLY4001</td>
<td>ΔyscU</td>
<td>pYV40 ΔyscU; deletion of yscU codons 1-354</td>
<td>Sorg et al., 2007</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Expression plasmids for E. coli</th>
</tr>
</thead>
<tbody>
<tr>
<td>pGEX-6-P1</td>
</tr>
<tr>
<td>pGEX-6-P1_YscU<sup>C</sup></td>
</tr>
<tr>
<td>pGEX-6-P1_His6-YscU<sup>C</sup>His6</td>
</tr>
<tr>
<td>pGEX-6-P1_YscU<sup>C</sup>N263A</td>
</tr>
<tr>
<td>pGEX-6-P1_YscU<sup>C</sup>N263D</td>
</tr>
</tbody>
</table>
Expression plasmids for Yersinia

<table>
<thead>
<tr>
<th>Plasmid</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>pBADMycHisA</td>
<td>yscU<sup>+++</sup></td>
</tr>
<tr>
<td>pLY7</td>
<td>yscU<sup>+++</sup></td>
</tr>
<tr>
<td>pSTW7</td>
<td>yscU<sub>N263A</sub><sup>+++</sup></td>
</tr>
<tr>
<td>pISO153</td>
<td>yscU<sub>R314A</sub><sup>+++</sup></td>
</tr>
<tr>
<td>pISO166</td>
<td>yscU<sub>N263D</sub><sup>+++</sup></td>
</tr>
<tr>
<td>pISO167</td>
<td>yscU<sub>N263Q</sub><sup>+++</sup></td>
</tr>
</tbody>
</table>
MATERIALS AND METHODS

3.1.6 Bacterial strains

Table 5: Bacterial strains used.

<table>
<thead>
<tr>
<th>E. coli strain</th>
<th>Genotype</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Top10</td>
<td>F−, mcr A Δ(mrr-hsdRMS-mcrBC) Φ80 lacZ Δ M15 ΔlacX74 recA1 araD139 Δ(ara-leu)7697 gal U gal K rpsL endA1 nupG</td>
<td>Invitrogen</td>
</tr>
<tr>
<td>XL1-Blue</td>
<td>recA1 endA1 gyrA96 thi-1 hsdR17 supE44 relA1 lac [F’ proAB lacIqZΔM15 Tn10 (Tetr)].</td>
<td>Stratagene</td>
</tr>
<tr>
<td>Tuner (DE3)</td>
<td>F− lacY ompT gal dcm lon hsdS39(f− m−) λ(DE3 [lacI lacUV5-T7 gene 1 ind1 sam7 nin5])</td>
<td>Novagen</td>
</tr>
</tbody>
</table>

3.1.7 Media and Buffer

Media and special buffers were subjected to autoclave sterilization (121 °C, 2 bar, 20 min, Top7000PST, Sauter, Sulgen, Switzerland). Ampicillin (100 mg/mL) was added after media cooling below 50 °C.

Table 6: Media and buffers used.

<table>
<thead>
<tr>
<th>Designation</th>
<th>Composition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Media</td>
<td></td>
</tr>
<tr>
<td>Luria Bertani (LB)</td>
<td>10 g/L tryptone, 5 g/L, NaCl, 5 g/L yeast extract</td>
</tr>
<tr>
<td>Terrific Broth (TB)</td>
<td>900 mL basic medium (12 g tryptone, 24 g yeast extract, 4 mL glycerol), completed with 100 mL buffer solution (0.17 M KH₂PO₄, 0.72 M K₂HPO₄)</td>
</tr>
<tr>
<td>SOC-Medium</td>
<td>20 g/L tryptone, 5 g/L yeast extract, 0.5 g/L NaCl, 2.5 mM KCl, 10 mM MgCl₂, 20 mM glucose</td>
</tr>
</tbody>
</table>
Minimal Medium (MM)

Basic medium (1 g/L NH₄Cl, 3 g/L KH₂PO₄, 6 g/L Na₂HPO₄·7H₂O, autoclaved); completed with 100 mL supplementary solution (20% (v/v) glucose, 0.3% (w/v) MgSO₄, 10 mg Fe₂(SO₄)₃, 10 mg thiamine and 50 mg L-SeMet or 1 g^{15}NH₄Cl; adjust solution to pH 7.4

Buffers/Solutions

<table>
<thead>
<tr>
<th>Buffer/Solution</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AF₄ running buffer</td>
<td>PBS, 0.003 M sodium azide</td>
</tr>
<tr>
<td>Blocking buffer</td>
<td>5% (w/v) skim milk in PBST</td>
</tr>
<tr>
<td>Cleavage buffer I</td>
<td>25 mM CHES (pH 7.0, 9.0 and 10.0), 100 mM NaCl</td>
</tr>
<tr>
<td>Cleavage buffer II</td>
<td>25 mM CHES (pH 7.0, 10.0 and 11.0), 100 mM NaCl</td>
</tr>
<tr>
<td>DNA loading buffer (10x)</td>
<td>10 mM Tris/HCl, pH 7.5, 0.05% (w/v) bromphenol blue, 1 mM EDTA, 50% glycerol</td>
</tr>
<tr>
<td>DTNB buffer</td>
<td>50 mM Tris/HCl pH 8.0, 10 mM DTNB</td>
</tr>
<tr>
<td>Epitope MBS buffer</td>
<td>80% (v/v) T-TBS (pH 8.0), 20% (v/v) blocking buffer (Sigma B6429), 5% (v/v) sucrose</td>
</tr>
<tr>
<td>Epitope SM-A buffer</td>
<td>8 M Urea, 1% (w/v) SDS, 0.5% (v/v) β-mercapto ehntanol, adjusted to pH 7.0 with acetic acid</td>
</tr>
<tr>
<td>Epitope SM-B buffer</td>
<td>10% (v/v) acetic acid, 50% (v/v) ethanol, 40% (v/v) H₂O</td>
</tr>
<tr>
<td>Epitope TBS buffer</td>
<td>50 mM Tris/HCl, pH 7.0, 3 mM KCl, 137 mM NaCl</td>
</tr>
<tr>
<td>Epitope T-TBS buffer</td>
<td>TBS, 0.05% (v/v) Tween-20</td>
</tr>
<tr>
<td>GPC buffer</td>
<td>20 mM HEPES pH 7.0, 150 mM NaCl</td>
</tr>
<tr>
<td>GST elution buffer</td>
<td>50 mM Tris/HCl pH 8.0, 150 mM NaCl, 10 mM reduced glutathione</td>
</tr>
<tr>
<td>Ion exchange buffer A</td>
<td>20 mM HEPES pH 7.0, 100 mM NaCl</td>
</tr>
<tr>
<td>Ion exchange buffer B</td>
<td>20 mM HEPES pH 7.0, 1 M NaCl</td>
</tr>
<tr>
<td>Limited proteolysis buffer</td>
<td>50 mM Tris/HCl pH 8.0, 100 mM NaCl,</td>
</tr>
<tr>
<td>Lysis buffer</td>
<td>1xPBS, 1 tablet protease inhibitor cocktail (Complete mini, Roche), 125 U DNase (Benzonase, Merck) or spatula point DNase</td>
</tr>
<tr>
<td>NMR buffer</td>
<td>50 mM NaCl, 3 mM KCl, 12 mM Na₂HPO₄, 2 mM KH₂PO₄, pH 6.8</td>
</tr>
<tr>
<td>PAGE dehydrating solution</td>
<td>50% (v/v) methanol, 3% (v/v) glycerol</td>
</tr>
<tr>
<td>PAGE destaining solution</td>
<td>40% (v/v) ethanol, 10% (v/v) acetic acid</td>
</tr>
<tr>
<td>PBS buffer</td>
<td>137 mM NaCl, 3 mM KCl, 12 mM Na₂HPO₄, 2 mM K₂HPO₄, pH 7.4</td>
</tr>
<tr>
<td>PBST buffer</td>
<td>PBS buffer, 0.1% (v/v) Tween-20</td>
</tr>
<tr>
<td>Ponceau Red staining solution</td>
<td>0.2% (w/v) Ponceau S, 2% (v/v) acetic acid</td>
</tr>
<tr>
<td>PreScission protease</td>
<td>50 mM Tris/HCl, pH 7.0, 150 mM NaCl, 1 mM EDTA, 1 mM DTT</td>
</tr>
<tr>
<td>cleavage buffer</td>
<td></td>
</tr>
<tr>
<td>SDS-PAGE Lower buffer (4x)</td>
<td>1.5 M Tris/HCl, pH 8.8</td>
</tr>
<tr>
<td>SDS-PAGE running buffer</td>
<td>25 mM Tris/HCl, 192 mM glycine, 0.1% (w/v) SDS</td>
</tr>
<tr>
<td>SDS-PAGE sample buffer (2x)</td>
<td>1 mL 1 M Tris/HCl pH 6.8, 2.4 mM glyceral, 0.8 g SDS, 2 mg Coomassie blue G-250, 0.31 g DTT, add H₂O to 10 mL</td>
</tr>
<tr>
<td>SDS-PAGE separating gel</td>
<td>10 mL Polycrylamide solution, 5 mL 4 x Lower buffer, 0.2 mL SDS (10%), 4.7 mL H₂O, 20 µL TEMED, 50 µL APS (25%)</td>
</tr>
<tr>
<td>SDS-PAGE stacking gel</td>
<td>1.5 mL Polycrylamide solution, 2.5 mL 4 x Upper buffer, 5.9 mL H₂O, 15 µL TEMED, 25 µL APS (25%)</td>
</tr>
<tr>
<td>SDS-PAGE staining solution</td>
<td>30% (v/v) ethanol, 10% (v/v) acetic acid, 0.25% (w/v) Coomassie R-250</td>
</tr>
<tr>
<td>SDS-PAGE Upper buffer (4x)</td>
<td>0.5 M Tris/HCl pH 6.8, 0.4% (w/v) SDS</td>
</tr>
<tr>
<td>TAE buffer</td>
<td>40 mM Tris/HCl pH 8.2, 20 mM sodium acetat, 1 mM EDTA</td>
</tr>
<tr>
<td>Transfer buffer</td>
<td>20 mM Tris pH 8.0, 192 mM glycine, 15% methanol</td>
</tr>
</tbody>
</table>
3.2 Molecular cloning

Bacterial strains, plasmids and genetic constructions are given in Table 4 and Table 5. E. coli Top10 or XL1-Blue strains were used for plasmid purification and cloning. Bacteria were grown routinely on Luria-Bertani (LB) agar plates and in liquid LB-medium. Ampicillin was used at concentrations of 200 µg/mL.

Plasmids were generated using either the Pfu turbo polymerase (Stratagene) or Vent DNA polymerase (New England, Biolabs). Oligonucleotides for genetic constructs are given in Table 3. All constructs were confirmed by sequencing using a 3100-Avant genetic analyser (ABI Prism) or by the companies GATC (Konstanz, Germany) or MWG (Ebersberg, Germany).

3.3 Protein production and purification

3.3.1 Expression and purification of YscU^C

Standard expression of YscU^C

Testing different media, temperatures and E. coli cells, the following optimal expression conditions were found. The YscU^C-pGEX-6P-1 vector was transformed into E. coli Tuner (DE3) cells and cultivated on LBA agar plates overnight. For further preparations and long term storage a glycerol culture was produced. A single colony was used to inoculate a pre-culture of 20 mL LBA medium. 10 mL pre-culture, which had been grown at 37 °C and 180 rpm to an OD₆₀₀ of 0.6, was transferred into 1 L main-culture (TBA medium). After the main culture reached an OD₆₀₀ of 0.6 (37 °C, 110 rpm), expression of yscU^C was induced by adding 0.2 mM isopropyl thiogalactopyranoside. Shifting the temperature to 20 °C prevented the formation of inclusion bodies. After incubation for further 16 h, cells were harvested by centrifugation (6,080 xg, 15 min, 4 °C), resuspended in ice cold lysis buffer and stored at -20 °C for future preparations.

Production of labelled protein of YscU^C

L-Selenomethionine (SeMet)-labelled and ¹⁵N-labelled YscU^C N263A, as well as ¹⁵N-labelled YscU^C wild type variants were produced by using a protocol based mainly on (Guerrero et al., 2001). All variants were freshly transformed and plated on LBA agar plates. A single colony was used to inoculate an overnight culture of LBA medium. Cells were centrifuged (2,700 xg, 4 °C, 10 min), washed carefully in ice cold sterile ddH₂O and again centrifuged (2,700 xg, 4 °C, 10 min). The bacterial pellet was diluted in the desired minimal medium to an OD₆₀₀ 1.0 and incubated for 20 min at 37 °C. Expression was induced by adding 0.2 mM isopropyl thiogalactopyranoside and further incubation at 20 °C for 20 h. Finally cells were centrifuged (6,080 xg, 4 °C, 15 min) and resuspended in lysis buffer.
Purification of YscUC

Efficient cell lysis was performed by running lysis suspension twice through a homogenizer (20,000 kPsi, 4 °C). Cell debris and insoluble components were separated by centrifugation (37,060 xg, 45 min, 4 °C). Supernatant was incubated with equilibrated (PBS buffer) glutathione sepharose for 4 h at 4 °C. Unbound protein was washed three times (50 mL) from the GS column with protease buffer.

To obtain GST-labelled YscUC, sepharose was incubated five times (50 mL) with GST elution buffer. GST-YscUC wash and elution fractions were analysed by SDS-PAGE and concentrated (10 - 15 mg/mL).

The GST fusion tag was cleaved off by adding 75 µL PreScission protease (500 U) in 10 mL protease buffer and incubation (4 °C) overnight. Only YscUC is eluted from the column, as the protease is also GST-tagged. Finally the GST-sepharose was washed with 10 mM reduced glutathione in 10 mL protease buffer to control cleavage efficiency. Purity and cleavage efficiency were analyzed using a SDS-gel. YscUC containing fractions were pooled and dialysed against IEC buffer A (SnakeSkin membrane, MWCO 3,500, Thermo Scientific).

As YscUC is positively charged at pH 7.0 (theoretical pl 8.1, calculated with Vector NTI InforMax), the second purification step was performed using cation exchange chromatography (MonoS 10/100 column). Runs were programmed containing two linear step gradients: 1st 0-30 % IEC buffer B in 3 column volumes and 2nd 30-100% IEC buffer B in 1 column volume. YscUC was eluted as a single peak at ~19 % IEC buffer B (~ 20 mS/cm). YscUC containing fractions were analyzed by SDS-PAGE, pooled and concentrated to 5 – 15 mg/mL (Vivaspin concentrator, MWCO 10,000). As final purification step gel permeation chromatography was performed using a Superdex 16/60 prep grade column (GE Healthcare).

3.3.2 Expression and purification of YscVC

Expression of YscVC

After transformation of YscVC-pGEX-6P-1 into \textit{E.coli} Tuner (DE3) cells, overexpression was performed as described for YscUC in Chapter 3.3.1. For long term storage and further preparations glycerol cultures were produced.

Purification

Resuspended cells were lysed by running cell suspension twice through a homogenizer (20,000 kPsi, 4 °C). Cell debris and insoluble components were separated by centrifugation (37,060 xg, 45 min, 4 °C). The supernatant was incubated...
with 10 mL glutathione sepharose (equilibrated in PBS buffer) for 4 h at 4 °C. Unbound material was washed three times (50 mL) from the GS column with PreScission protease cleavage buffer sepharose was further incubated four times (3 x 10 mL, 1 x 20 mL) with GST elution buffer and analyzed by SDS-PAGE. GST-YscV fractions were pooled and a 75 µL sample of PreScission Protease (GE Healthcare, 500 U) was added to cleave the GST fusion protein. After 45-60 min of protein cleavage, small amount of protein precipitation was observed and cleavage was immediately terminated by adding one tablet of Complete Mini (Roche). In a second step the protein was further purified using an ion-exchange column. As YscV is negatively charged at pH 7.0 (theoretical pI 5.2, calculated with Vector NTI InfroMax), protein solution was applied to a MonoQ 10/100 column (GE Healthcare). The column was equilibrated with ion exchange buffer A and YscV was eluted in a single peak within a linear gradient (0.1 M -1 M NaCl) at 35 % ion exchange buffer B. YscV-containing fractions were identified by SDS-PAGE and concentrated to 10 – 15 mg/mL.

3.4 Protein analytical methods

3.4.1 Discontinuous SDS-polyacrylamide gel electrophoresis

A discontinuous SDS-polyacrylamide gel electrophoresis (SDS-PAGE) was carried out to analyse the purity, amount and molecular weight of the proteins (Laemmli, 1970). The SDS-gels used in this work were performed with a 5 % (w/v) acrylamide stacking gel and a 15 % (w/v) acrylamide separating gel (Chapter 3.1.7). Protein samples (2-15 µL) were incorporated with SDS-PAGE sample buffer (10-20 µL) and briefly (60 sec) boiled at 95 °C. 12 µL of these samples and 5 µL marker were loaded on a SDS-gel. The SDS-PAGE was run constantly at 40 mA and terminated upon reaching the dye front at the end of the gel. After electrophoresis, gels were stained in a Coomassie Brilliant Blue R-250 solution by boiling and shaking. To remove excess stain, gels were destained. Finally gels were dried between cellophane papers for storage.

3.4.2 Limited proteolysis

Limited proteolysis was used to identify globular and stable protein domains. Therefore purified protein was diluted in limited proteolysis buffer to a final concentration of 0.3 – 1 mg/mL in a 100 µL reaction volume. trypsin, α-chymotrypsin and endoproteinase GluC were added in a protein/protease ratio of 1:200 (w/w) in each trial reaction. After distinct time points 10 µL aliquots were taken and proteolysis was stopped by mixing with 10 µL SDS-PAGE sample buffer (0.1 mM AEBSF (4-(2-aminoethyl)- benzenesulfonyl fluoride)) and heating for 60 sec at 95 °C. Until further analysis by SDS-PAGE all samples were frozen at -20 °C.
3.4.3 pH-dependent cleavage of YscU variants

The different YscU variants were expressed and purified as described above. Variant P264A was dialysed against 25 mM Ches-buffer, 100 mM NaCl for 3 h at room temperature. P624G, H266A/R314A and N263D were dialysed against 25 mM CAPS-buffer, 100 mM NaCl for 4 h at room temperature. Afterwards, the variant P264G was stored for 48 h and H266A/R314A and N263D were stored for 24 h at 4 °C. Cleaved proteins were submitted to SDS-PAGE (15%) and stained with Coomassie brilliant blue.

3.4.4 Western blot and immunodetection

Protein samples from SDS-gels were transferred via electrophoresis on a polyvinyl difluoride (PVDF) membrane (Towbin et al., 1979) and used for immunodetection or N-terminal sequencing. The non-stained SDS-gel was incubated for 15 min in transfer buffer and placed onto the activated PVDF membrane (incubation 60 sec in methanol and 5 min in transfer buffer). Membrane and gel were placed in between two transfer-buffer-soaked Whatmann tissues and fixed in the semi-dry blot chamber (TransBlot semi-dry transfer cell, Bio-Rad). Transfer was carried out at constant 15 V for 45 min and successfully transfer was evaluated by Ponceau Red staining.

For immunodetection the blotted PVDF membrane was incubated for 1 h in 50 mL blocking buffer and washed three times with PBST buffer (10 mL, 5 min). Primary antibodies were diluted (α-GST-HRP conjugate 1:5000, α-YscU 1:1000) in PBST buffer and incubated with PVDF membrane for 1 h and again washed three times with PBST buffer. A secondary α-rabbit-HRP-antibody (1:5000) for α-YscU was necessary for detection and therefore the membrane was incubated and washed a second time. To detect target proteins the Enhanced Chemiluminescence kit (ECL) (LumiLight, Roche) was used.

3.4.5 Qualitative determination of accessible Sulfhydryl groups

The accessibility of protein sulfhydryl groups was determined qualitatively using Ellman’s regant (5,5'-Dithio-bis(2-nitrobenzoic acid, DTNB). 2 µL DTNB-solution (10 mM in 0.1 M Tris pH 8.0) were incubated with 1 µL protein solution (1 mg/mL) for 5 min. The release of TNB (2-nitro-5-mercaptobenzoic acid) during the reaction was measured photometrically at 412 nm.

3.4.6 Mass spectroscopy

For protein identification and conformation of correct protein labelling samples were analysed using MALDI-TOF-MS (Matrix Assisted Laser Desorption Ionisation – Time Of Flight) or ESI-MS (Electrospray Ionisation). The experiments were carried out by Dr. Manfred Nimtz and Undine Felgenträger (HZI, Braunschweig).
3.4.7 N-terminal sequencing

For evaluating and identification of proteins the N-termini were sequenced by automated Edman degradation (Edman & Begg, 1967). The protein samples were separated by SDS-PAGE and blotted onto PVDF membranes as described in Chapters 3.4.1 and 3.4.4. Blotted proteins were stained with Ponceau red and the corresponding bands were cut out for sequencing. N-terminal sequencing was performed by Rita Getzlaff (HZI, Braunschweig) using the 494A HT Protein Sequenzer (Applied Biosystems).

3.4.8 ThermoFluor assay

The ThermoFluor assay is a rapid screening method to identify optimal protein stabilizing conditions by varying pH, small molecules and buffer. A fluorescent dye, which has an affinity for the hydrophobic core of proteins, is added to the protein solution. In the following a differential fluorimetry scan is performed creating a temperature gradient. Once the melting temperature of the protein is reached, fluorescence is increased due to unfolding of protein. A simple calculation affords the exact melting temperature. The highest given melting temperature corresponds to the best stabilization conditions (Niesen et al., 2007).

Differential scanning fluorimetry was performed on a CFX96 Real-Time Thermal Cycler C1000 (Bio Rad) instrument. In order to choose appropriate scanning conditions an initial scan was carried out varying protein and dye concentrations. For this 40 µL protein buffer were mixed with 5 µL protein (0.1, 1 and 2 mg/mL) and Sypro Orange 5000x (10-, 50- and 100x) in a 96-well plate (Multiplate 96-Well Unskirted PCR plate, Bio Rad). The plate was sealed using a non-fluorescence absorbing seal (Microseal ‘B’. Adhesive Seal, Bio Rad). The best protein/dye combination (increase of fluorescence > 800 U) was chosen for the main screen, in which the different buffer conditions were tested. The conditions were adapted from a protocol of Vedadi group (Niesen et al., 2007). Runs were performed using a linear gradient (10 - 90°C) measuring fluorescence intensity every 0.5 °C. The data were analyzed using the CFX software (Version 1.5, Bio Rad).

3.4.9 Epitope scan

An epitope scan is a method for investigating interaction sites of proteins and also for determining the influence of amino acids on the binding affinity (Dooley & Houghten, 1993). For this purpose one binding partner is split into peptide fragments. Theses peptides were synthesized and spotted on a cellulose membrane. The potential binding partner is incubated with the membrane and binding is analysed by immunodetection (Figure 8).
The choice of the correct peptides depends on previous information about the two potential binding partners. If there is no information on binding behaviour, one protein is fragmented into overlapping peptides and incubated with its potential partner. The standard peptide length is a 15mer, which will be shifted by three amino acids along the primary protein sequence. Such a rough epitope scan is called a 15/3 scan and is used for localisation of binding sites (Dooley & Houghten, 1993). For exact localisation a 15/1 run is used afterwards. Once the binding areas are detected, the role of individual amino acids can be investigated. In these further scans each amino acid in the peptide is exchanged sequentially against either alanine (alanine scan) or every other amino acid (amino acid scan) (Frank, 2002).

Figure 8: Functionality of the epitope scan. A GST-tagged target protein is captured by an anchored peptide and detected via an HRP-linked GST-antibody.

All peptides were synthesized and spotted onto cellulose membranes by Dr. Ronald Frank and Dr. Werner Tegge (HZI, Braunschweig). The prepared membrane was soaked in ethanol, washed three times with TBS buffer (10 mL, 10 min) and incubated in 10 mL MBS buffer at room temperature overnight. After washing (10 mL T-TBS, 10 min) once, the membrane was incubated with a 1 - 4 mg/mL protein solution diluted 1:200 in 10 mL MBS buffer for 4 h. Again the membrane was washed three times (10 mL T-TBS, 10 min) and incubated with a GST-HRP conjugate diluted 1:5000 in 10 mL MBS buffer for 2 h. After a further washing round (three times 10 mL T-TBS, 10 min), the membrane was stained using the Enhanced Chemiluminescence kit (ECL) (LumiLight, Roche).

For reuse of the membranes proteins and antibodies were removed in the following way: The membrane was washed in 20 mL water (three times for 10 min), 20 mL SM-A (three times for 10 min), 20 mL SM-B (three times for 10 min) and finally in 20 mL EtOH. Membranes were air-dried and stored in a shrink-wrap film at -20 °C for future use.
To test the membranes for unspecific interactions all membranes were initially incubated with GST and antibody. Control and experiment were repeated two times, respectively.

3.4.10 Dynamic light scattering

All purified protein samples were analyzed by dynamic light scattering (DLS) to assess their polydispersity. The method was also used to confirm the estimated molecular weight assuming a globular shape. Since huge particles disturb measurements, protein solutions (0.5 – 1 mg/mL) were centrifuged (20 min, 14,000 xg) and 15 µL sample volumes were transferred in a dust-free DLS-cuvette. The experiments were carried out at room temperature on a DynaPro Titan Temperature Controlled MicroSampler instrument (Wyatt Technologies). The laser power was set to yield at least 1,000,000 counts/sec. To analyze data, DYNAMICS V6 (Version 6.10.1.2) software was used. Protein solutions with suitable polydispersity (< 20%) were used for crystallization trials.

3.4.11 Asymmetric flow field flow fractionation

Asymmetric flow field flow fractionation (AF4) is a one-phase chromatography technique (Figure 9), which enables a sharp and gentle separation of protein solutions in flow fields (Giddings, 1993). In combination with static light scattering and refraction measurement the received fractions can be analysed towards oligomerisation status and concentration. The separation process needs three steps. During injection (step 1) the sample is collected under the injection port due to a balanced flow. At the same time the sample is focussed (step 2) in a thin band towards the membrane. Diffusion associated with Brownian motion, in turn, creates a counteracting motion. Smaller proteins, which have a higher diffusion rate, reach upper levels and thus a molecular weight gradient is built. To separate and elute the proteins a second perpendicular flow is injected (step 3). Because of the laminar flow, the flow field is parabolic and thus smaller molecules reach a higher velocity. In contrast to gel permeation chromatography the smaller proteins in AF4 will be eluted first (Podzimek et al., 2008).

All experiments were carried out on an Eclipse 3 AF4 system (Wyatt Technology), which was combined with a Dawn Heleos II Lightsclattering K5 MALS device (multiple angle light scattering, Wyatt Technology) and Optilab rEX refractometer (Wyatt Technology). As the technique is sensitive to dust the running buffer was filtered (0.2 µm) twice. Sodium azide (0.003 M) was added to prevent fungal and bacterial growth. Runs were performed in a small channel (size S) equipped with a 0.35 µm spacer and 10 kDa cellulose membrane. The detector flow and the focus flow were set to 1.0 ml/min and 1.5 mL/min, respectively. Samples were injected with a flow rate of 0.2 ml/min. Channel separation quality was checked by using BSA before and
after each run. Data were processed with the ASTRA software (Version 5.3.2.20, Wyatt Technology Corporation).

Figure 9: Principle of the AF4 technique. At first the sample is injected into a channel, where it focused and equilibrated in a thin layer. Due to a further perpendicular and parabolic flow, particles were separated along the channel.

3.5 In vivo analyses

Within the scope of the injectisome collaboration between the HZI and the group of Guy R. Cornelis (University of Basel, Switzerland) all in vivo experiments with Yersinia enterocolitica were carried out by Dr. Isabel Sorg, Marlise Amstutz and Stefanie Wagner. The aim was to characterize different YscU variants with respect to their secretion behaviour and their needle length.

3.5.1 LcrV secretion and immunoblotting

Induction of the yop regulon was performed as described by Cornelis et al., 1987. Expression of the different genes cloned downstream of the pBAD promoter was induced routinely by adding 0.2% L-arabinose to the culture before shift from 28 °C to
37 °C, and again 2 h later. Glycerol (4 mg/ml) was added as a carbon source when expressing genes from the pBAD promoter. Total cell and supernatant fractions were separated by centrifugation at 20,800g for 10 min at 4 °C. The cell pellet was taken as the total cell fraction. Proteins in the supernatant were precipitated with 10% (w/v) trichloroacetic acid (final concentration) for 1 h at 4 °C.

Supernatant (SN) and total cell (TC) fractions were separated by 12% SDS-PAGE. In each case, proteins secreted (SN) or produced (TC) by 2.5 x 10⁷ bacteria were loaded in each lane. Immunoblotting was performed using rabbit polyclonal antibodies against LcrV (MIPA220; 1:2000). Detection was performed with the respective secondary antibodies conjugated to horseradish peroxidase (1:5000; Dako), before development with supersignal chemiluminescent substrate (Pierce).

3.5.2 Electron microscopy

T3SS needles were visualized by transmission electron microscopy as described (Agrain et al., 2005; Hoiczyk & Blobel, 2001). After induction of the yop regulon for 4 h at 37 °C bacteria were harvested by centrifugation at 2000 x g and resuspended gently in 20 mM Tris-HCl, pH 7.5. Droplets were applied for 1 min to freshly glow-discharged, formvar-carbon coated grids, and negatively stained with 2 % (w/v) uranyl acetate. Bacteria were visualized in a Philips CM100 transmission electron microscope at a nominal magnification of 20,000 x g and an acceleration voltage of 80 kV. Needle sizes were measured with the Soft imaging system software (Hamburg, Germany).

3.6 Protein crystallization

Concentrated and purified proteins were filtered (0.2 µm) or centrifuged (20 min, 18,800 x g, 4 °C) before crystallizing. All proteins were crystallized by hanging- and sitting-drop vapour diffusion methods at constant temperatures (20 or 4 °C).

Initial screening

Initial screening experiments for crystallization conditions were performed with commercially available screens (Quiagen, see Chapter 3.1.3). For this purpose the sitting-drop method in 96-well plates (Greiner) was used for crystallization. 300 nL purified protein and an equal amount of reservoir were mixed in a droplet using a pipetting roboter (Mosquito robot, TTP LabTech). Plates were sealed using a Manco™ Crystal Clear tape (Jena Bioscience) and incubated at 4 or 20 °C.
Optimization

Initial hit conditions were optimized manually in 24-well hanging drop and sitting drop formats. Drop volumes were enlarged to 2-5 µL and physico-chemical parameters such as precipitant, protein concentration, pH, ionic strength and temperature were varied producing crystals suitable for X-ray diffraction experiments.

Macro- and micro-seeding (Bergfors, 2003; Luft & De Titta, 1997), Additive Screen (Hampton Research), varying crystallization temperatures, truncation of flexible regions (Dale et al., 2003) and cysteine replacements were used for further crystal improvement and to get larger crystals.

Cryo-crystalography

As X-ray radiation causes radiation damage in protein crystals (Garman & Owen, 2006), data sets were collected at cryogenic temperatures (~100 K) to minimize these effects. Upon freezing, however, water can also crystallize and water ice imposes a mechanical stress on the protein crystal resulting in loss of diffraction or ice-rings on the diffraction pattern. Therefore a cryo-protection for protein crystals is needed. This is achieved by adding cryo-protectants such as PEG 400, glucose, ethylene glycol or glycerol. In this work an aliquot of the original reservoir solution was mixed with glycerol to yield a final concentration of 15-20% (v/v), depending on the actual crystallization conditions. Crystals were harvested with a nylon loop, quickly transferred into the cryo-protecting solution and then flash frozen in liquid nitrogen.

3.7 X-ray structure analysis

Single crystal X-ray crystallography is a powerful method to determine the three dimensional structures of proteins at atomic resolution. Protein crystals are irradiated with a monochromatic X-ray beam. Upon interaction of X-ray radiation and matter (protein crystal), electrons interact with the changing electromagnetic field and in turn begin to oscillate. As oscillating dipoles, they emit coherent radiation with the same wavelength as the incident radiation. This effect is called elastic or Thomson scattering. Under certain crystal orientations the emitted waves interfere constructively (Bragg’s law), yielding detectable reflection spots. The symmetry of the resulting reflection pattern directly corresponds to the crystal lattice, while the intensity distribution depends on the electron density distribution within the unit cell. To calculate the electron density (Equation 1) the phase information is required, which is lost during data collection. This problem is known as the phase problem, which can be solved by a variety of indirect methods.

In this study the multi-wavelength anomalous dispersion (MAD) technique was used to solve the phase problem. For this purpose a selenomethionine (SeMet) derivative protein has been produced (see Chapter 3.3.1) for structure determination (Hendrickson et al., 1990).
\[\rho(x, y, z) = \frac{1}{V} \sum_{h} \sum_{k} \sum_{l} |F_{hkl}| e^{-2\pi i (hx + ky + kz - \alpha_{hkl})} \]

Equation 1

With phase \(\alpha = 2\pi \alpha' \)

3.7.1 Phase determination via anomalous diffraction

If incident X-rays are reemitted by atoms with the same phase angle, then an elastic scattering is observed. But when the X-ray wavelength is in the range of the scattered electron binding energies (heavy-atom absorption edge), a part of the radiation is absorbed by the heavy atoms. As a consequence of this inelastic interaction (Compton scattering) the reemitted intensity decreases and the phase is altered compared to the incident wave. This effect is designated as anomalous diffraction and can be accounted for the atomic scattering factor \(f \) as two perpendicular wavelength-depended terms (Equation 2): a real term \(f' \) (dispersive) and an imaginary term \(f'' \) (absorption). More importantly Friedel’s law (\(|F_{hkl}| = |F_{-h-k-l}| \)) loses its validity. Due to the wavelength-depended contributions of the anomalous scatterer, the phase as well the amplitude of symmetry related reflections changes and thus Friedel mates differ (Equation 3). These differences of Friedel mates are used to obtain phase information and substructure handedness in the MAD experiment (Figure 10).

\[f = f_0 + f'(\lambda) + if''(\lambda) \]

Equation 2

- \(f_0 \) wavelength independent atomic scattering factor
- \(f'(\lambda), if''(\lambda) \) real and imaginary atomic components of anomalous scattering

\[\begin{align*}
F'(+) &= F_{PH} + F'(+), \\
F'(-) &= F_{PH} + F'(-) - F''(-)
\end{align*} \]

Equation 3

- \(F'(+) \), \(F'(-) \) structure factors of Friedel mates
- \(F_{PH} \) structure factor of a heavy atom derivative at normal wavelength
- \(F', F'' \) reel and imaginary components of anomalous scattering
In order to use anomalous differences for MAD phasing, a fluorescence energy scan near the absorption edge of the anomalous scatterer is performed providing the proteins characteristic curves for f' and f'' (Figure 11). Typically three or four different wavelength data sets around the absorption edge are measured to get anomalous signals. In particular these wavelengths are: the maximum (peak) of f'', where the signal for the imaginary term shows its largest value, the minimum of f' corresponding to the inflection point of f'' and a wavelength far away from the absorption edge (low and/or high energy remote). In the end one obtains for each wavelength a set of different anomalous signals, which can be used for phase information and handedness. For this method, however, all data sets need to be recorded from a single crystal, as the difference between Friedel mates caused by the anomalous scatterer is less than 5% of the entire signal.
With the assistance of the measured anomalous differences or Bijvoet differences (difference between the measured amplitudes of the Friedel mates at one wavelength) and the dispersive differences (difference between the measured amplitudes of the Friedel mates at two different wavelengths) Patterson maps can be calculated for the anomalous scatterer. Both maps should contain the same peaks for solving the heavy atom substructure. From the initial positions of the anomalous scatterers the structure factor of \(F_{PH}(+) \) and \(F_{PH}(-) \) can be deduced graphically by a Harker construction (Figure 10). However, this method is only a graphical illustration, computer programs determine phase angles by the MAD observational equations (Hendrickson et al., 1985). In the case of MAD experiment using two different wavelengths (\(\lambda_1 \) and \(\lambda_2 \)) four equations can be set up (Equation 4). Accordingly six or eight equations can be set up, if three or four wavelengths are used. As the structure factor amplitudes of \(F_{PH} \) and \(F_P \) are wavelength independent, the three unknown parameters \(F_{PH}, F_P \) and (\(\alpha_{PA}-\alpha_P \)) are over-determined by the four, six or eight equations. If the heavy atom substructure is already known, the protein phase angles can be good estimated.
\[
\begin{align*}
\alpha_1 F^+(h) &= F^1_{a h} + a(\lambda) F^1_{a \lambda} + b(\lambda) F^1_{a \lambda} \cos(\alpha_{\lambda h} - \alpha_{\lambda \lambda}) + c(\lambda) F^1_{a \lambda} \sin(\alpha_{\lambda h} - \alpha_{\lambda \lambda}) \\
\alpha_2 F^-(h) &= F^2_{a h} + a(\lambda) F^2_{a \lambda} + b(\lambda) F^2_{a \lambda} \cos(\alpha_{\lambda h} - \alpha_{\lambda \lambda}) - c(\lambda) F^2_{a \lambda} \sin(\alpha_{\lambda h} - \alpha_{\lambda \lambda}) \\
\alpha_2 F^+(h) &= F^3_{a h} + a(\lambda) F^3_{a \lambda} + b(\lambda) F^3_{a \lambda} \cos(\alpha_{\lambda h} - \alpha_{\lambda \lambda}) + c(\lambda) F^3_{a \lambda} \sin(\alpha_{\lambda h} - \alpha_{\lambda \lambda}) \\
\alpha_2 F^-(h) &= F^4_{a h} + a(\lambda) F^4_{a \lambda} + b(\lambda) F^4_{a \lambda} \cos(\alpha_{\lambda h} - \alpha_{\lambda \lambda}) - c(\lambda) F^4_{a \lambda} \sin(\alpha_{\lambda h} - \alpha_{\lambda \lambda}) \text{ Equation 4}
\end{align*}
\]

\[a(\lambda) = (f^3(\lambda) + f^3(\lambda)) / f_0^3\]

with \[b(\lambda) = 2 f^3(\lambda) / f_0\]

\[c(\lambda) = 2 f^3(\lambda) / f_0\]

3.7.2 Model building, refinement and validation

Once the phase problem has been solved successfully electron density has to be interpreted by building a protein model. The initial model building can be done automatically, if data quality and resolution are sufficiently good. The final model building is performed manually to improve the model with regard to the chemical and biological properties.

The principal aim of a protein crystal structure determination is the building of a reasonable model that is in good agreement with the observed data. For this purpose the positions of individual atoms are optimized in iterative rounds of refinement calculations, that improve the overall model and hence the model-derived phases. The fit in quality of the model to the observed data is measured by the crystallographic \(R\) factor \(R_{\text{cryst}}\), which can be determined from the calculated model structure factors \(F_{\text{calc}}\) and the observed structure factors \(F_{\text{obs}}\) (Equation 5). Well defined structures generate \(R_{\text{cryst}}\) values of 10-25 %, whereas randomly placed atoms in the unit cell have a maximum value of 59 % (Wilson, 1949). In order to prevent over-fitting, a test set of data (usually 5-10 % of all reflections) is not used for refinement calculation. Using the test set of reflections, the so-called \(R_{\text{free}}\) factor can be calculated (Brunger, 1993). If the \(R_{\text{free}}\) value increases, after changing the model parameters, a model bias has been generated. Finally the model quality is validated by stereo chemical parameters (Engh & Huber, 1991), such as bond length, bond angles and torsion angles (Ramachandran plot) (Ramachandran & Sasisekharan, 1968), the reliability of the \(R\) factors \(R_{\text{cryst}}/R_{\text{free}}\) and a contact analysis of all atoms (Lovell et al., 2003).

\[
R_{\text{cryst}} = \frac{\sum_{hkl} |F_{\text{obs}}(hkl) - k \cdot F_{\text{calc}}(hkl)|}{\sum_{hkl} |F_{\text{obs}}(hkl)|} \text{ Equation 5}
\]

with \(k\) the resolution-dependent scale factor
3.7.3 Structure determination of YscU^C

Four multiwavelength anomalous diffraction (MAD) data sets of SeMet-labelled YscU^C N263A were collected at beamline X12 at the EMBL Outstation (Hamburg, Germany) and processed with the HKL2000 (Otwinowski, 1997) and MOSFLM (Leslie, 1992). Before collecting a whole data set, test pictures were taken to calculate the best data collection strategy. The solution of the selenium substructure, density modification and partial model building were done with the automated crystal structure determination platform: Auto-Rickshaw (Panjikar et al., 2005) at the EMBL-Hamburg. Before starting the routine, the following input data was prepared. The four MAD data sets were processed anomalously with HKL2000 (Otwinowski, 1997). The obtained intensities were converted into structure factors in a MTZ file using the program SCALEPACK2MTZ (French & Wilson, 1978). The created MTZ files and the amino acid sequence of YscU^C were applied to the interface and a four wave length MAD experiment was chosen. The program estimated from the files the unit cell dimensions, the number of molecules per asymmetric unit (1) and prepared an input file for SHELX programs. Once the program SHELX C (Pape & Schneider, 2004) had solved the MAD equations for the anomalous scatterer, an input file was written up to give a useful resolution range. The subsequent program SHELX D (Schneider & Sheldrick, 2002) solved the selenium substructure. Finally SHELX E (Pape & Schneider, 2004) solved the phasing equations. The correct substructure enantiomorph (P4₃2₁2) was estimated by several cycles of density modifications. Here the contrast of the electron density map (heavy-atom) of the correct enantiomorph is much higher. After localization of two selenium sites a partial model was generated with ARP/wARP (Morris et al., 2003). Finally the model was completed manually using COOT (Emsley & Cowtan, 2004) and refinement was carried out using REFMAC5 (Murshudov et al., 1997).

The X-ray data set of YscU^C N263D was collected at ESRF beamline ID29 (Grenoble, France), processed with MOSFLM (Leslie, 1992) and scaled with SCALA (Evans, 2006). Using REFMAC5 (Murshudov et al., 1997) and SeMet-labelled YscU^C N263A as a phasing model, the structure was solved by difference Fourier and further refined with COOT (Emsley & Cowtan, 2004) and REFMAC5 (Murshudov et al., 1997).

The validation of both structures was performed with MOLPROBITY (Davis et al., 2007). Data collection and refinement statistics are given in Table 7. The coordinates have been deposited in the Protein Data Bank (PDB) under accession codes 2v5g and 2w0r.
3.8 Protein nuclear magnetic resonance spectroscopy

In addition to X-ray crystallography protein nuclear magnetic resonance spectroscopy (NMR) is a further important method for elucidating the 3D structures of small proteins. A great advantage of protein NMR is the possibility of analyzing protein samples in solution. Further, once the protein structure is solved, interactions can be investigated more easily. A drawback is the size limitation of investigating proteins (~30 kDa) due to overlapping signals.

Nuclei (e.g. 1H, 19F or 31P), which contain a nuclear spin, exist in discrete nuclear spin states when they reside in an external magnetic field. NMR spectroscopy uses radiofrequency radiation to observe transitions between the different nuclear spin states. Consequently, nuclei that do not have a nuclear spin are transparent to NMR spectroscopy. However, this concerns the most common isotopes like 12C (98.9 %), 14N (99.6 %) and 16O (99.8 %) nuclei. Due to the high natural abundance of these common isotopes, protein samples have to be labelled with isotopes possessing a nuclear spin. For this purpose proteins can be produced recombinantly in minimal media containing labelled 13C-labelled glucose or 15N-labelled ammonium chloride.

If all nuclei absorbed energy at the same resonance frequency, NMR spectroscopy would not be very useful for investigations. However, as electrons of the molecule create a local weak magnetic field, the nuclei are shielded from the applied main field. Therefore the nuclei absorb, depending on their local environments, at slightly different frequencies, resulting in a so-called chemical shift in the NMR spectrum. The interpretation of a 1D spectrum is not possible for complex molecules such as proteins, as too many signals are overlapping. Therefore the spectrum is expanded to a second or third dimension by correlation of the resonance frequencies to the frequencies of same or hetero nuclei. The resulting peaks are mostly separated allowing an assignment and novel information about the chemical environment (Lottspeich & Engels, 2006).

3.8.1 Investigation of conformational change with protein NMR

Comparing two different protein states (e.g. before and after cleavage) can be easily performed by recording a HMQC (heteronuclear multiple quantum coherence) spectrum of both states (Gal et al., 2007). In this 2D spectrum nitrogen frequencies are correlated with the amide proton frequencies. Every observed peak represents a proton bound to its 15N-atom. This means the protein spectrum consists basically of peaks from 1H-protons of backbone and side chain amids. A conformational change in the protein changes the chemical environment of the amide protons thus leading to different chemical shifts. From superposition of both spectra it is clear whether there is a conformational change or not.
3.8.2 The 15N, 1H HMQC experiment

Protein NMR measurements were performed by Dr. Thorsten Lührs (HZI, Braunschweig). 15N-labelled YscUC variants were expressed and purified as described in Chapter 3.3.1. For protein NMR spectroscopy, we used a 12 mg/mL solution of uniformly 15N-labelled YscUC in a mixed solvent of 95% (v/v) H_2O, 5% (v/v) D_2O and a 10 mg/mL solution of YscUC N263A in the same solvent. The NMR samples contained 50 mM NaCl, 3 mM KCl, 12 mM Na$_2$HPO$_4$ and 2 mM KH$_2$PO$_4$ at pH 6.8. The Bruker Advance III 600 MHz NMR spectrometer used for this study was equipped with a 5-mm Z-axis gradient triple-resonance cryo-probehead (providing a better signal noise ratio). The 2D $[^{15}$N,1H] correlation spectra were recorded at $\omega_1 = 2100$ Hz and $\omega_2 = 8400$ Hz. The maximal evolution times were $t_{1\text{max}} = 60$ ms and $t_{2\text{max}} = 240$ ms and the time domain data size was 256 x 2048. Programs PROSA (Guntert et al., 1992) and CARA (Keller, 2004) were used for data processing and spectral analysis, respectively.

3.9 Bioinformatics and figure representation

Plasmids, genes and proteins were analyzed and archived in Vector NTI version 8. Pair wise and multiple sequence alignments were performed using CLUSTALW (Thompson, 1994). Figures for protein representations were prepared using PYMOL (http://pymol.org).
3.10 Molecular orbital diagram

A molecular orbital diagram (MO diagram) is a qualitative descriptive tool explaining chemical bonding in molecules. Accordingly atomic orbitals (AO) and/or molecular orbitals (MO) are combined using the linear combination of atomic orbitals (molecular orbital) method (LCAO method). The simplest case displays the σ-bound of two H-atoms (Figure 12). Combination of both AO yield an occupied binding σ-MO (lower energy) and an unoccupied anti-binding σ^*-MO. In a corresponding more complex “hybrid MO” the corresponding MOs can also be combined (Riedel & Janiak, 2002).

Figure 12: Energy diagram of the H_2 molecule. LCAO of two 1s-orbitals of H-atoms results in a binding and anti-binding MO. At the ground state both electrons pair in the binding σ-MO according to a σ-bound.
4 Results

4.1 The type III secretion recognition protein YscU

4.1.1 Design of the YscUC construct

Initially, a suitable cytoplasmic YscU construct and the corresponding expression vector had to be designed for recombinant expression of YscU in \textit{E.coli} cells. As YscU from \textit{Yersinia enterocolitica} (Swiss-Prot. accession number Q56844) consists of an N-terminal trans-membrane and a C-terminal cytoplasmic domain (Sorg \textit{et al.}, 2007), a prediction of the domain borders was made by using the topology prediction server PHOBIUS (Kall \textit{et al.}, 2004).

![Figure 13: Topology and trans-membrane plot of YscU. The plot shows the probabilities of cytoplasmic (black) and TM helix (red) regions of YscU amino acid residues.](image)

The plot (Figure 13) shows four transmembrane helices in the N-terminal domain. The domain ends roughly at amino acid 208. Amino acids 211-354 were chosen to obtain a construct containing just YscUC. The corresponding \textit{yscU}C gene was cloned into a pGEX-6P-1 vector using \textit{BamH}I and \textit{Ava}I restriction sites. Gene expression yields a GST-YscUC fusion protein, which is cleavable by the PreScission protease. For further experiments several variants of YscUC were generated by using site-directed mutagenesis.
4.1.2 Preparation of YscUC

For wild type YscUC and all YscUC variants a protein preparation scheme (Figure 14) was established to obtain sufficient amounts of pure protein. The protein preparation scheme is shown exemplarily for the wild type protein.

![Protein preparation scheme for YscUC and its variants.](image)

After cultivation and cell lysis of GST-YscUC producing \textit{E. coli} cells (see Chapter 3.3.1), the soluble supernatant was applied to glutathione sepharose for initial purification (Figure 15). GST-YscUC bound to the sepharose matrix, whereas unbound protein was removed by three washing steps. The GST fusion tag was cleaved off by adding PreScission protease and remained on the sepharose matrix, while YscUC had been eluted. The SDS-PAGE shows YscUC as a double band (10.5 and 6.7 kDa) due to its autocleavage activity. Subsequently, YscUC containing fractions were dialyzed against IEC-buffer A to remove salt excess.

The second purification step involved a cation exchange chromatography (MonoS 10/100 column). Therefore, runs were optimized to two linear step gradients: 1st 0-30 % IEC buffer B in 3 column volumes and 2nd 30-100% IEC buffer B in 1 column volume. After all protein solution had been applied to the column, YscUC was eluted (Figure 16) as a concentrated single peak in the first gradient at \(~19\%\) IEC buffer B (\(~20\) mS/cm).
RESULTS

Figure 15: SDS-gel of the GST affinity chromatography of YscU^C. Autocleavage cleave YscU^C into a 6.7 kDa N-terminal fragment and a 10.5 kDa C-terminal fragment.

Figure 16: IEC elution profile (A) and corresponding SDS-gel (B) for YscU^C. Pooled YscU^C fractions are depicted as a red bar in the elution profile.

As a final purification step gel permeation chromatography was performed using a Superdex 75 16/60 prep grade column (GE Healthcare). The elution profile (Figure 17) shows a single peak at 71.5 mL. However, the peak is not fully symmetrical and shows a small tailing preceding the main peak. Sometimes the tailing also results in a
small additional peak containing YscU^C_. The YscU^C_ elution volume corresponds to a mass of approximately 28 kDa compared to a calibration curve (Figure 18). A subsequently performed DLS experiment showed a mono-disperse sample with a hydrodynamic radius of 2.36 nm (15.7 % polydispersity) and a calculated mass of 25.1 kDa for YscU^C_. As both methods are based on the assumption of a globular shaped protein, the obtained masses are generally too high and therefore a monomer for YscU^C_ is assumed. After validation of each fraction by SDS-PAGE, pure peak fractions were pooled and concentrated. For future experiments the protein was stored at -20 °C and aliquoted in vials containing 100 µL protein solution in GPC buffer at a concentration of 10-20 mg/mL.

![Figure 17: GPC elution profile (A) and corresponding SDS-gel (B) for YscU^C_. Pooled YscU^C_ fractions are depicted as a red bar in the elution profile. The calculated mass of YscU^C_ from a GPC run is approximately 28 kDa.](image-url)
In summary, wild type YscUC and its variants were obtained in high purity and yield about 10-15 mg per L cell culture. However, SeMet – and 15N-labelled YscUC variants yielded only 3-5 mg/mL, due to the use of minimal medium. Successful SeMet incorporation was proven by mass spectroscopy (Figure 19). Each variant was checked for degradation, aggregation and freezing problems using DLS and SDS-PAGE. All variants turned out to be stable even after long term storage.
Figure 19: MALDI-TOF-MS spectrum of purified SeMet YscU^C N263A variant. [M+H] indicates the singly charged species, [M+2H] the doubly charged ion. The calculated molecular mass of fully SeMet-labeled YscU^C N263A is 17,378 kDa. The molecular mass also includes the N-terminal amino acids GPLGS that are remained on the protein after PreScission cleavage.

4.1.3 Crystallization of YscU^C

Despite intensive screening using a variety of different protein concentrations, temperatures and additives, no crystals could be obtained for wild type YscU^C. In contrast the YscU^C N263A variant readily crystallized at 20 °C from a crystallization solution containing 1.6 M (NH₄)₂SO₄, 0.2 M NaCl and 0.1 M Hepes (pH 7.5). The octahedral shaped crystals (Figure 20) grew within 4 days. Optimization by varying the pH and the (NH₄)₂SO₄ concentrations yielded in larger crystals with sizes up to 450 µm x 450 µm x 800 µm. Under the same crystallization conditions crystals with the same habitus were obtained from the variants YscU^C N263D and SeMet labelled YscU^C N263A (Figure 20). All crystals were transferred into cryo-buffer containing reservoir buffer with 16 % (v/v) glycerol as cryo-protectant and flash-frozen at 100 K in liquid nitrogen.
4.1.4 Data collection and space group determination

Data collection for X-ray data sets of YscUC N263D and SeMet labelled YscUC N263A were performed at the ESRF beamline ID29 (Grenoble, France) and at the wavelength tuneable beamline X12 at the EMBL Outstation (Hamburg, Germany), respectively. For all isomorphous crystals a tetragonal symmetry with unit cell dimensions of $a = b = 66.2$ Å and $c = 68.1$ Å was determined. Analysis of systematic absence revealed missing reflections for the following conditions: along the crystallographic l axis with $l=4n$ (00l, n=integer) and the h axis with $h=2n$ ($h00$, n=integer). This indicated two possible enantiomorphous space groups: $P4_{1}2_{1}2_{1}$ or $P4_{3}2_{1}2$. Matthews probability analysis (Kantardjieff & Rupp, 2003; Matthews, 1968) revealed a packing parameter $V_M = 2.17$ Å³/Da and a solvent content of 45%. As only one molecule per asymmetric unit was estimated for unit cell content, an analysis for non crystallographic symmetries was not necessary. However, a self rotation function (Tong & Rossmann, 1997) was calculated (data not shown) and the data confirmed the Laue crystal class of 4/mmm. Data collection statistics are summarized in Table 7 at the end of the Chapter 4.1.6.

4.1.5 Fluorescence scan for MAD phasing

As there was no appropriate protein model available for Molecular Replacement, phasing was achieved using anomalous dispersion at multiple wavelengths (MAD-phasing). For this reason SeMet labelled YscUC N263A crystals were analyzed using
a fluorescence scan (Figure 21). The fluorescence spectrum near the selenium K-edge revealed a protein specific absorption curve as a function of energy. The specific absorption edge provides the necessary information for finding f'' and f' and in turn the appropriate wavelength for measuring anomalous diffraction data. A standard fluorescence scan was performed between 12668 eV and 12728 eV and the following wavelengths were chosen for anomalous data set collection: 0.97853 Å (peak), 0.97892 Å (inflection point), 0.95369 Å (high energy remote) and 1.0000 Å (low energy remote). f'' and f' were calculated (Figure 22) from the fluorescence scan using the program CHOOCH (Evans & Pettifer, 2001).

![Fluorescence Scan](image)

Figure 21: X-ray fluorescence scan for SeMet labelled YscU^C N263A. The scan was performed at the K absorption edge of selenium. The chosen wavelengths for MAD data collection are shown in the figure.
4.1.6 Structure determination of YscUC

Structure determination of YscUC N263A

The solution of the selenium substructure, density modification and partial model building were done with the automated crystal structure determination platform: Auto-Rickshaw (Panjikar \textit{et al.}, 2005) at the EMBL-Hamburg outstation. The system combines several macromolecular computer programs from the CCP4 suite (Collaborative Computational Project, Number 4, 1994) into an automated software pipeline solving macromolecular structures. Therefore, the platform allows for rapid analysis of structure solution and validation already at the synchrotron beamline. However, the process has to be carefully checked at different stages based on the

Figure 22: Plot of the YscUC N263A specific scattering factors \(f''\) and \(f'\) as a function of the X-ray energy. Specific values of \(f''\) and \(f'\) at the inflection point and the peak are depicted in red and blue, respectively. The curves were calculated from the fluorescence scan using the program CHOOCH (Evans & Pettifer, 2001).
obtained output. The obtained initial electron density map revealed the positions of the selenium sites (Figure 23). The two, out of the four expected selenium, sites were sufficient to solve the structure. The resulting electron density was of sufficient quality to allow construction of an initial model using the program Arp/wARP (Morris et al., 2003). In iterative cycles model building was carried out manually using COOT (Emsley & Cowtan, 2004) and refinement was completed using REFMAC5 (Murshudov et al., 1997).

Figure 23: Initial electron density map of SeMet YscUC N263A after density modification. The map is drawn at a contour level of 1.5 \(\sigma \). The two detected selenium atom are depicted as orange spheres (A and B).

Structure determination of YscUC N263D

Using the program PHASER (McCoy et al., 2005) and the refined structure of SeMet labelled YscUC N263A as a phasing model, the structure of YscUC N263D was solved using the difference Fourier technique. Final model building was performed manually using COOT (Emsley & Cowtan, 2004) and refinement was completed using REFMAC5 (Murshudov et al., 1997).
Table 7: Data collection and refinement statistics.

<table>
<thead>
<tr>
<th>Data sets</th>
<th>Peak</th>
<th>Inflection</th>
<th>High-energy remote</th>
<th>Low-energy remote</th>
<th>YscU<$sup>2$ N263D</th>
</tr>
</thead>
<tbody>
<tr>
<td>SeMet-labeled YscU<$sup>2$ N263A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Data collection statistics

<table>
<thead>
<tr>
<th>Beamline</th>
<th>DESY X12</th>
<th>DESY X12</th>
<th>DESY X12</th>
<th>DESY X12</th>
<th>ESRF ID29</th>
</tr>
</thead>
<tbody>
<tr>
<td>Space group</td>
<td>P4$_3$2$_1$</td>
<td>P4$_3$2$_1$</td>
<td>P4$_3$2$_1$</td>
<td>P4$_3$2$_1$</td>
<td>P4$_3$2$_1$</td>
</tr>
<tr>
<td>Unit cell dimensions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a (Å)</td>
<td>66.2</td>
<td>66.2</td>
<td>66.2</td>
<td>66.3</td>
<td>66.5</td>
</tr>
<tr>
<td>c (Å)</td>
<td>68.1</td>
<td>68.1</td>
<td>68.1</td>
<td>68.8</td>
<td>68.1</td>
</tr>
<tr>
<td>Wavelength (Å)</td>
<td>0.97854</td>
<td>0.97893</td>
<td>0.95370</td>
<td>1.0000</td>
<td>0.9500</td>
</tr>
<tr>
<td>Resolution (Å)</td>
<td>30.0-2.33</td>
<td>(2.41-2.33)</td>
<td>40.0-2.33</td>
<td>(2.41-2.33)</td>
<td>30.0-2.0</td>
</tr>
<tr>
<td>Mosaicity (°)</td>
<td>0.80</td>
<td>0.98</td>
<td>0.89</td>
<td>0.95</td>
<td>0.24</td>
</tr>
<tr>
<td>Unique reflections</td>
<td>6910 (670)</td>
<td>6907 (663)</td>
<td>6920 (667)</td>
<td>10836 (1517)</td>
<td>21871 (3232)</td>
</tr>
<tr>
<td>Completeness (%)</td>
<td>100 (99.9)</td>
<td>100 (100)</td>
<td>100 (100)</td>
<td>100 (100)</td>
<td>96.7 (99.9)</td>
</tr>
<tr>
<td>Multiplicity</td>
<td>13.6 (12.0)</td>
<td>13.6 (12.6)</td>
<td>13.8 (13.3)</td>
<td>13.6 (13.6)</td>
<td>3.1 (3.1)</td>
</tr>
<tr>
<td>I/σI</td>
<td>31.7 (8.2)</td>
<td>34.3 (8.8)</td>
<td>34.0 (9.5)</td>
<td>8.1 (2.2)</td>
<td>8.4 (4.8)</td>
</tr>
<tr>
<td>R_{merge} (%)</td>
<td>8.2 (31.5)</td>
<td>7.7 (29.8)</td>
<td>7.8 (31.0)</td>
<td>6.9 (35.2)</td>
<td>5.2 (15.1)</td>
</tr>
<tr>
<td>Wilson B-factor (Å2)</td>
<td>39</td>
<td>39</td>
<td>38</td>
<td>25</td>
<td>19</td>
</tr>
<tr>
<td>Solvent content (%)</td>
<td>45</td>
<td>45</td>
<td>45</td>
<td>45</td>
<td>45</td>
</tr>
</tbody>
</table>

Refinement statistics

	R$_{cryst}$ (%)	R$_{free}$ (%)
	22.1	20.0
	25.2	22.2
Number of atoms		
Protein	1021	1104
Solvent	56	135
Cl$^{-}$	1	1
r.m.s.d. from ideal		
Bond lengths (Å) /	0.015	0.013
Bond angles (°)	1.701	1.502
Ramachandran plot regions		
Favoured (%)	95.3	96.4
Allowed (%)	4.7	3.6
Average B-factor		
Protein (Å2)	29.7	20.2
Solvent (Å2)	35.5	33.9
Cl$^{-}$ (Å2)	27.0	21.9

Values in parentheses refer to shell of highest resolution. R_{free} test set size for YscU N263A 5% and for YscU N263D 3%.
4.1.7 Validation of the YscUC structures

The final refinement statistic is given in Table 7. The quality of both protein models was checked regularly during refinement on the basis of the R\textsubscript{cryst}/R\textsubscript{free}-values and geometric parameters during refinement. Both structures were refined to R\textsubscript{cryst}/R\textsubscript{free}-values of 22.1/25.3 \% for SeMet YscUC N263A and 20.1/22.5 \% for YscUC N263D, respectively. The protomers, present in the asymmetric unit cell together with solvent molecules, were well defined for the amino acid residues 222-342 in SeMet YscUC N263A and for amino acid residues 222-343 in YscUC N263D. The remaining N- and C-terminal amino acids were not traceable in the electron density map and probably flexible.

Bond lengths and bond angles showed no significant deviations from standard structures (Engh & Huber, 1991). Validation of the torsion angles and an all-atom contact analysis were carried out using the programs RAMPAGE (Lovell \textit{et al}., 2003) and MOLPROBITY (Davis \textit{et al}., 2007). In both structure all residues grouped in the most favoured or allowed regions of the Ramachandran plot (Figure 24).

![Ramachandran plot of SeMet YscUC N263A and YscUC N263D](image)

\textit{Figure 24:} Ramachandran plot of SeMet YscUC N263A and YscUC N263D. Favoured and allowed regions are coloured dark and light, respectively. Forbidden regions are shown in white. The plot was obtained using the RAMPAGE (Lovell \textit{et al}., 2003) server.
Good agreement of protein model and its electron density was indicated by the real-space correlation coefficient (Rupp, 2006), which was calculated using the program OVERLAPMAP (CCP4 suite, 1994). In Figure 25 the main chain coefficients were well defined for SeMet YscU^C N263A, whereas the coefficients for YscU^C N263D are generally weaker, especially at the N- and C-terminus, the loop connecting β strands 2 and 3 and the loop connecting α-helix 2 and β strand 4. These weak coefficients are most likely a consequence of the rather harsh geometric restraints applied during refinement at high resolution. The B-factor analysis is also given in Figure 25 and agrees well with the correlation coefficient. As expected, higher B-factors are observed at the loop regions and at the termini.

Figure 25: Plot of main chain residuals of B-factors and real-space coefficient correlation. SeMet YscU^C N263A and YscU^C N263D are depicted in black and red, respectively. B-factor values are drawn as a full line and the real-space correlation coefficient is drawn as a dashed line. Secondary structure elements of SeMet YscU^C N263A are drawn at the bottom.
4.1.8 Crystal structure of uncleaved YscUC

The globular domain of uncleaved YscUC (Figure 26) consists of a central, five-stranded, mixed β-sheet (I-V), surrounded by four α-helices (1-4). α-helix 3 is almost perpendicular to the strand orientation of the central β-sheet. The NPTH-cleavage motif forms a type II β-turn connecting β-strands I and II with position 263 located at the C-terminal end of β-strand I.

The globular autocleavage domain is preceded by an extended N-terminal loop containing a well defined α-helix (α0) comprising residues 232-244. This helix forms an antiparallel interaction with helix 4 of a symmetry-related YscUC monomer in the crystal (see next Chapter).

Figure 26: Ribbon plot of the monomer of YscUC N263A. The position of the mutation in the cleavage site is indicated by a red star (*). After cleavage YscUC is divided into an N-terminal and a C-terminal half, shown in brown and green, respectively. The modified NPTH motif, as well as Arg314 and Arg296, are depicted as ball-and-stick models.
4.1.9 Linker α-helix 0 is pinched due to crystal contacts

The crystal structure packing for uncleaved YscUC was analysed using the PISA server (Protein interfaces, surfaces and assemblies service, (Krissinel & Henrick, 2007)). The result shows two large and tight crystal interfaces I and II (823 and 719 Å2) and one small (227 Å2) crystal interface III (Table 8). A detailed analysis of the interfaces (Figure 27) reveals strong interactions between α-helix 0 and α-helix 4 in interface II and between the NPTH motif plus a loop, connecting α-helix 2 and β-strand 3, in interface I. Obviously crystal contacts restricted the conformational freedom of α-helix 0 resulting in a well ordered and defined N-terminal part. In structure homologues of YscUC the linker region is probably flexible and thus the linker domain is traceable in the electron density. The NPTH loop is involved in the crystal interfaces I and III, explaining why crystallization of cleaved, wild type YscUC was not possible in this space group.

<table>
<thead>
<tr>
<th>Name</th>
<th>Symmetry operation</th>
<th>Surface area [Å2]</th>
<th>Interacting residues</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>-y, -x, -z+1/2</td>
<td>823</td>
<td>232-233, 236-237,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>239-240, 264-267,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>286, 288-291, 293,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>314, 317-319</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>239-240, 264-267,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>286, 288-291, 293,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>314, 317-319</td>
</tr>
<tr>
<td>II</td>
<td>-y+1/2, x-1/2, z-1/4</td>
<td>719</td>
<td>224-228, 273, 275-276, 278-281, 325-326, 328, 331-332, 334-335, 338-339, 342</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>222-223, 226, 229-231, 233-234, 237-240, 244-247</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>222-223, 226, 229-231, 233-234, 237-240, 244-247</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>222-223, 226, 229-231, 233-234, 237-240, 244-247</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>222-223, 226, 229-231, 233-234, 237-240, 244-247</td>
</tr>
<tr>
<td>III</td>
<td>x-1/2, -y-1/2, -z+1/4</td>
<td>227</td>
<td>265, 290, 293-294,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>296-297</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>227-228, 328-329,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>331</td>
</tr>
</tbody>
</table>
Figure 27: Ribbon plot of the crystallization interfaces between YscU-C monomers. Residues involved in interface interaction are drawn in red. The symmetry mate building (A) interface I is brown, - (B) interface II is blue and - (C) interface III is purple.
4.1.10 Structural basis for autocleavage of YscU

Close inspection of the modified NPTH motif in isosteric variant YscUC N263D (DPTH, Figure 28 A) shows that the main-chain carbonyl of Asp263 is tightly locked into position via hydrogen bonds to the backbone nitrogen atoms of His266 and Ile267. This structural stiffness is enhanced by the peptide bond with Pro264. All main-chain dihedral angles of the DPTH residues fall in the allowed regions of the Ramachandran plot, indicating no obvious conformational strain of main-chain atoms. A salt bridge with the guanidinium group of Arg314 positions the side chain of Asp263 above its main-chain carbonyl group.

The ideal entry angle for a nucleophilic attack of a carbonyl group has been proposed to lie between 100° and 110°, and a distance between nucleophile and electrophile of 2.5 Å. (Bürgi, 1974; Bürgi, 1973) The corresponding angle of the YscUC N263D variant is 109° with an N-C distance of 2.8 Å. The β-amide nitrogen of Asn263 would therefore be ideally positioned for a nucleophilic attack. Furthermore this geometric arrangement favours a stabilizing orbital overlap (Figure 28 B), where the anti-binding σ* -molecular orbital (MO; see Chapter 3.10) of the C\textsubscript{α}Asn- N\textsubscript{Asn} bond interferes with the nascent binding σ-MO of the C(=O)-N-bond in native YscU. This entails a lowering of the activation energy that has to be applied for a new bond formation.
Figure 28: (A) Stereoview of the modified NPTH motif of YscU^C N263D. The C-terminal and N-terminal halves are shown in brown and green respectively. The isosteric Asp263 is optimally positioned (109°) for a nucleophilic attack, as indicated by the red dashed line. Hydrogen bonds are indicated by black dashed lines. The (2F_o-F_c,αC) electron density map of the cleavage site is depicted at a contour level of 1.5 σ.

(B) Orbital-model illustrating the stabilizing-orbital overlap (circle). The anti-bonding σ* molecular orbital (MO) of the Cα-N bond in Asn263 (blue) interferes with the nascent bonding σ-MO of the C(=O) N-bond (red).
4.1.11 Cleavage does not affect the overall structure of wild-type YscU^C

Recombinantly produced wild-type YscU^C is readily cleaved into a ~6.3 kDa N-terminal (α-helices 0-1 and β-strand I) and a ~10.5 kDa C-terminal (α-helices 2-4 and β-strands II-V) fragment. The fragments, remain tightly linked, however, (Lavander <i>et al.</i>, 2002) resulting in a single peak in gel-filtration chromatography (see Chapter 4.1.2). Cleavage of the wild-type protein thus does not cause significant overall structural rearrangements compared to the uncleaved YscU^C variants. This was confirmed by 2D-NMR ([¹⁵N,¹H]-HMQC) spectroscopy by comparing ¹⁵N-labelled wild-type and N263A YscU^C (Figure 29). Overall, wild-type YscU^C shows a good dispersion of the signals, characteristic for a folded globular conformation (Wüthrich, 1986). An equally good dispersion of the signals is observed for N263A YscU^C. The NMR-spectra of wild-type and N263A YscU^C superimpose very well, with most peak positions being virtually identical and line-widths apparently unaffected. Cleaved and uncleaved YscU thus share the same overall structure with minor, but physiologically highly relevant, changes in and close to the NPTH motif.
4.1.12 The role of conserved amino acids in YscU^C cleavage in vitro

Substituting the nucleophile Asn263 by alanine, aspartate and glutamine abolished autocleavage of YscU. While Asn263 is thus essential for YscU-autocleavage, the role of surrounding residues is less clear. A systematic mutational analysis of the NPTH motif revealed an active participation of Pro264 and His266 in YscU autocleavage (Figure 30 A and B), whereas Thr265 is not involved (Sorg et al., 2007). Substitution of Pro264 by alanine reduced cleavage of YscU^C significantly, whereas substitution by glycine prevents cleavage altogether. Variant H266A showed a partial cleavage of YscU^C. The structure of YscU^C showed that two arginine residues (Arg296 and 314) flank the NPTH motif. Of these, Arg314 is highly conserved, while Arg296 is less conserved. Substituting Arg314 by alanine correspondingly reduced...
RESULTS

Cleavage partly whereas cleavage of variant R296A was unaffected. Interestingly, cleavage was entirely abrogated in the double variant H266A/R314A, suggesting a synergistic involvement of these residues in the mechanism of cleavage.

Figure 30: Autocleavage of different YscU variants expressed in E.coli. (A) Coomassie-stained 15% SDS-PAGE analysis of cells producing various YscU variants. (B) Overexpressed cells analyzed by immunoblotting using an anti-YscU antibody. (C) pH-dependent cleavage of YscU-variants. SDS-PAGE analysis of purified YscU-variants incubated at different pH-values.
4.1.13 Cleavage of some autocleavage-deficient YscUC mutants is partially restored at high pH

Autocleavage of the slow-cleaving variant P270A of the flagellar protein FlhBC (a homologue of YscUC) has previously been reported to be pH-dependent (Ferris et al., 2005). YscUC variants N263D, P264G, P264A and H266A/R314A were therefore analysed at pH 9, 10 and 11 (Figure 30 C). In variant N263D, no cleavage was observed at higher pH-values, whereas P264G, P264A and H266A/R314A were partially cleaved only at elevated pH. These observations match the published data on FlhB P270A (Ferris et al., 2005), suggesting that the nucleophile Asn263 needs to be activated by deprotonation of its side chain amide group.

![Figure 31 Analysis of LcrV secretion by different yscU mutants](image)

Figure 31 Analysis of LcrV secretion by different yscU mutants. Total cell (TC) and supernatant (SN) fractions of corresponding in trans complemented *Yersinia* ΔyscU mutant bacteria analyzed by immunoblot with anti-LcrV antibodies.

4.1.14 YscU mutants that are not cleaved *in vitro* do not export the LcrV translocator

Next, the export of the LcrV protein in the corresponding *Yersinia* mutant strains was investigated. Secretion was not affected for wild-type YscU and the variants H266A, R314A and R296A, but is lost in variants N263A, N263D, N263Q, P264A, P264G, and H266A/R314A, as confirmed by an immunoblot of the supernatant (Figure 31). The LcrV secretion pattern is in excellent agreement with the data described above for *in vitro* autocleavage.
4.1.15 The T3SS injectisome needle length is influenced strongly by YscU mutations

The influence of the YscU modifications on needle length was investigated by measuring needles from *Y. enterocolitica* ΔyscU mutant bacteria expressing the respective mutants *in trans*. Bacteria expressing wild-type *yscU* produced regulated needles of 69±10 nm. Similar needle lengths were measured for the YscU variants H266A (67±9nm), R314A (72±12nm), and R296A (76±11nm). In contrast, the length of needles in YscU variants N263A (125±40nm), N263D (143±51nm), P264A (112±42nm), and P264G (114±30nm) was increased and less regulated. Interestingly, YscU variants N263Q (80±16nm) and H266A/R314A (77±15nm) were regulated with a length distribution slightly larger than that of wild-type YscU (Figure 32).

Figure 32: Needle length measurements of yscU mutant bacteria expressing the corresponding *yscU* alleles in trans from the pBAD promoter. Indicated are the median, the standard deviation (sd), and the number of needles measured (N).
4.2 The type III secretion apparatus protein YscV

All work in this thesis concerning the T3S apparatus protein YscV (formally called LcrD) was undertaken using the natural variant YscV R619G (wild type Swiss-Prot Accession number P0C2V3). Hence in this thesis the natural variant YscV R619G is regarded as “wild type”.

4.2.1 Design of the YscVC construct

Similar to YscU the T3S apparatus protein YscV can be divided into an N-terminal trans-membrane domain and a cytoplasmic C-terminal domain. An investigation of its primary sequence should reveal the potential domain borders suitable for creating an \textit{E. coli} expression construct of the cytoplasmic domain. The analysis of the PHOBIUS plot (Figure 33) revealed six trans-membrane helices within the first 315 amino acid residues. A sharp increase in cytoplasmic probability at amino acid residue 322 indicates the start of the cytoplasmic domain. Therefore, the yscVC gene (aa 322-704) was cloned into a pGEX-6P-1 vector using \textit{EcoRI} and \textit{Aval} restriction sites. Gene expression results in a GST-YscVC fusion protein, which is cleavable by the PreScission protease. For further experiments several variants of YscVC were produced using site-directed mutagenesis.

![Figure 33: Topology and transmembrane plot of YscV. The plot shows the posterior probabilities of cytoplasmic (black) and TM helix (red) regions of YscV.](image-url)
4.2.2 Preparation of YscV^C

A protein preparation scheme for YscV^C and its variants was established producing sufficient amounts of pure protein for further experiments. The following preparation scheme (Figure 34) was used for all YscV^C proteins.

```
Cultivation of E.coli Tuner (DE3) cells

Cell lysis via homogenizing

GST-affinity-chromatography and PreScission protease cleavage

Ion exchange chromatography with MonoQ

Concentration and storage at -20 °C
```

Figure 34: Protein preparation scheme for YscV^C and its variants.

Similarity to YscU^C GST-YscV^C was produced recombinantly in E. coli Tuner DE3 cells (see Chapter 3.3.1). After cell lysis supernatant was applied to glutathione sepharose for initial purification. Unbound protein was removed within three washing steps and GST-YscV^C was eluted with reduced glutathione in four steps (Figure 35). The GST fusion tag was cleaved off by adding PreScission protease. Cleavage was terminated by adding a protease inhibitor mix and subsequently applied to anion exchange chromatography. YscV^C was eluted in a single peak within a linear gradient (0.1 M -1 M NaCl) at 35 % ion exchange buffer B (Figure 36). The GST fusion protein was detected in the flow-through fractions and in a small peak prior to YscV^C main peak. Only weak upper bands were observed for the YscV^C containing fractions on the SDS-gel (Figure 36). Mass spectrometric analysis of the first upper band revealed that contamination is caused by the presence of the chaperone GroEL bound to YscV^C.

As the amount of contamination was minimal, the main peak fractions of YscV^C were pooled and concentrated to 10-15 mg/mL. Finally, about 5-10 mg protein was obtained from 1 L cell culture. A ThermoFluor assay (see Chapter 3.4.8) for YscV^C
RESULTS 70

revealed stabilizing conditions for YscV^C at 0.1 M Tris pH 8.1 and 100-200 mM NaCl (not shown). Therefore, protein solutions were dialysed against IEC buffer A and concentrated prior to crystallization.

![Figure 35: SDS-gel of the affinity chromatography of YscV^C](image)

Figure 35: SDS-gel of the affinity chromatography of YscV^C.

![Figure 36: IEC elution profile (A) and corresponding SDS-gel (B) for YscV^C](image)

Figure 36: IEC elution profile (A) and corresponding SDS-gel (B) for YscV^C. Pooled fractions of YscV^C are depicted as a red bar in the elution profile.
4.2.3 Oligomerisation state of YscV^C is ambiguous

In order to get information on the oligomerisation state, YscV^C was analyzed by dynamic light scattering. To remove aggregated protein and dust particles samples were filtered and centrifuged prior to measurement. As YscV^C contains two cysteine residues, a second sample under reducing conditions (10 mM DTT) was also prepared. Table 9 shows a summary of the results obtained. Under both conditions the analysis revealed small amounts (up to 10 %) of aggregation, but the main peaks show an equal hydrodynamic radius indicating the absence of disulfide bonds. Assuming a globular shape of the protein, a potential molecular weight was calculated of about 116 kDa (YscV^C: ~ 44 kDa). Due to the low sensitivity of this method, YscV^C could therefore be a dimer or a trimer in solution.

To exclude any influence of the cysteine residues and to confirm the DLS results a test with Ellman’s reagent was performed (see Chapter 3.4.5). The negative test ($A_{412} = 0.181$) compared with YscV^C ($A_{412} = 0.196$) revealed only little increase of absorption, probably caused by the protein solution itself. This negative result confirms that both cysteine residues are not oxidized.

Table 9: Results of dynamic light scattering measurements.

<table>
<thead>
<tr>
<th>Name</th>
<th>R_{hyd} [nm]</th>
<th>Polydispersity [%]</th>
<th>MW [kDa]</th>
<th>Mass [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>YscV<sup>C</sup> under oxidative conditions</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>peak 1</td>
<td>4.6</td>
<td>3.1</td>
<td>119</td>
<td>94.0</td>
</tr>
<tr>
<td>peak 2</td>
<td>21.3</td>
<td>5.7</td>
<td>4339</td>
<td>5.3</td>
</tr>
<tr>
<td>YscV<sup>C</sup> under reductive conditions</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>peak 1</td>
<td>4.5</td>
<td>5.9</td>
<td>113</td>
<td>89.5</td>
</tr>
<tr>
<td>peak 2</td>
<td>17.2</td>
<td>9.4</td>
<td>2621</td>
<td>8.0</td>
</tr>
</tbody>
</table>

For further investigation of the oligomerisation state an analytical GPC run was performed (oxidizing conditions) using a Superdex S200 16/60 prep grade column. However, the elution profile shows multiple peaks containing YscV^C (Figure 37). The asymmetric peak (~ 48-60 mL) that is located close to the void volume indicates aggregated protein, which was also observed in the DLS experiment. The second
broad peak (~ 70 - 96 mL) consists of at least two peaks with the same height, which could probably indicate dynamic changes in the oligomerisation state.

Figure 37: GPC elution profile (A) and corresponding SDS-gel (B) for YscVC.

From the GPC run it was not evident whether YscVC appeared as two distinct species or not. Therefore, an AF4 run with a coupled static light scattering experiment was performed (Figure 38). For this propose, volumes of 1.4 µL and 2.8 µL (7x10-4 g/mol) were injected into the separation channel. In both runs YscVC elutes in a broad peak similar to the GPC run. Analysis of the static light scattering experiment revealed increasing masses with progressing time. In the double concentrated run distinct plateaus are rising up at ~ 100, 126 and 210 kDa, which could be assigned to potential dimers, trimers and tetramers. However, the obtained results are only initial experiments indicating dynamic changes of several oligomerisation states. As YscV is supposed to be single species in the T3S apparatus, oligomerisation could be caused by the missing N-terminal domain. Therefore, further investigations of the oligomerisation state of YscVC were not performed.
4.2.4 Crystallization of YscV^C

Although the dynamic oligomerisation problem could not be resolved, initial screening experiments were performed using a crystallization robot. Drop sizes were set to 300 nL protein solution (10-15 mg/mL) and 300 nL reservoir solution. Screens were stored at 20 °C and controlled daily for protein crystals. After two days a shower of needle shaped crystals (Figure 39) was observed under several conditions (Table 10) containing either (NH₄)₂SO₄ or MPD (2-methyl-2, 4-pentandiol) as precipitation agent. Izit staining of the crystals confirmed the presence of protein in the crystals.
RESULTS

Figure 39: Initial crystals of YscV^C. Grown crystals under (A) NH₄SO₄ (JCSG Core suite III, E1) and (B) MPD (EasyExtal pHClear suite, G2) conditions as precipitation agent. In B crystals are stained with Izit. The scale bar is set to 300 µm.

Table 10: Initial crystallization conditions of YscV^C.

<table>
<thead>
<tr>
<th>Screen</th>
<th>No.</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>EasyExtal AmSO4 suite</td>
<td>G5</td>
<td>0.1 M Tris pH 8.5, 1 M (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub></td>
</tr>
<tr>
<td>EasyExtal AmSO4 suite</td>
<td>G6</td>
<td>0.05 M Sodium citrate, 1.2 M (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub>, 3 % (v/v) 2-propanol</td>
</tr>
<tr>
<td>EasyExtal pHClear suite</td>
<td>G2</td>
<td>0.1 M Sodium acetate pH 5.0, 10 % (v/v) MPD</td>
</tr>
<tr>
<td>EasyExtal pHClear suite</td>
<td>H2</td>
<td>0.1 M Sodium acetate pH 5.0, 40 % (v/v) MPD</td>
</tr>
<tr>
<td>EasyExtal pHClear suite</td>
<td>H8</td>
<td>0.1 M Sodium acetate pH 5.0, 65 % (v/v) MPD</td>
</tr>
<tr>
<td>JCSG Core suite II</td>
<td>C2</td>
<td>0.1 M Hepes pH 7.5, 2 % (v/v) PEG 400, 2 M (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub></td>
</tr>
<tr>
<td>JCSG Core suite III</td>
<td>E1</td>
<td>0.1 M sodium cacodylate pH 6.0, 1.26 M (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub></td>
</tr>
<tr>
<td>JCSG Core suite III</td>
<td>E2</td>
<td>0.01 M CoCl<sub>2</sub>, 0.1 M Mes pH 6.5, 1.8 M (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub></td>
</tr>
<tr>
<td>JCSG Core suite III</td>
<td>E3</td>
<td>0.1 M Mes pH6.5, 10 % (v/v) dioxane, 1.6 M (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub></td>
</tr>
</tbody>
</table>

All crystallization conditions were tested for their reproducibility and crystal optimization was performed to yield crystals suitable for X-ray analysis. However, most of the crystals were difficult to reproduce and optimization for more suitable crystals failed. During the refinement process one condition (0.1 M Tris pH 8.5, 1 M (NH₄)₂SO₄) indicated the best for further refinement. Marcoseeding and additive screening yielded suitable crystals (Figure 40). However, the X-ray diffraction pattern...
(BESSY BL14.1) range was limited to low resolution (R_{max}=~20 Å). In order to get better diffracting crystals co-crystallization of YscVC was tried with its potential binding partner YscUC, but initial screening yielded only crystals of YscVC.

Figure 40: (A) YscVC crystals after macro seeding and (B) corresponding diffraction image. Scale bar is set to 100 Å. The lower resolution ring is set to 12.2 Å.

4.2.5 Limited proteolysis of YscVC created a new crystallization construct

As all crystallization attempts for suitable YscVC crystals failed, limited proteolysis was performed resulting a new crystallization construct. The flagellar protein homolog FlhA from Salmonella typhimurium yielded well diffracting crystals (Saijo-Hamano et al., 2005) after limited proteolysis, as well. Therefore, a similar experiment was performed for YscVC using trypsin, α-chymotrypsin- and endoproteinase GluC. The protein solution (final concentration 0.3 mg/mL) was incubated with the different proteases (1:200, w/w) at room temperature. Samples were collected at defined times and the cleavage reaction was terminated by adding a mixture of SDS-sample buffer and AEBSF (0.1 M; 4-(2-Aminoethyl) benzenesulfonyl fluoride). For storage samples were frozen at -20°C.
Analysis of the limited proteolysis products (Figure 41) revealed an intensive band close to the 35 kDa marker for all three proteases. Using trypsin and α-chymotrypsin the band disappeared after 10 min, whereas with GluC the fragment was stable for over 2 h. Subsequent mass spectrometry analysis of a GluC gel band (10 min) revealed an intact C-terminus and an N-terminal fragment starting at amino acid residue 356. Further N-terminal sequencing analysis of the blotted trypsin digestion revealed the N-terminus starting at amino acid 360.

4.2.6 Protein preparation and crystallization of YscVC_356

As a result of the limited proteolysis experiment, the new construct YscVC_356 was cloned into a pGEX-6P-1 vector. Expression and purification were performed as described in Chapter 4.2.2. Analysis with DLS revealed a large R_{hyd} of 6.3 nm (polydispersity 15.3 %) and a test with Ellmann’s regent showed increasing absorption at 412 nm (negative test: $A_{412} = 0.181$, YscVC_356: $A_{412} = 0.364$) indicating unspecific disulfide bonds. Therefore, a second dynamic light scattering experiment under reducing conditions (10 mM DTT) was performed and revealed a R_{hyd} (3.6 nm, polydispersity 17.8 %) which is the half R_{hyd} under oxidizing conditions. Further
preparations were then performed using 10 mM DTT as reducing agent. An analytical GPC run, which was performed under reducing conditions (10 mM DTT), showed a peak close to the void volume (44.4 mL) and a second one at 53.8 mL (Figure 42). The comparison of the elution volume to the molecular mass calibration curve (Figure 43) indicated a M_r of 480 kDa, which corresponds to a YscVC dodecamer assuming a globular shape.

![Figure 42: (A) GPC elution profil of YscV$^C_{356}$ on a Superdex 200 16/60 column and (B) corresponding SDS gel.](image)

![Figure 43: Calibration curve of Superdex S200 16/60 and linear fit. The calibration run was performed using four different calibration proteins and a flow rate of 0.6 mL/min.](image)
For initial crystallization screening the YscV\(^{C_{356}}\) protein solution was reduced with buffered TCEP (\(tris(2\text{-carboxyethyl})\text{phosphine};\) final concentration 5 mM), as TCEP is more resistant to oxidation in air as other reducing agents. Droplets were used with 200 nL reservoir solution and 200 nL protein solution (24 and 12 mg/mL). After 2 d long needle shaped crystals (Figure 44) were obtained under several conditions (Table 11). X-ray suitable crystals were harvested from their mother liquid (SM I suite B12) and flash frozen in liquid nitrogen, as cryo protection was not necessary. However, X-ray diffraction patterns were not observed at our home-source. A mass spectrometric analysis of dissolved crystals was performed confirming YscV\(^{C_{356}}\) to be present in the crystals (Figure 45). This was achieved by dissolved of crystals (washed before) in a 50 % (v/v) glycerol solution. Due to time constraints further crystal improvement and refinement has not yet been undertaken.

Figure 44: Initial crystals of YscV\(^{C_{356}}\) under reducing conditions. (A) SM I suite, B12; (B) SM I suite C1; (C) JCSG Core suite III, D1. The scale bar is set to 100 \(\mu\text{m}\.\)
Table 11: Initial crystallization conditions for YscV\textsuperscript{C\textsubscript{356}}.

<table>
<thead>
<tr>
<th>Screen</th>
<th>No.</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>SM I suite</td>
<td>B12</td>
<td>0.2 M NaCl; 0.1 M imidazole pH 8.0; 1 M (NH\textsubscript{4})\textsubscript{2}HPO\textsubscript{4}</td>
</tr>
<tr>
<td>SM I suite</td>
<td>C1</td>
<td>0.1 M sodium acetate pH 4.5; 1 M (NH\textsubscript{4})\textsubscript{2}HPO\textsubscript{4}</td>
</tr>
<tr>
<td>SM I suite</td>
<td>G8</td>
<td>0.2 M Li\textsubscript{2}SO\textsubscript{4}·H\textsubscript{2}O; 0.1 M Ches pH 9.5; 1 M K/Na-tartrate*4H\textsubscript{2}O</td>
</tr>
<tr>
<td>SM I suite</td>
<td>G11</td>
<td>0.2 M NaCl; 0.1 M imidazole pH 8.0; 1 M K/Na-tartrate*4H\textsubscript{2}O</td>
</tr>
<tr>
<td>JCSG Core suite III</td>
<td>D1</td>
<td>1 M K/Na-tartrate; 0.2 M NaCl; 0.1 M imidazole pH 8.0</td>
</tr>
<tr>
<td>JCSG Core suite III</td>
<td>E4</td>
<td>1.6 M MgSO\textsubscript{4}; 0.1 M Mes pH 6.5</td>
</tr>
<tr>
<td>JCSG Core suite IV</td>
<td>G2</td>
<td>1 M K/Na-Tartrate; 0.1 M Mes pH 6.5</td>
</tr>
<tr>
<td>JCSG Core suite III</td>
<td>E2</td>
<td>0.01 M CoCl\textsubscript{2}, 0.1 M Mes pH 6.5, 1.8 M (NH\textsubscript{4})\textsubscript{2}SO\textsubscript{4}</td>
</tr>
<tr>
<td>JCSG Core suite III</td>
<td>E3</td>
<td>0.1 M Mes pH 6.5, 10 % (v/v) dioxane, 1.6 M (NH\textsubscript{4})\textsubscript{2}SO\textsubscript{4}</td>
</tr>
</tbody>
</table>

Figure 45: MALDI-TOF-MS spectrum of a dissolved crystal of YscV\textsuperscript{C\textsubscript{356}}. [M+H] indicates the singly-charged species, [M+2H] the doubly-charged ion. The calculated molecular mass of YscV\textsuperscript{C\textsubscript{356}} (including additional amino acid residues that remain on the protein after GST cleavage: GPLGSPEF) is 40,912 kDa.
4.3 Interaction analysis between YscUC and YscVC

Analysis of the flagellar export apparatus proteins FlhA (corresponding to YscV) and FlhB (YscU) revealed interactions for full-length proteins and their cytoplasmic regions (Minamino & MacNab, 2000b; Zhu \textit{et al}., 2002). Further interaction analysis by FRET measurement suggested an interaction for the latter, which is dominated by an electrostatic and/or hydrogen-bonding network (Zhu \textit{et al}., 2002). To analyze the nature of this interaction in the \textit{Yersinia} system, epitope scans were performed between YscUC and YscVC. For this purpose, corresponding 15mer peptides were produced and spotted on a cellulose membrane. The membranes were prepared and incubated with the corresponding proteins and antibodies. Used membranes were recycled for further experiments or evacuated in a shrink wrap film and stored at -20 °C.

In the first analysis round interactions were identified and interaction sites were roughly located. Therefore two membranes were produced with peptide spots containing short sequences of YscUC and YscVC. The peptide spots were arranged as 15mers, which were shifted by three amino acid residues along the amino acid sequence (15/3 scan). To exclude unspecific interaction between peptide spots and GST, a background scan with GST was performed (Figure 46). The YscVC membrane revealed unspecific interactions for five peptide spots, whereas no unspecific interaction was detected for YscUC. All other membranes also showed no unspecific interactions.

![Figure 46: Background scans for YscVC (A) and YscUC (B). Membranes were incubated with GST to detected unspecific interactions. Peptide spots with unspecific interactions are marked by black arrows.](image-url)
Only unspecific background spots and no specific interactions were observed between GST-YscUC and the YscVC peptides (Figure 47 A). However, the YscUC peptides (Figure 47 B), which were incubated with GST-YscVC, revealed interaction spots for peptides 18-21, 24-25, 32-34 and 43. The scan showed interaction spots with weak and stronger intensity providing information about binding affinity between peptide and protein. For precise analysis of the binding sites, areas around intensive spots (18-25 and 31-35) were scanned again using a 15/1 epitope scan. A finer 15/1 scan for peptide 43 was not necessary, as the peptide is located at the C-terminal end of YscUC and the spot before showed no interaction at all. Furthermore, the intensive peptide spots 21, 24, 33 and 43 were analyzed in an alanine epitope scan revealing the binding potential of each amino acid residue between peptide and protein.
Figure 47: 15/3 epitope scans of YscV\(^C\) (A) Unspecific interactions are marked with black arrows. 15/3 epitope scans of YscU\(^C\) (B) and corresponding sequence analysis (C). Interacting peptide sequences are highlighted in red. Peptides used for a 15/1 scan and an alanine scan are indicated with a coloured bar and square, respectively.
RESULTS

Figure 48: 15/1 and Ala-scans of YscU⁰ peptides. Interacting peptide sequences are highlighted in red. Peptides used for a 15/1 scan and an alanine scan are indicated with a coloured bar and square, respectively.

The analysis of the 15/1 epitope scan for peptides 18-25 (first round, light green bar) showed two main interaction areas including peptides 1-10 and 17-21 (Figure 48). Within these areas peptides share two common sequence sites: _271 ILYKRG_276 (1-10) and _281 LVTFTYDAQV_292 (17-21). A further alanine scan analysis (Figure 48 and Figure 49) revealed important binding sequences as _271 ILYKRx_276 (1-10) and _281 LVTFTYxxxx_292 (17-21) within the motifs. The second 15/1 scan for peptides 31-35 (first round, brown bar) showed interactions with peptides 26-34 (Figure 48) with the common sequence site _312 LARALYW_318 and the alanine scan provided _312 LxRx_318 (Figure 49) as important amino acid residues. For the last peptide 43 (orange) only an alanine scan was performed revealing the binding motif _337 VLRWLxR_343 (Figure 49).

<table>
<thead>
<tr>
<th>Peptides 18-25 15/1-scan</th>
<th>Peptides 31-35 15/1-scan</th>
<th>Peptide 21 Ala-scan</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 ANPThIAIGIILYKRG</td>
<td>EGGVFIQLQRIPLARPA</td>
<td>ALYKRGETFPLPLVTF</td>
</tr>
<tr>
<td>NPTHIAIGIILYKRG</td>
<td>EGGVFIQLQRIPLARAL</td>
<td>IAYKRGETFPLPLVTF</td>
</tr>
<tr>
<td>PTHIAIGIILYKRGGET</td>
<td>GVFIQLQRIPLARALY</td>
<td>ILAKRGETFPLPLVTF</td>
</tr>
<tr>
<td>THIAIGIILYKRGETF</td>
<td>VPILQRIPLARALYW</td>
<td>ILYARGETFPLPLVTF</td>
</tr>
<tr>
<td>5 HIAIGIILYKRGETFPL</td>
<td>PILQRIPLARALYWD</td>
<td>ILYKRGETFPLPLVTF</td>
</tr>
<tr>
<td>IAIGIILYKRGETFPL</td>
<td>ILQRIPLARALYWD</td>
<td>ILYKRGETFPLPLVTF</td>
</tr>
<tr>
<td>AIGIILYKRGETFPL</td>
<td>LQRIPLARALYWDAL</td>
<td>ILYKRGETFPLPLVTF</td>
</tr>
<tr>
<td>IGILYKRGETFPLPV</td>
<td>QRIPLARALYWDALV</td>
<td>ILYKRGETFPLPLVTF</td>
</tr>
<tr>
<td>GILYKRGETFPLPV</td>
<td>RIPLARALYWDALVD</td>
<td>ILYKRGETFPLPLVTF</td>
</tr>
<tr>
<td>10 ILYKRGETFPLPLVTF</td>
<td>IPLARALYWDALVDH</td>
<td>ILYKRGETFPLPLVTF</td>
</tr>
<tr>
<td>LKYRGETFPLPLVFK</td>
<td>PLARALYWDALVHD</td>
<td>ILYKRGETFPLPLVTF</td>
</tr>
<tr>
<td>YKRGETFPLPLVFKY</td>
<td>LARALYWDALVHDYI</td>
<td>ILYKRGETFPLPLVTF</td>
</tr>
<tr>
<td>KRGETPLPLVF KT</td>
<td>35 ARALYWDALVHYIP</td>
<td>ILYKRGETFPLPLVTF</td>
</tr>
<tr>
<td>KGGETPLPLVFKT</td>
<td>35 ARALYWDALVHYIP</td>
<td>ILYKRGETFPLPLVTF</td>
</tr>
<tr>
<td>GETPLPLVFK tyta</td>
<td>50 ILYKRGETFPLPLVTA</td>
<td></td>
</tr>
<tr>
<td>ETPLPLVFK tyta QA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TPLPLVFK tyta AQV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PPLPLVFK tyta AQV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SPLVFK tyta AQV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20 LVTFTYDAQVVTQV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VTFK tyta AQV VTK</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Finally, the epitope scan interaction analysis yielded four different peptide interaction sites for GST-YscU\(^C\). Within these sites an alanine scan revealed essential amino acids for binding of peptides. Transfer of the epitope scan results on the structure of YscU\(^C\) are discussed in the next chapter.

Figure 49: Ala-scans of YscU\(^C\) peptides. Interacting peptide sequences are highlighted in red. Alanine exchanged amino acid residues, which showed no interaction, are underlined.
5 Discussion

5.1 YscU - a type III secretion recognition protein

YscU is one of five integral membrane proteins (YscR, -S, -T, -U, -V) building the T3SS export apparatus, which is likely to be located in the inner membrane ring of the basal body (Cornelis, 2006). Its autocleavable cytoplasmic domain plays a critical role in recognition of substrates during the export process (Sorg et al., 2007). To gain structural information about the T3S recognition protein YscU, the autocleaving cytoplasmic domain was intensely analyzed. For this purpose, a preparation scheme for YscUC was established yielding sufficient amounts of protein. Crystal structures of YscUC variants N263A and N263D were determined using multiple anomalous dispersion. The high resolution structure revealed the structural basis of YscUC autocleavage. Additionally, single-residue YscUC variants within the NPTH motif or its immediate vicinity were investigated with respect to their role in cleavage and needle-length control.

5.1.1 YscU is poised for autocatalytic cleavage

The crystal structure of non-cleaving YscUC variant N263D (the asparagine nucleophile is replaced by the isosteric homologue aspartate) suggests that the side-chain of Asn263 is positioned ideally for a nucleophilic attack and subsequent cleavage of wild-type YscUC. In N263D, the attack on its own carbonyl is prevented by the insufficient nucleophilicity of the Asp 263 carboxylate, despite its equivalent position. In N263Q, the nucleophilicity should be similar to that of asparagine. However, the longer and hence more flexible side chain disfavours the formation of a lactam ring in this variant, preventing cleavage of YscUC.

YscUC autocleavage is crucially dependent on the positioning of the attacked carbonyl group of Asn263, which is part of the peptide bond to Pro264. Increasing the flexibility of the main chain correspondingly prevents cleavage in the variants P264A and P264G. As indicated above, cleavage is compromised in variants H266A and R314A, but entirely abrogated in H266A/R314A. Increasing the pH increases
cleavage, suggesting a role for both His266 and Arg314 in efficient autocleavage. By providing of a hydrogen bond, Arg314 most likely serves to optimally position the side chain of Asn263 allowing nucleophilic attack to occur at an angle of 109°. The role of His266 is, however, less clear. It may potentially mediate the abstraction of a proton from Asn263 either directly or by deprotonating bridging water molecule. A similar role has been proposed for a histidine residue during autosplicing of the DnaB mini-intein (Ding et al., 2003). Thr265, as the only not fully conserved amino acid of the NPTH motif, does not appear to be involved directly in the cleavage reaction (Sorg et al., 2007; Zarivach et al., 2008). A preference for β-branched amino acids indicates a role in structurally stabilizing the type II turn (Gunasekaran et al., 1997)

The results are supported by similar structural and functional data reported for the YscU homologues EscU from enteropathogenic E. coli, SpaS from Salmonella typhimurium (Zarivach et al., 2008), Spa40 from Shigella Flexneri (Deane et al., 2008) and YscU from Yersinia pestis (Lountos et al., 2009). The crystal structures of the cleaved wild type EscU, as well as a number of EscU variants, were determined and correlated with in vivo cleavage experiments of full-length EscU (variants). Wild type YscU_pestis, EscU, SpaS and Spa40 reveal unchanged tertiary structures of nicked proteins, concurring with our conclusion based on NMR-analysis of YscU_C wild type and mutant (Figure 50).

The only major differences concern YscU_C variants H266A and R314A and their homologous variants in vivo in full-length EscU. Both YscU_C variants show partial autocleavage in vitro and a wild type-like secretion of LcrV in vivo. EscU variant H265A is found to be fully autocleaved but secretion of T3S substrates is lost (Zarivach et al., 2008). EscU variant R313A, by contrast, remains uncleaved but again T3S substrates secretion is lost (Zarivach et al., 2008). A third EscU variant, R133T, is fully cleaved but retains normal effector secretion (Zarivach et al., 2008). Thus, despite a high level of structural conservation between YscU and EscU, some functional differences between the Yersinia and EPEC T3SS may exist. The in vitro cleavage data on YscU_C His266 variants would presumably implicate His265 in EscU in the asparagine-driven autocleavage reaction.
DISCUSSION

Figure 50: Structural overlay of YscU^{C}N263D (2W0R) and YscU^{C}_pestis (2JLI). The cleaved N’PTH-motif is depicted by an arrow.

Based on structural and functional data the following autocleavage reaction mechanism is proposed (Figure 51). (i) The unique reaction geometry of YscU and its homologues is a prerequisite for the nucleophilic attack. The β-amide nitrogen, activated through proton abstraction by His266 or an intermediate water molecule, is optimally positioned to attack the electrophilic carbonyl carbon at an angle of 109° (108° in EscU). (ii) The tetrahedral reaction intermediate is stabilized by hydrogen bonds to the backbone amides of His266 and Ile267. (iii) Protein cleavage gives rise to a labile succinimide, which is rapidly hydrolysed to yield a new C-terminal asparagine or iso-asparagine.
DISCUSSION

Figure 51: Structure-based model of succinimide-mediated cleavage of YscU. (I) His266 (or a His266-activated water molecule) abstracts a proton from the β-amide nitrogen of Asn262. The latter nucleophilically attacks the Asn262 carbonyl resulting in the rate-limiting tetrahedral intermediate (II). Cleavage of the peptide bond yields a labile C-terminal succinimide (III) which is hydrolysed to asparagine or iso-asparagine.

The structure of YscUC also explains phenotypes of previously reported YscU variants. The strongly reduced export of the presumed inner rod protein YscI (in an yscP\textit{YscU} mutant background) in the YscU variant Y317D implicates Tyr317 in interacting directly with YscI (Wood \textit{et al.}, 2008). Structurally, this strictly conserved residue is fully exposed at the surface of α-helix 3. Presumably, the introduction of a negative charge prevents interaction with YscI explaining the observed phenotype (Zarivach \textit{et al.}, 2008). The YscU variant G270N has been reported to cause the complete loss of T3S and YscU autocleavage (Riordan & Schneewind, 2008). Gly270, in the middle in β-strand II, is fully buried in the hydrophobic core of the domain. Replacing this residue by the significantly bulkier asparagine presumably
compromises folding or structure of the protein, resulting in degradation of this protein and consequently, a non-functional T3SS.

5.1.2 Needle length in a non-cleavable YscU mutant is controlled even without YscP over-expression

In vivo analyses reveal a new phenotype for the YscU variants N263Q and H266A/R314A. These variants do not undergo autocleavage *in vitro*. Corresponding bacterial mutants do not secrete the translocator LcrV that constitute the tip complex thus prevent pore formation. Their needles are, however, of normal size, although significantly less molecular ruler protein YscP is secreted compared to wild type bacteria (data not shown). In the YscU N263A mutant, wild type needle length could be restored only by YscP over-expression implying that YscU autocleavage inhibition diminishes YscP secretion losing control over needle length (Sorg *et al.*, 2007). The phenotype observed here for the variants N263Q and H266A/R314A demonstrates that the loss of autocleavage may indeed affect the secretion of YscP and LcrV without relinquishing control over needle length. The fact that different phenotypes are observed for N263A and N263Q involving the same residue, may indicate that small amounts of YscP are sufficient to determine needle length but that a defined conformation of YscU also contributes.

5.1.3 The flexible linker region is composed of two hinged α-helices

A structural superposition of uncleaved YscU\(^C\) variant N263A with EscU\(^C\) (rmsd 1.3 Å for 94 common C\(\alpha\) atoms), SpaS\(^C\) form *Salmonella typhimurium* (rmsd 1.0 Å for 80 C\(\alpha\) atoms), and Spa40\(^C\) from *Shigella flexneri* (rmsd 1.0 Å for 82 C\(\alpha\) atoms) reveals virtually identical folds for the cytoplasmic core region and the NPTH motifs, despite a low level of overall sequence identity (Figure 52).

An obvious difference between YscU\(^C\) and its homologues EscU\(^C\), SpaS\(^C\) and Spa40\(^C\) involves the proposed flexible linker (211-248) connecting the globular autocleavage domain to the N-terminal membrane-spanning four-helix bundle (Figure
In YscUC, amino acids 232-244 form a well-defined α-helix, which is not observed in the homologues structures except for uncleaved YscUC_{\text{pestis}} (Lountos et al., 2009). In the crystal structure of YscUC, α-helix α0 is involved in a crystal contact to α-helix α4 of the next monomer. One of the crystal forms of EscUC additionally reveals an additionally α-helix (a-1) N-terminal of α0 (Zarivach et al., 2008). The presence of α-helix α0 confirms earlier predictions of the secondary structure for the flagellar protein FlhB (Fraser et al., 2003).

Figure 52: (a) Structure-based sequence alignment of YscUC from Y. enterocolitica (Swiss-Prot accession number Q56844) with FlhBC from S. typhimurium (P40727), EscUC from E. coli (Q7DB59), SpaSC from S. typhimurium (P40702), Spa40C from S. flexneri (Q6XVW1) and HcrUC from X. oryzae (Q5H6T1). The secondary structures are from YscUC N263D. Conserved amino acids are marked in bold letters on coloured backgrounds. Substituted residues in this study are indicated by a yellow background. Less conserved amino acids are also bold and coloured in blue.
(b) **Stereoview** YscU\(^C\) variant N263D (green) superimposed on its wild-type homologues EscU\(^C\) (blue), SpaS\(^C\) (grey) and Spa40\(^C\) (orange). Important positions are marked by a green sphere.

The linker region is essential for T3S (Zarivach *et al.*, 2008). Corresponding deletions 232-236, 234-245 and 230-245 in EscU and the point mutation G235P (S236P in YscU) abolish the export of T3S substrates, despite intact autocleavage. Similar results have been obtained for the FlhB protein (Fraser *et al.*, 2003). Mapping these mutations onto the structure of YscU\(^C\) indicates that each would delete or kink \(\alpha\)-helix \(\alpha_0\), which presumably functions as a spacer element, separating the globular autocleavage domain from the inner membrane. Additionally, the helix could be involved in direct or indirect binding of other components.

Small amino acids such as Gly229 and Gly248 in EscU are assumed to provide flexibility to the linker region (Zarivach *et al.*, 2008). Substituting conserved Gly229 by proline in EscU (G230 in YscU and located N-terminal of \(\alpha\)-helix \(\alpha_0\)) decreases the export of T3S substrates significantly. An equivalent substitution in Gly247 (G248P in YscU and located C-terminal of \(\alpha_0\)) also reduces the export of T3S substrates. Combining the structural information on YscU\(^C\) and EscU\(^C\) with the *in vivo* data suggests that YscU-like proteins are composed of three domains (Figure 55): A membrane-spanning N-terminal domain and a C-terminal, cytoplasmic, globular, autocleavage domain bridged by a flexible linker region that can switch from an extended to a partially \(\alpha\)-helical conformation. This adaptable architecture of the linker allows for sufficient conformational freedom to enable interactions of the autocleavage domain with other components of the T3SS during its assembly.
Figure 53: Model of tripartite domain arrangement of YscU: The N-terminal, membrane-spanning domain is followed by a flexible linker region and a globular autocleavage domain.

5.2 The inner membrane protein YscV

The integral membrane protein YscV (~ 77.8 kDa) is the largest component within the T3S apparatus. It is composed of an N-terminal trans-membrane domain, which is predicted to contain at least six trans-membrane helices, and a ~ 43 kDa C-terminal cytoplasmic domain. For the flagellar homolog protein FlhA interaction has been shown between its cytoplasmic domain and the ATPase complex as well as the cytoplasmic domain of YscU (McMurry et al., 2004; Zhu et al., 2002). Thus, it has been proposed that YscV and YscU together build a platform for docking the ATPase-substrate complex (Minamino et al., 2010).

For structural characterization YscVC was produced as a GST fusion protein and a purification scheme was established yielding sufficient amounts of the cytoplasmic domain. However, the obtained protein was slightly contaminated with GroEL, a
chaperone that is required for proper protein folding. Consequently, it can be assumed that small amounts of YscVC are not well folded. Investigation of the oligomerization state by DLS and analytical GPC revealed a multimeric oligomerisation state that is not induced by disulfide bridges. Further analyses with AF4 and SLS indicate a dynamic oligomerisation (up to tetramers). In contrast to these results the flagellar homolog FlhAC was clearly observed as a monomer (Saijo-Hamano et al., 2004). Besides, it has been proposed that export apparatus proteins have only a low copy number (one or maximal two) (Minamino et al., 2008; Van Arnam et al., 2004). Therefore the high oligomerisation state is probably the consequence of not properly folded protein due to the missing N-terminal part.

Despite the tendency for oligomerisation, screening for YscVC protein crystals revealed several crystallization conditions that contain either MPD or (NH\textsubscript{4})\textsubscript{2}SO\textsubscript{4} as precipitant. However, X-ray suitable crystals showed only diffraction patterns within low resolution range. The obtained spots are narrowly spaced indicating huge cell dimensions and therefore probably less ordered crystals.

Analog to FlhA, a limited proteolysis experiment revealed a shorter N-terminus confirming a linker region between the trans-membrane domain and a compact cytosolic domain (Minamino et al., 2010; Zhu et al., 2002). The resulting truncated variant YscV\textsuperscript{C\textsubscript{356}} has to be treated with reducing agents, as aggregation was observed under oxidizing conditions. YscV\textsuperscript{C\textsubscript{356}} seems to be well folded, as no chaperone contamination was observed. However, not a monomer but a single, highly oligomeric species (~480 kDa) was obtained as analyzed by GPC. Crystallization trials revealed several initial hits containing needle shaped crystals. However, X-ray investigations revealed no X-ray diffraction. Due to time constraints, a detailed crystal refinement could not be performed. But these results provide a good basis for further crystal improvement.
5.3 Interaction analysis between YscUC and YscVC

An interaction between the flagellar cytoplasmic domains of FlhA and FlhB has been shown by affinity blotting and FRET analysis to be dominated by electrostatic and/or hydrogen-bonding within the potential interaction site (Zhu et al., 2002). In order to characterize the interaction between YscVC and YscUC, a peptide-based epitope scan was performed. Thereby, the cellulose anchored peptides mimic surface areas of the corresponding interaction partner.

Initial experiments revealed interactions of YscUC peptides with YscVC protein, but not the other way around. This is probably due to the fact that amino acid residues, which are involved in the interaction, are often close to each other in the folded protein, which is not true for elongated sequences. Therefore, the epitope scan was not suitable to observe complex three dimensional interactions. In a second analysis round the located interaction sites were analyzed in detail by a 15/1 scan resulting in four possible binding peptides: ILYKRG_{271}, LVTFKYTDAQV_{292}, LARALYW_{318} and VLRWLER_{343}.

By mapping the results on the structure of YscUC N263A, four distinct interacting regions (Figure 54) can be assigned: tip of β-strand 2 and the following loop, β-strand 3 and the following loop and α-helices 3 and 4. All regions are located within the C-terminal half of YscUC. The amino acid residues are accessible for solvents except β-strand 3, which is mainly buried by α-helices 0. It can be assumed that the main part of β-strand 3 is solvent accessible, although α-helix 0 covers this site in the crystal structure. As it was shown (see Chapter 4.1.9), the linker is pinched in this position due to crystallization contacts. The alanine scan provided information of side chain contributions to the interaction between peptide and protein. Analysis of the side chain accessibility revealed several amino acid side chains, which are important for interaction in the epitope scan, but are buried in the crystal structure. This mismatching concerns mainly amino acids of β-strand 3 and the amino acids Ile271 and Leu312. The differences indicate the limitation of this method, mimicking the surface of a β-strand. However, several complex structures show that peptides are able to form helical interaction surfaces (Okon et al., 2008). Therefore, one can conclude that the highly conserved α-helix 3 and the end of α-helix 4 are important
for binding YscVC to YscUC. However, this presumption has to be proved by further interaction experiments as well as docking experiments based on structural information of both potential binding partners.

Figure 54: Proposed interaction regions between YscUC and YscVC. (A) Tertiary and (B) secondary structure of YscUC N263A. The proposed binding regions are colored in red. Side chains of underlined amino acid residues are accessible for solvents. However, analysis of the alanine epitope scan revealed several side chains as important for interaction, which are buried in the crystal structure (271\textsubscript{IL}YKR\textsubscript{276}, 281\textsubscript{LVT}FK\textsubscript{301}, 312\textsubscript{L}xR\textsubscript{318}, and 337\textsubscript{VLR}WL\textsubscript{344}, underlined aa side chains are not solvent accessible).
6 Outlook

Recently, several crystal structures of substrate specificity proteins belonging to the T3SS YscU protein family have been determined in its cleaved and uncleaved form (Deane et al., 2008; Lountos et al., 2009; Wiesand et al., 2009; Zarivach et al., 2008). The structural basis for autocleavage has been elucidated by analyzing several non-cleavable mutants. All data confirm that autocleavage occurs immediately after recombinant expression in E. coli cells. However, natively purified full-length YscU showed also uncleaved YscU suggesting that the cleavage process is regulated (Sorg et al., 2007). For the flagellar system it has been proposed that autocleavage is regulated in a time-dependent manner by the protein itself, further proteins or external factors such as pH or inhibitory proteins. It still remains elusive how the cleavage event is regulated (Deane et al., 2010). Further, the structures reveal a linker region between trans-membrane and autocleavage domains. The proper function of the linker region is essential for secretion of both effectors and translocators. Nevertheless, it is unclear how the linker is involved in the secretion process.

Besides functional questions concerning the structural parts, YscU has also been shown to be involved in several interactions including the ATPase regulator complex (YscK/L) and the proposed C-ring (YscQ) (Riordan & Schneewind, 2008). Further experiments have to be conducted to analyze the role of these interactions during secretion. Furthermore, it has been proposed that YscU and YscP together regulate the needle length by triggering the so-called “substrate specificity switch” (Edqvist et al., 2003). Investigations of the Shigella system revealed a direct interaction between Spa40C (YscUC) and a 40 amino acid residues stretch within the proposed T3S4 (Type III secretion substrate specificity switch) region of Spa 32 (YscP) (Botteaux et al., 2008). Structural analysis would give further insights in the switching event.
During completion of this thesis the crystal structures of the cytoplasmic domain of FlhA and InvA (YscV homologues) have been determined (Saijo-Hamano et al., 2010; Worrall et al., 2010). Both structures are composed of a linker region and four unique sub domains. The sub domains of FlhA are proposed to shuttle between an open and closed conformation. The first sub domain resembles an ATPase binding domain of the circadian clock system of cyanobacteria suggesting an anchor point for the ATPase (Saijo-Hamano et al., 2010). The first and second sub domain of InvA also exhibit structural similarity to the peripheral stalk of the A7V-type ATPase (Worrall et al., 2010). Therefore structural investigations of the complex between the ATPase YscN and YscV^C would provide deeper insights in the secretion process.
7 Bibliography

BIBLIOGRAPHY

Figure 55: Schematic representation of the Yersinia injectisome. HM, host cell membrane; IM, inner membrane; OM, outer membrane; PG, peptidoglycan. The C-ring is represented in dashed lines as information on this component is still scare. Colour code of different structural components corresponds to Ysc/Yop proteins in Table 12.
Table 12: Overview about *Yersinia* Injectisome proteins and their homolog's. (Please note: This is not a complete list of all proteins involved in the T3SS!)

<table>
<thead>
<tr>
<th>Ysc/Yop</th>
<th>kDa</th>
<th>Function</th>
<th>Contact</th>
<th>T3S Homologues</th>
<th>Flagellar</th>
<th>Structure</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Structural Components of the Injectisome</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>YopB</td>
<td>41.9</td>
<td>Translocator, pore</td>
<td>YopD, LcrV</td>
<td>SipB<sup>1</sup>, IpaB<sup>2</sup>, EspD<sup>3</sup></td>
<td>None</td>
<td>No</td>
</tr>
<tr>
<td>YopD</td>
<td>33.2</td>
<td>Translocator, pore</td>
<td>YopB, LcrV</td>
<td>SipC<sup>1</sup>, IpaC<sup>2</sup>, EspB<sup>3</sup></td>
<td>None</td>
<td>No</td>
</tr>
<tr>
<td>LcrV</td>
<td>37.5</td>
<td>Needle tip structure</td>
<td>YopB, YopD</td>
<td>SipD<sup>1</sup>, IpaD<sup>2</sup>, EspA<sup>3</sup></td>
<td>None</td>
<td>LcrV</td>
</tr>
<tr>
<td>YscF</td>
<td>9.4</td>
<td>Needle subunit</td>
<td>LcrV</td>
<td>PrgJ<sup>1</sup>, MxiH<sup>2</sup>, EscF<sup>3</sup></td>
<td>-</td>
<td>MxiH, YscF</td>
</tr>
<tr>
<td>YscC</td>
<td>67.1</td>
<td>Secretin, OM ring</td>
<td>YscW, YscD</td>
<td>InvG<sup>1</sup>, MxiD<sup>2</sup>, EscC<sup>3</sup></td>
<td>none</td>
<td>EscC N-ter.</td>
</tr>
<tr>
<td>YscD</td>
<td>46.7</td>
<td>Upper part of MS ring</td>
<td>YscC, YscJ</td>
<td>PrgH<sup>1</sup>, MxiG<sup>2</sup>, EscD<sup>3</sup></td>
<td>-</td>
<td>PrgH C-ter.</td>
</tr>
<tr>
<td>YscJ</td>
<td>27.0</td>
<td>Lower of the MS ring</td>
<td>YscD</td>
<td>PrgK<sup>1</sup>, MxiJ<sup>2</sup>, EscJ<sup>3</sup></td>
<td>FilIP</td>
<td>EscJ</td>
</tr>
<tr>
<td>YscR</td>
<td>24.4</td>
<td>Export apparatus</td>
<td>YscS, YscU</td>
<td>InvL<sup>1</sup>, Spa24<sup>2</sup>, EscR<sup>3</sup></td>
<td>FilIP</td>
<td>No</td>
</tr>
<tr>
<td>YscS</td>
<td>9.6</td>
<td>Export apparatus</td>
<td>YscR</td>
<td>SpaQ<sup>1</sup>, Spa9<sup>2</sup>, EscS<sup>3</sup></td>
<td>FilIQ</td>
<td>No</td>
</tr>
<tr>
<td>YscT</td>
<td>28.4</td>
<td>Export apparatus</td>
<td>-</td>
<td>InvN<sup>1</sup>, Spa29<sup>2</sup>, EscT<sup>3</sup></td>
<td>FilIR</td>
<td>No</td>
</tr>
<tr>
<td>YscU</td>
<td>40.3</td>
<td>Export apparatus</td>
<td>YscR,YscV, YscP</td>
<td>SpaS<sup>1</sup>, Spa40<sup>2</sup>, EscU<sup>3</sup></td>
<td>FilIB</td>
<td>C-ter; Spa40 EscU, YscU</td>
</tr>
<tr>
<td>YscV</td>
<td>77.8</td>
<td>Export apparatus</td>
<td>YscU</td>
<td>InvA<sup>1</sup>, MxiA<sup>2</sup>, EscV<sup>3</sup></td>
<td>FilHA</td>
<td>No</td>
</tr>
<tr>
<td>YscK</td>
<td>23.9</td>
<td>Docking of the ATPase to the C-ring</td>
<td>YscQ</td>
<td>MxiK<sup>2</sup></td>
<td>-</td>
<td>No</td>
</tr>
<tr>
<td>YscL</td>
<td>24.9</td>
<td>ATPase Regulator</td>
<td>YscN, YscQ</td>
<td>InvC<sup>1</sup>, MxiN<sup>2</sup></td>
<td>FilIH</td>
<td>No</td>
</tr>
<tr>
<td>YscN</td>
<td>47.8</td>
<td>ATPase</td>
<td>YscL, YscK</td>
<td>InvC<sup>1</sup>, Spa47<sup>2</sup>, EscN<sup>3</sup></td>
<td>FilII</td>
<td>Fli, EscN</td>
</tr>
<tr>
<td>YscQ</td>
<td>34.4</td>
<td>Subunit of the C-ring</td>
<td>YscK,YscL</td>
<td>SpaO/InvK<sup>1</sup>, Spa33<sup>2</sup></td>
<td>FilIN + FilM</td>
<td>FilIN/M, HrpQ<sup>4</sup></td>
</tr>
</tbody>
</table>

Important Proteins for Assembly

YscP	57.4	Molecular ruler and substrate specificity switch	N-term with YscU C-ter	InvJ¹, Spa32²	FilK	No
YscW	14.6	Pilotin for YscC	YscC	InvH¹, MxiM²	-	MxiM FilIP
YscH	18	Early export substrate. Not needed for needle assembly	-	PscH²	-	No
YscI	12.7	Early export substrate. Needed for needle assembly.	-	-	-	No
YscO	19	Substrate export. Needed for needle assembly/T3S.	-	CT670¹	-	CT670

Danksagung

Prof. Dr. Dirk Heinz danke ich herzlich für die Aufnahme in seine Arbeitsgruppe und der Möglichkeit meine Promotionsarbeit in dem spannenden Feld des T3SS unter hervorragenden Bedingungen durchführen zu können. Sein Interesse am Fortgang meiner Arbeit sowie seine Diskussionsbereitschaft halfen maßgeblich zum Erlangen dieser Ergebnisse bei. Desweiteren möchte ich mich dafür bedanken, dass ich an zahlreichen interessanten Tagungen und Konferenzen teilnehmen und meine Ergebnissen präsentieren durfte, so dass ich meinen wissenschaftlichen Horizont erheblich erweitern konnte.

Prof. Dr. Michael Steinert danke ich sehr herzlich für die bereitwillige Übernahme des Zweitgutachtens.

Bei Prof. Dr. Dieter Jahn bedanke ich mich herzlich für die Übernahme des Prüfungsvorsitzes.

Bei Prof. Dr. Guy Cornelis und Dr. Isabel Sorg sowie dem ganzen “Yersinia Lab” aus Basel möchte ich mich für die hervorragende Kooperation und ständige Diskussionsbereitschaft bedanken.

Dr. Victor Wray und Dr. Wolf-Dieter Schubert möchte ich ganz herzlich für ihre Hilfsbereitschaft beim “paper submitten“ danken. Außerdem hatten sie stets ein offenes Ohr für Fragen aller Art.

Bei Dr. Maike Bublitz, Dr. Maike Rochon, Agnes Zimmer und Lilia Polle möchte ich besonders für die Starthilfe am Anfang meiner Doktorarbeit bedanken.

Bei Kevin Walkling möchte ich mich für seine wertvolle Hilfe und fortwährende Unterstützung bei Präparationen und Kristallisationen diverser Proteine bedanken.

Dr. Thorsten Lührs danke ich für die Unterstützung und Umsetzungen von NMR und AF4 Experimenten.

Allen Mitgliedern der SB gilt mein Dank für ein freundliches Arbeitsklima und den vielen kleinen und großen Unterstützungen, die hier nicht alle erwähnt werden können.

Zum Schluss möchte ich mich ganz besonders bei meiner Freundin Malina und meiner Familie bedanken, die mich trotz der weiten Entfernung immer wieder aufgemuntert haben. Vielen lieben Dank dafür!
Lebenslauf

Persönliche Angaben

Ulrich Andreas Philipp Wiesand
geb. am 21.07.1981 in Füssen
ledig
deutsch

Schulischer Werdegang

1987-1991 Grundschule Rieden a.F.
1991-1992 Anton-Sturm-Volksschule Füssen
Abschluss: Abitur

Akademischer Werdegang

2001-2007 Studium der Chemie an der Albert-Ludwigs-Universität Freiburg
Diplomarbeit in der Arbeitsgruppe von Prof. Georg E. Schulz