

SPAR: Service-based Personal Activity Recognition for Mobile Phones

Martin Berchtold1, Matthias Budde2, Dawud Gordon2, Hedda Schmidtke2 and Michael Beigl2

1Institute of Operating Systems and Computer Networks (IBR), TU Braunschweig
2Institute of Telematics, Pervasive Computing Chair, Karlsruhe Institute of Technology (KIT)

May 31, 2010

Abstract

Smart phones have become powerful platforms for
mobile communication and applications. This paper
presents basic technology that will enable the phone
to extend such applications with context awareness un-
der realistic conditions. Recognition is carried out by
a service-based context recognition architecture which
creates an evolving classification system based on feed-
back from the user community. The approach uses clas-
sifiers based on fuzzy inference systems which use live
annotation to personalize the classifier instance on the
device to the its user. Our recognition system is de-
signed for everyday use: it is independent of placement
(no assumed or fixed position), requires only very little
(1-3 minutes per activity) personalization effort from
the user and can detect a high number of activities.
The results demonstrate the ability of the system to
use personalization and the user community as forces
for optimization, achieving classification rates upwards
of 97% for 10 classes in an evaluation with 20 users and
over 500 minutes of data.

1 Introduction

Although smart phone devices are powerful tools, they
are still passive communication enablers rather than ac-
tive assistance devices from the point of view of the user.
The next step is to introduce intelligence into these
platforms to allow them to proactively assist users in
their everyday activities. One method of accomplishing

this is by integrating situational awareness and context
recognition into these devices. Smart phones represent
an attractive platform for activity recognition, provid-
ing built-in sensors and powerful processing units; they
are capable of detecting complex everyday activities of
the user (e.g. standing, waking, biking) or the device
(e.g. calling), and they are able to exchange information
with other devices and systems using a large variety of
data communication channels.

Figure 1: Some activities recognized with the phone.

Several approaches to smart phone based recognition
(e.g. [17, 18, 4, 10, 16]) have been published which
demonstrate the importance of research in this field.
The architecture presented here builds on this research,
but has several advantages over previous approaches,
thus enabling context awareness under realistic condi-
tions. Orientation Independence: one problem in mobile

1

http://www.digibib.tu-bs.de/?docid=00033585 31/05/2010

Figure 2: Architecture of activity recognition service.

device. The decision is made based on the performance
of the classifiers over the annotated data collected by
the user. The PTS is also responsible for personalizing
the classifier modules; a process accomplished using a
genetic algorithm to enable and disable features of the
training data via bit-masking. This process will be ex-
plained in depth further on in this paper.
Data/Classifier Set Database: This unit is the central
Storage for the global ACMS and user data.
Bit-Masking: The bit-masking provides a method for
personalizing an ACMS without destroying its original
activity recognition capabilities.
Data Collector Tool (DCT): The DCT on the mobile
phone collects annotated activity data. The user selects
the activity they want to perform from an extensible set
of activities in a drop-down-list, carries out the activity,
and then pushes a button to stop recording.
Accuracy Feedback Interface (AFI): With the AFI, the
user can give feedback to the GTS/PTS as to whether
their activity recognition is working. Three kinds of
feedback messages are provided, recognition was well
done, ok, or should be thrown into the trash can (Fig.
3). This feedback is not used for personalization per
se, as the personalization process is done using the bit-
mask, but rather could be used to change the classifi-
cation process in general, though this is not currently
implemented and outside of the scope of this paper.

Figure 3: User feedback over the AFI.

2.1 SPAR Workflow - How the Service
Works

First the user downloads the SPAR components to the
phone. Second, a small amount of initial data must
be collected, where each of the activities available in
the drop down list of the DCT is done for 1-2 minutes.
When all of the activities are complete the data is trans-
mitted (step 1 Fig.2) to the SPAR server. At this point
the interaction between the user and the service is fin-
ished and will only be re-initiated over the AFI if neces-
sary. On the server the PTS selects the best performing
ACMS from the database based on the initial data and
transmits the set to the user device (step 2 Fig.2). This
step has nearly no delay, since only a search over the
pre-existing ACMSs must be done and no training is
performed. The transmitted ACMS can now run on the
users phone and recognize activities with an initial accu-
racy. Meanwhile the PTS is training the personalization
of the ACMS currently running. This process takes time
(depending on efficiency and complexity about 1 hour),
but since an ACMS is already running on the user’s
phone, the delay is not directly recognizable for the user.
The personalization data, which is just a bit-vector and
not a complete ACMS, is transmitted to the phone in
step 3 (Fig.2). On the phone the bit-masking compo-
nent personalizes the ACMS, which can be done dur-
ing runtime in between classifications. Now the phone

4

should have reasonable activity recognition rates (see
evaluation), but the process runs further on the SPAR
server. The GTS constantly trains new combinations
of ACMSs, in which the new user’s data is included as
well. Over time, an ACMS is present in the database
which has been trained on the data from the new user
and can be transmitted to the user’s phone (recognition
rates can rise to above 97%). This new ACMS can be
personalized again via the PTS and therefore be further
improved. The user can also give feedback to the system
via the AFI (step 4 Fig.2), but this is not necessary. If
the SPAR is in a faulty state due to bad user data, an
expert can intervene.

3 Activity Classification Module
Set

For activity recognition we use a novel Activity Classifi-
cation Module Set (ACMS), through which we are able
to classify a large number of classes with reduced calcu-
lation effort. The ACMS system can provide accuracy
of over 97%. In this section we first explain a simpli-
fied monolithic activity classification approach and then
extend the architecture to the ACMS.

3.1 Recurrent Activity Classification

The classification consists of several steps of processing
a real world value to a tuple of the class recognized and
a fuzzy uncertainty value (Fig. 4). In the first step,
sensors convert the real world signal into a digital mea-
surement. Next, the desired features are extracted from
the measurements. In the third step, a Recurrent Fuzzy
Inference System (RFIS) maps the features onto a clas-
sifiable linear set. The outcome of the mapping is fed
back. The linear set is fuzzily classified according to
designated fuzzy numbers in the last step.

1. Feature Extraction: For the application in this
paper, we used acceleration sensors for activity recogni-
tion. We segment the sensor streams into 80 millisecond
windows for each of the three axis of the two acceler-
ation sensors. This frame length results in 8 samples
(∼100Hz sampling rate) per frame. The features used
for activity recognition with acceleration measurements
are mostly variance and mean values, since they can be
calculated with low resource consumption and give good

Mean /

Variance

Acc.-

Sensor

()

(
)

()

Feature

Extraction

Mapping

Function

Fuzzy

Classification
Sensory

Real

World

Sampled

Signal

Feature

Vector

Mapping

Value

Class /

Uncertainty
Signal

Recurrent Edge

RFIS
Fuzzy

Numbers

Figure 4: Online system architecture for classification
and fuzzy uncertainty.

results. These features were used to preprocess the ac-
celerometer data, the two 3-axis accelerometer sensors
lead to a 12-dimensional feature vector −→v t at time t.
2. Recurrent FIS Mapping: Takagi, Sugeno and Kang
[20] (TSK-) FISs are fuzzy rule-based structures, which
are especially suited for automated construction. In
TSK-FIS, the consequence of the implication is not a
functional membership to a fuzzy set, but a constant or
linear function. In our case we use the linear functional
consequences fj , which are weighted with the respective
input membership function µj in the overall output of
the TSK-FIS. This output will be assigned to a tuple
of class and fuzziness, which is described in the Fuzzy
Classification paragraph. The consequence fj of the
rule j depends on the input vector −→v t at time t of the
TSK-FIS:

fj(−→v t) := a1jv1 + ..+ anjvn + a(n+1)j

Since we deal with highly correlated features, especially
when accelerometers are used, we employ rules with a
single covariant antecedent:

IF µj(−→v t) THEN fj(−→v t) (1)

µj(−→v t) := e−
1
2 (−→v t−−→mj)Σ−1

j (−→v t−−→mj)T (2)

The antecedent membership function µj(−→v t) is multi-
plied with the consequence fj(−→v t), after which the sum
over all rules j is divided by the sum of all member-
ship functions µj(−→v t). The resulting formula for the
covariant TSK-FIS is defined as follows:

S(−→v t) :=

∑m
j=1 µj(

−→v t)fj(−→v t)∑m
j=1 µj(

−→v t)
(3)

The outcome of the mapping at time t is fed back as
input dimension n for the TSK-FIS mapping at t + 1.

5

http://www.digibib.tu-bs.de/?docid=00033585 31/05/2010

The recurrence not only delivers the desired uncertainty
level, but also stabilizes and improves the mapping ac-
curacy. Instead of ‘Recurrent TSK-FIS’ we use the sim-
pler term RFIS in the remainder of this paper. For more
detailed information on this process please refer to [20].
3. Fuzzy Classification: The output of the RFIS S(−→v t)
at time t is the normalized weighted sum of the functions
fj(−→v t) of the rules j. The returned values numerically
encode the classes. The assignment of the RFIS map-
ping result S(−→v t) to a class is done fuzzily, so the result
is not only a class identifier, but also a membership,
representing the reliability of the classification process.
Each class ck is interpreted by a set of a triangularly
shaped fuzzy numbers [1] (eqn. 4):

µck(x) =

{
max(0, 1− 2 · (ck − x)) , when x ≤ ck
max(0, 1− 2 · (x− ck)) , when x > ck

(4)
The mean of the fuzzy number is the identifier ck it-
self. The crisp decision – i.e. which identifier is the
mapping outcome – is carried out based on the highest
degree of membership to one of the fuzzy numbers in
the classification K (eqn. 5).

K(x) =

(c1, µc1

(x)) , when µc1
(x) = maxk(µck

(x))

.

.

.
.
.
.

(co, µco (x)) , when µco (x) = maxk(µck
(x))

(5)

The overall output of the classifier module M (eqn. 6) is
a tuple (ck, µck) of a class identifier and the membership
to it, where ck ∈ C and µck ∈ [0, 1].

M(−→v t) := K(S(−→v t)) = (ck, µck) (6)

4. Fuzzy Uncertainty Filter: The classifications vary
strongly with respect to fuzziness and therefore in the
reliability of the RFIS mapping. Since more classifi-
cations are made than needed for most applications, a
filter on the fuzzy uncertainty (µck ≤ τ) can improve re-
liability, but also reduces the number of classifications.

3.2 Activity Classification Module Set
(ACMS)

Instead of using one monolithic classifier to classify on
all classes C, we use several classifier modules Mi : V →
Ci (with i = 1, .., N) each classifying on a small subset
Ci ⊆ C of classes. The subsets Ci are chosen according

to the classes cij ∈ Ci semantics, therefore each subset
Ci has its own meta semantic. We call this meta se-
mantic ‘conditional context’. To not only recognize the
respective classes cij ∈ Ci, but also the transition be-
tween classifiers Mi, each module yields a complemen-
tary class ci as well, where the complementary class rep-
resents all classes classified by other modules but not by
this one. All classifier modules are chained in a dynamic
queue, where the last classifier successfully classifying a
class aside from the complementary class is moved to
the front. The idea behind this re-organization of the
classifier queue is that modules which are successive in
the queue, are successive in recognition of input fea-
tures. Therefore, when the ‘active’ module recognizes
the complementary class ci, the whole queue does not
need to be evaluated for being able to classify this fea-
ture vector −→v t, but only the next module in the queue
yields a positive classification in the optimal case. An
example for two states of the classifier modules queue
at time t = 0 and t = X is displayed in figure 5.

Figure 5: State of modular classifiers in queue at time
t = 0 and t = X

To train these queued classifier modules, we need to
train them on the respective classes cij ∈ Ci and on
the complementary class ci. The training Vtri and check
data sets Vcki for a classifier module Mi are unified with
a selection of input data pairs of all other classifiers
Vci ⊂

⋃
k 6=i Vtrk . This selection is labeled zero – which

indicates the complementary class ci in every module
Mi – and added to the normal training and check data
sets of this classifier. The actual training and check data
is therefore Vtr∪ci and Vck∪ci , which are called Vtri and
Vcki in the rest of this paper for reasons of simplicity.

6

http://www.digibib.tu-bs.de/?docid=00033585 31/05/2010

