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1. Introduction 

 

Plants produce signalling molecules, called phytohormones, which play a major role in 

plant development and regulate growth at low concentrations. Some hormones are 

produced in one tissue and transported to another tissue, where they initiate specific 

physiological responses. Other hormones act within the same tissues where they are 

produced. In both cases, they affect the developmental or physiological state of cells, 

tissues, and in some cases, separated organ systems.  

The word hormone comes from the Greek horma meaning “to set in motion”. For a 

long time, it was thought that hormones act only by stimulating plant growth. 

However, recently, it has been found that some of them have inhibitory functions. 

Therefore, it is more useful to regard them as plant growth regulators. Nevertheless, 

this term also needs qualification because the response of a particular regulator 

depends not only on its chemical structure but also on how it is “read” by the target 

tissue.  

There are five generally recognized classes of plant hormone. They are all organic 

compounds and include auxins, gibberellins, cytokinins, ethylene, and abscisic acid 

(Kende and Zeevaart, 1997). Recently, it has been suggested that brassinosteroids, 

salicylic acid, and jasmonates are major classes (Creelman and Mullet, 1997). The 

brassinosteroids, which are complex organic molecules related to steroids, were found 

to be required for normal growth of most plant tissues. Salicylic acid has been 

implicated as a signal in defence responses to plant pathogens. The jasmonates volatile 

compounds, recognized as components of floral fragrances, are now known to act as 

regulators of plant development. 

 

1.1. Discovery of the gibberellins 

The observations of White in 1917, led to the conclusion that there is a certain factor, 

which controls the length of pea plants (White, 1917). This factor was considered 

responsible for the regulation of plant growth, and was then later proposed to be GA. 

The beginning of research on gibberellins can be dedicated to Japanese scientists who 

investigated the causes of the “bakanae” foolish seedling disease, which had 
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destructive effects on the rice economy. In 1935, Yabuta succeeded in isolating a 

chemical compound from the fungus Gibberella fujikuroi that stimulated shoot 

elongation in rice. This compound was named gibberellin. Subsequently, two fungal 

growth active compounds, which they termed gibberellin A and gibberellin B were 

successfully isolated (Yabuta and Sumiki, 1938).  

In 1954, a new gibberellin, named “gibberellic acid”, was separated and had physical 

properties different from those reported by the Japanese gibberellin A (Curtis and 

Cross 1954). In addition, another three components were extracted from the methyl 

ester of gibberellin A. These components were nominated gibberellins A1, A2, and A3. 

Gibberellin A3 was confirmed to be identical to gibberellic acid (Takahashi et al., 

1955).  

Brian and Hemming (1955) found that the application of GA3, obtained from culture 

of G. fujikuroi, promoted dwarf pea plants to a normal growth and concluded that 

dwarf pea do not contain GA3. Radley (1956) demonstrated that this substance, 

purified from tall pea plants, induced stem elongation of dwarf plants and proposed 

that GAs are produced naturally in higher plants. Similar observation was reported in 

dwarf maize using plant-extracted substances with GA-like activity (Phinney et al., 

1957). In the same year, a new gibberellin was isolated and named gibberellin A4 

(Takahashi et al., 1957). This was followed by the separation of crystalline gibberellin 

A1, A5, A6 and A8 from Phaseolus multiflorous (MacMillan and Suter 1958; 

MacMillan et al., 1959, 1960, 1962). After 1968, all gibberellins were assigned 

numbers as gibberellin A1-x, regardless of their origin (MacMillan and Takahashi, 

1968). 

The ent-gibberellane skeleton is the base to all gibberellins structures (Figure 1). 

 

Figure 1:  ent-Gibberellane structure 
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Gibberellins can be divided into two different groups: the C20-gibberelins (C20-GAs) 

that contain twenty carbon atoms and the C19-gibberellins (C19-GAs) that have one 

carbon atom less. There are other differences in the basic structure, especially the 

oxidation state of carbon 20 and the number and position of hydroxyl groups on the 

molecule.  

Gibberellins are involved in all stages of plant development: they promote stem 

elongation, seed germination, leaf expansion, flowering, and fruit development 

(Crozier, 1983; Hedden and Proebsting, 1999; Richards et al., 2001; Olszewski et al., 

2002). Furthermore, it has been shown that cell elongation and cell division were 

affected by the level of GAs (Kende and Zeevaart, 1997). The activity of the catalytic 

enzymes involved in the gibberellin biosynthetic pathway regulates the levels of the 

bioactive GAs, which are responsible for the control of growth and plant development. 

Therefore, genetic manipulation of these enzymes could serve as a tool for controlling 

plant growth, which has a wide application in agricultural fields (Hedden and Kamiya, 

1997; Lange, 1998; Phillips, 2004). 

Gibberellins are chemically identified as natural tetracyclic diterpenoid carboxylic 

acids made up of four isoprenoid units. The development of chemical and analytical 

techniques made it possible to isolate and identify a large number of gibberellins in 

plants, fungi, and bacteria. Although, more than 126 different gibberellins have been 

identified, only a small number of them are considered bioactive GAs, the others are 

supposed to be precursors or degradation products (Hedden and Phillips 2000a). Based 

on the facts described above, it is generally concluded that gibberellin biosynthetic 

pathway is highly complex (Graebe, 1987; MacMillan, 1997; Sponsel and Hedden, 

2004). 

In higher plants, GA1, GA3, GA4, GA5, GA6, and GA7 are considered to be bioactive 

gibberellins. They were found to promote plant development in certain bioassays and 

thus described as plant hormones (Graebe and Ropers, 1978; Hedden and Phillips, 

2000a). The complete biosynthetic pathway of gibberellins was assessed in seed and 

vegetative tissues of several plant species using radioactive precursor determination 

(Kobayashi et al., 1996).  
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1.2. Gibberellin biosynthetic pathway 

Gibberellin biosynthetic pathways can be differentiated into three major stages 

according to the localization and the nature of the enzymes involved. In the first stage 

of the pathway, ent-geranylgeranyl pyrophosphate (GGPP) is converted to ent-kaurene 

in the plastid. In the second stage, ent-kaurene is oxidized by cytochrome P450 mono-

oxygenases at the endoplasmic reticulum (ER) to form GA12-aldehyde. Finally, GA12-

aldehyde is converted to bioactive GAs by soluble 2-oxoglutarate-dependant 

dioxygenases in the cytosol ( Figure 2; Graebe, 1987; Hedden and Kamiya, 1997; 

Lange, 1998; Hedden and Phillips, 2000a). 

1.2.1. Stage 1: Production of terpenoid precursors and biosynthesis of ent-kaurene 

Isopentenyl pyrophosphate (IPP), the basic biological isoprene unit that is used in 

gibberellin biosynthesis, is generally synthesized in plastids from glyceraldehyde-3-

phosphate (GAP) and pyruvate (Lichtenthaler et al., 1997). However, in the endosperm 

of pumpkin seeds, IPP is formed in the cytosol from mevalonic acid (Graebe, 1987; 

MacMillian, 1997). Isopentenyl pyrophosphate is converted to ent-geranylgeranyl 

pyrophosphate (GGPP) by only two enzymes, IPP-isomerase and GGPP-synthase, 

followed by the conversion of GGPP to ent-copalyl pyrophosphate (CPP) and finally 

to ent-kaurene. Both steps require two diterpene cyclases, CPP synthase (CPS) and 

ent-kaurene synthase (KS). The cyclization step catalysed by CPS is promoted by 

protonation of C-14-C-15 double bond of GGPP. This is classified as a Type-B 

cyclization, while conversion of CPP to ent-kaurene is initiated by ionisation of the 

diphosphate (Type-A cyclization).  The two enzymes that catalyse the reactions are 

found in the proplastids of meristematic shoot tissues, and they are not present in 

mature chloroplasts (Aach et al., 1997). 

1.2.2. Stage 2: Oxidation reaction at the ER to form GA12 and GA53 

In the second stage of gibberellin biosynthesis, ent-kaurene is transported from the 

plastid to the endoplasmic reticulum, and is oxidized enroute to ent-kaurenoic acid 

(KA) by ent-kaurene oxidase (KO), which is associated with the plastid envelope 

(Helliwell et al., 1999; 2001b). A methyl group on ent-kaurene is oxidized to a 

carboxylic acid, followed by contraction of the B ring from a six to a five-carbon ring 

to give GA12-aldehyde. All the enzymes involved are cytochrome P450 mono-
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oxygenases and localized at the endoplasmic reticulum. GA12-aldehyde at C-7 is then 

oxidized to GA12, which is the first gibberellin in the pathway and thus the precursor 

of all other gibberellins. Some gibberellins in plants are also hydroxylated on carbon 

13. The hydroxylation of C-13 of GA12 originates GA53. 

1.2.3. Stage 3: Steps after GA12-aldehyde 

The third stage of the GA biosynthetic pathway involves 2-oxoglutarate-dependent 

dioxygenases (7-oxidase, 20-oxidase, 3-oxidase, and 2-oxidase) which results in 

several side reactions and different GA products. This can be attributed to the fact that 

dioxygenases have multiple functions depending on the nature of their substrate 

(Lange and Graebe, 1993; Hedden and Kamiya, 1997). These enzymes are classified 

as non-haem iron-containing oxygenases and oxidases (Prescott, 1993; De Carolis and 

De Luca, 1994; Barlow et al., 1997).  

In pumpkin, the C-7 of GA12-aldehyde is oxidized by a soluble GA 7-oxidase 

(CmGA7ox), which was isolated from developing pumpkin seeds, resulting in GA12    

in addition to the mono-oxygenase activity (Lange et al., 1994b; Lange, 1997), but 

there are some mono-oxygenase genes in other plant species. This enzyme further 

converts GA12 to GA14, which is considered to promote an early 3� -hydroxylation 

pathway (Graebe, 1987; Frisse et al., 2003). In all systems known, GA12 is converted 

by GA 20-oxidase and GA 3-oxidase enzymes in two different branches; namely non-

13-hydroxylated pathway and early 13-hydroxylated pathway, resulting in bioactive 

GA4 and GA1, respectively. In the 13-hydroxylated pathway, GA 13-oxidase converts 

GA12 to GA53 to form the 13-hydroxylated metabolites. GA12 and GA53 are further 

converted by GA 20-oxidase to GA9 and GA20, respectively. This occurs by the 

oxidation of C-20 to an aldehyde followed by the removal of this C atom and 

formation of a lactone. GA 20-oxidase1 from developing pumpkin seeds 

(CmGA20ox1) catalyses the oxidation of GA12 to GA15, GA24, and GA25, and GA53 to 

GA44, GA19, and GA17, respectively (Lange, 1994; 1998; Lange et al., 1994b; Frisse et 

al., 2003). In some species, GA9 and GA20 are also converted to GA7 and GA3, 

respectively (Albone et al., 1990). The bioactive GAs, GA4 and GA1, are then formed 

from GA9 and GA20, respectively, probably as side reactions of GA 3-oxidase activity 

(Spray et al., 1996).  



Introduction   

 6 

OPP OPP

ent-kaurene ent-copalyl diphosphate GGPP 

Stage 1 

Plastid 

COOH

O

CO

HO

OH

COOH

O

CO

HO

HO

OH

COOH

O

CO

OH

COOH
COOH

COOH

OH

COOH
COOH

HOCH2

COOH
COOH

CH3

GA15 

COOH
COOH

CHO

GA24 

COOH
COOH

CH3

OH

COOH
COOH

HOCH2

OH

GA53 

GA44 

COOH
COOH

CHO

OH

GA19 

COOH
COOH

HOCH2

HO

COOH
COOH

CH3

HO

GA14 

GA37 

COOH
COOH

CHO

HO

GA36 

COOH

O

CO

GA9 GA20 

COOH

O

CO

HO

GA4 GA1 

COOH

O

CO

HO

HO

GA25 GA17 

GA34 GA8 

COOH
COOH

COOH

GA 7-oxidase 
(CmGA7ox) 

GA 20-oxidase 
(CmGA20ox1) 

GA 3-oxidase 
(CmGA3ox1) 

GA 2-oxidase 
(CmGA2ox1) 

GA 2-oxidase 
(CmGA2ox1) 

Endoplasmic reticulum 
13-hydroxylase 

Stage 3 

GA12 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: The three stages of gibberellin biosynthesis in higher plants. Bold arrows 
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In pumpkin endosperm a bi-functional GA 3-oxidase1 (CmGA3ox1, previously called 

2� ,3� -hydroxylase, Lange et al., 1997b) catalyses both steps, 3-oxidation and 2-

oxidation. Moreover, 3-oxidases from other plant species work mainly on C19-GAs but 

CmGA3ox1 prefers C20-GAs as the substrate (Lange et al., 1997b; Hedden, 1999). In 

addition, GA 3-oxidase1 converted GA12, GA15, and GA24 to GA14, GA37, and GA36, 

respectively. GA 2-oxidase1 (CmGA2ox1) from pumpkin deactivates GAs by 2�  

hydroxylation to form GA8 and GA34 (Figure 2, Frisse et al., 2003). 

 

1.3. Gibberellin biosynthesis enzymes and their encoding genes 

The discovery and establishment of the biosynthetic enzymes involved in gibberellin 

biosynthesis made it possible to investigate the genes encoding their biosynthesis. 

These encoding genes were first isolated from Cucurbita maxima and Arabidopsis 

thaliana (Table 1). Eventually, many homologous genes were cloned from other plant 

species, e.g. P. sativum, S. oleracea, Z. mays (Hedden and Kamiya, 1997; Lange, 

1998; Kang et al., 1999; Yamaguchi and Kamiya, 2000; Hedden et al., 2002; 

Olszewski et al., 2002).  

In Arabidopsis, the enzymes that are involved in the early stage of the pathway (CPS, 

KS, and KO) were found to be encoded by single copy genes (Sun et al., 1992; Sun 

and Kamiya, 1994; Yamaguchi et al., 1998; Helliwell et al., 1998). In the second stage, 

the P450 mono-oxygenase, ent-kaurene oxidase (KO) was encoded by the GA3 gene of 

Arabidopsis (Helliwell et al., 1998). On the other hand, the dioxygenases controlling 

the final stages of the pathway are encoded by multigene families: five GA 20-oxidase 

(Phillips et al., 1995; Xu et al., 1995), four GA 3-oxidase (Sponsel and Hedden, 2004) 

and eight GA 2-oxidase (Thomas et al., 1999; Schomburg et al., 2003; Phillips, 2004). 

The functions of GA 3-oxidase genes (Williams et al., 1998; Yamaguchi et al., 1998), 

three of the GA 20-oxidase (Phillips et al., 1995) and five of the GA 2-oxidase genes 

(Thomas et al., 1999) have been confirmed through the expression of their cDNAs in 

E. coli. However, GA 2-ox5 is not been expressed and is proposed to be a pseudo gene 

(Table 1). In some cases, the concentration of bioactive GAs was altered when these 

genes were over-expressed in transgenic plants. This indicates that the regulation of 

these genes is important in controlling the late stage of the pathway (Hedden and 

Phillips, 2000b; Yamaguchi and Kamiya, 2000). 
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Table 1: Genes involved in GA biosynthesis, including their function and reported 

from Hedden et al., 2002 and Lange, 1998.  

Plant species Gene Enzyme function Reference 

A. thaliana CPS CPP synthase (GGPP to CPP) Sun and Kamiya, 1994 
 KS ent-kaurene synthase (CPP to  

ent-kaurenoic acid) 
Yamaguchi et al., 1998 

 KO ent-kaurene oxidase 
(ent-kaurene to ent-kaurenoic acid) 

Helliwell et al., 1998 

 KAO1 ent-kaurenoic acid oxidase  
(ent-kaurenoic acid to GA12) 

Helliwell et al., 2001a 

 KAO2 ent-kaurenoic acid oxidase Helliwell et al., 2001a 
 GA20ox1 GA 20-oxidase  

(GA12/53 to GA9/20) 
Phillips et al., 1995; Xu 
et al., 1995 

 GA20ox2 GA 20-oxidase Phillips et al., 1995 
 GA20ox3 GA 20-oxidase Phillips et al., 1995 
 GA20ox4 Undetermined  
 GA20ox5 Undetermined  
 GA3ox1 GA 3� -hydroxylase  

(GA9/20 to GA4/1) 
Chiang et al., 1995; 
Williams et al., 1998 

 GA3ox2 GA 3� -hydroxylase Yamaguchi et al., 1998 
 GA3ox3 GA 3� -hydroxylase Phillips and Hedden, 
 GA3ox4 GA 3� -hydroxylase Unpublished information 
 GA2ox1 GA 2-oxidase  

(GA1/4/9/20 to GA8/34/51/29 and 
corresponding catabolistes) 

Thomas et al., 1999 

 GA2ox2 GA 2-oxidase Thomas et al., 1999 
 GA2ox3 GA 2-oxidase Thomas et al., 1999 
 GA2ox4 GA 2-oxidase Thomas, Phillips and 

Hedden, unpublished 
 GA2ox5 Probably pseudo gene  
 GA2ox6 GA 2-oxidase Wooley, Phillips and 

Hedden, unpublished 
 GA2ox7 GA 2-oxidase Schomburg et al., 2003 
 GA2ox8 GA 2-oxidase Schomburg et al., 2003 
C. maxima  K synthase Yamaguchi et al., 1996 
 CPS CPP synthase Smith et al., 1998 
 GA7ox 7-oxidase  

(GA12-ald./14-ald. to GA12/14) 
Lange, 1997 

 GA20ox1 20-oxidase  
(GA12/53 to GA25/17) 

Lange et al., 1994b; 
Lange, 1997 

 GA20ox2 20-oxidase  
(GA12/14/53 to GA9/4/20) 

Lange et al., unpublished 

 GA3ox1 2� ,3� -hydroxylase  
(GA15/24/25/17 to GA37/36/13/28) 

Lange et al., 1997b 

 GA3ox2 3-oxidase  
(GA12/15/24/25/9 to GA14/37/36/13/4) 

Frisse et al., 2003 

 GA3ox3 3-oxidase (GA9 to GA4) Lange et al., unpublished 
 GA2ox1 2-oxidase (GA9/4/1 to GA51/34/8) Frisse et al., 2003 
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Developing pumpkin seeds are considered a rich source of GA biosynthetic enzymes 

(Graebe, 1987). Saito et al. (1995) purified ent-kaurene synthase (KS) from pumpkin 

endosperm, which was later cloned by Yamaguchi et al. (1996). The activity of 

CPS/KS (GGPP to ent-kaurene) was reported to be localized in wheat seedling 

developing chloroplasts and pumpkin endosperm leucoplasts (Aach et al., 1995). 

Pumpkin GA 7-oxidase has been isolated and expressed in E. coli (Lange et al., 1994a; 

Lange, 1997). 

GA 20-oxidase1, a multifunctional enzyme, has been purified from pumpkin 

endosperm and its encoding cDNA was cloned (Lange, 1994; Lange et al., 1994b; 

Lange 1998). The pumpkin enzyme (CmGA20ox1) is responsible for the conversion 

of GA12 to GA15, GA24, and GA25, as well as for the conversion of GA53 to GA44, 

GA19, and GA 17. The production of GA25 and GA17 is characteristic for pumpkin 

endosperm cell-free system (Lange et al., 1993b) and indicates that the 20-oxidase in 

this tissue is functionally different from those of other plant species (Kamiya and 

Graebe, 1983; Takahashi et al., 1986). Moreover, 20-oxidases were also cloned from 

various other plant species, e.g. Arabidopsis (Phillips et al., 1995; Xu et al., 1995), pea 

(Martin et al., 1996), tobacco (Nicotiana tabacum; Ueguchi-Tanaka et al., 1998), 

potato (Solanum tuberosum; Carrera et al., 2000), and hybrid aspen (Populus tremula 

X Populus tremuloides; Eriksson and Moritz, 2002).  

GA 3-oxidases catalyse the final biosynthetic step to produce biological active GAs. 

3� -hydroxylation results in the conversion of GA20 and GA9 to GA1 and GA4, 

respectively. GA 3-oxidase genes have been found in several species, including 

Arabidopsis (Chiang et al., 1995; Williams et al., 1998; Yamaguchi et al., 1998), 

lettuce (Lactuca; Toyomasu et al., 1998), pea (Pisum; Lester et al., 1997; Martin et al., 

1997), pumpkin (Cucurbita; Lange et al., 1997b), tobacco (Nicotiana; Itoh et al., 

1999), and tomato (Lycopersicon; Rebers et al., 1999). The pumpkin GA 3-oxidase1 

(CmGA3ox1) converts GA15 to GA37 (Lange et al., 1994a). This GA 3-oxidase1 

(formerly called 2� ,3� -hydroxylase) is a bi-functional enzyme which catalyses both,  

2- and 3-oxidation, and prefers C20-GAs as substrate (Lange et al., 1997b).  
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The GA 7-oxidase from pumpkin has not been found in other plant species. 

Phylogentically, pumpkin GA 20-oxidase1, and GA 20-oxidase from Marah 

macrocarpus are closely related to each other; they sequences share 67% identical 

amino acids (Figure 3). The pumpkin GA 3-oxidase1 (CmGA3ox1) amino acid 

sequence is related to the Arabidopsis GA 3-oxidase (GA4) at amino acid identity 

level by only about 35%, which is typical of dioxygenases with different functions 

(Prescott and John, 1996). Sequences of watermelon GA 3-oxidases are highly 

homologous to GA 3-oxidase1 (Kang et al., 2002). The pumpkin GA 2-oxidase1 

(CmGA2ox1) shows highest amino acid similarity to a dioxygenase of unknown 

function previously cloned from M. macrocarpus (MacMillan et al., 1997; Frisse et al., 

2003). Both share 84% identity, based upon their deduced amino acid sequences and, 

phylogenetically, both group with Arabidopsis GA 2-oxidase (Thomas et al., 1999).  

 

Figure 3: Phylogenetic analysis of deduced amino acid structures of selected GA 
oxidases from diverse species (Frisse et al., 2003). GA 7-oxidase from pumpkin 
(CmGA7ox); GA 20-oxidase from Citrullus lanatus (Cl 20-ox), Marah macrocarpus 
(Mm 20-ox), pumpkin (CmGA20ox2) and (CmGA20ox1), and Arabidopsis (At 20-ox-
1); GA 3-oxidases from C. lanatus (Cl 3-ox), pumpkin (CmGA3ox1), (CmGA3ox2) 
and (CmGA3ox3), and Arabidopsis (At 3-ox-1); GA 2-oxidase from pumpkin 
(CmGA2ox1), and Arabidopsis (At 2-ox), and a dioxygenase of unknown function 
from M. macrocarpus (Mm dioxygenase). 

Mm 20-ox 

CmGA20ox2 

At 3-ox-1 
    (GA4) 

CmGA3ox3 

Cl 20-ox 

CmGA3ox2 CmGA7ox 

CmGA3ox1 

Cl 3-ox 

At 2-ox 

Mm dioxygenase 

CmGA2ox1 

CmGA20ox1 

At 20-ox-1 
     (GA5) 
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1.4. Genetic modification of GA metabolism 

The control of plant growth can be achieved chemically by using growth regulators. 

Many crops and plants have been treated with a range of chemical growth promoters, 

e.g. GA3, which increase berry size (Christadoulou et al., 1968), and promote panicle 

elongation (Hedden and Hoad, 1994), or with chemical retardants that act by impeding 

different enzymes in the GA biosynthetic pathway. Recently, genetic manipulation of 

biosynthetic genes responsible for GA production provided an alternative approach in 

order to controlling plant growth. 

The over-expression of the genes encoding for enzymes that catalyse the early stages 

of GA biosynthesis, e.g. ent-copalyl pyrophosphate synthase (AtCPS) and ent-kaurene 

synthase (AtKS) in Arabidopsis, showed no significant increased levels of bioactive 

GA and no effect on growth and plant development (Sun and Kamiya, 1994; Fleet et 

al., 2003).  

GA 20-oxidase, a high regulatory enzyme, has been investigated intensively in genetic 

manipulation of GA biosynthetic pathway (Hedden et al., 1998). Huang et al. (1998) 

and Coles et al. (1999) reported that over-expression of Arabidopsis GA 20-oxidase in 

transgenic Arabidopsis plants resulted in the elongation of seedling hypocotyls, 

increased shoot growth, induced early flowering, and increased GA4 level. Similarly, 

the over-expression of Arabidopsis GA 20-oxidase gene in hybrid aspen (Eriksson et 

al., 2000) and over-expression of the same gene from citrus or Arabidopsis in tobacco 

plants (Vidal et al., 2001; Biemelt et al., 2004) showed an increased level of bioactive 

GA and elongated phenotypes. Over-expression of GA 3-oxidase in hybrid aspen and 

Arabidopsis showed no significantly different in the morphology of transgenic plants 

(Israelsson et al., 2004; Phillips, 2004). 

Recently, it has been shown that the so-called green revolution genes are involved in 

the GA signalling and biosynthesis (Peng et al., 1999; Spielmeyer et al., 2002; Monna 

et al., 2002; Sazaki et al., 2002). This approach offers an alternative strategy to 

introduce beneficial traits, such as dwarfism into cereal varieties to improve grain 

yield.  

Another approach to control plant stature by genetic manipulation was the reduction of 

the level of bioactive GA. For example, antisense expression of GA 20-oxidase in 
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Arabidopsis (Coles et al., 1999) showed reduced stem elongation, delayed flowering 

and reduction of bioactive GA level. Carrera et al. (2000) showed that the expression 

of a GA20ox gene using antisense mRNA in potato reduced stem elongation and 

petiole length, and increased tuberization, with an increased tubers yield. Transgenic 

rice expressing antisense copies of OsGA3ox2 (D18) showed semi-dwarf phenotypes 

(Itoh et al., 2002). In addition, the ectopic expression of pumpkin GA 20-oxidase1 that 

produces mainly inactive GA products might produce a reduction of bioactive GAs by 

switching the pathway to the tricarboxylic acids and show dwarf phenotype. Although, 

the over-expression of CmGA20ox1 in Arabidopsis resulted in the expected large 

increase in C-20 carboxylic acid GAs, the stem height of the transgenic plants were 

only slightly reduced (Xu et al., 1999). The same approach in Solanum dulcamara 

resulted in the accumulation of GA17 and semi-dwarfed plants (Curtis et al., 2000). In 

lettuce, dwarfed plants and a reduction of the levels of active GA (GA1) were obtained 

by over-expression of CmGA20ox1 under a very strong promoter cassette (Niki et al., 

2001).  

Another possibility to reduce endogenous GA level is to increase the rate of catabolic 

products by over-expression of GA 2-oxidases. The first cDNA encoding GA 2-

oxidase was isolated from runner bean (Phaseolus coccineus) by a functional 

screening method (Thomas et al., 1999). Sequence information for 2-oxidases is 

available from a number of other species such as Arabidopsis (Thomas et al., 1999), 

pea (Lester et al., 1999; Martin et al., 1999), and rice (Oryza sativa; Sakamoto et al., 

2001). Ectopic expression of GA 2-oxidase (OsGA2ox1) gene in rice resulted in a 

decrease of stem growth, small, dark green leaves, and destroyed development of the 

reproduction organs (Sakamoto et al., 2001). Whereas, expression of the same gene 

under the control of the shoot-specific OsGA3ox2 promoter induced only semi-

dwarfism without any negative effects on flower and grain development (Sakamoto et 

al., 2003). In addition, over-expression of GA 2-oxidase genes in Arabidopsis, tobacco 

and poplar showed severe dwarf phenotypes (Schomburg et al., 2003; Biemelt et al., 

2004; Busov et al., 2003). 

Over-expression of a runnery bean GA 2-oxidase in Arabidopsis and wheat resulted in 

a range of dwarf phenotypes, suggesting the superiority of this approach for the 

breeding of dwarf plants (Hedden and Phillips 2000b). In summary, the results 
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demonstrate that GA levels and, hence, plant growth and development, can be 

manipulated by genetic engineering of the genes of the GA biosynthetic pathway. 

 

1.5. Aim of this work 

The modification of plant stature is considered one of the most important requirements 

in agriculture, horticulture, and forest culture. This has been earlier achieved by plant 

breeding and the use of chemical plant growth regulators, which are exogenously 

applied to stimulate or retard elongation, often through chemical modification of GA 

biosynthesis. However, stature control through plant growth retardants requires 

repeated application of synthetic chemicals that is expensive, variable in effectiveness, 

and can have undesired environmental consequences or public perceptions. Therefore, 

biotechnological manipulation of GA levels provides an alternative approach that can 

be achieved through up- or down-regulating genes encoding enzymes involved in GA 

biosynthesis and catabolism.  

The aim of this work is to manipulate the GA biosynthetic pathway through over-

expression of GA-oxidases isolated from developing pumpkin seeds in Arabidopsis 

thaliana. We produced transgenic Arabidopsis expressing sense or antisense copies of 

pumpkin genes encoding GA-oxidases: 7-oxidase, 3-oxidase1, and 2-oxidase1 as well 

as sense copies of GA 20-oxidase1. Arabidopsis plants were transformed with the 

pumpkin genes downstream of a strong constitutive promoter cassette (E12-35S-� ). 

The phenotypes of the transgenic plants were analysed, the expression levels of 

pumpkin GA-oxidase genes in Arabidopsis plants were determined by competitive 

RT-PCR, and the GA levels were quantified in transgenic plants to confirm to which 

extent GA biosynthesis is altered and to determine which steps of GA biosynthetic 

pathway are affected.  
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2.  Material and Methods 

 

2.1. Plant material and growth conditions 

2.1.1. Plant material 

All the work described was carried out using Arabidopsis thaliana ecotype Columbia 

provided from Botanischen Garten, Braunschweig. 

2.1.2. Growth of plants in soil 

Wild type (WT) seeds were sown onto the surface, of pre-wetted potting compost in 

Arasystem pots (http: //www. arasystem.com). The components of the potting compost 

are described below. The seeds were stratified at 4oC for 2-3 days before transfer to a 

growth chamber, under long day conditions: 16 h light (105-120 µmol m-2s-1) and 8 h 

dark. The temperature was kept at 22oC and 20oC during the light and dark periods, 

respectively. Arabidopsis plants used for Agrobacterium mediated transformation were 

grown similarly but under relatively short day (13 h light, 11 h dark). 

Components of potting compost (Compo SANA): 92% Peat 

       5% green compost 

       3% Perlite 

Agrisol® 

       200-450 mg/l N2 

       200-400 mg/l P2O5 

       300-500 mg/l K2O 

       pH 5.5-6.5 

       Salt 1-2 g/l 

Watering was performed regularly using tap water (5x time per week). Macronutrients 

(SUBSTRAL, Universal-DÜNGER) were supplied at least once a week for optimal 

growth. To obtain more floral buds per plant, inflorescences were clipped after most 

plants had formed primary bolts. Apical dominance was relieved encouraging 

synchronized emergence of multiple secondary inflorescences of about 1-10 cm tall (4-

6 days after clipping). 
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2.1.3. Germination of plants in plates 

For plate growth assays, seeds were sterilized as described below (2.1.5.) and 

germinated on 0.8% (w/v) plant agar in 0.5x Murashige and Skoog (MS) media 

including vitamins as described in Table 2 (Murashige and Skoog, 1962). MS salts and 

water were mixed by stirring, and the pH adjusted to 5.7 with KOH. Agar was added 

and the media sterilized by autoclaving. 

Seeds germinate under long day conditions on MS plates. Plates were used for 

selection of transformants contain kanamycin (50 µg/ml) with or without 10-6 M GA3. 

WT seeds were grown on MS media with or without 10-6 M GA3. After growing on 

MS media for 2-4 weeks, the plants were transferred to soil. 

 

Table 2: MS medium 

Component Amount to be added to make 1 liter 

1x MS 4.33 g 

plant agar 8 g 

H2O to 1000 ml 

When adding GA3 to the medium:  
GA3 (346.4 mg) was dissolved in methanol 10-2 M stock solution and stored at -20oC. 
After sterilization, MS medium was allowed to cool to ~50oC; GA3 was applied to a 
final concentration of 10-6 M. 

 

2.1.4. Seed collection and storage 

Plants were grown for 3-6 weeks until siliques were brown and dry. The inflorescence 

shoots from each pot were kept together and separated from those of neighbouring 

pots. Seeds were harvested by gentle pulling of grouped inflorescences through the 

fingers over a piece of clean paper. The majority of the stem and pod materials were 

removed by gentle blowing. Seeds were collected in envelopes and stored at room 

temperature. 
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2.1.5. Seed sterilization 

Seeds were weighted (20 mg seeds) and put in an Eppendorf tube and 200 µl of 70% 

ethanol were added. Immediately 200 µl of H2O were added and followed by 3x time 

rinses with double sterile water, then seeds were treated with 200 µl sodium 

hypochlorite (1.5%) for 5 min., followed by 3x times rinses with double sterilized H2O 

and quickly air-dried on clean bench for 30 min. 

 

2.2. Bacterial strain and plasmid 

Agrobacterium tumefaciens strain has a C58C1 Rifr (50 mg/l) chromosomal 

background and contained Ti plasmid pMP90-Gentr (20 mg/l). The E. coli bacterial 

strains and plasmids are listed in (Tables 3-5). 

Table 3: The bacterial strains of Escherichia coli 

Strain Genotype Reference 

XL1-

Blue 

recA1, endA1, gyrA96, thi1, hsdR17 (rk� , 

mk
+), supE44, relA1, � -, lac.[F�, proAB, 

laclq, lacZ� M15, Tn10(Tcr)] 

Bullock et al., (1987) 

NM522 F� lac Iq� (lacZ)M15 proA+B+/supE thi�  

(lac -proAB) � (hsdMS-mcrB)5 (rk�mk�  

McrBC�) 

Gough and Murray, (1983) 

HB 101 supE44 hsdS20(rB�mB�) recA13 ara-14 

proA2 lacY1 galK2 rpsL20 xyl-5 mtl-1 

Boyer and Roulland, (1969) 

Boliver and Backman, (1979) 

 

Table 4: Vectors 

Plasmid Genotype Size (kb) Reference 

pBlueskript SK� Ampr, lacPOZ� 2.95 Stratagene 

pUC18 Ampr, lacPOZ� 2.69 Hanna et al., (1984) 

E12� MCS Kanr  11.5 Mitsuhara et al., (1996) 
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Table 5: plasmid Constructs 

Plasmid name DNA-fragments Vector Reference 

7-oxidase (7ox) CmGA7ox+Intron pBlueskript  Frisse Andrea, (1999) 

20-oxidase1 (20ox1) CmGA20ox1+Intron pBlueskript  Frisse Andrea, (1999) 

3-oxidase1 (3ox1) CmGA3ox1+Intron pBlueskript  Frisse Andrea, (1999) 

2-oxidase1 (2ox1) CmGA2ox1-433 bp 
after digestion with 
HindIII 

pBlueskript  Frisse Andrea, (1999) 

7-oxidase sense CmGA7ox sense E12� MCS Tomoya Niki, Japan 

7-oxidase antisense CmGA7ox antisense E12� MCS Tomoya Niki, Japan 

20-oxidase1 sense CmGA20ox1 sense E12�  Niki et al., (2001) 

3-oxidase1 sense CmGA3ox1 sense E12� MCS Tomoya Niki, Japan 

3-oxidase1 antisense CmGA3ox1 antisense E12� MCS Tomoya Niki, Japan 

2-oxidase1 sense CmGA2ox1 sense E12� MCS Abeer Radi, this work 

2-oxidase1 antisense CmGA2ox1 antisense E12� MCS Abeer Radi, this work 

 

2.3. Bacterial culture and growth conditions 

2.3.1. Media 

After preparation, all the media are autoclaved (Wolf Sanoclav; Shmidt, 

Braunschweig) for 20 min. Some components and antibiotics are added after 

autoclaving as indicated. 

(LB) Luria-Bertani-Medium; Sambrook et al. (1989) 

Trypton     10 g 

Yeast extract       5 g 

NaCl        5 g 

Deionized water was added to approximately 1 liter. The pH was adjusted to 7.5 with  

1 N NaOH. The final volume was adjusted to 1 liter and the media autoclaved (Wolf 

Sanoclav; Shmidt, Braunschweig) for 20 min. Solid LB medium was prepared by 

dissolving 35 g LB agar in 1 liter deionized water. 
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SOC-Medium 

Trypton       4 g 

Yeast extract       1 g 

NaCl                0.1 g 

KCl              0.04 g 

The volume of solution was adjusted to 200 ml with deionized water and sterilized by 

autoclaving for 20 min. 

Just before used, add: 

MgCl2, 1 M      2 ml 

MgSO4, 1 M      2 ml 

Glucose, 2 M        2 ml 

The MgCl2 and MgSO4 solutions were sterilized by autoclaving. Glucose solution was 

dissolved and sterilized by filtration through a 0.22-micro filter. 

CPY-Medium; Sambrook et al. (1989) 

Trypton        1 g 

Yeast extract     0.2 g 

Sucrose        1 g 

MgSO4.7H2O            0.098 g 

Deionised water was added to 200 ml. The pH was adjusted to 5.8 with 1 N NaOH and 

sterilized by autoclaving for 20 min. Solid CPY medium was prepared by adding 3 g 

agar. 

2.3.2. Antibiotic 

Stock solutions of antibiotics were prepared according to Sambrook et al. (1989), 

sterilized by filtration through a 0.22-micro filter, and then frozen at -20oC. The 

antibiotics were added to the autoclaved media cooled down to 50oC at the following 

final concentrations: 

Carbenicillin     50 µg/ml in H2Obidist 

Kanamycin     50 µg/ml in H2Obidist 

Gentamycin     20 µg/ml in H2Obidist 

Rifampicin     50 µg/ml in DMSO 
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2.3.3. Bacterial growth 

A single bacterial colony containing the plasmid of interest was picked up from an 

agar plate and inoculated in LB-medium (E. coli) or CPY-medium (Agrobacterium) 

containing the appropriate antibiotic. The E. coli cultures were grown overnight (12-16 

h) at 37oC with vigorous shaking (Gesellschaft für labortechnik GmbH) and those of 

A. tumefaciens were grown for 2 days at 28oC with vigorous shaking. Both bacterial 

cultures were grown to late log phase (i.e., to an OD600 of ~ 0.6).  OD was determined 

by spectrophotometer at wavelength 600 nm in cuvette of 1 cm of liquid media. 

2.3.4. Bacterial preservation  

Bacteria can be stored for up to 2 years in cultures containing glycerol. In an 

Eppendorf tube containing 830 µl of bacterial culture (2.3.3.), 170 µl of 87% (w/v) 

glycerol (sterilized by autoclaving) was added. The mixture was vortexed to ensure 

that the glycerol is dispersed. The tube was placed for freezing in liquid nitrogen, and 

then transferred to -70oC for long-term storage. To recover the bacteria, the frozen 

surface of culture was scraped with a sterile inoculating needle, and then the bacteria 

adhered to the needle immediately streaked on the surface of LB agar plate containing 

the appropriate antibiotic. E. coli plates were incubated (Memmert GmbH) overnight 

at 37oC and Agrobacterium plates 48 h at 28oC. 

 

2.4. Nucleic acid preparation 

2.4.1. Work with RNA and DNA 

To obtain undegraded samples of RNA it is important that all equipment and solutions 

used in the preparation are free from ribonucleases (RNases). All solutions were 

prepared with RNase-free water and autoclaved for 20 min (Wolf Sanoclav; Shmidt, 

Braunschweig) 2x times prior to use. The glass tubes used were thoroughly cleaned 

and baked at 180oC for 6 h before use. All other equipment (mortar, pestle, and 

spatulas) were soaked in 0.1% (w/v) SDS overnight and rinsed several times in double 

sterilized water prior to use. The pipette-tips used, were sterilized 2x times, and baked. 

As skin can be a potential source of RNase, gloves were used through out the 

preparation. The bench was cleaned with water and sprayed with ethanol 70%.  
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Diethyl pyrocarbonate (DEPC) was used to inactivate RNases that may contaminate 

solutions, glassware, and plastic-ware that are to be used for the preparation of nuclear 

RNA. Glassware was filled with a solution of 0.1% DEPC in H2O were allowed to 

stand for one hour at 37oC. The items were rinsed several times with DEPC-treated 

sterile distilled H2O, and then autoclaved them for 15 min. 

2.4.2. Phenol/chloroform extraction 

For DNA-extraction, phenol/chloroform/isoamylalcohol 25:24:1 (v/v/v), pH 7.6 was 

used. For RNA-extraction, phenol/chloroform 5:1 (v/v), pH 4.7 was used. 

For extraction of nucleic acids, one volume of the phenol/chloroform solution, then the 

extracts were mixed and centrifuged at 10.000 x g for 3 min at 4oC (Sigma 3K30, 

Osterode) to separate two phases. The upper phase was removed and 

phenol/chloroform extraction performed two more times. At the end of the extraction, 

the upper layer was used for ethanol precipitation (2.4.3.). 

2.4.3. Alcohol precipitation 

For DNA precipitation, 1/10 volume of 7 M ammonium acetate was applied, followed 

by 0.6 volume of isopropanol. The mixture was incubated at 20.000 x g for 20 min at 

4oC, then centrifuged for 10 min at 4oC. For RNA precipitation, 2.0-2.5 volumes of 

cold ethanol 100% were applied, and the mixture incubated for 1 h at -70oC, and then 

centrifuged at 20.000 x g for 20 min at 4oC, (Sigma 3K30, Osterode). In both cases, 

the pellet was washed with 70% ethanol and re-centrifuged for 10 min. The pellet was 

then dried at clean bench (Envirco, Ceag Schirp Reinraum technik; Bork) for 2-10 

min, and then dissolved with 30-50 µl H2Obidist. The DNA solution was preserved at -

20oC while the RNA one was stored at -70oC. 

2.4.4. Determination of the concentration of nucleic acid by OD 

The concentrations of DNA and RNA solutions were determined at the absorption 

wavelength (WL) 260 nm (OD260) (Gene Quant II, Pharmacia Biotech; Cambridge). 

The absorption of 1.0 at 260 nm corresponded to 1 cm quartz cuvette (Hellma GmbH) 

was 50 µg/ml of double strand DNA (Davis et al. 1980), and was 40 µg/ml for RNA 

(Sambrook et al., 1989). The protein concentration was determined at WL 280 nm 

(OD280). The OD260/OD280 ratio was determined. The concentration of DNA or RNA 
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solutions were determined, analysed by agarose gel electrophoresis after staining with 

ethidium bromide, and photographed. 

 

2.5. Isolation of nucleic acids 

2.5.1. Isolation of genomic-DNA with CTAB 

Fresh plant material (100 mg, two rosette leaves) were homogenized with pestle and 

mortar under liquid nitrogen, and then transferred to an Eppendorf tube. 150 µl CTAB-

extraction buffer was added. After homogenisation with a micro-pestle, anther 500 µl 

CTAB-extraction buffer was added. The mixture was inverted several times and 

incubated for 30 min at 65oC in a water bath. The tubes were cooled down to room 

temperature and 600 µl chloroform was added. The mixture was several times inverted 

and centrifuged for 2 min at 10.000 x g (Biofuge Pico, Heraeus, Osterode) at room 

temperature. The aqueous phase was transferred to a fresh Eppendorf tube and 5 µl of 

RNase A solution (200 mg/µl) was added, incubated at room temperature for 30 min 

and precipitated with alcohol (2.4.3.). The pellet was dissolved with (20-100 µl 

H2Obidist), and stored at -20oC (Wilkie, 1996).  

CTAB-extraction buffer:  

Tris-HCl, pH 8.0    100 mM 

EDTA        20 mM 

CTAB (cetyltrimethylammonium bromide)        2% 

NaCl          1.4 M 

pH             8.0 

2.5.2. Isolation of plasmid-DNA by mini preparation 

From 10 ml of bacterial culture grown at 37oC, 700 µl was taken in 1.5 ml E-cup and 

centrifuged at 12.000 x g (Biofuge Pico, Heraeus, Osterode) at room temperature for 

10 min.  The pellet was re-suspended with 100 µl solution I (GETL-solution) and then 

200 µl solution II (SDS-solution) was applied, mixed, and incubated for 3-5 min at 

room temperature. After that, 150 µl solution III (calcium-acetate-solution) was 

applied, the mixture chilled on ice bath for 10 min, and re-centrifuged at 20.000 x g for 

10 min at 4oC. Supernatants were transferred in to fresh E-cup, followed by 

phenol/chloroform extraction (2.4.1.), and alcoholic precipitation (2.4.2.). The pellet 



Material and Methods   

 22 

was dissolved in 40 µl H2Obidist. Plasmid-DNA was stored at -20oC (Birnboim and 

Doly 1979). 

Solution I (GETL-solution):       

Tris-HCl, (pH 8.0)    25 mM 

 Glucose     50 mM  

 EDTA      10 mM  

Solution I was stored at -20oC. Before use immediately, add 0.5 mg/ml lysozyme. 

Solution II (SDS-solution):       

NaOH               200 mM 

 SDS              1% (w/v)  

Solution III (calcium-acetate-solution):    

Calcium acetate         3 M 

 Acetic acid         11.5% (v/v)  

2.5.3. Isolation of plasmid-DNA by Qiagen Plasmid Midi Kit 

A single colony from a freshly streaked E. coli selective plate was picked up and 

inoculated in 20 ml LB medium containing the selective antibiotic, and incubated at 

37oC for 16 h with vigorous shaking ~300 rpm (Gesellschaft für labortechnik GmbH). 

The bacterial cells were harvested by centrifugation (6000 x g) for 15 min at 4oC 

(Sigma 3K30, Osterode). The bacterial pellet was re-suspended in 4 ml of buffer P1 

and then 4 ml of buffer P2 added. The mixture was inverted 6x times, and incubated at 

room temperature for 5 min then, 4 ml of chilled buffer P3were added, mixed 

immediately but gently by inverting 6x times, and the mixture incubated on ice for 15 

min and then centrifuged at 20.000 x g for 30 min at 4oC. The supernatant was placed 

in a fresh tube and re-centrifuged at 20.000 x g for 10 min at 4oC. A Qiagen-tip 100 

was equilibrated by applying 4 ml QBT buffer by gravity flow. The supernatant was 

applied to the Qiagen-tip and allowed to enter the resin by gravity flow. The Qiagen-

tip was washed by 2x 10 ml QC buffer and the DNA eluted with 5 ml QF buffer. 

Plasmid-DNA was precipitated by adding 3.5 ml (0.7 volumes) room temperature 

isopropanol, mixed, and then centrifuged immediately at 15.000 x g for 30 min at 4oC. 

The supernatant was carefully decanted. DNA pellet was washed with 2 ml of 70% 

ethanol at room temperature, and centrifuged at 15.000 x g for 10 min at 4oC. The 
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pellet was dried for 5-10 min under the clean bench (Envirco, Ceag Schirp Reinraum 

technik; Bork), and the DNA re-dissolved in 200 µl H2Obidist. Finally, the DNA 

concentration was determined (2.4.4.). 

2.5.4. Isolation of total DNA from Agrobacterium 

From 5 ml of Agrobacterium culture grown in CPY-medium, 1.5 ml was taken to a 2 

ml E-cup and centrifuged at 6.500 rpm ( Biofuge Pico, Heraeus, Osterode) for 1 min. 

Pellet was washed 2x times with 500 µl 100 mM Tris-HCl (pH 8.0) and re-centrifuged 

at 6.500 rpm for 1 min. The pellet was re-suspended in 600 µl Agrobacterium-DNA 

extraction buffer. Then, 50 µl Proteinase K (5 mg/ml) was added (without vortex), and 

160 µl 10% SDS mixed gently, and then incubated for 2 h at 65oC. The E-cup was 

cooled down at room temperature and 500 µl phenol/chloroform added. Separation of 

phases was taken place by centrifugation (15.000 rpm, for 20 min) and the DNA 

precipitated with 0.6-volume isopropanol, followed by 70% EtOH washing (2.4.3.). 

DNA-pellet was dissolved in 20 µl TE buffer. 

Agrobacterium-DNA buffer (50 ml) pH (8.0):  

Tris-HCl     110 mM 

EDTA         55 mM 

NaCl         1.54 M 

CTAB               1.1% 

TE-buffer (100 ml) pH (8.0):   

EDTA             1 mM 

Tris-HCl        10 mM 

Tris-HCl, pH 8.0 (100ml):               100 mM 

Proteinase K      5 mg/ml 

SDS            10% 

2.5.5. Isolation of RNA 

2.5.5.1. Isolation of total RNA by Macherey-Nagel Kit 

Plant tissue (50 mg) was ground with mortar and pestle (double sterilized) under liquid 

nitrogen. To lyse the cells, 350 µl RA1 buffer and 3.5 µl � -mercaptoethanol were 

added to the ground tissue and vortexed vigorously. NucleoSpin filter units were 
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placed in collecting tubes. The lysis mixture was applied, and centrifuged for 1 min at 

11.000 x g (Biofuge Pico, Heraeus, Osterode). The filtrate was transferred to a new 

micro-centrifuge tube. To adjust RNA binding conditions, 350 µl ethanol (70%) was 

added to the recovered filtrate and mixed by vortex. For each preparation, one 

nucleoSpin-RNA plant column was taken in 2 ml centrifuge tube, the lysate loaded, 

and then centrifuged for 30 sec at 8.000 x g. The column was placed in a new 

collecting tube. Then, 350 µl of MDB (Membrane Desalting Buffer) was added and 

centrifuged at 11.000 x g for 1 min to dry the membrane. DNase reaction mixture was 

prepared in a sterile micro-centrifuge tube: for each isolation, 10 µl reconstituted 

DNase-I was applied to 90 µl DNase reaction buffer, and mixed by flicking. The 

DNase reaction mixture (95 µl) was applied directly onto the center of the silica 

membrane of the column and incubated at room temperature for 15-20 min. The 

nucleoSpin RNA plant column was washed by adding 200 µl RA2 buffer to inactivate 

the DNase and centrifuged for 30 sec at 8.000 x g. The column was re-washed by 

adding 600 µl RA3 buffer and re-centrifuged for 30 sec at  8.000 x g. After that, 250 µl 

of RA3 buffer was applied to the column, and centrifuged for 2 min at 11.000 x g to 

dry the membrane completely. The column was placed into a nuclease-free 1.5 ml 

micro-centrifuge tube. The RNA was eluted by adding 30-60 µl RNase-free water and 

centrifuged at 11.000 x g for 1 min. The RNA probe concentration was measured with 

a spectrophotometer (2.4.4.), The RNA quality was analysed by gel electrophoresis 

and aliquots were stored at -70oC. 

2.5.5.2. Treatment of RNA with DNase-I 

To eliminate possible genomic DNA contaminations, it is always recommendable to 

treat the RNA samples with DNase I. The reaction mixture was prepared on ice to a 

final volume of 60 µl as follows: 

RNA-Probe        50 µl 

10x MgCl2-buffer           6 µl 

DTT 1 M (end concentration 10 mM)  0.5 µl 

RNasin (5U)      0.5 µl 

DNase I             1 U/µl reaction 

H2Obidist         up to 60 µl 
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The reaction was incubated at 37oC for 20 min and stopped at -20oC. The probe (60 µl) 

was extracted with 3x times 150 µl phenol/chloroform 5:1 (pH 4.7) (2.4.2.), mixed and 

centrifuged. The upper phase was transferred in to a 1.5 ml Eppendorf tube with 10 µl 

3 M sodium acetate (pH 5.5) and mixed. 250 µl (2.5 volume) cold ethanol (95-100%) 

was added. The probe was incubated 30 min at -20oC. RNA was precipitated by 

alcoholic precipitation (2.4.3.). The RNA pellet was dried on a clean bench and re-

dissolved in RNase-free water (DEPC). The concentration of RNA was determined 

(2.4.4.) and the RNA sample frozen at -70oC. 

 

2.6. Agarose-gel electrophoresis 

A horizontal electrophoresis apparatus (GNA 100, Pharmacia Biotech etc. Midi-Wide 

Agagel, Biometra) with chamber, comb and a tape to form a mold was used. 

Electrophoresis buffer (always 1x TAE) was prepared to fill the electrophoresis tank. 

Agarose-gel was prepared at the concentration (0.8-1%) in electrophoresis buffer. The 

mixture was boiled in a microwave oven to dissolve the agarose. The agarose solution 

is cooled down and poured into the mold. Small amount of electrophoresis buffer was 

poured on the top of the gel, and carefully the comb and tape were removed. The 

probes were mixed with 0.20 volume of 6x gel-loading buffer. The samples migrated 

toward the positive (70 V for 90-120 min). The gel was stained by immersing it in 

electrophoresis buffer containing ethidium bromide for 10-15 min. The gel was 

washed for 5 min with H2Obidist, and UV photographed. 

50x TAE-buffer:   2 M Tris-acetate 

      50 mM EDTA 

6x loading buffer:   40% sucrose (w/v) in H2Obidist 

0.25% bromophenol blue 

Ethidium bromide staining: 0.5 µg ethidium bromide/ml in 1x TAE-

buffer 

2.6.1. DNA ladder and marker 

The size of DNA fragments was determined by agarose gel electrophoresis (2.6.). To 

estimate the size of DNA fragments between 100-3000 bp, a 100 bp ladder was used 
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(MBI-Fermentas, St. Leon-Rot). For determination of DNA fragments up to 1500 bp, a 

PstI marker which was prepared by digestion of 40 µg � -Phage DNA with PstI was 

used (2.7.1.).  

PstI bands of � -restriction fragments in bp (Sambrook et al. 1989):  

14055a, 11497, 5077, 4749, 4507, 2838, 2560, 2459, 2443, 2140, 1986, 1700, 1159, 

1093, 805, 514, 468, 339, 264, 247, 216,210, 200, 164, 150, 94 

(a) Fragment can be compact together in the end of � -PstI 

 

2.7. Modification of DNA with enzymes 

2.7.1. Digestion of plasmid DNA with restriction enzymes 

The reaction mixture for the digestion of DNA with restriction endonuclease was 

prepared on ice as following: 

 Plasmid-DNA (1 µg)     x µl  

 10x reaction buffer     1 µl  

Restriction endonuclease 2-10 U*   y µl 

 H2Obidist sterilized     up to 10 µl 

*Not more than 10% glycerol of the final volume per µg DNA was used. All 

components were well mixed and incubated for 1-4 h or overnight at 37oC (Thermostat 

5320, Eppendorf). The digestion was checked by agarose gel electrophoresis (2.6.). 

The digested plasmid DNA can be frozen at -20oC. 

2.7.2. Dephosphorylation of DNA 

Self-ligation of DNA fragments was prevented by dephosphorylation using Calf 

intestine Alkaline Phosphatase. Calf intestine alkaline phosphatase is an active 

enzyme, which removes the 5 prime phosphate group from the ends of DNA 

fragments. The reaction mixture for the dephosphorylation of DNA was prepared on 

ice as following: 

DNA solution          10-40 µl 

10x CIAP-reaction buffer    5 µl 

Water, nuclease-free          to 49 µl 
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Calf Intestine Alkaline Phosphate 1 U             x µl 

The reaction mixture was incubated at 37oC for 30 min and stopped by heating at 85oC 

for 15 min. 

2.7.3. Purification of DNA with Cycle Pure Kit 

This method was used to extract and purify DNA from an agarose gel. DNA samples 

mixed with gel-loading buffer were used to carry out electrophoresis. Agarose-gel was 

stained with ethidium bromide as described in (2.6.) and the DNA band of interest 

detected by UV. A sharp scalpel was used to cut out a slide of agarose containing the 

band of interest, which was then transferred to a clean 2 ml micro-centrifuge tube. 

After cut out the band, the gel was photographed to record that the DNA band of 

interest was removed. 4-5 volumes of CP-buffer was added for fragments <200 bp or 6 

volumes of CP-buffer for fragments >4 Kb. 3 volumes CP-buffer plus 1 volume sterile 

water were applied. The top of the tube was closed, the gel melted by incubation for 10 

min at 65oC, and the solution re-cooled at room temperature. The solution was 

transferred into 2 ml collecting filter tube, and centrifuged for 1 min at 10.000 x g 

(Biofuge Pico, Heraeus, Osterode) at room temperature. The filter was washed with 

750 µl of DNA-wash buffer (buffer concentrate plus 1.5-volume absolute ethanol), and 

re-centrifuged for 1 min at    10.000 x g. The filter was dried by centrifugation for 1 

min at 10.000 x g, the column replaced in a fresh Eppendorf tube, and the DNA eluted 

with 30 µl sterilized H2Obidist. The DNA can then be frozen at -20oC. 

2.7.4. Ligation of DNA fragments 

A 3:1 molar ratio of insert : vector DNA was used. The master mix was prepared on 

ice as following: 

Linearized vector DNA       (0.2-1 µg) 

Insert-DNA fragment at 3:1 molar ratio         x µl 

10x ligation buffer             2 µl 

PEG 4000 solution (for blunt ends only)          2 µl 

Water, nuclease-free             up to 20 µl 

T4 DNA ligase (1-2 U) for sticky ends, 5 U for blunt ends 

The mixture was vortexed, spin down and then incubated for 1 h at 22oC or overnight 

at 15oC in a thermocycler (Progene; Techne, Cambridge). T4 DNA ligase was 
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inactivated by heating the reaction at 65oC for 10 min. The ligation was cleaned up 

with Cycle Pure Kit (Classic-Line; peqlab Biotechndogie GmbH, Erlangen) (2.7.3.). 

The resulting ligation reaction was used directly for bacterial transformation or after 

storing at -20oC. 

 

2.8. DNA transfer 

2.8.1. Transformation of Escherichia coli 

2.8.1.1. Preparation of competent cells of E. coli 

In a 50 ml Greiner tube, 10 ml LB medium was added and a single colony of E. coli 

XL1-blue inoculated. The culture was grown overnight at 37oC with shaking 

(Gesellschhaft für labortechnik GmbH). Then, 2.5 ml of the pre-culture was inoculated 

in 250 ml LB medium at 37oC with shaking (250 rpm) until an OD600 0.5-0.7 is 

reached. The culture was transferred to ice for 5 min, divided in four tubes (4x 50 ml), 

and then centrifuged at 5000 x g for 5 min at 4oC (Sigma 3K30, Osterode). The pellet 

was washed with 60 ml double sterilized H2Obidist, re-centrifuged at 5000 x g for 5 min 

at 4oC, and rewashed 2x times with cold double sterilized H2Obidist,. The pellet was 

suspended in 1.25 ml of 15% glycerol, and centrifuged at 5000 x g for 5 min. The 

pellet was re-suspended with cold 250 µl of 15% glycerol. Aliquots (40 µl) were 

frozen in liquid nitrogen and stored at -80oC until they come into use. 

2.8.1.2. Transformation of E. coli by electroporation method 

The frozen cells were placed on ice bath and immediately mixed with 2 µl plasmid 

DNA. The DNA was mixed with competent cells, the mixture transferred to a pre-

chilled electroporation cuvette, and the following conditions for electroporation used: 

 Capacitance:    25 µF 

 Voltage:    2.5 kV 

 Resistance:    200 �  

 Pulse length:    5 msec 

 Immediately after electroporation, 960 µl of SOC medium was added to the cuvette. 

The mixture was transferred into a 15 ml Greiner tube and incubated at 37oC for 1 h 

with gentle agitation (Gesellschaft für labortechnik GmbH). The transformed cells 
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were plated (100-200 µl) in LB agar plate with antibiotic and incubated overnight at 

37oC (Memmert GmbH). 

2.8.2. Transformation of Agrobacterium tumefaciens 

2.8.2.1. Preparation of Agrobacterium competent cells 

Agrobacterium cultures harbouring Ti plasmids were grown at low temperature (28oC) 

to prevent “curing” of the Ti plasmid, on LB media containing antibiotics (Rif/Gent) 

for 24-48 h until an OD600 of 0.5-0.7 was reached. Cells were cooled on ice (20 min) 

and pelleted by centrifugation at 4oC for 15 min at 4.000 x g (Typnr. 3K30; Sigma). 

The media was completely poured off and the pellet re-suspended gently with cold 

double sterilized H2Obidist (50 ml). The cells were centrifuged and rewashed with cold 

water 3x times. The culture was washed with 1.5 ml of cold 10% (v/v) glycerol, re-

centrifuged, and re-suspended in 250 µl of 10% glycerol. Aliquots (80 µl) were frozen 

in liquid nitrogen and could be stored at -70oC for at least 6 months. 

2.8.2.2. Transformation of Agrobacterium by electroporation 

The efficient transformation of Agrobacterium strain can be obtained by application of 

a high voltage electric pulse under conditions similar to those giving high frequency 

transformations of E. coli (Shen and Forde, 1989). 

DNA for electroporation must be free of salt, RNA, or protein. Frozen competent cells 

were thawed on ice and the 80 µl aliquot was transferred to a pre-cooled 0.2 cm 

electroporation cuvette. 1 µl of of plasmid-DNA (2-10 ng) was mixed with the cell 

suspension on ice and an electric pulse was applied immediately using a Gene Pulser 

(E. coli Pulser, Bio Rad). The highest transformation efficiencies were obtained at: 

Capacitance    25 µF 

Voltage    2.5 kv 

Resistance    200 �  

Pulse length          8-12 msec 

LB medium (1 ml) was immediately added to the 0.2 mm cuvette, the mixture 

transferred to a 15 ml Greiner tube and incubated for 3 h at 28oC with gentle agitation. 

Aliquots of 10 µl or 100 µl were plated on LB agar medium containing the appropriate 

antibiotics (Kan/Rif/Gent), and incubated for 2-3 days at 28oC. 
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2.8.2.3. Transformation of Agrobacterium by Tri-Parental Mating 

Agrobacterium strain was inoculated into 3 ml CPY-medium and grown for 48 h at 

28oC with (Rif/Gent). Next day, both of the kanr E. coli and a helper strain-E. coli HB 

101 were inoculated in 3 ml LB medium and grown overnight at 37oC (Gesellschaft 

für labortechnik GmbH). One day after, 0.5 ml kanr E. coli cell culture, 0.5 ml helper 

strain-E. coli HB 101 cell culture, and 1 ml recipient cell culture (Agrobacterium 

strain) were mixed into the same tube. The mixtured cells were centrifuged for 5 min 

at 2.000 rpm (Sigma 3K30, Osterode), and the supernatant was removed. The pellet 

was re-suspended in 500 µl CPY, then plated on CPY agar plates without antibiotic 

and incubated at 28oC for 48 h. The thin layer of bacterial cells was inoculated in 0.5 

ml CPY and dilutions made in CPY medium until 10-6. Mating mixture, (100 µl) of 10-

4 and 10-6 dilutions were spread on CPY agar plates containing (Rif/Gent/Kan) and 

grown for 48 h at 28oC. Small liquid cultures (3 ml) of the restreaked colonies were 

grown and minipreps carried out (2.5.4.) and /or polymerase chain reaction (PCR) 

were preformed to verify the presence of the plasmid DNA (2.9.2.) 

 

2.9. Polymerase chain reaction (PCR) 

2.9.1. (PCR) 

By PCR (Polymerase Chain Reaction), a huge number of copies of a gene can be 

obtained. There are three major steps in a PCR (denaturation, annealing and 

extension), which are repeated for 30 or 40 cycles. This is done on an automated 

cycler, which can heat and cool the tubes with the reaction mixture in a very short 

time.  

In a sterile 0.5 ml PCR-cup kept on ice bath, the following reagents were mixed in a 

final volume of 10 µl: 

 10x PCR-buffer        1 µl 

 MgCl2 buffer (25 mM)     0.6 µl 

 dNTPs (0.2 mM end concentration)   0.2 µl 

 Forward primer (10 pmol/µl)    0.2 µl 

 Reverse primer (10 pmol/µl)    0.2 µl 

 DNA-polymerase (5 U/µl)             0.06 µl 
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 Template DNA (0.2-1 µg)          max 1 µl 

H2Obidist sterilized        up to 10 µl 

The nucleic acids were amplified in a thermocycler (Progene or Techgene; Techne, 

Cambridge) using one of the programs listed in Table 6. The primer used and their 

respective Tm value are listed in Table 7 and 8. 

 

Table 6: PCR programs 

No. Program 

1 3min 94oC+35x [30sec 94 oC+30sec 50 oC+2min 72oC]+5min 72 oC+99h 4oC 

2 3min 94oC+35x [30sec 94 oC+2min 72oC]+5min 72 oC+99h 4oC 

3 3min 94oC+35x [30sec 94 oC+30sec 60 oC+2min 72oC]+5min 72 oC+99h 4oC 

 

Table 7: Primers for PCR, RT-PCR and bacterial screening 

Name Sequences 5´-3´ Tm-value* 

7-ox For TGGCTAACACAGGCATCCCTACTGTGGACG 71oC 

7-ox Rev TCTCATCCTCCACTCTTGAAGGTGGATGGG 69oC  

RT 7-ox ATTTCATAATGTTTGATGC 45.8oC 

20-ox-1 For TGAACGGCAAGGTGGCAACCGAATCCGCTC 72.2oC 

20-ox-1 Rev GCGGTAATAGTGGACCCAGTGTCCAACGCC 72.2oC 

RT 20-ox-1 TTAAGCAGACGGGG 46.3oC 

3-ox-1 For ACAAAACGGTCTCGATCCCGGTTGTCG 68oC 

3-ox-1 Rev CCCTTCCCCGAGGCTTTAGCCTTGATG 69.5oC 

RT 3-ox-1 TTGTTAGGGCAGCA 47.9oC 

2-ox-1 For CTCTGCAGCATTCTACTCTGGGATTCC 60oC 

2-ox-1 Rev GGCCCACCGAAGTAGATCATTGAAACC 60oC 

RT 2-ox-1 AGATGTTGGAATCC 42oC 
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Table 8: Primer sequence for checking DNA integration by PCR 

Name Sequences 5´-3´ 
Tm-

value* 

�  For (for all constructs) CTACAACTACATCTAGAGG 47oC 

20-ox-1 For (S orientation) CGAGAATTCATAGAAATGATGGGC 60oC 

20-ox-1 Rev (S orientation) GACGAATTCCAGCAACACATAAGAC 61oC 

7-ox Rev (S orientation) TCACTCTAGAAGGTGGATGG 57oC 

7-ox Rev (AS orientation) CAATTCAAGGAAACGCTGG 54oC 

3-ox-1 Rev (S orientation) CGATTCTAGAAATATGCCATC 54oC 

3-ox-1 Rev (AS orientation) ACCGTTCTGTGATAAAGTGG 55oC 

 Calculation of annealing temperature: 

*T m= 69.3 + 0.41 x (GC %) – 650/(length of primers [bp]) 

2.9.2. Bacterial-colonies screening by PCR 

A bacterial-colony was picked up from the growing plate using a sterile toothpick, 

touched it in master plate containing antibiotic and quickly washed the tip in 10 µl of 

PCR mixture (2.9.1.). In another method, a colony was picked up from the growing 

plate and washed in 10 µl of H2Obidist in an Eppendorf tube. The tube was closed and 

incubated in boiling water bath for 10 min (denature the templates and inactive 

proteases and nucleases). The tube was placed on ice and centrifuged for 2 min at 

10.000 x g (Biofuge Pico, heraeus, Osterode). Then, 1 µl of DNA template was 

applied to the PCR-master mix (2.9.1.). These protocols were used for screening 

colonies of E. coli and Agrobacterium, and 10-20 colonies were checked.  

2.9.3. Reverse transcriptase-PCR (RT-PCR) 

For quantifying mRNA, a competitive RT-PCR with internal standard RNA was used. 

The RNA standards were added in a defined quantity prior to the reaction. The 

resulting standard cDNA was co-amplified with the same primers as the endogenous 

target sequence (Table 7). This method allowed measurement of small differences (as 

low as a factor of 2) between RNA samples. cDNA synthesis (PCR template) was 

generated in a double sterilized PCR-cup. The tubes were stored in ice water bath and 

used the protocol described below: 
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 Total RNA (50-100 ng)    1 µl 

 Standard RNA* (100 pg to 1 fg)   1 µl 

 RT-primer (5 pmol/µl)    1 µl 

 Water, nuclease-free       up to 3 µl 

The mixture was incubated at 70oC for 5 min and chilled on ice. The master mix was 

prepared as following components: 

 5x reaction buffer     1 µl 

 10 mM dNTP mix             0.5 µl 

 Ribonuclease Inhibitor (20 U/µl)         0.25 µl 

The master mix was divided to make 1.75 µl in each PCR-cup and incubated at 37oC 

for 5 min and 0.25 µl of M-MULV (200 U/ µl) reverse transcriptase were added. The 

reaction mixture, containing the sequence-specific RT-primer, was incubated at 42oC 

for 1 h, stopped by heating at 70oC for 10 min, and chilled on ice. The synthesized 

cDNA was amplified by PCR (2.9.1.). Usually use 1 µl cDNA products as a template. 

The RNA standard was prepared as described in (2.9.4.) and the total RNA was 

isolated as described in (2.5.5.1.). 

2.9.4. Generation of RNA-standards 

Plasmid DNA of pblueskript SK� vector containing the DNA of interest was linerized 

with a restriction endonuclease (2.7.1.). 7-oxidase was digested with restriction 

endonuclease (EcoRI), 20-oxidase1 (BamHI), 3-oxidase1 (BamHI) and 2-oxidase1 

(KpnI). The linerized DNA was purified with Cycle Pure Kit (2.7.3.), and checked by 

gel electrophphoresis (2.6.). The in vitro transcription of the DNAs of interest was 

performed using a T7 RNA promoter for 7-oxidase, 20-oxidase1, 3-oxidase1 and a T3 

promoter for 2-oxidase1.In vitro transcription reaction was prepared as following: 

 5x transcription buffer     4 µl 

 10 mM NTPs mix     2 µl 

 linearized template DNA (1 µg)   x µl 

 Ribonuclease Inhibitor (1 U/µl)           0.5 µl 

 T3/T7 RNA Polymerase (40U)   2 µl 

 DEPC-treated water     up to 20 µl 
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a b c d 

The reaction was incubated at 37oC for 2 h and stopped by freezing at -20oC. The 

internal standard RNA was then treated with 1 U RNase-DNase-I and incubated at 

37oC for 15 min to remove the plasmid DNA (the success of this treatment was 

checked by PCR without prior RT-PCR). The synthesized RNA was extracted with 

phenol/chloroform (2.4.2.), and precipitated with ethanol (2.4.3.). RNA standard 

concentration was quantitated by photometer (2.4.4.), diluted in 10 ng/µl, and frozen at 

-70oC. Standard concentrations are first added by a factor of 10 (1 ng/µl, 100 pg/µl, 10 

pg/µl, 1 pg/µl, 0.1 pg/µl, 10 fg/µl, and 1 fg/µl) to determine the range in which the 

transcript amount is found. The main problem with RNA standards is their instability. 

We found that especially thawing and refreezing damages them. Therefore, we stored 

the standards in small aliquots in different dilutions and discard them if thawed too 

often. Standard RNA is analysed by agarose-gel electrophoresis (2.6.). Figure 4 

showed the RNA standard analysed in agarose gel electrophoresis. 

 

 

 

 

 

 

 

Figure 4: Analysis of RNA standard in agarose-gel (100 ng) 

a: GA 3-oxidase1 RNA-standard b: GA 7-oxidase RNA-standard 

c: GA 20-oxidase1 RNA-standard d: GA 2-oxidase1 RNA-standard 

 

2.10. Culture of Agrobacterium and inoculation of plants 

Agrobacterium tumefaciens strain C58C1 (PMP90), carrying the binary vector (E12-

35S-� ), was used in all experiments for which data are shown. Unless noted, bacteria 

were grown to stationary phase in liquid culture at 28oC at 250rpm in sterilized CPY-

media (Sambrook et al., 1989) (2.3.1.) plus Kanamycin (50 µg/ml), Rifampicin (50 

µg/ml) and Gentamycin (20 µg/ml). Three days prior to plant transformation, 5 ml of 
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liquid culture of Agrobacterium carrying the suitable binary vector was inoculated and 

incubated at 28oC with vigorous agitation. After 2 days 400 ml of CPY-medium was 

inoculated with 1 ml of the pre-culture and incubated again with vigorous agitation for 

24 h at 28oC. The cells were harvested by centrifugation for 20 min at room 

temperature at 6000 x g when a final OD600 of approximately 0.80 was obtained. The 

pellet was then re-suspended in H2Obidist (100 ml). The revised floral dip inoculation 

medium (Clough and Bent, 1998) was used contained 5% sucrose and 0.05% (i.e. 500 

µl) silwet L-77. For floral dip, the inoculums were added to sterile beaker, plants were 

inverted into this suspension such that all aboveground tissues were submerged, then 

removed after 1-2 min of gentle agitation. Dipped plants were removed from the 

beaker, placed in a plastic tray, and covered with a tall plastic dome to maintain 

humidity. Plants were left in a low light or dark location overnight and returned to 

growth chamber the next day. Plants were grown for a further 3-6 weeks until siliques 

developed. The inflorescences shoot from each pot were kept together and separated 

from neighbouring pots using the Arasystem (http: //www.arasystem.com). 

 

2.11. Selection of transformants 

After surface sterilization (2.1.5.), seeds of Agrobacterium inoculated plants, were 

suspended in 0.1% sterile agarose, spread on Kanamycin selection plates (0.5x MS 

media, 0.8% plant agar, and 50 µg/ml Kanamycin mono-sulphate) at a density of 

approximately 500 seeds per 150x 15 mm2 plate. The plates were allowed to dry a 

little, so that the seeds do not float when the plate is moved. The seeds were cold-

treated for 2 days at 4oC and then grown for 2 weeks at 22oC under 16h light/8h dark 

(100-110 µ Einsteins m-2s-1).  

The excess moisture during growth was removed by opening the plates and removing 

moisture off the lid. Transformants were identified as Kanamycin resistant seedlings 

that produced green leaves and well-established roots within the selective medium. 

Gently the seedlings were pulled out of the agar and residual agar removed with a 

forceps. Roots were washed with sterilized H2Obidist before transferred to soil. Some 

transformants were grown to maturity by transplanting, preferably after the 

development of 3-5 adult leaves, into moistened potting soil. The transformation rates 



Material and Methods   

 36 

were expressed as percentage transformation, and calculated as (# Kanamycin-resistant 

seedlings) / (total # seedlings tested) x 100. 

 

2.12. Analysis of endogenous GAs  

2.12.1. Extraction and purification of endogenous GAs 

Plant material (2 g, wild type and transgenic) were harvested from 7-week-old 

seedlings grown in long day conditions. At harvest, the tissues were frozen in liquid 

nitrogen and ground with a mortar and pestle. The samples, approximately of 2 g fresh 

weight, were extracted with cold 80% (v/v) methanol (8 ml) at 4oC. After addition 2 ng 

of the internal standards  ([2H2]GA12-Ald., [2H2]GA12, [2H2]GA24, [2H2]GA15, 

[2H2]GA44, [2H2]GA1, [2H2]GA8, [2H2]GA20, [2H2]GA19, [2H2] GA53, [2H2]GA34, 

[2H2]GA4, [
2H2]GA9, [

2H2]GA17, [
2H2]GA25, [

2H2]GA14, [
2H2]GA36, [

2H2]GA37), from 

Prof. L. Mandar, Australian National University, Canberra, Australia, the samples 

were mixed, incubated 1 h at 4oC with shaking and centrifuged 5 min at 3000 U/min 

(UJ2, Heraeus Christ GmbH, Osterode). The samples were re-washed 4x times with 

cold 80% methanol and incubated 30 min on ice during the extraction. The combined 

methanol extracts were concentrated in vacuo (Rotavapor RE 111; Büchi, Schweiz) 

and the resulting aqueous (aq.) residue was adjusted to pH 8.0 with KOH 1 M and 

extracted 3x times with ethyl acetate (ETOAc). The combined aq. phases were 

adjusted to pH 3.0 with HCl 1 N and extracted 3x times with ETOAc. The combined 

ETOAc phases were extracted 2x times with H2Obidist pH 3.2. The upper phases were 

collected and dried by evaporation in vacuo to give an acidic ETOAc-soluble fraction. 

The dried samples were stored at -20oC. Samples were methylated with 100 µl 

methanol and ethereal diazomethane (2x times 200 µl), and dried. Columns (C18-

cartridge (Waters) were washed with 10 ml MeOH and re-washed with 10 ml H2Obidist 

pH 3.2. Dry extractions were dissolved with 100 µl methanol and 2 ml acetic acid 

water pH 3.2 (HOAc). Probes were passed through the column. The glass tube of 

probe was re-washed with 2 ml HOAc, then passed through the column. Column was 

washed with 10 ml acetic acid water to remove proteins. The column was eluted with 6 

ml of methanol (100%), and dried. The probes were dissolved in a small volume of 1:3 

(v/v) methanol: H2Obidist pH 3.2. For purification by HPLC the residues were re-
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dissolved in 200 µl methanol-water pH 3.2 (1:1) and injected into a C18 reverse-phase 

column (15 cm long, 8 mm, i.d., 4 mm, Novapack Liquid Chromatography Cartridge 

in a RCM100 radial compression system, Waters, Eschborn, Germany). Samples were 

eluted with a gradient from 25% methanol in water to 100% methanol in 40 min 

delivered by a two pump HPLC system (Model 501 and 510, Waters) at a flow rate of 

1 ml min-1. Eighteen fractions were collected at intervals from 11.50 to 47.50 min and 

fractionated by HPLC as the following program in Table 9: 

 Pump A: H2Obidist (pH 3.2): Methanol= 3:1 

 Pump B: Methanol 

 Time: 50 min     Cycle period: 55 min 

 

Table 9: Gradient program 

Time (min) Flow %A %B %C Curve 

Initial 1.00 100 0 0 * 

20 1.00 50 50 0 6 

40 1.00 0 100 0 8 

45 1.00 0 100 0 1 

47 1.00 100 0 0 6 

 

2.12.2. GC-MS analysis 

Dried HPLC fractions were re-dissolved in (50 µl) 4x times methanol, dried, 

trimethylsilylated with 2 µl N-methyl-N-trimethyl-silyltrifluo-acetamid (MSTFA) and 

incubated for 30 min at 80oC. The derivatized samples were analysed using a Perkin 

Elmer TurboMass MS system (Perkin Elmer, USA) equipped with a Perkin Elmer 

AutoSystem XL gas chromatograph. Samples (1-2 µl) were co-injected into SGE 

BPX5 capillary column (30 m long, 0.25 mm i.d., 0.25 µm film thickness; SGE, U.K.) 

at an oven temperature of 60oC. The split value (30:1) was open after 1 min, and the 

temperature was increased by 45oC min-1 to 220oC and then with 4oC min-1 to 300oC. 

The He inlet was pneumatic pressure controlled at a constant flow rate of 1.5 ml min-1 
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and the injector, transfer line and source temperatures were 220, 280, and 240oC, 

respectively. Data were acquired in the SIM-mode after 5 min. The ions were 

monitored for quantification of endogenous GAs based on retention time and the co-

occurrence of addition ions. Endogenous levels were calculated based on peak areas, 

with reference to known amounts of deuterated internal standards, and calibration 

curves for each compound. The concentrations of endogenous GAs were calculated by 

reference to calibration curves from the peak-area ratios of the following ion pairs: 

506/508 (GA1), 284/286 (GA4), 207/209 (GA53), 284/286 (GA25), 239/241 (GA15), 

314/316 (GA24), 270/272 (GA9), 594/596 (GA8), 207/209 (GA44), 374/376 (GA19), 

418/420 (GA20), 506/508 (GA34), 492/494 (GA17), 300/302 (GA12), 270/272 (GA12-

aldehyde), 298/300 (GA14), 284/286 (GA36), 310/312 (GA37). 
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2.13. Chemicals and enzymes 

 

100bp-ladder marker MBI-Fermentas, St. Leon-Rot 

Acetone Acros Organics, New Jersey 

Acetic acid Merck, Darmstadt 

Agar Sigma, Deisenhofen 

Agarose Biomol, Hamburg 

Ammonium acetate Sigma, Deisenhofen 

� -Mercaptoethanol Fluka chemic AG, Buchs 

Bromophenol blue Serva Feinbiochemica, Heidelberg 

Calcium acetate Merck, Darmstadt 

Calf Intestine Alkaline Phosphatase MBI-Fermentas, St. Leon-Rot 

Carbenicillin Biomol, Hamburg 

Cetyltrimethyl ammonium bromide (CTAB) Merck, Darmstadt 

Chloroform (CHCl 3) Merck, Darmstadt 

Diethyl ether Riedel-de Hoën, Seelze 

Diethyl pyrocarbonate (DEPC) Merck, Darmstadt 

Dimethyl sulfoxide (DMSO) Sigma, Deisenhofen 

Dithiothreitol (DTT) Biomol, Hamburg 

DNA-polymerase MBI-Fermentas, St. Leon-Rot 

DNA-polymerase Genecraft, Münster 

DNase I  Sigma, Deisenhofen 

dNTPs MBI-Fermentas, St. Leon-Rot 

Ethanol EtOH (CH3CH2OH) Sigma, Deisenhofen 

Ethidium bromide Sigma, Deisenhofen 

Ethyl acetate Merck, Darmstadt 

Ethylene diamine tetracetic acid (EDTA) Merck, Darmstadt 

GA3 Sigma, Deisenhofen 

Gentamycin sulphate Sigma-Aldrich, Steinheim 

Glucose Merck, Darmstadt 

Glycerin (glycerol) Sigma, Deisenhofen 

Helium West fallen AG, Müster 
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Hydrochloric acid (HCl) Sigma-Aldrich, Steinheim 

Isopropanol Merck, Darmstadt 

Kanamycin mono-sulphate Sigma-Aldrich, Steinheim 

LB-medium  Sigma, Deisenhofen 

Ligation puffer MBI-Fermentas, St. Leon-Rot 

Liquid Nitrogen Linde, Höllriegelskreuth 

Lysozyme Biomol, Hamburg 

Magnesium chloride (MgCl2) MBI-Fermentas, St. Leon-Rot 

Magnesium sulfate (MgSO4) Merck, Darmstadt 

Methanol MeOH (H3COH) Roth, Karlsruhe 

MS-mineral salts medium with vitamins Duchefa Haarlem, Netherlands 

N-methyl-N-nitrosu-p-toluolsulphonamid Merck, Darmstadt 

N-methyl-N-trimethylsilytrifluoacetamid       

(MSTFA) 

Macherey-Nagel-Düren, Germany 

NTPs MBI-Fermentas, St. Leon-Rot 

PEG 4000 solution MBI-Fermentas, St. Leon-Rot 

Phenol (pH 4.3) Sigma, Deisenhofen 

Phenol/chloroform/isoamylalcohol Biomol, Hamburg 

Plant agar Duchefa Haarlem, Netherlands 

Potassium chloride (KCl) Fluka chemic AG, Buchs 

Potassium hydroxide (KOH) Merck, Darmstadt 

Primer Metabion GmbH or Biomers.net 

Proteinase K Merck, Darmstadt 

Restriction endonuclease MBI-Fermentas, St. Leon-Rot 

Restriction buffer (10x) MBI-Fermentas, St. Leon-Rot 

Reverse transcriptase with 5x reaction buffer MBI-Fermentas, St. Leon-Rot 

Rifampicin Serva Feinbiochemica, Heidelberg 

RNase A Sigma, Deisenhofen 

RNase-inhibitor (RNasin) MBI-Fermentas, St. Leon-Rot 

RNA-polymerase buffer (5x) MBI-Fermentas, St. Leon-Rot 

Silwet L-77 LEHLE SEEDS 

Sodium chloride NaCl) Roth, Karlsruhe 
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Sodium dodecyl sulfate (SDS) Serva Feinbiochemica, Heidelberg 

Sodium hydroxide (NaOH) Merck, Darmstadt 

Sodium hypochlorite (NaOCl) Fluka chemic AG, Buchs 

Sucrose Fluka chemic AG, Buchs 

T3/T7-RNA-polymerase with 5x transcription 

buffer (40U/µl) 

MBI-Fermentas, St. Leon-Rot 

T4-DNA-ligase MBI-Fermentas, St. Leon-Rot 

Tris Biosolve LTD, Volkensswaard/NL 

Trypton Roth, Karlsruhe 

Yeast extract Roth, Karlsruhe 
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3. Experiments and Results 

 

Gibberellins (GAs) are involved in the regulation of many aspects during plant 

development. To investigate the effect of altered GA levels on growth, transgenic 

Arabidopsis thaliana plants have been engineered to express either sense and antisense 

copies of GA 7-oxidase gene (CmGA7ox), 3-oxidase1 gene (CmGA3ox1) and 2-

oxidase1 gene (CmGA2ox1) or sense copies of 20-oxidase1 gene (CmGA20ox1) from 

developing seeds of pumpkin under a strong constitutive promoter cassette E12-35S-�  

(Niki et al., 2001). The presence of the transgene was detected in the transformed 

Arabidopsis plants by polymerase chain reaction in the T2 generation. The transgenic 

Arabidopsis plants were segregated three to one in the T2 generation. Manipulation of 

gibberellin biosynthesis by expression of pumpkin GA-oxidase genes in the sense 

orientation led to an altered growth and plant development in Arabidopsis (chapter 

3.1.). The expression levels of pumpkin GA-oxidase genes in Arabidopsis were 

determined by competitive RT-PCR (chapter 3.2.). The effect of altered GA 

biosynthesis by expression of pumpkin GA-oxidase genes on Arabidopsis GA content, 

were determined by combined gas chromatography-mass spectrometry (GC-MS) 

(chapter 3.3.). 

 

3.1. Over-expression of pumpkin GA-oxidase genes and generation of transgenic 

lines 

3.1.1. Preparation of transformation constructs 

A strong promoter cassette containing a translational enhancer (E12-35S-� ) was used 

to enhance the expression of pumpkin GA-oxidases (Figure 5). The construct was 

prepared by replacing the � -glucuronidase gene of pBI121 with the pumpkin GA 20-

oxidase1 (CmGA20ox1) cDNA sequence in sense orientation as a XbaI-SacI fragment, 

and the CaMV 35S promoter sequence with the strong constitutive promoter cassette 

E12-35S-�  from pBE2113 as a HindIII-XbaI fragment (Mitsuhara et al., 1996). The 

construct carrying GA 7-oxidase (CmGA7ox) in sense and antisense orientation, GA 3-

oxidase1 (CmGA3ox1) in sense and antisense orientation was prepared by first 

replacing the � -glucuronidase gene of pBI121 with a synthetic DNA multiple cloning 
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site (MCS) which has unique restriction endonuclease sites. GA 7-oxidase and GA 3-

oxidase1 were then inserted in sense and antisense orientation at the EcoRI site (Niki 

and Masaji).  

 

Figure 5: Structure of T-DNA region of pSG�  (Niki et al., 2001). Pnos, 5´-upstream 
region of nopaline synthase gene. NPT-II, Coding region of nopaline synthase gene. 
Tnos, Polyadenylation region of nopaline synthase gene. E12, 5´-upstream region of 
CaMV 35S promoter (-419 to -90) X 2. P35S, 5´-upstream region of CaMV promoter 
(-90 to -1). � , 5´ -untranslated region of tobacco mosaic virus.  

 

The pUC18 plasmid containing the cDNA insert of clone 2-oxidase1 (CmGA2ox1) 

(Frisse et al., 2003) was isolated (2.5.3.) and digested with EcoRI (2.7.1.). The E12-

35S-�  MCS vector was digested with EcoRI at the same site and dephosphorylated 

(2.7.2.). The 2-oxidase1 cDNA fragment and the vector were ligated (2.7.4.). The 

plasmid DNA containing 2-oxidase1 was transformed into XL1-blue competent cells 

by electroporation (2.8.1.2.) and the bacterial colonies screened by using PCR (2.9.2.). 

HindIII  XbaI  SacI 

�E12 P35S CmGA20ox1 S Tnos 

EcoRI 

E12 �  MCS (pB2113-MCS) 

XbaI  BamHI SmaI 

BamHI-HpaI-XhoI-EcoRI-KpnI-SpeI-SacI  

5´-GATCCGTTAACCTCGAGGAATTCGGTACCACTAGTGAGCT-3´ 
3´-GCAATTGGAGCTCCTTAAGCCATGGTGATCAC-5´ 

E12 �  GUS (pB2113-GUS) 

Tnos NPT-II  Pnos 

HindIII  SacI 

�E12 P35S GUS Tnos 

EcoRI 

Tnos NPT-II  Pnos 

HindIII  

�E12 P35S MCS Tnos Tnos NPT-II  Pnos 
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a

1   2     3     4     5     6     7     8     9    10    -    + 

b

11  12   13   14  15   16   17    18   19   20    -    + 

c 

1598 

1093 
804 

504 447 447 

1 8 1 18 8

HindIII  XhoI Undig. 

The resulted PCR products were analysed by agarose gel electrophoresis (Figure 6a 

and b). The 13 colonies that gave positive result by PCR were grown overnight at 37oC 

and their plasmid DNA were isolated by the mini preparation method (2.5.2.). 

 

Figure 6: a, b: Colony screening by PCR, - negative control, + positive control 
(plasmid DNA of 2-oxidase1) and c: digestion of plasmid DNA from colony No. 1 and 
No. 8, with HindIII and XhoI to confirm the orientation of the insert. Undig., 
undigested plasmid DNA. 

 

Sense (S) and antisense (AS) orientations of the full-length cDNA insert encoding for 

pumpkin GA 2-oxidase1 were confirmed by restriction endonuclease digestion. Clone 

No. 1 (CmGA2ox1 AS orientation) and No. 8 (CmGA2ox1 S orientation) were chosen 

and digested with HindIII and XhoI (Figure 6c). HindIII cuts the 2-oxidase1 gene at 

two positions and the binary vector at one position, releasing three fragments of 447 

bp, 1598 bp and 10.7 kb in the case of 2-oxidase1 AS orientation, while 447 bp, 1093 

bp and 11.3 kb in the case of 2-oxidase1 S orientation. Whereas XhoI cut each, 2-

oxidase1 gene and binary vector, at one position, releasing two fragments of 804 bp 

and 12 kb in the case of 2-oxidase1 AS orientation, while 504 bp and 12.3 kb in the 

case of 2-oxidase1 S orientation. The constructs were transformed into Agrobacterium 

tumefaciens, strain C58C1, carrying the virulence plasmid pMP90 by electroporation 

(2.8.2.2.), or tri-parental mating (2.8.2.3.) method. Ten Agrobacterium colonies 

obtained for each transformation with the sense or antisense constructs were checked 

by PCR using specific primers for each of the GA-oxidases (Figure 7).  



Experiments and Results   

 45 

1      2      3       4       5       6      7       8       9     10      - 

7-oxidase sense 

1      2       3      4      5       6      7       8      9     10      - 
7-oxidase antisense 

1      2       3       4       5      6      7      8       9     10      - 

20-oxidase sense 

1      2       3       4      5      6       7      8       9     10      - 
3-oxidase sense 

1       2       3      4      5       6      7       8       9     10      - 
3-oxidase antisense 

1       2      3      4       5       6      7       8       9     10      - 

2-oxidase sense 

1       2       3      4      5       6      7       8       9     10      - 

2-oxidase antisense 

 

Figure 7: PCR screening of the Agrobacterium colonies transferred with constructs 
containing cDNAs of the pumpkin GA-oxidases in sense and antisense orientation. 
Circled number, colonies were chosen for plasmid DNA preparation to transform 
Arabidopsis plants. PCR products: 7-oxidase sense and antisense (7-ox For./7-ox Rev., 
915 bp); 20-oxidase1 sense (20-ox-1 For./20-x-1 Rev., 1140 bp); 3-oxidase1 sense and 
antisense (3-ox-1 For./3-ox-1 Rev., 900 bp); 2-oxidase1 sense and antisense (2-ox 
For./2-ox Rev., 800 bp). 

 

The Agrobacterium plasmid DNA for Arabidopsis transformation was checked by 

restriction digestion with (HindIII). HindIII cuts the 7-oxidase gene and the binary 

vector at one position, releasing two fragments of 1014 bp and 11.5 kb in the case of 7-
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oxidase S orientation (Figure 8a), while 1845 bp and 10.7 kb fragments in the case of 

7-oxidase AS orientation and cuts only the binary vector of 20-oxidase1 gene, 

releasing one fragment 12.7 kb (Figure 8a). With 3-oxidase1 (CmGA3ox1) and 2-

oxidase1 (CmGA2ox1) genes, HindIII cuts each gene at two positions and the binary 

vector at one position, releasing three fragments: 503 bp, 961 bp and 11.3 kb in the 

case of 3-oxidase1 S orientation, while 503 bp, 1618 bp and 10.6 kb in the case of 3-

oxidase1 AS orientation (Figure 8b); 447 bp, 1093 bp and 11.3 kb in the case of 2-

oxidase1 S orientation, while 447 bp, 1598 bp and 10.7 kb in the case of 2-oxidase1 

AS orientation (Figure 8c). 

 

Figure 8: Agarose gel analysis of plasmid DNAs digested with HindIII. 

 1 and 5 sense digested with HindIII 

 2 antisense digested with HindIII 

 3 and 6 sense undigested 

 4 antisense undigested 

 

3.1.2. Transformation and selection of Arabidopsis plants 

Transformation of Arabidopsis wild type plant was performed by infection with 

Agrobacterium tumefaciens, harbouring the pumpkin GA-oxidases constructs, using 

the floral dip method (Clough and Bent, 1998) (2.10.). To get a high rate of 

transformation, Arabidopsis plants were dipped two times at seven-day intervals. The 

first dip was done after clipping and the second dip one week later. Ten thousand seeds 

for each construct were selected for kanamycin resistance. The rates of transformation 

1845 

1014 

a
1 2 3 4 5 6 

7-ox 20-ox-1 

1618 

961 

503 503 

b
1 2 3 4 

3-ox-1 

447 447 

1093 

1598 

c 
1 2 3 4 

2-ox-1 
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obtained by kanamycin selection were (0.7% for 7-oxidase S, 1.0% for 7-oxidase AS; 

1.1% for 20-oxidase1 S; 0.9% for 3-oxidase1 S, 0.7% for 3-oxidase1 AS; 0.6% for 2-

oxidase1 S, 1.0% for 2-oxidase1 AS).  Twenty-five independent transgenic lines of 

three-week-old T1 seedlings of each gene in sense and antisense were transferred to 

soil. The T2 seeds from the self-fertilized flowers were sown on MS media containing 

kanamycin. Resistant to sensitive seedlings were segregated 3:1. The agreement fits to 

the theoretical 3:1 distribution predicted by mendelian inheritance. During the 

segregation analysis of CmGA20ox1 S and CmGA2ox1 S seeds, the germination 

exhibited a disturbed segregation ratio of T2 generation seeds compared with wild type 

and antisense lines and the seeds had a high degree of dominance. The seeds exposed 

to apply GA3 at 10-6M during germination of seedlings for 4 weeks. The results show 

that both homozygous and heterozygous lines responded to GA3 when compared either 

with WT plants, or AS lines. T2 rosette leaves were collected, their genomic DNA 

extracted (2.5.1.) and the integration of the pumpkin GA-oxidases were tested by PCR 

using specific primers as illustrated in Figure 9. To confirm the orientation of GA-

oxidase genes, we used �  forward primer for all constructs. In the case of 7-oxidase 

sense (� /7-ox Rev. sense primer) or antisense (� /7-ox Rev. antisense primer), the 

PCR products were 950 bp, and 826 bp, respectively (Figure 9a). In 20-oxidase1 sense 

orientation (� /20-ox-1 Rev. sense primer) and (20-ox For./20-ox Rev.), the PCR 

products were 1350 bp, and 1001 bp, respectively (Figure 9b). In the case of 3-

oxidase1 sense (� /3-ox-1 Rev. sense primer) or antisense (� /3-ox-1 Rev. antisense 

primer), the PCR products were 937 bp, and 808 bp, respectively (Figure 9c). In the 

case of 2-oxidase1 sense (� /2-ox Rev. sense primer) or antisense (� /2-ox Rev. 

antisense primer), the PCR products were 952 bp, and 1261 bp, respectively (Figure 

9d).  

Ten independent transgenic lines for sense orientation and five lines for antisense 

orientation were re-screened at T3 generation to identify homozygous transgenic lines. 

Seedlings from the 7-oxidase transgenic plants (lines 8.9, 12.8, 13.1 for sense and 

15.9,  14.2 for antisense), 20-oxidase1 transgenic plants (lines 10.8, 2.2, 17.2 for 

sense), 3-oxidase1 transgenic plants (lines 1.3, 19.4, 17.7 for sense and 6.1, 5.9 for 

antisense), and 2-oxidase1 transgenic plants (lines 5.5, 9.8, 12.9 for sense and 3.1, 7.7 

for antisense) were cultured in a growth chamber and used to select homozygous 
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transgenic plants, which produced seeds 100% kanr. All of the subsequent experiments 

were carried out with seeds from the homozygous lines of T3 and T4 generation. 

 

Figure 9: PCR analysis of the integration of pumpkin GA-oxidase genes by PCR. A 
circled numbers, the plants were chosen for segregation of homozygous lines. 

 a) 7-oxidase selection lines  b) 20-oxidase1 selection lines 

 c) 3-oxidase1 selection lines  d) 2-oxidase1 selection lines 

 

3.1.3. Expression of GA-oxidases affect plant growth and morphology 

To understand the importance of pumpkin GA-oxidase genes in plant development, we 

fused the full-length of 7-oxidase (CmGA7ox), 20-oxidase1 (CmGA20ox1), 3-oxidase1 

(CmGA3ox1) and 2-oxidase1 (CmGA2ox1) cDNAs to E12-35S-�  promoter cassette in 

sense and antisense orientation and introduced it into wild-type Arabidopsis plants by 

Agrobacterium-mediated gene transfer. We followed the development of two to nine-

S11 S12 S13 S14 S15 S16 S17 S8 S9 S10 AS2 AS14 AS15 AS16 

a 

d

S3 S4 S5 S6 S8 S9 S12 S13 S16 S17 AS1 AS3 AS4 AS5 AS7 

c 

S16 S17 S18 S19 S20 S21 S22 S1 S13 S14 AS1 AS3 AS4 AS5 AS6 

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S17 S18 S19 

b
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week-old plants. Arabidopsis 14-day-old seedlings over-expressing CmGA7ox or 

CmGA3ox1 showed altered root shapes when compared to wild type seedlings (Figure 

10). The seedlings of CmGA7ox over-expression resulted in one thin long root with 

very few lateral roots while the seedlings of CmGA3ox1 over-expression resulted in 

many thick lateral roots. Seedlings over-expressing CmGA3ox1 showed also enlarged 

leaves and an increased number of trichomes relative to seedlings over-expressing 

CmGA7ox or wild type seedlings (Figure 10).  

 

Figure 10: Phenotypes of 14-day-old seedlings gown in MS media. Wild type 
seedlings (left) compared to seedlings expressing sense copies of CmGA7ox (S12.8, 
middle) or expressing sense copies of CmGA3ox1 (S17.7, right). Bar = 1 cm. 

 

Most independent lines for CmGA7ox S and CmGA3ox1 S for 7-week-old plants 

showed slender phenotypes (Table 10). Slender phenotypes are characterized by 

extremely rapid growth of seedlings and adult plant stages. The mature plants were 

tall, slender, and appeared to have constitutive GA responses. At the time of flowering, 

the homozygous plants were much taller than controls essentially because of increased 

internode length. The height of CmGA7ox S12.8 line for 7-week-old was increased 

relative to wild type or the two CmGA7ox AS14.2, AS15.9 lines. Similarly, the height 

of CmGA3ox1 S17.7 line was extremely increased compared to wild type plants or 

plants transformed with antisense copies of CmGA3ox1 lines AS6.1, and AS5.9 (Table 

10). Their rosette leaf blades (nine-week-old) were pale green, slightly longer and 

wider than those of wild type plants and transgenic antisense lines (Figure 11, 12). 

CmGA7ox S12.8 line and CmGA3ox1 S17.7 line flowered earlier (approximately 34 

WT CmGA7ox CmGA3ox1 
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and 30 days after sowing, respectively) compared to control plants (Table 10). The 

internode length for CmGA7ox S12.8 line and CmGA3ox1 S17.7 line of 7-week-old 

were approximately twice the length of either wild type plants or antisense lines.  

 

Table 10: Phenotypic characterization of 7-week-old Arabidopsis plants over-
expressing pumpkin GA-oxidases. Values are means of 5 plants/line ± standard 
deviation (SD). 

Phenotype Height of 
plant (cm) 

Internode 
length (cm) 

Number of 
Siliques 

Flowering 
Time/day 

WT 7.4 ± 1.0 1.2 ± 0.1 0.0 ± 0.0 42.6 ± 1.0 

7-ox AS 14.2 8.4 ± 0.5 1.2 ± 0.1 0.0 ± 0.0 42.2 ± 0.8 

7-ox AS 15.9 7.8 ± 0.5 1.2 ± 0.1 0.2 ± 0.4 41.4 ± 0.5 

7-ox S 13.1 19.4 ± 1.1 2.0 ± 0.1 3.2 ± 1.6 39.8 ± 0.8 

7-ox S 8.9 30.1 ± 0.7 2.1 ± 0.2 6.2 ± 1.8 36.0 ± 0.7 

7-ox S 12.8 32.8 ± 3.1 2.1 ± 0.1 7.8 ± 1.5 34.2 ± 1.6 

WT * 11.5 ± 0.7 1.4 ± 0.2 4.6 ± 2.1 41.2 ± 0.4 

20-ox-1 S 10.8* 9.5 ± 0.6 1.2 ± 0.1 1.3 ± 0.8 40.0 ± 0.7 

20-ox-1 S 2.2* 3.1 ± 1.0 0.0 ± 0.0   0.0 ± 0.0 48.6 ± 0.5 

20-ox-1 S 17.2* 1.3 ± 0.1 0.0 ± 0.0 0.0 ± 0.0 48.6 ± 0.3 

WT 8.6 ± 0.6 1.2 ± 0.1 0.0 ± 0.0 42.8 ± 1.1 

3-ox-1 AS 6.1 7.2 ± 0.5 1.3 ± 0.1 0.0 ± 0.0 42.4 ± 1.1 

3-ox-1 AS 5.9 8.0 ± 0.7 1.3 ± 0.1 1.0 ± 1.4 42.6 ± 0.5 

3-ox-1 S 1.3 21.9 ± 1.3 2.0 ± 0.1 7.8 ± 0.8 32.4 ± 0.9 

3-ox-1 S 19.4 28.9 ± 1.7 2.0 ± 0.1 17.6 ± 1.5 29.4 ± 1.1 

3-ox-1 S 17.7 32.3 ± 3.1 2.1 ± 0.2 34.8 ± 1.3 30.0 ± 1.7 

WT * 11.3 ± 0.9 1.5 ± 0.2 1.0 ± 1.4 41.0 ± 1.0 

2-ox-1 AS 3.1* 10.8 ± 0.8 1.6 ± 0.1 1.0 ± 1.4 40.6 ± 1.3 

2-ox-1 AS 7.7* 12.0 ± 0.4 1.6 ± 0.1 3.0 ± 1.2 42.0 ± 1.6 

2-ox-1 S 9.7* 1.5 ± 0.5 0.0 ± 0.0 0.0 ± 0.0 53.6 ± 1.0 

2-ox-1 S 5.5* 1.3 ± 0.4 0.0 ± 0.0 0.0 ± 0.0 54.8 ± 1.1 

2-ox-1 S 12.9* 1.1 ± 0.1 0.0 ± 0.0   0.0 ± 0.0 57.0 ± 1.0 

* Plants have been transferred to soil after 28 days in MS media containing 10-6M GA3
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The axes were slightly thinner and the number of siliques was much more in 

CmGA3ox1 S than CmGA7ox S over-expressors (34.8 to 7.8). The phenotype of plants 

expressing antisense copies did not change compared to the wild type plants. 

 

Figure 11: Morphological characterization of 7-week-old Arabidopsis plants 
containing sense (S) or antisense (AS) copies of pumpkin 7-oxidase (CmGA7ox). 
Wild-type plants (WT) and antisense lines are displayed as control. 

 

Figure 12: Morphological characterization of 7-week-old Arabidopsis plants 
containing sense (S) or antisense (AS) copies of pumpkin 3-oxidase1 (CmGA3ox1). 
Wild-type plants (WT) and antisense lines are displayed as control. 
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Most of transgenic lines (10 lines) obtained for CmGA20ox1 S and CmGA2ox1 S 

showed dwarf phenotypes (Figure 13 and 14). The transgenic Arabidopsis plants 

carrying CmGA20ox1 S10.8, S2.2, and S17.2 lines showed a range of phenotypes. The 

height of the transformants ranged from 9.5 to 1.3 cm, whereas that of the wild type 

was 11.5 cm (Figure 13 and Table 10). The transgenic S17.2 line had a dwarf 

phenotype and showed the strongest expression of the CmGA20ox1 as examined by 

RT-PCR (Figure 18). After the same number of days of vegetative growth, the size of 

the leaves of the CmGA20ox1 over-expressors were considerably less than those of the 

control plants (Figure 13). These leaves had also shorter petioles and a slight bluish 

green colour compared to those of the control plants. In addition, there was a 

difference in the time of the flowering between the control plants and CmGA20ox1 

expressing lines. The control plants bolted and formed flowers well before the 

CmGA20ox1 S expressing lines did (Table 10). The control plants (WT) began to bolt 

at 41 days, whereas the over-expressing lines S2.2 and S17.2 took 48 days. The 

CmGA20ox1 S expressing plants went on to form flowers, siliques and set seed. The 

final seed yields were considerably less than that obtained with control plants. The 

lower yield of seed was due to, at least in part, the CmGA20ox1 S17.2, and S2.2 lines 

producing fewer axillary shoots. The control plants had an average of seven leaves per 

rosette, whereas the CmGA20ox1 over-expressing lines S10.8, S2.2, and S17.2 had 9, 

6, and 12 leaves per rosette, respectively.  

 

 

 

 

 

 

 

 

Figure 13: Morphological characterization of 7-week-old Arabidopsis plants 
containing sense (S) copies of pumpkin 20-oxidase1 (CmGA20ox1). Wild-type plants 
(WT) are displayed as control. 
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The Arabidopsis plants over-expressing the pumpkin 2-oxidase1 (CmGA2ox1) showed 

a typical phenotype for GA deficient dwarf plants (Figure 14). The plants were 

dwarfed with a strongly retarded phenotype. The dwarf line possess small and dark 

green rosette leaves compared to that of wild type and to the plants having copies of 

the CmGA2ox1 in the antisense orientation (Figure 14). A range of dwarf phenotypes 

was observed for the CmGA2ox1 over-expressors. The lines S9.7, S5.5, and S12.9 

were chosen for further characterization. CmGA2ox1 S12.9 line showed the most 

severe dwarf phenotype compared to S5.5 and S9.7 lines (Figure 14). It had a reduced 

height of 1.1 cm whereas the wild type had a height of 11.3 cm. In line S12.9, the 

flowering was delayed up to 2 weeks compared to antisense lines and wild type plants. 

Internode elongation in the extremely dwarfed transformants was not observed even 

with nine-week-old plants. The transgenic lines showing severely dwarf phenotypes 

did not bear any seeds after 7 weeks (Figure 14 and Table 10).  

 

Figure 14: Morphological characterization of 7-week-old Arabidopsis plants 
containing sense (S) or antisense (AS) copies of pumpkin 2-oxidase1 (CmGA2ox1). 
Wild-type plants (WT) and antisense lines are displayed as control. 
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Arabidopsis plants over-expressing pumpkin 7-oxidase (CmGA7ox) and pumpkin 3-

oxidase1 (CmGA3ox1) resulted in plant that develop more siliques in long day at week 

nine after sowing. The siliques of the CmGA3ox1 over-expressors matured earlier than 

those of the CmGA7ox over-expressors. Figure 15 shows the effect of over-expressing 

CmGA7ox S12.8 line and CmGA3ox1 S17.7 line on final seed weight per Arabidopsis 

plants. The final seed weight for CmGA3ox1 sense over-expressors was significantly 

higher (2.6 g) than CmGA7ox sense over-expressors (1.7 g). Arabidopsis plants over-

expressing pumpkin seed specific CmGA20ox1 sense or CmGA2ox1 sense had less 

siliques (Table 10). Figure 15 demonstrates that expression of both pumpkin 

CmGA20ox1 sense and CmGA2ox1 sense affect the yield of surviving seeds. The final 

seed weight observed with CmGA20ox1 S17.2 line over-expressors was reduced to 0.6 

g, while with CmGA2ox1 S12.9 line over-expressors seed mass was reduced to 0.1 g. 

There was no significant different in seed weight between antisense and wild type 

plants. 

 

Figure 15: Seed weight of 9-week-old Arabidopsis plants expressing sense (S) or 
antisense (AS) copies of pumpkin CmGA7ox, CmGA3ox1 and CmGA2ox1 and sense 
copies of pumpkin CmGA20ox1. Wild-type plants (WT) of the respective 
developmental stage are displayed as control. 
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3.2. Quantification of pumpkin GA-oxidase expression by RT-PCR 

3.2.1. Quantitative RT-PCR 

RT-PCR (reverse transcription-polymerase chain reaction) is the most sensitive 

technique for mRNA detection and quantification currently available. RT-PCR can be 

used to quantify mRNA levels of small samples. In fact, this technique is sensitive 

enough to quantify RNA from a single cell (Prediger, 2001). Because of its sensitivity, 

RT-PCR has been coupled with other protocols for absolute quantification purposes. In 

competitive RT-PCR, known amounts of an internal standard are co-amplified in the 

same reaction tube with the sequence of interest, allowing the expression levels of the 

gene(s) under investigation to be determined (Freeman et al., 1999) (Figure 16).  

 

 

Figure 16: Diagram of quantitative RT-PCR. 
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The internal standard competes with the native sequence of the gene(s) of interest for 

primers, deoxynucleoside triphosphates, enzyme, and other reagents, thus reducing the 

signal of the native gene when the standard is in excess. As the amount of the internal 

standard increases, the signal of the native gene decreases. Co-amplifying an internal 

standard provides an efficient method of relating the product yield to the initial amount 

of transcript (Wong et al., 1994). 

3.2.2. Quantification of the expression of pumpkin GA-oxidases in the transgenic 

Arabidopsis lines by RT-PCR 

For the preparation of internal RNA standards, amplified genomic DNA of each GA 7-

oxidase (CmGA7ox) and GA 20-oxidase1 (CmGA20ox1) genes was used containing 

~200 bp-long introns. For the GA 3-oxidase1 (CmGA3ox1) gene, amplified genomic 

DNA containing ~150 bp-long introns was used (Frisse, 1999). For preparation of 

internal RNA standards for the GA 2-oxidase1 (CmGA2ox1), pBluescript SK plasmid 

was digested with HindIII that released a 448 bp fragment. The vector containing the 

remaining cDNA was re-ligated and used for standard RNA synthesis (Frisse et al., 

2003). Plasmid-DNA was isolated from single transformants by using a Qiagen 

plasmid Midi Kit (2.5.3.). Plasmids (1 µg each) containing inserts in sense orientation 

coding for CmGA7ox, CmGA20ox1 and CmGA3ox1 were transcribed in vitro by using 

a T7 transcription kit (MBI-Fermentas, St. Leon-Rot, Germany), whereas a T3 

transcription kit was used to transcript CmGA2ox1 gene. RNA molecules were purified 

by using phenol/chloroform (2.4.2.), ethanol precipitated (2.4.3.), stored at -70oC, and 

used as internal RNA standards. 

Before performing quantitative RT-PCR, total RNA samples were analysed by agarose 

gel electrophoresis (2.6.) to ensure that the RNA was not degraded. For quantification, 

total RNA (50 ng) supplemented with different amounts of RNA standards and 

sequence-specific antisense RT primers (5 pmol) (Table 7) for each of the four genes 

were reverse transcribed using first-strand cDNA synthesis reactions in a total volume 

of 5 µl. One micro-liter of each of the reverse-transcribed products was amplified by 

PCR (2.9.1.) using sequence-specific sense (F) and antisense (R) primers (2 pmol 

each) (Table 7). Products were analysed by electrophoresis on 1% agarose gel, stained 

by ethidium bromide and visualized by UV translumination. Quantification of RNA 
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expression levels were done by comparing the intensity of the bands for each gene 

with those produced by internal RNA standards.  

RNA expression levels for the four GA-oxidase genes were determined in pre-selected 

homozygous lines of Arabidopsis by RT-PCR. Transcript levels of pumpkin 7-oxidase 

were determined for the three sense lines (S13.1, S8.9, and S12.8) by comparison of 

CmGA7ox transcript (915 bp, lower bands) and different amounts of CmGA7ox 

standard (1100 bp, upper bands). They contained 60, 80, and 100 µg of transcripts per 

g of total RNA, respectively. No transcripts were found in the wild type plants and 

antisense lines. The difference in the phenotype correlated with the difference of 7-

oxidase expression levels in the sense lines (Figure 17), plants having higher 

expression levels showed a more pronounced phenotype difference when compared to 

wild type plants or antisense lines (Figure 17). 

 

 

Figure 17: Expression levels of transgenic Arabidopsis plants containing sense (S) or 
antisense (AS) copies of pumpkin GA 7-oxidase (CmGA7ox) lines. The upper bands 
represent the standard (1100 bp); the lower are the transcript bands (915 bp). - negative 
control, +1 positive control (plasmid DNA of 7-oxidase plus intron), +2 positive 
control (plasmid DNA of 7-oxidase). 100 pg; 10 pg; 1 pg; 0.1 pg; 0.01 pg and 0 are the 
amounts of the RNA standard. 
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Transcript levels of CmGA20ox1 were identified in only one line (S17.2) of the 

Arabidopsis plants transformed with sense copies of pumpkin GA 20-oxidase1. In line 

S17.2 was estimated to 10 µg of transcripts per g of total RNA by comparison of 

CmGA20ox1 transcripts (1140 bp, lower bands) with CmGA20ox1 standard (1340 bp, 

upper bands). In the other two transgenic lines S10.8, and S2.2 as well as in wild type 

plant no transcripts were detected by RT-PCR (Figure 18). 

 

 

 

 

 

 

 

 

 

Figure 18: Expression levels of transgenic Arabidopsis plants containing sense (S) 
copies of pumpkin GA 20-oxidase1 (CmGA20ox1) lines. The upper bands represent 
the standard (1340 bp); the lower are the transcript bands (1140 bp). - negative control, 
+1 positive control (plasmid DNA of 20-oxidase plus intron), +2 positive control 
(plasmid DNA of 20-oxidase). 100 pg; 10 pg; 1 pg; 0.1 pg; 0.01 pg; 5 fg; 1fg and 0 are 
the amounts of the RNA standard. 

 

Transcript levels of CmGA3ox1 were determined in three sense lines by comparison of 

CmGA3ox1 transcript (900 bp, lower bands) with different amounts of CmGA3ox1 

standard (1051 bp, upper bands) and were calculated to be 20, 100, and 1000 µg of 

transcripts per g of total RNA for S1.3, S19.4, and S17.7 lines, respectively. No 

transcripts levels were detected in antisense lines or wild type plants (Figure 19). 
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Figure 19: Expression levels of transgenic Arabidopsis plants containing sense (S) or 
antisense (AS) copies of pumpkin GA 3-oxidase1 (CmGA3ox1) lines. The upper bands 
represent the standard (1051 bp); the lower are the transcript bands (900 bp). - negative 
control, +1 positive control (plasmid DNA of 3-oxidase plus intron), +2 positive 
control (plasmid DNA of 3-oxidase). 100 pg; 10 pg; 1 pg; 0.1 pg; 50 fg; 0.01 pg; 5 fg 
and 0 are the amounts of the RNA standard. 

 

CmGA2ox1 expression levels were estimated to be 20, 90 and 125 µg transcripts per g 

of total RNA for the three most dwarf lines S5.5, S9.8 and S12.9, respectively. No 

transcripts for the pumpkin GA 2-oxidase1 were detected in CmGA2ox1 AS lines and 

WT plants. The difference in the phenotypic severity in the 2-oxidase sense lines was 

due to the different pumpkin GA 2-oxidase1 expression levels (Figure 20). Line S12.9 

showed the highest expression level and the most severe dwarfed phenotype. 
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Figure 20: Expression levels of transgenic Arabidopsis plants containing sense (S) or 
antisense (AS) copies of pumpkin GA 2-oxidase1 (CmGA2ox1) lines. The upper bands 
represent the transcript (800 bp); the lower are the standard bands (344 bp). - negative 
control, +1 positive control (plasmid DNA of 2-oxidase), +2 positive control (plasmid 
DNA of 2-oxidase minus 448 bp fragment). 100 pg; 10 pg; 1 pg; 0.1 pg; 0.01 pg; and 0 
are the amounts of the RNA standard. 

 

3.3. Quantification of endogenous GA levels in transgenic lines 

We analysed endogenous GA levels in 7-week-old transgenic Arabidopsis plants 

(shoot part) by gas chromatography-mass spectrometry to analyse whether GA 

biosynthesis is altered in the phenotype of transgenic lines and to determine to which 

extent and which step of the GA biosynthetic pathway are affected. The later stage of 

the GA biosynthesis pathway branches downstream of GA12. The non-13-

hydroxylation branch and the early 13-hydroxylation branch are parallel portions of 

the pathway that produce GA4 and GA1, respectively (Figure 1). We measured the GA 

levels of both branches in WT plant, CmGA7ox AS line, and CmGA7ox S line that 

show a high transcript levels. The amount of GA12-aldehyde of 7-oxidase sense over-

expression line in Arabidopsis plants were increased compared to wild type plant and 

transgenic antisense line (Figure 21a). The level of GA12 in WT plant was near in 

2-ox-1 S 9.7 2-ox-1 S 5.5 2-ox-1 S 12.9 

800 

344 

WT 2-ox-1 AS 7.7 

100    10      1     0.1   0.01    0 
 pg     pg     pg     pg     pg 

100     10      1     0.1  0.01     0 
 pg      pg     pg    pg     pg 

100     10      1     0.1   0.01    0 
 pg      pg     pg     pg     pg 

100    10      1     0.1    0.01    0 
 pg     pg     pg     pg     pg 

100    10      1     0.1   0.01    0 
 pg     pg     pg     pg     pg 

    -      +1     +2 

    -      +1     +2 



Experiments and Results   

 61 

CmGA7ox AS line. The GA12 level was dramatically increased in the 7-oxidase sense 

over-expressing line compared with those of wild type plant or transgenic antisense 

line. The non-13-hydroxylated metabolites GA9 and GA25 were slightly elevated in 

CmGA7ox S line; however, the levels of GA15 and GA24 were similar to WT plant and 

antisense line. The levels of bioactive GA4 and inactivated GA34 were slightly 

increased compared to control plants (Figure 21a). 

 

Figure 21: Endogenous GA levels in 7-week-old wild type (WT) and transgenic 
Arabidopsis plants expressing sense (S) or antisense (AS) copies of pumpkin 7-
oxidase (CmGA7ox). a: non-13-hydroxylation pathway. b:  13-hydroxylation pathway. 
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active in Arabidopsis plants (Tal� n et al., 1990). In the 13-hydroxylated branch, the 

intermediate GA1 and GA20 were unaffected in the CmGA7ox S line relative to WT 

plant and antisense line. However, the amount of GA53 was significantly different 

between WT plant and transgenic antisense line (Figure 21b). 

The pumpkin GA 20-oxidase1 (CmGA20ox1) is known to produce inactive 

tricarboxylic acid GAs of no known physiological function (Lange, 1998). As shown 

in Figure 22a for non-13-hydroxylated GAs, the level of endogenous GA4 (a 

biologically active GA) and its precursor GA24 and GA9 were reduced in dwarf 

CmGA20ox1 S line compared to WT plant, whereas, inactive GA25 tricarboxylic acid 

was increased. Moreover, the level of endogenous GA34 in CmGA20ox1 sense line was 

increased relative to wild type plant, and GA12-aldehyde together with GA12, which 

initiated the first stage in non-hydroxylated pathway, were reduced. The content of 

GA20 and GA1 in the dwarf line over-expressors CmGA20ox1 were unaffected 

compared to WT plant. In addition, the level of GA17 was extremely increased in 

dwarf over-expressors line relative to wild type plant (Figure 22b).  
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Figure 22: Endogenous GA levels in 7-week-old wild type (WT) and transgenic 
Arabidopsis plants expressing sense (S) copies of pumpkin 20-oxidase1 
(CmGA20ox1). a: non-13-hydroxylation pathway. b:  13-hydroxylation pathway. 
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Arabidopsis slender plant over-expressing CmGA3ox1 showed increased levels of 

endogenous GA12 as well as slightly increased levels of the precursors GA24 and GA9 

compared to AS line and WT plant. The level of endogenous GA4 (a biologically 

active) and GA34 were increased relative to antisense line or WT plant (Figure 23a). .  

 

Figure 23: Endogenous GA levels in 7-week-old Wild type (WT) and transgenic 
Arabidopsis plants expressing sense (S) or antisense (AS) copies of pumpkin 3-
oxidase1 (CmGA3ox1). a: non-13-hydroxylation pathway. b: 13-hydroxylation 
pathway. 
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In the 13-hydroxylated branch, the intermediate GA44, and GA20 were not significantly 

different between transgenic sense line and control plants (Figure 23b). The level of 

GA1 was unaffected in over-expressing CmGA3ox1 S lines compared to control plants 

(Figure 23b). 

We quantified GAs in shoot parts that might be affected by ectopic expression of the 

GA 2-oxidase1 (CmGA2ox1). Consistent with our expectations, the main bioactive 

GAs (GA4) was substantially reduced in severe dwarf CmGA2ox1 S line compared to 

control plants. GA34, which is the inactive C-2 hydroxylated catabolites of GA4, was 

higher in CmGA2ox1 S line than in WT plant and AS line. Moreover, the levels of 

GA20 and GA9 were decreased relative to WT plant and AS line. In addition, GA12-

aldehyde, GA12, GA24, and GA9 were all present at low contents in CmGA2ox1 S line 

(Figure 24a). GA53, GA20, and GA1 were present in low amounts in sense line 

compared to WT plant. Whereas, there are no significant different in GA levels 

between antisense line and wild type plant (Figure 24b). 

 

Table11: GA levels of early 3-oxidation pathway (ng/plant) in 7-week-old wild type 
(WT) and transgenic expressing sense (S) or antisense (AS) copies of CmGA7ox, 
CmGA20ox1, CmGA3ox1, and CmGA2ox1. *plants have been transferred to soil after 
28 days in MS media containing 10-6M GA3. nd, no dilution of internal standard.  

GAs WT WT* 7-ox 
AS 

7-ox 
S 

20-ox-1 
S* 

3-ox-1 
AS 

3-ox-1 
S 

2-ox-1 
AS* 

2-ox-1 
S* 

GA14 0.01 nd 0.07 nd nd nd nd nd nd 

GA37 0.03 nd nd 0.01 0.01 0.01 0.01 nd nd 

GA36 0.92 0.48 1.32 0.82 0.87 1.13 0.91 0.55 0.31 

 

Table 11 shows the GA levels of the early 3-oxidation pathway (Figure 2). There was 

no significant difference between GA14 and GA37 in all transgenic lines compared to 

control plants. The level of GA36 was increased in CmGA20ox1 S line relative to WT 

plant. In CmGA2ox1 S line, the GA36 was decreased relative to control plants, whereas 

in CmGA7ox S line and CmGA3ox1 S line GA36 was unaffected compared to control 

plants. 



Experiments and Results   

 66 

 

 

Figure 24: Endogenous GA levels in 7-week-old wild type (WT) and transgenic 
Arabidopsis plants expressing sense (S) or antisense (AS) copies of pumpkin 2-
oxidase1 (CmGA2ox1). a: non-13-hydroxylation pathway. b: 13-hydroxylation 
pathway. 
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4. Discussion 

 

Most genes encoding the enzymes of GA biosynthesis have been identified in 

Arabidopsis and other plant species. However, the function and the regulation of the 

GA pool is not entirely understood. Over-expression of the enzymes catalysing the 

final steps of the GA biosynthetic pathway may be a resource to help understanding 

the role of GAs in regulating plant development and elucidating the GA biosynthetic 

pathway. Pumpkin seeds contain GA-oxidases with singular catalytic properties 

resulting in GAs of unknown function for plant development. 

In order to understand their potential to achieve changes in GA levels and their role for 

plant development, cDNA molecules of GA 7-oxidase (CmGA7ox), GA 20-oxidase1 

(CmGA20ox1), GA 3-oxidase1 (CmGA3ox1) and GA 2-oxidase1 (CmGA2ox1) 

isolated from developing pumpkin seeds have been over-expressed in Arabidopsis 

thaliana ecotype Columbia under the control of a strong promoter cassette (E12-35S-

� ). The four pumpkin GA-oxidases that were studied in this thesis offer a suitable tool 

for manipulating GA biosynthesis, controlling plant development, and might therefore 

be useful in agriculture and horticulture. 

Possible approaches for increasing bioactive GA levels in our transgenic plants include 

over-expression of CmGA7ox and CmGA3ox1 (4.1., 4.2.; Figure 25). For reduction of 

GA levels by over-expression of CmGA20ox1 and CmGA2ox1 has been utilized (4.3., 

4.4.; Figure 25). 

 

4.1. Over-expression of CmGA7ox 

Pumpkin contains GA 7-oxidase (CmGA7ox), a soluble dioxygenase, which oxidizes 

GA12-aldehyde to GA12 and, as a side reaction, 3� -hydroxylates GA12 to GA14 (Lange, 

1997; Frisse et al., 2003). The function of this soluble GA 7-oxidase is unclear and not 

found in other plant species. To study the influence of CmGA7ox on plant 

development and control of GA biosynthesis, cDNA molecules of CmGA7ox have 

been over-expressed in sense orientation under the control of strong promoter cassette 

in Arabidopsis thaliana. Wild type plants and antisense lines, obtained by 

transforming Arabidopsis with antisense copies of CmGA7ox were used as controls. 



Discussion   

 68 

The homozygous transgenic lines were characterized in terms of height, internode 

length, number of siliques, final seed weight, and flowering time. The homozygous 

transgenic Arabidopsis seedlings expressing CmGA7ox germinated earlier and had a 

two- to three-fold increase in root length compared to control plants (Figure 10). 

Effects of gibberellins on root growth have been reported earlier (Tanimoto, 1994; 

Yaxley et al., 2001; Fu and Harberd, 2003). Recently, Oda et al. (2003) studied the 

effect of XSP30 gene expression in the roots of cucumber (Cucumis sativus) by 

applying gibberellins to the shoot, suggesting that gibberellins are translocated to the 

roots or that gibberellins  stimulate the production of a mediator in the shoot that 

causes a response in roots. In the case of the Arabidopsis GA-deficient mutant ga1-3, 

root growth can be regulated by the DELLA genes RGA and GAI, suggesting that GAs 

stimulate root growth by inducing the degradation of these DELLA proteins (Fu and 

Harberd, 2003; Fleet and Sun, 2005). Moreover, other hormones, for example, both 

auxin and ethylene that play a role in regulating the action of GAs in root growth, can 

affect GA-regulated root and hypocotyls growth by modifying the stability of RGA 

(Fu and Harberd, 2003; Achard et al., 2003). 

At the later developmental stage, the homozygous transgenic plants had tall 

phenotypes, with longer internodes, early flowering, and more developed siliques 

compared to control plants (Figure 11, Table 10). RNA expression levels in different 

sense lines were determined by RT-PCR. The differences in the phenotypes can be 

attributed to the differences in the expression level of 7-oxidase sense lines with higher 

expression levels resulting in taller plants compared to control plants (Figure 11and 

17). 

Shoot parts of 7-week-old sense lines, antisense lines, and wild type plants were used 

for analysis of endogenous GAs.  In the non-13-hydroxylated pathway, the CmGA7ox 

over-expressors resulted in an increase of GA12 content and only a slightly increase in 

the GA4 content relative to wild type plants or transgenic antisense lines. GA4 is the 

predominant active GA in Arabidopsis (Tal� n et al., 1990). Moreover, there are no 

differences in the endogenous GA levels of the 3� -hydroxylation pathway between 

sense lines and control plants indicating that the 3� -hydroxylation side activity of 

CmGA7ox has no apparent effect on GA biosynthesis in the transgenic Arabidopsis 

lines. In addition, of the early 13-hydroxylated pathway, GA1 and GA20 contents were 
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unaffected in CmGA7ox sense lines, but GA53 levels decreased relative to transgenic 

antisense lines or wild type plants (Figure 21). 

The above-mentioned small variations in GA contents might be because the whole 

shoot system was investigated. It is possible that by using different types of tissues or 

other developmental stages for the analysis of GA content would give increased 

differences in GA content between CmGA7ox over-expressors and the control plants. 

Coles et al. (1999), for example, found that the over-expression of GA 20-oxidase 

encoding genes in Arabidopsis plants gave rise to elongated hypocotyls of seedlings, 

with increase in shoot growth, and early flowering with no significant differences in 

the levels of GA4 and GA1 between shoot tips of the transgenic lines and wild type 

plants. On the other hand, when they analysed the endogenous GAs in rosette leaves 

only, they reported a two- to three-fold increase in the level of GA4. It might also be 

that GA levels in Arabidopsis are closely regulated, so marked alternations in plant 

growth and development can be observed, while there are only small variations in the 

endogenous GA levels. These apparently small differences in GA content may have 

very significant physiological effects, as found in pea. In pea, it has been obtained that 

a relatively minor increase of GA1 levels in the ovary produced maximum fruit 

development whereas much higher doses of GA1 have to be treatment exogenously 

produce a  same effect (Rodrigo et al. 1997). 

The over-expression of ent-copalyl pyrophosphate synthase (CPS) and ent-kaurene 

synthase (KS) in Arabidopsis, which catalyse the first steps in GA biosynthesis, did 

not produce any effect on plant morphology but the level of ent-kaurene increased as 

well as the level of GA12 (Fleet et al ., 2003). The authors demonstrated that CPS is 

limiting for ent-kaurene production and suggested that the conversion of ent-kaurenoic 

acid (KA) to GA12 by ent-kaurenoic acid oxidase (KAO) may be an important rate-

limiting step for production of bioactive GAs. They suggest that over-expressing KAO 

in combination with CPS and/or GA 20-oxidase might result in plants with higher 

levels of bioactive GA compared to plant that have been obtained by over-expressing 

GA 20-oxidase (Fleet et al., 2003).  

Until now, only over-expression of GA 20-oxidases produced GA-overproduction 

phenotypes. In Arabidopsis, GA 20-oxidase over-expression had longer hypocotyls 

and petioles, larger rosette leaves, accelerated flowering and bolting, and longer stem, 



Discussion   

 70 

as well as increased levels of bioactive GAs (Huang et al., 1998; Coles et al., 1999). 

The same results were obtained in potato (Solanum tuberosum; Carrera et al., 2000). In 

tobacco, over-expression of a citrus GA 20-oxidase cDNA showed shoot elongation 

with high increase in the level of GA4 (Vidal et al., 2001). In addition, over-expression 

of Arabidopsis GA 20-oxidase showed that GAs not only affect plant elongation but 

also seems to effect biomass accumulation and lignin formation in transgenic tobacco 

plants (Biemelt et al., 2004). In hybrid aspen, over-expression of Arabidopsis GA 20-

oxidase resulted in increased of bioactive GA levels, and taller trees (Eriksson et al., 

2000).  

The data presented show that it is possible to manipulate the plant stature by over-

expressing pumpkin GA 7-oxidase in Arabidopsis, which produced GA-

overproduction phenotypes with elongated internode, shoot, and early flowering as 

well as increased root growth. These results demonstrate that over-expression of 

pumpkin GA 7-oxidase can be utilized to alter GA levels and regulate growth and 

development in transgenic plants.  

 

4.2. Over-expression of CmGA3ox1 

It is well known that GA 3-oxidases convert inactive GA precursors to biological 

active GAs and it is important to control plant development in the life cycle of the 

plant (Lester et al., 1997; Williams et al., 1998; Itoh et al., 1999; Yamaguchi et al., 

2001). In general, GA 3-oxidases catalyse reaction at the C-3�  position of C19-GAs to 

form biological active plant hormones (e.g. GA4 or GA1) (Figure 2). Further 

hydroxylation at C-2�  position, catalysed by a GA 2-oxidase, leads to inactive 

products GA34 and GA8, respectively. In pumpkin endosperm, a bi-functional GA 3-

oxidase1 (CmGA3ox1) catalyses both steps, 3-oxidation and 2-oxidation, and prefers 

C20-GAs to C19-GAs as the substrate (Lange et al., 1997b). In order to understand the 

function of this seed specific GA 3-oxidase1, CmGA3ox1 has been over-expressed 

under the control of a strong promoter cassette in Arabidopsis.  

Over-expression of the seed specific CmGA3ox1 leads to dramatic changes in plant 

growth and development (Figure 12, Table 10). Arabidopsis seedlings (14-day-old) 

over-expressing CmGA3ox1 had increased leaf growth and contained thicker roots 
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with more lateral roots as compared to wild type plants (Figure 10). Over-expression 

of CmGA3ox1 in Arabidopsis (7-week-old) resulted in phenotypes similar to the 

transgenic plants over-expressing CmGA7ox, a slender phenotype that flower earlier 

relative to wild type plants or transgenic antisense lines (Figure 12, Table 10). 

CmGA3ox1 over-expressing sense lines showed early full maturity and even displayed 

an increase in the seed set relative to control plants. The difference in the slender 

phenotypes was due to the different CmGA3ox1 expression levels (Figure 19). In 

addition, the internode length, the number of siliques, and the total seed weight per 

plant increased (Table 10). Furthermore, CmGA3ox1 S17.7 line developed more 

siliques than the control plants. Interestingly, the number of siliques and the seed 

weight recorded per plant were even higher in CmGA3ox1 in comparison with 

CmGA7ox over-expressors (Figure 15, Table 10). According to this observation, it 

development of the fruits in both type of over-expressors may proceed differently.  

The analysis of endogenous GA levels in transgenic CmGA3ox1 plants showed a two-

fold increase in GA4 content compared to control plants, as well as a slight increase in 

the inactive product GA34 (Figure 23). The high levels of GA4 and the correlation 

between GA4 and final shoot length suggest that GA4 plays an important role in 

growth and development of the transgenic Arabidopsis plants. Furthermore, the GA4-

producing activity of CmGA3ox1 was higher than its GA1-producing activity, 

suggesting that the CmGA3ox1 may stronger contribute to the non-13-hydroxylation 

pathway than to the early 13-hydroxylation pathway. The role of GA4 as the 

predominant bioactive GA can be attributed to its higher concentrations as compared 

to GA1 in Arabidopsis (Xu et al., 1997; Cowling et al., 1998). 

On the other hand, a small increase in GA4 levels was observed in CmGA7ox over-

expressors, suggesting that the differences in plant development can be explained by 

the local modulation of GA levels in both CmGA7ox and CmGA3ox1 over-expressors. 

The expression on rice genes involved in GA-biosynthesis and signaling, gives the 

indication that GAs are produced at the site where they act (reviewed by Sponsel and 

Hedden, 2004). Also on tobacco, Nty gene encoding 3� -hydroxylase is expressed at 

the site of GA action during stem elongation and flower organ development (Itoh et 

al., 1999). 
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The GA12, GA24, GA9, and GA25 levels were elevated in CmGA3ox1 over-expression 

lines compared to antisense lines and wild type plants (Figure 23). However, GA14, 

GA37 and GA36 (early 3-oxidation pathway) were unchanged in comparison to 

antisense lines and wild type plants (Table 11). Some of endogenous GAs from the 

non-13-hydroxylation pathway increased while those of the early 3-oxidation pathway 

and early 13-hydroxylation pathway remained unaffected, suggesting that Arabidopsis 

plants over-expressing CmGA3ox1 metabolises GAs mainly through the non-13-

hydroxylation pathway, thus preventing them from being available for the 13-

hydroxylated pathway. 

Phillips (2004) reported that the over-expression of GA 3-oxidase in Arabidopsis had 

no effect on the development of transgenic plants. Moreover, Isaelsson et al. (2004) 

found that over-expression of a GA 3-oxidase from Arabidopsis in hybrid aspen 

resulted in increased 3� -hydroxylation activity but showed no major changes in the 

morphology of the plant and also found only small changes in GA1 and GA4 levels. 

The authors suggested that the limiting step in formation of GA1 and GA4 is 20-

oxidation rather than 3-oxidation and that expression of GA 3-oxidase alone cannot 

increase the flux towards bioactive GAs. 

The results presented here imply that GA 3-oxidase1 as well as GA 7-oxidase 

catalyses rate-limiting steps of the GA biosynthetic pathway in Arabidopsis. However, 

further investigations on hormone cross talk will allow us to understand how GAs and 

other hormone interact to control plant development of CmGA7ox and CmGA3ox1 

over-expressors. 
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Figure 25: Strategies for manipulating plant development by increasing bioactive GA 
levels in transgenic plants, (over-expression of CmGA7ox and CmGA3ox1) or by 
reduction of GA levels (over-expressing of CmGA20ox1 and CmGA2ox1). 

 

4.3. Over-expression of CmGA20ox1  

Mutants deficient in GA-biosynthetic enzymes have been shown to cause dwarfism in 

a variety of plant species (Martin et al., 1997; Hedden and Proebsting, 1999). In GA 

biosynthesis, GA 20-oxidase is regulated by both developmental and environmental 

stimuli (Phillips et al., 1995; Xu et al., 1995; Garcia-Martinez et al., 1997). 

The normal activity of GA 20-oxidase is to carry out the sequential oxidation of GA12 
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GA25 and GA17 have no known physiological function, rather than C19-GAs (GA9 and 

GA20) (Lange, 1994, 1998; Lange et al., 1994b; Frisse et al., 2003). Theoretically, 

over-expression of this enzyme in tissues involved in GA biosynthesis should change 

the pathways leading to inactive products and by that reduce the levels of bioactive 

GAs resulting in dwarf plants. Several groups using different plant species tested this 

strategy and produced divert results. 

In Arabidopsis ecotype Wassilewskija, over-expression of CmGA20ox1 resulted in 

reduction of GA4 levels and unaffected GA1 levels but only a slight reduction in the 

height of the transgenic plants (Xu et al., 1999). The authors argued that the reduction 

of stem elongation required a large reduction in the content of GA4. Curtis et al. (2000) 

were successful in producing semi-dwarf phenotypes of Solanum dulcamara by over-

expression of CmGA20ox1. In their transgenic lines GA1 levels were reduced but GA4 

levels were unaffected and this indicated that in this plant the 13-hydroxylation 

pathway is preferred. It was demonstrated that a feed back control mechanism in GA 

biosynthesis, resulting in up-regulation of endogenous GA 20-oxidase gene 

(Arabidopsis and Solanum) and GA 3-oxidase gene was accountable for the non-

success in reducing plant height. However, in lettuce, Niki et al. (2001) obtained dwarf 

plants with high reduction of bioactive GA1 and GA4 and large accumulation of GA17 

and GA25, which are inactive products by over-expression of pumpkin GA 20-

oxidase1. 

We over-expressed sense copies of pumpkin GA 20-oxidase1 (CmGA20ox1) in 

Arabidopsis thaliana ecotype Columbia under the control of a strong constitutive 

promoter cassette (E12-35S-� ), similar to one used to express CmGA20ox1 in lettuce 

(Niki et al., 2001). The phenotypes of homozygous transgenic lines over-expressing 

CmGA20ox1 were dwarfed compared to the wild type plants. Morphological changes 

showed a reduction of rosette leaf size and shoot height (Figure 13). Furthermore, we 

observed that flowering was delayed and silique production was reduced compared to 

wild type plants (Table 10). Moreover, seed dormancy was observed in both 

heterozygous and homozygous lines, and these seeds, in contrast to wild type plants, 

germinated only in the presence of GA3. This behaviour is similar to GA-deficient 

mutants of Arabidopsis and tomato, where the application of GA is required for a full 

germination response (Koornneef and Van der Veen, 1980; Groot and Karssen, 1987; 
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Karssen et al., 1989, Derkx and Karssen 1994). In contrast, in the case of Solanum 

dulcamara, the semi-dwarfed plants over-expressing the pumpkin GA 20-oxidase1 

flowered earlier and produced more fruit and seeds (Curtis et al., 2000).  

To determine the expression levels of the transgene in Arabidopsis, mRNA levels were 

quantified from rosette leaves by RT-PCR. The results obtained showed, that the 

CmGA20ox1 S17.2 line had the highest transcript level (10 µg/g total RNA) (Figure 

18). This line expressed a dwarf phenotype (Figure 13) and the dwarfed plants had 

reduced levels of the biologically active GA4 (Figure 22). In the other lines, transcript 

levels were not found for CmGA20ox1 S10.8 and S2.2 lines. The phenotype of 

CmGA20ox1 S10.8 line was nearly unchanged compared to wild type plants. However, 

CmGA20ox1 S2.2 line had dwarfed phenotype. 

It is well known that GA 20-oxidase can contribute to the two branches of GA 

biosynthetic pathway; the non-13-hydroxylation and the early 13-hydroxylation 

pathway, which convert GA12 to GA9 and GA53 to GA20, respectively (Figure 2). In 

pumpkin, GA 20-oxidase converts more effectively the substrates of the non-13-

hydroxylated pathway than of the early 13-hydroxylated pathway (Lange et al., 

1994b). In our experiments, over-expression of CmGA20ox1 in Arabidopsis resulted in 

reducing most of the endogenous GAs of the non-13-hydroxylated pathway including 

GA4, by increasing the level of the tri-carboxylic GA25. The concentrations of GAs of 

the early-13-hydroxylated pathway were similar or unchanged relative to wild type 

plants, except for GA17 where a high accumulation was observed, being the amount of 

GA17 higher than the amount of GA25 (Figure 22). The transgenic Arabidopsis plants 

over-expressing CmGA20ox1 had increased levels of the tri-carboxylic GA25 and 

GA17, and reduced bioactive GA4 levels resulting in dwarfed phenotypes consistent 

with those obtained when the same gene was over-expressed in Arabidopsis (Xu et al., 

1999). Furthermore, the elevated levels of GA34 indicate the presence of an increased 

2-oxidation activity operating in the transgenic plants.  

Expressing pumpkin GA 20-oxidase1, which convert the biosynthetic pathway to 

inactive products, is one possible strategy for reducing GA content and plant height. 

We succeeded in producing dwarf Arabidopsis plants using this strategy that was also 

used successfully in lettuce (Niki et al., 2001) and partially in Solanum ducamara 

(Curtis et al., 2000). Other approaches have been made to reduce the levels of 
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bioactive GAs including antisense expression of GA 20-oxidase in Arabidopsis and 

potato (Coles et al., 1999; Carrera et al., 2000). Over-expression of KNOTTED-1 class 

of homeobox transcription factors may reduce the expression level of GA20ox genes. 

For instance, over-expression of NTH15, a tobacco KNOX gene, in transgenic tobacco 

decreases expression of endogenous GA 20-oxidase genes, results in reduced GA 

levels and abnormal leaf and flower morphology (Sakamoto et al., 2001). Antisense 

suppression of GA 3-oxidase genes was also effective in reducing GA levels in rice 

plants (Itoh et al., 2002). The transgenic rice plants by over-expressing antisense 

copies of OsGA3ox2 had reduced expression of the target gene and resulted in a semi-

dwarf phenotype. Our results showed that over-expressing CmGA20ox1 under the 

control of strong promoter cassette is a useful strategy, which can be extended to other 

plant species, for reduction of GA content and control of plant development. 

 

4.4. Over-expression of CmGA2ox1  

The balance between synthesis and catabolism controls the pool of bioactive GAs. GA 

2-oxidase is a catabolic enzyme that catalyses the conversion of bioactive GAs into 

inactive GAs by 2� -hydroxylation (Ross et al., 1995). The application of GA3 was 

reported to stimulate the expression of GA 2-oxidase genes in Arabidopsis, implying 

that the expression of these genes may be regulated through feed-forward mechanisms 

to maintain endogenous levels of bioactive GAs (Thomas et al., 1999). The authors 

found that two of three studied Arabidopsis 2-oxidase were most abundant in the 

inflorescence and developing siliques. This expression pattern was consistent with the 

role of GA 2-oxidases in reducing GA levels in seeds to promote dormancy. Martin et 

al. (1999) provided another evidence for this role upon studying the SLENDER gene of 

pea, which also encodes GA 2-oxidase. They observed hyper-elongation of slender 

mutant phenotype in seedlings, resulting in high levels of GA precursors in seeds, 

which are converted to active GAs upon germination. 

Over-expression of genes encoding GA 2-oxidase catabolic enzyme offer another 

possible approach to decrease GA levels and reduce plant height (Thomas et al., 1999; 

Schomburg et al., 2003; Sponsel and Hedden, 2004). Genetic manipulation of GA 2-

oxidase encoding genes has been carried out in different plant species. In rice, over-

expression of GA 2-oxidase resulted in inhibition of stem growth, small, dark green 
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leaves, and decayed development of reproductive organs (Sakamoto et al., 2001). 

Over-expression of poplar GA2ox (PtaGA2ox1) caused a dwarf transgenic hybrid 

poplar (Busov et al., 2003). Moreover, over-expression of Arabidopsis GA 2-oxidase 

in tobacco produced dwarfed phenotypes and it was found that GA not only affects 

dwarf phenotype but also seems to affect biomass accumulation and lignin formation 

(Biemelt et al., 2004). Over-expression of two of the eight Arabidopsis GA 2-oxidases 

(AtGA2ox7 and AtGA2ox8), that hydroxylate C20- instead of C19-GA precursors, 

showed decreased levels of active GAs and corresponding dwarf phenotypes in 

Arabidopsis (Schomburg et al., 2003). 

In pumpkin, only one GA 2-oxidase1 gene (CmGA2ox1) is known and its recombinant 

protein converts C19-GAs as a precursors. It efficiently inactivates both, bioactive GA1 

and GA4 (Frisse et al., 2003). To study the impact of CmGA2ox1 on altering GA 

biosynthesis and, by this, plant growth and development, we have over-expressed the 

pumpkin GA 2-oxidase1 in Arabidopsis plants. The morphological characteristics of 

Arabidopsis plants transformed with sense copies of CmGA2ox1 were similar to the 

phenotype of the deficient mutants that contain defective GA biosynthetic genes. They 

share severely reduced stem elongation, decreased leaf size, and dark green colour 

(Sun and Kamiya, 1994; Helliwell et al., 1998; Yamaguchi et al., 1998; Schomburg et 

al., 2003).  

The transgenic plants obtained had severe dwarfed phenotypes and delayed flowering. 

The leaf base was reduced in length resulting in leave clusters (Figure 14). The severe 

dwarf transgenic line (S12.9) had a dramatic decrease in the number of siliques, and 

seed weight per plant compared to wild type plants and antisense transgenic lines 

(Figure 15, Table 10). The phenotype of plants expressing antisense copies of 

CmGA2ox1 did not change compared to wild type plants. The difference in the 

phenotypic severity was due to the different CmGA2ox1 expression levels (Figure 20). 

In rice, over-expression of GA 2-oxidase (OsGA2ox1), using rice actin promoter, 

resulted in severe dwarf phenotypes and inhibited development of reproductive organs 

(Sakamoto et al., 2001). However, over-expression of the same gene under the control 

of shoot specific promoter OsGA3ox2, showed semi-dwarf phenotypes but the 

flowering and grain development were unaffected (Sakamoto et al., 2003). 
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The transgenic GA 2-oxidase1 (CmGA2ox1) lines examined exhibited a disturbed 

segregation ratio of T2 and T3 generation seeds compared to wild type plants and 

antisense transgenic lines. Exogenous application of GA3, which is resistant to 

catabolism by GA 2-oxidase, rapidly restored germination to resistant lines, strongly 

suggesting that the dwarf line is a result of the deficiency of the bioactive GAs. The 

physiological role of GAs in Arabidopsis seed germination is also in agreement with 

previous results suggesting that the GAs are required for normal seed germination in 

the gib1 tomato mutant (Groot et al., 1987) and in GA-deficient mutants of barley 

(Chandler and Robertson, 1999).  

In previous studies, over-expression of runner bean GA2ox gene, PcGA2ox1, in 

transgenic wheat under the maize promoter produced a range of phenotypes including 

semi dwarf and severe dwarf plants (Phillips, 2004). Over-expression of the same gene 

in sugar beet, to increase resistance to vernalisation, showed reduction of leaf 

expansion and dwarf phenotype. However, the transgenic plants grown under 

inductive conditions bolted at a similar time than to controls, but the flowers were 

infertile (Phillips, 2004). Sakai et al. (2003) over-expressed the novel rice gibberellin 

2-oxidase gene (OsGA2ox3) and showed an extremely dwarfed phenotype in rice.  

In our results, analysis of GA content in severely dwarf GA 2-oxidase1 (CmGA2ox1) 

Arabidopsis plants showed decreased levels of the bioactive GA4 compared to control 

plants, and an increase of inactive GA34. The levels of GA12-aldehyde and GA12 were 

decreased in comparison to antisense lines and wild type plants. GA contents of the 

intermediated precursors (GA15, GA24, GA9, and GA25) were decreased of the non-13-

hydroxylated GAs pathway (Figure 24). The results presented show that it is possible 

to manipulate the plant stature by over-expression of CmGA2ox1, which led to a 

reduction of GA4 content, an increase in inactive products GA34 and to severely 

dwarfed phenotypes in Arabidopsis. GA 2-oxidase may provide a strategy for the 

development of dwarf varieties of plant species.  

In conclusion, our study shows that over-expression of the CmGA7ox and CmGA3ox1 

results in increase GA levels with extremely elongated phenotypes in Arabidopsis, 

showing that both enzymes catalyse rate-limiting steps in the GA biosynthesis of 

Arabidopsis. In contrast, over-expression of CmGA20ox1 and CmGA2ox1 in 

Arabidopsis results in dwarf plants with decreased GA levels. The four pumpkin GA-
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oxidases exploited in this study, may therefore offer useful tools for controlling plant 

stature in other agricultural and horticultural species. 
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5. Summary  

 

Manipulation of plant stature has been a major tool in agriculture, horticulture, and 

forest culture. It previously has involved plant breeding and the use of plant growth 

regulators produced by the chemical industry. These are exogenously applied to 

promote or retard elongation, through chemical alteration of GA biosynthesis. 

Biotechnological manipulation of GA levels provides an alternative approach and can 

be achieved through various means, including up- or down-regulating genes encoding 

enzymes involved in GA biosynthesis and catabolism. 

To elucidate the effect of GA biosynthetic enzymes on plant growth, development, and 

on GA levels, we expressed sense copies of cDNA molecules encoding GA 7-oxidase 

(CmGA7ox), GA 3-oxidase1 (CmGA3ox1), GA 20-oxidase1 (CmGA20ox1) and GA 2-

oxidase1 (CmGA2ox1) in Arabidopsis thaliana ecotype Columbia under the control of 

a strong promoter cassette (E12-35S-� ). Wild type plants and antisense lines, obtained 

by transforming Arabidopsis with antisense copies of respective GA-oxidases were 

used as controls. The constructed binary vectors were transformed with Agrobacterium 

tumefaciens and introduced into wild type plants using floral dip transformation. T2 

seeds were screened for 3:1 (resistant: sensitive) kanamycin resistance. Transgenic 

lines were re-segregated at T3 generation to identify homozygous lines. 

The results presented show that it is possible to manipulate the plant stature by over-

expression of CmGA7ox and CmGA3ox1 genes that lead to an increase of GA4 content 

and to an extremely elongated phenotype in Arabidopsis thaliana. Phenotypic 

characteristics conferred by the over-expression of GA 7-oxidase can be visualized at 

early stages of seedling growth, by increased of leaf growth and root elongation. At the 

later developmental stage, the transgenic lines had taller phenotypes with longer 

internodes that flower earlier, and develop more siliques relative to control plants. Our 

RT-PCR analysis showed high transcript levels at the three different lines of GA 7-

oxidase over-expressors. The differences in the phenotype observed correlated to the 

different expression levels of the 7-oxidase gene. Over-expression of GA 7-oxidase in 

transgenic Arabidopsis plants resulted in an increase in GA12 levels and a slightly 

increase of GA4 levels. In addition, we successfully isolated three transgenic lines of 
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GA 3-oxidase1; one of the homozygous lines (S17.7) had a very tall phenotype with 

higher levels of GA4 compared to control plants. Furthermore, these transgenic plants 

expressed high transcript levels (1000µg/g). Generally, the transgenic plants over-

expressing GA 3-oxidase1 sense lines developed more siliques and mature earlier than 

the GA 7-oxidase sense lines. 

Over-expression of the pumpkin GA 20-oxidase1 resulted in altered leaf morphology, 

dwarfism and decreased silique production and seed set. Leaves were small and dark 

green. The petioles were reduced in length resulting in leaves closer together. Over-

expression lines exhibited dwarfism as a result of reduced internode length. The most 

severe dwarf plants correlated with the highest levels of pumpkin GA 20-oxidase1 

transcript. Transgenic lines share many aspects of the phenotypes obtained with GA-

deficient mutants including dwarfism, reduced internode elongation, and promoted 

seed dormancy. Exogenous application of GA3 rescued germination of homozygous 

and heterozygous seeds, indicating that over-expression lines were responsive to GA. 

The levels of bioactive GA were reduced in over-expression lines with inactive GA 

products (GA17 and GA25) accumulating. The use of pumpkin GA 20-oxidase1 to 

divert the GA biosynthetic pathway to inactive products is an attractive strategy for 

reducing GA content and plant stature. 

In another manner, over-expressing genes encoding GA-catabolizing enzymes, such as 

pumpkin GA 2-oxidase1 results in dwarfed plants. Transgenic Arabidopsis expressing 

pumpkin GA 2-oxidase1 showed a range of phenotypes. These severe dwarfs 

developed darker green, wider, and shorter leaves. The difference in the phenotypic 

severity was due to the difference in the GA 2-oxidase1 expression levels, which were 

estimated by RT-PCR. Finally, in GA 2-oxidase1 over-expressing plants GA34 levels 

(catabolic product of GA4) increased, whereas the GA4 levels decreased. In general, 

the phenotype of plant expressing antisense copies of the respective pumpkin GA-

oxidases studied here did not change compared to the wild type plants. Our results 

demonstrate that expression of pumpkin GA-oxidases can be used to alter GA levels 

and by this regulate growth and development in transgenic plants. 
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Figure 7.1: Plant development of sense (S) or antisense (AS) copies of pumpkin 7-ox 
lines in Arabidopsis plants. Wild type plants (WT) are displayed as control. 
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Figure 7.2: Plant development of sense (S) copies of pumpkin 20-ox-1 lines in 
Arabidopsis plants. Wild type plants (WT) of the respective developmental stage are 
displayed as control. 
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Figure 7.3: Plant development of sense (S) or antisense (AS) copies of pumpkin 3-ox-
1 lines in Arabidopsis plants. Wild type plants (WT) of the respective developmental 
stage are displayed as control. 
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Figure 7.4: Plant development of sense (S) or antisense (AS) copies of pumpkin 2-ox 
lines in Arabidopsis plants. Wild type plants (WT) of the respective developmental 
stage are displayed as control. 
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