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Abstract

Stationary systems modelled by elliptic partial differential equations—
linear as well as nonlinear—with stochastic coefficients (random fields) are
considered. The mathematical setting as a variational problem, existence
theorems, and possible discretisations—in particular with respect to the
stochastic part—are given and investigated with regard to stability. Differ-
ent and increasingly sophisticated computational approaches involving both
Wiener’s polynomial chaos as well as the Karhunen-Loève expansion are
addressed in conjunction with stochastic Galerkin procedures, and stability
within the Galerkin framework is established.

New and effective algorithms to compute the mean and covariance of
the solution are proposed for various approaches. The similarities and dif-
ferences with better known Monte Carlo methods are exhibited, as well as
alternatives to integration in high-dimensional spaces. Hints are given re-
garding the numerical implementation and parallelisation. Numerical exam-
ples serve as illustration.

Keywords: linear and nonlinear elliptic stochastic partial differential equations,
Galerkin methods, Karhunen-Loève expansion, Wiener’s polynomial chaos, white noise
analysis, sparse Smolyak quadrature, Monte Carlo methods, stochastic finite elements
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1 Introduction

In many applications the values of the parameters of the problem are not exactly
known. We may take the simulation of groundwater flow as an example. Knowl-
edge about the conductivity of the soil, the magnitude of source-terms, or about
the in- and out-flow boundary conditions is often very uncertain. These uncer-
tainties inherent in the model result in uncertainties in the results of numerical
simulations.

Stochastic methods are one way to model these uncertainties, and in our case
we are concerned with spatially varying randomness, and shall model this by ran-
dom fields [1, 72, 11]. If the physical system is described by a partial differen-
tial equation (PDE), then the combination with the stochastic model results in a
stochastic partial differential equation (SPDE). The solution of the SPDE is again
a random field, describing both the expected response and quantifying its uncer-
tainty.

SPDEs can be interpreted mathematically in several ways. At the moment we
concentrate on randomness in space. If evolution with stochastic input has to be
considered, one may combine the techniques described here with the already well
established methods in that field [38]; for theoretical results, e.g. see [50].

We shall distinguish—as in the case of stochastic ordinary differential equa-
tions (SDEs)—between additive and multiplicative noise. As is well known from
SDES, in the case of multiplicative noise one has to be more careful. A similar
problem occurs here. Additive noise—particularly for linear problems—is much
simpler to deal with. The random fields may be generalised to stochastic dis-
tributions, and with multiplicative noise the product of random coefficient field
and solution may have no meaning in this case. As with SDEs, it is a modelling
decision how this is resolved.

Additive noise corresponds to the case where the right hand side—the loading
or the solution independent source terms—is random, whereas when the operator
is random, we have multiplicative noise. In the first case it is the external influ-
ences which are random, in the latter it is the system under consideration itself.

A theory of SPDEs where products between random fields are interpreted as
Wick products was developed in [27]. This allows highly irregular random fields
as coefficients, and obtains the solution as a stochastic Kondratiev distribution. Its
main shortcoming is that—e.g. for linear problems—higher statistical moments
of system parameters do not influence the mean of the solution, a contradiction to
the results of homogenisation theory. Another problem is the required existence
of strong solutions [27] to the PDE. These may be relaxed by a variational for-
mulation [71, 46, 70], but nonetheless the Wick product seems not to be the right
model for the problems that we aim at.

For products interpreted in the usual sense, stronger regularity is required for
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the coefficient random random fields [9], still allowing the stochastic part of the
solution to be a Kondratiev distribution (see [27]).

In the numerical framework, the stochastic regularity of the solution deter-
mines the convergence rate of numerical approximations, and a variational theory
for this was earlier devised in [71, 8] and extended in [70]. Further results in a
more restricted setting can be found in [14, 4, 6, 7, 65].

The ultimate goal in the solution of SPDEs is usually the computation of re-
sponse statistics, i.e. functionals of the solution. Monte Carlo (MC) methods can
be used directly for this, but they require a high computational effort [10]. Vari-
ance reduction techniques are employed to reduce this somewhat. Quasi Monte
Carlo (QMC) methods [10, 51] may reduce the computational effort consider-
ably without requiring much regularity. But often we have high regularity in the
stochastic variables, and this is not exploited by QMC methods. We propose
sparse (Smolyak) quadrature methods as an efficient alternative. These have first
been described in [67] and have found increasing attention in recent years, e.g.
[52, 60, 19].

Alternatives to Monte Carlo (e.g. [56, 17]) methods, which first compute
the solution, and then the required statistic, have been developed in the field
of stochastic mechanics—cf. [40, 41], for example perturbation methods, e.g.
[37], methods based on Neumann-series, e.g. [22, 4], or the spectral stochastic
finite element-method (SSFEM) [22]. The latter expands the random fields in
eigenfunctions of their covariance kernels, and obtains the solution by a Galerkin
method in a space of stochastic ansatz functions. More information, references
and reviews on stochastic finite elements can be found in [45, 63, 69, 31]. A
somewhat specialised field is the area of structural reliability, e.g. see [16, 26].

Following [22], stochastic Galerkin methods have been applied to various lin-
ear problems, e.g. [20, 21, 57, 49, 32, 18, 30, 74, 75]. Recently, nonlinear prob-
lems with stochastic loads have been tackled, e.g. [75], and some first results of
both a theoretical and numerical nature for nonlinear stochastic operators are in
[33, 36].

These Galerkin methods allow us to have an explicit functional relation-
ship between the independent random variables and the solution—and this is
contrast with usual Monte Carlo approaches, so that subsequent evaluations of
functionals—statistics like the mean, covariance, or probabilities of exceedence—
are very cheap. This may be seen as a way to systematically calculate more and
more accurate “response surfaces” [39].

The plan of the paper is as follows: In section 2 we introduce a model problem,
a prototype model of stationary groundwater flow, cast in a variational formula-
tion, to serve as a guide for the stochastic problem in section 2.1. The stochas-
tic descriptions in section 2.2 involves two expansions, the Karhunen-Loève ex-
pansion in the spatial variables, and Wiener’s polynomial chaos expansion in the
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stochastic variables. Although we do not assume Gaussian random fields, we
model them as functions of Gaussian random fields, so that in the end everything
is expressed in terms of Gaussian variables, which are our basic building blocks.
In section 2.3 we match the stochastic description against the requirements which
come from the variational theory of partial differential equations in order to have
a well-posed problem in the sense of Hadamard.

We start with the simplest case in section 3, that is a linear partial differ-
ential equation where just the right-hand-side or source term is a random field,
something which may be called additive noise. The mathematical formulation is
extended to accommodate the stochastic variables and their discretisation. As the
best known approach the Monte Carlo method and some variants are reviewed
first, so that the Galerkin approach may be put into perspective. The computa-
tional paths for Galerkin methods may be graded according to their degree of
sophistication, and we show three variants.

We propose a new method to compute the Karhunen-Loève basis of the solu-
tion through the resolution of a generalised eigenvalue problem. We show how
Monte Carlo like ideas may be used in conjunction with the polynomial chaos
expansion.

The next in difficulty is still the linear partial differential equation, but with a
random field in the operator, which is addressed in section 4. This may be termed
as multiplicative noise. The mathematical description is adapted to this situation,
and we show how the previous results with just stochastic source terms may be
used here. The computational approaches are analogous to those in section 3.
We show the stability of the approximation in conjunction with Galerkin methods
without any additional assumptions on the stochastic coefficient.

The Galerkin methods lead to equations with tensor product structure, and this
may be used to great advantage in the numerical solution.

The Karhunen-Lòeve expansion of the solution is the best basis, and we pro-
pose a new approach to compute it through a Neumann series. The Karhunen-
Loève expansion may be used to great advantage in reducing the spatial size of
the system.

In section 5 we describe stochastic Galerkin methods for general nonlinear
elliptic boundary value problems, starting as before with the mathematical setting.
We give new existence theorems, and again address the discretisation, following
the previous pattern as much as possible. We indicate how to solve the resulting
large nonlinear system by a preconditionedBFGS-scheme.

Alternatively, we obtain the solution by projecting orthogonally onto the
stochastic ansatz-space, using sparse Smolyak quadrature.

We illustrate the proposed methods by numerical examples and show some
numerical experiments regarding computational alternatives.

Finally we conclude with an outlook and some open problems.
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2 A Model Problem—the Linear Case

In order to have something concrete to work with, we take a simple model
problem, which nevertheless exhibits all the salient features which come with a
stochastic system.

2.1 Variational Description

To be a bit more specific, we assume that we are dealing with a stationary diffusion
equation

−∇T (κ(x)∇u(x)) = f(x) for x ∈ R,(1)

u(x) = 0 for x ∈ ∂R.

HereR is some bounded, admissible region inRd, ∂R its boundary, and we have
assumed homogenous essential boundary conditions for the sake of simplicity.
The solutionu may be a concentration, or temperature;κ is the appropriate con-
ductivity, and the right hand side (RHS)f are sources or sinks in the regionR.

This may be taken as a very simple description of groundwater flow, which is
the application we have in mind, see the graphical description of the model prob-
lem in Fig. 1. This is a two-dimensional L-shaped domain (the flow is averaged
over the depth, because the horizontal extent is much larger then in the vertical),
and the RHS and boundary conditions are indicated. In that caseu is the hydraulic
head, andκ the hydraulic conductivity. We shall later allow thatκ depends on the
solutionu, and hence the problem may be nonlinear, but here we deal with the
linear case first.

We first put the deterministic problem into a variational formulation, which we
use later on also for the stochastic case. This is completely standard, and is only
included here for reference, and because we want to use it to build the stochastic
variational statement with it. We set for the admissible space of solutionsV =
◦

H1 (R), the dual space of which isV ∗ = H−1(R). Assuming thatκ ∈ L∞(R)
andf ∈ V ∗, we may formulate Eq.(1) as a variational problem onV : Findu ∈ V
such that for allv ∈ V :

(2) b(v, u) :=

∫
R

(∇v(x))T κ(x)∇u(x) dx = 〈f, v〉 :=

∫
R

f(x)v(x) dx.

Proposition 1. If κ(x) ≥ κ− > 0 a.e. inR, this problem has a unique solution
depending continuously onf and onκ.

Proof. This is a simple consequence of the Lax-Milgram lemma, as the bilinear
form b(·, ·) is both continuous and coercive—b(u, u) ≥ C‖u‖2 —on V . The
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Figure 1: Model Problem and Geometry.

continuous dependence onκ in theL∞-norm may be seen as a consequence of the
first Strang lemma (cf. [12, 68]).

A rewording of this result is the following corollary:

Corollary 1. As is well known, the bilinear form thus defines a linear, continuous,
self-adjoint and positive definite operatorB : V → V ∗, which has a continuous
inverse. The operatorB and its inverse depend continously onκ. The PDE may
be written in this interpretation asBu = f .

The variational problem therefore satisfies all of Hadamard’s requirements for
a well-posed problem: it has a solution, the solution is unique, and it depends
continuously on the data. We would like to take this as our ‘leitmotiv’ when we
approach the stochastic case, we want to still have well-posed problems. Also, as
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neither the deterministic nor the stochastic problem can usually be solved analyt-
ically, we have to employ numerical approximations; and these we would like to
be well-posed as well.

2.2 Stochastic Description

Both the external influences—the source terms or the RHSf —and the system,
represented by the conductivityκ, may be uncertain. The uncertainty in the hy-
draulic conductivity for example may be modelled by definingκ(x) for each
x ∈ R as a random variableκ(x) : Ω → R on a suitable probability space
(Ω,B, Γ). HereΩ is the set of elementary events,B a σ-algebra andΓ a proba-
bility measure. As a consequence,κ : R × Ω → R is a random field [1, 72, 11],
and one may identifyΩ with the set of “all possible soil properties”, i.e. with the
space of all realisationsκ(·, ω) : R → R, ω ∈ Ω, i.e.κ(x, ω) = ω(x) —a possible
realisation is shown in Fig. 2. As this space is usually infinite dimensional, the
probability space is in some sense infinite dimensional as well.

Figure 2: Realisation ofκ.

It is of course also possible that the boundary conditions are uncertain, or even
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the shape or size of the regionR [5]. Here we are content with just looking at the
effect of an uncertain conductivity and RHS.

The probability space can be defined by the joint statistic of all possible com-
binationsκ(x1), . . . , κ(xm), m ∈ N, x1, . . . , xm ∈ R (all finite-dimensional dis-
tributions), see e.g. [1] for details. Often, only second order statistics (mean and
covariance) and marginal distributions—the distribution of the random variable
ω 7→ κ(x0, ω) for a particular pointx0 —are known from measurements. For later
reference, we note that such a random field may be described by a transformation

(3) κ(x, ω) = φ(x, γ(x, ω)), x ∈ R,ω ∈ Ω,

of a Gaussian random fieldγ(x, ω), defined by its mean

γ(x) := E (γ(x, ·))) :=

∫
Ω

γ(x, ω)) Γ(dω)

and its covariance

Cγ(x, y) := E ((γ(x, ·)− γ(x))(γ(y, ·)− γ(y))) :=

∫
Ω

γ(x, ω))γ(y, ω)) Γ(dω).

Here E (·) is the expectation operator, the averaging overΩ. Without loss of
generality we may chooseγ(x, ω) to have zero mean (γ(x) = 0) and unit variance
(Cγ(x, x) = 1).

It is well-known that a normally distributed, zero mean and unit variance
Gaussian random variableN (0, 1) can be mapped to a random variable with
distribution-functionFκ by the transformationF−1

κ (erf(N (0, 1))), where erf is
the Gaussian distribution-function. In addition, the combination ofφ andCγ(x, y)
may be chosen such thatκ(x, ω) satisfies given second order statistics (cf. [62]).
Given the averageκ(x) := E (κ(x, ·)), we decompose

κ(x, ω) = κ(x) + κ̃(x, ω)

(and later also all other stochastic processes) into the mean and the zero mean
fluctuating part̃κ(x, ω); the correlation function ofκ is then given by

Cκ(x, y) := E ((κ(x, ·)− κ(x))(κ(y, ·)− κ(y))) = E (κ̃(x, ·)κ̃(y, ·)) .

2.2.1 The Karhunen-Lòeve Expansion

One prime possibility to have a computationally feasible representation of the ran-
dom field is the Karhunen-Lòeve (KL) expansion. Here we take the conductivity
κ(x, ω) as an example. But everything we say applies to any other stochastic field,
e.g. the RHSf(x, ω) and the Gaussian fieldγ(x, ω) in Eq.(3) (cf. [66]).
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The spatial KL-expansion functionsκ(x) are the eigenfunctions of the Fred-
holm integral equation with the covariance function as the integral kernel:

(4)
∫

R

Cκ(x, y)κ(y) dy = λκ(x),

and the eigenvaluesλ tell us how much stochastic variance is carried by that
particular eigenfunction. As Eq.(4) is a compact, symmetric, and positive semi-
definite operator onL2(R), the spectrum is real, and consists entirely of eigenval-
uesλ > 0, which may be ordered in a descending order with possible accumu-
lation point zero, see [13, 61]. For our example problem, two such eigenfunction

Eigenfunction No. 1 Eigenfunction No. 15
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Figure 3: KL-Eigenfunctions Nos. 1 and 15.

are shown in Fig. 3. These eigenfunctions form a complete orthonormal set in
L2(R), and the covariance kernel may be expanded in the series

Cκ(x, y) =
∞∑

=1

λκ(x)κ(y).

In case the covariance function is continuous, Mercer’s theorem (cf. [13, 61]) tells
us that this series converges not only inL2(R × R), but uniformly. Usually it is
not possible to solve Eq.(4) analytically, and it has to be done numerically. This
is a standard numerical problem, and we will not further dwell on it, but instead
refer to e.g. [2].

The KL-expansion of the stochastic processκ(x, ω) may now be stated as (cf.
[42]):

(5) κ(x, ω) =
∞∑

=1

√
λξ(ω)κ(x).
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This converges inL2(R × Ω). It is a generalisation of the well-known Fourier
expansion of stochastic processes on the real line, when the covariance function
is homogenous, i.e. depends only on the difference|x− y|. The random variables
ξ(ω) are the ‘Fourier’ coefficients, have zero mean and unit variance, and are
given for positive eigenvalues by

(6) ξ(ω) := (λ)
−1/2

∫
R

κ(x)κ(x, ω) dx.

As the eigenfunctions{κ(x)} are orthonormal

〈κ(·), κ`(·)〉 =

∫
R

κ(x)κ`(x) dx = δ`,

so are the coefficient random variables{ξ(ω)}, but inL2(Ω):

〈ξ(·)|ξ`(·)〉L2(Ω) := E (ξ(·)ξ`(·)) =

∫
Ω

ξ(ω)ξ`(ω) Γ(dω) = δ`.

Stochastically speaking this means that they are uncorrelated, but in general not
independent.

Smoothness of the covariance function—mirrored by the decay of its
spectrum—will give better approximation properties for the KL-expansion of the
stochastic process [6].

2.2.2 Wiener’s Polynomial Chaos Expansion

Later we will want to integrate numerically overΩ. In order to facilitate this,
it is better to use independent random variables (then Fubini’s theorem can be
applied), and best is to use independent identically distributed (iid) random vari-
ables. There is one type of random variable, where being uncorrelated implies
independence—this is the defining property of Gaussian random variables. The
Gaussian variables form a closed subspaceG in L2(Ω), a Gaussian Hilbert space
[28, 27, 43]. As Gaussian variables possess moments of any order, they also form
a (graded) algebra with unit w.r.t. multiplication inL2(Ω). Norbert Wiener [73]
has shown that any random variableξ ∈ L2(Ω) may be expanded in polynomi-
als of Gaussian variables (the polynomials are in the algebra), and in particular
in multi-dimensional polynomials orthogonal w.r.t. Gaussian measure, the Her-
mite polynomials, see [28, 27, 43]. So the algebra is dense inL2(Ω). At the
risk of abusing notation, we shall call these Gaussian variables againω ∈ Ω,
and an orthonormal—uncorrelated and independent—basis inG can be compared
to “Cartesian coordinates” onΩ. The Hermite polynomials have these Gaussian
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variablesω from G ⊂ L2(Ω) as their argument. The measure to be used in con-
junction with them is of course a Gaussian measure, and—repeating the abuse of
notation—it will again be calledΓ.

The multi-variate Hermite polynomials are defined as follows: Let the multi-
indicesα = (α1, . . . , α, . . .) ∈ (N)N

c =: J be sequences of non-negative integers,
only finitely many of which are non-zero, and lethk(x) denote the usual one-
dimensional Hermite polynomial of orderk ∈ N0. Then define

(7) Hα(ω) := (α!)−1/2

∞∏
=1

hα(ω),

whereα! :=
∏∞

=1(α!); for later reference let us also define|α| :=
∑∞

=1 α. As
h0 ≡ 1, and only finitely manyα 6= 0, all expressions are well defined. Two
examples of such polynomials may be seen in Fig. 4. The factor(α!)−1/2 makes

H(2,3) H(3,3)
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Figure 4: Hermite PolynomialsH(2,3) andH(3,3).

these functions orthonormal inL2(Ω) with a standard Gaussian measureΓ(dω),

〈Hα|Hβ〉L2(Ω) := E (HαHβ) =

∫
Ω

Hα(ω)Hβ(ω) Γ(dω) = δαβ.

Each random variableξ with finite variance—ξ ∈ L2(Ω) —can be expanded into
a series of these polynomials, convergent inL2(Ω):

(8) ξ(ω) =
∑
α∈J

c(α)Hα(ω),
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whereω = (ω1, . . . , ω, . . .).
As κ(x, ω) is a.e. inx such a random variable, we can use this here too:

(9) κ(x, ω) =
∑
α∈J

κ(α)(x)Hα(ω),

where now of course the coefficientsκ(α)(x) are dependent on the locationx, i.e.
they are spatial functions.

In the KL-expansion Eq.(6), eachξ can be expanded in such polynomials:

(10) ξ(ω) =
∑
α∈J

c(α)
 Hα(ω).

The random variables{ω} ∈ N (0, 1) are uncorrelated, and as they are Gaussian,
they are also independent. Now finally we have a description of the stochastic
process as a function of a countable collection ofiid random variables, a property
which is important for the subsequent computations.

Altogether we then have

(11) κ(x, ω) =
∞∑

=1

∑
α∈J

√
λc

(α)
 Hα(ω)κ(x);

and obviously the factor
√

λ could be absorbed in the coefficientc
(α)
 . A reali-

Realisation with 20 KL-terms Realisation with 50 KL-terms
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Figure 5: Realisations ofκ with 20 and 50 KL-Terms.

sation ofκ(x, ω) generated in this way with 20 and with 50 KL-eigenfunctions is
shown in Fig. 5.
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2.3 Variational Requirements

For a physically and mathematically well-defined model, the conductivity should
be bounded from above and below,

(12) 0 < κ− < κ(x, ω) < κ+ < ∞, a.e.

This is guaranteed by a suitable choice ofφ in Eq. (3). In our computations we as-
sign toκ(x) a β(1/2, 1/2)-distribution (the probability distribution has the shape
of half a sine-wave). The transformation is

(13) κ(x, ω) = c1(x) + c2(x) arccos(erf(γ(x, ω))).

Uncertainties in the other parameters may be modelled similarly, and a com-
bination with Eq. (1) yields the stochastic PDE forΓ-almost allω ∈ Ω:

−∇T (κ(x, ω)∇u(x, ω)) = f(x, ω) for x ∈ R,(14)

u(x, ω) = 0 for x ∈ ∂R,

where we have similarly to the conductivity also assumed that the sourcef(x, ω)
may be random.

The hydraulic head, the solutionu(x, ω) of Eq.(14), is also a random field, and
our goal is usually to compute response statistics, e.g. the expected hydraulic head
u(x) = E (u(x, ·)), the covarianceCu(x, y) = E ((ũ(x, ·))(ũ(y, ·))), or the prob-
ability that the hydraulic head exceeds some threshold,pu(x) = Prob{u(x, ·) >
u0} = E

(
χ(u0,∞)(u(x, ·))

)
. All these expressionsΨu(x) are functionals of the so-

lution u(x, ω), and in particular are integrals with respect to the measureΓ(dω),

(15) Ψu(x) = E (Ψ(x, ·, u(x, ·))) =

∫
Ω

Ψ(x, ω, u(x, ω)) Γ(dω).

The numerical evaluation of such statistics requires a discretisation of Eq.(14)
in space and in the stochastic “dimension”, and both discretisations may be per-
formed independently of each other. Almost any technique may be used for the
spatial discretisation, and we use finite elements in section 3.2.1.

Once the problem is discretised in space, a stochastic discretisation has to
be chosen, as we have to approximate Eq.(14) in a finite number of independent
random variables. This will be done in section 3.2.2.

3 Linear Systems with Stochastic Right Hand Side
—Additive Noise

We want to introduce the stochastic problems one difficulty at the time. For this
purpose the consideration of a deterministic system with a stochastic right hand

15



side seems to be a first good step [14, 18, 65]. This kind of situation is the simplest
of the stochastic problems, and it allows us to introduce our approach at an easy
pace. It also is most similar to what is common knowledge about linear time-
invariant dynamical systems with random (time varying) inputs. There we can
use the Fourier transform, and then it is essentially the transfer function of the
system—or rather the square of the transfer function—which maps the spectrum
of the input process onto the spectrum of the output. A similar situation will be
observed here, but the Fourier transform has to be generalised to the Karhunen-
Loève expansion.

3.1 Mathematical Setting

We assume thatf at eachx ∈ R is a random variable, i.e.f ∈ H−1(R, (S)∗),
where(S) is an appropriate separable Hilbert space of random variables. For
the sake of simplicity we shall take here(S) = L2(Ω), but other choices are
possible [27, 8, 70]. AsH−1(R, (S)∗) is isomorphic toH−1(R)⊗ (S)∗, f may be
represented as

f(x, ω) =
∑
k,`

f
(`)
k uk(x)ϕ`(ω), (x, ω) ∈ R× Ω,

where{uk} is a basis inH−1(R) = V ∗, and{ϕ`} a basis in(S)∗, andV andV ∗

are as before in section 2.1. We also need here that the gradient∇ : V → Q is
continuous, whereQ = L2(R, Rd).

Definition 1. We shall look for solutions inV ⊗ (S), and define the operator

∇ω := ∇⊗ Id : V ⊗ (S) → Q⊗ (S)

by looking how it acts on a single product termu(x)ϕ(ω), whereu ∈ V and
ϕ ∈ (S):

(16) ∇ω : u(x)ϕ(ω) 7→ (∇u(x))ϕ(ω).

This may then extended by linearity and continuity to the whole space.

Let us now formulate the stochastic variational problem: Findu ∈ V ⊗ (S)
such that for allv ∈ V ⊗ (S):

(17) b(v, u) :=

∫
Ω

∫
R

(∇ωv(x, ω))T κ(x)(∇ωu(x, ω)) dx Γ(dω) =

〈〈f, v〉〉 :=

∫
Ω

∫
R

f(x, ω)v(x, ω) dx Γ(dω).

We assume the same conditions as before for the deterministic problem, and then
it is not hard to see that we have [71, 8, 70, 14]:
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Proposition 2. The variational problem Eq.(17) has a unique solution for allf ∈
(V ⊗ (S))∗, depending continously onf and onκ.

Proof. Using the representationf(x, ω) =
∑

k,` f
(`)
k uk(x)ϕ`(ω), it is easy to see

that 〈〈f, v〉〉 is continuous on productsu(x)ϕ(ω) ∈ V ⊗ (S), and as the span of
these is dense,〈〈f, v〉〉 ≤ C‖v‖ ∀v ∈ V ⊗ (S).

In the same way we may show the continuity and coerciveness ofb. Due to the
Lax-Milgram lemma, there is a unique solutionu ∈ V ⊗ (S), depending linearly
and continuously onf . The continuous dependence onκ follows again from the
first Strang lemma (cf. [68, 12]), see also [4, 6, 7].

As before, we may reword this in the language of operators in the following
corollary:

Corollary 2. The bilinear form in Eq.(17) defines a linear, continuous, self-
adjoint and positive definite operatorB : V ⊗ (S) → (V ⊗ (S))∗ = V ∗ ⊗ (S)∗,
which has a continuous inverse. Both the operator and its inverse depend contin-
uously anκ. The SPDE may be written with this interpretation asBu = f .

With this, we have carried over Hadamard’s requirements for a well-posed
problem to partial differential equations with a stochastic RHS.

As the solutionu(x, ω) is now also a stochastic field, we may be interested in
its statistics, e.g. its mean

(18) u(x) := E (u(x, ·)) :=

∫
Ω

u(x, ω) Γ(dω),

or its covariance

(19) Cu(x, y) := E ((u(x, ·)− u(x))((u(y, ·)− u(y))) .

For the mean the following result holds (cf. [3, 14, 65]):

Proposition 3. For the linear problem with stochastic RHS, the mean of the so-
lution Eq.(18) satisfies the same differential equation Eq.(1) as the solution of
the deterministic variational problem Eq.(2), with the mean of the stochastic RHS
f(x) := E (f(x, ·)) as source term.

Proof. Letting v(x, ω) = v(x)ϕ(ω) with ϕ(ω) ≡ 1 in Eq.(17), we see that by
taking expectations on both sides

b(v, u) = E (b(v(x, ω), u(x, ω))) = E (b(v(x), u(x, ω)))

= b(v(x),E (u(x, ω))) = b(v, u) = 〈〈f, v〉〉 = E (〈f, v〉)
= 〈E (f) , v〉 = 〈f, v〉,

and hence the meanu satisfies the deterministic Eq.(1) or variational problem
Eq.(2), with thedeterministicRHS or sourcef .
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Similarly, for the covariance functionCu(x, y) it may be seen by considering
Eq.(14) at positionx and at positiony, multiplying these two equations and taking
the expected value, interchanging integration w.r.t.ω with differentiation w.r.t.
x andy and using the linearity of the expectation, that it satisfies a differential
equation on the domainR×R, which has twice the number of spatial dimensions

of the original problem Eq.(1). As
◦

H1 (R × R) ∼=
◦

H1 (R)⊗
◦

H1 (R) = V ⊗ V ,
we may define the differential operator

∇x ⊗∇y : V ⊗ V → Q⊗Q ∼= L2(R×R, Rd ⊗ Rd)

by only looking at productsv(x)w(y) with v, w ∈
◦

H1 (R), and then extending by
linearity and continuity:

Definition 2.

(20) ∇x ⊗∇y : v(x)w(y) 7→ (∇xv(x))⊗ (∇yw(y)).

With this one may show the following proposition on the variational formula-
tion [3, 14, 65]:

Proposition 4. The covariance functionCu(x, y) of the solutionu(x, ω) to the
linear stochastic RHS problem is the solution to the variational problem: FindCu

such that for allCv(x, y) ∈
◦

H1 (R×R)

(21)
∫∫

R×R

(∇x ⊗∇yCv(x, y)) : κ(x)κ(y) (∇x ⊗∇yCu(x, y)) dxdy

=

∫∫
R×R

Cv(x, y)Cf (x, y) dxdy,

whereCf (x, y) is the covariance function of the stochastic RHSf(x, ω),

and where the “:”-operation is a contraction over both indices.

3.2 Discretisation and Numerical Approximation

We assume that the spatial part of the SPDE has been approximated by a Galerkin
method. In some sense an arbitrary spatial discretisation could be used, but as we
deal with Galerkin methods in the stochastic domain, assuming this also in the
spatial domain gives a certain measure of unity to the presentation. What we use
in the discretisation amounts to the finite element method in space—it does not
matter which variant—and a spectral or pure p-method in the stochastic dimension
[22].
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The consistency of such approximations—density of the union of finite di-
mensional subspaces—was shown in [8, 70, 14], and also convergence, although
partly in another context, see also [4, 6, 7]. There one may find alsoà priori error
estimates. We here use Bubnov-Galerkin methods on a symmetric and positive
definite problem, hence stability is inherited from the coercivity of the continuous
problem, and convergence is guaranteed by consistency alone (see e.g. [68]).

3.2.1 Spatial Discretisation

Performing a Galerkin approximation in the spatial part amounts to taking only a
finite-dimensional subspaceVN ⊂ V . Let {s1(x), . . . , sN(x)} be a basis inVN ,
we then approximate the solution by [12, 68, 77]

(22) u(x, ω) =
N∑

k=1

sk(x)uk(ω) = s(x)u(ω),

where the{uk(ω)} now are random variables in(S), and for conciseness of nota-
tion we have sets(x) = [s1(x), . . . , sN(x)] andu(ω) = [u1(ω), . . . , uN(ω)]T .

Calculation of the meanu(x) is a purely deterministic and standard problem,
and we shall not consider it here any further. We are concerned with the fluctu-
ating partũ(x, ω). This means that we approximateũ(x, ω) with the ansatz as in
Eq.(22), where we may take the coefficient random variablesuk(ω) to have zero
mean.

Inserting this ansatz into Eq.(17), and applying the Galerkin conditions, where
we take as test functions products likeϕ(ω)sı(x) with ϕ ∈ (S), we require that
for all ϕ ∈ (S) :

(23)
∫

Ω

ϕ(ω)Kũ(ω) Γ(dω) = K

∫
Ω

ϕ(ω)ũ(ω) Γ(dω) =

∫
Ω

ϕ(ω)f̃(ω) Γ(dω),

where the spatial discretisation has already been completed.

K = (Kı) =

(∫
R

(∇sı(x))T κ(x)(∇s(x)) dx

)
is the usual deterministic stiffness matrix, and the RHS is

f̃(ω) = [f̃1(ω), . . . , f̃N(ω)]T

with f̃(ω) =
∫

R
s(x)f̃(x, ω) dx. The variational Eq.(23) will be written as

(24) Kũ(ω) = f̃(ω),
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understood in a weak sense, meaning that for allϕ(ω) ∈ (S):

(25) E (ϕ(ω)Kũ(ω)) = KE (ϕ(ω)ũ(ω)) = E
(
ϕ(ω)f̃(ω)

)
,

whereas the meanu is a solution of

(26) Ku = f .

It is now left to solve the stochastic linear system of Eq.(24). This still involves
the variableω ∈ Ω, and is still computationally intractable, as in general we need
infinitely many coordinates to parametriseΩ.

3.2.2 Stochastic Discretisation

In section 2.2.2 we used the PC-expansion to represent a stochastic process. Here
we want to extend the Galerkin idea, and for that reason we expand the random
variablesũ(ω)T = [ũ1(ω), . . . , ũN(ω)] in a PC-series:

(27) ∀k : ũk(ω) =
∑

α

uα
kHα(ω) = ukH(ω),

whereH(ω)T = [. . . , Hα(ω), . . .], anduk = [. . . , uα
k , . . .].

For the purpose of actual computation, we will truncate the PC-expansion
Eqs.(10,27) after finitely many termsα ∈ JM,p, thus introducing a finite dimen-
sional approximation span{Hα|α ∈ JM,p} ⊂ (S). The setJM,p ⊂ J is here
defined forM, p ∈ N as (see also [22, 8, 70]):

(28) JM,p = {α ∈ J |∀ > M : α = 0, |α| ≤ p}.

Just as we require for
⋃

N VN to be dense in
◦

H1 (R) —see [68, 12] —here
we rely on the fact that the closure of

⋃
M,p span{Hα|α ∈ JM,p} is all of (S), see

section 2.2.2

3.3 Computational Procedures

Even after the discretisation has been spelled out in the preceeding sections 3.2.1
and 3.2.2, there still remain many choices on how to actually organise the com-
putation. Some of them may be seen as discretisations in their own right, or
when applied to an already finite dimensional problem they could be more ap-
propriately labelled as methods to reduce the dimensionality of the system. As
usually stochastic problems are addressed with the Monte Carlo method, we give
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here a quick summary, and we use some of these ideas later in a different set-
ting. Subsequently, we show three different ways of making the approximation
of the stochastic part; these are the pure polynomial chaos (PC) expansion in sec-
tion 3.3.2, with the Karhunen-Loève expansion of the RHS in section 3.3.3, and
finally with the Karhunen-Lòeve expansion of the solution itself in section 3.3.4.

3.3.1 Monte Carlo Methods

Let us touch shortly on the Monte Carlo (MC) method, as it would be often the
natural first choice for anyone faced with solving a stochastic PDE. Both MC and
its relative, the Quasi Monte Carlo (QMC) method are based on the following
idea: If the aim is to compute a functional of the solution such as in Eq.(15), one
would try to approximate the integral numerically:

(29) Ψu(x) ≈
Z∑

z=1

wzΨ(s(x)(u(ωz)),

wheres(x) are the spatial FEM-basis,ωz are the evaluation points, andwz are the
weights—in MC- and QMC-methods the weights arewz = 1/Z. We would like
to stress once more that all the statistics which are usually considered are really
such integrals of a function ofu(ω) overΩ.

The problem is that we do not knowu(ω), as this is the still unknown solution.
But Eq.(29) does not really require that we knowu(ω) for all ω, i.e. that we have
a functional expression for it. All we have to know is the solution at the particular
evaluation pointsωz, which means the solution for particular realisations of the
random field, in this casef(x, ωz). Once we have fixedω = ωz, the problem is
completely deterministic, and may be solved by standard methods.

To compute this integral, we may proceed in the following way:

1. Select the points{ωz|z = 1, . . . , Z} ⊂ Ω according to the integration rule.

2. For eachωz —a realisation of the stochastic system—solve the deterministic
problem with that fixed realisation, yieldingu(ωz).

3. For eachωz compute the integrandΨu(s(x)u(ωz)). in Eq.(29).

4. Perform the summation in Eq.(29).

Note the potential for “embarrassingly easy” parallelisation in steps 2 and 3.
In this light, the Monte Carlo method proceeds in the following way: In step 2

of the above procedure, the selection is to take a numberZ of independent random
samples{ωz|z = 1, . . . , Z} ⊂ Ω according to the measureΓ —this makes sure
that the points all carry the same weightwz = 1/Z, see [10].
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The Quasi Monte Carlo method is only slightly different from this point of
view, as all the difference is that the points{ωz} are selected from a “low discrep-
ancy set”, still all with weightswz = 1/Z, see [51, 10].

Note that this form of computation is completely independent of what kind of
stochastic problem we have, be it linear or nonlinear, or with stochastic RHS or
stochastic operator. This is on one hand the strength of this approach—its general
applicability, but on the other hand it does not take into account any special prop-
erties of the problem. The methods to be described in the next sections will take
such special properties into account, and can therefore be much more efficient.

3.3.2 Using the Polynomial Chaos Expansion

A PC-expansion similar to Eq.(10) allows us to write Eqs.(23,24,25) with an ex-
pansion of both̃u andf̃ (see [22]):

Kũ(ω) =K

(∑
α∈J

u(α)Hα(ω)

)
=
∑
α∈J

Ku(α)Hα(ω)(30)

=f̃(ω) =
∑
α∈J

f (α)Hα(ω).

As the representation is unique, we have proven the next proposition.

Proposition 5. The coefficientsu(α) in the PC-expansion of

(31) ũ(ω) =
∑
α∈J

u(α)Hα(ω)

satisfy the uncoupled system of equations

(32) ∀α ∈ J : Ku(α) = f (α).

This means that the coefficients in the polynomial chaos expansion may be
computed one-by-one and independently of each other—and hence in parallel
with no interaction. This is due to the orthonormality of the polynomial chaos
basis. As the setJ is infinite, in an actual computation we take a finite subset
such asJM,p ⊂ J defined in relation Eq.(28), and compute only thoseu(α) with
α ∈ JM,p.

Remark 1. Once we have theu(α), we may compute approximately any statistic
Eq.(15) ofu, and especially –u being already approximated byu —the covari-
ance

Cu(x, y) ≈ s(x)E (ũ(ω)⊗ ũ(ω)) sT (y) = s(x)Cus
T (y),
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where
Cu := E (ũ(ω)⊗ ũ(ω)) =

∑
α∈JM,p

u(α) ⊗ u(α)

is the discrete covariance matrix ofũ(ω).

Remark 2. We could have used the PC-expansion already in the continuous case

u(x, ω) =
∑

α

u(α)(x)Hα(ω), f(x, ω) =
∑

α

f (α)(x)Hα(ω);

—where the coefficients are given byf (α)(x) := E (f(x, ·)Hα(·)) —and we would
have seen that eachu(α)(x) satisfies the same PDE Eqs.(1, 2), but with (determin-
istic) RHSf (α)(x). This is the continuous analogue of Eq.(32).

Remark 3. Thef (α)(x) may be smoother thanf(x, ω) and hence a coarser spa-
tial discretisation could suffice, or it could be different for eachα. For the sake of
simplicity we shall not explore this possibility further and assume that the spatial
discretisation is always the same.

Certainly thef (α)(x) or f (α) have to be given or computed somehow, and a
potential problem is that we may not have an explicit expression forf(x, ω) with
which to compute it. Also, in the discrete case, there can be onlyN linearly
independentf (α) — N = dim VN is the number of spatial basis functions—so
one ought to do better. One possibility is the Karhunen-Loève (KL) expansion.

3.3.3 Using the Karhunen-Lòeve Expansion

The Karhunen-Lòeve (KL) expansion alluded to in the previous section 3.3.2
opens up another possibility. Writing the already spatially discretised KL-
expansion of̃f(ω) as

(33) f̃(ω) =
∑

`

ϕ`(ω)f `,

we insert this into Eq.(25), and we obtain

(34) ũ(ω) = K−1f̃(ω) = K−1

(∑
`

ϕ`(ω)f `

)
=
∑

`

ϕ`(ω)K−1f `.

This implies the following result:
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Proposition 6. Eachu(α) in Eq.(30) may be computed as a linear combination of
the vectorŝu`, satisfyingKû` = f `:

u(α) = E (Hα(·)ũ(·)) = E

(
Hα(·)

∑
`

ϕ`(·)K−1f `

)
(35)

=
∑

`

E (Hα(·)ϕ`(·))K−1f ` =
∑

`

ϕ
(α)
` K−1f ` =

∑
`

ϕ
(α)
` û`.

Remark 4. A remark similar to Remark 3 applies here as well: The continuous
analogues off `, the KL-eigenfunctions ofCf (x, y), are often much smoother than
f itself; hence the spatial discretisation may be reduced, or even better adapted
individually for eachf `. Again, for the sake of simplicity of exposition, we shall
assume that the spatial discretisation is always the same.

That means that we can solve—see [18] —independently and in parallel with-
out communication—for the vectorŝu`, and they represent̃u(ω) as

ũ(ω) =
∑

α

u(α)Hα(ω) =
∑

α

∑
`

ϕ
(α)
` Hα(ω)û`.

Remark 5. Looking at Eq.(11), it is obvious that for each KL-term there will be at
least one PC-term, so there are less solves in Eq.(34) for the KL-expansion than
in Eq.(31) for the pure PC-expansion.

If we useall N eigenvectors, there is no difference to the solution in the previ-
ous subsection, other than that the computations are arranged differently. But the
idea is to have many fewer vectors. The problem is that the choice based on the
spectrum ofCf (x, y) alone does not tell us how important they are in the solution
u(ω), as we have not taken account of the transfer properties of the system. Best
would be of course to use the KL-expansion of the solutionu(ω). We address this
in the next section.

3.3.4 Using the Karhunen-Lòeve Expansion of the Solution

The problem is of course here that we do not know the KL-expansion ofu(ω),
as we do not knowu(ω) itself, we do not even know the covarianceCu =
E (ũ(·)⊗ ũ(·)) of u(ω), wherefrom we might compute the KL-basis. Certainly,
from Eq.(21) in Proposition 4, we see that [65]:

Proposition 7. The covariance matrixCu is the solution of

(36) (K⊗K)Cu = KCuK
∗ = Cf .
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This corresponds to solving the PDE Eq.(21) on the domainR × R ⊂ R2d,
which is a large effort even when sparse grid methods are used [65].

We want to propose a simpler and more effective approach, and address this
problem by first solving an auxiliary generalised eigenproblem which involves
directly bothK andCf , namely

(37) Kwm = θmCfwm,

or in Matrix form

(38) KW = CfWΘ,

whereW = [w1, . . . ,wm, . . . ,wM ] andΘ = diag(θm). As bothK andCf are
symmetric and positive definite, we know that all theθm > 0, and

(39) W∗KW = Θ, W∗CfW = IM .

In contrast to solving Eq.(36), where all ofCu has to be computed, we can stop the
eigenvalue extraction atM � N , and hence work with a low rank approximation
of Cu, as will be shown in Theorems 1 and 2.

If we would takeM = N , the last relation would imply thatW is non-singular
and we would have

(40) K−1 = WΘ−1W∗, Cf = W−∗W−1,

whereW−∗ = (W−1)
∗.

Theorem 1. For M = N , whenW is non-singular, we have

(41) Cu = WΘ−2W∗,

and forM < N this is a rankM approximation to the discrete covariance matrix.

Proof. We see from Eq.(36) that

Cu = (K⊗K)−1Cf = K−1W−∗W−1K−∗,

and from Eq.(40) we substituteK−1 to obtain

Cu = WΘ−1W∗W−∗W−1WΘ−1W∗ = WΘ−2W∗.
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We take this as a guide and set also in the caseM < N as low rank approxi-
mationĈu = WΘ−2W∗. A little calculation shows that

(42) W∗KĈuK
∗W = W∗CfW = IM ,

which may be seen as the defining relation.
In the computation we decide depending on the size of|θm|−2 where to

stop, i.e. we compute the eigenvalues/vectors in Eq.(37) starting from the small-
est, and stop when|θm|−2 is small enough atm = M . This is not yet the
KL-decomposition ofũ, asW is not orthogonal (not composed of orthogonal
columns).

Computing the QR-decomposition ofW = QR, we obtain

(43) Cu = QRΘ−2R∗Q∗ = Q(RΘ−1)(Θ−1R∗)Q∗ = QR̂R̂
∗
Q∗.

These considerations imply the following theorem:

Theorem 2. Solving the standard eigenproblem of sizeM ×M

(44) XQ̂ := R̂R̂
∗
Q̂ = Q̂Λu,

we obtain the KL- or eigendecomposition of

(45) Cu = QR̂R̂
∗
Q∗ = QXQ∗ = QQ̂ΛuQ̂

∗
Q∗ = ΦuΛuΦ

∗
u

with the spectrum on the diagonal ofΛu and the orthogonal eigenvector matrix
Φu = QQ̂ =: [u1, . . . ,uM ].

In the computation it may be used that we have the Cholesky decomposition
of X = R̂R̂

∗
, details of this will be published elsewhere.

We want to use these results now to compute the PC-coefficients of the solu-
tion. From Eq.(32) and the spectral decomposition ofCf = ΦfΛfΦ

∗
f , we see

that

(46) u(α) = K−1f (α) = K−1Φfϕ
(α),

whereϕ(α) = [. . . , φ
(α)
` , . . .]T . But K−1Φf does not have to computed, as from

W = K−1CfWΘ = (K−1Φf )ΛfΦ
∗
fWΘ we see thatK−1Φf is in the column

span ofW.
Settingu(α) = Wû(α), we multiply byW∗K and obtain

W∗KWû(α) = Θû(α) = W∗Φfϕ
(α).

We collect these results in the following proposition:
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Proposition 8. The PC-vectorsu(α) may be approximated by

(47) u(α) = WΘ−1W∗Φfϕ
(α).

HereWΘ−1W∗ is rankM approximation toK−1. In this approach we have
obtained a low rank approximation toCu as a by-product—by solving a gener-
alised eigenproblem—and we see that at least enough eigen- or KL-vectors ofCf

have to be used, such thatW∗Φf has full rank.
In either of the three solution approaches considered it seems easier to first

computeu(α), and from thatCu, than to solve forCu directly—in the third ap-
proachCu is part of the solution anyway, see Eq.(41).

If we only want the covariance

(48) Cu = (K⊗K)−1 Cf = (K−1 ⊗K−1)Cf = K−1CfK
−∗,

one may—with the KL-expansion ofCf = ΦfΛfΦ
∗
f and by solving firstΦ̂ =

K−1Φf , where the columns of̂Φ = [. . . , û`, . . .] are the vectors from Eq.(35)
—certainly reduce this to

(49) Cu = K−1CfK
−∗ = K−1ΦfΛfΦ

∗
fK

−∗ = Φ̂ΛfΦ̂.

Any of these approaches seems easier than directly discretising the PDE in
Eq.(21) inR2d according to Proposition 7 (cf. [65]) —the discrete analogue of
this is Eq.(48).

3.3.5 Direct or Non-Intrusive Computation

Note that the expansion coefficientsu(α) can also be seen as a functional or statis-
tic of the solution. We have

Proposition 9. The coefficientsu(α) are given by

(50) u(α) = E (ũ(·)Hα(·)) = E
(
K−1f̃(·)Hα(·)

)
=

∫
Ω

K−1f̃(ω)Hα(ω) Γ(dω).

Certainly this can be computed by the methods described in section 3.3.1.
We borrow the termnon-intrusivefrom [23] for this way of evaluating the PC-
expansion. Please note that this way of evaluating the coefficients is completely
independent of the type of stochastic system, similar to the comment already made
in conjunction with the Monte Carlo method in section 3.3.1.
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We approximate this by allowing onlyα ∈ JM,p. Then Eq.(50) reduces to an
integral over the finite dimensional spaceΩm = span{ω}, and the mutual inde-
pendence allows the application of Fubini’s theorem and the integral is reduced
to m iterated one-dimensional integrals. This integral may be computed via any
integration method including Monte Carlo or Quasi Monte Carlo methods. See
[36] for a study when it is advisable to use what kind of integration.

In Eq.(50) it is clear that∫
Ω

K−1f̃(ω)Hα(ω) Γ(dω) = K−1

(∫
Ω

f̃(ω)Hα(ω) Γ(dω)

)
= K−1f (α),

and there is really no point in trying to use a direct or non-intrusive method here
for our special case of only a stochastic RHS.

3.4 The Solution as Filtered White Noise

We can go one step further in describing the effect of the linear system to the
stochastic input. We would like to see it as a filter for white noise. From any of
the possible paths described in the previous section we obtain the coefficientsu(α)

of the PC-expansion

(51) u(ω) = u +
∑

α

u(α)Hα(ω) = u + uH(ω),

with u = [. . . , u(α), . . .]. Now ω = (ω1, . . . , ωM) is our white noise process,
and the above representation shows howu(ω) is composed from a linear combi-
nation of (Hermite)-polynomial filters. Certainly, if the inputf(ω) is Gaussian,
the output—a linear deterministic function of the input—is also Gaussian. This
means that in Eq.(51) the sum is only over|α| ≤ 1, and so is reduced to

u(ω) = u +
∑



u()ω = u + uω,

with u = [u(1), . . . ,u(M)].
The representation in terms of the KL-expansion ofu, Eq.(47), shows now the

way the linear system acts, asu = WΘ−1W∗ΦfF (with F = [f (1), . . . ,f (M)])
and whereF may be decomposed even further toF = Λ

1/2
f F̃, with, F̃F̃

∗
= IM .

This results in

(52) u = WΘ−1W∗ΦfΛ
1/2
f F̃ = SF̃,

whereS = WΘ−1W∗ΦfΛ
1/2
f is the transfer function to unit variance input.

We see the orthogonal mixing/superposition without change of variance—by
F̃, then the shaping by the spectrum ofCf . Again orthogonal mixing due toΦf

—the KL-expansion—and then the action of the linear system by projecting onto
theW, shaping byΘ−1, and again using mixing/superposition withW.
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4 Linear Systems with Stochastic Operator
—Multiplicative Noise

We now go up one level higher in the difficulty level and consider a linear par-
tial differential equation with a stochastic coefficient, satisfying the relation in
Eq.(12):

−∇T
ω · (κ(x, ω)∇ωu(x, ω) = f(x, ω) for x ∈ R,(53)

u(x) = 0 for x ∈ ∂R.

We formulate this SPDE in a variational statement, one which involves also the
stochastic variables [71, 8, 70, 14, 4].

4.1 Mathematical Formulation

The weak form is to find au ∈ V ⊗ (S), such that for allv ∈ V ⊗ (S):

(54) b(v, u) = E (〈f, v〉) =: 〈〈f, v〉〉,

where

(55) b(v, u) = E

(∫
R

(∇ωv(x, ω))T κ(x, ω)(∇ωu(x, ω)) dx

)
.

We have not completely specified what conditionsκ(x, ω) has to satisfy, the
choice of(S) depends on this and on the RHS or source terms.

If κ ∈ L∞(R) ⊗ L∞(Ω), we may choose(S) = L2(Ω), for other choices see
[9]. Remembering that we suppose the condition in Eq.(12) (κ(x, ω) ≥ κ0), we
have [14]:

Proposition 10. For f ∈ V ∗ ⊗ (S) the problem Eq.(54) has a unique solution
u ∈ V ⊗ (S), which depends continuously onf and onκ.

Proof. Standard arguments show thatE (〈f, ·〉) is continuous onV ⊗(S), and that
b(·, ·) is continuous and coercive. The proposition is thus proven by application
of the Lax-Milgram lemma. The continuous dependence onκ in the L∞-norm
may be seen as a consequence of the first Strang lemma (see [68, 12], and also
[4, 6, 7]).

Corollary 3. Again this defines a continuous, self-adjoint, and positive definite
operatorB : V ⊗ (S) → V ∗ ⊗ (S)∗ with continuous inverse. Both the operator
and its inverse depend continuously onκ. In this view the stochastic variational
problem Eq.(54) may be written asBu = f .
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Again we have satisfied all of Hadamard’s requirements for a well-posed prob-
lem. It is still an open problem what conditions to impose in a stochastic sense
on the random fieldκ(x, ω), in order for the conditions in the above variational
setting to be satisfied.

4.2 Discretisation and Numerical Approximation

A standard spatial discretisation like in Eq.(23) leads to a problem of the form

(56) K(ω)u(ω) = f(ω),

where both the matrixK(ω) and the RHSf(ω) are random variables, and hence so
is u(ω). We shall again attempt to write the solutionu(ω) as a linear combination
of Hermite polynomials inω

(57) u(ω) =
∑

α

u(α)Hα(ω),

and the task will be again to compute theu(α). The Eq.(56) may be termed as one
where we have both additive and multiplicative noise.

Often it is justified to assume that the random variablesK(ω) andf(ω) are
independent, henceΩ = Ω1∪̇Ω2, andK(ω) is a random variable only onΩ1,
whereasf(ω) is a random variable only onΩ2, so that

(58) K(ω1)u(ω1, ω2) = f(ω2), ω1 ∈ Ω1, ω2 ∈ Ω2

The solution in that case may in a more refined way be written as

(59) u(ω1, ω2) =
∑
α1

∑
α2

u(α1,α2)Hα1(ω1)Hα2(ω2).

Projecting this ontoHα1(ω1), we have

(60) u(α1,·)(ω2) =
∑
α2

u(α1,α2)Hα2(ω2) = E1(u(·, ω2)Hα1(·))

= E1(K(·)−1f(ω2)Hα1(·)) = E1(K(·)−1Hα1(·))f(ω2),

whereE1(·) is the expectation w.r.t the variablesω1 ∈ Ω1.
Each of theu(α1,·)(ω2) satisfies an equation of the type whereonly the RHS

is stochastic. In other words, the Eq.(60) is just of the same type as considered in
the previous section on additive noise or stochastic RHS. This we now know how
to handle, and we may concentrate on

(61) u(·,α2)(ω1) =
∑
α1

u(α1,α2)Hα1(ω1) = E2(u(ω1, ·)Hα2(·))

= E2(K(ω1)
−1f(·)Hα2(·)) = K(ω1)

−1E2(f(·)Hα2(·)) = K(ω1)
−1f (α2),
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which for eachα2 is a system with purely multiplicative noise, i.e. where the RHS
is deterministic

(62) K(ω)u(ω) = f .

Later we shall give some more comments on the combined case, but for now
we see that under our assumption we may separate the problem into one of addi-
tive noise, where only the RHS is stochastic, and one of pure multiplicative noise,
where only the operator is stochastic.

As already remarked in the preceeding section 3.2, the consistency of these
methods was shown in [8, 70], for convergence results of similar problems see
also [14, 4, 6, 7]. There one may find alsoà priori error estimates. We again use
Bubnov-Galerkin methods, and ascertain uniform coercitivity or positive definite-
ness, which is not automatic here, thus assuring stability. Together with consis-
tency we obtain convergence (e.g. see [68, 12]).

4.3 Computational Procedures

Similarly as in section 3.3, we again explore different computational approaches.
As now also the operator is approximated, not just by projecting it onto a finite
dimensional subspace, but by using the KL- and PC-expansions on the coefficient
functions, we have to be concerned with stability of the numerical approximation.
Starting with the Monte Carlo method in section 4.3.1, some care has already to
be exercised in order to preserve stability of the numerical approximation pro-
cess. Following the previous order for the stochastic RHS in section 3.3, we next
look at the pure PC-expansion in section 4.3.2. Although not stable by itself, in
connection with a Galerkin projection it turns out to be stable. Next we look at
the KL-expansion of the coefficient function in the operator in section 4.3.3, and
again in conjunction with the Galerkin projection a stable procedure can be found.
Finding a better basis for the solution is the theme of section 4.3.4, and what could
be better than the KL-expansion of the solution? The final subsection 4.3.5 in this
part continues the description of the direct evaluation of the coefficients of the
PC-expansion by integration.

4.3.1 Monte Carlo Methods—Continued

In principle we could proceed like before in section 3.3.1. We generate samples
ωz, solve the equations etc., as described before. One aspect deserves further
consideration though: The realisations of the conductivity all have to satisfy the
relation Eq.(12), i.e. the conductivity has to be positive and bounded away from
zero and bounded above a.e. If we generate the realisations through either the pure
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PC-expansion Eq.(9), or through the combined KL- and PC-expansion Eq.(11), to
be numerically feasible it has to be truncated to a finite number of terms. But as
both expansions only converge inL2(Ω), there is no guarantee that for a fixedωz

the relation Eq.(12) can be satisfied. After truncating the PC-expansion it will cer-
tainly be violated for someωz, as we are now dealing with a polynomial inω, and
polynomials are not bounded. Thus we face the prospect of potential numerical
instability, or we might not even be able to solve the problem for a particular real-
isation, as it may be singular. Our computational procedure now does not satisfy
Hadamard’s requirements any more at the discrete level. This was no issue before
in section 3.3.1, as there the operator was deterministic.

Even if in Eq.(5) the random variablesξk(ω) (see Eq.(6)) could be computed
exactly and not through a truncated PC-expansion, there could still be problems,
as also the KL-expansion only converges inL2(R), and has to be truncated in an
actual computation. As already stated in section 2.2.1, with more requirements on
the covariance function this convergence may be uniform (cf. also [6]).

Due to these arguments, we recommend in the case when particular realisa-
tions are computed to use the representation Eq.(3) with a pointwise transfor-
mation of a Gaussian field, in our examples of such direct simulations we used
Eq.(13). The representation Eq.(3) makes sure that the relation Eq.(12) is satis-
fied in all cases. We shall see in the next section 4.3.2 that this difficulty may be
avoided in conjunction with Galerkin projections.

4.3.2 Can we use the Polynomial Chaos Expansion?

In the case of additive noise we started first by looking at the polynomial chaos
expansion of the stochastic noise term, in the spatially discretised versionf(ω).
We may do the same here for the coefficientκ(x, ω), and in the discretised version
for the matrixK(ω) (cf. Eq.(9). As the stiffness matrixK(ω) depends linearly
on the conductivityκ(x, ω), we obtain a similar PC-expansion to Eq.(9) for the
matrix:

(63) K(ω) =
∑

γ

K(γ)Hγ(ω)

where of courseK(0) = E (K(·)) = K, and eachK(γ) is a stiffness matrix com-
puted with a “conductivity”κ(γ)(x) from Eq.(9).

Assuming also a PC-expansion ofu(ω) as in Eq.(27) in section 3.2.2 when
we were dealing with a stochastic RHS alone, or as in Eq.(64) in the preceeding
section 4.3.2, we have

(64)

(∑
γ

K(γ)Hγ(ω)

)∑
α

u(α)Hα(ω) = f .
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One potential worry here is—alluded to already in section 4.3.1 —that the PC-
expansion in Eq.(9) converges only inL2(Ω). We shall deal with this question as
soon as we have performed the Galerkin projection.

To obtain a finite dimensional approximation, we truncate the series foru(ω)
by letting onlyα ∈ JM,p —this subset was defined in relation Eq.(28). If we do
that, of course the equation can not be identically satisfied any more, and we use
Galerkin projection conditions to obtain a unique solution.

(65) ∀β ∈ JM,p : E

Hβ(·)

(∑
γ∈J

K(γ)Hγ(·)

) ∑
α∈JM,p

u(α)Hα(·)


=

∑
α∈JM,p

(∑
γ∈J

E (Hβ(·)Hγ(·)Hα(·))K(γ)

)
u(α)

= E (Hβ(·)f) = f (β).

Remark 6. Under the conditions assumed (deterministic RHS) we havef (β) =
δ0 βf (β), i.e. onlyf (0) 6= 0, while all otherf (β) = 0.

Defining new matrices∆(γ) with elements

(66) (∆(γ))α,β = E (Hβ(·)Hγ(·)Hα(·)) ,

and defining block vectorsu = [. . . , u(α), . . .] and similarlyf, we can write this
equation with the Kronecker product as

(67) Ku :=

[∑
γ

∆(γ) ⊗K(γ)

]
u = f.

The question comes whether, and if so when, we should truncate the PC-
expansion of Eq.(63), as has to be done in an actual computation. The follow-
ing Theorem 3 shows that this problem is resolved when we look at the projected
equation Eq.(67).

Theorem 3. The series inγ in Eqs.(65, 67) is a finite sum, even when the PC-
expansion Eq.(9) resp. Eq.(63) is not.

Proof. We have to look at the generic expressionE (Hβ(·)Hγ(·)Hα(·)), where
α, β ∈ JM,p, whereasγ ∈ J . The productHα(ω)Hβ(ω), as an element of the
algebra of Gaussian random variables, can again be expressed as a finite sum of
Hermite polynomials

Hα(ω)Hβ(ω) =
∑

η∈JM,2p

h(η)Hη(ω),
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and the indexη can only range through the finite setJM,2p, as the product’s degree
is the sum of the degrees of the individual factors. We insert this expression into
a generic series inγ:

(68)
∑
γ∈J

κ(γ)E (Hβ(·)Hγ(·)Hα(·)) =
∑
γ∈J

κ(γ)E

Hγ(·)
∑

η∈JM,2p

h(η)Hη(·)


=
∑
γ∈J

κ(γ)
∑

η∈JM,2p

h(η)E (Hγ(·)Hη(·))

=
∑
γ∈J

κ(γ)
∑

η∈JM,2p

h(η)δγη =
∑

η∈JM,2p

κ(η)h(η)

As the setJM,2p is certainly finite, this concludes the proof.

To come back to the question in this section’s heading, the answer isyeswhen
we use the Galerkin method, otherwise not directly or without other precautions,
i.e. in a Monte Carlo simulation, cf. section 4.3.1.

The sum and Kronecker product structure allow savings in memory usage and
coarse grain parallelisation in the numerical solution process, and we refer to the
next section for references and more details on this topic.

Unfortunately, often many terms have to be used in the PC-expansion, and we
would like to reduce this. One possibility is shown in the next section 4.3.3.

4.3.3 Using the Karhunen-Lòeve Expansion of the Matrix

As already stated in section 4.3.1, the direct use of the KL-expansion of the coef-
ficient of conductivity Eq.(5), analogous to the expansion of the RHSf(x, ω) in
section 3.3.3, and subsequent truncation, may lead to numerical problems. One
might certainly ask why not use here also the transformation method which was
advocated in section 4.3.1 for the Monte Carlo method. The appeal of the direct
KL-expansion is that a similar Kronecker product structure as Eq.(67) with very
few terms in the sum may be achieved, and the computation of these terms is
completely analogous to the normal computation of a stiffness matrix. We show
that, similarly to the result in the previous section 4.3.2 on the PC-expansion, the
Galerkin projection enables the direct use of the KL-expansion without any further
hypotheses on the covariance functionCκ(x, y) of κ(x, ω).

When the space discretisation is performed for such an expansion of the con-
ductivity, we see right away that

(69) K(ω) = K +
∞∑

=1

√
λξ(ω)K,
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Figure 6: Sparsity Pattern of Kronecker Factor∆.

whereK is computed by using the KL-eigenfunctionκ(x) as conductivity in-
stead ofκ(x). Note that this may be usually computed with existing software, all
one has to do to supply another “material”, namelyκ(x).

For the discreteu(ω) we shall again use the PC-expansion as in Eq.(27) in
section 3.2.2 when we were dealing with a stochastic RHS alone, or as in Eq.(64)
in the preceeding section 4.3.2, and impose the Galerkin conditions to obtain the
coefficients:

(70) ∀α ∈ JM,p :
∑

β∈JM,p

E (Hα(·)K(·)Hβ(·)) u(β) = E (Hα(·)f) = f (α),
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Expanding Eq.(70) with the series in Eq.(69) gives for allα ∈ JM,p :

(71)
∑

β∈JM,p

E

(
Hα(·)

[
K +

∞∑
=1

√
λξ(·)K

]
Hβ(·)

)
u(β)

=
∑

β∈JM,p

[
K +

∞∑
=1

√
λE (Hα(·)ξ(·)Hβ(·))K

]
u(β)

=
∑

β∈JM,p

[
K +

∞∑
=1

∆
()
α,βK

]
u(β) = E (Hα(·)f) = f (α),

where we have introduced

(72) ∆
()
α,β =

√
λE (Hα(·)ξ(·)Hβ(·)) .

To compute such an expectation, we again use the PC-expansion ofξ(ω) Eq.(10).
We know from Theorem 3 from the previous section 4.3.2, that the PC-expansion
series are in this case only finite sums, i.e. the terms in Eq.(72) are finite linear
combinations of terms like in Eq.(66):
(73)

E (Hα(·)ξ(·)Hβ(·)) =
∑

γ∈JM,2p

c(γ)
 E (Hα(·)Hγ(·)Hβ(·)) =

∑
γ∈JM,2p

c(γ)
 ∆

(γ)
α,β.

We define similarly as in the previous section 4.3.2 the matrices∆() with
elements∆()

α,β, and set∆(0) = I, K0 = K. Using again the block vectors
u = [. . . , u(α), . . .] andf, we may write this equation as

(74) Ku :=

[
∞∑

=0

∆() ⊗K

]
u = f.

With the help of Eq.(73) we can further expand:

(75) ∀j > 0 : ∆() =
∑

γ∈JM,2p

√
λc

(γ)
 ∆(γ),

such that with Eq.(74)

(76) Ku =

 ∞∑
=0

∑
γ∈JM,2p

√
λc

(γ)
 ∆(γ) ⊗K

u = f.

In Fig. 6 we see the sparsity pattern of∆(), depending on how many terms
were used in the PC-expansion, produced with theMATLABspy function. White
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space corresponds to zeros, whereas each dot represents one full spatial matrix the
size ofK.

A remark similar to Remark 5 applies here:

Remark 7. There is at least one PC-term for each KL-term, hence we can expect
that in an actual computation we have many less terms in Eq.(74) than in Eq.(67)
—although formally there is still an infinite series in Eq.(74).

As noted in section 4.3.1, the KL-expansion converges only inL2(R), whereas
we only have stability against perturbations inL∞(R), cf. Proposition 10. We
need uniform convergence to be able to truncate the series and still guarantee the
conditions Eq.(12). But the Galerkin projection helps again, as is shown in the
following theorem:

Theorem 4. The series in Eq.(74) resp. Eq.(76) converges uniformly. Hence a
finite number of terms suffices to keep the discrete operatorsK uniformly—in the
discretisation ofV ⊗(S) —positive definite, and therefore their inverses uniformly
bounded, assuring the stability of the approximation process.

Proof. The series Eq.(74) is a series of linear operators on a finite dimensional
space. The vector space of linear operators on a finite dimensional space is again
finite dimensional. On a finite dimensional space all norms are equivalent, and
hence the series Eq.(74) converges uniformly in the operator norm. The trun-
cation of the series may therefore be chosen such that the discrete operatorsK
are uniformly positive definite. Hence their inverses are uniformly bounded—
independent of the discretisation ofV ⊗ (S) —and consequently the approxima-
tion process is stable (cf. [68]).

Remark 8. Certainly the equivalence “constant” between different norms alluded
to in Theorem 4 is dimension-dependent, and hence more terms will be needed for
finer discretisations. But this will be necessary anyway in order to assure conver-
gence and obtain the full accuracy. Again, as noted in section 2.2.1, with more
requirements on the covariance function this convergence may be uniform even
before the Galerkin projection (cf. also [6]). A smooth—especially around the
diagonal—covariance functionCκ(x, y) will cause a rapid decay of the eigenval-
uesλ, and hence a rapid decrease of the norms of the matrices∆() in Eq.(74).
This will help the convergence, but is not necessary.

The Eq.(74) is again in tensor- or Kronecker product form, and for the com-
putation it is definitely kept in this way [24, 57, 47, 32, 34]. Solution methods
used are usually of the Krylov subspace type, where only multiplication with the
system matrixK is necessary. In our example all the matricesK and∆() are
symmetric, hence so isK. And as shown by Theorems 3 and 4, the matrices are
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also positive definite, therefore we use in our examples preconditioned conjugate
gradients. There are again plenty of opportunities for coarse level parallelism, ob-
vious in the sum and in the Kronecker product, this is described in more detail in
[32, 34].

The PC-expansion also gives a natural multi-level structure to the equations,
which can be used in the solution process [48, 49]. An additional possibility is to
select the approximating subspaces adaptively according to the functional which
one wants to compute [48, 35].
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Figure 7: Realisations of Material and Solution on an L-shaped Region.

An example for a realisation for a coefficientκ(x, ω) and a solutionu(x, ω)
is shown in Fig. 7. Since these are random variables at each point, it might be
more instructive to consider the pointwise meanu(x) and the pointwise variance
Cu(x, x), shown in Fig. 8
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Figure 8: Mean and Variance of Solution on an L-shaped Region.
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Stochastically Independent Karhunen-Lòeve Expansion Terms If we have
let us say two sets of coefficients{ξ1} and{ξ2} in the KL-expansion, which are
not only uncorrelated but actually independent, then we may split

Ω = Ω1∪̇Ω2 ⇒ L2(Ω) = L2(Ω1)⊕ L2(Ω2),

and the first set lives only onΩ1 — ξ1(ω1) ∈ L2(Ω1), whereas the latter are
functions onΩ2 alone—ξ2(ω2) ∈ L2(Ω2).

We order the unknowns such that we have first the zero-block—(α1, α2) =
(0, 0), then those fromΩ1 — (α1, α2) = (·, 0), followed by those fromΩ2 —
(α1, α2) = (0, ·). The ansatz basis functions are in only one of the direct sum-
mands, so that there are no cross-terms. Due to the assumption of independence,
the non-zero pattern forK in Eq.(74) or Eq.(76) w.r.t. theΩ-variables is evident
from Eq.(72), and has the following bordered block-diagonal structure:

(77) nonzeroΩ(K) =

 • • •
• • 0
• 0 •

 ,

where the “•” terms are nonzero.
This means that Eqs.(74,76) are systems where the variables indexed byα1

may be condensed out independently from those indexed byα2, and only in the
calculation of the(0, 0)-term—the mean—are they all added in. It is thus the
assumption of independence between different KL-coefficients which generates
such bordered block-diagonal systems, cf. [14, 4, 6, 7].

Stochastically Independent Source or Right Hand Side Note that if we now
have a combined case with stochastic operator and stochastic RHS, all we have to
do following the arguments in section 4.2 is to combine one of the approaches in
this section or in section 4.3.2 with the ones from section 3. It finally means that
we have to solve the problem with stochastic operator/matrix for each RHSf (α)

from the PC-expansion, orf  from the KL-expansion off(x, ω).

4.3.4 Using the Karhunen-Lòeve Expansion of the Solution

The main purpose of using the KL-expansion ofu(ω) is that we hope to use it
for the spatial discretisation—in the form of a post-processing model reduction,
making the size of the deterministic partsK much smaller. To represent the
random part of the solutionu(ω), we know that the KL-expansion gives the best
approximation in variance with the fewest number of basis vectors. So it would
be good to use that here as well, like in section 3.3.4 for the additive noise case.
The problem is that we know neither the meanu nor the covarianceCu before
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we have computed the full solutionu(ω). In the previous case of only additive
noise in section 3, the mean was easy to compute (one spatial solution), and the
covariance and its KL-modes came out together from a generalised eigenvalue
problem in section 2.2.1, independently from knowingu(ω). In the case of a
stochastic operator we have to proceed differently.

Let us first try to compute the mean in the decomposition

u(ω) = u + ũ(ω).

The equationK(ω)u(ω) = f shows that we can not easily average, as both
K(ω) andu(ω) are correlated. Multiplying—formally—byK−1(ω), we see that

u(ω) = K−1(ω)f ⇒ u = E
(
K−1(·)

)
f .

The problem is of course that it is not easy to average the inverse of a matrix. Let
us splitK(ω) into a constant and a fluctuating part

(78) K(ω) = K̂ + Ǩ(ω).

The simplest example of that isK(ω) = K + K̃(ω), but it is not always the

right one, as we want that a.e.‖K̂
−1

Ǩ(ω)‖ ≤ q < 1 for the Neumann series to
follow. Such a split is always possible, as‖K(ω)‖ is bounded above andK(ω) is
uniformly positive definite a.e. forω ∈ Ω.

With this we have

(79) K(ω)u(ω) =
(
K̂ + Ǩ(ω)

)
u(ω) = K̂

(
I + K̂

−1
Ǩ(ω)

)
u(ω) = f ,

implying, with the use of the convergent Neumann series [22, 4]

(80) N(ω) :=
(
I + K̂

−1
Ǩ(ω)

)−1

= (I + S(ω))−1 =
∞∑

`=0

(−1)`S`(ω),

—whereS(ω) := K̂
−1

Ǩ(ω) with ‖S(ω)‖ ≤ q < 1 —that

(81) u(ω) = N(ω)K̂
−1

f = N(ω)û,

where we have set̂u = K̂
−1

f .
Now we may take the average or expected value in Eq.(81)

(82) u = Nû := E (N(·)) û =

(
∞∑

`=0

(−1)`E
(
S`(·)

))
û,
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with the required computation ofE
(
S`(·)

)
now feasible. The convergence of the

Neumann series in Eq.(80) implies the convergence of the one in Eq.(82). As we
have an explicit expression foru(ω) in Eq.(81), we can compute the covariance
Cu. Here we allow also for a stochastic (independent) RHSf(ω2) = f + f̃(ω2),

and seťu(ω2) = K̂
−1

f̃(ω2) —this is the variation caused by the stochastic RHS
alone if the system were deterministic, i.e. the subject of section 3; the meanu is
unchanged if̃f(ω2) 6= 0 —and the solution then can, with a little computation, be
shown to be

(83) u(ω1, ω2) = N(ω1)(û + ǔ(ω2)).

The expression for the covariance involves a lengthy computation:

Cu = E ([u(ω1, ω2)− u]⊗ [u(ω1, ω2)− u])(84)

= E ([N(ω1)⊗N(ω1)][û + ǔ(ω2)]⊗ [û + ǔ(ω2)])− u⊗ u

= E1(N(·)⊗N(·)) [û⊗ û + E2(ǔ(·)⊗ ǔ(·))]− u⊗ u

= E1(N(·)⊗N(·))û⊗ û− [N⊗N]û⊗ û

+ E1(N(·)⊗N(·))[K̂⊗ K̂]−1Cf

=
[
E1(N(·)⊗N(·))−N⊗N

]
[K̂⊗ K̂]−1f ⊗ f

+ E1(N(·)⊗N(·))[K̂⊗ K̂]−1Cf .

In the first term on the final line we see the covariance caused just by the
stochastic matrix/operator, whereas the second tells us how the covariance of the
RHS f(ω2) is amplified by the operator. For the last term we already had the
(possibly low rank) expression from Eq.(41) in Theorem 1 in section 3.3.4,[K̂⊗
K̂]−1Cf = WΘ−2W∗ —we now useK̂ instead ofK —so that

(85) Cu = E1(N(·)⊗N(·))
[
û⊗ û + WΘ−2W∗]− u⊗ u

as a practicably computable expression.
Computing the expression in Eq.(85) really means solving a large system of

equations, corresponding to the boundary value problem Eq.(21) in Proposition 4
posed onR×R! We ought to be able to do better, as—especially with the low rank
approximation—the expression in Eq.(85) is also of low rank, and there should
be no need to compute a full matrix. We can avoid this by observing that the
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Neumann series Eq.(80) leads to a similar series expansion of

(86) N(ω1)⊗N(ω1) =

(
∞∑

`=0

(−1)`S`(ω1)

)
⊗

(
∞∑

m=0

(−1)mSm(ω1)

)

=
∞∑

`,m=0

(−1)`+m(S`(ω1)⊗ Sm(ω1))

=
∞∑

k=0

(−1)k

(
k∑

n=0

Sn(ω1)⊗ Sk−n(ω1)

)

Now the expected value can be taken, and the low rank of the approximation
can be reflected in the computation. Details of this will be published elsewhere.
From this expression forCu we can compute the spectrumΛu and eigenvec-
tors Φu, and retain only those with large eigenvalues, i.e.Φ̂. Taking the QR-
decomposition of[u, Φ̂], we have good basis for a low dimensional—reduced—
subspace with which to approximateu(ω) = QuR(ω).

This is used for each termu(β) in Eq.(64) in section 4.3.2,

(87) u = (I⊗Q)uR,

whereuR = [. . . , u
(β)
R , . . .] is a reduced block-vector.

Projecting Eq.(76) onto this subspace, we have

(88) (I⊗Q)∗K(I⊗Q)uR

= (I⊗Q)∗

 ∞∑
=0

∑
γ∈JM,2p

√
λc

(γ)
 ∆(γ) ⊗K

 (I⊗Q)uR

=

 ∞∑
=0

∑
γ∈JM,2p

√
λc

(γ)
 ∆(γ) ⊗Q∗KQ

uR

= (I⊗Q)∗f = fR.

This is of the same type as as Eq.(76), but the matricesQ∗KQ can be much
smaller thanK, although probably not as sparse.

Remark 9. In this approach, the meanu and covarianceCu have been part of
the computational path. For problems where also the RHS is stochastic, again the
system in Eq.(88) has to be used for many RHSf (α).
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4.3.5 Direct or Non-Intrusive Computation—Continued

When we want to compute the PC-coefficients directly, we may take Eq.(89) in
Proposition 9 again, only remembering that now also the matrix is stochastic:

(89) u(α) = E (u(·)Hα) = E
(
K−1(·)u(·)Hα

)
=

∫
Ω

K−1(ω)f(ω)Hα(ω) Γ(dω).

Approximating integrals by a quadrature rule—this could be Monte Carlo—
we obtain

(90) u(α) ≈
Z∑

z=1

wzHα(ωz)K
−1(ωz)f(ωz) =

Z∑
z=1

wzHα(ωz)u(ωz),

with integration weightswz which in the case of Monte Carlo are simply1/Z.
Instead of one large system equations Eq.(76), we have to solve many—indeed

Z —small onesK(ωz)u(ωz) = f(ωz) for certain realisationsωz. One caveat is
again that here we can not use the PC- and KL-expansion directly to represent
the stochastic field, as positive definiteness and boundedness will be violated —
cf. section 4.3.1, but instead we recommend the transformation method Eq.(3) in
section 2.2.

See [36] for a study when it is advisable to use what kind of integration in this
direct computation of PC-coefficients.

It is not yet clear when it is better to use the direct approach just introduced,
and when to use the coupled systems of the previous sections.

5 The Nonlinear Case

As often, the ability to solve the linear or at least linearised problem is the
“workhorse” also for nonlinear problems. We look back to section 2, and consider
again our model problem Eq.(1). Now we assume that the hydraulic conductiv-
ity κ(x, u) depends also on the hydraulic head and on soil properties which we
describe by two other fields,̂κ(x) andκ̌(x). We use the model

(91) κ(x, u) = κ̂(x) + κ̌(x)u(x)2,

and we assume that both fields satisfy the boundedness and positivity conditions
Eq.(12). This should be seen as a first approximation to more accurately modelled
nonlinear behaviour.
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5.1 Mathematical Formulation

We may proceed similarly as in section 4.1. We shall first quickly formulate the
deterministic and then the stochastic problem [36].

As the equation is nonlinear, the right function space for the spatial part is not

anymore the Sobolev space
◦

H1 (R) =
◦

W 1
2 (R) —a Hilbert space, but rather a

Sobolev spaceV =
◦

W 1
p (R) with p > 2 —a Banach space. Assume again that we

are at first only dealing with a deterministic problem, so that we can take this as
a ‘leitmotiv’. The RHS should be in the dual space ofV , i.e.f ∈ V ∗, which for

V =
◦

W 1
p (R) is V ∗ = W−1

q (R), where1/p + 1/q = 1.
The gradient∇ : V → Q —now with Q := Lp(R, Rd) —is continuous,

which allows us to satisfy another requirement, namely that the nonlinear Ne-
micky operator

(92) N : u 7→ N(u) := (κ̂ + κ̌u2)∇u

is a continuous map fromV into Q∗ = Lq(R, Rd), and we requirep = 4 because
of the type of nonlinearity.

All this makes the semi-linear (linear inv) form [29, 55]

(93) a(u, v) :=

∫
R

(∇v(x))T · N(u)(x) dx

hemicontinuous inu and continuous inv, and defines a hemicontinuous (nonlin-
ear) operatorA : V → V ∗ such that for allu, v ∈ V :

(94) a(u, v) = 〈A(u), v〉V ,

where〈·, ·〉V is the duality pairing betweenV and its dualV ∗. The operatorA
is strictly monotone and coercive. With this preparation we have the following
theorem [29, 55]:

Theorem 5. The problem to findu ∈ V , such that for allv ∈ V

(95) a(u, v) = 〈A(u), v〉V = 〈f, v〉V

has a unique solution for eachf ∈ V ∗.

In the linear case this reduces to Proposition 1.
We want to extend this to the stochastic situation and allow now bothκ̂(x, ω)

andκ̌(x, ω) be random fields, still satisfying the boundedness condition Eq.(12).
We look for a solution in a tensor product again. To accommodate the nonlinearity,
we can not any more have the Hilbert spaceL2(Ω) for the stochastic part of the
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solution, but this has to be the Banach space(S) := Lp(Ω), with p = 4 here
too, due to the type of nonlinearity, with dual space(S)∗ = Lq(Ω), where again
1/p + 1/q = 1. Hence we take as solution space the tensor productV ⊗ (S).
This tensor product is isomorphic toLp(Ω, V ), i.e. a space ofV -valued random
variables. It is certainly possible to use more refined and general spaces for(S),
as was done in [8] for the linear Hilbert space case.

As in Definition 1 in section 3.1, we here use the operator∇ω, a linear and
continuous map fromV ⊗ (S) into Q⊗ (S), in the same fashion as before.

Now we are ready to define the stochastic extension of the Nemicky operator
in Eq.(92):

Definition 3. The stochastic Nemicky operatorNω : V ⊗ (S) → Q∗ ⊗ (S)∗ is
defined foru ∈ V ⊗ (S) by

(96) Nω(u(x, ω)) := (κ̂(x, ω) + κ̌(x, ω)u(x, ω)2)∇ωu(x, ω).

As before, with these ingredients we obtain a semi-linear form onV ⊗ (S):

(97) a(u, v) :=

∫
Ω

∫
R

(∇ωv)T ·Nω(u) dx Γ(dω), u, v ∈ V ⊗ (S),

which defines a hemicontinuous (nonlinear) operatorA from V ⊗(S) into its dual,
such that for allu, v ∈ V ⊗ (S):

(98) a(u, v) = 〈〈A(u), v〉〉,

where〈〈·, ·〉〉 is the duality pairing betweenV ⊗ (S) and its dual.
This allows us to formulate the nonlinear stochastic PDE in a variational form

equivalent to Eq.(95): Findu ∈ V ⊗ (S) such that for allv ∈ V ⊗ (S):

(99) a(u, v) = 〈〈A(u), v〉〉 = 〈〈f, v〉〉.

Theorem 6. The variational problem Eq.(99) has a unique solution for eachf ∈
V ∗ ⊗ (S)∗.

Proof. The same arguments as in the deterministic case—Theorem 5 —are used
here to ascertain the existence and uniqueness of a solutionu ∈ V ⊗ (S), and
hence do not have to be repeated—see [29, 55].

5.2 Discretisation and Numerical Approximation

Again, like in section 4.2, a standard spatial discretisation—the same finite ele-
ment spaces may be used [12, 68, 77] —like in Eq.(23) leads to a problem of the
form

(100) A(ω)[u(ω)] = f(ω),
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where both the nonlinear operatorA(ω)[·] and the RHSf(ω) are random, and
hence so isu(ω). We shall again attempt to write the solutionu(ω) as a linear
combination of Hermite polynomials inu(ω) =

∑
α u(α)Hα(ω), and the task will

be again to compute theu(α). The Eq.(100) may again be termed as one where
we have both additive and multiplicative noise.

Due to the nonlinearity, it is of no big advantage to take into detailed account
the different sources of randomness—the operator or the RHS—like in section 4.2,
as the superposition principle fails in general.

As Gaussian random variables have moments of all orders, their algebra—see
section 2.2.2 —is contained in allLp(Ω) spaces with1 < p < ∞ (see [28, 43]),
and is dense in these spaces. Hence the stochastic discretisation and approxima-
tion can again be performed like in section 3.2.2.

5.3 Computational Procedures

As we are dealing with a nonlinear equation, the different approaches for linear
equations are not really much different any more. A linear expansion of the right
hand side isnot carried through to the solution. But certainly it pays to use the
KL-expansion of the random fields involved, if only to deal with as few as possible
stochastic dimensions. We have not yet developed a way to obtain the KL-vectors
of the solution independently beforehand, to be used for model reduction like
in section 4.3.4. So the only thing really left is to use the PC-expansion of the
solution.

5.3.1 Monte Carlo Methods—Encore

There is not much to add here, as most of the relevant descriptions and warnings
were given in earlier sections 4.3.1 and 3.3.1.

We proceed like before. We generate samplesωz, solve the equations etc., as
described already. But now these are nonlinear equations, so the system has to be
solved—although independently and possibly in parallel—many times. This can
be very costly, depending on what kind of integration procedure was used [36].

5.3.2 Using the Polynomial Chaos Expansion

The Galerkin method is obtained by inserting the stochastic ansatz foru(ω) —
Eq.(57) —into Eq.(100). In general there will be a residuum

(101) R(ω)[u(ω)] = f(ω)−A(ω)[u(ω)],

which is then projected in a standard Galerkin manner onto the finite dimensional
stochastic subspace span{Hα|α ∈ JM,p}, and we require the projection to vanish.
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This results in

(102) r(u) = [. . . ,E (Hα(·)R(·)[uH(·)]) , . . .] = 0,

where the same block vectors—u = [. . . , u(α), . . .] —as in sections 3.4, 4.3.2
and 4.3.3 are used.

Solution Mean Solution Standard Deviation
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Figure 9: Mean and Standard Deviation of Solution to Nonlinear Model.

Now Eq.(102) is a huge nonlinear system, and one way to approach it is
through the use of Newton’s method, which involves linearisation and subsequent
solution of the linearised system, employing the methods of the previous sec-
tion 4.3.

Another possibility, avoiding the costly linearisation and solution of new linear
system at each iteration, is the use of Quasi-Newton methods [44, 15]. This was
done in [36], and the Quasi-Newton method used—as we have a potential problem
this was theBFGS-update—performed very well. The Quasi-Newton methods
produce updates to the inverse of a matrix, and these low-rank changes [15] are
also best kept in tensor product form [44]; so that we have tensor products here on
two levels, which makes for a very economical representation.

But in any case, in each iteration the residual Eq.(102) has to be evaluated at
least once, which means that for allα ∈ JM,p} the integral

E (Hα(·)R(·)[uH(·)]) =

∫
Ω

Hα(ω)R(ω)[uH(ω)] Γ(dω)

has to be computed. In general this can not be done analytically as before in the
case of linear equations, and we have to resort to numerical quadrature rules—see
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section 3.3.1:∫
Ω

Hα(ω)R(ω)[uH(ω)] Γ(dω) ≈
Z∑

z=1

wzHα(ωz)R(ωz)[u(ωz)].

What this means is that for each evaluation of the residual Eq.(102) the spatial
residual Eq.(101) has to be evaluatedZ times—once for eachωz where one has to
computeR(ωz)[u(ωz)]. Certainly this can be done independently and in parallel
without any communication. But we would like to point out that instead of solving
the system every time for eachωz as in the preceding section 5.3.1, here we only
have to compute the residual—but this for every iteration.

This emphasis on integration now also points towards the direct or non-
intrusive methods already mentioned in sections 3.3.5 and 4.3.5.

Error ·104 in Mean for Galerkin Prob{u > 3.25}

−1−0.8−0.6−0.4−0.200.20.40.60.81

−1
−0.8

−0.6
−0.4

−0.2
0

0.2
0.4

0.6
0.8

1

0

0.2

0.4

0.6

0.8

1

y

x
−1

−0.5
0

0.5
1

−1

−0.5

0

0.5

1

0

0.2

0.4

0.6

0.8

y

x

Figure 10: Error in Mean for PC-Galerkin and Example Statistic.

We compute the solution for the nonlinear groundwater flow model. The soil
parameterκ(x, ω) is chosen beta-distributed as indicated before. As a reference,
the mean and standard deviation were computed by Smolyak quadratureS6

6 —to
be explained in section 5.3.3 —in altogetherZ = 6, 188 integration points. They
are show in Fig. 9.

Next we compute the PC-expansion via the Galerkin method explained in
this section, the error of which for the mean is shown in Fig. 10. We choose
a polynomial chaos of degree 2 in 6 independent Gaussian variables as ansatz
(28 stochastic functions). A spatial discretisation in 170 degrees of freedom was
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u(α) for Galerkin PC-Expansion Error·104 in u(α)
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Figure 11: PC-Galerkin Vector and its Error.

performed, totalling4, 760 nonlinear equations. The BFGS solver required 19 it-
erations, and as the first iterations required line-searches, the residual had to be
evaluated 24 times. The residual was integrated by the 5-stage Smolyak quadra-
ture S6

5 in Z = 1, 820 integration points. As the evaluation in each integration
point requires one integration in the spatial dimension,43, 680 spatial integrations
were performed.

As we now have a “response surface”, we show also in Fig. 10 as an example
the computation ofpu0(x) = Prob{u(x) > 3.25} for all points in the domainR.
Next we show one of the PC-vectors in Fig. 11, and its error. It is small, at least
in the “eye-ball” norm.

5.3.3 Direct or Non-Intrusive Computation—Finale

Like before in sections 3.3.5 and 4.3.5, we recall that the PC-coefficients ofu(ω)
are also functionals—u(α) = E (Hα(·)u(·)). When we try to evaluate this nu-
merically, we again—as in section 5.3.1 —have to solve the nonlinear system for
each integration pointωz; this is very similar to the MC-method. Only that we
multiply by the corresponding polynomialHα before adding everything up.

In principle this integral could be computed via MC integration, but now a
considerable weakness of MC and QMC methods comes to the surface—they can
not exploit the smoothness of the integrand. The integrand is in our case partly a
polynomial and hence very smooth, but has very high variance—and that again is
what the MC methods have their problem with [36].
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We therefore focus finally on high-dimensional integration, a subject which
was popping up already in several places.

5.3.4 High-Dimensional Integration

We only want to sketch the various possibilities, and draw some comparisons. For
more in depth information we refer to the references.

Suppose that we want to evaluate the integral Eq.(103) by approximating it
with a sum—a quadrature formula.

(103) E (Ψ(·))m =

∫
Ωm

Ψ(ω) Γ(dω) ≈ ΨZ :=
Z∑

z=1

wzΨ(ωz),

where nowm is the number of independent random variables, the dimension of
the integration domainΩm. The functionΨ(ω) is a substitute for the different
integrands we have encountered so far. Several possibilities exist, and we shall
briefly look at some of them.

Monte Carlo Methods Monte Carlo methods (MC-methods)—already de-
scribed in section 3.3.5 —obtain the integration points asZ independent ran-
dom realisations ofωz ∈ Ωm distributed according to the probability-measure
Γ on Ωm, and use constant weightswz = 1/Z. MC-methods are probabilis-
tic as the integration points are chosen randomly, and therefore the approxima-
tion and the error are random variables. For largeZ, the error is approximately
‖Ψ̃‖L2 Z−1/2N (0, 1), whereN (0, 1) is a standard-distributed Gaussian random
variable, and theL2(Ω)-norm is the standard deviation of the zero mean fluctuat-
ing partΨ̃ of the integrand.

Due to theO(‖Ψ̃‖L2 Z−1/2) behaviour of the error, MC methods converge
slowly—for instance, the error is reduced by one order of magnitude if the num-
ber of evaluations is increased by two orders. The MC methods are well suited for
integrands with small variance and low accuracy requirements. In applications,
their efficiency is usually increased somewhat by variance reduction and impor-
tance sampling, see e.g. [10, 63, 64] and the references therein. The significant
advantage of MC methods is that their convergence rate is independent of the
dimension, in contrast with the other methods to be discussed.

Quasi-Monte Carlo Methods Quasi-Monte Carlo methods (QMC) are often
seen as an alternative to Monte Carlo methods, e.g. [51, 10]. Informally speaking,
they choose the sequence of integration points such that “for any number of points
Z the integralE (1) is approximated well by the sequence”. Such sequences are
called quasi-random numbers or low discrepancy sequences [51].

50



The most commonly used QMC methods have an error of

O
(
‖Ψ̃‖BV Z−1(log Z)m

)
, where ‖Ψ̃‖BV denotes the bounded variation

norm. If the dimension is not too large and the integrand is smooth, the termZ−1

dominates the error and QMC-methods may be more efficient than MC-methods,
e.g. see [10] and the references therein.

Normal Quadrature Rules The textbook approach to an integral like Eq.(103)
would be to take a good one-dimensional quadrature rule, and to iterate it in every
dimension; this we might call the full tensor product approach.

Assume that we use one-dimensional Gauss-Hermite-formulasQk with k ∈
N integration pointsω,k and weightsw,k,  = 1, . . . , k. As is well-known,
they integrate polynomials of degree less than2k exactly, and yield an error of
orderO(k−(2r−1)) for r-times continuously differentiable integrands, hence takes
smoothness into full account.

If we take a tensor product of these rules by iterating themm times, we have

ΨZ = Qm
k (Ψ) := (Qk ⊗ · · · ⊗Qk)(Ψ) =

m⊗
=1

Qk(Ψ)

=
k∑

1=1

· · ·
Z∑

m=1

w1,k · · ·wm,kΨ(ω1,k, . . . ,ωm,k).

This “full” tensor-quadrature evaluates the integrand on a regular mesh of
Z = km points, and the approximation-error has orderO(Z−(2r−1)/m). Due to
the exponential growth of the number of evaluation points and hence the effort
with increasing dimension, the application of full tensor quadrature is impracti-
cal for high stochastic dimensions, this has been termed the “curse of dimension”
[53].

Sparse or Smolyak Quadrature “Sparse” or Smolyak quadrature quadrature
[67] can be applied in much higher dimensions—for recent work see e.g. [52, 54,
60] and the references therein. A software package is available at [58].

Like full tensor-quadrature, a Smolyak quadrature formula is constructed from
tensor products of one-dimensional quadrature formulas, but it combines quadra-
ture formulas of high order in only some dimensions with formulas of lower order
in the other dimensions. For a multi-indexη ∈ Nm with |η| as before, the Smolyak
quadrature formula is

ΨZ = Sm
k (Ψ) :=

∑
k≤|η|≤k+m−1

(−1)k+m−1−|η|
(

k − 1
|η| − k

) m⊗
=1

Qη(Ψ).
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Error ·104 in Mean forS6
4

(Z = 455 integration points).
Error in Mean for Monte Carlo (Z = 500).
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Figure 12: Solution Errors by Direct Computation
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For a fixedk the number of evaluations grows significantly slower in the num-
ber of dimensions than for full quadrature. The price is a larger error: full quadra-
ture integrates monomialsωη = ωη1

1 · · ·ωηm
m exactly if their partial degreemax η

does not exceed2k−1. Smolyak formulasSm
k integrate multivariate polynomials

exactly only if their total polynomial degree|η| is at most2k−1. But still the error
is only O(Z−k(log Z)(m−1)(k+1)) with Z = O

([
2k/(k!)

]
mk
)

evaluation points.
This only grows polynomially in the dimension, and has been used up to several
hundred dimensions.

Numerical Experiments We used Smolyak quadratureS6
4 with 451 integration

points and Monte Carlo simulation with 500 integration points. The accuracy
in mean and standard deviation with respect to the reference solution are shown
in Fig. 12. The errors from the naive Monte Carlo simulation are considerably
larger than the error from the Smolyak integration—about forty times larger for
the mean and six times larger for the standard deviation. Thus, a naive Monte
Carlo simulation would require an approximately1, 600 times higher effort to
obtain the same accuracy.

See [36] for some experiments, when to use which kind of integration. The
finding there is that for lowm normal quadrature is best. For higher to moderately
high (several hundred)m, sparse or Smolyak quadrature [67, 19, 60, 59, 58] is
advisable. For very high dimensions, we come into the region where first Quasi
Monte Carlo [51] and then finally for extremely high dimension Monte Carlo
methods should be most effective.

6 Conclusions

What seems to be needed—besides further development of more effective numer-
ical algorithms—are investigations on whether and when Monte Carlo like eval-
uation, fully coupled Galerkin procedures, or direct PC-coefficient computation
are more favourable. While the linear case seems fairly clear from the point of
view of computational alternatives, it is an open problem how to obtain the mean,
covariance, and KL-basis of the solution without actually computing it in the non-
linear case. Also, as the KL-basis serves as a vehicle for dimension reduction
of the system, it would be interesting to see how this could be tied together with
nonlinear Galerkin methods. We hope that, by exposing different computational
alternatives and linking them together, we were able to shed some light on the
problems involved with stationary stochastic systems.
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[4] I. Babǔska and P. Chatzipantelidis: On solving elliptic stochastic partial
differential equations.Comp. Meth. Appl. Mech. Engrg.191(2002)4093–
4122.
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