Charakterisierung des Myb-Transkriptionsfaktors p42POP:
Eine Verbindung des Mikrofilamentsystems zur Transkription

Von der Gemeinsamen Naturwissenschaftlichen Fakultät
der Technischen Universität Carolo-Wilhelmina
zu Braunschweig
zur Erlangung des Grades eines
Doktors der Naturwissenschaften
(Dr.rer.nat.)
genehmigte
D i s s e r t a t i o n

von Marcell Ivo Lederer
aus Kempten
1. Referentin: Prof. Dr. B.M. Jockusch
2. Referent: Prof. Dr. H.-H. Arnold
eingereicht am: 16.09.2002
mündliche Prüfung (Disputation) am: 17.12.2002
Teilergebnisse aus dieser Arbeit wurden mit Genehmigung der Naturwissenschaftlichen Fakultät in folgenden Beiträgen vorab veröffentlicht:

Tagungsbeiträge:

Inhaltsverzeichnis

Abkürzungen .. IV
Zusammenfassung.. VI

I Einleitung

1 Profilin – Gewebsspezifische Expression verschiedener Isoformen .. 2
 1.1 Strukturelle Lokalisation verschiedener Ligandenbindungsmotive 3
 1.2 Wechselwirkung mit Aktin und Einfluß von Profilin auf das Mikrofilamentsystem 4
 1.3 Profilin als Mittler zwischen Mikrofilamentsystem und Signaltransduktion 6
 1.4 Interaktion mit poly-L-Prolin Liganden .. 7

2 Transkriptionsfaktoren der Myb-Familie .. 9
 2.1 Struktureller Aufbau der DNA-Bindungsdomäne .. 11
 2.2 Regulation der c-Myb-vermittelten Aktivierung durch posttranslationale
 Modifikationen und Ligandenwechselwirkungen ... 12
 2.3 Zelluläre Zielgene von c-Myb .. 16

3 Aufgabenstellung ... 17

II Material und Methoden

1 Material ... 18
 1.1 Chemikalien und Enzyme .. 18
 1.2 Bakterien .. 18
 1.3 Hefen .. 19
 1.4 Tierische Zellkulturzellen ... 20
 1.5 Vektoren ... 20
 1.6 Oligodesoxynukleotide... 21
 1.7 Antikörper .. 23
 1.8 Geräte ... 24

2 Methoden... 25
 2.1 Molekularbiologische Methoden .. 25
 2.1.1 Herstellung kompetenter Bakterien ... 25
 2.1.2 Transformation von Bakterien ... 25
 2.1.3 RNA-Präparation ... 26
 2.1.4 Plasmidpräparation ... 26
 2.1.4.1 TELT-Methode ... 26
 2.1.4.2 Alkalische Lyse .. 26
 2.1.4.3 Plasmidpräparation mit Qiagen Plasmid Kits .. 27
 2.1.5 Spektrophotometrische Konzentrationsbestimmung von Nukleinsäuren 27
 2.1.6 Agarose-Gelelektrophorese ... 27
 2.1.6.1 Denaturierende RNA-Gelelektrophorese .. 27
 2.1.6.2 DNA-Gelelektrophorese .. 28
 2.1.7 Herstellung eines DNA-Längenmarkers .. 28
 2.1.8 DNA-Hydrolyse mit Restriktionsendonukleasen .. 29
 2.1.9 Phenol-Extraktion ... 29
Inhaltsverzeichnis

2.1.10 Alkohol-Präzipitation von DNA...29
2.1.11 Polyethylenglycol (PEG)-Präzipitation..30
2.1.12 DNA-Fragment-Isolierung...30
2.1.13 Dephosphorylierung von 5'-Phosphatenden..30
2.1.14 In vitro -Neukombination von DNA-Fragmenten.....................................31
2.1.15 Reverse Transkription..31
2.1.16 Polymerase-Ketten-Reaktion (PCR)...31
2.1.17 Klonierung von PCR-Produkten...32
2.1.17.1 pGEM®-T-Easy Vektor..32
2.1.17.2 Zero Blunt™ PCR Cloning Kit..32
2.1.18 Ortsspezifische Mutagenese...33
2.1.19 Southern Blot...33
2.1.20 Nichtradioaktive Markierung von DNA...33
2.1.21 Hybridisierung und Nachweis Dig-11dUTP-markierter Sonden..................34
2.1.22 Radioaktive Markierung doppelsträngiger Oligodesoxynukleotide............34
2.1.23 Nichtradioaktive DNA-Sequenzierung..34
2.2 Biochemische Methoden..35
2.2.1 Expression in E. coli und Zellschnellaufschluß..35
2.2.2 Expression und Reinigung von rekombinantem Maus Profilin I und Ia....35
2.2.2.1 Herstellung von poly-L-Prolin-Sepharose...35
2.2.2.2 Expression und Reinigung...36
2.2.3 Expression und Reinigung von rekombinanten p42POP-Fragmenten mit His-Tag 36
2.2.4 Bestimmung der Proteinkonzentration...37
2.2.4.1 Proteinbestimmung nach Bradford..37
2.2.4.2 Proteinbestimmung über molare Extinktionskoeffizienten.....................37
2.2.5 SDS-Polyacrylamid-Gelelektrophorese (SDS-PAGE).................................38
2.2.6 Immunoblot...39
2.2.7 Phosphorylierung von Profilin durch die Proteinkinase Ca (PKCa)..............39
2.2.8 Phosphorylierung mittels der cAMP-abhängigen Serin/Threonin Proteinkinase (PKA)...40
2.2.9 Chemical crosslinks mit NHS/EDC..40
2.2.10 Yeast two-hybrid System...41
2.2.11 In vitro Transkription und Translation zur radioaktiven Markierung von Polypeptiden...41
2.2.12 Dot overlay Assay..42
2.2.13 Electrophoretic mobility shift assay (EMSA)...42
2.2.14 Präzipitation mittels poly-L-Prolin Sepharose...43
2.2.15 Bindungsstudien durch indirekte Enzyme-Linked ImmunoSorbent Assay (ELISA) 43
2.3 Zellbiologische Methoden..44
2.3.1 Kultivierung von Zellkulturzellen..44
2.3.2 Passagieren von Zellen...44
2.3.3 Kryokonservierung von Zellen...45
2.3.4 Transiente Transfektion von Zellen...45
2.3.4.1 Calciumphosphat-Methode..45
2.3.4.2 Transfektion mit FuGene™ Transfektionsreagenz.................................45
2.3.5 Fixierung und Permeabilisierung von Zellen..46
2.3.6 β-Galaktosidase Assay zur Bestimmung der Transfektionseffizienz einer transienten Transfektion...46
2.3.7 Luciferase-Assay...47
2.3.8 Heterokaryon Assay..47
2.3.9 Coimmunpräzipitation...48
2.2 Biochemische Methoden..35
2.2.1 Expression in E. coli und Zellschnellaufschluß..35
2.2.2 Expression und Reinigung von rekombinantem Maus Profilin I und Ia....35
2.2.2.1 Herstellung von poly-L-Prolin-Sepharose...35
2.2.2.2 Expression und Reinigung...36
2.2.3 Expression und Reinigung von rekombinanten p42POP-Fragmenten mit His-Tag 36
2.2.4 Bestimmung der Proteinkonzentration...37
2.2.4.1 Proteinbestimmung nach Bradford..37
2.2.4.2 Proteinbestimmung über molare Extinktionskoeffizienten.....................37
2.2.5 SDS-Polyacrylamid-Gelelektrophorese (SDS-PAGE).................................38
2.2.6 Immunoblot...39
2.2.7 Phosphorylierung von Profilin durch die Proteinkinase Ca (PKCa)..............39
2.2.8 Phosphorylierung mittels der cAMP-abhängigen Serin/Threonin Proteinkinase (PKA)...40
2.2.9 Chemical crosslinks mit NHS/EDC..40
2.2.10 Yeast two-hybrid System...41
2.2.11 In vitro Transkription und Translation zur radioaktiven Markierung von Polypeptiden...41
2.2.12 Dot overlay Assay..42
2.2.13 Electrophoretic mobility shift assay (EMSA)...42
2.2.14 Präzipitation mittels poly-L-Prolin Sepharose...43
2.2.15 Bindungsstudien durch indirekte Enzyme-Linked ImmunoSorbent Assay (ELISA) 43
2.3 Zellbiologische Methoden..44
2.3.1 Kultivierung von Zellkulturzellen..44
2.3.2 Passagieren von Zellen...44
2.3.3 Kryokonservierung von Zellen...45
2.3.4 Transiente Transfektion von Zellen...45
2.3.4.1 Calciumphosphat-Methode..45
2.3.4.2 Transfektion mit FuGene™ Transfektionsreagenz.................................45
2.3.5 Fixierung und Permeabilisierung von Zellen..46
2.3.6 β-Galaktosidase Assay zur Bestimmung der Transfektionseffizienz einer transienten Transfektion...46
2.3.7 Luciferase-Assay...47
2.3.8 Heterokaryon Assay..47
2.3.9 Coimmunpräzipitation...48
Inhaltsverzeichnis

III Ergebnisse.. 49

1 p42POP zeigt Motiv-Homologien zu verschiedenen Proteinsequenzen 49
2 Genstruktur und Genlocus von p42POP ... 52
3 p42POP wird in Mausgeweben ubiquitär exprimiert ... 53
4 Konstruktion verschiedener p42POP-Fragmente auf Basis von Sequenzmotiven und Genstruktur .. 54
5 Die Myb-Domäne in p42POP ist funktionell .. 55
6 Die transkriptionelle Aktivität wird durch die saure Region von p42POP vermittelt 58
7 p42POP dimerisiert über ein Leuzin-Zipper Motiv in der C-terminalen Region 60
8 Negative Regulation der transkriptionellen Aktivierung von p42POP durch den Leuzin-Zipper ... 63
9 Phosphorylierung als potentieller Regulationsmechanismus der Dimerisierung 64
10 Die Kernimport- und Kernexportsignale in p42POP sind funktionell 66
11 p42POP interagiert mit monomerem Aktin .. 69
12 Prolinreiche Motive in p42POP vermitteln die Interaktion mit Profilin- Isoformen 72
13 Der Leuzin-Zipper beeinflußt im Yeast two-hybrid System die Interaktion zwischen p42POP und den Profilin-Isoformen nicht ... 75
14 Einfluß der potentiellen PKC-Phosphorylierungsstelle Threonin T273 auf die Interaktion von p42POP und Profilin .. 76
15 Regulation der Ligandenwechselwirkung und zellulären Funktion von Profilin durch Phosphorylierung .. 78
16 Maus Profilin IIa ist ein Substrat der Proteinkinase Cα (PKCα) 79
17 Die Interaktion zwischen Maus Profilin I bzw. IIa mit PKCα wird durch Lipide moduliert .. 81
18 PKA-Phosphorylierung von Profilin I und IIa .. 82
19 Simulation der Phosphorylierung von Serin138 in Profilin I bzw. IIa inhibiert die Interaktion mit poly-L-Prolin und prolinreichen Liganden ... 83
20 In vitro phosphoryliertes Profilin I und IIa unterscheiden sich in ihrer poly-L-Prolin Bindung ... 86
21 In vitro Phosphorylierung von Profilin I und IIa durch PKA inhibiert die Interaktion mit Aktin .. 87

IV Diskussion .. 89

1 Identifizierung von p42POP als funktioneller Transkriptionsfaktor der Myb-Familie 90
2 Wechselwirkung von p42POP mit den cytoskelettalen Proteinen Profilin und G-Aktin .. 93
3 Cytoskelettale Proteine und Transkription ... 96
4 Einfluß der Profilin-Phosphorylierung auf die Ligandenwechselwirkung 98
5 Ausblick .. 103

V Literaturverzeichnis..105

Danksagung
ABKÜRZUNGEN

Abb. Abbildung
Acc. # „Genbank accession number“
ATCC “American Type Culture Collection”
ATP Adenosin-Triphosphat
bp engl. Basenpaare
BSA engl. Rinderserumalbumin
Blot Western-Blot
bzw. beziehungsweise
ºC Grad Celsius
C-Terminus Carboxy-Terminus
cDNA copy-Desoxyribonukleinsäure
CMF-PBS Calcium-Magnesium-freie Phosphat-gepufferte Saline
DEAE Diethylaminoethyl-
DMEM “Dulbecco’s Modified Eagle Medium”
DNA Desoxyribonukleinsäure
Dr. Doktor
ds doppelsträngig
DSP Dithiobis(succinimidyl propionate)
EDTA Ethylendiamintetraessigsäure
ELISA “enzyme linked immunosorbend assay”
EDC 1-Ethyl-3-(3-Dimethyl-Aminopropyl)-Carbodiimid
F-Aktin filamentöses Aktin
FCS engl. fötales Kälberserum
FITC Fluorescein-Isothiocyanat
g, mg, µg Gramm, Milligramm, Mikrogramm
G-Aktin globuläres Aktin
HMW „high molecular weight marker“
HRP engl. Meerrettich-Peroxidase
Ig Immunglobulin
IP Immunpräzipitation
IPTG Isopropylthiogalaktosid
kB Kilobase
kDa Kilodalton
l, ml, µl Liter, Milliliter, Mikroliter
LB Luria Broth
LMW “low molecular weight marker”
M, mM, µM, nM molar, millimolar, mikromolar, nanomolar
<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Bedeutung</th>
</tr>
</thead>
<tbody>
<tr>
<td>mA</td>
<td>Millampere</td>
</tr>
<tr>
<td>mol, mmol, µmol, nmol, pmol</td>
<td>Mol, Millimol, Mikromol, Nanomol, Pikomol</td>
</tr>
<tr>
<td>mRNA</td>
<td>“messanger”-Ribonukleinsäure</td>
</tr>
<tr>
<td>MW</td>
<td>engl. Molekulargewicht</td>
</tr>
<tr>
<td>NHS</td>
<td>N-Hydroxysulfosuccinimid</td>
</tr>
<tr>
<td>Ni</td>
<td>Nickel</td>
</tr>
<tr>
<td>N-Terminus</td>
<td>Amino-Terminus</td>
</tr>
<tr>
<td>OD</td>
<td>optische Dichte</td>
</tr>
<tr>
<td>ONPG</td>
<td>O-nitrophenyl-β-D-galactoside</td>
</tr>
<tr>
<td>PCR</td>
<td>engl. Polymerase-Kettenreaktion</td>
</tr>
<tr>
<td>PIP₂</td>
<td>Phosphatidylinositol-4,5-Bisphosphat</td>
</tr>
<tr>
<td>RNA</td>
<td>Ribonukleinsäure</td>
</tr>
<tr>
<td>rpm</td>
<td>engl. Umdrehungen pro Minute</td>
</tr>
<tr>
<td>RT</td>
<td>Raumtemperatur</td>
</tr>
<tr>
<td>SDS</td>
<td>engl. Natrium-Dodecylsulfat</td>
</tr>
<tr>
<td>sog.</td>
<td>sogenannt</td>
</tr>
<tr>
<td>ss</td>
<td>einzelsträngig</td>
</tr>
<tr>
<td>Tab.</td>
<td>Tabelle</td>
</tr>
<tr>
<td>TBE</td>
<td>Tris-Borat-EDTA</td>
</tr>
<tr>
<td>TBST</td>
<td>Tris-gepufferte Salzlösung mit Tween-Zusatz</td>
</tr>
<tr>
<td>TCA</td>
<td>Trichloressigsäure</td>
</tr>
<tr>
<td>Tris</td>
<td>Tris-(hydroxymethyl)-aminoethan</td>
</tr>
<tr>
<td>TRITC</td>
<td>Tetramethyl-Rhodaminisothiocyanat</td>
</tr>
<tr>
<td>U</td>
<td>engl. Enzymeinheiten</td>
</tr>
<tr>
<td>V</td>
<td>Volt</td>
</tr>
<tr>
<td>v/v</td>
<td>Volumen pro Volumen</td>
</tr>
<tr>
<td>w/v</td>
<td>Gewicht pro Volumen</td>
</tr>
<tr>
<td>wt</td>
<td>Wildtyp</td>
</tr>
<tr>
<td>X-Gal</td>
<td>5-Bromo-4-Chloro-3-Indolyl-β-D-Galactoside</td>
</tr>
<tr>
<td>x g</td>
<td>Vielfaches der Erdbeschleunigung</td>
</tr>
</tbody>
</table>
ZUSAMMENFASSUNG

Die dargestellten Ergebnisse stellen eine Verbindung zwischen den cytoplasmatisch und nukleär lokalisierten Proteinen p42POP, Profilin und Aktin her und erweitern den Kenntnisstand über die Funktion cytoskelettaler Proteine im Zellkern.

Neben seiner überwiegend cytoplasmatischen Funktion lokalisiert Aktin zudem im Zellkern (Clark and Rosenbaum, 1979; Gonsior et al., 1999; Jockusch et al., 1974; Nakayasu and Ueda, 1983) und nimmt, vermittelt durch direkte Interaktion mit der RNA-Polymerase II (Smith et al., 1979; Weaver, 1976), regulatorischen Einfluß auf transkriptionelle Prozesse. Die Aktin-Synthese scheint, abhängig von der Konzentration des freien, polymerisierbaren G-Aktins, autoregulatorisch kontrolliert zu sein (Bershadsky et al., 1995). Auch bei der Aktivierung von Zielgenen des MADS-Box Transkriptionsfaktors SRF (serum response
Einleitung

zu denen auch Aktin und Vinkulin gehören, spielt die Aktindynamik eine entscheidende Rolle (Sotiropoulos et al., 1999). Unabhängig vom Einfluß der Aktindynamik auf transkriptionelle Ereignisse werden auch Isoform-spezifische Effekte beschrieben. Skelettmuskel α-Aktin induziert beispielsweise die Expression verschiedener muskelspezifischer Gene (Gunning et al., 2001). In anderem Zusammenhang - bei der Genexpression des human pathogenen Respiratory Syncytial Virus (RSV) - aktiviert Aktin die virale Transkription und ist dafür unabdingbar (Burke et al., 1998; Huang et al., 1993; Mazumder and Barik, 1994).

1 Profilin – Gewebsspezifische Expression verschiedener Isoformen

1.1 Strukturelle Lokalisation verschiedener Ligandenbindungsmotive

Einleitung

Abb. 1: Strukturmodell von Rinderprofilin I (nach Schutt et al., 1993) mit den Bindungsdomänen für Aktin (blau), Phosphoinositide (rot) und poly-L-Prolin-Motive (grün). (Schluter et al., 1997)

1.2 Wechselwirkung mit Aktin und Einfluß von Profilin auf das Mikrofilamentsystem

Struktur und Dynamik des Mikrofilamentsystems erfordern eine schnelle, regulierte Aktinpolymerisation, was durch das Zusammenspiel assoziiertener und regulatorisch wirkender Proteine erfolgt. Es wurde ursprünglich angenommen, dass die wesentliche Funktion des Profilins infolge seiner Affinität zu G-Aktin in der Stabilisierung des freien G-Aktin-Pools liegt und damit eine Erhöhung der kritischen G-Aktin-Konzentration, bei der sich Assoziation und Dissoziation der Monomere an den Aktinfilamentenden im Gleichgewicht befinden, bewirkt. In diesem Zusammenhang wird dem G-Aktin-bindenden Protein Thymosin β4 (Low et al., 1981, Safer et al., 1991) aufgrund seiner höheren Bindungsaffinität zu G-Aktin und höheren zellulären Konzentrationen im Vergleich zum Profilin eine wichtigere Funktion
beigemessen, zumal Thymosin β4 mit höherer Affinität an ATP- als an ADP-gebundenes Aktin bindet (Cassimeris et al., 1992; Pantaloni and Carlier, 1993; Carlier et al., 1993).

1.3 Profilin als Mittler zwischen Mikrofilamentsystem und Signaltransduktion

Basierend auf Strukturdaten von *Acanthamoeba* Profilin I und II wurde die Bindungsdomäne für saure Phospholipide auf positiv geladene Oberflächenbereiche eingeengt (Fedorov et al., 1994; Vinson et al., 1993). Durch Mutationsanalysen an *Saccharomyces* und humanem Profilin konnte der direkte Einfluß basisher Aminosäuren (Lysin 72 bzw. Arginin 88 im humanen Profilin) gezeigt werden (Haarer et al., 1993; Sohn et al., 1995). Profilin bindet mit unterschiedlichen Affinitäten an verschiedene Phosphoinositide, so ist die Affinität zu Phosphatidylinositol-3,4-bisphosphat und Phosphatidylinositol-3,4,5-trisphosphat höher als zu Phosphatidylinositol-4,5-bisphosphat. Aus Abbildung 1 wird ersichtlich, dass sich die potentiellen Bindungsdomänen für Aktin und saure Phospholipide überlappen, so dass sich eine simultane Wechselwirkung von Profilin mit G-Aktin und Phosphoinositiden ausschließt.

Die Bindung von PIP$_2$ an Profilin verhindert die Hydrolyse von PIP$_2$ durch nicht-phosphorylierte Phospholipase C$_\gamma$1 (Goldschmidt-Clermont et al., 1990). Infolge einer Aktivierung der Rezeptor-Tyrosin-Kinase durch externe Stimuli und einer nachfolgenden Phosphorylierung der Phospholipase C$_\gamma$1 wird die Hydrolyse des Profilin gebundenen PIP$_2$ induziert (Goldschmidt-Clermont et al., 1991a). Folglich könnte Profilin durch Wechselwirkung mit G-Aktin regulatorisch auf die Aktinpolymerisation wirken und die bei der Hydrolyse von PIP$_2$ entstehenden Metaboliten Inositol-1,4,5-trisphosphat (IP$_3$) und 1,2-Diacylglycerol (DAG) Einfluß auf den intrazellulären Ca$^{2+}$-Spiegel und Phosphorylierungereignisse durch Aktivierung der Proteinkinase C (PKC) nehmen.
Einleitung

1.4 Interaktion mit poly-L-Prolin Liganden

Ursprünglich wurde die Bindung von Profilin an poly-L-Prolin zur Affinitätsreinigung genutzt. Durch die Identifizierung des vasodilator stimulated phosphoprotein (VASP) als Ligand für das poly-L-Prolin Bindungsmotiv (Reinhard et al., 1995) bekam diese Eigenschaft der Profiline biologische Signifikanz. In der Zwischenzeit konnte eine Vielzahl verschiedener prolinreicher Liganden wie u.a. die VASP-verwandten Enabled und Mena (Gertler et al., 1996), N-WASP (Suetugu et al., 1998), WAVE/Scar (Miki et al., 1998), Verprolin/WIP, Mitglieder der Formin-Familie Diaphanous/p140mDia (Krebs et al., 2001; Watanabe et al., 1997), Cappucino (Manseau et al., 1996), Bn1p (Evangelista et al., 1997), Bnr1p (Imamura et al., 1997) und Cdc12p (Balasubramanian et al., 1994; Chang et al., 1997), Drebrin (Mammoto et al., 1998), SMN (Giesemann et al., 1999), Aczonin (Wang et al., 1999) und das mRNA-bindende Protein Prrp (Zhao et al., 2001) identifiziert werden. Für die Interaktion mit einigen dieser Liganden wurde eine biologische Bedeutung gezeigt, jedoch muß die Vielzahl unterschiedlicher prolinreicher Liganden für ein lediglich 12-16kDa großes Protein kritisch betrachtet werden.

Mittels Mutationsanalysen (Bjorkegren et al., 1993; Haarer et al., 1993), NMR-Studien (Archer et al., 1994; Domke et al., 1997; Metzler et al., 1994) und der Kristallstruktur eines Komplexes aus humanem Profilin I und poly-L-Prolin (Mahoney et al., 1997) wurde die Bindungsdomäne auf einen hydrophoben Bereich, der die N- und C-terminal gelegenen α-Helices umfasst, eingegrenzt. Für Profilin I konnte die direkte Wechselwirkung aromatischer Aminosäuren (Trp3, Tyr6, Trp31, His133, Tyr139) mit poly-L-Prolin identifiziert werden (Bjorkegren et al., 1993; Cedergren-Zeppezauer et al., 1994; Schutt et al., 1993; Thorn et al., 1997). Die höhere Affinität von Profilin IIa zu prolinreichen Peptiden (Jonckheere et al., 1999; Lambrechts et al., 1997) wird, basierend auf Strukturdaten, auf eine zusätzliche aromatische Aminosäure (Tyr29 in Profilin IIa) zurückgeführt (Nodelman et al., 1999). Neben unterschiedlichen Affinitäten zu poly-L-Prolin konnte für die Profilin-Isoformen I und IIa eine unterschiedliche Ligandenspezifität nachgewiesen werden (Suetugu et al., 1998; Witke et al., 1998). Molekular wird diese Spezifität auf die unterschiedlichen isoelektrischen Punkte der beiden Isoformen (humanes Profilin I: pI 8.4; Profilin IIa: pI 5.9)

Ein in unserer Arbeitsgruppe identifizierter, neuer prolinreicher Ligand für Profilin, der Homologie zur DNA-Bindungsdomäne des Transkriptionsfaktors c-Myb aufweist, könnte eine Rolle bei Profilin-vermittelten, regulatorischen Einflüssen auf die Transkription spezifischer Zielgene spielen.

2 Transkriptionsfaktoren der Myb-Familie

Ursprünglich wurde das erste myb-Gen (v-mybAMV) als transformierendes Gen des \textit{avian myeloblastosis virus} AMV identifiziert, das akute myelotische Leukämie induziert. Zudem konnte im Genom des Retrovirus E26 ein ähnliches Onkogen (v-mybE26) identifiziert werden, das für ein Fusionsprotein aus Gag, v-Myb und Ets-1 kodiert und erythroblastische Leukämie induziert. Beide Onkogene, v-mybAMV und v-mybE26, stellen N- und C-terminal verkürzte Versionen des zellulären, in Vertebraten konservierten c-Myb dar.

Mit A-Myb und B-Myb konnten in Vertebraten Proteine identifiziert werden, die Homologie mit anderen funktionellen Regionen in c-Myb aufweisen: neben der N-terminal gelegenen DNA-Bindungsdomäne beinhalten sie einen transkriptionsaktivierenden Bereich, sowie eine negativ regulierende Domäne im C-Terminus (Abb. 2).
gewebsspezifische Expression überwiegend in männlichen Keimzellen und Brustepithelzellen

Die homozygote Mutation als embryonal letal erwies und Störungen in der erythroiden und
während der Hämatopoese konnte durch

Das vorrangig translatierte Genprodukt des c-myb Protoonkogens ist ein 75kDa nukleär lokalisiertes Protein, das in den meisten hämatopoetischen Geweben exprimiert wird (Westin et al., 1982). Zudem konnte eine alternative Spleißvariante, die einen 121 Aminosäuren Einschub im Leuzin-Zipper Motiv aufweist, identifiziert werden (Dasgupta and Reddy, 1989; Dudek and Reddy, 1989a; Dudek and Reddy, 1989b; Rosson et al., 1987; Shen-Ong, 1987; Shen-Ong et al., 1989). Analog zu c-Myb lokalisieren A-Myb (95kDa) und B-Myb (93kDa) im Zellkern. Beide Gene beinhalten zwar das Exon, das in c-Myb alternativ gespleißt werden kann, jedoch konnten keine entsprechenden Genprodukte nachgewiesen werden. Die unterschiedliche Funktion der Myb-Proteine spiegelt sich neben Differenzen in ihrer Primärstruktur auch in den unterschiedlichen Expressionsmustern wider. Das am besten untersuchte Protein c-Myb wird vorwiegend in unreifen hämatopoetischen Zellen exprimiert, wobei der Transkriptionslevel während der Reifung und Differenzierung dieser Zellen drastisch sinkt (Craig and Bloch, 1984; Duprey and Boettiger, 1985; Gonda and Metcalf, 1984; Sheiness and Gardinier, 1984; Westin et al., 1982). Die wichtige Rolle von c-Myb während der Hämatopoese konnte durch knock out Experimente gezeigt werden, in denen sich die homozygote Mutation als embryonal letal erwies und Störungen in der erythroiden und myelotischen Entwicklung aufzeigte (Mucenski et al., 1991). Für A-Myb konnte ebenso eine gewebsspezifische Expression überwiegend in männlichen Keimzellen und Brustepithelzellen

Einleitung

von schwangeren Mäusen gezeigt werden (Mettus et al., 1994; Toscani et al., 1997), niedrige Expressionslevel im Ovar, Gehirn und in germinal centers der Milz (Foos et al., 1994; Mettus et al., 1994; Trauth et al., 1994). A-Myb defiziente Mäuse sind lebensfähig, weisen aber Defekte in der Spermatogenese und Milchdrüsendarstellung auf (Toscani et al., 1997). Im Gegensatz zu c-Myb und A-Myb wird B-Myb ubiquitär exprimiert (Nomura et al., 1988).

2.1 Struktureller Aufbau der DNA-Bindungsdomäne

Die Sequenz-spezifische DNA-Bindung der Myb-Transkriptionsfaktoren wird durch drei repetitive Elemente R₁, R₂ und R₃ (repeats) vermittelt, die jeweils aus 50 - 53 Aminosäuren bestehen und konservierte Tryptophanreste in definierten Abständen enthalten. Die drei repeats enthalten jeweils drei α-Helices, von denen die letzten beiden ein Helix-turn-Helix Motiv ausbilden (Frampton et al., 1991; Gabrielsen et al., 1991; Ogata et al., 1994). Der erste repeat vermittelt DNA-Bindung (Gabrielsen et al., 1991; Howe et al., 1990; Kanei-Ishii et al., 1990; Saikumar et al., 1990), wogegen der zweite und dritte essentiell und ausreichend für die Erkennung des minimalen Konsensus-DNA-Erkennungsmotivs (T/C)AAC(G/T)G sind (Biedenkapp et al., 1988). Die Wechselwirkung mit dieser Sequenz wird durch die Helix-turn-Helix Motive in R₂ und R₃ vermittelt, wobei die Tryptophanreste bei der Ausbildung eines hydrophoben Kerns, der in die DNA-Bindung involviert ist, eine entscheidende Rolle spielen (Ogata et al., 1992; Ogata et al., 1994). Direkte Interaktionen mit DNA konnte in c-Myb für die Aminosäuren Lysin₁₂₈ (R₂), Lysin₁₈₂ (R₃) und Asparagin₁₈₃ (R₃) gezeigt werden. Bei der Wechselwirkung mit dem Konsensus-Motiv kommen den beiden repeats unterschiedliche Bedeutung zu. R₃ bindet an das essentielle Kernmotiv (T/C)AAC, während R₂ mit dem weniger konservierten, 5´-gelegenen Sequenzmotiv interagiert, das eher modulierend wirkt und Einfluß auf die Halbwertszeit des Protein-DNA-Komplexes nimmt (Ordin et al., 1994).

Einleitung

Bindungsdomäne in Säugern aus drei repeats, wogegen sich diese Domäne in Pflanzen aus zwei repeats zusammensetzt. Zudem wurden bereits pflanzliche Myb-Proteine mit nur einem einzigen funktionellen Modul identifiziert (Baranowskij et al., 1994; Feldbrugge et al., 1997; Kirik and Baumlein, 1996; Lugert and Werr, 1994).

2.2 Regulation der c-Myb-vermittelten Aktivierung durch posttranslationale Modifikationen und Ligandenwechselwirkungen

Der DNA-bindenden Domäne kommen neben der Erkennung spezifischer DNA-Motive auch weitere regulatorische Funktionen zu. Zwar weisen die Bindungsdomänen von c-Myb und v-MybAMV die gleiche Erkennungsspezifität auf, jedoch sind Punktmutationen notwendig für die Fähigkeit Zellen zu transformieren (Introna et al., 1990). Zudem wird die DNA-Bindung von c-Myb durch Phosphorylierung der Serinreste 11 und 12 durch die Caseinkinase II (CK-II) inhibiert. Diese Phosphorylierungsstelle ist in fast allen Onkogen-aktivierten Myb-Proteinen deletiert, so dass eine CK-II unabhängige DNA-Bindung erfolgt. Da die CK-II-Aktivität von Wachstumsfaktoren moduliert wird, könnte die Deletion dieser Phosphorylierungsstelle c-Myb von seiner physiologischen Regulation entkoppeln (Lüscher et al., 1990).

Neben der DNA-Bindung weisen Proteine der Myb-Familie transkriptionsaktivierende Eigenschaften auf. Diese Aktivierungsdomänen setzen sich aus sauren Aminosäuren, wie für c-Myb gezeigt (Kalkbrenner et al., 1990; Sakura et al., 1989), Prolin- oder Glutamin-reichen Sequenzbereichen zusammen (Baranowskij et al., 1994; Ptashne, 1988). Wie im Falle von c-Myb konnte in vielen Myb-verwandten Proteinen die transkriptive Aktivität einer sauren Region zugewiesen werden. Für c-Myb wurde eine direkte Wechselwirkung der sauren Region mit CREB-binding protein (CBP), einem transkriptionellen Coaktivator, gezeigt, wodurch eine Verbindung zur basalen Transkriptionsmaschinerie der RNA-Polymerase II hergestellt werden kann (Dai et al., 1996; Oelgeschlager et al., 1996a).

Eine dritte, regulatorische Domäne konnte im C-terminalen Bereich von c-Myb identifiziert werden. Diese Region ist in den Myb-Proteinen A- und B-Myb konserviert und zeigt im mittleren Bereich höchste Homologie (siehe Abb. 2). Eine Deletion dieser Domäne führt sowohl für A-Myb, als auch für c-Myb zu einem drastischen Anstieg der transkriptionellen Aktivierung (Oh and Reddy, 1997; Takahashi et al., 1995). Dagegen scheint der C-Terminus von B-Myb verschiedene funktionelle, regulatorische Elemente zu enthalten, die
Einleitung

unterschiedliche Wirkung auf die Aktivität ausüben. Eine C-terminale Deletion führt zu einer Reduktion der transkriptionellen Aktivität und weist diesem Bereich eine positiv regulierende Funktion zu (Oh and Reddy, 1998). Andererseits führt die Deletion eines kleinen, C-terminal der konservierten Region gelegenen Fragmentes zu einem Anstieg der transkriptionellen Aktivität (Lane et al., 1997; Ziebold et al., 1997).

Neben diesen regulatorischen Einflüssen auf die transkriptionelle Aktivität infolge posttranslationaler Modifikationen, intramolekularer Wechselwirkung und Dimerisierung konnten Interaktionspartner für c-Myb identifiziert werden, deren Bindung modulierend auf die transkriptionsaktivierenden Eigenschaften wirkt. Die vielseitigen Funktionen von c-Myb bei Zellproliferation und Differenzierungsprozessen, sowie seine transformierende Aktivität
scheinen durch Kooperation mit anderen Transkriptionsfaktoren oder direkten Bindungspartnern reguliert zu sein. Modulierender Einfluß auf die transkriptionelle Aktivität von c-Myb konnte der Interaktion mit verschiedenen Transkriptionsfaktoren, transkriptionellen Cofaktoren und regulatorisch wirkenden Proteinen zugeordnet werden (siehe Abb. 3).

Abb. 3: Schematische Darstellung der Domänenstruktur von c-Myb. Die Bindungsregionen der aufgeführten Liganden sind durch Balken dargestellt.

Die Interaktion der dargestellten Bindungspartner wirkt sich unterschiedlich auf die DNA-Bindung und die transkriptionelle Aktivität von c-Myb aus. So konnte für den Transkriptionsfaktor C/EBPβ eine direkte Bindung an die DNA-Bindungsdomäne von c-Myb und ein synergistischer Effekt bei Aktivierung spezifischer Zielgene wie dem mim-1 Gen gezeigt werden (Burk et al., 1993; Mink et al., 1996; Ness et al., 1993). C/EBPβ und c-Myb binden an benachbarte Motive im mim-1 Promotor und sind beide für eine effiziente Expression des mim-1 Gens erforderlich. Da es sich bei c-Myb um ein Onkoprotein handelt und es als solches die Fähigkeit aufweist, Zellproliferation zu induzieren, ist eine entsprechende Regulation der transkriptionellen Aktivität von c-Myb in normalen Zellen...
erforderlich, um unkontrolliertes Zellwachstum zu inhibieren. Zudem wird c-Myb in unreifen, proliferierenden Zellen exprimiert und Überexpression von c-Myb oder v-Myb kann in manchen differenzierten Zellen eine Dedifferenzierung induzieren (Beug et al., 1987; Ness et al., 1987; Ness et al., 1993). Entsprechend scheint eine Inaktivierung von c-Myb während der Differenzierung normaler hämatopoetischer Zellen erforderlich. In diesem Kontext konnte ein negativer Einfluß auf die transkriptionelle Aktivität von c-Myb auf die Transkriptionsfaktoren RARα und c-Maf, die Differenzierung induzieren, zurückgeführt werden (Hedge et al., 1998; Pfitzner et al., 1998). Desweiteren wurden die transkriptionellen Cofaktoren CBP/p300 und p100 identifiziert, die mit c-Myb und v-Myb interagieren und eine wichtige Rolle bei der Regulation von Myb-Proteinen im Bezug auf Transformation und Tumorigenizität einnehmen. Die Histon-Acetyltransferasen CBP und das nahe verwandte p300 sind Cofaktoren für verschiedene Transkriptionsfaktoren und transformierende Proteine (Arany et al., 1994; Ogryzko et al., 1996) und acetylieren mehrerer Lysinreste in der negativ regulierenden Domäne von c-Myb (Kiewitz and Wolfes, 1997; Oelgeschlager et al., 1996a). Diese posttranslationalen Modifikation verstärkt die Bindung von CBP an c-Myb und führt zu einer verstärkten DNA-Bindung und transkriptionellen Aktivität (Sano and Ishii, 2001; Tomita et al., 2000). Durch seine Interaktion mit C/EBPβ (Dai et al., 1996; Kiewitz and Wolfes, 1997; Mink et al., 1996; Oelgeschlager et al., 1996a; Oelgeschlager et al., 1996b) könnte CBP zudem eine Brückenfunktion bei kooperativen Effekten zwischen c-Myb und C/EBPβ oder anderen Transkriptionsfaktoren einnehmen. Als weiterer Cofaktor beeinflußt p100, das in vitro an den generellen Transkriptionsfaktor TFIIE bindet, durch Interaktion mit der DNA-Bindungsdomäne von c-Myb und v-Myb deren transkriptionelle Aktivität (Dash et al., 1996; Leversen et al., 1998). Da p100 das bereits erwähnte EVES-Motiv enthält, das in c-Myb bei der Ausbildung einer intramolekularen Wechselwirkung beteiligt ist und dadurch negativ regulierend wirkt (Miglares et al., 1996), könnte die Interaktion zwischen p100 und c-Myb durch strukturelle Veränderungen aufgrund der intramolekularen Wechselwirkung von c-Myb reguliert werden. Als möglicher Effektor konnte in diesem Zusammenhang die Serin/Threonin-Kinase Pim-1, ein Ligand von p100, identifiziert werden, deren ektopische Expression in hämatopoetischen Zellen eine p100-abhängige Stimulation der transkriptionellen Aktivität von c-Myb induziert (Leversen et al., 1998).

Die exemplarisch aufgeführten Liganden von c-Myb und die dargestellten posttranslationalen Modifikationen geben einen kleinen Einblick in die Komplexizität regulatorischer Mechanismen, die modulierend auf die transkriptionelle Aktivität von c-Myb wirken.
2.3 Zelluläre Zielgene von c-Myb

Auch für verschiedene T-Zell Oberflächenmarker konnte eine c-Myb-abhängige Expression gezeigt werden. Sowohl CD4 (Nakayama et al., 1993; Siu et al., 1992), als auch CD34 (He et al., 1992; Melotti et al., 1994) beinhalten Myb-Bindungsmotive in ihren Promotoren und werden durch c-Myb transaktiviert.

Durch Untersuchungen differentiell exprimierter Gene zwischen c-Myb-defizienten und Wildtyp Zellen konnten weitere potentielle Zielgene von c-Myb identifiziert werden, darunter auch der Transkriptionsfaktor GATA-1, der in c-mybnull-Zellen herunterreguliert wird (Lin et al., 1996).
3 Aufgabenstellung

Im Rahmen dieser Arbeit sollte das vollständige Protein p42POP, ein Mitglied der Familie der Myb-Transkriptionsfaktoren, näher charakterisiert werden. Insbesondere sollten folgende Aspekte analysiert werden:

(1) Aufklärung der Genstruktur
(2) Charakterisierung von p42POP als Mitglied der Proteinfamilie der Myb-Transkriptionsfaktoren
(3) Funktionalität verschiedener, durch Datenbankrecherchen identifizierter Homologiemotive
(4) Modulation der Interaktion zwischen p42POP und den cytoskelettalen Proteinen Profilin und Aktin

Da aufgrund der großen Anzahl prolinreicher Liganden für Profilin die biologische Relevanz dieser Interaktionen kritisch betrachtet werden muß, sollte der Einfluß der Phosphorylierung von Profilin I und IIa auf deren Ligandenbindungsverhalten näher untersucht werden. In diesem Zusammenhang sollten folgende Gesichtspunkte untersucht werden:

(1) Generierung verschiedener Profilin I-Mutanten zur Analyse der PKC-Phosphorylierungsstelle Serin 138 (Singh et al., 1996)
(2) In vitro Phosphorylierungsstudien von Profilin I und IIa
(3) Einfluß der in vitro Phosphorylierung auf das Bindungsverhalten an poly-L-Prolin und G-Aktin

Diese Aspekte sollten Einblick in mögliche Regulationsmechanismen zur Profilin-Liganden-Interaktion liefern, die dazu beitragen können, die zellulären Funktionen von p42POP und der Profiline besser verstehen zu können.
II MATERIAL UND METHODEN

1 Material

1.1 Chemikalien und Enzyme

Die eingesetzten Chemikalien wurden, wenn nicht anders angegeben, von den Firmen Difco (Hamburg), Fluka (Neu-Ulm), Merck (Darmstadt), Serva (Heidelberg), Sigma (Deisenhofen), ICN (Eschwege) und Invitrogen (Karlsruhe) bezogen.

Bezugsquelle für Enzyme waren, sofern nicht anders vermerkt, die Firmen New England Biolabs (Bad Schwalbach), Life Technologies (Eggenstein), Stratagene (Heidelberg), Boehringer (Mannheim), PAA Laboratories (Cölbe), Promega (Mannheim) und Appligene (Heidelberg).

Der Nachweis von Protein-Protein-Wechselwirkungen mittels des Yeast two-hybrid Systems wurde mit dem „Matchmaker two-hybrid System“ (Clontech, Heidelberg) durchgeführt.

1.2 Bakterien

Zur Klonierung und Expression rekombinanter Proteine wurden die Escherichia coli-Stämme XL1-blue, DH5α, BL21 (DE3) und M15(pREP4) eingesetzt.

Die Stämme weisen folgende relevante genotypische Merkmale auf:

DH5α: supE44 ΔlacU169 (φ80lacZΔM15) HsdR 17 recA1 endA1 gyrA96 thi-1 relA1 (Hanahan, 1983)

XL1-blue: supE44 hsdR17 recA1 gyrA46 thi relA1 lac’ F’[proAB lacIq LacZΔM15 tn10(ter1)] (Bullock et al., 1987)

BL21 (DE3): F’, ompT, rB’tmB’hsdS gal (λcIts857, ind1,Sam7, nin5, lac UV5-T7 gene 1) (Studier and Moffatt, 1986)

Zur Anzucht von *E. coli* wurden folgende Medien verwendet:

<table>
<thead>
<tr>
<th>2xYT-Vollmedium</th>
<th>LB-Medium (Luria Bertani)</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 g Trypton (Difco)</td>
<td>10g Trypton</td>
</tr>
<tr>
<td>10 g Hefeeextrakt (Difco)</td>
<td>5 g Hefeeextrakt</td>
</tr>
<tr>
<td>10 g NaCl</td>
<td>10 g NaCl</td>
</tr>
<tr>
<td>auf 1 l mit H$_2$O</td>
<td>auf 1 l mit H$_2$O</td>
</tr>
</tbody>
</table>

Für die Selektion rekombinanter Klone wurde das Medium in Abhängigkeit des Vektors mit 30 µg Kanamycin/ml oder 150 µg Ampicillin/ml supplementiert. Zur Herstellung von LB-Agar-Platten wurde dem Medium 1.5% (w/v) Agar-Agar zugegeben.

1.3 Hefen

Die Protein-Protein-Wechselwirkungsstudien mittels des *Yeast two-hybrid* Systems („Matchmaker two-hybrid System“, Clontech) wurden mit den *Saccharomyces cerevisiae*-Stämmen HF7c und Y187 mit den folgenden relevanten Genotypen durchgeführt.

HF7c: MATa, ura3-52, his3-200, lys2-801, ade2-101, trp1-901, leu2-3,112, gal4-542, gal80-538, LYS2::GAL1-HIS3, URA3::(GAL4 17-mers)$_3$-CYC1-lacZ (Feilotter et al., 1994)

Y187: Matα, ura3-52, his3-200, ade2-101, trp1-901, leu2-3, 112, gal4Δ, met+.gal80Δ, URA3::GAL1$_{UAS}$-GAL1$_{TATA}$-lacZ (Harper et al., 1993)

Als Standardmedium für die Anzucht von Hefezellen wurde YPD-Medium eingesetzt:

<table>
<thead>
<tr>
<th>10 g Hefeeextrakt</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 g Pepton</td>
</tr>
<tr>
<td>auf 950 ml mit H$_2$O</td>
</tr>
</tbody>
</table>

Zugabe von 50 ml autoklavierter, 40%iger Glucose

Für YPD-Agar-Platten wurde das Medium vor der Zugabe der Glucose mit 2% (w/v) Agar-Agar versetzt.

Alle weiteren Medien für die Versuche des *Yeast two-hybrid* Systems wurden dem Herstellerprotokoll des „Matchmaker two-hybrid System“ entnommen.
1.4 Tierische Zellkulturzellen

Im Rahmen dieser Arbeit wurden die folgenden Zelllinien verwendet:

- **HeLa** ATCC CCL-2; epithelartige Adenocarcinoma-Zellen, Mensch, Gebärmutter (Gossen and Bujard, 1992)
- **PtK2** ATCC CCL-56; Nierenepithelzellen der Beutelratte (Potorous tridactylis) (Walen, 1965; Walen and Braun, 1965)
- **C2C12** ATCC CRL-1772; Myoblasten Zellen der Maus (Blau et al., 1985; Yaffe and Saxel, 1977)
- **Cos-7** ATCC CRL-1651; SV40 transformiert; *african green monkey kidney* (Gluzman, 1981)

Die Zellen wurden in Zellkulturgefäßen der Firma Nunc (Nunc, Wiesbaden-Biebrich) in *Dubblecco’s Modified Eagle Medium*, suplementiert mit 10% Fötalem Kälberserum (FCS), bei 37°C und 10% CO₂ inkubiert. Das Medium setzte sich wie folgt zusammen:

- 13,38 g DMEM (PAA Laboratories, Cölbe)
- 1,5 g NaHCO₃
- 10 ml 0,2M N-Acetyl-L-Alanin-L-Glutamin (PAA Laboratories)
- 100 ml FCS (Life Technologies)

auf 1 l mit H₂O dest

1.5 Vektoren

Im Rahmen dieser Arbeit wurden für die Klonierung von PCR-Produkten die Vektoren pGEM®-T-Easy (Promega) und pCR®-blunt (Invitrogen) eingesetzt. Für die transiente Expression von Proteinen in tierischen Zellen wurden die Vektoren pcDNA3 (Invitrogen) pEGFP-C1 und pEGFP-C2 (Clontech) verwendet. Die zur Quantifizierung der Transfektionseffizienz eingesetzten Vektoren pCMV-nls-lacZ und pRSV-lacZ wurden freundlicherweise von Dr. Barbara Winter, die zur Untersuchung der Interaktion zwischen Profilin und PKCα eingesetzten PKCα-Fragmente wurden von Dr. Wolfgang Ziegler und Bettina Koch zur Verfügung gestellt. Für Luciferase-Assays wurde der Vektor pGL3-Promotor-Vektor (Promega) verwendet. *Yeast two-hybrid* Analysen wurden mittels der

1.6 Oligodesoxynukleotide

Für die Konstruktion von Vektoren mit N- oder C-terminalen Birkenprofilin-tag (BiPro), das den Nachweis der entsprechenden Proteine mit dem spezifischen Antikörper 4A6 ermöglicht, wurden Oligodesoxynukleotide, die unter Berücksichtigung des Leserasters der cDNA Start-bzw. Stoppkodons enthalten, eingesetzt:

BiProM1: 5´- GCCTCCTTCCCCACAGTTTAAAGCCTCAGGAAATATAGC -3´
BiProM2: 5´-CTCGAGCTAAATTTCCTGAGGCTTAAACTGTGGGAAGGCTGCAG-3´
BiProM3: 5´- AGCTTAATGTCCCTTCCCCACAGTTTAAAGCCTCAGGAAATCCCTGCA -3´
BiProM4: 5´-GGGATTTCCTGAGGCTTAAACTGTGGGAAGGAGACATTA-3´
BiProM5: 5´-CTCCTTCCCCACAGTTTAAAGCCTCAGGAAATATAGC-3´
BiProM6: 5´-CTCGAGCTATATTTTCCTGAGGCTTAAACTGTGGGAAGAGAGCT-3´
BiProM7: 5´-AGCTTAATGTCCCTTCCCCACAGTTTAAAGCCTCAGGAAATCGAGCT-3´
BiProM8: 5´-CGATTTCCTGAGGCTTAAACTGTGGGAAGGACATTA-3´
BiPro17: 5´-AATTCATGTCCCTTCCCCACAGTTTAAAGCCTCAGGAAATCAC -3´
BiPro18: 5´-CATGGTGATTTCCTGAGGCTTAAACTGTGGGAAGGACATG-3´

Das durch diese Oligodesoxynukleotide entstehende DNA-Fragment kodiert für die Aminosäuresequenz NSFPQFKPQEI, die das Epitop des monoklonalen, anti-Birkenprofilin Antikörpers 4A6 (siehe 1.7) repräsentiert (Rudiger et al., 1997; Wiedemann et al., 1996).

Die Konstruktion von Expressionsvektoren mit N-terminalem Flag-tag, das die Detektion entsprechender Fusionsproteine durch den monoklonalen anti-Flag Antikörper M2 (Sigma) ermöglicht, erfolgte unter Berücksichtigung des Leserasters mit folgenden Oligodesoxynukleotiden:

BamHI-N-Flag: 5´-GATCCATGGACTACAAGGACGACGACAAGG-3´
EcoRI-N-Flag: 5´-AATTCCTTGTGTCGTCCTTGTGATGCATG-3´
Die *electrophoretic mobility shift assays* (EMSA) wurden mit folgenden Oligodesoxynukleotiden durchgeführt:

mreA-s: 5´- GGTCGATCGACACATTATAACGTTTTTTTAGC-3´
mreA-as: 5´- GGGCTAAAAAACCGTTATAATGTGTCGATCGA-3´
OHL34/35-s: 5´- GGCTAGAATTGACAGTTAATAGCAGTTAATTTT-3´
OHL34/35-as: 5´- GGAAAAATTTAACTGCTATTAACAGTCAATTCTAG-3´

Zur Konstruktion der Reporterplasmide pGL3-mreA-Luciferase bzw. pGL3-OHL34/35-Luciferase wurden die angeführten Oligodesoxynukleotide eingesetzt:
mreA-s-Kpn/Xho,Sal: 5´- CGCTCGAGATCGACACATTATAACGTTTTTTTAGCG-3´
mreA-as: 5´-TCGACGCTAAAAAACCGTTATAATGTGTCGATCTCGAGCGGTAC-3´
Howe-s-Kpn/XhoSal: 5´- CGTGCTCGAGCTAGAATTGACAGTTAATAGCAGTTAATTTTG-3´
Howe-as: 5´- TCGACAAAAATTTAACTGCTATTAACAGTCAATTCTAGCTCGAGCGACGTAC-3´

Site directed mutagenesis wurden mit folgenden Oligodesoxynukleotiden durchgeführt:

POP T273E-s: 5´- GGAGACGTCGAGCTGGCGAGCTTCGGCAGGGACTGCC -3´
POP T273E-as: 5´- GGCAGCAGCTGGCGCCCGCGAGGAGAGAGCGGACTGCCC -3´
POP T273V-s: 5´- GGAGACGTCGAGCTGGCGTCCTTCGGCAGGGACTGCC -3´
POP T273V-as: 5´- GGGAGACGTCGAGCTGGCGCCCGCGAGGAGAGCGGACTGCCC -3´
POP L281P-s: 5´- GGAGACGTCGAGCTGGCGCCCGCGAGGAGAGCGGACTGCCC -3´
POP L281P-as: 5´- GGGAGACGTCGAGCTGGCGCCCGCGAGGAGAGCGGACTGCCC -3´
POP L274P-s: 5´- GGGAGACGTCGAGCTGGCGCCCGCGAGGAGAGCGGACTGCCC -3´
POP L274P-as: 5´- GGGAGACGTCGAGCTGGCGCCCGCGAGGAGAGCGGACTGCCC -3´
POP T91A-s: 5´- GGAACGACTTCAAGCGCCGCGCCAAGGAGAAGCTGGCC -3´
POP T91A-as: 5´- GGAACGACTTCAAGCGCCGCGCCAAGGAGAAGCTGGCC -3´
POP T91E-s: 5´- GGAACGACTTCAAGCGCCGCGCCAAGGAGAAGCTGGCC -3´
POP T91E-as: 5´- GGAACGACTTCAAGCGCCGCGCCAAGGAGAAGCTGGCC -3´
POP RR/EE-s: 5´- GGAACGACTTCAAGCGCCGCGCCAAGGAGAAGCTGGCC -3´
POP RR/EE-as: 5´- GGAACGACTTCAAGCGCCGCGCCAAGGAGAAGCTGGCC -3´
POP RR/EE-as: 5´- GGAACGACTTCAAGCGCCGCGCCAAGGAGAAGCTGGCC -3´
Die Amplifikation eines N- bzw. C-terminalen p42POP-Fragmentes erfolgte, entsprechend der cDNA-Sequenz, mit folgenden Oligodesoxynukleotiden:

POP 17: 5’- GAATTCGCCATGGCCTCGGCGACCGCG -3’
POP 170 XhoI: 5’- CTCGAGTCATGCCCTTGATCCTGTGCGG -3’
POP 171 EcoRI: 5’- GAATTCATGGATACACCAGCCCAGAGCAAGGG -3’
POP 393 XhoI: 5’- CTCGAGTCACGGAGACCTCCAGCGGCCCC -3’

1.7 Antikörper

Die im Rahmen dieser Arbeit eingesetzten Antikörper sind in den Tabellen 1 und 2 aufgeführt.

Tab. 1: Eingesetzte Primärantikörper:

<table>
<thead>
<tr>
<th>Antikörper</th>
<th>Antigen</th>
<th>Typisierung</th>
<th>Hersteller</th>
</tr>
</thead>
<tbody>
<tr>
<td>4A6</td>
<td>Birkenprofilin</td>
<td>mAK Maus</td>
<td>AG Jockusch</td>
</tr>
<tr>
<td>anti-Flag M2</td>
<td>Flag-tag</td>
<td>mAK Maus</td>
<td>Eastman Kodak</td>
</tr>
<tr>
<td>2H11</td>
<td>Rinderprofilin</td>
<td>mAK Maus</td>
<td>AG Jockusch</td>
</tr>
<tr>
<td>4D3</td>
<td>ΔPOP1</td>
<td>mAK Maus</td>
<td>AG Jockusch</td>
</tr>
<tr>
<td>anti-POP</td>
<td>ΔPOP1</td>
<td>pAK Kaninchen</td>
<td>Bioscience, Göttingen</td>
</tr>
<tr>
<td>anti-Profilin</td>
<td>Rinderprofilin</td>
<td>pAK Kaninchen</td>
<td>AG Jockusch</td>
</tr>
</tbody>
</table>

Tab. 2: Übersicht der verwendeten Sekundärantikörper:

<table>
<thead>
<tr>
<th>Antikörper</th>
<th>Antigen</th>
<th>Hersteller</th>
</tr>
</thead>
<tbody>
<tr>
<td>anti-Maus-HRP</td>
<td>Maus IgG</td>
<td>Dianova/Sigma</td>
</tr>
<tr>
<td>anti-Maus-AP</td>
<td>Maus IgG</td>
<td>Dianova/Sigma</td>
</tr>
<tr>
<td>anti-Kaninchen-HRP</td>
<td>Kaninchen IgG</td>
<td>Dianova/Sigma</td>
</tr>
<tr>
<td>Ziege anti-Maus-TRITC</td>
<td>Maus IgG</td>
<td>Dianova</td>
</tr>
<tr>
<td>Ziege anti-Maus-FITC</td>
<td>Maus IgG</td>
<td>Dianova</td>
</tr>
<tr>
<td>Ziege anti-Kaninchen-TRITC</td>
<td>Kaninchen IgG</td>
<td>Dianova</td>
</tr>
<tr>
<td>Ziege anti- Kaninchen -FITC</td>
<td>Kaninchen IgG</td>
<td>Dianova</td>
</tr>
</tbody>
</table>
1.8 Geräte

UV-VIS Spektrophotometer UV 1202, Shimadzu, Duisburg
Kühlzentrifuge J2-MC, Beckmann, München
Kühlzentrifuge 3K15, Sigma, Osterode am Harz
Tischzentrifuge Biofuge 13, Heraeus, Hanau
Tischzentrifuge 113, Sigma, Osterode am Harz
Peltier Thermal Cycler PTC 200, MJ Research, Watertown, Massachusetts, USA
ABI PRISM™ 310 Genetic Analyzer, PE Applied Biosystems GmbH, Weiterstedt
Video Copy Prozessor P68E, Mitsubishi Electric Coorporation
Transilluminator, Biometra, Göttingen
Heizblock DRI-Block DB-2A, Techne
Heizrührer RCTbasic, IKA Labortechnik, Staufen
Eppendorf Thermomixer 5436, Eppendorf-Netheler-Hinz GmbH, Hamburg
Vortex Genie 2™, Bender & Hobein AG, Zürich, Schweiz
Agarose Gelelektrophoreseapparatur Nautiko 810, Labortechnik Fröbel, Lindau
Electrophoresis Power Supply Consort E455 und E734, Labortechnik Fröbel, Lindau
Rundschüttel-Inkubator, B.Braun, Melsungen
Fluoreszenzmikroskop Axiophot, Zeiss Germany
Micro Max, Princeton Instruments
Lichtmikroskop Telaval 31, Zeiss Germany
Fastblot B44, Biometra, Göttingen
Inkubator Steri-Cult200, Forma Scientific, Ohio, USA
Inkubator Certomat, Braun, Biotech International
Cell Disruptor B-12, Branson Sonic Power Co., Danbury, Connecticut, USA
ELISA-Reader, MRX, Dynatech Lab.
2 Methoden

2.1 Molekularbiologische Methoden

2.1.1 Herstellung kompetenter Bakterien

Die Aufnahme von Plasmid-DNA in Bakterien wird durch eine spezielle Behandlung der Bakterien, wodurch diese „kompetent“ gemacht werden, bewirkt. Dazu wurden 100 ml LB-Medium mit einer üN-Kultur des entsprechenden *E.coli*-Stammes in einem Verhältnis von 1/50 angeimpft und bis zur logarithmischen Wachstumsphase (OD$_{600nm}$ ≈ 0,5-0,6) bei 37°C unter Schütteln (200 rpm) inkubiert. Anschließend wurde die Bakteriensuspension 5min auf Eis gestellt und bei 4°C bei 5000 xg für 5 min abzentrifugiert. Die sedimentierten Bakterien wurden in eiskaltem TFBI (0.3 M Natriumacetat pH 5.8, 50 mM MnCl$_2$, 100 mM NaCl, 10 mM CaCl$_2$, 15% Glycerin) resuspendiert, die Suspension 10 min auf Eis inkubiert und wie oben zentrifugiert. Die kompetenten Bakterien wurden in 2 ml eiskaltem TFBII (100 mM MOPS pH 7, 75 mM CaCl$_2$, 10 mM NaCl, 15% Glycerin) aufgenommen und in Aliquots à 400 µl in flüssigem Stickstoff schockgefroren. Die kompetenten Bakterien wurden bei -80°C gelagert.

2.1.2 Transformation von Bakterien

Bei der Transformation wurden 200 µl kompetente Bakterien auf Eis aufgetaut und 10-500 ng Plasmid-DNA oder 5-7 µl des Ligationsansatzes zugegeben. Nach 30 min Inkubation auf Eis erfolgte ein Hitzeschock bei 42°C für 90 s, der die Aufnahme der DNA in die Bakterienzelle unterstützt. Nach Abkühlen des Transformationsansatzes auf Eis für 1 min wurde 0.7 ml LB-Medium zugegeben und 45 min bei 37°C inkubiert, um die Expression der Restitenzgene (β-Lactamase, Phosphotransferase etc.) zu ermöglichen. 100 und 200 µl des Ansatzes wurden auf Antibiotika-haltigen LB-Agar-Platten ausplaniert und bei 37°C üN inkubiert.
2.1.3 RNA-Präparation

Die Präparation der Gesamt-RNA aus tierischen Zellen oder verschiedenen Mausgeweben erfolgte mit dem *RNeasy Mini Kit* der Firma Qiagen.

2.1.4 Plasmidpräparation

2.1.4.1 TELT-Methode

Eine 1,5 ml *E. coli*-Übernachtkultur wurde 5min bei 6000 xg zentrifugiert und das Bakteriensediment in 150 µl TELT-Puffer (50 mM Tris/Cl pH 7.5, 62.5 mM EDTA pH 8.0, 0.4% Triton X-100, 2.5 M LiCl) resuspendiert und durch Zugabe von 15 µl Lysozym (10 mg/ml) 5min bei RT lysiert. Anschließend wurden die Proteine durch Erhitzen auf 95°C für 2min denaturiert und auf Eis für 5min abgekühlt. Nach Zentrifugation bei 13000 xg für 8min wurden die sedimentierten Zellbestandteilen mit einem sterilen Zahnstocher entnommen und 100 µl Isopropanol zugegeben. Die Präzipitation der Plasmid-DNA erfolgte durch eine 15minütige Zentrifugation bei 13000 xg. Das DNA-Pellet wurde mit 100 µl 70%igem Ethanol gewaschen, getrocknet und in 50 µl TE mit 1 µl RNase A (1 mg/ml) aufgenommen.

2.1.4.2 Alkalische Lyse

1.5 ml *E. coli*-Übernachtkultur wurden bei 6000 xg für 5min sedimentiert und das Bakteriensediment in 350 µl P1 (50 mM Tris/Cl, 10 mM EDTA, 100 µg/ml RNase A; pH8.0) resuspendiert. Durch Zugabe von 350 µl P2 (200 mM NaOH, 1% SDS) und Durchmischen der Suspension durch Invertieren erfolgte die Lyse der Bakterien. Nach Neutralisation durch 350 µl P3 (3 M K-Acetat, pH5.5) erfolgte eine Präzipitation denaturierter Proteine und genomischer DNA durch Zentrifugation bei 15000 xg für 15min. Der Überstand wurde erneut für 5min zentrifugiert. Anschließend wurde die DNA durch Zugabe von 0.7 Volumen Isopropanol gefällt und für 30min bei 15000 xg präzipitiert. Das DNA-Pellet wurde mit 70%
Ethanol gewaschen, getrocknet und in 50 µl H₂O resuspendiert. Die DNA konnte ohne weitere Aufarbeitung direkt für die Sequenzierung eingesetzt werden.

2.1.4.3 Plasmidpräparation mit Qiagen Plasmid Kits

Die Durchführung der Plasmidpräparation erfolgte nach den Angaben des „Qiagen Plasmid Handbook“.

2.1.5 Spektrophotometrische Konzentrationsbestimmung von Nukleinsäuren

2.1.6 Agarose-Gelelektrophorese

2.1.6.1 Denaturierende RNA-Gelelektrophorese

Um eine Auftrennung der RNA gemäß ihres Molekulargewichtes zu gewährleisten und Einflüsse der Sekundärstruktur auf das Lauverhalten zu vermeiden, wurde eine denaturierende Gelelektrophorese durchgeführt. Für ein 10 x 7.5cm Gel wurde 0.3 g (1% w/v) Agarose in 3 ml 10x MOPS/EDTA-Puffer (0.2 M MOPS pH7.0, 10 mM EDTA, 50 mM Na-
Acetat) und 26.5 ml DEPC-H₂O geschmolzen und nach Abkühlung auf 50°C 1.5 ml 37% Formaldehyd zugegeben.

2 µg RNA wurden mit Probenpuffer (0.75 ml Formamid, 0.24 ml Formaldehyd, 0.1 ml H₂O, 0.1 ml Glycerin, 0.08 ml 10% Bromphenolblau, 0.15 ml 10x MOPS/EDTA-Puffer) auf 10 µl aufgefüllt, 15 min bei 65°C denaturiert und mit 0.8 µl Ethidiumbromid-Lösung (1 mg/ml) versetzt. Die Elektrophorese erfolgte bei RT und einer Spannung von 100V.

2.1.6.2 DNA-Gelelektrophorese

DNA-Fragmente werden gemäß ihrer Größe in einem elektrischen Feld aufgetrennt. Dazu wurden entsprechend der erwarteten Länge der DNA-Fragmente Agarosegele unterschiedlicher Konzentration in 1xTBE (89 mM Tris/Cl, 89 mM Borsäure, 2 mM EDTA) eingesetzt. Die DNA-Fragmente wurden mittels des interkalierenden und fluoreszierenden Ethidiumbromids, das dem Gel direkt zugesetzt wurde, unter UV-Licht nachgewiesen. Die Elektrophorese erfolgte bei einer konstanten Spannung von 120V.

2.1.7 Herstellung eines DNA-Längenmarkers

Tab. 3: DNA-Fragmentlänge und Konzentration des λ-EcoRI-HindIII-Markers

<table>
<thead>
<tr>
<th>Fragmentlänge</th>
<th>DNA-Konzentration in ng/5µl</th>
</tr>
</thead>
<tbody>
<tr>
<td>21800 bp</td>
<td>278</td>
</tr>
<tr>
<td>5240, 5050 bp</td>
<td>67, 64</td>
</tr>
<tr>
<td>4210 bp</td>
<td>54</td>
</tr>
<tr>
<td>3410 bp</td>
<td>44</td>
</tr>
<tr>
<td>1980, 1900 bp</td>
<td>25, 24</td>
</tr>
<tr>
<td>1570 bp</td>
<td>20</td>
</tr>
<tr>
<td>1320 bp</td>
<td>17</td>
</tr>
<tr>
<td>930 bp</td>
<td>12</td>
</tr>
<tr>
<td>840 bp</td>
<td>11</td>
</tr>
<tr>
<td>580 bp</td>
<td>8</td>
</tr>
<tr>
<td>130 bp</td>
<td>2</td>
</tr>
</tbody>
</table>
2.1.8 DNA-Hydrolyse mit Restriktionsendonukleasen

Mittels Mg\(^{2+}\)-abhängiger Restriktionsendonukleasen des Typs II können DNA-Fragmente an spezifischen, palindromischen Sequenzen gespalten werden. Dabei werden Phosphodiesterbrücken der Nukleinsäuren hydrolysiert, wobei in Abhängigkeit des verwendeten Enyzms entweder *sticky* oder *blunt ends* entstehen. Die Reaktionsbedingungen (Temperatur, Pufferzusammensetzung, Inkubationszeit) wurden je nach Enzym entsprechend den Vorschriften des Herstellers eingestellt.

2.1.9 Phenol-Extraktion

2.1.10 Alkohol-Präzipitation von DNA

Zur Konzentrierung von DNA-Lösungen wurden diese mit Alkohol (100% Ethanol oder Isopropanol) und monovalenten Kationen (in Form von Na-Acetat) versetzt. Unter diesen Bedingungen kommt es zur Aggregation der DNA-Moleküle und ihrer Präzipitation als Natriumsalz, wogegen kurze DNA-Fragmente in Lösung bleiben. Die DNA-Lösung wurde mit einem 1/10 Vol. 3 M Na-Acetat (pH5.4) und 2.5 Vol. 100% Ethanol oder 0.7 Vol. Isopropanol (-20°C) versetzt, durchmischt und 1h bei -80°C gefällt. Durch Zentrifugation bei 13000 xg wurde die DNA sedimentiert und das Präzipitat mit 70%igem Ethanol (-20°C) gewaschen. Nach erneuter Zentrifugation (10min, 13000 xg) wurde das Sediment in einem geeigneten Volumen TE-Puffer oder H\(_2\)O resuspendiert.
2.1.11 Polyethylenglycol (PEG)-Präzipitation

Zur Aufarbeitung von TELT-Plasmidpräparationen für Sequenzierungsreaktionen wurde die DNA einer PEG-Fällung unterzogen. Dazu wurde die DNA-Lösung mit H$_2$O$_{bidest}$ auf 100µl aufgefüllt, mit 30% PEG-3350 in 1.6 M NaCl versetzt und über Nacht bei 4°C inkubiert. Die so ausgefallte DNA wurde 30min bei 14000 xg bei 4°C präzipitiert und das DNA-Pellet zweimal mit 70% Ethanol gewaschen. Anschließend wurde die DNA getrocknet und in H$_2$O$_{bidest}$ aufgenommen.

2.1.12 DNA-Fragment-Isolierung

Die Isolierung spezifischer DNA-Fragmente aus präparativen Agarosegelen erfolgte durch die Bindung der negativ geladenen DNA an Glaspulver und anschließender Elution. Dazu wurde der „QIA®EXII Gel Extraction Kit“ (Qiagen) eingesetzt. Das zu isolierende DNA-Fragment wurde aus dem Agarosegel geschnitten und entsprechend den Herstellerangaben behandelt.

2.1.13 Dephosphorylierung von 5´-Phosphatenden

Um die Rezirkularisierung eines nur mit einem Restriktionsenzym hydrolysierten Vektors zu verhindern, wurden die endständigen 5´-Phosphatgruppen durch eine Phosphatase-Behandlung entfernt. Da die T4-DNA-Ligase aktivierte 5´-Enden zum katalytischen Angriff auf die 3´-OH-Gruppen benötigt, wird somit eine Rezirkularisierung unterbunden. Nach vollständiger Hydrolyse des Vektors durch das entsprechende Restriktionsenzym und anschließender Gel-Elution, wurde der linearisierte Vektor mittels der *shrimp alkaline phosphatase* (Boehringer) entsprechend den Herstellerangaben dephosphoryliert. Die préparierte Vektor-DNA konnte direkt zur Insertion von DNA-Fragmenten eingesetzt oder bei -20°C gelagert werden.
2.1.14 In vitro -Neukombination von DNA-Fragmenten

2.1.15 Reverse Transkription

Durch reverse Transkriptasen - RNA-abhängige DNA-Polymerasen - wird nach Zugabe eines entsprechenden Primers der zur RNA komplementäre DNA-Strang synthetisiert. Dazu wurden 2µg der RNA mit H₂O auf 10µl aufgefüllt und mit 1.5µl des entsprechenden Primers versetzt. Durch Erhitzen des Ansatzes auf 65°C für 5min werden Sekundärstrukturen innerhalb der RNA aufgelöst. Die Reaktion wurde durch Zugabe von 5x reverse Transkriptase-Puffer, 2µl 10mM dNTP-Mix, 0,2 µl BSA (1mg/ml), 2µl reverse Transkriptase und 0,7µl RNAsin (20U/µl) gestartet. Nach einer Inkubation bei 37°C für 1h erfolgte die Denaturierung der reversen Transkriptase bei 95°C für 5min.

2.1.16 Polymerase-Ketten-Reaktion (PCR)

Bei der Polymerase-Kettenreaktion wird eine exponentielle Amplifikation eines spezifischen DNA-Fragmentes mittels einer hitzestabilen DNA-Polymerase durch zyklische Wiederholung von Hitzedenaturierung, Primerhybridisierung (Annealing) und DNA-Synthese erreicht. Durch das exponentielle Ansteigen der DNA-Menge erhält man selbst aus geringen Mengen Ausgangsmaterial eine quantitative Menge der gewünschten DNA-Sequenz. Durch Einführung von Erkennungssequenzen verschiedener Restriktionsenzyme bietet diese Methode die Möglichkeit, spezifische cDNA-Bereiche zu amplifizieren und in definierter Orientierung zu klonieren. Für analytische Zwecke wurde die Taq-DNA-Polymerase (Takara,
Appligene) aus dem thermophilen Bakterium *Thermus aquaticus* eingesetzt, die über keine 3´→5´-Exonukleaseaktivität verfügt und entsprechend eine erhöhte Fehlerrate während der Synthese aufweist. Wurde auf eine geringere Fehlerrate Wert gelegt, erfolgte die Amplifikation mit der Tli-DNA-Polymerase (Promega), die über eine 3´→5´-Exonukleaseaktivität verfügt.

Die Qualität der PCR wurde durch Agarosegelelektrophorese überprüft und die entsprechende Bande quantitativ durch eine Fragment-Isolierung präpariert.

2.1.17 Klonierung von PCR-Produkten

PCR-Fragmente wurden zur Subklonierung in spezielle Vektoren, die eine hohe Effizienz für rekombinante Klone gewährleisten, inseriert. Die Ligation und Transformation erfolgte bei beiden Systemen entsprechend den Herstellerangaben.

2.1.17.1 pGEM®-T-Easy Vektor

2.1.17.2 Zero Blunt™ PCR Cloning Kit

Durch die Ligation von *blunt end* PCR-Fragmenten in den linearisierten pCR® blunt Vektor wird das letale *E. coli* Gen ccdB zerstört, so dass nur rekombinante Klone nach der Transformation wachsen können.
2.1.18 Ortsspezifische Mutagenese

Für die gezielte Mutagenese bestimmter Aminosäuren wurde der *QuikChange™ site-directed mutagenesis kit* (Stratagene) eingesetzt. Dieser ermöglicht über entsprechende Oligodesoxynukleotide, die die gewünschte Mutation enthalten, mittels PCR einen ortsgerichteten Nukleotidaustausch in der cDNA. Durch einen anschließenden *DpnI* Verdau kann die parentale, methylierte Plasmid-DNA spezifisch verdaut werden, so dass für die Transformation ausschließlich neu synthetisierte, nicht methylierte DNA eingesetzt wird. Die Durchführung erfolgte entsprechend den Herstellerangaben.

2.1.19 Southern Blot

Zur Identifizierung und Verifizierung können DNA-Fragmente nach Auftrennung im Agarosegel als einzelsträngige DNA auf Membranen transferiert werden (Southern, 1975). Dazu wurde das Gel nach der Elektrophorese in einer Vakuum-Blot-Apparatur (Fröbel, Wasserburg) auf eine positiv geladene Nylonmembran (HybondN, Amersham Pharmacia) platziert und ein Vakuum von 100 – 150mbar angelegt. DNA-Fragmenten über 10kb wurden durch 250mM HCl für 5min depuriniert. Die Denaturierung der DNA erfolgte durch Überschichten des Gels mit 0.5M NaOH, 1.5 M NaCl für 10min. Anschließend wurde die DNA mit 0.5M Tris/Cl pH7.5, 1.5M NaCl für 10min neutralisiert und für weitere 45min mit 20x SSC (3M NaCl, 0.3M Na-Citrat; pH7.0) transferiert. Abschließend wurde die DNA auf der Membran durch UV-Bestrahlung (0.3 Joule/cm²) immobilisiert und konnte für Hybridisierung und Detektion eingesetzt werden.

2.1.20 Nichtradioaktive Markierung von DNA

Die Markierung von DNA zur Generierung spezifischer Sonden erfolgte durch den Einbau des Nukleotidanalogs Digoxigenin-11-Desoxyuridinphosphat (Dig-11dUTP) im Zuge einer PCR. Dafür wurde das gewünschte DNA-Fragment zunächst via PCR amplifiziert und mittels des *QIA®EXII Gel Extraction Kits* aus dem Gel eluiert. 1 – 5µl wurden anschließend in einem 25µl PCR-Ansatz, in dem der Dig-11dUTP-labeling Mix (Boehringer) eingesetzt wurde,

2.1.21 Hybridisierung und Nachweis Dig-11dUTP-markierter Sonden

2.1.22 Radioaktive Markierung doppelsträngiger Oligodesoxynukleotide

Zur radioaktiven Markierung wurden doppelsträngige Oligodesoxynukleotide mit 5´ überhängenden Guanidinresten eingesetzt. Einbau von $[^{32}P]$$\alpha$CTP wurde mittels der Klenow-Polymerase (Appligene) durchgeführt. Dafür wurden 100pmol doppelsträngige Oligodesoxynukleotide, 2µl 10x Klenow-Puffer, 2µl dNTP (je 5mM; ohne dCTP), 5µl $[^{32}P]$$\alpha$CTP (3000Ci/mmol), 2µl Klenow-Polymerase in einem Endvolumen von 20µl für 20min inkubiert. Die Reaktion wurde durch Zugabe von 1µl 0.5M EDTA gestoppt und bei –20°C gelagert. Die Abtrennung nicht eingebauter radioaktiver Nukleotide und die Reinigung der doppelsträngigen Oligodesoxynukleotide erfolgte über Sephadex G-25 NAP-5-Säulen (Pharmacia) entsprechend den Herstellerangaben.

2.1.23 Nichtradioaktive DNA-Sequenzierung

Für die PCR-Sequenzreaktion wurden 5 pmol Sequenzierungsprimer, 0.3 µg dsDNS und 2 µl Premix in einem Gesamtvolumen von 10 µl eingesetzt. Nicht eingebaute fluoreszenzmarkierte Didesoxynukleotide wurden durch Ethanolpräzipitation entfernt, das getrocknete DNA-Sediment in 13 µl TSR (Template Suppression Reagent, PE AppliedBiosystems) aufgenommen und für 2 min bei 90°C denaturiert. Die Auftrennung der DNA-Fragmente erfolgte durch Kapillarelektrophorese mit dem ABI Prism™ 310 Genetic Analyzer nach Herstellerangaben.

2.2 Biochemische Methoden

2.2.1 Expression in *E. coli* und Zellschnellaufsuhl

Die für die Expression rekombinanter Proteine verantwortlichen Promotoren der Vektoren pQE30 und pET28b(+) sind durch Zugabe von IPTG (Endkonzentration 1 mM) induzierbar. Dies führt zur Transkription und somit zur Translation eines „downstream“ liegenden, Protein-kodierenden DNA-Fragments. Nach Induktion der Transkription wurde eine Expressionskinetik erstellt. Die dafür entnommenen Proben wurden entsprechend ihrer optischen Dichte bei 600 nm nach Zentrifugation mit SDS-Probenpuffer versetzt (OD_{600}=1 \propto 0,1 ml Probenpuffer) und gelelektrophoretisch aufgetrennt.

2.2.2 Expression und Reinigung von rekombinantem Maus Profilin I und IIa

Die Reinigung der rekombinannten Maus Profilin-Isoformen erfolgte durch Affinitätschromatographie mit poly-L-Prolin (Tanaka and Shibata, 1985).

2.2.2.1 Herstellung von poly-L-Prolin-Sepharose

Poly-L-Prolin wurde an Cyanbromid-aktivierte Sepharose CL-4B (Amersham-Pharmacia, Freiburg) gekoppelt. Vor der Kopplungsreaktion wurde die Sepharose in 1 mM HCl gequollen, gewaschen und in Kopplungspuffer (0,2 M NaCl, 0,1 M NaHCO₃; pH 9,0) mit
poly-L-Prolin bei 4°C unter Bewegung inkubiert. Die Absättigung freier reaktiver Cyanbromid-Gruppen erfolgte entsprechend den Herstellerangaben. Abschließend wurde die poly-L-Prolin-Sepharose in 0,1M Tris/Cl (pH 8,0), 0,5 M NaCl und 2 mM NaN₃ überführt und bei 4°C gelagert.

2.2.2.2 Expression und Reinigung

Maus Profilin I und IIa cDNA wurde mittels der prokaryotischen Expressionsvektoren pET28a(+) bzw. pMW172 im E.coli Stamm BL21 (DE3) exprimiert. 1 l E.coli Kulturen wurden in 2xYT Medium unter entsprechendem Antibiotikumselektionsdruck bis zu einer OD₆₀₀nm von 0,5 bei 37°C inkubiert. Nach Induktion der Expression mit 1 mM IPTG wurden die Bakterien nach Inkubation für weitere 3 h sedimentiert (6500 x g, 15 min, 4°C), in 25ml Lysispuffer (20 mM Tris/Cl, 150mM NaCl, 10mM EGTA, 20 mg Lysozym, 50µm Pefabloc SC, 0,46µM Aprotinin; pH 7.6) aufgenommen und bei –80°C eingefroren. Nach Auftauen der Zellsuspension wurden die Bakterien durch Ultraschall (3 x 45 s mit 30 s Pause, 50 – 80 V) vollständig aufgeschlossen. Die Zellfragmente wurden bei 4°C für 45 min bei 30000 x g abzentrifugiert und der Überstand auf eine mit Lysispuffer äquilibrierte poly-L-Prolin-Sepharose Säule mit einer Flußrate von 30 ml/h gegeben. Die Säule wurde mit ca. 5 Säulenvolumen Waschpuffer I (20 mM Tris/Cl, 150mM NaCl; pH 7.6) und 10 Säulenvolumen Waschpuffer II (20mM Tris/Cl, 150mM NaCl, 2M Harnstoff; pH 7.6) gewaschen. Beide Profilin Isoformen wurden unter denaturierenden Bedingungen (20mM Tris/Cl, 150mM NaCl, 6M Harnstoff; pH 7.6) eluiert. Proteinhaltige Fraktionen wurden mittels SDS-PAGE analysiert und Profilin-haltige Fraktionen vereinigt. Renaturierung der Profiline erfolgte durch Dialyse gegen Puffer (20mM Tris/Cl, 0,2mM CaCl₂, 14mM β-Mercaptoethanol) mit abnehmenden Harnstoff-Konzentrationen. Die Profilin-Suspensionen wurden sterilfiltriert und mit 50% Glycerin versetzt bei –20°C gelagert.

2.2.3 Expression und Reinigung von rekombinannten p42POP-Fragmenten mit His-Tag

Die Aufreinigung von Wildtyp und mutierten p42POP-Fragmenten erfolgte durch Affinitätschromatographie, basierend auf der hohen Affinität des aus sechs aufeinanderfolgenden Histidinen bestehenden His-tags an Ni²⁺-Ionen. Die Reinigung wurde in Anlehnung an das Herstellerprotokoll („The QIAexpressionist“, Qiagen) durchgeführt.
Der *E. coli* Stamm M15(pREP4) wurde mit den entsprechenden Konstrukten transformiert. Die Bakterien wurden in 2xYT Medium unter entsprechendem Selektionsdruck bei 30°C kultiviert und die Proteinexpression bei einer OD₆₀₀nm von 1 durch IPTG (Endkonzentration 1mM) induziert. Nach 3 h wurden die Bakterien bei 6500 xg sedimentiert, in 25 ml kaltem Lysispuffer (50mM Na-Phosphat, 300mM NaCl, 10mM Imidazol, 14mM β-Mercaptoethanol, 50µm Pefabloc SC, 0.46µM Aprotinin; pH 8.0) pro Liter Ausgangskultur resuspendiert und bei -80°C eingefroren. Nach Auftauen bei 37°C wurden die Bakterien durch Ultraschallbehandlung auf Eis (3 x 45 sec, 80W) vollständig aufgeschlossen und Zelltrümmer bei 30000 xg bei 4°C für 30 min sedimentiert. Der Überstand wurde mit in Lysispuffer äquilibrierter Ni-NTA-Sepharose für 1 h auf Eis inkubiert. Alle nachfolgenden Schritte wurden im Batchverfahren nach dem Herstellerprotokoll durchgeführt. Eluiertes Protein wurde auf seine Reinheit durch SDS-PAGE überprüft, entsprechende Fraktionen vereinigt und durch Zentrifugalfiltration umgepuffert und ankonzentriert.

2.2.4 Bestimmung der Proteinkonzentration

2.2.4.1 Proteinbestimmung nach Bradford

20µl Proteinlösung wurden in einer 96-Loch Platte mit 100µl Bradford-Reagenz (Sigma) versetzt und nach 15 minütiger Inkubation bei 595nm photometrisch mittels eines „ELISA-Readers“ vermessen. Die Proteinkonzentration wurde in Abhängigkeit einer Eichgeraden mit BSA (10 – 100µg/ml) bestimmt.

2.2.4.2 Proteinbestimmung über molare Extinktionskoeffizienten

Mittels molarer Extinktionskoeffizienten kann die Proteinkonzentration über das Lambert-Beerische-Gesetz ermittelt werden:

\[E = \varepsilon \cdot d \cdot c \]
Material und Methoden

E: Extinktion bei 280nm
ε: molarer Extinktionskoeffizient
d: Schichtdicke
c: Konzentration

Für Maus Profilin I und IIa experimentell ermittelte Werte:

Profilin I: \[\text{OD}_{280\text{nm}} = 1 \approx 0.83 \text{mg/ml} \] (Larsson & Lindberg, 1988)

Profilin IIa: \[\text{OD}_{280\text{nm}} = 1 \approx 0.71 \text{mg/ml} \] (kalkulierter Extinktionskoeffizient)

2.2.5 SDS-Polyacrylamid-Gelelektrophorese (SDS-PAGE)

Proteine können durch SDS-Polyacrylamid-Gelelektrophorese unter denaturierenden, reduzierenden Bedingungen proportional zu ihrem Molekulargewicht aufgetrennt werden. Dafür wurden das Glycin-SDS-Polyacrylamid-Gelsystem nach Laemmli (Laemmli, 1970) eingesetzt. Die Proben wurden mit 5x Probenpuffer (375mM Tris/HCl pH 6.8, 2% (w/v) SDS, 12% (v/v) Glycerin, 1.4M β-Mercaptoethanol, Bromphenolblau) versetzt und 5min bei 95°C denaturiert. Entsprechend der Molekulargewichte der zu analysierenden Proteine wurden diskontinuierliche Gele unterschiedlicher Polyacrylamid-Konzentration verwendet. Die Auftrennung erfolgte bei konstanter Stromstärke (25mA/Gel). Anschließend wurden die Gele entweder fixiert und gefärbt (15% (v/v) Isopropanol, 10% (v/v) Essigsäure, 0.025% (w/v) Coomassie Blau), danach zur Verdeutlichung der Proteinbanden entfärbt (15% (v/v) Isopropanol, 10% (v/v) Essigsäure) oder für einen Immunblot (siehe 2.2.6) entsprechend weiterbehandelt. Als Größenstandards dienten die in Tabelle 4 aufgeführten „low molecular weight marker“ (LMW, Sigma), „high molecular weight marker“ (HMW, Sigma) oder „prestained marker“ der Firma NEB.

Tab. 4: Molekulargewichtszusammensetzung der eingesetzten Marker

<table>
<thead>
<tr>
<th>LMW (in kDa)</th>
<th>HMW (in kDa)</th>
<th>prestained marker (in kDa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rinderalbumin 66</td>
<td>Myosin 205</td>
<td>MBP-β-Galactosidase 175</td>
</tr>
<tr>
<td>Ovalalbumin 45</td>
<td>β-Galactosidase 116</td>
<td>MBP-Paramyosin 83</td>
</tr>
<tr>
<td>GAPDH 36</td>
<td>Phosphorylase–B 97.5</td>
<td>Glutamatdehydrogenase 62</td>
</tr>
<tr>
<td>Carboanhydrase 29</td>
<td>Rinderalbumin 66</td>
<td>Aldolase 47.5</td>
</tr>
<tr>
<td>Trypsinogen 24</td>
<td>Ovalbumin 45</td>
<td>Triosephosphat Isomerase 32.5</td>
</tr>
<tr>
<td>Trypsin-Inhibitor 20.1</td>
<td>Carboanhydrase 29</td>
<td>β-Lactoglobulin A 25</td>
</tr>
<tr>
<td>α-Lactalbumin 14.2</td>
<td></td>
<td>Lysozym 16.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Aprotinin 6.5</td>
</tr>
</tbody>
</table>
2.2.6 Immunblot

Um Proteine spezifisch nachzuweisen, wurde der Immunblot (Westernblot) eingesetzt. Dabei werden durch SDS-Polyacrylamid-Gelelektrophorese aufgetrennte Proteine durch Anlegen einer Spannung elektrophoretisch auf eine Nitrozellulosemembran transferiert und mit spezifischen Antikörpern nachgewiesen. Die Durchführung erfolgte analog den Herstellerangaben (Biometra). Freie Bindungsstelle der Nitrozellulosemembran wurden durch Inkubation für 1h bei RT oder üN bei 4°C mit 5% (w/v) Magermilchpulver in TBST (20mM Tris/HCl, 140mM NaCl, 0,02% Tween-20; pH7,6) abgesättigt. Nach Waschen mit TBST wurde die Membran mit dem ersten Antikörper in 2% (w/v) BSA in TBST für 1h bei RT inkubiert. Ungebundener Antikörper wurde durch Waschen mit TBST entfernt, bevor der gegen den ersten Antikörper gerichtete Sekundär-Antikörper (alkalische Phosphatase- oder Meerrettichperoxidase-gekoppelt) in 2% (w/v) BSA in TBST für 1h bei Raumtemperatur zugegeben wurde. Nach Inkubation mit dem Zweitantikörper für 45min bei RT und anschließendem Waschen mit TBST + 1% Triton-X-100 erfolgte die Blotentwicklung. Die Detektion des mit alkalischer Phosphatase gekoppelten Antikörpers erfolgte nach Äquilibrierung in alkalischem Phosphatase-Puffer (100mM Tris/Cl pH 9.5, 100mM NaCl, 5mM MgCl$_2$) durch Entwicklung des Blots mit 10 ml alkalischem Phosphatase-Puffer, 30 µl 5-Brom-4-chlor-3-indolylphosphat (50 mg/ml in DMF) und 60 µl Nitroblau-Tetrazolium (50 mg/ml in DMF). Durch Zugabe von H$_2$O wurde die enzymatische Reaktion beendet. HRP-gekoppelte Sekundärantikörper wurden durch Chemilumineszenzreaktion detektiert. Dazu wurde der Blot mittels des enhanced chemoluminescence- (ECL) oder des empfindlicheren Super-ECL-Systems der Firma Amersham Pharmacia Biotech entwickelt. Dabei wird mit Hilfe der Peroxidase unter Lichtemission Luminol oxidiert. Das Licht wurde mittels Röntgenfilm (Kodak X-Omat, Amersham Pharmacia Biotech) nachgewiesen. Die Durchführung erfolgte nach Herstellerangaben.

2.2.7 Phosphorylierung von Profilin durch die Proteinkinase Cα (PKCα)

Um den Einfluß einer potentiellen Regulation der Maus Profilin-Isoformen I und IIa durch Phosphorylierung zu untersuchen, wurde Profilin IIa in Anlehnung an die für Profilin I beschriebenen Bedingungen (Singh et al., 1996) auf mögliche PKCα Phosphorylierungsstellen untersucht.
100pmol Profilin wurden 30min bei 4°C unter verschiedenen Phospholipidbedingungen präinkubiert und anschließend für die Phosphorylierungsreaktion eingesetzt. Die Reaktion erfolgte in 25µl Kinase-Puffer (20mM HEPES, 10mM MgCl₂, 0.5mM EGTA, 0.05% Triton-X-100, 200nM TPA, 0.063mM CaCl₂, 100µM ATP, 1µCi [³²P]-γATP, 30ng PKCα) und wurde durch Zugabe von 10µl SDS-PAGE-Probenpuffer gestoppt. Die Analyse erfolgte durch SDS-PAGE und anschließender Autoradiographie.

2.2.8 Phosphorylierung mittels der cAMP-abhängigen Serin/Threonin Proteinkinase (PKA)

Zur Identifizierung potentieller PKA Phosphorylierungsstellen wurden 100pmol unterschiedlicher Proteine mit der katalytischen Untereinheit der PKA bei 30°C inkubiert. Die Phosphorylierungsreaktion wurde in PKA-Phosphorylierungspuffer (10mM HEPES, 50mM KCl, 5mM MgCl₂, 1mM DTT, 0.2mM EGTA, 200µM ATP, 0.2µCi [³²P]-γATP) bei 30°C für unterschiedliche Zeiten inkubiert und durch Zugabe von 10µl SDS-PAGE-Probenpuffer gestoppt. Die Analyse erfolgte durch SDS-PAGE, Transfer auf Nitrozellulose mittels Semidry-Blot und anschließender Autoradiographie.

2.2.9 Chemical crosslinks mit NHS/EDC

2.2.10 Yeast two-hybrid System

2.2.11 In vitro Transkription und Translation zur radioaktiven Markierung von Polypeptiden

Zur Überprüfung der Reaktion wurden 1 – 2µl der Translationsansätze gelektrophoretisch aufgetrennt, auf eine Nitrozellulose-Membran transferiert und in einem Autoradiogramm analysiert.

2.2.12 Dot overlay Assay

Intermolekulare Protein-Protein-Wechselwirkungen können im dot overlay Assay nachgewiesen werden. 25–50 pmol einer Proteinlösung wurden mittels eines Vakuum-Spotters (Biometra) auf Nitrozellulose aufgebracht, der Transfer durch Ponceaurot-Färbung überprüft und freie Bindungsstellen der Membran mit 5% (w/v) Magermilchpulver in TBST bei RT für 1 h abgesättigt. Nach Waschen mit PBS wurde die Membran mit 20µl in vitro translatiertem, radioaktivem Protein in 1.5ml Overlay-Puffer (TBST, 14mM β-Mercaptoethanol und Proteaseinhibitoren) für 3 h bei RT inkubiert. Nach fünfmaligem Waschen mit Overlay-Puffer wurde die Membran getrocknet und mittels Autoradiographie analysiert.

2.2.13 Electrophoretic mobility shift assay (EMSA)

Um die Interaktion eines Proteins mit DNA nachzuweisen, können electrophoretic mobility shift assays durchgeführt werden. Dazu werden \([^{32}\text{P}]\)-markierte doppelsträngige Oligodesoxynukleotide, die potentielle Bindungsmotive enthalten, mit dem entsprechenden Protein inkubiert und anschließend auf einem nativen Polyacrylamid-Gel aufgetrennt. Findet eine Bindung des Proteins an die Oligodesoxynukleotide statt, erfolgt aufgrund des höheren Molekulargewichts der Komplexe ein „Shift“ der Oligodesoxynukleotide.

Doppelsträngige Oligodesoxynukleotide mit 5´ überhängenden Guanidin-Resten wurden mittels der Klenow-Polymerase und \([^{32}\text{P}]-\alpha\text{-dCTP}\) radioaktiv markiert. Nicht eingebaute Nukleotide wurde gemäß den Herstellerangaben über NAP-40-Säulen (Pharmacia) abgetrennt und die erhaltenen markierten Oligodesoxynukleotide mittels eines Szintillationszählers vermessen.

Zur Ausbildung von Protein - DNA Komplexen wurde in vitro translatiertes p42POP bzw. rekombinantes N-POP mit den doppelsträngigen Oligodesoxynukleotiden mreA bzw. OHL34/35 in einem Endvolumen von 25µl inkubiert. Ein Reaktionsansatz enthielt 45000cpm
Material und Methoden

$[^{32}\text{P}]-$endmarkierte ds Oligodesoxynukleotide, 2.5µl 10x Puffer (100mM Tris/Cl, 500mM NaCl, 10mM EDTA, 50% Glycerol; pH7.9), 2µg poly(dIdC) oder Heringssperma DNA als unspezifischen Kompetitor und in vitro translatiertes p42POP bzw. rekombinantes N-POP und wurde bei 30°C für 30min inkubiert. Für Kompetitionsexperimente wurde das in vitro translatierte Protein mit unterschiedlichen Mengen an nicht markierten Oligodesoxynukleotiden für 30min bei 30°C präinkubiert und anschließend für weitere 20min mit markierten Oligodesoxynukleotiden inkubiert. Die Salzabhängigkeit der Interaktion wurde durch Zugabe verschiedener NaCl Mengen untersucht.

Die Protein-DNA Komplexe wurden anschließend in einem nativen 5% Polyacrylamidgel (29:1; Acrylamid:Bisacrylamid) mit 0.5x TBE als Laufpuffer bei 10V/cm aufgetrennt, in 10% Essigsäure fixiert, getrocknet und durch Autoradiographie analysiert.

2.2.14 Präzipitation mittels poly-L-Prolin Sepharose

Um das Bindungsverhalten von Profilin nach Phosphorylierung bzw. verschiedener Profilin-Mutanten an poly-L-Prolin zu untersuchen, wurden Präzipitationen mit poly-L-Prolin gekoppelter Sepharose durchgeführt.

Dazu wurden Zellextrakte nach hypotoner Lyse (20mM Tris/Cl, 20mM NaCl; pH7.5) oder rekombinantes Protein mit poly-L-Prolin Sepharose (50% v/v in 20mM Tris/Cl, 150mM NaCl; pH7.5) für 60min unter ständigem Schütteln inkubiert. Nach mehrmaligem Waschen mit Waschpuffer (20mM Tris/Cl, 150mM NaCl, 14mM β-Mercaptoethanol; pH7.5) wurde das Sediment in SDS-PAGE-Probenpuffer aufgenommen. Die Analyse erfolgte mittels Auftrennung des gebundenen Proteins durch SDS-PAGE, Transfer auf Nitrozellulose durch Semidry-Blot und Detektion durch entsprechende Antikörper bzw. Autoradiographie.

2.2.15 Bindungsstudien durch indirekte Enzyme-Linked ImmunoSorbent Assay (ELISA)

ELISA-Studien wurden zur Analyse der Interaktion zwischen zwei Molekülen durchgeführt. 25pmol G-Aktin wurde in G-Aktinpuffer (2mM Tris/Cl, 0.4mM ATP, 0.05mM CaCl$_2$,2mM DTE; pH8.3), um sicherzustellen, dass es in seiner monomeren Form vorliegt, in einem Endvolumen von 100 µl an eine 96-Loch-ELISA-Platte (Microlon; Greiner, Solingen) üN bei 4°C gekoppelt. Als Negativkontrolle wurden 25pmol BSA eingesetzt. Ungebundenes Protein
Material und Methoden

wurde durch dreimaliges Waschen mit Waschpuffer (0.05% Tween20 in PBS) entfernt und freie Bindungsstellen mit je 200µl 1% BSA in PBS für 2h bei RT abgesättigt. Zur Analyse der Interaktion zwischen G-Aktin und p42POP wurden steigende Mengen rekombinantes His-Flag-N-POP bzw. entsprechender Mutanten zugegeben, die Negativkontrolle wurde mit 50pmol der entsprechenden Proteine inkubiert. Ungebundenes Protein wurde durch mehrmaliges Waschen entfernt, gebundenes mittels des anti-Flag Antikörpers M2 markiert. Als Sekundärantikörper diente ein HRP-gekoppelter Rabbit-anti-mouse Antiserum. Die Entwicklung erfolgte nach dreimaligem Waschen durch Zugabe von 100µl Substratlösung (0.4mM ABTS, 0.03% H₂O₂, 33mM Citronensäure, 17mM Natriumcitrat) und konnte im Microplate Reader (MRX, Dynatech Lab.) bei 405nm (Referenzwellenlänge 590nm) quantifiziert werden.

2.3 Zellbiologische Methoden

2.3.1 Kultivierung von Zellkulturzellen

Die Zellen wurden in Gewebekulturschalen der Firma Nunc (Wiesbaden-Biebrich) in Dulbecco’s Modified Eagle Medium (DMEM) mit 10% FCS bei 37°C, 10% CO₂ und 90% Luftfeuchtigkeit kultiviert. Für Immunfluoreszenzstudien wurden die Zellen auf beschichteten Deckgläsen gehalten.

2.3.2 Passagieren von Zellen

Zum Passagieren wurden die Zellen, nach zweimaligem Waschen der Zellen mit PBS, mit einer Trypsin/EDTA-Lösung inkubiert, bis sich ca. 50-70% der Zellen vom Gefäßboden gelöst hatten. Die Enzymwirkung wurde durch Zugabe des doppelten Volumens DMEM/10% FCS gestoppt, die Zellkonzentration mittels einer Neugebauer-Zählkammer bestimmt und die gewünschte Zellzahl replattiert.
2.3.3 Kryokonservierung von Zellen

Zur Langzeit-Konservierung wurden ca. 10^6 Zellen/ml nach dem Trypsinisieren in
eisgekühltem Einfriermedium (20% FCS, 10% DMSO in DMEM) aufgenommen und
langsам in Kryoröhrchen (Nunc) auf -80°C abgekühlt. Die längerfristige Lagerung erfolgte in
flüssigem Stickstoff. Zur Rekultivierung wurden die Zellen in einem Wasserbad bei 37°C
aufgetaut und in Gewebekulturschalen plattiert.

2.3.4 Transiente Transfektion von Zellen

2.3.4.1 Calciumphosphat-Methode

Exogene DNA, die an Calciumphosphatkristalle angelagert ist, wird von tierischen Zellen
unter geeigneten Pufferbedingungen phagozytotisch aufgenommen. Gelangt transfizierte,
exogene DNA in den Zellkern, erfolgt dort unter der Kontrolle eines entsprechenden
Promotors die Transkription der eingebrachten cDNA.

Zellen wurden ausgesät und 12-20h in serumhaltigem Medium inkubiert. 4h vor der
transienten Transfektion erfolgte ein Mediumwechsel. Plasmid-DNA wurde mit 20x CaCl₂-
Lösung (2.5M CaCl₂) und tropfenweiser Zugabe von 2x HEBS-Puffer (280mM NaCl, 50mM
HEPES, 1.5mM Na₂HPO₄; pH 7.1) unter ständigem Mischen präzipitiert. Das Volumen eines
Ansatzes richtete sich nach der Größe der eingesetzten Kulturschale und betrug 1/10 des
Mediumvolumens. Nach 30 - 60min wurde das Präzipitat auf die Zellen gegeben und verteilt.

Die Zellen wurden nach 16h Inkubation mit PBS gewaschen, mit frischem Medium versorgt
und für weitere 4 - 24h inkubiert, bevor sie für Luciferase-Assays, Immunpräzipitationen oder
Immunfluoreszenzen eingesetzt wurden.

2.3.4.2 Transfektion mit FuGene™ Transfektionsreagenz

FuGene™ Transfektionsreagenz ist ein nicht liposomaler Lipidmix, der eine hohe
Transfektionseffizienz ermöglicht. Transiente Transfektionen für Luciferase Messungen, bei
denen eine gleichmäßige und hohe Transfektionsrate erforderlich war, wurden zum Teil
mittels dieses Agenz durchgeführt.
1.5 x 10^5 Cos7-Zellen wurden pro well einer 6-well-Zellkulturschale ausgesät und 12-20h inkubiert. 0.5µg pRSV-lacZ, 1µg pGL3-mreA-Luciferase Reporterplasmid und unterschiedliche Mengen entsprechender pcDNA3-BiPro-p42POP-Konstrukte wurden mit 100µl serumfreiem DMEM mit 5µl FuGene™ Transfektionsreagenz für 20-30 min inkubiert und tropfenweise zu den Zellen gegeben. Die Zellen wurden weitere 16-24h inkubiert und anschließend mit einem cellscraper geerntet.

2.3.5 Fixierung und Permeabilisierung von Zellen

Nach Transfektion und Kultivierung wurden die Zellen mit PBS gewaschen und bei RT durch 20 minütige Inkubation mit 4% (w/v) Formaldehyd in PBS fixiert. Anschließend erfolgte nach erneutem Waschen mit PBS eine Permeabilisierung der Zellen mit 0,2% Triton-X-100 in PBS für 15 min. Nach nochmaligem Waschen mit PBS konnte mit der Inkubation der Antikörper begonnen werden.

2.3.6 β-Galaktosidase Assay zur Bestimmung der Transfektionseffizienz einer transienten Transfektion

10µl Proteinextrakt oder PBS (interne Kontrolle) wurde mit 70 µl Z-Puffer (60mM NaH_2PO_4, 40mM Na_2HPO_4, 0.01M KCl, 0.1M β-Mercaptoethanol) und 10µl 50mM CPRG gut durchmischt und bei 37°C bis zu einem sichtbaren Farbumschlag inkubierte. Die Enzymreaktion wurde durch Zugabe von 900 µl 1M Na_2CO_3 gestoppt und die einzelnen Ansätze gegen den internen Standard bei 574 nm gemessen.
2.3.7 Luciferase-Assay

Dafür wurden 100µl Zellsuspension (in PBS) mit 100µl Steady Glo Luciferase Reagent versetzt, für 5min bei RT inkubiert und in einem Luminometer vermessen. Zur Eliminierung der unterschiedlichen Transfektionseffizienzen wurden die erhaltenen Werte in Korrelation zu den β-Galaktosidase-Ergebnissen gesetzt.

2.3.8 Heterokaryon Assay

Um die Funktionalität eines Kernexportsignals (NES) und den Transfer eines Proteins zwischen dem Zellkern und dem Cytoplasma zu untersuchen, wurde ein Heterokaryon-Assay durchgeführt (Fan and Steitz, 1998a; Fan and Steitz, 1998b; Michael et al., 1995). HeLa Zellen wurden auf Glasdeckgläsern in einer Dichte von 2x10^5 Zellen ausgesät, mittels Calciumphosphat-Präzipitation transfiziert und 24 h nach Transfektion gewaschen. 2x10^5 Maus C2C12 Myoblasten, die in Gegenwart von 75 µg/ml Cycloheximid (Sigma) inkubiert wurden, wurden auf dem selben Deckgläsern ausgesät. Nach Inkubation für 3 h mit 75 µg/ml Cycloheximid, um de novo Proteinbiosynthese zu unterbinden, wurden die Zellen mit 50% Polyethylenglycol (PEG 3350; Sigma) für 2 min fusioniert, gewaschen und für weitere 3 h in Medium mit 100 µg/ml Cycloheximid inkubiert. Nach Fixierung und Permeabilisierung der Zellen erfolgte die Analyse mittels Immunfluoreszenzmikroskopie.
2.3.9 Coimmunpräzipitation

10⁶ HeLa Zellen wurden auf 10cm Kulturschalen ausgesät, nach 24h transient transzifiziert und weitere 24h inkubiert. Anschließend wurden die Zellen mit PBS gewaschen und für 30min mit dem bivalenten, membranpermeablen und reduzierbaren crosslinker Dithiobis(succinimidyl propionate) (DSP; 0.5mM in PBS) bei 37°C inkubiert. Der Crosslinker wurde durch Waschen mit PBS entfernt und freie aktive Gruppen durch 15 minütige Inkubation mit 200mM Glycin in PBS abgesättigt. Nach wiederholtem Waschen wurden die Zellen mit 1ml RIPA-Puffer auf einer Wippe bei 4°C permeabilisiert. Anschließend wurden die permeabilisierten Zellen mit einem cellscraper abgekratzt, durch Ultraschallbehandlung vollständig aufgeschlossen und Zelltrümmer bei 4°C sedimentiert (13000 xg; 10min). Um unspezifische Bindung an die Sepharose zu verhindern wurde der Überstand mit 15µl einer 1:1 Suspension Protein-G-Sepharose in Blockpuffer (2% BSA in PBS) versetzt, für 1h unter Drehen bei 4°C inkubiert und die Sepharose bei 8000 xg sedimentiert. Für die Immunpräzipitation wurde der Überstand mit dem entsprechenden Antikörper über Nacht bei 4°C unter Drehen inkubiert. Zur Ausbildung sedimentierbarer Antikörperkomplexe wurde 40µl der Protein-G-Sepharose Suspension zugegeben und für 1h bei 4°C rotierend inkubiert. Anschließend wurden die Ansätze dreimal mit RIPA-Puffer und einmal mit PBS gewaschen und zur Spaltung des crosslinkers 10min bei RT in SDS-PAGE-Probenpuffer mit 20% β-Mercaptoethanol inkubiert, für 10min bei 100°C aufgekocht und durch SDS-PAGE und Immunblot analysiert.

\(^{1}\) Die cDNA wurde in einer embryonalen Maus cDNA Bank (Tag 17) von Dr. Martin Rothkegel identifiziert.

Zudem konnte ein potentieller Leuzin-Zipper identifiziert werden, dessen regulatorischer Einfluß auf die transkriptionelle Aktivität von c-Myb beschrieben ist.

Des weiteren konnte ein nuclear export signal (NES, Abb. 4, blau) identifiziert werden, sowie drei prolinreiche Regionen (Abb. 4, orange), von denen zwei poly-L-Prolin Sequenzen beinhalten (P\(_5\) in der ersten und P\(_{12}\) in der zweiten prolinreichen Region, Abb. 4, rot). Die dritte prolinreiche Region umfasst ein mögliches SH3-Bindungssequenz (KPLLAP, Abb. 4, orange gestreift) mit Homologie zum beschriebenen SH3-Bindungsmotiv R/KPLPP\(\psi\)P (\(\psi\), hydrophober Rest) der Klasse 1.

Abb. 5: Immunblot verschiedener Zellextrakte zur Detektion von endogenem p42POP
Proteinrohextrakte von jeweils 3\(\times\)10\(^5\) Zellen unterschiedlicher Zelllinien wurden im Immunblot auf die Expression von p42POP mit dem monoklonalen anti-p42POP Antikörper 4D3 analysiert. Als Positivkontrolle dienten mit pcDNA3-BiPro-p42POP transfizierte HeLa-Zellen.
2 Genstruktur und Genlocus von p42POP

Um Aufschluß über die Genstruktur zu erhalten, wurde eine genomische DNA-Bank (Maus, RZPD) mit zwei Digoxigenin-markierten DNA-Sonden, die die gesamte cDNA umfassten, durchsucht. Dabei wurden drei genomische Klone identifiziert, von denen sich zwei als identisch erwiesen. Beide unterschiedlichen Klone enthielten für p42POP kodierende DNA-Bereiche, unterschieden sich jedoch in ihren 5'- bzw. 3'-Regionen.

Durch Southernblot-Analysen, Sequenzierungen und Datenbankrecherchen konnte die genomische Struktur des p42POP-Gens analysiert werden (Abb. 6). Das p42POP kodierende Gen setzt sich aus vier Exonen zusammen, wobei nur zwei (Exon 2 und 3) den translatierten DNA-Bereich beinhalten.

![Diagramm](image)

Abb. 6: Genstruktur von p42POP. Basierend auf zwei genomischen Klonen konnte die Exon-Intron-Struktur von Maus p42POP durch Southernblots, Sequenzierungen und Datenbankrecherche analysiert werden.

3 p42POP wird in Mausgeweben ubiquitär exprimiert

Abb. 7: Southernblot zur Analyse der gewebsspezifischen und entwicklungsspezifischen Expression von p42POP. Ausgehend von Erststrangsynthesen unterschiedlicher Mausgewebe und embryonaler Entwicklungsstadien, die mit verschiedenen Haushaltsgenen standardisiert wurden, wurden RT-PCRs zur Identifizierung von p42POP durchgeführt.
4 Konstruktion verschiedener p42POP-Fragmente auf Basis von Sequenzmotiven und Genstruktur

Um die unterschiedlichen Sequenzmotive (siehe Abb. 4) charakterisieren und potentielle Funktionen von p42POP identifizieren zu können, wurden basierend auf in der cDNA enthaltenen Restriktionserkennungssequenzen und über PCR Deletionsmutanten hergestellt (Abb. 8), die in verschiedenen experimentellen Ansätzen zum Einsatz kamen.

Abb. 8: Schematische Darstellung hergestellter Deletionsmutanten von p42POP, die in verschiedenen Studien eingesetzt wurden. Jeweils die erste und letzte Aminosäure im Bezug auf das gesamte Protein sind angegeben.
5 Die Myb-Domäne in p42POP ist funktionell

Zur Charakterisierung der Myb-Domäne von p42POP wurden, basierend auf publizierten Sequenzen bekannter Myb-Proteine, Homologievergleiche durchgeführt. In Abbildung 9 sind die Konsensussequenz und entsprechende Myb-Motive, die in Säugern, Insekten und Pflanzen identifiziert wurden, dargestellt.

Abb. 9: Sequenzvergleich des Myb-Motivs von p42POP mit beschriebenen Myb-Repeats verschiedener Myb-Proteine und Myb-verwandter Proteine. Fett dargestellte Aminosäuren stellen Übereinstimmung mit der Konsensussequenz (consensus; Rosinski and Atchley, 1998) dar. Die Aminosäuresequenz von p42POP wurde mit den Sequenzen der Myb-Repeats von Maus c-Myb, humanem A-Myb, Kartoffel MybSt1 (MybSt1; Baranowskij et al., 1994), Arabidopsis thaliana (AT MybL2; Kirik and Baumlein, 1996), Mais (ZM MYB1, ZM MYB38; Marocco et al., 1989), Hopfen (HV MYB1; Marocco et al., 1989) und Drosophila melanogaster (DM Adf-1; England et al., 1992) verglichen. Das Helix-Turn-Helix Motiv wurde durch "H" und "T" gekennzeichnet (Ogata et al., 1992).

\[h = I, L, A, V, M, F; \ d = S, T, Y; \ + = E, D; \ b = K, R, H; \ X = \text{beliebige Aminosäure} \]

Diese Analyse der Tryptophancluster-Domänen zeigt die Homologie zwischen p42POP und anderen Vertretern der Myb-Transkriptionsfaktoren in Bezug auf konservierte Aminosäurereste. Auffällig sind Insertionen innerhalb des Motivs von p42POP. Derartige Insertionen wurden bisher nur bei dem pflanzlichen Vertreter der Myb-Familie MybSt1 (Baranowskij et al., 1994) identifiziert. Die DNA-Bindungsdomäne dieses aus der Kartoffel isolierten Proteins besteht analog zu p42POP aus einem einzigen Myb-Repeat und weist auch in seinem modularen Aufbau Ähnlichkeiten zu p42POP auf. C-terminal zu dem Myb-Repeat schließt sich ein saurer Sequenzbereich an, gefolgt von einer prolinreichen Region. Eine
weitere Abweichung von der Konsensussequenz der Myb-Repeats in p42POP ist die Substitution des ersten der konservierten Tryptophanreste durch Phenylalanin. Dieser Austausch konnte bereits in verschiedenen pflanzlichen Myb-Proteinen identifiziert werden, hat jedoch keinen Einfluß auf die Funktionalität dieser DNA-bindenden Domäne.

Ergebnisse

Abb. 10: Analyse der DNA-p42POP Interaktion durch EMSA. In vitro translatiertes p42POP wurde mit den angegebenen \[^{32}P\]-markierten Oligodesoxynukleotiden, die das Myb Erkennungsmotiv mim-1A des mim Promotors (A) enthalten oder OHL34/35 (B), das das Erkennungsmotiv in doppelter Ausführung beinhaltet, inkubiert. Die Salzabhängigkeit wurde mit steigenden NaCl-Konzentrationen (0, 50, 100, 200mM), während alle anderen Ansätze mit 50mM NaCl durchgeführt wurden, die Spezifität der Komplexbildung durch Kompetitionsexperimente mit steigenden Mengen an nicht markierten doppelsträngigen Oligodesoxynukleotiden untersucht. DNA-p42POP Komplexe wurden mit einem Pfeil, freie Oligodesoxynukleotide mit einer Pfeilspitze markiert.

Abb. 11: EMSA zur Charakterisierung der DNA-bindenden Domäne von p42POP
Rekombinantes N-POP und verschiedene Mutanten, die Mutationen von konservierten Aminosäuren innerhalb der Konsensussequenz des Myb-Repeats aufweisen, wurden mit radioaktiv markiertem mreA inkubiert und auf DNA-Bindung untersucht. DNA-p42POP Komplexe wurden mit einem Pfeil, freie Oligodesoxynukleotide mit einer Pfeilspitze markiert.

Durch die eingefügten Mutationen wurde die Wechselwirkung mit den eingesetzten doppelsträngigen Oligodesoxynukleotiden mreA inhibiert, während das nicht mutierte, verkürzte p42POP-Fragment N-POP nicht in seiner DNA-Bindungsaktivität beeinflusst wurde. Dies deutet darauf hin, dass p42POP als Monomer an DNA binden kann und diese Bindung durch die Myb-Domäne vermittelt wird.

6 Die transkriptionelle Aktivität wird durch die saure Region von p42POP vermittelt

Analog zu c-Myb befindet sich in p42POP C-terminal zu der DNA-Bindungsdomäne (siehe Abb. 4) ein saurer Sequenzbereich (pI 4.6). Derartige Sequenzmotive wurden für verschiedene Myb-Transkriptionsfaktoren als transkriptionsaktivierende Bereiche charakterisiert. Um die transkriptionelle Aktivität von p42POP und den möglichen Einfluß der sauren Region zu analysieren, wurden Luciferase-Assays durchgeführt. Dabei wurde die transkriptionelle Aktivität durch den Nachweis des Reporterenzymens Luciferase, das unter

Wie in Abbildung 12 dargestellt, ist p42POP in der Lage die Transkription von beiden Reporterplasmiden in Abhängigkeit der transfizierten Menge an pcDNA3-BiPro-p42POP zu aktivieren. Dabei bewirkte pGL3-OHL34/35-Luciferase, das das Myb Erkennungsmotiv PyAACG/TG zweimal enthält, eine höhere transkriptionelle Aktivierung als das singuläre Motiv in mreA (7-fache relative transkriptionelle Aktivierung im Vergleich zu 3-facher Aktivierung).

Um den Einfluß der sauren Region von p42POP auf die transkriptionelle Aktivierung zu untersuchen, wurden Luciferase-Assays mit der Deletionsmutante ΔPOP4, die die DNA-Bindungsdomäne und den anschließenden sauren Bereich umfasst (siehe Abb. 8), durchgeführt. Analog zum gesamten Protein (Abb. 12), induziert ΔPOP4 abhängig von der transfizierten DNA-Menge eine transkriptionelle Aktivierung ausgehend von beiden Reporterplasmiden (Abb. 13). Diese Aktivierung wies für ΔPOP4 eine zu p42POP vergleichbare, lineare Abhängigkeit zur eingesetzten DNA-Menge auf. Diese Ergebnisse
implizieren, dass der N-terminale Bereich von p42POP ausreichend für die transkriptionelle Aktivierung ist und diese Aktivität in Analogie zu anderen Transkriptionsfaktoren der Myb-Familie durch die saure Region von p42POP vermittelt werden könnte.

7 p42POP dimerisiert über ein Leuzin-Zipper Motiv in der C-terminalen Region

Tab. 4: Dimerisierung von p42POP untersucht im *Yeast two-hybrid* System
(+: Interaktion im Filterassay; -: keine Interaktion)

<table>
<thead>
<tr>
<th>p42POP</th>
<th>+</th>
</tr>
</thead>
<tbody>
<tr>
<td>p42POP</td>
<td>+</td>
</tr>
<tr>
<td>ΔPOP4</td>
<td>−</td>
</tr>
<tr>
<td>ΔPOP5</td>
<td>+</td>
</tr>
<tr>
<td>ΔPOP6</td>
<td>−</td>
</tr>
<tr>
<td>ΔPOP8</td>
<td>−</td>
</tr>
<tr>
<td>ΔPOP9</td>
<td>+</td>
</tr>
</tbody>
</table>

Die in Tabelle 4 dargestellten Ergebnisse lassen eine Eingrenzung der Selbstassoziationsstelle auf den Bereich von Aminosäure 204 – 329 zu und bestätigen die beschriebene Region (AS204 – 385; Marquardt, 1998). Weder für das N-terminale Fragment ΔPOP4, noch für das C-terminale Polypeptid ΔPOP8 konnte im Filterassay eine Interaktion mit p42POP gezeigt werden, während sowohl p42POP, ΔPOP5 als auch ΔPOP9 mit dem gesamten Protein wechselwirkten. Die zu erwartende Interaktion von p42POP mit ΔPOP6, das den Aminosäurebereich zwischen As 204 und As 329 beinhaltet, war nicht nachweisbar. Dies könnte auf sterische Gründe, die durch den Fusionsanteil des GAL4-Transkriptionsfaktors bedingt sind, zurückzuführen sein. Um mögliche Sekundärstrukturmotive zu identifizieren, die an der Selbstasoziation beteiligt sein können, wurde der entsprechende Bereich mittels des Programms Lasergene (DNAStar, USA) analysiert. Diese Untersuchungen ergaben eine amphipathische Helix (As 250-290) innerhalb dieser Region, die ein potentielles Leuzin-Zipper Motiv beinhaltet (Abb. 14).

8 Negative Regulation der transkriptionellen Aktivität von p42POP durch den Leuzin-Zipper

9 Phosphorylierung als potentieller Regulationsmechanismus der Dimerisierung

Da der Leuzin-Zipper einen modulierenden Einfluß auf die transkriptionelle Aktivität von p42POP nimmt, wurde der C-Terminus auf Sequenzmotive durch Datenbankanalysen untersucht, um Hinweise auf potentielle Regulationsmechanismen der Selbstaggregation von

Durch die Simulation einer Phosphorylierung des Threonins 273 infolge der Einführung einer sauren Aminosäure konnte eine Reduktion der Interaktion zwischen p42POP und C-POP T273E um Faktor 10 erzielt werden, wogegen die Einführung des Valins keinen Einfluß auf die Interaktion ausübte. Um diese mögliche Regulation der Dimerisierung biochemisch näher zu charakterisieren, wurde C-POP, sowie die Mutanten C-POP L274P/L281P und C-POP T273E als rekombinante His-tag Proteine in *E.coli* exprimiert und mittels Affinitätschromatographie gereinigt. Jeweils 25pmol der gereinigten Proteine wurden in chemical crosslink Experimenten eingesetzt, um einen möglichen Einfluß der unterschiedlichen Mutationen auf das Dimerisierungsverhalten der Proteine zu untersuchen (Abb. 18).
Abb. 18: *Chemical crosslinks* zur Untersuchung des Einflusses verschiedener Mutationen auf das Dimerisierungsverhalten von C-POP. Je 25pmol der angegebenen, aufgereinigten Proteine wurden mittels des *crosslinkers* EDC/NHS quervernetzt, durch SDS-PAGE aufgetrennt und im Immunblot mit dem anti-Flag Antikörper M2 detektiert. Die Pfeile markieren monomeres Protein und quervernetzte, dimere Proteinkomplexe.

10 **Die Kernimport- und Kernexportsignale in p42POP sind funktionell**

Zur Charakterisierung der identifizierten Kernimport- (NLS) und Kernexport- (NES) Signale (siehe Abb. 4) wurden PtK₂-Zellen transient mit verschiedenen p42POP-Fragmenten (siehe Abb. 8), die mit dem *enhanced green fluorescence protein* (EGFP) oder einem BiPro-tag fusioniert waren, transfiziert. Diezelluläre Lokalisation der exprimierten Fragmente wurde durch fluoreszenzmikroskopischen Nachweis des autofluoreszierenden EGFP-Fusionsanteils oder Detektion des BiPro-tags durch den monoklonalen Antikörper 4A6 analysiert. p42POP und die Fragmente ΔPOP4, ΔPOP7 und ΔPOP8 lokalisierten überwiegend im Zellkern (Abb. 19A, C), was auf einen aktiven Transport der Fragmente in den Zellkern hinweist.
Ergebnisse

Entsprechend sind sowohl das N- als auch das C-terminale NLS Motiv in Abwesenheit des potentiellen NES Motivs funktionell. Dagegen konnten die Fragmente ΔPOP6 und ΔPOP9, die beide das Kernexportsignal enthalten, ausschließlich im Cytoplasma nachgewiesen werden (Abb. 19B, C). Das NES Motiv scheint einen stärkeren Einfluß auf die zelluläre Lokalisation zu nehmen als das N-terminal gelegene Kernimportsignal. Dagegen führt die Expression von ΔPOP5, das das NES Motiv und das C-terminale Kernimportsignal umfasst, zu einer gleichmäßigen Verteilung zwischen Cytoplasma und Nukleus (Abb. 19C).

<table>
<thead>
<tr>
<th></th>
<th>Kern</th>
<th>Cytoplasma</th>
</tr>
</thead>
<tbody>
<tr>
<td>p42POP</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>ΔPOP4</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>ΔPOP5</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>ΔPOP6</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>ΔPOP7</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>ΔPOP8</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>ΔPOP9</td>
<td>-</td>
<td>+</td>
</tr>
</tbody>
</table>

Abb. 19: Subzelluläre Lokalisation von p42POP und verschiedenen Fragmenten. Zur Analyse der potentiellen NLS und NES Motive wurden BiPro- oder EGFP-fusionierte Deletionsmutanten transient in PtK₂ Zellen transfiziert. (A) p42POP lokalisiert ausschließlich im Zellkern, wogegen (B) das Fragment ΔPOP6 nur im Cytoplasma detektiert wurde. Der Nachweis beider Proteine erfolgte durch den anti-BiPro Antikörper 4A6 durch Immunfluoreszenz. (C) Die subzelluläre Lokalisation weiterer Fragmente von p42POP wurde mit EGFP-fusionierten Proteinen analysiert. Maßstab: 10µm

11 p42POP interagiert mit monomerem Aktin

Da im Falle von Thymosin β4 neben dem basischen Bindungsmotiv (z.B. KLKK) auch hydrophobe Aminosäurereste modulierend auf die Interaktion mit G-Aktin wirken, wurde ein entsprechender hydrophober Bereich innerhalb der dargestellten Helix von p42POP (Abb. 21B) näher charakterisiert. Dazu wurden Mutanten generiert, die eine Phosphorylierung des Threonin T91 (siehe Abb. 21B) simulieren bzw. inhibieren (N-POP T91E bzw. N-POP T91A) und in ELISA-Untersuchungen auf die Wechselwirkung mit Aktin untersucht (Abb. 22). Durch die Einführung einer geladenen Aminosäure sollte zudem der hydrophobe Charakter der Helix gestört werden.

Weitere Untersuchungen sind in diesem Zusammenhang notwendig, um einen möglichen Regulationsmechanismus der Interaktion zwischen p42POP und Aktin zu identifizieren.

12 Prolinreiche Motive in p42POP vermittelt die Interaktion mit Profilin-Isoformen

Ursprünglich wurde p42POP als Profilin Ligand im *Yeast two-hybrid* System identifiziert (Marquardt, 1998). Da für eine Interaktion zwischen den Profilin-Isoformen I und IIa mit poly-L-Prolin Liganden eine Abfolge von acht aufeinanderfolgenden Prolinresten ausreichend ist (Domke et al., 1997; Machesky and Pollard, 1993), wurde die Bedeutung der prolinreichen Regionen in p42POP (siehe Abb. 4) für die Interaktion mit Profilin I und IIa näher untersucht. Dazu wurden *dot overlay* Untersuchungen mit immobilisierter Maus Profilin I und IIa und *in vitro* translatierten, [*³⁵S*]-Methionin-markierten p42POP sowie verschiedenen Deletionsfragmenten durchgeführt. Die Bindungsregion konnte mittels der eingesetzten Deletionsfragmente auf den Aminosäurenbereich As 203 – As 329 eingegrenzt werden (Daten nicht gezeigt). Dieser Bereich beinhaltet neben prolinreichen Regionen auch die poly-L-Prolin Motive P₅ und P₁₂ (siehe Abb. 4), wobei das letztere ausreichend für die Interaktion mit Profilinen ist (Domke et al., 1997; Machesky and Pollard, 1993). Die Eingrenzung der Bindungsstelle von p42POP auf die Aminosäuren 203-329 konnte im *Yeast two-hybrid* System bestätigt werden. Der *S. cerevisiae* Stamm HF7c wurde dazu mit den Vektoren pGBKKT7-MPI bzw. -MPIIa und den entsprechenden, in Tabelle 5 aufgeführten p42POP-Konstrukten im Vektor pGADT7 cotransformiert und die Interaktion über die β-Galaktosidase-Aktivität nachgewiesen.
Tab. 5: Interaktion von Maus Profilin I und IIa mit p42POP und verschiedenen Deletionsfragmenten

<table>
<thead>
<tr>
<th></th>
<th>MPI</th>
<th>MPIIa</th>
</tr>
</thead>
<tbody>
<tr>
<td>p42POP</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>ΔPOP4</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>ΔPOP5</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>ΔPOP6</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>ΔPOP8</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>ΔPOP9</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

Die Interaktion der Profilin-Isoformen I bzw. IIa mit p42POP und verschiedenen Fragmenten wurde im Yeast two-hybrid System untersucht. +: Interaktion; -: keine Interaktion

Das gesamte Protein p42POP und die Fragmente ΔPOP5, ΔPOP6 sowie ΔPOP9, die die prolinreiche Region inklusive der poly-L-Prolin Motive beinhalten, interagierten mit beiden Profilin-Isoformen. Dagegen konnte keine Wechselwirkung der Fragmente ΔPOP4 und ΔPOP8, die die entsprechenden Sequenzbereiche nicht umfassen, mit Profilin I und IIa nachgewiesen werden (Tab. 5). Um die erhaltenen Ergebnisse unter in vivo Bedingungen zu bestätigen, wurden Immunpräzipitationen mit Extrakten aus transfizierten HeLa Zellen nach in situ crosslinking zur Stabilisierung von Proteinkomplexen durchgeführt. p42POP und ΔPOP6, die beide die poly-L-Prolin Motive P_5 und P_12 umfassen, wurden dazu, fusioniert mit einem BiPro-tag, transient in HeLa Zellen exprimiert. Zur Stabilisierung der Protein-Komplexe erfolgte vor der Lyse der Zellen ein in situ crosslinking mit dem membranpermeablen, reduzierbaren crosslinker DSP. Als Negativkontrolle wurden HeLa Zellen mit BiPro-p42POP transfiziert, jedoch wurden Proteinkomplexe nicht mit dem crosslinker DSP stabilisiert. Unter den sehr stringenten Versuchs- und Waschbedingungen (150mM NaCl, 1% Triton X-100) dissoziierten celluläre, nicht stabilisierte Proteinkomplexe, und somit kann eine mögliche Kreuzreaktivität des zur Immunpräzipitation eingesetzten Antikörpers untersucht werden. Nach Immunpräzipitation mit einem gereinigten, gegen ΔPOP1 generierten Antiserum wurden präzipitierte Proteine mittels SDS-PAGE aufgetrennt und im Immunblot analysiert (Abb. 23). Die Detektion der immunprézipitierten Proteine p42POP und ΔPOP6 erfolgte durch den gegen das BiPro-tag gerichteten monoklonalen Antikörper 4A6, um eine Kreuzreaktion des Zweitantikörpers mit den schweren Ketten des zur Immunprézipitation eingesetzten polyklonalen Serums zu unterbinden. Der Nachweis von
endogenem Profilin I wurde mit dem monoklonalen Antikörper 2H11 (Mayboroda et al., 1997) durchgeführt.

Sowohl p42POP, als auch das Fragment ΔPOP6 copräzipitierten die in HeLa Zellen endogen exprimierte Profilin-Isoform I. Die durchgeführte Negativkontrolle zeigte eindeutig, dass das eingesetzte polyclonale Antiserum keine Kreuzreaktion zu endogenem Profilin I aufweist und Profilin I nicht präzipitiert. Diese Interaktion wurde auch in einem weiteren experimentellen Ansatz gezeigt. Dazu wurden PtK2 Zellen transient mit ΔPOP6 transfi ziert, das C-terminal an ein Sequenzmotiv eines mitochondrialen Membranproteins (MOM – mitochondrial outer membrane) und des BiPro-Tags fusioniert wurde (Abb. 24). Durch dieses MOM-Sequenzmotiv erfolgt eine spezifische Lokalisierung entsprechender Fusionsproteine an die mitochondriale Membran, so dass eine Rekrutierung von Liganden durch Immunfluoreszenz untersucht werden kann (Kaufmann et al., 2000). Da die Kernimporte signale des gesamten Proteins p42POP in ihrer Funktion einen stärkeren Einfluss auf die Lokalisation des Proteins hatte als der MOM-Anker (Daten nicht gezeigt), wurde dieser Versuch mit dem cytoplasmatisch lokalisierter Fragment ΔPOP6 (siehe Abb. 19B) durchgeführt.

In transfi zierten PtK2 Zellen konnte die Lokalisation von MOM-fusioniertem ΔPOP6 (Abb. 24B) an die Mitochondrien durch den spezifischen mitochondrialen Farbstoff MitoTracker™ mittels Fluoreszenzmikroskopie (Abb. 24A) und somit die Funktionalität des eingesetzten Konstruktes pcDNA3-MOM-BiPro-ΔPOP6 nachgewiesen werden. Die Colokalisation von
Profilin I in transfizierten Zellen an den Mitochondrien mit ΔPOP6 weist auf eine Rekrutierung des endogenen Profilin I durch ΔPOP6 (Abb. 24C, D) hin und bestätigt die bisher beschriebenen Ergebnisse zur Interaktion der beiden Proteine.

Abb. 24: Mitochondriale Rekrutierung von endogenem Profilin I durch MOM-BiPro-ΔPOP6. PtK₂ Zellen wurden transient mit pcDNA-MOM-BiPro-ΔPOP6 (A-D) transfiziert. Doppelimmunfluoreszenzen zeigen (A) Färbung der Mitochondrien durch MitoTracker™, (B, D) Nachweis von MOM-BiPro-ΔPOP6 durch den monoklonalen Antikörper 4A6 und (C) endogenes Profilin I, detektiert durch ein Antiserum gegen Rinderprofilin. MOM-BiPro-ΔPOP6 wird infolge des MOM-Sequenzmotifs an die Mitochondrien lokalisiert (A, B) und rekrutiert endogenes Profilin I (C, D). Maßstab: 10µm

13 **Der Leuzin-Zipper beeinflußt im Yeast two-hybrid System die Interaktion zwischen p42POP und den Profilin-Isoformen nicht**

Ergebnisse

14 Einfluß der potentiellen PKC-Phosphorylierungsstelle Threonin T273 auf die Interaktion von p42POP und Profilin

Die bereits beschriebene potentielle PKC-Phosphorylierungsstelle Threonin 273, die vermutlich regulatorischen Einfluß auf die Dimerisierung von p42POP nimmt, lokalisiert wie der dafür verantwortliche Leuzin-Zipper zwischen den poly-L-Prolin Motiven (siehe Abb. 4). Deshalb wurde die Bedeutung dieser Phosphorylierungsstelle auf die Interaktion zwischen
Ergebnisse

15 Regulation der Ligandenwechselwirkung und zellulären Funktion von Profilin durch Phosphorylierung

16 Maus Profilin IIa ist ein Substrat der Proteininkinase Cα (PKCα)

Ergebnisse

Abb. 28:

In vitro Phosphorylierung von Profilin IIa durch PKCα. (A) Sequenzvergleich von Profilin I und IIa aus unterschiedlichen Spezies (M: Maus; B: Rind; H: Mensch) (B) Phosphorylierung von MPIIa unter den angegeben Bedingungen. Die Analyse erfolgte mittels Auftrennung durch SDS-PAGE, Transfer auf Nitrozellulose und anschließender Autoradiographie.

Die im Autoradiogramm ersichtlichen Banden lassen, im Gegensatz zu Rinder-Profilin I (Hansson et al., 1988; Singh et al., 1996), auf mindestens drei PKCα-Phosphorylierungsstellen in Profilin IIa schließen (Abb. 28B). Das unterschiedliche Laufverhalten ist auf die Modifikation des Proteins infolge der Phosphorylierung zurückzuführen. Die für Profilin I beschriebene PIP2-abhängige Phosphorylierung (Hansson et al., 1988; Singh et al., 1996) konnte für Profilin IIa nicht bestätigt werden. Sowohl in Abwesenheit von Lipiden, als auch in Gegenwart von PIP2 oder PS war eine Phosphorylierung von Profilin IIa in der Autoradiographie nachweisbar (Abb. 28B), die beim Ansatz ohne Lipide im Vergleich zu den anderen gewählten Bedingungen etwas schwächer erschien. Um den Einfluß der unterschiedlichen Bedingungen exakt bestimmen zu können, müsste deren Phosphorylierungsraten jedoch quantifiziert werden. Die zeitabhängige Phosphorylierung zeigte eine über den gewählten Bereich von 5 min bis 60 min stetige Zunahme an phosphoryliertem Profilin IIa und an autophosphorylierter PKCα (Abb. 28B).
17 Die Interaktion zwischen Maus Profilin I bzw. IIa mit PKC\(\alpha\) wird durch Lipide moduliert

Da Profilin I und IIa Substrate der PKC sind, wurde eine physikalische Interaktion der Proteine in *dot overlay* Experimenten näher untersucht. Da sowohl Profiline als auch PKC\(\alpha\) an saure Phospholipide binden, wurde der Einfluß von sauren Phospholipiden auf die Wechselwirkung untersucht. 10pmol MPI, MPIIa und BSA wurden auf Nitrozellulose immobilisiert, mit verschiedenen \(^{35}\text{S}\)-Methionin markierten, *in vitro* translatierten PKC\(\alpha\)-Fragmenten inkubiert und gebundenes Protein mittels Autoradiographie nachgewiesen. Der mögliche Einfluß von Phospholipiden auf die Interaktion wurde analysiert, indem einzelne Ansätze der Proteine vor Immobilisierung mit einem Lipidmix präinkubiert wurden. Eine für PKC-Interaktionen beschriebene Ca\(^{2+}\)-Abhängigkeit, die ebenso von der regulatorischen Domäne vermittelt wird, wurde durch Inkubation *in vitro* translatierter PKC\(\alpha\) in Anwesenheit von EGTA analysiert.

Die dargestellten Ergebnisse (Abb. 29) weisen auf eine Interaktion zwischen Profilin I bzw. IIa mit PKC\(\alpha\) hin, die durch saure Phospholipide und freies Ca\(^{2+}\) moduliert wird. Während in Anwesenheit von freiem Ca\(^{2+}\) eine stärkere Bindung der PKC\(\alpha\) an Profilin I bzw. Profilin IIa durch Präinkubation mit Lipiden erzielt werden konnte, wurde dieser Effekt durch die Zugabe von EGTA inhibiert (Abb. 29B). Interaktionsstudien mit Deletionsfragmenten der PKC\(\alpha\), die die regulatorische Domäne oder die katalytische Domäne inklusive des variablen Bereiches V3 umfaßten (Abb. 29A), wiesen auf unterschiedliche Aufgaben dieser Domänen hin. Die katalytische Domäne inklusive des variablen Bereiches V3 interagiert gleichermaßen mit Profilin und Lipid-präinkubiertem Profilin, wobei eine deutlich stärkere Affinität zu Profilin I im Vergleich zu Profilin IIa feststellbar war (Abb. 29B). Dagegen interagierte die katalytische Domäne der PKC\(\alpha\) Lipid-abhängig mit Profilin. Sowohl für Profilin I, als auch für Profilin IIa konnte in Anwesenheit von Lipiden eine deutlich stärkere Bindung an die regulatorische Domäne der PKC\(\alpha\) gezeigt werden. Eine schwache Interaktion konnte auch zwischen Lipid-präinkubiertem BSA und PKC\(\alpha\) bzw. der regulatorischen Domäne nachgewiesen werden, stellt die für Profilin erhaltenen Resultate jedoch nicht in Frage.

Basierend auf den Ergebnissen ergibt sich eine Interaktion zwischen Profilin und PKC\(\alpha\), die sich aus einer Lipid-unabhängigen Wechselwirkung der katalytischen Domäne und einer durch die regulatorische Domäne vermittelten Ca\(^{2+}\)- und Lipid-abhängigen Bindung zusammensetzt.
18 PKA-Phosphorylierung von Profilin I und IIa

Zur Identifizierung potentieller Phosphorylierungsstellen wurden Profilin I und IIa in vitro mit PKA phosphoryliert, mittels SDS-PAGE aufgetrennt, auf Nitrozellulose transferiert und durch Autoradiographie analysiert (Abb. 30).
Ergebnisse

Abb. 30: In vitro Phosphorylierung von (A) Profilin I und (B) Profilin IIa durch die katalytische Untereinheit der cAMP-abhängigen Protein Kinase PKA. Die Analyse erfolgte mittels Auftrennung durch SDS-PAGE, Transfer auf Nitrozellulose und anschließender Autoradiographie.

19 Simulation der Phosphorylierung von Serin138 in Profilin I bzw. IIa inhibiert die Interaktion mit poly-L-Prolin und prolinreichen Liganden

Um den Einfluß der PKCα-Phosphorylierungsstelle Serin 138 in Profilin I (Singh et al., 1996) und der potentiellen Phosphorylierung von Serin 138 in Profilin IIa auf die Interaktion mit poly-L-Prolin Peptiden oder prolinreichen Liganden zu untersuchen, wurden Mutanten generiert, die durch Einführung einer sauren Ladung eine Phosphorylierung simulieren (S138D) bzw. eine Phosphorylierung inhibieren (S138A). Zur Analyse dieser Mutanten wurden Präzipitationen mit poly-L-Prolin-Sepharose durchgeführt. HeLa Zellen wurden
transient mit Flag-tag-fusioniertem MPI, MPI S138A bzw. MPI S138D, MPIIa, MPIIa S138A oder MPIIa S138D transfiziert, hypotonisch lysiert und die verschiedenen Profilin-Mutanten durch Präzipitation auf ihre Bindungsfähigkeit an poly-L-Prolin-Sepharose analysiert (Abb. 31). Nach mehrmaligem Waschen wurde an poly-L-Prolin-Sepharose gebundenes Protein durch SDS-PAGE aufgetrennt, auf Nitrozellulose transferiert und mittels des anti-Flag Antikörper M2 detektiert.

20 In vitro phosphoryliertes Profilin I und IIa unterscheiden sich in ihrer poly-L-Prolin-Bindung

Abb. 33: Präzipitation von in vitro phosphoryliertem Profilin mit poly-L-Prolin-Sepharose. MPI bzw. MPIIa wurden mit (A) PKCα oder (B) PKA phosphoryliert, mit poly-L-Prolin-Sepharose inkubiert und gebundenes (P) bzw. nicht gebundenes Protein (Ü) durch Autoradiographie detektiert.

Die in Abbildung 33 dargestellten Ergebnisse unterstützen, zumindest im Fall von Profilin I, die mit den Mutanten erzielten Resultate (Abb. 31 und 32). Die Phosphorylierung von Serin 138 des Profilin I durch PKCα inhibiert die Interaktion mit poly-L-Prolin und stellt einen möglichen Regulierungsmechanismus für die Interaktion zwischen Profilin I und prolinreichen Liganden dar. Dagegen zeigt die Phosphorylierung von Profilin IIa durch PKCα ebenso keinen Einfluß auf die Wechselwirkung mit poly-L-Prolin-Sepharose wie die Phosphorylierung von Profilin I und IIa durch PKA. Phosphoryliertes Protein lag bei diesen Ansätzen ausschließlich an poly-L-Prolin-Sepharose gebunden vor (Abb. 33). Die
Präzipitation von Profilin I durch PKA ergab, im Gegensatz zur durchgeführten Kinetik, bei der zwei Banden aufgetreten sind (siehe Abb. 30A), insgesamt drei Banden im Autoradiogramm, die analog zu Profilin IIa, in Profilin I schließen lassen (Abb. 33B). Zudem konnte autophosphorylierte PKA sedimentiert werden, was auf eine mögliche Interaktion zwischen Profilin und PKA hindeutet. Die Spezifität der Interaktion zwischen der PKA und den Profilin-Isoformen muß jedoch noch eingehender analysiert werden. Um eine potentielle Funktion der Phosphorylierung von Profilin IIa durch PKCα und beider Profilin-Isoformen durch PKA zu erhalten, sind weitere Untersuchungen, die auch die Identifizierung der potentiellen Phosphorylierungsstellen umfassen, notwendig.

21 In vitro Phosphorylierung von Profilin I und IIa durch PKA inhibiert die Interaktion mit Aktin

Da die Phosphorylierung von Profilin I und IIa durch PKA die Wechselwirkung mit poly-L-Prolin nicht beeinflußt (siehe Abb. 33B) und potentielle PKA-Phosphorylierungsstellen innerhalb der Aktin-Bindungsdomäne von Profilin durch Datenbankanalysen identifiziert werden konnten, wurde der Einfluß einer PKA-Phosphorylierung auf die Interaktion zwischen Profilin und Aktin untersucht. 50pmol Profilin I bzw. IIa wurden in vitro durch die katalytische Untereinheit der PKA phosphoryliert, die Phosphorylierung durch Zugabe des PKA-Inhibitors PKI nach 90min gestoppt und die Proteine in Anwesenheit von 50pmol Aktin bzw. ohne Aktin für 60min mit dem crosslinker EDC/NHS inkubiert. Anschließend wurden die Proteinkomplexe gelektrophoretisch aufgetrennt, auf Nitrozellulose transferiert und durch Autoradiographie (Abb. 34A) und mit polyklonalen Antiseren gegen Profilin I und IIa (Abb. 34B) analysiert.

IV Diskussion

1 Identifizierung von p42POP als funktioneller Transkriptionsfaktor der Myb-Familie

Das gesamte Protein nicht in der Lage ist zu dimerisieren, wurde zudem gezeigt, dass die DNA-Bindung von der monomeren Form von p42POP vermittelt wird.

potentiellen PKC-Phosphorylierungsstelle Threonin 273 auf die Dimerisierung von p42POP nicht eindeutig klären, jedoch ist eine Regulation der transkriptionellen Aktivität durch diese Modifikation nicht auszuschließen.

Abb. 35: Modell zur Regulation der transkriptionellen Aktivität von p42POP. Aufgrund der durch den Leuzin-Zipper vermittelten Dimerisierung liegt p42POP in einer inaktiven Form vor. Durch externe Stimuli, möglicherweise infolge von Phosphorylierung oder Ligandeninteraktion, wird eine Selbstassoziation inhibiert und eine DNA-Bindung durch die Myb-Domäne von p42POP induziert. Vermittelt durch die saure Region erfolgt die Transkription entsprechender Zielgene.

Die Charakterisierung der DNA-bindenden Domäne und der transkriptionsaktivierenden Region zeigten, dass es sich bei p42POP nicht nur um einen Transkriptionsfaktor der Myb-Familie, sondern zudem um das erste funktionelle Myb-Protein aus Vertebraten handelt, dessen DNA-bindende Aktivität von einem einzigen Myb-repeat vermittelt wird. Unterstützt wird die potentielle Funktion von p42POP als Transkriptionsfaktor durch seine Lokalisation im Zellkern, die durch zwei Kernimportsignale vermittelt wird. Im Gegensatz zu anderen Mitgliedern der Myb-Transkriptionsfaktoren besitzt p42POP zudem ein funktionelles Kernexportsignal, wodurch eine mögliche cytoplasmatische Funktion nicht ausgeschlossen werden kann. Entsprechend könnten über Ligandenwechselwirkung im Cytoplasma Stimuli zur Regulation der Transkription spezifischer Zielgene in den Zellkern gelangen.
2 Wechselwirkung von p42POP mit den cytoskelettalen Proteinen Profilin und G-Aktin

Eine derartige modulierende Wirkung wurde für Profilin bei der Genexpression des Respiratory Syncytial Virus RSV (Burke et al., 2000) nachgewiesen. Mittels Kompetitionsanalysen konnte durch Inhibition der Wechselwirkung mit prolinreichen

Diskussion

3 Cytoskelettale Proteine und Transkription

Diskussion

den Transkriptionsfaktor LEF-1 werden spezifische Zielgene, darunter c-Myc und Cyclin D1, β-Catenin-vermittelt aktiviert.

4 Einfluß der Profilin-Phosphorylierung auf die Ligandenwechselwirkung

Eine temporäre und lokale Modulation von Profilin durch Phosphorylierung könnte dabei einen möglichen Mechanismus darstellen, zumal die verschiedenen PKC-Isoformen zum einen an der Plasmamembran in aktiver Form vorliegen und bedingt durch Kernimportsignale im Zellkern lokalisieren können. Für verschiedene PKC-Isoformen konnte zudem eine unterschiedliche subnukleäre Lokalisation und Einfluß auf Prozesse der Zelldifferenzierung, Proliferation und Apoptose nachgewiesen werden.

Da im Rahmen dieser Arbeit die in vitro Phosphorylierungsstellen der PKA innerhalb der Profilin-Isoformen I und IIA nicht identifiziert wurden, sondern ausschließlich deren Effekt auf die Interaktion mit poly-L-Prolin und G-Aktin untersucht wurde, stellt sich die Frage, inwieweit kalkulierte PKA-Phosphorylierungsstellen (siehe Tab. 7) mit den erhaltenen Ergebnissen in Verbindung zu setzen sind.
Tab. 7: Potentielle PKA-Phosphorylierungsstellen in MPI bzw. MPIIa (nach NetPhos 2.0)

<table>
<thead>
<tr>
<th>MPI</th>
<th>Phosphorylierungsstelle</th>
<th>MPIIa</th>
<th>Phosphorylierungsstelle</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>S58</td>
<td></td>
<td>S72</td>
</tr>
<tr>
<td></td>
<td>S77</td>
<td></td>
<td>S77</td>
</tr>
<tr>
<td></td>
<td>S92</td>
<td></td>
<td>S92</td>
</tr>
</tbody>
</table>

Die Positionen dieser möglichen Phosphorylierungsstellen im Strukturmodell verdeutlichen, dass die identifizierten Aminosäuren innerhalb der Bindungsregion für Aktin liegen und somit in Einklang mit den erhaltenen Ergebnissen stehen (Abb. 39). Die Phosphorylierungsstelle Serin 92, die in beiden Profilin-Isoformen enthalten ist, ist zudem in der Bindungsdomäne für Phosphoinositide lokalisiert und könnte entsprechend regulatorisch auf die Wechselwirkung mit PIP$_2$ wirken.

Abb. 39: Lokalisation der potentiellen Profilin I bzw. IIa Phosphorylierungsstellen (siehe Tab. 7). Die bereits beschriebene PKC-Phosphorylierungsstelle Serin 138 (Singh et al., 1996) im hydrophoben Bindungsbereich für poly-L-Prolin-Liganden wurde ebenfalls markiert (Modell modifiziert nach Schlüter et al., 1997).

Der Einfluß verschiedener Profilin-Mutanten in unmittelbarer Umgebung zu den potentiellen Phosphorylierungsstellen wurden im Bezug auf ihre Bindungseigenschaften an Aktin, PIP$_2$ und prolinreichen Liganden bereits beschrieben. In Kokristallen des Profilin-Aktin-Komplexes tritt Rinderprofilin an zwei Stellen in engen Kontakt mit zwei verschiedenen Aktin-Molekülen (Schutt et al., 1993). Die vermutlich ausschlaggebende Region bei der Wechselwirkung mit Aktin umfasst den N-terminalen Bereich der Helix 4, Helix 3, sowie die β-Faltblattstränge 4, 5 und 6 des Profilin-Moleküls. Biochemisch konnte u.a. durch die

5 Ausblick

Reduktion des endogenen Profilinlevels induzieren, Möglichkeiten die Funktion von Profilin bei Prozessen der Transkription zu analysieren.

Obwohl verschiedene Hinweise für eine mögliche Rolle von Aktin bei der Transkription vorliegen, ist die biologische Funktion von Aktin im Zellkern unklar. Daher sollte die Interaktion zwischen p42POP und Aktin im Bezug auf diese zellulären Prozesse näher untersucht werden. Insbesondere der Einfluß dieser Wechselwirkung auf die Bindungseigenschaften von p42POP an DNA wäre dabei von besonderem Interesse, zumal die identifizierte Aktin-Bindungsstelle mit dem C-terminalen Bereich der DNA-bindenden Domäne von p42POP überlappt.

Um Aufschluß über die zelluläre Funktion von p42POP zu erhalten, ist die Identifizierung spezifischer Zielgene durch z.B. subtraktive PCR oder differential Display unabdingbar. Solche Daten würden auch Studien zur Aufklärung der biologische Signifikanz der Interaktion zwischen p42POP und verschiedenen Liganden ermöglichen und gleichzeitig zum Verständnis der Funktion cytoskelettaler Proteine im Zellkern und bei Prozessen der Genregulation beitragen.

DANKSAGUNG

An dieser Stelle möchte ich mich bei allen, die zum Gelingen dieser Arbeit beigetragen haben, recht herzlich bedanken.

Bei Prof. H.-H. Arnold möchte ich mich für die Übernahme des Koreferats und bei Prof. J. Wehland für die Teilnahme an der Prüfungskommission bedanken.

Dr. Martin Rothkegel möchte ich nicht nur für seine stete Diskussionsbereitschaft, wissenschaftlichen Ratschläge und die Zusammenarbeit in den letzten Jahren, sondern auch für Hilfestellungen bei vielen Laborproblemen und bei der Fertigstellung dieser Arbeit danken.

Bei Dr. Barbara Winter möchte ich mich für zahlreiche Tipps, kritische Anmerkungen und den ein oder anderen „Triff“ bedanken.

Mein Dank gilt auch Dr. Susanne Illenberger und Dr. Wolfgang Ziegler für fachliche Ratschläge und Ilona Demesvary für die Entlastung und Hilfe bei verwaltungstechnischen Problemen.

Mein ganz persönlicher Dank gilt meinen Eltern, meinen Schwestern Katinka und Barbara, sowie meiner Freundin Dagmar, die durch ihre Unterstützung, ihren Rückhalt und ihr Verständnis entscheidend zum Gelingen dieser Arbeit beigetragen haben.