Entwicklung einer empfängergestützten
spektralen Bestrahlungsstärkeskala

Von der Gemeinsamen Naturwissenschaftlichen Fakultät
der Technischen Universität Carolo-Wilhelmina
zu Braunschweig

zur Erlangung des Grades eines
Doktors der Naturwissenschaften
(Dr. rer. nat.)

genehmigte
Dissertation

von Peter Sperfeld
aus Harderberg
1. Referent: Prof. Dr. J. Metzdorf
2. Referent: Prof. Dr. F. J. Litterst

eingereicht am: 8. Februar 1999
mündliche Prüfung (Disputation) am: 7. Juni 1999

Braunschweig, Juni 1999

Teilergebnisse dieser Arbeit wurden mit Genehmigung der Gemeinsamen Naturwissenschaftlichen Fakultät, vertreten durch den Mentor der Arbeit Prof. Dr. J. Metzdorf, in folgenden Beiträgen vorab veröffentlicht:

Inhaltsverzeichnis

Einleitung ... 7

Teil 1 Voraussetzungen zur Erweiterung und Verbesserung der spektralen Bestrahlungsstärkeskala. 9

1.1 Grundlegende Untersuchungen zu Fragestellungen der Radiometrie ... 9
1.1.1 Grundbegriffe der Radiometrie .. 9
1.1.2 Spektrometrie und Kalibrierung in der Radiometrie ... 11
1.1.3 Primäre Strahlernormale und Transfernormale ... 11
 1.1.3.1 Schwarzer Strahler .. 12
 1.1.3.2 Argon-Plasmabrenner .. 13
 1.1.3.3 Elektronen-Synchrotron .. 13
 1.1.3.4 Sekundärnormale ... 13
1.1.4 Prinzip der Kaltbierung von Strahlern ... 14
1.1.5 Diffusoren für die Bestrahlungsstärkekalibrierung ... 14
1.1.5.1 Transmission und Durchlaufgrad einer Ulbricht-Kugel .. 15
1.1.6 Das quadratische Abstandsgesetz .. 16
 1.1.6.1 Randbedingungen zur experimentellen Überprüfung der Gültigkeit 17
 1.1.6.2 Auswertungsmethoden .. 17
 1.1.6.3 Vermessung und Auswertung unterschiedlicher Geometrien .. 18
1.1.7 Photonenzählung zur Messung sehr kleiner Signale .. 21
 1.1.7.1 Verwendete Komponenten zur Photonenzählung .. 21
 1.1.7.2 Anpassung des Spannungsteilers für die Photonenzählung .. 22
 1.1.7.3 Einstellung des Diskriminatorlevels ... 23
1.1.8 Linearität von Photomultipliern bei Gleichstrommessung und bei Photonenzählung 24
 1.1.8.1 Messaufbau zur Linearitätsmessung ... 24
 1.1.8.2 Linearität der Gleichstrommessung ... 25
 1.1.8.3 Linearität der Photonenzählung ... 26

1.2 Der Meßplatz zur Kalibrierung bezüglich spektraler Bestrahlungsstärke ... 27
 1.2.1 Experimenteller Aufbau des Meßplatzes .. 27
 1.2.2 Vorzüge und Grenzen der gewählten Meßanordnung – Verbesserungsansätze 28
 1.2.2.1 Die substituierende Meßanordnung und das Prinzip des Monitorstrahlers 29
 1.2.2.2 Der Strahlengang vor dem Monochromator .. 30
 1.2.2.3 Die Abdeckung des Spektralbereiches von 250 nm bis 2500 nm 31
 1.2.2.4 Angabe von spektralen Bandbreiten und Meßunsicherheiten bei Kalibrierungen 32

1.3 Die Erweiterung der spektralen Bestrahlungsstärkemessung durch einen UV-optimierten Meßplatz. 33
 1.3.1 Experimenteller Aufbau des Meßplatzes .. 34
 1.3.2 Die Optimierung für die UV-Messung ... 35
 1.3.2.1 Reduktion der Spiegelanzahl im Meßsystem .. 35
 1.3.2.2 Verwendung eines sonnenblinden Photomultipliers ... 36
 1.3.3 Halogenglühlampen als Transfernormale für den UV-Spektralbereich 36

1.4 Aufbau eines neuen Meßplatzes für spektrale Bestrahlungsstärke .. 37
 1.4.1 Experimenteller Aufbau des Meßplatzes .. 37
 1.4.2 Verbesserte Komponenten am neuen Meßplatz .. 38
 1.4.2.1 Die Ulbricht-Kugel als Eingangsoptik .. 38
 1.4.2.2 Die Strahlengang der Monitorlampe .. 39
 1.4.2.3 Das Monochromatorsystem .. 40
 1.4.2.4 Die Detektoren .. 40
 1.4.3 Vergleichsmessungen im Spektralbereich von 280 nm bis 1650 nm 41
 1.4.3.1 Das Verhältnis Prüflampe zu Monitorlampe ... 42
 1.4.3.2 Vergleich von Kalibrierungen an den Spektroradiometern .. 43

Teil 2 Der Hochtemperatur-Hohlraumstrahler als Primärstrahlernormal für die spektrale
Bestrahlungsstärke .. 45

2.1 Grundlagen und Vorüberlegungen ... 45
 2.1.1 Kirchhoffsches Gesetz ... 45
 2.1.2 Plancksches Strahlungsgesetz und Gesetze von Rayleigh-Jeans und Wien 45
 2.1.3 Der effektive Emissionsgrad eines Schwarzen Strahlers ... 47
Teil 3 Möglichkeiten der Realisierung einer empfängergestützten spektralen Bestrahlungsstärke 87

3.1 Grundlagen ... 87
 3.1.1 Die radiometrische Kette .. 87
 3.1.1.1 Empfänger-Radiometrie ... 87
 3.1.1.2 Phonometrie ... 89
 3.1.1.3 Strahler-Radiometrie .. 89
 3.1.1.4 Modifikation der radiometrischen Kette ... 90
 3.1.2 Temperaturbeurteilung der Strahlungsmessung ... 90
 3.1.3 Bewertung von Schwarzer Strahlung in einem begrenzten Spektrалbereich 91
 3.1.3.1 Simulation der spektralen Empfindlichkeit durch eine abgewandelte Gaußfunktion 92
 3.1.3.2 Die optimale spektrale Lage eines Detektors ... 93
 3.1.3.3 Die optimale Halbwertbreite für einen Detektor .. 94

3.2 Breitband-Filterdetektoren zur Bestimmung der radiometrischen Temperatur des Hochtemperatur-Hohlraumstrahlers ... 98
Einleitung

Die Radiometrie ist ein Gebiet der Metrologie an das ständig wachsende Anforderungen hinsichtlich Meßgenauigkeit, Erweiterung der Meßbereiche, die Rückführung auf SI-Einheiten und Rationalisierung der Meßverfahren gestellt werden. Die Anforderungen ergeben sich nicht zuletzt aus Gründen der Qualitätssicherung und der Qualität kontrolle, des Umweltschutzes, der Weiterentwicklung von Medizin und Sicherheit (health and safety) und der internationalen Äquivalenz und gegenseitigen Anerkennung von Herstellern und Anwendern.

Hierbei ist die Strahler-Radiometrie ein bedeutender Teilbereich der Radiometrie, bei der die strahlungsp physikalische Charakterisierung und Kalibrierung von künstlichen und natürlichen Strahlern, insbesondere von Temperaturstrahlern über einen großen Spektralbereich durchgeführt wird. Zum Beispiel benötigt die Lampenindustrie zur Qualitätssicherung der Produktion sowie zur Ein haltung gesetzlicher Vorgaben des Strahlenschutzes eine möglichst umfangreiche und genaue Charakterisierung hinsichtlich der radiometrischen und photometrischen Merkmale neu entwickelter Lampentypen [22][77].

Zu einem sehr bedeutenden Bereich der Anwendung radiometrischer Metrologie hat sich außerdem die Umweltanalytik mit der globalen Beobachtung der natürlichen und der durch Einwirkung des Menschen herbeigeführten Klimaveränderungen, sowie des wachsenden Einflusses solarer UV-Strahlung entwickelt [9][12][42][64][88].

Auf dem Gebiet der Strahler-Radiometrie deckt wiederum die Darstellung und Weitergabe der spektralen Bestrahlungsstärke – zum Beispiel im Vergleich zur Strahl dichte – den überwiegenden Teil (mehr als 90 %) aller Anforderungen am Kalibrierbedarf dieses Bereiches ab. In verschiedenen nationalen staatlichen Metrologie-Instituten werden daher fortfahrend Verbesserungen und Erweiterungen der Spektoradiometrie durchgeführt mit dem Ziel, die Transfer- und Meßunsicherheit der spektralen Bestrahlungsstärkeskala weiter zu senken [46][68][89][122].

Mit der vorliegenden Arbeit werden die in der Physikalisch-Technischen Bundesanstalt (PTB) gewonnenen Erfahrungen bei der neuen und verbesserten Realisierung der spektralen Bestrahlungsstärke der letzten Jahre vorgestellt.

Die Darstellung und Weitergabe der spektralen Bestrahlungsstärkeskala umfaßt drei Aufgabenbereiche:

Teil 1 Voraussetzungen zur Erweiterung und Verbesserung der spektralen Bestrahlungsstärkeskala

Die spektrale Bestrahlungsstärke eines Strahlers ist eine bedeutende strahlungspophysikalische Größe für die Charakterisierung natürlicher und künstlicher Strahlung (Strahlungsfelder) in der Radiometrie. In der PTB wird diese Skala seit 1998 im Spektralbereich von 200 nm bis 2500 nm mit Meßunsicherheiten von 1 % bis 5 % dargestellt [84]. Sie wird nicht mehr pyrometrisch auf die Temperaturskala sondern (empfänger-) radiometrisch auf die elektrische Leistung zurückgeführt. Damit konnte die spektrale Bestrahlungsstärkeskala in den letzten Jahren bereits deutlich erweitert und verbessert werden.

1.1 Grundlegende Untersuchungen zu Fragestellungen der Radiometrie

Bei der Konzipierung und Inbetriebnahme eines neuen Spektroradiometriemeßplatzes ergeben sich diverse Aufgabenstellungen, die im Detail untersucht werden müssen. Im Folgenden werden die wesentlichen Aspekte präsentiert, die im Rahmen dieser Arbeit untersucht wurden und die die Aufgabenstellungen der Radiometrie beispielhaft verdeutlichen. Zunächst einmal werden die verwendeten Grundbegriffe der Radiometrie kurz erläutert.

1.1.1 Grundbegriffe der Radiometrie

Für die Radiometrie sind hauptsächlich die energetischen Größen von Bedeutung. Die in dieser Arbeit verwendeten wichtigsten Größen werden in Tabelle 1.1 zusammengestellt. Die Messung der Gesamtenergie \(Q \) oder der Mess-Sstrahlungszahl \(\Phi \) erweist sich als aufwendig, da der in den gesamten Raum abgestrahlte Strahlungsfuß bestimmt werden muß. Oft wird daher eher die Strahlstärke \(I \) oder die Strahlungszahl in einem durchstrahlten Raumwinkel \(\Omega \) herangezogen.

Die Bestrahlungsstärke \(E \) ist ein Maß für die auf eine Fläche auftreffende Leistung eines Strahlers und daher im Zusammenhang mit Empfängern und anderen bestrahlten Flächen oder Körpern von Bedeutung. Während die Strahlhichte \(L \) über die optische Abbildung der Projektion eines Strahlerausschnittes \(\cos \varepsilon \, d\varepsilon \) auf einen Empfänger bestimmt wird, läßt sich die Bestrahlungsstärke \(E \) auf die Messung der Bestrahlung einer weitgehend spektral unabhängig diffus reflektierenden Fläche zurückführen. Hierzu werden mit Bariumsulfat (BaSO4), Halon (PTFE) oder Gold (Au) beschichtete, rauhe ebene Flächen (Tabletten) oder Hohlkugeln (Ulbricht-Kugeln) verwendet. Es ist aber auch durchaus möglich bezüglich Bestrahlungsstärke kalibrierte Empfänger direkt zu bestrahlen. Das setzt jedoch eine genaue Kenntnis der spektralen Empfindlichkeit der Empfänger voraus.
In der Form, wie die oben genannten Größen bisher angeführt wurden, gelten sie als integrale Größen über den gesamten Bereich des optischen Spektralgebietes. Es ist jedoch durchaus üblich und bei Messungen zumeist notwendig, die spektrale Abhängigkeit einer strahlungphysikalischen Größe X zu berücksichtigen. Die spektrale Dichte einer Größe ist dabei als der Differentialquotient aus der Größe selbst und der Wellenlänge λ (bzw. der Frequenz ν) definiert [17]:

$$X_{\lambda} = \frac{dX}{d\lambda} \quad (X_{\nu} = \frac{dX}{d\nu}).$$ \hspace{1cm} (1.1)

Ist keine Verwechslung zwischen spektraler Dichte einer strahlungphysikalischen Größe und spektral abhängigen Größen wie Absorptionsgrad und Reflexionsgrad oder Empfindlichkeit eines Empfängers möglich, so kann die Kurzform spektrale Größe verwendet werden (siehe [19]). Dies geschieht in der vorliegenden Arbeit.

<table>
<thead>
<tr>
<th>Größe</th>
<th>Formelzeichen</th>
<th>Beziehung</th>
<th>SI-Einheit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strahlungsenergie</td>
<td>Q</td>
<td>$Q = \int Q_{\lambda} , d\lambda$</td>
<td>W s</td>
</tr>
<tr>
<td>Strahlungsleistung</td>
<td>Φ</td>
<td>$\Phi = \frac{dQ}{dt}$</td>
<td>W</td>
</tr>
<tr>
<td>Strahlstärke</td>
<td>I</td>
<td>$I = \frac{d\Phi}{d\Omega_1}$</td>
<td>W sr$^{-1}$</td>
</tr>
<tr>
<td>Strahlldichte</td>
<td>L</td>
<td>$L = \frac{d^2\Phi}{d\Omega_2 , d\Omega_1 , \cos \epsilon_1}$</td>
<td>W sr$^{-1}$ m2</td>
</tr>
<tr>
<td>Spezifische Ausstrahlung</td>
<td>M</td>
<td>$M = \frac{d\Phi}{dA_1}$</td>
<td>W m2</td>
</tr>
<tr>
<td>Bestrahlungsstärke</td>
<td>E</td>
<td>$E = \frac{d\Phi}{dA_2}$</td>
<td>W m2</td>
</tr>
</tbody>
</table>

Geometrische Größen

<table>
<thead>
<tr>
<th>Größe</th>
<th>Formelzeichen</th>
<th>Beziehung</th>
<th>SI-Einheit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fläche</td>
<td>A</td>
<td></td>
<td>m2</td>
</tr>
<tr>
<td>Raumwinkel</td>
<td>Ω</td>
<td>$d\Omega_2 = \cos \frac{\epsilon_1}{R^2} , dA_2 , , , \Omega = \int \frac{\cos \epsilon}{R^2} , dA , \Omega_0$</td>
<td>sr</td>
</tr>
<tr>
<td>Winkel zur Strahlungsrichtung</td>
<td>ϵ</td>
<td>Winkel zur Flächennormalen</td>
<td>r</td>
</tr>
<tr>
<td>Abstand</td>
<td>R</td>
<td></td>
<td>m</td>
</tr>
</tbody>
</table>

Tabelle 1.1 Übersicht über die wichtigsten verwendeten strahlungphysikalischen Größen und ihre Beziehungen untereinander nach [6][17]. Größen des Strahlers sind mit dem Index 1 versehen, empfängerseitige Größen mit dem Index 2.

Der wohldefinierte Zusammenhang und die Symmetrie zwischen Strahler und Empfänger drücken sich im sogenannten photometrischen Grundgesetz aus. Mit den in Tabelle 1.1 definierten Größen lautet das Grundgesetz der Strahlungsübertragung (ohne Abbildung, Streuung, Beugung, Verstärkung und Lumineszenz im Strahlengang) :

$$d^2\Phi = L \frac{\cos \epsilon_1 \cos \epsilon_2}{R^2} \, dA_1 \, dA_2 \, \Omega_0$$ \hspace{1cm} (1.2)

In dieser Gleichung wird berücksichtigt, daß die Strahlldichte L auf der strahlenden Fläche A_1 mit dem Neigungswinkel ϵ_1 variiert kann, und daß sich die Flächenelemente in Abstand und Neigungswinkel ändern können. Der Begriff photometrisches Grundgesetz ist in der Radiometrie durchaus üblich [17][34][55], aber nicht korrekt, da es nicht auf photometrische Größen beschränkt ist, sondern - wie hier angeführt - auch für den Bereich der Radiometrie gilt.
1.1 Grundlegende Untersuchungen zu Fragestellungen der Radiometrie

1.1.2 Spektrometrie und Kalibrierung in der Radiometrie

Es ist also einerseits die spektrale Aussonderung von Strahlung erforderlich und andererseits ein reproduzierbarer Vergleich mit bekannter Strahlung in Form einer Kalibrierung notwendig.

In der Radiometrie werden zur spektralen Zerlegung heutzutage hauptsächlich geritzte oder holographische Gitter als dispersives Element in Monochromatoren verwendet. Zur Vermeidung von Streustrahlung werden oftmals Doppelmonochromatoren in additiver oder subtraktiver Anordnung in Spektroradiometern verwendet.

Die wichtigsten Größen zur qualitativen und quantitativen Beschreibung eines Spektroradiometers sind neben dem Arbeitsbereich (nutzbaren Spektralbereich) unter anderem:

- **Bandbreite, spektrale Spaltbreite**: Halbwertbreite \(\Delta \lambda \) des spektralen Durchlaßprofils am Austrittsspalt. Differenz der beiden Wellenlängen, bei denen die Amplitude des Durchlaßprofils der Hälfte des Maximalwertes entspricht.

- **Winkeldispersion**: Änderung des Beugungswinkels \(\beta \) (gegen die Normale des beugenden Gitters) mit der Wellenlänge \(\lambda \).

- **Lineardispersion**: Änderung der Position \(x \) auf der Spaltebene des Austrittsspaltes mit der Wellenlänge \(\lambda \)

 \[
 \frac{dx}{d\lambda} = f_a \cdot \frac{d\beta}{d\lambda} \cdot \frac{1}{\cos \Theta_a}
 \]

 mit der Brennweite \(f_a \), dem Winkel \(\Theta_a \) des austretenden Strahls (gegen die Flächenormale des Austrittsspaltes) und dem Beugungswinkel \(\beta \).

- **kleinster auflösbarer Wellenlängenabstand**: Nach dem Rayleigh-Kriterium der kleinste Abstand zwischen zwei quasimonochromatischen Strahlungen (Spektrallinien), bei denen das erste Minimum der einen Spektrallinie in das Hauptmaximum der anderen fällt. Für das im Idealfall dreieckige Durchlaßprofil eines Monochromators gilt: \(\delta \lambda = 1.19 \Delta \lambda \).

- **Auflösungsvermögen**: Verhältnis \(\lambda/\delta \lambda \) der mittleren Wellenlänge \(\lambda \) eines Durchlaßprofils zum kleinsten auflösbaren Wellenlängenabstand \(\delta \lambda \). Für das Gitter als Dispersionselement gilt \(\lambda/\delta \lambda = N_r \cdot m \) mit der Zahl der beleuchteten Gitterfurchen \(N_r \) und der Beugungsordnung \(m \).

- **Geometrischer Leitwert**: Eine geometrische Verbindungsgröße \(G \) zwischen eintretender spektraler Strahlldichte \(L \) und austretender Strahlungsleistung \(\Phi_a = \tau L \cdot G \). Gekoppelt mit der spektralen Transmission \(\tau \) der Gesamtapparatur (einschließlich der Spaltfunktion des Monochromators) ergibt sich der effektive geometrische Leitwert bzw. optische Leitwert \(G_{opt} = \tau \cdot G \). Der geometrische Leitwert \(G \) setzt sich zusammen aus der effektiven Öffnungszahl \(k_{eff} \) der Apparatur (das Verhältnis aus Brennweite und Abbildungspupille), dem Winkel der auftreffenden Strahlung \(\Theta_a \) und der Fläche des Austrittsspaltes \(A_a \):

 \[
 G = \frac{\pi}{4} \cdot \frac{A_a \cdot \cos \Theta_a}{k_{eff}^2}
 \]

1.1.3 Primäre Strahlnormale und Transfernormale

Ein Grundprinzip des Messens ist das Vergleichen (mit oder ohne Substitution) von Vergleichsnormal und Prüfling. Ein Normal ist eine Maßverkörperung oder eine Meßeinrichtung, die den Zweck hat, eine Einheit zu bestimmen oder zu verkörpern und zu reproduzieren, um diese an andere Maßverkörperungen oder Meßgeräte weiterzugeben [14].

Daher benötigt man zum Beispiel zur Bestimmung von spektralen Strahlungsgrößen Strahlnormale, deren spektrale Charakteristik vollständig erfaßt ist.

Ist die Strahlldichte \(L \) oder die Bestrahlungsstärke \(E \) eines Strahlnormales ohne Messung weiterer strahlungphysikalischer Größen berechenbar, kann es als Primärnormal bezeichnet werden. Normale, die als Berechnungsparameter andere Größen des SI-Systems beinhalten, werden ebenfalls als

![Diagramm der spektralen Bestrahlungsstärke von verschiedenen Strahlern und Sekundärnormale](image.png)

1.1.3.1 Schwarzer Strahler

Mit Hilfe des Planckschen Strahlungsgesetzes (2.18) läßt sich die Strahldichte eines Schwarzen Strahlers (auch Planckischer Strahler oder Hochtemperatur-Hohlraumstrahler) bestimmen und somit über das photometrische Grundgesetz (1.2) jede strahlungsphysikalische Größe des Strahlers berechnen. Bei einer Strahlertemperatur von ≥ 3200 K liegt nach dem Wienschen Verschiebungsgesetz ($\lambda_{max}T = 2897.76 \mu m K$) das Maximum der Hohlraumstrahlung bei $\lambda_{max} \leq 906$ nm. Der Schwarze Strahler kann dann als Primärnormal für den ultravioletten bis infraroten Spektralbereich eingesetzt werden. Die Strahlungsleistung nimmt im ultravioletten Spektralbereich exponentiell ab, so daß ein Hohlraumstrahler nur begrenzt im sehr kurzwelligen UV-Bereich unterhalb 250 nm als Strahlernormal eingesetzt werden kann.
Die Verwendung und Charakterisierung von speziell für hohe Betriebstemperaturen entwickelten Schwarzen Strahlern wird in Teil 1 ausführlich dargestellt.

1.1.3.2 Argon-Plasmabrenner

1.1.3.3 Elektronen-Synchrotron

Im Synchrotron werden Ladungsträger in einem hochfrequenten Wechselmagnetfeld gemäß der Synchrotrongleichung \(\omega = \left(\frac{e}{m} \right) B \) auf eine Kreisbahn gezwungen. Diese permanente Beschleunigung auf den Kreismittelpunkt hin bewirkt eine tangentiale Emission elektromagnetischer Strahlung. Der Spektralbereich dieser Synchrotronstrahlung erstreckt sich aufgrund relativistischer Geschwindigkeiten der Teilchen [28] nach Maßgabe der Elektronenergie vom Röntgenbereich über den gesamten UV- bis in den sichtbaren Spektralbereich. Zur Berechnung der spektralen Strahlungsleistung bedient man sich der Schwinger-Formel [55][102].

1.1.3.4 Sekundärnormale

Als Sekundärnormale oder Arbeitsstandards werden je nach Anwendungsbereich unterschiedliche Glüh- und Gasentladungslampen verwendet. Eine Lampe eignet sich dann als Normal, wenn ihre Strahlung zeitlich stabil bleibt und die Betriebsbedingungen die Reproduzierbarkeit der Strahlung erlauben. Dazu werden die Lampen mechanisch stabil gehalten und entsprechend vorgealtert (ca. 20 bis 100 Stunden eingebrannt). Zur Wahrung der Reproduzierbarkeit muß die Polarität eindeutig festgelegt und die Strahler bei einem konstanten Strom betrieben werden. Eine Neuentwicklung sieht vor, die Lampen bei konstantem Photostrom zu betreiben, der mit fest an die Lampe angebauten Detektoren kontrolliert wird [109].

Es ist nicht notwendig, daß die Strahlungscharakteristik der als Sekundärnormale eingesetzten Lampen über dem gesamten Spektralbereich exakt denen eines Schwarzen Strahlers entspricht. Die Strahler können durchaus auch zusätzliche Emissionslinien besitzen. Ein kontinuierliches Untergrundspektrum ist allerdings für Kalibrierungen über große Wellenlängenbereiche unbedingt erforderlich. Für den Spektralbereich oberhalb 250 nm werden hauptsächlich Glühlampen verwendet. Zur Strahldichtemessung sind es Wolframbandlampen, von denen lediglich ein kleiner Ausschnitt (ca. 0,2 · 0,2 mm²) ausgeblendet und kalibriert wird [49]. Bei der Bestrahlungsstärkekaliibrierung werden 1000 Watt Quarz-Halogen-Glühlampen (vor allem Typ FEL) verwendet. Mit einer Strahlertemperatur...
von etwa 3000 Kelvin ist ihr spektraler Verlauf etwa ab 400 nm der Planckschen Kurve ähnlich. Die Messungen mit diesen Lampen reichen hinunter bis in den nahen UV-Spektralbereich. Aufgrund eines dort abnehmenden Transmissionsgrades des Lampenkolbens und der Gasfüllung und wegen des starken Rückganges des Emissionsgrades von Wolfram, nimmt die Strahlungsleistung zu kürzeren Wellenlängen hin wesentlich stärker ab, als beim Schwarzen Strahler vergleichbarer Temperatur. Im UV-Spektralbereich werden daher bislang vorzugsweise Gasentladungslichtquellen verwendet. Hier kommen sowohl bei der Strahllichtmessung als auch bei der Bestrahlungsstärkemessung Deuterium-Lampen zum Einsatz, deren strahlende Fläche auf 1 mm² begrenzt ist und die durch ein MgF₂- oder ein Quarzfenster abgeschlossen sind [49]. Hiermit sind Messungen bis hinab zu 190 nm möglich. Unterhalb 190 nm, im Vakuum-UV-Spektralbereich, kommen spezielle Vakuumfunkenquellen oder laserverzeugte Plasmen zum Einsatz.

1.1.4 Prinzip der Kalibrierung von Strahlern

Eine weitere Möglichkeit ist die Vermessung der Strahler kurz nacheinander am gleichen Ort. Beide Verfahren enthalten jedoch erhebliche systematische Fehlerquellen entweder aufgrund unterschiedlicher Strahlengänge oder durch Drift- und Alterungsvorgänge der Meßapparatur. In der Physikalisch-Technischen Bundesanstalt wurde ein Kalibrierverfahren mit Substitution eingeführt, bei dem die Strahler kurz nacheinander am gleichen Ort vermessen werden. Um Änderungen des Meßsystems zwischen den Messungen zu erfassen und zu eliminieren, wird beim Substitutionsverfahren eine weitere Messung mit Hilfe einer zusätzlichen, zeitlich stabilen Monitorlampe durchgeführt [49][64][71]. In Kapitel 1.2 wird der hierzu verwendete experimentelle Aufbau der Kalibrierseinrichtung beschrieben und in Abbildung 1.10 dargestellt.

Bei jeder Meßwellenlänge wird (quasi gleichzeitig bzw. mehrmals im Wechsel) durch Drehen des bestrahlten Reflexionsnormales (Diffusor, siehe 1.1.5) neben dem eigentlichen Meßsignal auch das Photosignal der Monitorlampe aufgenommen. Durch Verhältnisbildung von Meßsignal des Strahlernormales zu Photosignal der Monitorlampe läßt sich eine Drift des optischen Leitwertes und der spektralen Empfindlichkeit der Apparatur (zum Beispiel durch Kontamination optischer Bauteile und zeitliche Drift der Empfänger und Verstärker) im Strahlengang ab Reflexionsnormal herausrechnen. Sekundärnormal BN und Transfernormal TN können am gleichen Ort kalibriert werden. Die Bestrahlungsstärke des Prüflings kann dann indirekt über das Photosignal $i_{mon}(\lambda)$ der Monitorlampe berechnet werden:

$$E_{\lambda, TN}(\lambda) = E_{\lambda, BN}(\lambda) \cdot \frac{i_{TN}(\lambda)}{i_{Mon,TN}(\lambda)} \cdot \frac{i_{Mon,BN}(\lambda)}{i_{BN}(\lambda)}$$

(1.3)

Mit dieser Methode läßt sich die Kalibrierung mehrerer Sekundärnormale gegen ein Transfersignal leichter, mit kleinerer Transfersunsicherheit und kurzen Meßzeiten durchführen. Das bewahrt die Normale vor einer unnötigen schnellen Alterung, die auch für diese Strahler eine häufigere Neukalibrierung nötig machen würde.

1.1.5 Diffusoren für die Bestrahlungsstärkemessung

Für die Messung von Bestrahlungsstärken wird eine bestrahlte Fläche oder Blende benötigt, auf die bezogen die auf treffende Strahlung in geeigneter Weise bewertet wird. Die durch eine Eintrittsblende begrenzte Fläche eines Breitband-Filterdetektors kann dafür ebenso verwendet werden, wie die Öffnung eines Photometerkopfes (mit dem dann allerdings die Beleuchtungsstärke gemessen wird).

Bei der spektralen Messung der Bestrahlungsstärke ist es notwendig, eindeutige und reproduzierbare Bedingungen zu schaffen, die auch an anderer Stelle wiederholt werden können. Daher eignet sich der
Eintrittsspalt eines Monochromators im Allgemeinen nicht als bestrahlte Fläche, zumal nicht der Spalt sondern oftmals erst einer der folgenden Spiegel als sicht- oder raumwinkelbegrenzende Blende für den Strahlengang der auftreffenden Strahlung wirkt. Aus diesem Grund werden bei der Kalibrierung von Strahlern bezüglich spektraler Bestrahlungsstärke Reflexionsnormale verwendet, deren diffus reflektierte Strahllichte vom Monochromator oder vom Detektor erfaßt wird. Die bestrahlten Flächen müssen bestimmten Anforderungen genügen:

- Die Fläche soll homogen sein und homogen bestrahlt werden.
- Die Reflexion soll unabhängig vom Einfallsinkel der Strahlung vollkommen diffus erfolgen.
- Es darf keine Lumineszenz auftreten.
- Die bestrahlte Fläche muß einen spektral unabhängigen Reflexionsgrad nahe Eins haben.
- Die Reflexion muß polarisationsunabhängig erfolgen und die reflektierte Strahlung vollkommen unpolarisiert sein.

Die Bestrahlungsstärke auf eine Fläche kann in Reflexion oder Transmission an die Spektralapparatur weitergegeben werden. In vielen Fällen werden ebene Reflexionsnormale verwendet (siehe 1.2 und 1.3), da sie einen hohen spektralen Durchsatz haben. Für die Transmission bieten sich Medien an, die die durchgehende Strahlung vollkommen diffus streuen (siehe 1.6.3 a). Das läßt sich näherungsweise zum Beispiel mit einem Opal-Glasfilter oder einer dünnen Diffusorplatte aus Polytetrafluorethyl (PTFE) erreichen.

Als Materialien werden Bariumsulfat (BaSO₄) oder Polytetrafluorethylen (PTFE) wie Halon oder Spektralon verwendet. Bariumsulfat ist hygroskopisch, daher nimmt der Reflexionsgrad mit der Zeit ab. PTFE zeichnen sich durch einen sehr hohen Reflexionsgrad in einem großen Spektralbereich aus [18]. Da PTFE-Schichten hochisolierrend sind, können sie sich elektrostatisch aufladen und mit möglicherweise lumineszierenden Stoffen aus der Luft (Staub) verunreinigt werden (Kontamination).

1.1.5.1 Transmission und Durchlaßgrad einer Ulbricht-Kugel

Bei der Ulbricht-Kugel ist allerdings die Transmission wesentlich geringer als bei einem ebenen Diffusor oder Reflexionsnormal. Die (spektrale) Transmission \(\tau_{Kugel} \) also das Verhältnis aus einfallender zu austretender Strahlungsleistung, berechnet sich näherungsweise nach

\[
\tau_{Kugel} = \frac{\Phi_{aus}}{\Phi_{ein}} = \frac{A_{aus}}{A_{Kugel}} \cdot \frac{1 - \rho}{1 - \rho \left(1 - \frac{A_{ein} + A_{aus}}{A_{Kugel}} \right)},
\]

wobei \(\rho \) der (spektrale) Reflexionsgrad des Wandmaterials ist, \(A_{ein}, A_{aus} \) und \(A_{Kugel} \) die Eintrittsfläche der Strahlung, die Austrittsfläche und die innere Kugelgesamtfläche sind [55].
Ein Monochromator kann nicht die gesamte austretende Strahlungsleistung erfassen, sondern lediglich einen von Spiegeln und Spalten festgelegten Öffnungswinkel. Außerdem wird die Eintrittsöffnung der Kugel oftmals mit konstanter Bestrahlungsstärke überstrahlt. Daher wird zur Betrachtung der Spezifikation von Ulbricht-Kugeln ein (spektraler) Durchlaßgrad β_{Kugel} angegeben [60], das Verhältnis aus austretender Strahlleistung L_{aus} zu auftreffender Bestrahlungsstärke $E_{\text{ein}} = \Phi_{\text{ein}} \cdot A_{\text{ein}}$:

$$\beta_{\text{Kugel}} = \frac{L_{\text{aus}}}{E_{\text{ein}}} = \frac{A_{\text{ein}}}{\pi A_{\text{aus}}} \cdot \frac{\Phi_{\text{aus}}}{\Phi_{\text{ein}}} \cdot \frac{1}{1 - \rho \left(1 - \frac{A_{\text{ein}} + A_{\text{aus}}}{A_{\text{Kugel}}} \right)}.$$ (1.5)

Die Innenfläche A_{Kugel} der Ulbricht-Kugel trägt entscheidend zur Transmission und zum Durchlaßgrad bei: Je größer die Kugelinnenfläche ist, desto geringer ist der Strahlungsdurchsatz. Eine größere Öffnungsfläche A_{ein} vergrößert allerdings wiederum den Durchlaßgrad. Außerdem gilt jedoch: je größer der Kugelradius, desto höher ist die mittlere Anzahl an Reflexionen an der Kugelinnenwand, bevor die Strahlung durch die Austrittsöffnung in den erfassenden Strahlengang des Detektors gelangt. Die Stabilität der Transmission und des Durchlaßgrades sind ebenfalls wichtige Kriterien für die Auswahl einer Ulbricht-Kugel. Die relative Änderung von Transmission τ_{Kugel} und Durchlaßgrad β_{Kugel}, verursacht durch die relative Änderung des Reflexionsgrades ρ des Wandmaterials, ist ebenfalls von den Maßen der Kugel abhängig:

$$\frac{\delta \beta_{\text{Kugel}}}{\beta_{\text{Kugel}}} = \frac{\delta \tau_{\text{Kugel}}}{\tau_{\text{Kugel}}} = \frac{1}{1 - \rho \left(1 - \frac{A_{\text{ein}} + A_{\text{aus}}}{A_{\text{Kugel}}} \right)} \cdot \frac{\delta \rho}{\rho}.$$ (1.6)

Im Gegensatz zu Transmission und Durchsatz gilt für die Stabilität: Je kleiner der Reflexionsgrad ρ ist und je größer das Verhältnis von Öffnungsläche zu Kugelfläche ist, desto kleiner wird die relative Änderung von Transmission und Durchlaßgrad ausfallen. Sie kann ein bis zwei Größenordnungen größer sein, als die relative Änderung des Reflexionsgrades.

Eine Faustregel besagt, daß maximal 5 % der Kugelfläche aus Öffnungen bestehen sollte [57], um einen akzeptablen Durchsatz mit gutem Stabilitätsverhalten zu gewährleisten. Bei der Verwendung einer Ulbricht-Kugel ist also genau zu planen und abzuwägen, wie die Parameter Reflexionsgrad, Kugelgröße und Größe und Anzahl der Öffnungen zu wählen sind.

1.1.6 Das quadratische Abstandsgesetz

Werden in der quantitativen Radiometrie geometrische Größen variiert, so ist immer ein strenger Zusammenhang zwischen Geometrie und gemessener radiometrischer Größe gegeben. Dieser Zusammenhang zwischen Strahler und Empfänger ist durch das photometrische Grundgesetz (1.2) gegeben. Bei Annahme punktförmiger Strahler läßt sich dieses Gesetz zum quadratischen Abstandsgesetz verallgemeinern. Die in ein Raumwinkelenelement $d\Omega_1$ abgestrahlte Strahlungsleistung $d\Phi$ ist zu diesem proportional:

$$d\Phi = I \cos \varepsilon_2 \frac{1}{R^2} dA_2.$$ (1.7)

Mit der Definition der Bestrahlungsstärke (siehe Tabelle 1.1) ergibt sich das quadratische Abstandsgeetz:

$$E = I \cos \varepsilon_2 \frac{1}{R^2}.$$ (1.8)

Die Bestrahlungsstärke E eines punktförmigen Strahlers ist umgekehrt proportional zum Quadrat des Abstandes R (ohne Abbildung, Streuung, Beugung, Verstärkung und Lumineszenz im Strahlengang). Es können noch Strahler als punktförmig betrachtet werden (mit einer Abweichung von kleiner als 1 %), deren Verhältnis aus lateraler Ausdehnung des Strahlers A_I zum Abstand R zwischen Strahler und Empfänger kleiner als 1/10 ist [66].
1.1 Grundlegende Untersuchungen zu Fragestellungen der Radiometrie

1.1.6.1 Randbedingungen zur experimentellen Überprüfung der Gültigkeit

Will man das quadratische Abstandsgesetz experimentell überprüfen, ergeben sich zusätzlich zur geforderten Punktförmigkeit des Strahlers noch andere Randbedingungen, die unbedingt erfüllt werden müssen (was im Prinzip selbstverständlich, in der Praxis jedoch nicht einfach zu gewährleisten ist):

a) Die Linearität des Empfängers und der angeschlossenen Verstärkerelektronik muß gewährleistet sein, da eine Verkleinerung des Abstandes zum Beispiel um den Faktor 5 das Meßsignal auf das 25fache ansteigen läßt.

b) Dunkelsignale müssen vollständig erfaßt und vom eigentlichen Meßsignal abgezogen werden.

c) Die Strecke zwischen Strahler und Empfänger muß für alle Meßentfernungen vollständig frei von sichtbegrenzenden Blenden und anderen den Strahlengang deformierenden Elementen sein.

d) Im Strahlengang darf sich keine zusätzliche Strahlungsschwächung befinden, die beispielsweise in Form von Absorptionslinien (selektiv) oder durch den sich ändernden Transmissionsgrad von Fenstern (unselektiv) auftreten kann.

Die Bestimmung der Abhängigkeit zwischen Abstand und Meßsignal bietet eine Möglichkeit zur Überprüfung der meisten der obigen Randbedingungen, die sich als zusätzliche Parameter in die Gleichung (1.8) einbinden lassen. Für zwei Messungen \(i(R_1)\) und \(i(R_2)\) bei den gemessenen Abständen \(R_1\) und \(R_2\) ergibt sich:

\[
\frac{i(R_1) - D(R_1)}{i(R_2) - D(R_2)} = \frac{L(R_2)}{L(R_1)} \frac{(R_2 + R_0)^2}{(R_1 + R_0)^2}.
\] (1.9)

Randbedingung [b] wird nicht erfüllt, wenn die Linearitätsfaktoren \(L(R_1)\) und \(L(R_2)\) ungleich sind. Mit der Subtraktion der Dunkelsignale \(D(R_1)\) und \(D(R_2)\) von den Meßsignalen wird [b] berücksichtigt, während Randbedingung [c] nicht erfüllt ist, wenn \(D(R_1) \neq D(R_2)\) gemessen wird. Die Abstandsmessung aus [d] wird mit dem Nullabstand \(R_0\) (Offset) versehen, der auftritt, wenn zum Beispiel nicht genau bis zur (effektiven) Strahlerfläche gemessen werden konnte. Wird die Randbedingung [e] nicht erfüllt, kann es zu Verschiebungen von \(R_0\) kommen und \(D(R)\) kann abstandsabhängig werden. Für die Auswertung läßt sich Gleichung (1.9) verallgemeinern:

\[
i(R) - D(R) = K \frac{L(R)}{(R + R_0)^2}.
\] (1.10)

Der Umrechnungsfaktor \(K\) hat in Gleichung (1.10) die Einheit Photosignaleinheit \(\cdot\) Abstandsquadrat. In Gleichung (1.9) wird dieser Faktor gekürzt.

1.1.6.2 Auswertungsmethoden

Durch Auswahl geeigneter Meßaufbauten lassen sich alle Randbedingungen hinreichend erfüllen. Gleichung (1.8) muß gelten und für alle Abstände \(R\) ist \(K = I \cos \varepsilon_2\). Will man den Einfluß bestimmter Randbedingungen erfassen, so ist der Meßaufbau entsprechend zu ändern und eine Auswertung aufbauend auf Gleichung (1.10) durchzuführen. Diese Gleichung läßt sich linearisieren, um die Parameter \(K\) und \(R_0\) durch lineare Regression zu bestimmen (mit \(L(R) = 1\)):

\[
R = \sqrt{K} \frac{1}{\sqrt{i(R) - D(R)}} - R_0.
\] (1.11)

Trägt man also die gemessenen Abstände \(R\) über die gemessenen Größen \(1/\sqrt{i(R) - D(R)}\) auf, läßt sich die Steigung \(\sqrt{K}\) und der Nulldurchgang \(R_0\) bestimmen. Der Korrelationskoeffizient und die Abweichung der Meßwerte von der ermittelten Regressionsgeraden liefern einen Anhaltspunkt über die Beachtung und Einhaltung der geforderten Randbedingungen. So erhält man zum Beispiel mit der Standardabweichung \(\sigma_\varepsilon\) der linearen Regression eine Information über die mittlere Abweichung der Entfernungswerte (in Millimetern) zu der nach Gleichung (1.11) berechneten Gerade.
1.1.6.3 Vermessung und Auswertung unterschiedlicher Geometrien

Der Aufbau für die Überprüfung des quadratischen Abstandsgesetzes besteht im wesentlichen aus dem Empfänger, eventuell mit einer zusätzlichen Blende und einem Verschluß zur Dunkelmessung und dem auf einem Verschiebetisch aufgebauten Strahler. Als „Empfänger“ wurden verschiedene Möglichkeiten getestet, die wahlweise in Kombination mit einer Irisblende und einem Verschluß versehen wurden. Eine 1000 Watt FEL-Halogenglühlampe oder alternativ eine in eine Ulbricht-Kugel eingebaute 250 Watt Glühlampe wurden als Strahler verwendet. Der FEL-Lampentyp wird als Arbeitsstandard verwendet und ist in einem quaderförmigen Sockel befestigt, gegen den auch die Abstandsmessung erfolgt (siehe Abbildung 1.2b) in 1.1.6.3 a). Von der Sockelfront bis zur Glühwendelfront der Lampe wurde im kalten Zustand ein Abstand von \((23 \pm 0,5)\) mm ermittelt. Die Glühwendelspirale hat einen Durchmesser von etwa 5 mm. Bei der Kugellampe ist die homogen ausgeleuchtete Kugelöffnung als Strahlebene anzusehen und direkt amstrahlbar. Die Empfängerebene ist ebenfalls direkt amstrahlbar, bzw. der Offset zur Meßebene der Abstandsmessung ist jeweils genau bestimmt. Der Nullabstand \(R_0\) wird bei der EntfernungsMESSung aus dem Offset \(R_{\text{Strahler}}\) an der Lampe und \(R_{\text{Empf}}\) am Empfänger gebildet. Da die Entfernungsmessung direkt an den Empfängerebenen angesetzt werden kann, wird bei der Kugellampe, deren Öffnung ebenfalls direkt angemessen werden kann, ein Offset von \(R_0 = R_{\text{Strahler}} + R_{\text{Empf}} = (0 \pm 2)\) mm erwartet. Für die FEL-Lampe, deren Bezugs ebene für die EntfernungsMESSung die Sockelfront ist, wird \(R_0 = (23 \pm 2)\) mm erwartet. Die Entfernung zwischen Lampensockel und Empfänger wurde jeweils bei einem Abstand von etwa 700 mm mit einer Unsicherheit von ca. 0,2 mm bestimmt und die Lampe danach mit einem Schrittmotor relativ zu dieser Position mit einer Unsicherheit von 0,2 mm verschoschen.

Auf diese Weise lassen sich unterschiedliche Strahler-Empfänger-Kombinationen testen, die im Rahmen dieser Arbeit zur Anwendung kommen.

1.1.6.3 a Lampe und Diffusor-Empfänger Kombination

Diese Eingangsoptik ist so konzipiert, daß sie im Optimalfall aus dem gesamten Halbraum cosinusgerecht die Strahlung empfängt und in das Spektroradiometer leitet. Diese für die Messung von Globalstrahlung entworfene Konstruktion birgt jedoch für Kalibrierungen des Spektroradiometers im Labormaßstab nicht zu vernachlässigende Quellen für Fehlmessungen und Fehlinterpretationen. Die für Kalibrierungen im Labor verwendeten Transferstrahlernormale sind in der Regel 1000 Watt Halogenglühlampen. Diese haben eine strahlende Querschnittsfläche von ca. 5 mm Breite und ca. 40 mm Höhe.

Bei einem typischen Meßabstand der Lampe zum Diffusor von etwa 700 mm beträgt die strahlende Raumwinkelanteil also nur etwa 3,25 \(\times\) 10^{-5} des gesamten Halbraumes. Daher muß im Labor mit seinen endlich entfernten Wänden dafür gesorgt werden, daß keine Fehlstrahlung aus dem Halbraum auf den Diffusor gelangt.

Der Hauptanteil der Fehlstrahlung wird indirekt von der Lampe selbst kommen, denn nur etwa 1,6 \(\times\) 10^{-5} \(\approx\) 16 mW der in den Raum abgestrahlten Gesamtstrahlung gelangt direkt in den Diffusor, der Rest wird an den Wänden – im Idealfall vollständig – absorbirt und teilweise (mehrfach) reflektiert. Das Verhältnis zwischen tatsächlichem Sichtbereich und dem zur Lampenmessung nutzbaren Raumwinkelbereich läßt sich in Abbildung 1.2b) erahnen. Die Glühwendel der Lampe nimmt nur einen sehr kleinen Teil des Bildbereiches (Raumwinkels) aus der Sicht des Meßkopfes ein.

Der Anteil der Fehlstrahlung muß bei der Dunkelmessung \(D(R)\) korrekt gemessen werden, damit die Randbedingungen \(b\) und \(c\) aus 1.1.6.1 erfaßt werden können. Es reicht nicht mehr aus, den Diffusor (durch einen Verschluß) voll abzudecken, um das Dunkelsignal zu messen. Daher wurde bei der Dunkelmessung ein kleiner Abschatter zwischenheitig unmittelbar vor den Kolben der Lampe gestellt,
so daß die direkt von der Lampe auf den Meßkopf auffreßende Strahlung abgeschirmt war, die Fehlstrahlung von den Wänden aber noch nahezu voll erfaßt werden konnte. Alternativ dazu wurde vor dem Meßkopf eine Irisblende so weit geschlossen, daß sie den Sichtbereich des Diffusors bei allen Meßabständen vornehmlich auf die Lampe beschränkte.

Der Einfluß der unterschiedlichen Konfigurationen auf den Nullabstand \(R_0 \) und auf die sich ergebenden Standardabweichungen \(\sigma_R \) ist in Abbildung 1.3 dargestellt.

Abbildung 1.2 Meßkopf zur Messung von solarer UV-B Strahlung.

a) Der Meßkopf besteht aus einer Quarzglas-Kalotte und einer in Transmission verwendeten Diffusorplatte.

b) Der Sichtbereich dieses Meßkopfes ist der Halbraum, störende Reflexionen der Meßwände werden ebenfalls erfaßt.

Kurve 1) zeigt eine Messung, bei der die Fehlstrahlung bei der Messung nicht korrekt erfaßt wurde. Die Ergebnisse der linearen Regression gemäß Gleichung (1.11) für den Nullabstand \(R_0 = 61 \text{ mm} \) sind physikalisch nicht sinnvoll, und auch die Standardabweichung \(\sigma_R = 13 \text{ mm} \) liegt deutlich über der Meßunsicherheit für die Abstandsbestimmung von 0,6 mm. Wird nur die Lampe direkt abgeschattet und die Fehlstrahlung von den Wänden erfaßt (Kurve 2) oder wird der Sichtbereich des Meßkopfes durch eine geeignete Blende korrekt eingeschränkt (Kurve 3), stimmt \(R_0 \) mit dem gemessenen Nullabstand für die FEL-Lampe mit akzeptabler Standardabweichung überein. Ist allerdings der Durchmesser der Blende zu klein gewählt (Kurve 4), so wird diese zur sichtbegrenzenden Fläche und der Nullabstand \(R_0 \) verschiebt sich in Richtung Blende, ohne daß die Standardabweichung \(\sigma_R \) der linearen Regression einen Hinweis auf eine Fehlmessung gibt.

Abbildung 1.3 Abstandsvariation vor dem Diffusor-Meßkopf mit unterschiedlichen Konfigurationen.
Teil 1 Voraussetzungen zur Erweiterung und Verbesserung der spektralen Bestrahlungsstärkeskala

Wird die Kugellampe verwendet (Kurve 5), tritt keine Fehlstrahlung von den Wänden auf, und auch der Offset R_0 verschwindet, da der Abstand zur Strahlerebene direkt angemessen werden kann.

1.1.6.3 b Verschiedene Kombinationen für typische Meßaufgaben
Aufbauend auf den Erfahrungen mit dem Diffusor-Meßkopf wurden andere Strahler-Detektor-Kombinationen vermessen. Es wurden Detektoranordnungen verwendet, die häufig genutzten Anordnungen in der Bestrahlungsstärkemessung entsprechen:

Alle drei verschiedenen Detektoranordnungen lassen sich für Abstandsvariationen einsetzen. In Tabelle 1.2 sind Ergebnisse für die Meßanordnungen aufgeführt, die in dieser Arbeit behandelt werden und für die die Einhaltung des quadratischen Abstandsgesetzes zwingend notwendig ist.

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Empfänger</th>
<th>Strahler</th>
<th>R_0 / mm</th>
<th>σ_R / mm</th>
<th>Bemerkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ebener Diffusor am alten Meßplatz</td>
<td>1000 W Arbeitsstandard</td>
<td>a</td>
<td>10,3</td>
<td>1,7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>b</td>
<td>10,4</td>
<td>1,5</td>
</tr>
<tr>
<td>2</td>
<td>Ebener Diffusor am UV-Meißplatz</td>
<td>1000 W Arbeitsstandard</td>
<td></td>
<td>20,5</td>
<td>1,4</td>
</tr>
<tr>
<td>3</td>
<td>Ulbricht-Kugel am neuen Meßplatz</td>
<td>1000 W Arbeitsstandard</td>
<td>a</td>
<td>24,3</td>
<td>0,3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>b</td>
<td>23,5</td>
<td>0,4</td>
</tr>
<tr>
<td>4</td>
<td>Breitband-Filterdetektor</td>
<td>250 W Kugellampe</td>
<td></td>
<td>0,38</td>
<td>0,08</td>
</tr>
<tr>
<td>5</td>
<td>Ebener Diffusor am alten Meßplatz</td>
<td>250 W Kugellampe</td>
<td>a</td>
<td>-12,2</td>
<td>1,5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>b</td>
<td>-14,2</td>
<td>1,7</td>
</tr>
<tr>
<td>6</td>
<td>Ebener Diffusor am UV-Meißplatz</td>
<td>250 W Kugellampe</td>
<td></td>
<td>2,7</td>
<td>4,9</td>
</tr>
<tr>
<td>7</td>
<td>Ulbricht-Kugel am neuen Meßplatz</td>
<td>250 W Kugellampe</td>
<td>a</td>
<td>0,24</td>
<td>0,39</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>b</td>
<td>-0,10</td>
<td>0,61</td>
</tr>
</tbody>
</table>

Tabelle 1.2 Lineare Regression für Abstandsmessungen mit verschiedenen Konfigurationen von Strahler und Empfänger.
Für den 1000 W Arbeitsstandard folgt $R_0 = (23\pm2)$ mm, für die 250 Watt Kugellampe gilt $R_0 = (0\pm2)$ mm. σ_R ist die sich bei der linearen Regression ergebende Standardabweichung für die Entfernung R.

20
Am vorhandenen Meßplatz für Bestrahlungsstärkekaliobrierungen (Standardmeßplatz, siehe [1.2] erscheint R_0 für beide Strahler (Nr. 1a und Nr. 5a) um etwa 12 mm bis 13 mm zu klein. Auch zusätzliche Messungen mit manueller Abschattung des Strahlers (Nr. 1b) und Verkleinerung des abbildenden Strahlenganges durch eine irisblende (Nr. 5b) ergaben keine nennenswerte Korrektur für R_0. Alle in [1.1.6.1] aufgeführten Randbedingungen scheinen erfüllt zu sein. Eine Erklärung dieser Differenz des Nullabstandes ergibt sich aus der Art der Abbildung auf den Monochromatorspalt. Nicht der ebene Diffusor, sondern eine Fläche etwa 50 mm vor dem Diffusor wird scharf abgebildet (siehe Abbildung 1.10, Fokus des Strahlengangs vor dem Diffusor). Diese „Fehljustierung“ ergibt eine (virtuelle) Verschiebung des Nullabstandes vor den Diffusor. Da die Apparatur fest im Einsatz war, läßt sich die Abbildung nur nachträglich verändern, um den vorhandenen Offset $R_{\text{Empf.}}$ am Diffusor durch Nachjustieren zu Null zu machen. Der aus der vorhandenen Abweichung des Offsets R_0 resultierende systematische Fehler ist für die Auswertung spektraler Messungen zu berücksichtigen. Für den ebenen Diffusor des UV-Meßplatzes (Nr. 2 und Nr. 6) ergibt sich näherungsweise das gesuchte R_0 unter Berücksichtigung der erheblich höheren Standardabweichung σ. Die Messungen im UV-Spektralbereich sind insbesondere für die leistungsschwache Kugellampe mit einer größeren Meßunsicherheit verbunden.

Aufgrund des kompakten Aufbaus des Breitband-Filterdetektors (siehe 3.2.2) bildet dieser eine optische Einheit mit seiner Frontblende als Bezugsfläche für Abstandsmessungen. Daher sind bei den Abstandsversionen mit dem Breitband-Filterdetektor (Nr. 4) als Detektorsystem und auch mit der Ulbricht-Kugel als Eingangsoptik am neuen Meßplatz (Nr. 3a und Nr. 7a) im Rahmen der Meßgenauigkeit alle Randbedingungen gemäß [1.1.6.1] erfüllt. Hierbei ist R_0 spektral unabhängig (Nr. 3a und Nr. 7a) und auch für eine an der Kugel angebrachte Si-Monitorphotodiode (nicht in Tabelle 1.2) wird das Ergebnis nicht verfälscht. Auch die manuelle Abschattung des Strahlers (Nr. 3b) ergibt keine deutliche Änderung des Nullabstandes, so daß auch bei der neuen Meßapparatur der Fehlstrahlungsanteil durch Reflexionen an den Meßwänden vernachlässigbar ist. Mit diesen Untersuchungen zum quadratischen Abstandsgesetz hat konnte ein wichtiger Teilaspekt der Verwendbarkeit von Diffusoren für die Bestrahlungsstärkekaliobrierung demonstriert werden. Außerdem hat sich gezeigt, daß der kompakte Aufbau der Filterdetektoren das quadratische Abstandsgesetz ohne Einschränkungen erfüllt (siehe auch [3.2]).

1.1.7 Photonenzählung zur Messung sehr kleiner Signale

Photomultiplier (PMT) sind sehr empfindliche Detektoren, die in der optischen Radiometrie zur Strahlungsmessung vom UV-Spektralbereich bis zum nahen Infrarot-Spektralbereich eingesetzt werden. Photoelektronen, die auf der Photokatode durch den äußeren lichtelektrischen Effekt erzeugt werden, können durch mehrere Spannungsstufen (Dynoden) um den Faktor 10^6 bis 10^7 vervielfacht werden. Prinzipiell können an der Anode einzelne Pulse ankommender Elektronenwellen registriert werden. Bei normalen bis kleinen Bestrahlungsstärken auf der Photokatode überlagern sich diese Impulse jedoch zu gut vermeßbaren Gleichstromsignalen. In diesem Fall wird immer eine Gleichstrommessung vorgezogen oder zur Eliminierung von Störeffekten mit der Lock-In Technik gearbeitet (analoge Messung). Bei sehr kleinen Signalen treten zeitlich auflösbare Photoimpulse auf, mit unterschiedlich langen Pausen dazwischen. Dann ist es sinnvoll, die Impulse einzeln zu zählen und aufzusummieren (digitale Messung). Hier beginnt die Anwendung der „Photonenzählung“.

In vielen Bereichen der Kernphysik und der Elementarteilchenphysik findet die Photonenzählung ihre Anwendung. Auch in der Biophysik zur Fluoreszenzanalyse wird sie eingesetzt. Die Anwendung in der optischen Radiometrie ist allerdings eher selten, dennoch bietet sie auch hier eine Möglichkeit den Meßbereich auf sehr kleine Bestrahlungsstärken auszudehnen.

Im Rahmen dieser Arbeit wird die Möglichkeit des Einsatzes von Photonenzählung nur kurz behandelt. Wichtig ist zunächst die Auswahl der richtigen Komponenten wie Photomultiplier, Vorverstärker und Photonenzähleinheit (siehe 1.1.7.1). Außerdem wurden Maßnahmen zur Anpassung der Komponenten (siehe 1.1.7.2) durchgeführt und die Auswahl der richtigen Arbeitsparameter untersucht (siehe 1.1.7.3 and [64]). Bei Linearitätsmessungen im Vergleich zu Gleichstrommessungen konnten erste Erkenntnisse zur prinzipiellen Verwendbarkeit der Photonenzählung in der Radiometrie gewonnen werden (siehe 1.1.8 and [64]). Die Photonenzählung soll in Zukunft zusätzlich am UV-optimierten Meßplatz zur Messung sehr kleiner Photosignale eingesetzt werden. Hierzu sind aber
vorher noch weitere umfangreiche Untersuchungen zur Charakterisierung der Photonenzählung und zum Übergang in den Arbeitsbereich der Gleichstrommessungen nötig.

1.1.7.1 Verwendete Komponenten zur Photonenzählung

Zur Photonenzählung wurde der schnelle Zähler mit Diskriminator EG&G Turbo-MCS 914 gewählt. Als Vorverstärker wurde ein EG&G-Vorverstärker 9306 mit einer Bandbreite von 1 GHz verwendet. Der Zähler hat mit einem eingebauten Schwellendiskriminator eine minimale Zählzeit (Dwell-Time) von 2 ns und eine maximale Zählrate von 200 Mcps (1 Mcps = 10⁶ Zählungen pro Sekunde; Mega-counts per second), entsprechend einer Strahlungsleistung von z.B. 0,13 nW bei 300 nm.

1.1.7.2 Anpassung des Spannungsteilers für die Photonenzählung

Abbildung 1.4 Verbesserter Spannungsteiler für die Photonenzählung.

Die ersten Dynoden sind mit höheren Widerständen belegt, so daß der höhere Spannungsabfall die Photoelektronen stärker beschleunigt. Der Kondensator über der Anode glättet das Ausgangssignal.

Das paarweise Auftreten von Pulsen trat nach diesen Änderungen weiter auf, allerdings wurden weitere Nachschwingungen nicht mehr beobachtet. Durch Verwendung eines 150 pF Kondensators an der Anode wurde das Gesamtsignal zeitlich so stark verbreitert, daß die beiden Peaks zu einem Signal mit größerer Halbwertbreite (ca. 20 ns) verschmolzen sind. Dadurch wird die maximale Zählrate vom
1.1 Grundlegende Untersuchungen zu Fragestellungen der Radiometrie

1.1.7.3 Einstellung des Diskriminatorlevels

Es würde sich der Einsatz eines Diskriminatorfensters mit oberer und unterer Schwelle empfehlen, um den Fehlmessungsanteil von hochenergetischer extraterrestrischer Strahlung zu vermeiden. Da diese Ereignisse bedingt durch die gute Abschirmung des Photomultipliers im Kühlgehäuse sehr selten sind, sollte dieser Fehlstrahlungsanteil jedoch auch beim Einsatz eines herkömmlichen Schwellendiskriminators vernachlässigt werden können.

Abbildung 1.5 Diskriminatorlevel bei verschiedenen Einstellungen.

a.) Zählrate für unterschiedliche Diskriminatorlevel mit stark variierenden Bestrahlungsstärken

b.) Pulshöhenstatistik: Steigung der Zählrate aus a.) pro Diskriminatorleveländerung. Für alle Einstellungen ist ein Maximum bei 0,1 V Diskriminatorlevel zu erkennen.

Oberhalb einer Schwelle von ca. 2 V ist die Zählrate null, da der Vorverstärker keine höheren Ausgangsspannungen zur Verfügung stellt. In Abbildung 1.5a.) wird die Zählrate bei Durchstimmung des Diskriminatorlevels dargestellt. Es wurden durch Änderung der Wellenlänge und der spektralen Spaltbreite eines Monochromatorsystems große Variationen der Bestrahlungsstärke auf der Photokatode eingestellt. Die Pulshöhenstatistik in Abbildung 1.5b.) ist die erste Ableitung dieser Zählrate nach der Änderung des Diskriminatorlevels. Es zeigt sich, daß diese Steigungen im Bereich um 0,1 V ein Maximum besitzen. Zu höheren Diskriminatorspannungen wird die Abnahme der Zählrate kleiner. Zu kleineren Spannungen nimmt die Steigung zunächst ebenfalls ab. Bei Spannungen unter 0,02 V (hier nicht dargestellt) ließ sich dann wieder das angesprochene exponentielle Wachsen der Zählrate und damit sprunghafte Zunahme der Steigung beobachten.

Die Pulshöhenstatistik zeigt damit im Wesentlichen den bei der Photonenzählung mit Fensterdiskriminatoren erwarteten Verlauf. Bei einer derartigen Meßmethode wird der Diskriminatorlevel so einge-
Teil 1 Voraussetzungen zur Erweiterung und Verbesserung der spektralen Bestrahlungsstärkeskala

stellte, daß das Meßfenster im Bereich des Maximums liegt[37]. Daher wurde bei den Untersuchungen zur Photonenzählung die Schwelle des Diskriminators im Turbo-MCS auf etwa 0,1 V gelegt.

1.1.8 Linearität von Photomultipliern bei Gleichstrommessung und bei Photonenzählung

Photomultiplier haben je nach Kathodenmaterial, Dynodenanzahl und Dynodenspannung bei Gleichstrommessungen einen Linearitätsbereich mit einer Obergrenze von etwa 1 µA bis 10 µA. Der in diesen Versuchen verwendete Photomultiplier R4220P mit 9 Dynoden und einer mittleren Dynodenspannung von etwa 80 V wird laut Herstellerangaben in Bereichen oberhalb 1 µA nichtlinear[38]. Auch die verwendete Meßelektronik kann nichtlineare Komponenten enthalten. So kann zum Beispiel die Umschaltung von Verstärkungsstufen beim Photostromverstärker nichtlinear sein. Bei der Photonenzählung kann der Zähler an seine Grenzen gelangen und einzelne Ereignisse nicht zählen.

1.1.8.1 Meßaufbau zur Linearitätsmessung

Abbildung 1.6 Versuchsaufbau zur Linearitätsmessung.
Zwei baugleiche Leuchtdioden, die durch geeignete Vorwiderstände beim Strahlungsfluß im Verhältnis von etwa 1:10 abgestuft sind, bestrahlen durch drei Filtereinschübe den Photomultiplier. Als Meßelektronik ist hier die Photonenzählung mit Vorverstärker und Zähler schematisch dargestellt.

Um die Linearität der hier geprüften Meßsysteme zu untersuchen, wurde folgender Meßaufbau gewählt (**Abbildung 1.6**):

Der schematisch dargestellte Versuchsaufbau läßt eine Lock-in-Messung zunächst nicht zu. Es kann vor dem Filterblock noch ein kompakter Stimmgabelchopper eingebaut werden, um auch diese
Meßmethode auf Linearität zu untersuchen. Sowohl digitale Photonenzählung als auch analoge Gleichstrommessung können an dieser Apparatur bezüglich ihrer Linearität direkt miteinander verglichen werden.

Es wurden jeweils vier Zustände gemessen: Nullsignal \(s_0 \) – keine LED eingeschaltet; Signal \(s_1 \) – LED 1 eingeschaltet; Signal \(s_2 \) – LED 2 eingeschaltet; Signal \(s_{12} \) – LED 1 und LED 2 eingeschaltet. Im Falle idealer Linearität muß gelten:

\[
\frac{(s_1-s_0) + (s_2-s_0)}{(s_{12}-s_0)} - 1 = \frac{S_1 + S_2}{S_{12}} - 1 = 0 ,
\]

wobei \(S_1, S_2, S_{12} \) die um das Nullsignal reduzierten Meßsignale sind.

Mit dem Durchfahren der Kennlinie der Leuchtdioden (Spannungen von 2,5 bis 10 V) können etwa 1,5 Größenordnungen des Photosignals überstrichen werden. Durch Hinzufügen eines NG3/1-Filters wird das Photosignal um eine Größenordnung gesenkt. Unter Verwendung von bis zu drei NG3/1-Filtern in Kombination mit einem NG3/3-Filter (Transmission 0,1 %) läßt sich das Photosignal somit um bis zu sechs Größenordnungen variieren. Dabei ist der ungefilterte Strahlungsfluß der Leuchtdioden so groß einstellbar, daß \(S_{12} \) bei maximalem LED-Strom deutlich oberhalb des Linearitätsbereiches des Photomultipliers liegt.

1.1.8.2 Linearität der Gleichstrommessung

Für die Gleichstrommessung ist die Linearitätsabweichung nach Gleichung (1.12) in Abbildung 1.7 dargestellt. Die gemessenen Abweichungen sind mit etwa der Standardabweichung der Messung, die zu kleineren Meßsignalen deutlich zunimmt, verrauscht. Eine Anpassung aller Meßwerte an ein Polynom 6. Ordnung ergibt die in Abbildung 1.7 eingezeichnete glatte Kurve. Es ist zu erkennen, daß oberhalb eines Photostromes von etwa 5 µA die Abweichung von der Linearität deutlich zunimmt.

Bei der Gleichstrommessung liegt für hohe Meßsignale eine Superlinearität vor, d.h. die Summe der Einzelsignale \(S_1 + S_2 \) ist kleiner als das Summensignal \(S_{12} \). Dieses Verhalten erklärt sich aus Spannungsverlusten und Ausgleichsströmen an den Dynoden [37]. Erst bei noch höheren Bestrahlungsstärken geht der Sekundärelektronenfluß in eine Sättigung und Sublinearität über.

Abbildung 1.7 Linearitätsabweichung bei der Gleichstrommessung (DC).

Im Bereich bis etwa 5 µA ist die DC-Messung linear. Die helle Kurve gibt die statistisch gestreuten Meßwerte wieder, die glatte Kurve ist das Ergebnis der Mittelung über den verrauschten Photostrom.

Bei den Messungen wurde eine Dynamik von über fünf Dekaden genutzt, und zwar zwischen 0,5 nA und 0,1 mA Ausgangsstrom, von denen das Photosignal über vier Dekaden linear ist. Bei der Gleichstrommessung mit dem gekühlten Photomultiplier und einem geeigneten Photostromverstärker können Photosignale bis zu 50 pA gemessen werden, so daß mit der Gleichstrommessung eine Dynamik von \(10^5 \) gut erreichbar ist.
1.1.8.3 Linearität der Photonenzählung

Bei der Photonenzählung wurde der Diskriminatorlevel zunächst so gewählt, daß 1 Mcps einem Photostrom von etwa 1 µA entsprechen. Abbildung 1.8 zeigt den Verlauf der Linearitätsabweichung für die Photonenzählung. Im Unterschied zur Gleichstrommessung geht die Photonenzählung schon um eine Größenordnung früher in die Nichtlinearität. Bereits bei Zählraten größer als 0,1 Mcps steigt die Linearitätsabweichung stark an. Auffällig ist hierbei, daß das Vorzeichen der Abweichung bei der Photonenzählung umgekehrt zum Vorzeichen der Abweichung bei der DC-Messung ist.

Bei der Photonenzählung beginnt bereits oberhalb 0,1 Mcps eine Sättigung. Die Summe der Einzelsignale $S_1 + S_2$ ist größer als das Summensignal S_{12}. Dieser Effekt ist darauf zurückzuführen, daß nicht mehr alle Pulse des Summensignals aufgelöst (gezählt) werden können.

Abbildung 1.8 Linearitätsabweichung bei der Photonenzählung (PC).
Im Bereich bis etwa 0,1 Mcps ist die PC-Messung linear. Die helle Kurve gibt die statistisch gestreuten Meßwerte wieder, die glatte Kurve ist das Ergebnis der Mittelung über die verrauschte Photonenzählrate.

Setzt man den Diskriminatorlevel höher, so daß bereits 0,1 Mcps einem Photostrom von 1 µA entsprechen, also die Zählrate um den Faktor 10 gesenkt wird, ergibt sich der in Abbildung 1.9 dargestellte Verlauf. Es ist deutlich eine Superlinearität zu erkennen, die etwa bei 0,1 Mcps einsetzt. Bei höherer Zählrate geht das Signal dann wieder in eine Sättigung über. Signale mit größeren Impulsen, die noch bei hohen Diskriminatorleveln gezählt werden, stammen aus nichtlinearen Prozessen. Ein Ereignis geringer Bedeutung ist zum Beispiel die kosmische Höhenstrahlung. Photonenpaarprozesse erzeugen ebenfalls größere Pulse, treten bei höheren Signalen häufiger auf und machen daher einen großen nichtlinearen Anteil aus.

Abbildung 1.9 Linearitätsabweichung bei der Photonenzählung bei einem höheren Diskriminatorlevel.
Im Bereich bis etwa 0,01 Mcps ist die PC-Messung linear. Dann tritt zunächst Superlinearität auf, die dann in ein Sättigungsverhalten übergeht.
1.2 Der Meßplatz zur Kalibrierung bezüglich spektraler Bestrahlungsstärke

1.2 Der Meßplatz zur Kalibrierung bezüglich spektraler Bestrahlungsstärke

Bestehende und entstandene Schwachstellen und Unvereinbarkeiten, die im Laufe der Benutzung aufgetreten sind, konnten aufgrund neuer Erfahrungen, durch experimentelle Analyse und unter Ausnutzung neuer technischer Möglichkeiten an zwei neuen Meßplätzen erheblich reduziert werden (siehe 1.3 und 1.4).

1.2.1 Experimenteller Aufbau des Meßplatzes

Der gesamte Strahlengang befindet sich in einem geschlossenen Gehäuse, um Streulichteinflüsse weitestgehend auszuschließen. Vor der Apparatur können Prüflampen, Arbeitsstandards oder der Schwarze Strahler aufgebaut werden. Der Abstand zwischen den Strahlern und dem Reflexionsnormal muß genau bestimmt werden und wird für Prüflampen exakt definiert weitergegeben. Das Reflexionsnormal kann so gedreht werden, daß es abwechselnd jeweils senkrecht zur Strahlungsrichtung der Prüflampe oder zur Richtung des in einem wassergekühlten Gehäuse befindlichen Monitorstrahlers gedreht werden kann.

Zwei Verschlüsse ermöglichen das Einblenden jeweils der Prüflampe oder der Monitorlampe und die Messung der Dunkelsignale der Detektoren.
Teil 1 Voraussetzungen zur Erweiterung und Verbesserung der spektralen Bestrahlungsstärkeskala

Ein Ausschnitt der Fläche des Reflexionsnormales wird über einen Umlenkspiegel, einen Abbildungs-
spiegel und einen drehbaren Planspiegel auf den Eintrittsspalt eines der beiden Doppelmonochromato-
ren abgebildet.

Der vordere Monochromator ist für den Spektralbereich von 250 nm bis 800 nm ausgelegt. Direkt am
Austrittsspalt befindet sich ein Photomultiplier, mit einer für diesen Wellenlängenbereich angepaßten
Empfindlichkeit. Ein Ordnungsfilter wird bei Messungen oberhalb 400 nm in den Strahlengang
geschwenkt, um in diesem Spektralbereich Reflexionen höherer Ordnung am Gitter zu vermeiden. Der
Langpaßfilter vom Typ GG 395 absorbiert Strahlung unterhalb seiner Kante bei 395 nm.

Abbildung 1.10 Meßplatz zur Kalibrierung von Strahlern bezüglich spektraler Bestrahlungs-
stärke.

Die Strahler werden über ein drehbares Reflexionsnormal gegen eine Monitorlampe
verglichen. Zwei Doppelmonochromatoren mit drei Detektoren (nicht eingezeichnet) decken
den Spektralbereich von 250 nm bis 2500 nm ab.

Der hintere Monochromator kann durch Verwendung geeigneter Gittersätze für den Spektralbereich
von 750 nm bis 1650 nm, oder von 1600 nm bis 2500 nm ausgelegt werden. Zusätzliche Ordnungsfil-
ter bei 700 nm und bei 1400 nm absorbieren auch hier Strahlung, die zu Reflexionen höherer Ordnung
am Gitter führen könnte. Die durch den Austrittsspalt tretenende Strahlung kann über einen drehbaren
Abbildungsiegel auf zwei Detektoren abgebildet werden (in Abbildung 1.10 nicht dargestellt).
Eine Ge-Photodiode besitzt eine ausreichende spektrale Empfindlichkeit im Bereich von 750 nm bis
1650 nm, um die Strahler miteinander zu vergleichen.

Der Spektralbereich oberhalb von 1600 nm wird mit einem Bleisulfid (PbS) Photowiderstand in Lock-
In-Technik vermessen (der Chopper ist nicht eingezeichnet).

Wenn der Schwarze Strahler vor dem Spektroradiometer betrieben wird, können Filterdetektoren
automatisch in den Strahlengang gefahren werden, um die Temperatur des Primärnormales bei jeder
Wellenlängeneinstellung aktuell zu bestimmen. Die Steuerung des Schwarzen Strahlers und der
Meßablauf am Spektroradiometer sind so synchronisiert, daß Temperaturmessungen jeweils bei der
Dunkelmessung der Spektralapparatur durchgeführt werden. Auf diese Weise kann bei jeder
Wellenlänge die Temperatur des Schwarzen Strahlers bestimmt werden.

1.2.2 Vorzüge und Grenzen der gewählten Meßanordnung – Verbesserungsansätze

Der Aufbau des Meßplatzes für spektrale Bestrahlungsstärke beruht auf langjährigen Erfahrungen mit
Strahlern, Monochromatoren und Detektoren in diesem Bereich der Radiometrie.

Die für Vergleichsmessungen verwendete Möglichkeit der substituierenden Meßanordnung und die
Monitorlampe zur Wahrung der Stabilität zwischen zwei Messungen sind ein Beispiel für erfolgreiche
Modifikationen der Meßapparatur [1.2.2.1].

28
Der Strahlengang vor den Monochromatoren mit dem Abbildungsspiegel und den Umlenkspiegeln ist ein Zugeständnis an die vielseitigen Verwendungsmöglichkeiten der Apparatur (1.2.2.2). Auch die Verwendung geeigneter Gittersätze und Detektoren zur Abdeckung des Spektralbereiches von 250 nm bis 2500 nm beruht auf Erkenntnissen, die an Vorgängerapparaturen gewonnen werden konnten (1.2.2.3).

1.2.2.1 Die substituierende Meßanordnung und das Prinzip des Monitorstrahlers

Wie bereits in Abschnitt 1.1.4 erwähnt wurde, können für Vergleichsmessungen symmetrische Meßanordnungen mit gleichzeitiger Vermessung von Prüfling und Normal eingesetzt werden. In der Radiometrie bedeutet dies, Strahlengänge für die Prüflampe und das Strahlernormal unter nahezu symmetrischen Bedingungen aufbauen zu müssen. Beide Strahler könnten zum Beispiel unter dem gleichen Winkel jedoch mit unterschiedlichem Vorzeichen auf einen Umlenkspiegel strahlen, der dann das Reflexionsnormal bestrahlt. Dazu müßten die Strahler nebeneinander stehen, was zu Streulicht-einflüssen führen kann. Außerdem besteht die Möglichkeit, daß das ungleiche Vorzeichen der Reflexion am Planspiegel aufgrund asymmetrischer Polarisierungseigenschaften einen nicht zu vernachlässigenden systematischen Fehler erzeugt. Diese Unstimmigkeit kann jedoch durch zweimaliges Messen mit Vertauschung der Strahler kompensiert werden, was allerdings zu einer Verdopplung der Meßzeit führen würde.

Will man die Strahler exakt am gleichen Ort vermessen, muß man längere Meßpausen akzeptieren und für die Wahrung der zeitlichen Stabilität sorgen. Denn nach dem Einschalten der Prüflampe ist eine Einbrennzeit von etwa einer halben Stunde unverzichtbar und nach der etwa zweistündigen Vermessung muß der Strahler etwa eine weitere halbe Stunde abkühlen, bevor ein Umbau auf den nächsten Strahler erfolgen kann. Für die Verwendung des Schwarzen Strahlers muß ein ganzer Meßtag angesetzt werden und zusätzlich wird eine Umbauzeit von jeweils drei bis vier Stunden vor und nach der Vermessung benötigt. Über diese Zeiträume kann die Stabilität der Spektralapparatur nur unter Inkaufnahme einer großen Meßunsicherheit gewährleistet werden. Mit dem zeitlich sehr stabilen Monitorstrahler kann eine hohe Reproduzierbarkeit des Spektroradiometers über mehrere Meßtage gesichert werden. Die Prüflampe wird nun im direkten Vergleich unter symmetrischen Bedingungen gegen die Monitorlampe vermessen. Der Quotient aus dem von der Prüflampe hervorgerufenen Photostrom \(i_{Pruef}(\lambda) \) und dem durch die Monitorlampe bewirkten Photostrom \(i_{Mon}(\lambda) \) bei derselben Wellenlänge \(\lambda \) ist unempfindlich gegenüber Veränderungen der Empfindlichkeit des Spektroradiometers und wird daher in Gleichung (1.3) zur Berechnung der Bestrahlungstärke herangezogen.

1.2.2 Der Strahlengang vor dem Monochromator

Das Monochromatorsystem wurde so konzipiert, daß es ohne großen Umbau sowohl für Bestrahlungsstärkekalibrierungen als auch für Strahldichtemessungen verwendet werden kann. Daher ist der Strahlengang vor dem Monochromator nicht vollständig für die Bestrahlungsstärkemessung optimiert worden.

![Abbildung 1.11](image-url) Der Strahlengang für Strahldichtemessungen.

Von der strahlenden Fläche des Strahlers wird mit dem Abbildungsspiegel in (1) ein Zwischenbild erzeugt, das dann auf den Eintrittsspalt des Monochromators (2) abgebildet wird. Im Monochromator wird die spektral zerlegte Strahlung schließlich auf den Austrittsspalt (3) abgebildet.

Für den Umbau auf Strahldichtemessungen muß der in Abbildung 1.10 dargestellte Strahlengang verändert werden: Die Monitorlampe, das Reflexionsnormal und der erste Umlenkspiegel werden entfernt. Ein zusätzliches Abbildungssystem bestehend aus einem Abbildungsspiegel und einem Planspiegel wird installiert. Der so modifizierte Strahlengang ist in Abbildung 1.11 skizziert. Mit diesem Aufbau wird zunächst von der strahlenden Fläche des Strahlers ein Zwischenbild an der Stelle (1) erzeugt. Hier kann ein Zwischenspalt (nicht eingezeichnet) das Bild und somit den zu bewertenden Raumwinkel weiter begrenzen. Das Zwischenbild wird auf den Eintrittsspalt des Monochromators (2) abgebildet. Im Monochromator spektral zerlegt, erscheint es schließlich auf dem Austrittsspalt (3).
1.2 Der Meßplatz zur Kalibrierung bezüglich spektraler Bestrahlungsstärke

Um auch bei Strahllichtemessungen eine Monitorlampe nutzen zu können, ist der Planspiegel vor den Strahlern drehbar aufgebaut (Monitorlampe symmetrisch zum Abbildungsspiegel, nicht eingezeichnet).

1.2.2.3 Die Abdeckung des Spektralbereiches von 250 nm bis 2500 nm

Die routinemäßige Bestrahlungsstärkekalibrierung erfolgt derzeit von 250 nm bis 2500 nm. Um den apparativen Aufwand, den Meßaufwand und die Brennzeit für die Strahler so gering wie möglich zu halten, wurde der beschriebene möglichst kompakte Aufbau gewählt, der mit zwei Doppelmonochromatoren, drei Gittersätzen und drei Detektoren gleichzeitig ausgestattet ist.

1.2.2.3 a Das geteilte Monochromatorsystem

Durch ein geteiltes System ergibt sich aber auch der Vorteil, daß am Ausgang des UV-VIS-Systems der Photomultiplier direkt und fest angebaut werden kann. Beim Infrarot-System müssen allerdings zwei Detektoren am Ausgang des Monochromators angebracht werden und die Strahlung über ein Abbildungssystem abwechselnd auf diese fokussiert werden.

Da mittlerweile ebenso kompakte und präzise Doppelmonochromatoren mit Mehrfachgitterstuhl und mehreren Austrittsspalten existieren, kann ein solches Meßsystem neuerdings auch mit einem einzigen Doppelmonochromator ausgeführt werden (siehe [4]).

1.2.2.3 b Die Gittersätze

Um den Spektralbereich von 250 nm bis 2500 nm abdecken zu können, müssen mehrere geeignete Gittersätze miteinander kombiniert werden. Man kann davon ausgehen, daß ein Gittersatz nur etwas mehr als eine Oktave, also eine Wellenlängenhalbierung abdeckt. Für den gewünschten Spektralbereich wären daher vier Gittersätze optimal. Bei Auswahl von drei richtig plazierten Gittersätzen läßt sich jedoch auch eine akzeptable Abdeckung des Spektrums erreichen.

<table>
<thead>
<tr>
<th>Gitter</th>
<th>Striche / mm</th>
<th>Nutzbarer Spektralbereich</th>
<th>Blaze-Wellenlänge bei</th>
<th>Dispersion nm / mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>GMA 252-40</td>
<td>1180</td>
<td>250 nm – 800 nm</td>
<td>500 nm</td>
<td>1,6</td>
</tr>
<tr>
<td>GMA 252-50</td>
<td>590</td>
<td>700 nm – 1500 nm</td>
<td>1000 nm</td>
<td>3,3</td>
</tr>
<tr>
<td>GMA 252-60</td>
<td>295</td>
<td>1400 nm – 2500 nm</td>
<td>2100 nm</td>
<td>6,6</td>
</tr>
</tbody>
</table>

Tabelle 1.3 Gittersätze für den Meßplatz für Bestrahlungsstärkekalibrierungen.
Die Wellenlängenbereiche, in denen sich die einzelnen Gittersätze überlappen sind mit jeweils 100 nm ausreichend, um die Messungen mit dem nächsten Gittersatz reproduzierbar fortführen zu können.

1.2.2.3 c Die Detektoren

1.2.2.4 Angabe von spektralen Bandbreiten und Meßunsicherheiten bei Kalibrierungen

Die Apparatur wird seit 1994 zur Kalibrierung von Strahlern verwendet. Bei der Abgabe von Kalibrierungen werden die Randbedingungen der Kalibrierung genau vermerkt [86]. Bei wesentlich aufwendigeren Kalibrierungen mit Messungen, die direkt nach dem Einsatz der Schwarzen Strahler erfolgen, werden Meßunsicherheiten bis zu 1 % erreicht [84]. Die Polarisität der Lampe und der eingestellte elektrische Strom sind wichtige Parameter, die ebenso wie der Abstand einer Bezugsfläche
1.3 Die Erweiterung der spektralen Bestrahlungsstärkemessung durch einen UV-optimierten Meßplatz

Eine Kalibrierung wird nur bei festgelegten Wellenlängen in sich ändernden Abständen (Schrittweiten) durchgeführt. Interpolationsanweisungen für Bestrahlungsstärkenwerte zwischen diesen Stützpunkten werden derzeit nicht gegeben. Im UV-Spektralbereich wird die Kalibrierung in 10 nm Schritten durchgeführt, zwischen 300 nm und 800 nm in 20 nm Intervallen und oberhalb 800 nm wurden Abstände von 50 nm gewählt.

Tabelle 1.4 Angabe spektraler Parameter bei Routinekalibrierungen.

Zwischen den angegebenen Spektralbereichen ändern sich die spektrale Bandbreite, die Schrittweite zwischen den Kalibrierpunkten und die erweiterte \((k = 2)\) relative Meßunsicherheit.

Die angegebenen Meßunsicherheiten entsprechen einer Standardkalibrierung, daß heißt, die kalibrierte Lampe wurde gegen zwei bis drei Arbeitsnormale kalibriert. Die Angabe der erweiterten relativen Meßunsicherheit entspricht der zweifachen Standardmeßunsicherheit (Erweiterungsfaktor \(k = 2\)). Sie stimmt bei einer angenommenen Normalverteilung der Meßwerte mit einer Überdeckungswahrscheinlichkeit von etwa 95 % überein (siehe auch 4.2.1).

Die Aufstellung der Meßunsicherheiten in Tabelle 1.4 zeigt, daß eine Verbesserung des Meßverfahrens besonders im UV-Spektralbereich anzustreben ist.

1.3 Die Erweiterung der spektralen Bestrahlungsstärkemessung durch einen UV-optimierten Meßplatz

1.3.1 Experimenteller Aufbau des Meßplatzes

Der Meßplatz wurde in Anlehnung an die vorhandene Standardmeßapparatur zur Bestrahlungsstärkekalibrierung aufgebaut. Gemeinsame Elemente sind das drehbare ebene Reflexionsnormal, die Verwendung eines Doppel-Gittermonochromators und die Anwendung des Substitutionsprinzips mit Unterstützung durch eine Monitorlampe.

Bei der Auswahl und Anordnung der Komponenten wurde darauf geachtet, einen möglichst hohen Durchsatz für UV-Strahlung zu erreichen, bei gleichzeitiger Minimierung des längerwelligen Streulichtanteils.

In Abbildung 1.12 ist der Aufbau und Strahlengang sowohl für die Messung der Bestrahlungsstärke als auch für die Strahldichtekalibrierung von großflächigen UV-Strahlern skizziert.

Abbildung 1.12 Aufbau des UV-optimierten Meßplatzes.

Es sind die Strahlengänge für die Bestrahlungsstärkekalibrierung (links) und für die Strahldichtekalibrierung (rechts, gestrichelt) eingezeichnet. Bei der Strahldichtemessung entfällt das drehbare Reflexionsnormal.

Der Strahlengang für die Strahldichtemessungen (in Abbildung 1.12 rechts, gestrichelt) entspricht etwa dem Aufbau, wie er für die Standardapparatur aufgebaut werden kann (siehe 1.2.2.2). Der Strahlengang ist jederzeit nutzbar, es muß lediglich das Reflexionsnormal entfernt werden. Die in Abbildung 1.12 eingezeichnete Monitorlampe verifiziert für Strahldichtemessungen ihre Funktion. Statt dessen wird außerhalb der Apparatur eine weitere Monitorlampe verwendet (nicht eingezeichnet), und der äußere Abbildungsspiegel wird entsprechend in Richtung dieser Monitorlampe für Strahldichte gedreht. Die zu vermessenden Strahler werden rechts von der Apparatur in gleicher Weise wie bei der Bestrahlungsstärkemessung aufgebaut.
1.3 Die Erweiterung der spektroden Bestrahlungsstärkemessung durch einen UV-optimierten Meßplatz

1.3.2 Die Optimierung für die UV-Messung

Die Meßapparatur konnte durch gezielte Auswahl der Komponenten deutlich gegenüber der Standardapparatur für Bestrahlungsstärkekalibrierungen verbessert werden. Ein wesentlicher Vorteil ist die Reduktion der Spiegel (jeweils ohne die beiden Reflexionsgitter) von insgesamt 11 Stück in der Standardapparatur auf null Spiegel in der UV-optimierten Apparatur (1.3.2.1). Dadurch konnte der spektrale Durchlaßgrad der Apparatur auf das bis zu 600-fache gesteigert werden. Zusätzlich wird ein sonnenblinder Photomultiplier mit einer optimierten spektralen Empfindlichkeit im Spektralbereich von 190 nm bis 350 nm eingesetzt (1.3.2.2). Insgesamt ergibt sich eine Verbesserung der Nachweisempfindlichkeit gegenüber der Standardapparatur um drei bis vier Größenordnungen.

1.3.2.1 Reduktion der Spiegelanzahl im Meßsystem

![Abbildung 1.13 Reflexionsgrade verschiedener Komponenten der Spektroradiometer.](image)

Die Abnahme des Reflexionsgrades von Aluminium im UV hat bei Verwendung von bis zu 11 Spiegeln einen sehr hohen Einfluß auf den Gesamtdurchlaßgrad.

![Abbildung 1.14 Verbesserung der UV-Apparatur gegenüber der Standardmeßapparatur.](image)

Für die UV-Apparatur ist der spektrale Durchlaß (rechte Ordinate) um bis zu einen Faktor 600 (dicke Kurve, linke Ordinate) besser als bei der Standard-Meßapparatur zur Bestrahlungsstärkekalibrierung.

Die Reflexionsnormale bei beiden Meßplätzen sind aus Spectralon gefertigt mit spektralen Reflexionsgraden von 0,66 bei 200 nm und größer als 0,99 oberhalb von 340 nm. Die Flächen der Spiegel an der Standardapparatur für Bestrahlungsstärkemessung bestehen aus Aluminium und einer MgF2-Schutzbeschichtung. Der Reflexionsgrad der Spiegel beträgt bei 200 nm nur noch 0,52 und

1.3.2.2 Verwendung eines sonnenblinden Photomultipliers

![Abbildung 1.15 Spektrale Empfindlichkeit der Photokathode der Photomultiplier. Der für den UV-Bereich optimierte sonnenblinde Photomultiplier EMR 541F ist für Strahlung oberhalb 400 nm nicht mehr empfindlich.](image)

1.3.3 Halogenglühlampen als Transfornormale für den UV-Spektralbereich

Im UV-Spektralbereich oberhalb 190 nm werden üblicherweise Deuterium-Lampen als Transfornormale für spektrale Beststrahlungsstärke und Strahldichte verwendet (1.1.3.4). Die spektrale Strahlungsleistung dieser Gasentladungslampen steigt zu kürzeren Wellenlängen an, während sie bei den Temperaturstrahler stark abfällt (vgl. Abbildung 1.1). Die Deuterium-Lampe besitzt jedoch große Nachteile, die von einer starken Alterung der Lampe und einer i. allg. geringen Reproduzierbarkeit der spektralen Strahlungsleistung herrühren. Bei untersuchten Lampentypen unterschiedlicher Hersteller wurde eine Alterung von mehr als 10^{-3} h^{-1} unterhalb von 250 nm festgestellt. Durch statistische Sprünge der Lampenleistung und durch eine sich abrupt ändernde Position des Plasmabogens ist die Reproduzierbarkeit von spektralen Messungen häufig schlechter als 6 %. Demgegenüber ist die Reproduzierbarkeit bei 1000 Watt Halogenglühlampen besser als 0,1 %
1.4 Aufbau eines neuen Meßplatzes für spektrale Bestrahlsungsstärke

und die Alterung der Lampen gemessen an der Lampenspannung ist nur etwa 10^{-5} h$^{-1}$ [110]. Das entspricht einer Drift der spektralen Bestrahlsungsstärke von weniger als z. B. 10^{-4} h$^{-1}$ bei 300 nm. Mit der UV-optimierten Spektralapparatur ist es inzwischen möglich, auch diese Lampentypen und andere Temperaturstrahler bis hinunter zu 200 nm zu kalibrieren [72]. Mit dem Hochtemperatur-Hohlraumstrahler BB3200pg existiert außerdem ein Primärnormal für spektrale Bestrahlsungsstärke (siehe 2.2), daß mit Strahlttemperaturen oberhalb 3200 Kelvin eine ähnliche spektrale Strahlungsverteilung mit einem hohen Strahlungsanteil im UV-Spektralbereich besitzt wie die Halogenglühlampen.

1.4 Aufbau eines neuen Meßplatzes für spektrale Bestrahlsungsstärke

Mit dem vorhanden Standardmeßplatz für spektrale Bestrahlsungsstärke konnten umfangreiche Erkenntnisse und Erfahrungen in der spektroradiometrischen Meßtechnik gewonnen werden, und Kalibrierungen können nun mit deutlich verringelter Meßunsicherheit gegenüber den Vorgängerapparaturen durchgeführt werden. Vorzüge und Schwachstellen des Spektroradiometers, wurden erfaßt und geeignete Verbesserungsmöglichkeiten aufgezeigt (siehe 1.2.2). Diese Erfahrungen konnten an einem neuen Meßplatz berücksichtigt werden. Zusätzlich wurde eine neue, lasergestützte Methode zur Strahlerkalibrierung mit in diesen neuen Meßplatz integriert, die eine zusätzliche und unabhängige direkte Rückführung auf die empfängergestützte radiometrische Skala ermöglicht (siehe 3.3).

Die Apparatur konnte erfolgreich aufgebaut und getestet werden und steht ab 1999 für Bestrahlsstärkekalibrierungen zur Verfügung.

1.4.1 Experimenteller Aufbau des Meßplatzes

![Abbildung 1.16 Aufbau des neuen Meßplatzes für spektrale Bestrahlsungsstärke.](image)

Die Monitorlampe, die vertikal auf die Ulbricht-Kugel strahlt, ist nicht eingezeichnet. In den Meßplatz ist bereits die Möglichkeit des Vergleiches zwischen HeNe-Laser und Schwarzen Strahler integriert (vgl. 3.3).

Für den neuen Meßplatz zur Bestrahlsstärkekalibrierung wurde der Strahlengang völlig neu konzipiert (Abbildung 1.16). Jegliche Abbildungsoptik vor dem Monochromator sollte vermieden werden. Als Bezugsfläche für die Bestrahlsungsstärke dient nun die Öffnung einer Ulbricht-Kugel, die

Die Strahlerseite des Systems befindet sich in einem eigenen Raum und ist durch eine Wand vom Spektro radiometer abgeschirmt. Daher benötigt der Strahlengang am Monochromator kein Gehäuse und ist für Kontrollen und Änderungen am Aufbau leicht zugänglich. Schwarzer Strahler und Arbeitsnormale, sowie Prüflampen können abwechselnd aufgebaut werden. Der in Abbildung 1.16 eingezeichnete HeNe-Laser mit verschiebarem Planspiegel und Trap-Detektor wird für die lasergestützte Methode zur Temperaturmessung eingesetzt (vgl. 3.3).

Die Monitorlampe ist in der schematischen Darstellung des Messplatzes nicht eingezeichnet. Sie strahlt von oben und senkrecht zu den beiden anderen Öffnungen eine weitere Öffnung der Ulbricht-Kugel (siehe 1.4.2.2).

1.4.2 Verbesserte Komponenten am neuen Messplatz

Aufbauend auf den Erfahrungen mit dem Standardmessplatz für die spektrale Bestrahlungsstärkekalibrierung wurden einige Komponenten teilweise übernommen, andere durch verbesserte Varianten ersetzt. So wurde die Eingangsoptik völlig neu konzipiert (1.4.2.1) und das ebene Reflexionsnormal durch eine Ulbricht-Kugel ersetzt. Dadurch mußte auch der Strahlengang für die Monitorlampe neu konzipiert werden (1.4.2.2), die nun in vertikaler Richtung strahlt. Der neue Messplatz hat nur noch einen Doppelmonochromator mit drei Gittersätzen, die automatisch gewechselt werden können (1.4.2.3). Bei den Detektoren wurde die Ge-Photodiode durch einen InGaAs-Detektor ersetzt, auf Photomultiplier und PbS-Detektor wurde nicht verzichtet (1.4.2.4).

1.4.2.1 Die Ulbricht-Kugel als Eingangsoptik

Bei der neuen Apparatur wurde auf ein ebenses Reflexionsnormal als Diffusor aus drei Gründen verzichtet und statt dessen eine Ulbricht-Kugel eingesetzt:

– Um mit dem Substitutionsprinzip zu arbeiten, muß ein ebenses Reflexionsnormal abwechselnd in Prüflampenposition und in Richtung der Monitorlampe gedreht werden. Abgesehen von der einzu haltenden Reproduzierbarkeit dieser Drehung leidet die Beschichtung des Reflexionsnormales unter den nicht zu vermeidenden fortwährenden leichten Erschütterungen.

– Damit die Strahlungsleistung des HeNe-Lasers mit der Bestrahlungsstärke des Schwarzen Strahlers verglichen werden kann (siehe 3.3), muß eine bekannte Öffnungsfläche bestrahlt werden. Wird die Öffnung einer Ulbricht-Kugel mit einer vermessenen Blende versehen, ist der Ort und die Fläche A_{ein} der Öffnung genau definiert.

Die verwendete Kugel hat zwei Eintrittsoffnungen jeweils eine für die Prüflampe und die Monitorlampe. Eine dritte Öffnung der Kugel dient als Austrittsoffnung und befindet sich direkt vor dem Monochromatorspalt (siehe Abbildung 1.17).

Es wurde eine Kugel verwendet, deren Innendurchmesser nach der Beschichtung 76 mm beträgt. Die Austrittsoffnung wurde mit 16x26 mm so gewählt, daß sie auch bei voll geöffneter Spaltbreite und bei voller Spalthöhe nicht sichtbegrenzend wirkt. Die Eintrittsoffnungen wurden mit einem Durchmesser von 16 mm entsprechend angepaßt, so daß das Verhältnis aus Öffnungsflächen zu Kugelfläche etwa 0,045 beträgt, um einen möglichst hohen Durchlaßgrad und eine hohe Stabilität zu erreichen. Die Beschichtung der Kugel besteht aus einer weißen Grundierung, auf der eine diffus reflektierende
1.4 Aufbau eines neuen Meßplatzes für spektrale Bestrahlungsstärke

Schicht Kodak White aufgebracht wurde, ein Pulver, daß hauptsächlich aus Bariumsulfat besteht und zur besseren Verarbeitung mit Binde- und Lösungsmitteln versehen ist [53]. Der Reflexionsgrad einer 1,5 mm dicken Schicht von Kodak White liegt zwischen 0,934 bei 250 nm und 0,991 bei 500 nm [53]. Dementsprechend liegt der Durchlaßgrad nach Gleichung (1.5) zwischen etwa 0,03 und 0,065. Der „Durchlaßgrad“ β eines ebenen Reflexionsnormales kann mit

$$\beta_{\text{Tablette}} = \frac{L_{\text{aus}}}{E_{\text{ein}}} \cdot \frac{\rho}{\pi}$$

(1.13)

abgeschätzt werden und ist somit um einen Faktor fünf bis zehn höher. Die relative Änderung des Durchlaßgrades wird dann nach Gleichung (1.6) um 9,2 bis 18,6 mal größer als eine mögliche relative Änderung des Reflexionsgrades. Untersuchungen haben ergeben, daß der Reflexionsgrad von Bariumsulfat weniger als 0,0033 a⁻¹ altert [24].

1.4.2.2 Die Strahlengang der Monitorlampe

Teil 1 Voraussetzungen zur Erweiterung und Verbesserung der spektralen Bestrahlungsstärkeskala

verwendet werden, um die Stabilität sowohl der Monitorlampe als auch von Prüflampen zusätzlich zu kontrollieren.

1.4.2.3 Das Monochromatorsystem

Vor dem Eintrittsspalt des Monochromators befindet sich ein Filterrad, daß mit mehreren Ordnungsfiltern für die verschiedenen Spektralbereiche bestückt ist. Auf diese Weise wird bei 400 nm, 700 nm, 1300 nm und 2000 nm die Strahlung für höhere Ordnungen der Beugung am Gitter bereits vor dem Doppelmonochromator herausgefiltert.

<table>
<thead>
<tr>
<th>Gitter</th>
<th>Striche / mm</th>
<th>Nutzbarer Spektralbereich</th>
<th>Blaze-Wellenlänge bei</th>
<th>Dispersion nm / mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>I - T312R0µ3</td>
<td>1200</td>
<td>200 nm – 700 nm</td>
<td>300 nm</td>
<td>1,35</td>
</tr>
<tr>
<td>II - T306R1µ0</td>
<td>600</td>
<td>600 nm – 1500 nm</td>
<td>1000 nm</td>
<td>2,7</td>
</tr>
<tr>
<td>III - T303R2µ0</td>
<td>300</td>
<td>1400 nm – 3000 nm</td>
<td>2000 nm</td>
<td>5,4</td>
</tr>
</tbody>
</table>

Tabelle 1.5 Gitter im neuen Monochromatorsystem.

Die Spalthöhe des Eintrittsspaltes ist über einen Schieber stufenweise von 4 mm bis 20 mm änderbar. Standardmäßig wird eine Spalthöhe von 10 mm verwendet. Die geometrische Spaltbreite läßt sich bei allen fünf vorhandenen Spalten mit Schrittmotoren nahezu stufenlos von 0 mm bis 10 mm einstellen. Ein Referenzpunkt bei der Einstellung 0 mm sichert eine gute Reproduzierbarkeit der Spalbtiefe-einstellung.

1.4.2.4 Die Detektoren

Mit den Detektoren wurden in der Standardmeßapparatur weitgehend gute Erfahrungen gemacht. Daher sind an dieser Konzeption keine grundlegenden Änderungen durchgeführt worden. Lediglich der Ge-Detektor wurde durch eine InGaAs-Photodiode ersetzt und zur Thermostatisierung der Detektoren wurden andere Maßnahmen ergriffen.

1.4.3 Vergleichsmessungen im Spektralbereich von 280 nm bis 1650 nm

Die neue Apparatur zur spektralen Bestrahlungsstärkekalibrierung ähnelt im Aufbau dem alten Spektroradiometer. Lediglich die Eingangsoptik vor dem Doppelmonochromator und die Einkoppelung der Monitorlampe in den Strahlengang wurde entscheidend modifiziert. Gittersätze und Detektoren wurden bereits für die alte Apparatur eindeutig charakterisiert oder sind aus Literatur und Herstellerangaben hinreichend bekannt.
Daher wurde zunächst die Verwendbarkeit der Monitorlampe für das Substitutionsmeßprinzip untersucht. Danach wurden für die neue Apparatur direkte Vergleiche zu den bestehenden Meßplätzen in Form von Bestrahlungsstärkekalibrierungen durchgeführt, die eine Aussage über die Qualität der Kalibrierung mit der neuen Apparatur erlauben.

Da zum Zeitpunkt der Messungen der PbS-Detektor noch nicht in Betrieb genommen wurde und die Detektorkühlung des Photomultipliers noch mit einem UV-absorbierenden Fenster versehen war, beschränken sich die Vergleichsmessungen auf den Spektralbereich von 280 nm bis 1650 nm.

1.4.3.1 Das Verhältnis Prüflampe zu Monitorlampe

Die Monitorlampe wird zur zeitlichen Stabilisierung des Meßsystems verwendet und ist damit ein entscheidender Faktor für die erfolgreiche Anwendung des Substitutionsprinzips. Von besonderer Bedeutung ist hierbei die zeitliche Stabilität des Monitorstrahlers und die Reproduzierbarkeit seiner Bestrahlungsstärke.

An den Vergleich der Monitorlampe mit dem zu prüfenden Strahler unter unterschiedlichen Bedingungen sind ebenso hohe Anforderungen zu stellen. Der Quotient $Q(\lambda)$ aus den Photosignalen, die von Prüflampe und Monitorlampe am Detektor erzeugt werden, sollte bei einer Wellenlängeneinstellung konstant sein:

$$Q(\lambda) = \frac{i_{\text{Prüf}}(\lambda)}{i_{\text{Mon}}(\lambda)} = \text{const.} \quad (1.14)$$

Abbildung 1.18 Stabilität des Photosignalquotienten $Q(\lambda)$ bei unterschiedlichen Systemeinstellungen.

Bei Verwendung anderer Detektoren (Photomultiplier oder InGaAs-Detektor), Spaltbreiten oder Gitter (Gitter I mit Blaze bei 300 nm, Gitter II mit Blaze bei 1000 nm) bleibt das Photostromverhältnis aus Prüflampe und Monitorlampe erhalten.

Die Abweichung vom Mittelwert von $Q(\lambda)$ bei Variation von Detektor, Spaltbreite oder Gittersatz in Abbildung 1.18 zeigt, daß der Signalquotient unabhängig von der gewählten Einstellung ist. Die auftretenden Abweichungen vom Mittelwert von weniger als ± 0,1 % liegen innerhalb der bei den Messungen aufgetretenen Standardabweichungen. Der dargestellte Spektralbereich wurde so gewählt,
1.4 Aufbau eines neuen Meßplatzes für spektrale Bestrahlungsstärke

daß sowohl mit Photomultiplier (PMT) und InGaAs-Photodiode gemessen werden konnte und zwei Gittersätze eingesetzt wurden. Abgesehen von der Invarianz gegenüber unterschiedlichen Einstellungen im Spektroradiometer ist es von Vorteil, wenn der spektrale Verlauf von $Q(\lambda)$ monoton ist und keine starken Krümmungen und Steigungen aufweist. Denn sollte sich die Wellenlängeneinstellung zwischen der Vermessung zweier Lampen geringfügig ändern, fällt der auftretende systematische Fehler bei monotonem $Q(\lambda)$ geringer aus.

1.4.3.2 Vergleich von Kalibrierungen an den Spektroradiometern

Des weiteren wurde die Lampe SL113 gegen ein Bezugsnormal (mit einer für alle Meßplätze identischen festen Skala) kalibriert. Für diese Messung entfällt die Meßunsicherheitskomponente vom
Schwarzen Strahler und es bleibt die Transferunsicherheit für die Übertragung der Skala von einer Lampe auf eine andere.

Abbildung 1.20 Abweichungen der Kalibrierungen am neuen Spektroradiometer zu Messungen an der UV-Apparatur und an der alten Apparatur zur Bestrahlungsstärkeskalibrierung. obere Kurve mit Kreisen: Kalibrierung von SL174 jeweils gegen den Schwarzen Strahler untere Kurve mit Quadraten: Kalibrierung von SL113 gegen ein Sekundärnormal mit fester Skala.

In das neu aufgebaute Spektroradiometer wurden Erfahrungen und Verbesserungen des vorhandenen Standardmeßplatzes aufgenommen, und mit einer nahezu automatisierten Vermessung großer Spektralbereiche wird die Handhabung und Meßgenauigkeit dieser Apparatur deutlich verbessert werden können.
Teil 2 Der Hochtemperatur-Hohlraumstrahler als Primärstrahlernormal für die spektrale Bestrahlungsstärke

Schwarze Strahler sind für die Radiometrie von großer Bedeutung. Bei gegebener Temperatur läßt sich der Energieinhalt eines solchen Strahlers berechnen und andere strahlungsphysikalische Größen ableiten.

In der Praxis werden Hochtemperatur-Hohlraumstrahler als Primärstrahlernormale für spektrale strahlungsphysikalische und photometrische Größen und zur Realisierung der Temperaturskala verwendet. Fixpunkt-Strahler, die bei der Schmelztemperatur eines Edelmetalles thermostatisiert werden, sind hochgenaue Primärnormale für die Realisierung der radiometrischen Temperatur nach der ITS-90 [81] und für die spektrale Strahldichte [69]. Kompakte Strahler mit variabel einstellbaren Temperaturen und kleinen Strahlerflächen werden verwendet, um die spektrale Strahldichte auf höhere Strahlungsniveaus zu übertragen [120]. Großflächige Hochtemperatur-Hohlraumstrahlern werden schließlich als Primärnormale für die spektrale Bestrahlungsstärke verwendet [67]. Der Einsatz von Hohlraumstrahlern beschränkt sich jedoch oft auf einen Temperaturbereich bis etwa 2300 Kelvin. Das Erreichen höherer Temperaturen bis etwa 3300 Kelvin erforderte eine langjährige Entwicklungsarbeit mit der Erprobung neuer Materialien und Hohlraumformen. Am Institut für optophysikalische Messungen (VNIIOFI) in Moskau, Rußland, wurden Strahler entwickelt, die für Arbeitstemperaturen bis zu 3300 Kelvin ausgelegt sind [89]. In der PTB in Braunschweig wurden ein Strahler aus Graphit (BB22p, siehe 2.6) und aus Pyrographit (BB3200pg, siehe 2.2) installiert und charakterisiert. Sie werden als Primärstrahlernormale für die spektrale Bestrahlungsstärke eingesetzt.

2.1 Grundlagen und Vorüberlegungen

Einige der wichtigsten Gleichungen zur Charakterisierung thermischer Strahler werden an dieser Stelle kurz vorgestellt. Weitere Einzelheiten und die Herleitung der Gleichungen sind in der allgemeinen Literatur zu finden [6][47][55].

2.1.1 Kirchhoffsches Gesetz

Befindet sich ein Körper im thermodynamischen Gleichgewicht, so wird die von ihm absorbierte Strahlungsleistung gleichzeitig vollständig emittiert, der spektrale Emissionsgrad \(\varepsilon_\lambda \) entspricht dem spektralen Absorptionsgrad \(\alpha_\lambda \):

\[
\alpha_\lambda(\lambda, T) = \varepsilon_\lambda(\lambda, T) .
\]

(2.15)

Ein Schwarzer Körper ist so definiert, daß er alle auftreffende Strahlungsleistung absorbiert, sein Absorptionsgrad ist also \(\alpha_\lambda(\lambda, T) = 1 \) und somit gilt gemäß Gleichung (2.15):

\[
\varepsilon_\lambda(\lambda, T) = 1 .
\]

(2.16)

Das Kirchhoffsche Gesetz gilt nicht, wenn Lumineszenz auftritt, also eine Wellenlängenverschiebung zwischen absorbiertem und emittierter Strahlung stattfindet. Dieses Gesetz gilt ebenfalls nicht, wenn in der Energiebilanz neben der Strahlungsbilanz noch andere Effekte (zum Beispiel Konvektion und Wärmeleitung) mit einbezogen werden müssen.

2.1.2 Planckscches Strahlungsgesetz und Gesetze von Rayleigh-Jeans und Wien

Am 19. Oktober 1900 konnte der Physiker Max Planck in einer Sitzung der Physikalischen Gesellschaft eine Gleichung vorstellen, die die Messungen an Hohlraumstrahlern seiner Kollegen in der Physikalisch-Technischen Reichsanstalt (PTR) in Berlin besser als alle bis dahin bekannten
Gleichungen wiedergab. Bereits am 14. Dezember 1900 trug er die komplette Herleitung der Planckschen Gleichung wiederum der Berliner Physikalischen Gesellschaft vor und leitete damit (verbunden mit der Energiequantelung) die Quantenphysik ein [80]. Unter der Annahme, daß der Energieaustausch der Wände eines Schwarzen Strahlers nicht kontinuierlich, sondern in Energie-Quanten \(h \nu \) stattfindet, stellte Planck die Formel für die Strahlungskonstanten (nach [6])

\[
\begin{align*}
\alpha &= 2 \pi h c^2 / \lambda^5 \exp\left(\frac{hc}{\lambda k T}\right) \\
c_1 &= 2 \pi h c^2 = 3,7417749 \times 10^{-16} \text{ W m}^2 \\
c_2 &= \frac{hc}{k} = 0,01438769 \text{ K m}
\end{align*}
\]

Durch diese Variante des Planckschen Strahlungsgesetzes berücksichtigt die Dispersionseigenschaften des von der Strahlung durchdrungenen Mediums. Bei Medien mit einer Brechzahl \(n \) ungleich 1 wird eine (spektrale) Korrektur der Phasengeschwindigkeit der Strahlung vorgenommen: \(c_g(\lambda) = c / n(\lambda) \).

Bei Messungen im Vakuum, an Luft oder in Argon-Schutzatmosphäre kann mit einer Unsicherheit von \(3 \times 10^{-4} \) die Brechzahl spektral unabhängig zu \(n = 1 \) gesetzt werden [105]. Es ergibt sich dann die oft verwendete vereinfachte Form des Strahlungsgesetzes:

\[
L_{\lambda}(\lambda, T) = c_1 \frac{1}{\pi \lambda^5} \exp\left(\frac{c_2}{\lambda k T}\right)
\]

Diese Variante des Planckschen Strahlungsgesetzes beschreibt die thermische Strahlung eines Schwarzen Strahlers vollständig, das heißt über den gesamten elektromagnetischen Spektralbereich.

\[\text{Abbildung 2.1} \quad \text{Die spektrale Strahlungskonstante eines Schwarzen Strahlers in Abhängigkeit von der Temperatur, berechnet nach dem Planckschen Strahlungsgesetz.} \]

In Abbildung 2.1 sind einige Isothermen eingezeichnet, die für den optischen Spektralbereich (100 nm bis 1000 \(\mu \)m) von Interesse sind. Hervorgehoben sind die Kurven bei der Temperatur des Goldpunk-
strahlers (1337,33 K), der Arbeitstemperaturen der Hochtemperatur-Hohlraumstrahler in der PTB (2900 K und 3300 K), sowie die mittlere Temperatur der Sonnenoberfläche (5763 K nach [6]).

Deutlich sichtbar ist die Notwendigkeit hoher Arbeitstemperaturen der Schwarzen Strahler, um im ultravioletten Spektralbereich zwischen 190 nm und 380 nm eine messbare spektrale Strahldichte zu erhalten.

Nach der klassischen Theorie ebener elektromagnetischer Wellen und dem Äquipartitionstheorem, demgemäß die innere Energie eines Oszillators pro Freiheitsgrad $u = kT$ ist, gelangten Lord Rayleigh und J. H. Jeans zu einem des infraroten Spektralbereich beschreibenden Gesetz:

$$L_\lambda(\lambda, T) = \frac{2 c k}{\lambda^4} T. \quad (2.21)$$

Dieses Rayleigh-Jeansche Strahlungsgesetz beinhaltet unweigerlich drei physikalische Widersprüche:
- Die Gesamtstrahlung $\int L_\lambda(\lambda, T)d\lambda$ ist unendlich.
- $L_\lambda(\lambda, T)$ besitzt kein Maximum. Dies steht im Widerspruch zum Experiment.
- Die speciale Strahldichte wächst zu kürzeren Wellenlängen ins Unendliche und führt damit zur sogenannten „Ultraviolettkatastrophe“.

Für den Bereich $hc / \lambda \ll kT$ läßt sich Gleichung (2.21) aus Gleichung (2.18) durch Entwicklung der Exponentialfunktion in eine Potenzreihe herleiten, hier hat das Rayleigh-Jeansche Strahlungsgesetz volle Gültigkeit. Dieser Bereich ist in Abbildung 2.1 als Rayleigh-Jeans Gebiet bezeichnet worden. Ein weiterer Ansatz zur Berechnung der Energieverteilung stammt von W. Wien, der sich der Maxwellschen Geschwindigkeitsverteilung bediente und auf empirischem Wege das Wien'sche Strahlungsgesetz ableitete:

$$L_\lambda(\lambda, T) = \frac{c_1}{\pi \lambda^5} \exp\left(-\frac{c_2}{\lambda T}\right). \quad (2.22)$$

Wenn man für $hc / \lambda \gg kT$ in Gleichung (2.18) die 1 gegenüber der Exponentialfunktion im Nenner vernachlässigt, erhält man Gleichung (2.22) und identifiziert die zunächst empirisch bestimmten Konstanten c_1 und c_2 als die Planckschen Strahlungskonstanten. Das Wien'sche Strahlungsgesetz ist mathematisch analytisch leichter zu handhaben als das Plancksche Strahlungsgesetz und weicht von diesem für Werte von $\lambda T < 2,89779 \cdot 10^6$ nm K um weniger als 0,7 % ab ([55], in Abbildung 2.1 als Wien Gebiet bezeichnet).

Führt man für Gleichung (2.18) eine Differentiation nach λ durch und setzt diese gleich null, so erhält man für das Maximum jeder Isotherme das Wien'sche Verschiebungsgesetz

$$\lambda_{\text{max}} T = 2,89779 \cdot 10^6 \text{nm K}, \quad (2.23)$$

Für höhere Temperaturen T verschiebt sich die Maximumwellenlänge λ_{max} derart nach kürzeren Wellenlängen, daß das Produkt $\lambda_{\text{max}} T$ konstant bleibt. Dies ist in Abbildung 2.1 an der gestrichelten Gerade zu erkennen.

2.1.3 Der effektive Emissionsgrad eines Schwarzen Strahlers

Der gerichtete spektrale effektive Emissionsgrad ε_{eff} jedes Ortes ξ der Wandelemente eines nichtisothermen Hohlraumes mit den Temperaturen T_{ξ} ist eine Funktion der gewählten Referenztemperatur T_0:

$$\varepsilon_{\text{eff}}(\xi, \omega, \lambda, T_{\xi}, T_0) = \frac{L_{\text{eff}}(\xi, \omega, \lambda, T_{\xi})}{L_{\text{BB}}(\lambda, T_0)}. \quad (2.24)$$
Hierbei ist \(L_{\text{eff}}(\xi, \omega, \lambda, T_\xi) \) die spektrale Strahldichte der „effektiven“ Strahlung. Unter effektiver Strahlung ist die Summe aus der thermisch selbst emittierten und der reflektierten Strahlung zu verstehen, die am Ort \(\xi \) jedes Hohlraumwandelementes in die Beobachtungsrichtung \(\omega \) abgegeben wird. Der Nenner in Gleichung (2.24) ist die spektrale Strahldichte \(L_{\text{BB}}(\lambda, T_0) \) eines Schwarzen Strahlers der Referenztemperatur \(T_0 \).

Der gerichtete spektrale Emissionsgrad \(\varepsilon_{\text{eff}}(\xi, \omega, \lambda, T_\xi, T_0) \) des nichtisothermen Hohlraumes läßt sich als Summe des spektralen effektiven Emissionsgrades \(\varepsilon_{\text{eff},0}(\xi, \omega, \lambda) \) des isothermen Hohlraumes und eines Korrekturterms für Nichtisothermie \(\Delta \varepsilon_{\text{eff}}(\xi, \omega, \lambda, T_\xi, T_0) \) darstellen:

\[
\varepsilon_{\text{eff}}(\xi, \omega, \lambda, T_\xi, T_0) = \varepsilon_{\text{eff},0}(\xi, \omega, \lambda) + \Delta \varepsilon_{\text{eff}}(\xi, \omega, \lambda, T_\xi, T_0) \quad (2.25)
\]

Die direkte Vermessung des Emissionsgrades nach Gleichung (2.24) erweist sich besonders bei hohen Strahlertemperaturen als sehr schwierig [5][33].

2.1.3.1 Berechnung mit Hilfe der Monte-Carlo-Methode

Am VNIIOFI wurde von Sapritsky und Prokhorov eine Methode erarbeitet, die eine rechnerische Simulation der Strahlungsverhältnisse in einem beliebigen nichtisothermen Hohlraum ermöglicht [82][91][92]. Die Formulierung der physikalischen Gegebenheiten basiert auf Überlegungen von Siegel und Howell [104] sowie auf Berechnungen von Ono [76].

Für den einfacheren Fall der Berechnungen der Strahlungsverhältnisse des isothermen Hohlraumes genügen rein geometrische und wahrscheinlichkeitstheoretische Näherungen (siehe 2.1.3.1 a). Um Korrekturen für die Nichtisothermie des Hohlraumes anzubringen, müssen jedoch auch energetische Näherungen berechnet werden (2.1.3.1 b).

2.1.3.1 a Geometrische Näherung für den isothermen Hohlraum

Wenn man zunächst die (eventuell nichtisotherme) Eigenstrahlung eines Hohlraumes vernachlässigt, kann man mit Hilfe der Monte-Carlo-Methode unter Kenntnis der vorhandenen Materialeigenschaften den effektiven Emissionsgrad des Schwarzen Strahlers mit rein geometrischen Betrachtungen berechnen.

Mit dem Kirchhoffschen Strahlungsgesetz (2.15) und der für opake Körper gültigen Beziehung \(\alpha + \rho = 1 \), läßt sich die Bestimmung des Emissionsgrades \(\varepsilon \) auf die Berechnung des Reflexionsgrades \(\rho \) zurückführen.

Das Prinzip der Berechnung der aus dem Hohlraum austretenden (emittierten) Strahlung mit der Monte-Carlo-Methode beruht dann auf der Ausnutzung des Helmholtschen Reziprozitätstheorems bzw. der Umkehr der Strahlrichtung [26]. Ausgehend von einem einfallenden Strahlenbündel unter dem Beobachtungswinkel \(\omega \), das durch viele Teilchen und deren Bahnen (Photonenbündel) simuliert wird, berechnet man die Strahlung, die nach Viefachreflexionen wieder aus dem Hohlraum austritt. Nach dem Reziprozitätstheorem entspricht dies umgekehrt genau der Strahlung, die nach Viefachreflexionen in die Beobachtungsrichtung reflektiert worden wäre.

Die reflektierte Strahlung an einem Hohlraumwandelement summier sich für jeden Einfallswinkel \(\vartheta \) aus drei Komponenten. Für diese Summe aus diffus- (\(D \)), gerichtet- (\(G \)) und retroreflektierter (\(R \)) Strahlung, muß gelten

\[
D(\vartheta) + G(\vartheta) + R(\vartheta) = 1 \quad \text{mit} \quad 0 \leq D, G, R \leq 1 . \quad (2.26)
\]
2.1 Grundlagen und Vorüberlegungen

Weitere Randbedingungen für die numerische Simulation sind:
2. Der gerichtet-hemisphärische Reflexionsgrad ρ sowie die Retroreflexionskomponente R hängen nicht vom Einfallswinkel ϑ der Strahlung ab.
4. Die diffuse und die gerichtete Reflexionskomponente stehen in einem engen Zusammenhang:

 $$ D(\vartheta) = D_0 \cos a \vartheta \quad \text{und} \quad G(\vartheta) = G_0 + D_0 (1 - \cos a \vartheta) $$

 D_0 und G_0 sind die Reflexionskomponenten für gerichtete und diffuse Reflexion bei senkrechtem Strahlungseinfall. Der Faktor $\cos a \vartheta$ wird für die Anisotropie des reflektierenden Mediums eingesetzt. Wenn sich das Verhältnis aus direkter und diffuser Reflexion mit dem Einfallswinkel ϑ ändert, ist der Anisotropiefaktor $a > 0$.
5. Der Hohlraum ist zur Hohlraumachse rotationssymmetrisch.

Für die im Rahmen dieser Arbeit gemachten Berechnungen wird zusätzlich von einer idealen rauhen Oberfläche ohne Anisotropie ausgegangen, also $a = 0$ und damit $D(\vartheta) = D_0$, sowie $G(\vartheta) = G_0$. Außerdem sei die Retroreflexionskomponente $R = 0$.

Die numerische Berechnung folgt einem festgelegten Algorithmus:

Ein Teilchen bzw. Photon mit der Wellenlänge λ wird außerhalb des Hohlraumes in eine durch die Beobachtungsbedingungen definierte Richtung ω in den Hohlraum geschickt. Es trifft am Ort ξ_k auf eine Stelle der Hohlraumwand und wird reflektiert. Die Auswahl, welche Art von Reflexion am jeweiligen Wandelement stattfindet, geschieht durch die Generation von Pseudo–Zufallszahlen η, die im Intervall $\{0,1\}$ gleichverteilt sind [82]. Ist $\eta < D(\vartheta)$, liegt diffuse Reflexion vor. Im Bereich $D(\vartheta) \leq \eta \leq 1 - R$ wird die Reflexion als gerichtet angesehen. Für $\eta > 1 - R$ findet Retroreflexion statt.

Je nach Art der Reflexion wird die reflektierte Strahlung weiterbehandelt. Der Anteil der Absorption am Hohlraumelement ξ_k wird durch ein statistisches Gewicht W_k behandelt. Zunächst wird jedes Teilchen der einfallenden Strahlung mit $W_0 = 1$ bewertet. Das statistische Gewicht W_k muß nach jeder Reflexion neu berechnet werden, wobei zwischen gerichteter und diffuser Reflexion zu unterscheiden ist:

- Für die gerichtete k-te Reflexion ergibt sich W_k direkt aus der Multiplikation des statistischen Gewichts W_{k-1} der vorangegangenen Reflexion mit dem Reflexionsgrad $\rho(\lambda)$:

 $$ W_k = \rho(\lambda) \ W_{k-1}. \quad (2.27) $$

 Die Richtung ω_k des reflektierten Strahls ergibt sich hierbei aus dem Reflexionsgesetz.

- Bei diffuser Reflexion wird zusätzlich noch ein diffuser Winkelfaktor $F(\xi_k)$ berücksichtigt. Dieser gibt das Verhältnis aus dem Öffnungswinkel Ω, unter dem die Hohlraumöffnung vom Punkt ξ_k aus gesehen wird, zum Halbraum an. Es ist somit gleichbedeutend mit der Wahrscheinlichkeit, daß ein Teilchen nach erfolgter diffuser Reflexion den Hohlraum durch eine Öffnung bzw. Blende verlässt:

 $$ F(\xi_k) = \frac{1}{\pi} \int_{\Omega} \cos \vartheta \xi \ d\Omega. \quad (2.28) $$

 Für diffuse Reflexion ist bei der k-ten Reflexion demnach das statistische Gewicht

 $$ W_k = \rho(\lambda) \ (1 - F_k(\xi)) \ W_{k-1}. \quad (2.29) $$

 Die Richtung ω_k des reflektierten Strahls wird bei diffuser Reflexion durch Zufallszahlen für die Richtungskomponenten bestimmt.
Teil 2 Der Hochtemperatur-Hohlraumstrahler als Primärstrahlnormale für die spektrale Bestrahlungsstärke

Die Berechnung für den Strahl i kann nach m_i Reflexionen abgebrochen werden, wenn das statistische Gewicht W unter einen vorher festgelegten Fehlerwert δ fällt oder der Strahl mit der neu festgelegten Richtung ω_k den Hohlraum durch die Hohlraumöffnung verläßt. Dann wird mit dem nächsten Teilchen fortgefahren, bis für jede Wellenlänge λ eine vorher festgelegte Anzahl von n Teilchen simuliert wurde.

Für jedes Teilchen resultiert rechnerisch ein effektiver Reflexionsgrad $\rho_i = W_k(k = m_i) / W_0$. Schließlich ergibt sich der effektive Gesamtemissionsgrad $\varepsilon_{\text{eff},0}$ für den isothermen Hohlraum aus dem Mittelwert aller resultierenden statistischen Gewichte:

$$\varepsilon_{\text{eff},0}(\lambda) = 1 - \frac{1}{n} \sum_{i=1}^{n} W_i \text{ mit } W_i = W_k(k = m_i). \quad (2.30)$$

Der Gesamtemissionsgrad $\varepsilon_{\text{eff},0}$ kann nach den Abbruchkriterien maximal $\varepsilon_{\text{eff},0} = 1 - \delta$ werden, was bei der Festlegung des Fehlerwertes δ zu berücksichtigen ist.

2.1.3.1 b Energetische Näherung des nichtisothermen Hohlraumes

Bei einem nichtisothermen Hohlraum muß die mit dem Materialemissionsgrad $\varepsilon(\lambda)$ selbstemittierte Strahlung $\varepsilon(\lambda) L_{\text{BB}}(\lambda, T_\xi)$ an jedem Punkt ξ_k zusätzlich berücksichtigt werden. In den Korrekturterm $\Delta \varepsilon_{\text{eff}}$ aus Gleichung (2.25) geht daher die Abweichung der Strahldichte bei der Temperatur T_ξ an jedem Punkt ξ_k zur Strahldichte bei der Referenztemperatur T_0 ein.

Für jedes der Teilchen i wird die gleiche Teilchenbahn mit den jeweils m_i Reflexionen wie im isothermen Fall verfolgt. Es wird in diesem Fall nicht zwischen gerichteter und diffuser Reflexion unterschieden und für jede Reflexion ergibt sich eine Differenz der Eigenemission von

$$\Delta \varepsilon(\xi_k, \omega, \lambda, T_\xi, T_0) = \varepsilon(\lambda) L_{\text{BB}}(\lambda, T_\xi) - L_{\text{BB}}(\lambda, T_0) L_{\text{BB}}(\lambda, T_0). \quad (2.31)$$

Diese Eigenemission am Ort ξ_k wird bei jeder folgenden Reflexion um den Materialreflexionsgrad $\rho(\lambda)$ geschwächt. Summiert man über alle Differenzen der Eigenemission bei jeder Reflexion jedes i-ten Teilchens und bildet den Mittelwert aller n Teilstrahlen, so ergibt sich der Korrekturterm für den nichtisothermen Hohlraum zu

$$\Delta \varepsilon_{\text{eff}}(\lambda, \xi_k, \omega, T_\xi, T_0) = -\frac{\varepsilon(\lambda)}{n} \frac{L_{\text{BB}}(\lambda, T_\xi)}{L_{\text{BB}}(\lambda, T_0)} \sum_{i=1}^{m_i} \sum_{k=1}^{m_i} \rho^{-1}(\lambda)[L_{\text{BB}}(\lambda, T_k) - L_{\text{BB}}(\lambda, T_0)]. \quad (2.32)$$

Die Summierung von Gleichung (2.30) und Gleichung (2.32) ergibt den effektiven spektralen Emissionsgrad ε_{eff} für den nichtisothermen Hohlraum nach Gleichung (2.25). Vergleiche mit anderen Methoden haben ergeben, daß Berechnungen an einigen Hohlräumen nach obigem Modell ein in weiten Bereichen übereinstimmendes Ergebnis liefern. Das von Prokhorov entwickelte Programm STEEP [83] wurde verwendet, um den effektiven Emissionsgrad verschiedener Modelle des verwendeten Hohlraumes zu bestimmen (siehe 2.4.2).

2.1.4 Meßblenden – Die Bestimmung der nutzbaren Flächen

Ein idealer Schwarzer Strahler ist ein vollkommen geschlossenes System. Da man aber die Strahlung außerhalb des Systems für Messungen nutzen will, muß man eine wohldefinierte Öffnung anbringen, die den effektiven Emissionsgrad des Strahlers minimal beeinflußt und möglichst homogene Strahlungsleistung durchläßt. Bei einem Hochtemperatur-Hohlraumstrahler ist eine Isothermie des gesamten Hohlraumes nicht zu erreichen. Es treten Zonen mit höheren und niedrigeren Temperaturen auf. Ein Strahler ist so zu optimieren, daß die Temperaturgradienten über den Hohlraum möglichst gering sind. Eine Strahleröffnung ist dann so anzuordnen und eine Meßblende als sichtbegrenzende Fläche so anzubringen, daß möglichst homogene Strahlung isothermer Herkunft auf einen Empfänger oder eine Empfängerebene trifft. Unter diesen Bedingungen ist die Fläche A_{BB} der Meßblende als

2.1.4.1 Berechnung der nutzbaren Flächen

Bei einem zylindrischen Strahler mit axialer Öffnung ist die maximale Blendengröße bei gegebenen Abständen mit Hilfe der Strahlgeometrie zu berechnen (Abbildung 2.2). Die nutzbare bestrahlte Fläche ist dann als die Fläche definiert, von der aus durch die Meßblende nur der Hohlraumboden und nicht die Hohlraumöffnung oder Seitenwände gesehen werden können.

Abbildung 2.2 Skizze zur Berechnung der nutzbaren bestrahlten Fläche.

Der Hohlraumboden mit dem Durchmesser D und die Hohlraumöffnung mit dem Durchmesser b bestimmen den maximal verwendbaren Meßblendetendurchmesser d und den nutzbaren bestrahlten Durchmesser B auf der Empfängerebene.

Aus dem inneren Strahlenbündel, das vom Hohlraumboden mit dem Durchmesser D direkt durch die Hohlraumöffnung mit dem Durchmesser b in der Entfernung x_{Db} geht, läßt sich der maximale Durchmesser $d = d_{max}$ der Meßblende bestimmen, die sich in der Entfernung x_{Db} befindet:

$$d_{max} = D - \frac{x_{Db}}{x_{Db}}(D - b) \text{.}$$ \hspace{1cm} (2.33)

Alle Meßblenden, deren Durchmesser d kleiner als d_{max} ist, sind für die Empfängerfläche mit dem Durchmesser B sichtbegrenzende Aperturblenden. Eine verwendete Meßblende sollte einen Durchmesser $d \ll d_{max}$ besitzen, damit auch bei leichter Fehljustierung die Meßblende sichtbegrenzend bleibt. Der Durchmesser B der nutzbaren bestrahlten Fläche in Abhängigkeit vom Meßabstand x_m zur Meßblende wird folgendermaßen berechnet:

$$B = \frac{D - \left(x_m - x_{Md} \frac{d}{D - d} \right)}{x_{Md} + \frac{x_{Md} d}{D - d}} \text{.}$$ \hspace{1cm} (2.34)

Da sich die Meßblende, wie in Abbildung 2.2 skizziert, vor dem Kreuzungspunkt des inneren Strahlenbündels befindet, vergrößert sich B mit abnehmendem Meßblendetendurchmesser d. Um die nutzbare bestrahlte Fläche befindet sich ein Halbschattenbereich, von dem aus nicht mehr der gesamte Hohlraumboden gesehen werden kann. Zusätzlich werden hier Bereiche der Hohlraumwandung und Teile der Blende in der Hohlraumöffnung sichtbar. Der Durchmesser der Empfängerfläche sollte also deutlich kleiner als B gewählt werden und möglichst zentrisch zur optischen Achse des Strahlers justiert sein.
2.1.4.2 Kalibrierung der Meßblenden

Sowohl für die Temperaturmessung als auch für die Bestrahlungsstärkekaliibrierung muß die strahlende Fläche des Schwarzen Strahlers sehr genau bekannt sein. Für die Bestimmung der Meßblendenfläche gibt es unterschiedliche Kalibriermethoden, die entweder den Durchmesser und Rundheitsabweichungen ermitteln [29][61], oder direkt bzw. indirekt die radiometrisch wirksame Blendenfläche bestimmen [30][58]. Die am Schwarzen Strahler verwendeten Meßblenden wurden mit bis zu drei verschiedenen Methoden kalibriert.

2.1.4.2 a Manuelle Ausmessung von Blendendurchmessern mit einem Meßmikroskop

Unter einem Mikroskop werden die Blenden mit einem Polygonzug vermessen. Dazu wird die Schneide der Meßblende an einem beliebigen Punkt \((x_1,y_1)\) anfahren. Danach wird die Entfernung zur horizontal gegenüberliegenden Schneide \((x_2,y_1)\) ermittelt. Von dort aus erfolgt die Entfernungsbestimmung zur vertikalen gegenüberliegenden Schneide \((x_2,y_2)\). Nach einer weiteren Entfernungsbestimmung in horizontaler Richtung und einer Messung in vertikaler Richtung ist wieder der Ausgangspunkt der Messung erreicht. Aus den Koordinaten zweier jeweils diagonal gegenüberliegender Punkte läßt sich jeweils ein Durchmesser berechnen:

\[
d_{ij} = \sqrt{(x_i-x_j)^2 + (y_i-y_j)^2} \tag{2.35}
\]

Auf diese Weise lassen sich mit verschiedenen Startpunkten einige Durchmesser in verschiedenen Richtungen der Blendenfläche bestimmen. Mit der Auftragung der verschiedenen Koordinaten \((x_i,y_i)\) läßt sich außerdem eine Rundheitsabweichung ermitteln und die Blendenfläche berechnen. Voraussetzung für diese Methode ist die Möglichkeit einer genau linearen Verschiebung der Meßblende in zwei exakt senkrecht zueinander stehenden Richtungen \(x\) und \(y\).

Die Einfachheit und schnelle Durchführbarkeit der Messungen ist von großem Vorteil. Dennoch ist diese Methode mit einer verhältnismäßig hohen Meßunsicherheit behaftet, da die manuelle Vermessung der Schneidenkante mit dem Auge unter den gegebenen Bedingungen nur auf etwa \(\pm 3 \, \mu m\) genau erfolgen kann. Bei jeweils zwanzig Startpunkten liegt die Standardabweichung der Durchmessersbestimmung bei etwa \(1 \, \mu m\) und die Unsicherheit der Flächenbestimmung ist kleiner als 0,1 %. Bei Vergleichen mit Ergebnissen der Methode der mechanischen Antastung lagen die Abweichungen im Bereich dieser Unsicherheit.

2.1.4.2 b Durchmessersbestimmung durch mechanische Antastung der Blendenschneide

In der Industrie werden hohe Qualitätsanforderungen an Produktionsabläufe gestellt. Zur Wahrung der Qualität werden genau vermessene Maße und Formen benötigt, die als Transfernormal verwendet werden können. In der PTB werden dazu hauptsächlich Zylinder und Kugeln bezüglich ihrer Außendurchmesser und Rundheit kalibriert. Im Fachlab. 5.31 "Maß und Form" werden Verschiebungskomparatoren verwendet, die die zu vermessenden Objekte mechanisch antasten [61].

Um eine hohe Meßgenauigkeit zu erreichen, werden an die Apparatur höchste Anforderungen gestellt. Da Temperaturänderungen, Änderungen des Luftdrucks und der relativen Luftfeuchte einen entscheidenden Einfluß auf die Längenmessung haben, wird die Apparatur in einem klimatisierten Reinraum betrieben. Die Meßblende muß möglichst exakt im Zentrum einer Präzisionsdrehspindelepositioniert werden, damit einerseits der Durchmesser und nicht Sekanten des Blendenkreises vermessen werden, und damit andererseits durch Drehung der Spindel bei gleichzeitiger Antastung mit dem Meßkopf Rundheitsabweichungen ermittelt werden können. Zunächst wird die Höhe der inneren Mantellinie der Blendenschneide ermittelt, von der aus dann ein oder mehrere Durchmesser bestimmt werden.
Mit der Methode der kleinsten Summe der Abweichungsquadrate wird aus den vermessenenen Durchmessern und den Rundheitsabweichungen der Blende ein mittlerer Durchmesser bestimmt, aus dem dann die Blendenfläche berechnet werden kann. Diese Methode setzt möglichst formtreue (runde) Blenden voraus. Der Blendendurchmesser kann mit Meßunsicherheiten bis herab zu 0,03 µm bestimmt werden [61]. Die Hauptbeitrag zur Meßunsicherheit bei der Ermittlung der Blendenfläche rührt daher von den Rundheitsabweichungen her, die bis zu einigen Mikrometern betragen können.

2.1.4.2 Direkte Optische Vermessung der Blendenfläche mit einem Lasermeßsystem

Wenn eine Blendenfläche mit einer konstanten und homogenen Bestrahlungsstärke \(E \) bestrahlt wird, und die durch die Blende transmittierte Gesamtstrahlungsleistung \(P \) gemessen wird, läßt sich die Blendenfläche \(A \) aus dem Quotienten aus Strahlungsleistung und Bestrahlungsstärke direkt berechnen:

\[
A = \frac{P}{E}.
\]

Ein Laser strahlt mit der konstanten Laserleistung \(P_L \), die zunächst mit einem Detektor in einer Übbricht-Kugel gemessen wird. Die zu vermessende Blende wird dann vor der Kugel auf einer xy-Verschiebung montiert. Die Blende wird in äquidistanten Schritten \(\Delta x \) und \(\Delta y \) verschoben und die durchgelassene Laserleistung \(P_{jk} \) an jeder Positionen \((j,k)\) gemessen. Die von der Blendenfläche durchgelassene Gesamtleistung wird durch Summation über alle \(n_x \) und \(n_y \) Schritte ermittelt:

\[
P = \sum_{j=1}^{n_x} \sum_{k=1}^{n_y} P_{jk}.
\]

(2.36)

Die Bestrahlungsstärke auf der Blende entspricht der Laserleistung pro Flächeneinheit:

\[
E = \frac{n_x n_y P_L}{n_x \Delta x n_y \Delta y} = \frac{P_L}{\Delta x \Delta y}.
\]

(2.37)

Aus dem Quotient von Gleichung (2.36) und (2.37) läßt sich dann die Blendenfläche berechnen. Das Prinzip dieser Methode ist einfach und bestimmt direkt die radiometrisch wirksame Blendenfläche. Für exakte Kalibrierungen sind jedoch einige Randbedingungen genauestens einzuhalten. Die Blende muß reproduzierbar in genau bekannten Schritten \(\Delta x \) und \(\Delta y \) bewegt werden können und senkrecht zum Strahlengang des Lasers einjustiert sein. Die Öffnung der Übbricht-Kugel und ihr Durchmesser muß groß genug sein, damit alle durchgehende Strahlung in die Kugel und auf den Detektor gelangt. Auf diese Weise wird auch alle durch Beugung erzeugte Streustrahlung erfaßt. Der Laser muß eine stabile Ausgangsleistung und einen gut abgegrenzten Strahlungsfleck haben, dessen Durchmesser kleiner als der Blendendurchmesser sein sollte, um in der Blendenmitte die Laserleistung \(P_L \) als Referenz messen zu können. Die Schrittweiten \(\Delta x \) und \(\Delta y \) müssen kleiner als der Blendendurchmesser sein und möglichst auch kleiner als der Durchmesser des Lasersstrahls. Der Anschluß an die Längen- respektive die Flächeneinheit erfolgt über die Kalibrierung der xy-Verschiebung. Bei der Kalibrierung einer Blende mit 3 mm Durchmesser konnte eine relative Meßunsicherheit \(k = 1 \) von \(1,6 \cdot 10^{-4} \) erreicht werden [58].

2.1.5 Untersuchung der Homogenität von Bestrahlungsstärke – das cos⁴–Gesetz

2.1.5.1 Geometrische Anordnung von Strahler und Detektor

Im Folgenden sei ein x-Scan betrachtet, für den die geometrischen Bedingungen (stark überzeichnet) in Abbildung 2.3 dargestellt sind. Bezugsystem für die Messungen ist die Normale zur x-Achse der Verschiebung im Punkt \(x = 0 \) und der Winkel \(\epsilon \) zwischen \(R \) und der Verbindung \(r \) von Strahler und...
Detektor. Der Detektor mit der Empfängerfläche A_2 ist im Koordinatenursprung um den Winkel β gegen R geneigt. Ist der Detektor um x verfahren, muß eine Projektion $A_{2,P}(\varepsilon_r) = A_2 \cos(\varepsilon_r + \beta)$ der Empfängerfläche A_2 senkrecht zur Verbindung r zwischen Strahler und Detektor durchgeführt werden. Der Strahler ist um den Winkel α gegen R geneigt und $A_{1,P}(\varepsilon_r) = A_1 \cos(\varepsilon_r + \alpha)$ ist die Projektion senkrecht zur Verbindung r. Die Strahlungsübertragung zwischen Strahler und Detektor kann nun für jeden Punkt x des Scans mit Hilfe des photometrischen Grundgesetzes (1.2) berechnet werden.

Abbildung 2.3 Geometrie der Strahler-Detektor Anordnung für einen x-Scan. Bezugsrahmen ist die x-Achse der Detektorverschiebung und die Normale R im Punkt $x = 0$. Die Strahlerfläche ist um den Winkel α gegen R geneigt, die Fläche des Detektors um den Winkel β.

2.1.5.2 Berechnung der winkelabhängigen Bestrahlungsstärke
Zur Vereinfachung sei angenommen, daß die Flächen A_1 und A_2 klein sind gegen das Quadrat ihres Abstands r^2, denn dann muß die Integration über die Flächen nicht berücksichtigt werden. Außerdem sei die Strahldichte $L(\varepsilon_r)$ für jeden Winkel ε_r konstant. Die Strahlstärke $I(\varepsilon_r)$ des Strahlers ist dann

$$I(\varepsilon_r) = L_1 A_1 \cos(\varepsilon_r + \alpha) . \quad (2.38)$$

Die auf den Detektor treffende Bestrahlungsstärke ist $E(\varepsilon_r) = d\Phi / A_2$ mit dem Strahlungsleistungsanteil $d\Phi = L d\Omega$. Der bestrahlte Raumwinkel ist gegeben durch $d\Omega = A_{2,P} / r^2$. Zur Umrechnung auf das Koordinatensystem ist noch der winkelabhängige Abstand $r = R / \cos(\varepsilon_r)$ zu berücksichtigen und man erhält

$$E(\varepsilon_r) = I \frac{d\Omega}{A_2} = I \frac{\cos(\varepsilon_r + \beta)}{r^2} = L_1 A_1 \cos(\varepsilon_r + \alpha) \cos(\varepsilon_r + \beta) \frac{\cos^2(\varepsilon_r)}{R^2} . \quad (2.39)$$

2.1.5.3 Korrekturfunktion für die Verkantung
Um auf das Bezugssystem Schwarzer Strahler umrechnen zu können, wird eine Winkelkorrekturfunktion $N(\varepsilon_r, \alpha, \beta)$ eingeführt, die alle Berechnungen auf die Bestrahlungsstärke $E(\varepsilon_r = -\alpha)$ entlang der Strahlernormalen bezieht:

$$N(\varepsilon_r, \alpha, \beta) = \frac{E(\varepsilon_r)}{E(-\alpha)} \frac{\cos(\varepsilon_r + \alpha) \cos(\varepsilon_r + \beta) \cos^2(\varepsilon_r)}{\cos(\beta - \alpha) \cos^2(-\alpha)} . \quad (2.40)$$

Zur Korrektur der Messungen um die Verkantung, wird das Meßsignal $i(\varepsilon_r)$ durch die Winkelkorrekturfunktion $N(\varepsilon_r, \alpha, \beta)$ geteilt und man erhält das korrigierte Meßsignal

$$i_k = i(\varepsilon_r) / N(\varepsilon_r, \alpha, \beta) . \quad (2.41)$$
Für eine anschauliche Darstellung der verbleibenden Bestrahlungsstärkeänderungen wird die relative Änderung des korrigierten Meßsignals \(i_k(\varepsilon_r) \) gegenüber dem korrigierten Meßsignal \(i_k(-\alpha) \) auf der Strahlernormalen graphisch gegen den Abstand zum Strahlungszentrum aufgetragen. Hierbei muß der gemessene Abstand \(x \) auf \(x' = x - \Delta x \) verschoben werden, um eine Zentrierung um das Zentrum zu erhalten.

2.1.5.4 Das cos⁴-Gesetz

Wenn weder Strahler noch Detektor verkantet sind, also \(\alpha = \beta = 0 \) gilt, reduziert sich die Gleichung (2.39) zu

\[
E(\varepsilon_r) = L_l A_1 \cos^4(\varepsilon_r) \frac{R}{R^2}. \tag{2.42}
\]

Auf einem ebenen Empfänger mit ausgedehnter Fläche variiert demnach die Bestrahlungsstärke \(E(\varepsilon_r) \) mit \(\cos^4(\varepsilon_r) \). Dies ist zum Beispiel bei der Verwendung von ebcenen Reflexionsnormalen als bestrahltes Element zu beachten. Bei einem Durchmesser eines Reflexionsnormales von 10 cm, das im Abstand von einem Meter zum Schwarzen Strahler steht, variiert die Bestrahlungsstärke von der Mitte bis zum Rand um 0,5 %. Ist hier der für Messungen genutzte Durchmesser auf dem Reflexionsnormal kleiner als 4,5 cm, so wird die Abweichung kleiner als 0,1 %.

2.1.5.5 Beurteilung von Meßdaten

Bei Scans mit Filterdetektoren vor dem Schwarzen Strahler wurde versucht, die Verkantungen möglichst klein zu halten. Bei der Ausmessung einer Fläche mit einem Durchmesser von 10 cm kann eine geringfügige Verkantung des Detektors oder des Strahlers bereits zu verfälschten Meßergebnissen führen. Die grafische Darstellung erlaubt dann eine Korrektur der Daten durch empirische Ermittlung von \(\alpha \), \(\beta \) und \(\Delta x \) durchzuführen. Diese Art der Ermittlung soll im Folgenden mit zwei simulierten Messungen verdeutlicht werden. In Abbildung 2.4 Kurve a.) wurde die Messung der Bestrahlungsstärke für einen idealen Schwarzen Strahler berechnet, der gegenüber der x-Scanachse um \(\alpha_0 = 0,5^\circ \) verkantet ist und der mit einem um \(\beta_0 = 2^\circ \) verkanteten Detektor vermessen wird. Auf den ersten Blick ist eine Unsymmetrie der Meßdaten aufgrund der Verkantung kaum erkennbar, jedoch liegt der Mittelpunkt der Messungen nicht bei \(x = 0 \) mm.

Eine einfache cos⁴-Korrektur nach Gleichung (2.41) mit \(\alpha = \beta = 0^\circ \) ergibt in Abbildung 2.5 a.) die für den Lambertstrahler zu erwartende Gerade, die jedoch gegenüber dem Koordinatensystem verkantet
ist. Erst die Korrektur um $\alpha = \alpha_0$ und $\beta = \beta_0$ hebt diese Drehung auf. Für den Lambertschen Strahler ist diese Korrektur jedoch nicht von einer Korrektur mit $\alpha = 0°$ und $\beta = \alpha_0 + \beta_0$ zu unterscheiden (beide Kurven sind deckungsgleich mit der 0,0 % -Achse).

Messungen am vorhandenen Hohlraumstrahler sind immer leicht inhomogen, wie es in Kurve b.) in Abbildung 2.4 simuliert wird. Wegen der Rotationssymmetrie des Hohlraumes wird – auf jeden Fall horizontal – nach der Korrektur ein symmetrisches Ergebnis erwartet. Die Verkantung um $\alpha_0 = 0,5°$ und $\beta_0 = 2°$ wird in Kurve b.) deutlich sichtbar. Dadurch lassen sich auch kleine Verkantungen erkennen und korrigieren, wie in Abbildung 2.5 b.) dargestellt ist. Wenn im Folgenden diese Korrekturen bei den Messungen zur Strahlungsverteilung durchgeführt werden, so ist dies besonders vermerkt.

2.1.6 Die spektrale Selbstkalibrierung des Schwarzen Strahlers

Der Hauptparameter für die Berechnung der Bestrahlungsstärke eines Schwarzen Strahlers ist die radiometrische Temperatur T_{BB}, die leicht über weite Bereiche variiert werden kann. Die Genauigkeit der Messung von T_{BB} bestimmt im Wesentlichen die Meinungssicherheit der Bestrahlungsstärkeskala. Es ist deshalb zwingend nötig, die Möglichkeiten der Temperaturbestimmung des Schwarzen Strahlers durch Vergleichsmessungen und durch weitgehend von der Temperaturbestimmung unabhängige Experimente zu überprüfen.

Ebenso von Bedeutung ist der spektrale Verlauf des effektiven Emissionsgrades $\varepsilon_{BB}(\lambda)$ des Schwarzen Strahlers; dieser darf sich über den gesamten Spektralbereich nicht ändern.

Eine Möglichkeit zur Überprüfung dieser Bedingungen bietet die spektrale Vermessung des Strahlerspektrums mit einer geeigneten Spektrographen. Die Durchlaßfunktion $D(\lambda)$ des vermessenden Spektrographen, bestehend aus der spektralen Empfindlichkeit $s_{det}(\lambda)$ des Detektors und dem Transmissionsgrad $\tau_{mon}(\lambda)$ des Monochromators muß dazu bekannt sein. Sie kann nur mit großem Aufwand ermittelt werden und ist im Allgemeinen zeitlich nicht sehr stabil.

2.1.6.1 Die Methode der Selbstkalibrierung

Verwendet man den Schwarzen Strahler in zeitlich kurzen Abständen bei verschiedenen Temperaturen zur Kalibrierung des Spektrographen, so können aus der scheinbaren Änderung der Durchlaßfunktion $D(\lambda)$ Rückschlüsse auf die Art der Temperaturfehlmessung gemacht werden. Das Photosignal $i(\lambda, T)$ am Detektor

$$i(\lambda, T) = E_{BB}(\lambda, T) D(\lambda)$$ \hspace{1cm} (2.43)
2.1 Grundlagen und Vorüberlegungen

Bei Messungen mit zwei verschiedenen Strahlertemperaturen T_1 und T_2 kann mit Gleichung 2.43 die zweite Messung mit der ersten kalibriert werden:

$$E_{\text{cal}}(\lambda, T_{2,\text{cal}}) = i(\lambda, T_2) \frac{E_{\text{BB}}(\lambda, T_1')}{i(\lambda, T_1')}. \tag{2.44}$$

Die auf diese Weise selbstkalibrierte spektrale Bestrahlungsstärke $E_{\text{cal}}(\lambda, T_{2,\text{cal}})$ kann nun mit der aus der Temperaturmessung berechneten Bestrahlungsstärke $E_{\text{BB}}(\lambda, T_2)$ verglichen werden. Ebenso kann mit Hilfe eines nichtlinearen numerischen Fits aus $E_{\text{cal}}(\lambda, T_{2,\text{cal}})$ die Temperatur $T_{2,\text{cal}}$ ermittelt werden und mit der durch die Temperaturmessung bestimmte Temperatur T_2 verglichen werden.

2.1.6.2 Auflösungsvermögen und Grenzen der Selbstkalibrierung

Eine sinnvolle Auswertung mit der Methode der Selbstkalibrierung ist nur möglich, wenn eine Bezugstemperatur T_1 als gegeben vorausgesetzt wird. Es läßt sich zeigen, daß unendlich viele Temperaturpaare T_1 und T_2 existieren, die auch für beliebig kleine Meßunsicherheiten das aus den Gleichungen 2.43 und 2.44 gebildete Gleichungssystem erfüllen würden. Sind weder die Temperatur konstant noch die Durchlaßfunktion $D(\lambda)$ bekannt, ist ein derartiges Gleichungssystem unbestimmt und läßt sich im Rahmen vorhandener Unsicherheiten auch numerisch nicht eindeutig lösen. Die sich ergebenden Temperaturpaare T_1' und T_2' liegen in etwa um die gleiche Differenz ΔT zu T_1 und T_2 verschoben (siehe Kurve in Abbildung 2.6). Auch bei Verwendung von mehreren Temperaturen bleibt das Gleichungssystem um mindestens eine Unbekannte unbestimmt. Die Methode läßt sich also nicht zur absoluten Temperaturmessung verwenden, dazu wäre mindestens eine genaue Kenntnis von $D(\lambda)$ nötig.

Eine Selbstkonsistenzüberprüfung bei verschiedenen Strahlertemperaturen läßt sich aber durchaus durchführen. Hierbei muß die Bezugstemperatur T_1 als bekannt und korrekt ermittelt vorausgesetzt werden, es wird also $T_1 = T_1$ angenommen. Hat man mehrere Messungen bei verschiedenen Temperaturen T_i, werden alle Messungen nach Gleichung (2.44) gegen die Meßwerte $i(\lambda, T_i)$ und die spektrale Bestrahlungsstärke $E_{\text{BB}}(\lambda, T_i)$ bei dieser Bezugstemperatur kalibriert. Die relative spektrale Abweichung von $E_{\text{cal}}(\lambda, T_{i,\text{cal}})$ zu $E_{\text{BB}}(\lambda, T_i)$:

$$\frac{E_{\text{cal}}(\lambda, T_{i,\text{cal}}) - E_{\text{BB}}(\lambda, T_i)}{E_{\text{BB}}(\lambda, T_i)} = \frac{i(\lambda, T_i)}{i(\lambda, T_i')} \cdot \frac{E_{\text{BB}}(\lambda, T_i)}{E_{\text{BB}}(\lambda, T_i')} - 1,$$ \tag{2.45}

kann Aufschluß über die Temperaturfehlmessungen bei T_i geben. Abbildung 2.6 gibt ein Beispiel für die Auswertung der Temperaturfehlmessung mit verschiedenen Möglichkeiten der Temperaturfehler, die alle zu einem sehr ähnlichen Ergebnis führen. Die Meßdaten $i(\lambda, T_i)$ sind simuliert und entsprechen dem spektralen Verlauf zweier Schwarzer Strahler mit den Temperaturen $T_1 = 3000 \text{ K}$ und $T_2 = 3200 \text{ K}$. Für die Berechnung der spektralen Bestrahlungsstärken $E_{\text{BB}}(\lambda, T_i')$ wurden die Temperaturen $T_i' = T_i + \Delta T_i$ mit den Temperaturfehlmessungen ΔT_i eingesetzt.

Wenn die Bezugstemperatur T_1' nicht eindeutig festgelegt wurde (also $\Delta T_1 \neq 0 \text{ K}$), ergeben sich unendlich viele mögliche Kombinationen von ΔT_1 und ΔT_2 mit identischem Kurvenverlauf. Die oberen vier Kurven in Abbildung 2.6 entsprechen einer derartigen Konstellation, wobei zur Veranschaulichung Kombinationen mit leicht unterschiedlichem Kurvenverlauf verwendet wurden. Die untere Kurve (nahezu auf der x-Achse) mit $\Delta T_1 = -10 \text{ K}$ und $\Delta T_2 = -11,36 \text{ K}$ zeigt ein mögliches Temperaturpaar, das dem Ergebnis von $\Delta T_1 = \Delta T_2 = 0 \text{ K}$ in etwa entsprechen würde. Die Darstellung deutet an, daß für die Kurve die Abweichung nicht über den gesamten Spektralbereich bei Null liegt.

Tatsächlich gibt es für den idealen Schwarzen Strahler kein Temperaturpaar T_1 und T_2 mit $\Delta T_1 \neq 0 \text{ K}$ und $\Delta T_2 \neq 0 \text{ K}$, bei dem die Abweichung über den gesamten Spektralbereich verschwindet. Jedoch läßt sich der Kurvenverlauf sehr gut anpassen (in diesem Beispiel $< 0,016 \%$), so daß er selbst bei spektralen Messungen mit einer sehr guten Reproduzierbarkeit von etwa $0,02 \%$ nicht von null unterschieden werden kann.
58

Abbildung 2.6 Abweichungen bei der Selbstkalibrierung.
Für die Temperaturen \(T_1 = 3000 \text{ K} \) und \(T_2 = 3200 \text{ K} \) wird der Einfluß der Temperaturfehlmessung \(\Delta T_1 \) und \(\Delta T_2 \) dargestellt.

Erst wenn \(T_1 = T_1 \) angenommen wird (also \(\Delta T_1 = 0 \text{ K} \)), kann \(\Delta T_2 \) eindeutig bestimmt werden. Bei der graphischen Auswertung von Meßdaten wird \(T_2 \) hierzu so lange geändert, bis die Abweichung verschwindet. Dieses Ergebnis läßt sich auch mit einem nichtlinearen numerischen Fit erreichen, der \(T_{2,\text{cal}} \) aus den Werten für \(E_{\text{cal}}(\lambda, T_{2,\text{cal}}) \) aus Gleichung (2.44) bestimmt. Dann ergibt sich die Temperaturfehlmessung von \(T_2 \) zu

\[
\Delta T_2 = T_2 - T_{2,\text{cal}} .
\] (2.46)

Der kurzwellige Spektralbereich reagiert wesentlich empfindlicher, da hier die Änderung der spektralen Bestrahlungsstärke mit der Temperatur deutlich größer ist, als im infraroten Spektralbereich. Im dargestellten Beispiel nimmt die Abweichung bei 280 nm um 0,005 K\(^{-1}\) zu, während sie bei 1000 nm nur noch um 0,0014 K\(^{-1}\) steigt.

Zur Selbstkonsistenzprüfung der Temperaturmessung und des Schwarzen Strahlers sollte daher der kurzwellige Spektralbereich verwendet werden, sofern die Meßunsicherheit der Spektralapparatur dies zuläßt.

2.1.6.3 Abweichungen vom idealen Schwarzen Strahler durch Absorption

Wenn ein Prozeß zu einer Absorption führt, reduziert er die Transmission und somit das Meßsignal \(i(\lambda, T) \) um eine Absorptionsfunktion \(\alpha(\lambda) \). Führt man eine Absorptionskorrektur \(A(\lambda) = 1 - \alpha(\lambda) \) ein, so hat diese im Bereich der Absorption Werte kleiner eins. Gleichung (2.43) muß dann erweitert werden zu

\[
i(\lambda, T) = E_{\text{BB}}(\lambda, T) \cdot A(\lambda) \cdot D(\lambda) .
\] (2.47)

Die Absorption wäre also unter Kenntnis der Strahltensur T und der Durchlaßfunktion \(D(\lambda) \) aus den Meßwerten \(i(\lambda, T) \) direkt berechenbar. Bei der spektralen Selbstkalibrierung nach Gleichung (2.44) würde die spektrale Absorptionskorrektur allerdings gänzlich gekürzt werden. Für den Fall einer temperaturabhängigen Absorption \(\alpha(\lambda, T) \) lassen sich allerdings sehr präzise Aussagen über deren Zu- oder Abnahme machen.
2.1 Grundlagen und Vorüberlegungen

Wird Gleichung (2.44) um die Korrekturterme \(A_1(\lambda, T_1) \) und \(A_2(\lambda, T_2) \) erweitert, ergibt sich für die relative Änderung der Absorptionskorrektur

\[
\frac{A_2(\lambda, T_2)}{A_1(\lambda, T_1)} - 1 = \frac{i(\lambda, T_2)}{i(\lambda, T_1)} \cdot \frac{E_{BB}(\lambda, T_1)}{E_{BB}(\lambda, T_2)} - 1 .
\]

(2.48)

Die relative Änderung der Absorptionskorrektur \(A(\lambda, T) \) und damit der Transmission wird also direkt in der spektralen Selbstkalibrierung sichtbar, wie sie mit Gleichung (2.45) dargestellt wird.

2.1.6.4 Nachweis der Gesamtabsorption über das Meßsignal

Geht man davon aus, daß die Absorption nicht in breiten Banden, sondern in scharfen Linien stattfindet, läßt sich, durch numerische Glättung des Meßsignals, die Absorption für jede Temperatur zusätzlich direkt bestimmen. Dazu wird das Meßsignal \(i(\lambda, T) \) durch einen Medianfilter derart geglättet, daß alle von einer Grundlinie abweichenden Meßwerte (Linien) auf diese Grundlinie interpoliert werden. Man erhält auf diese Weise das geglättete Meßsignal \(i_{\text{glatt}}(\lambda, T) \), das somit weitgehend von jeder Absorptionslinie bereinigt wurde. Geht man nun davon aus, daß \(i(\lambda, T) \) Gleichung (2.47) erfüllt und \(i_{\text{glatt}}(\lambda, T) \) seine Entsprechung in Gleichung (2.43) hat, ergibt sich die Absorptionskorrektur

\[
A(\lambda, T) = \frac{i(\lambda, T)}{i_{\text{glatt}}(\lambda, T)} .
\]

(2.49)

Es ließe sich also direkt die Absorption \(\alpha(\lambda, T) = 1 - A(\lambda, T) \) angeben, während in Gleichung (2.48) nur die relative Änderung derTransmission angegeben werden konnte.

Diese Methode ist allerdings nur anwendbar, wenn die Standardabweichung des Meßsignals weit unter der Höhe der Absorptionslinie liegt, weil sie ansonsten bei der Glättung nicht vom statistischen Rauschen der Meßwerte unterschieden werden kann.

2.1.6.5 Nachweis von Absorptionen – flammenlose Atomabsorptionsspektroskopie

Soll ein Schwarzer Strahler als Primärnormal verwendet werden, müssen Abweichungen des spektralen Verlaufs vom Planckschen Spektrum vermieden werden. Bei den hohen Strahlertemperaturen werden jedoch alle Fremdstoffe im Hohlraum atomisiert und können so zur Reaktion mit anderen Stoffen oder zur Resonanzabsorption angeregt werden.

In der physikalischen Chemie macht man sich diesen Effekt zu Nutze, um Metalle in sehr geringer Konzentration nachzuweisen \([40][62]\). Der zu untersuchende Stoff wird in einer Graphitrohrküvette unter Argon-Schutzgas kurzzeitig auf bis zu 2970 Kelvin erhitzt, so daß der zu untersuchende Stoff vollständig atomisiert wird. In diesem Zustand wird Strahlung an elementspezifischen Wellenlängen absorbiert. Die Zunahme der Absorption gegenüber Referenzlösungen mit einer bekannten Konzentration des Metalles läßt unter Anwendung des Lambert-Beerschen Gesetzes sehr empfindlich auf die Menge des Metalles rückschließen: Die gemessene Extinktion ist der Elementkonzentration im zu untersuchenden Stoff proportional. Die Nachweisgrenzen beispielsweise von Co liegen bei \(5 \times 10^{-12} \) g \([40]\)

Diese Methode ist derart empfindlich, daß auf höchste Reinhaltung der Graphitrohrküvette und des Schutzgases geachtet werden muß.

2.1.6.6 Schnelles Monochromatorsystem für spektrale Messungen

Abbildung 2.7 Schematischer Aufbau des Spektroradiometers IS 320D.
Schnell rotierende Gitter (G1 und G2) auf einer gemeinsamen Drehachse erlauben die Vermessung von Spektren im Bereich 250 nm bis 700 nm in weniger als einer Minute.

Um zuverlässige Aussagen über das spektrale Verhalten des Schwarzen Strahlers bei verschiedenen Temperaturen zu erhalten, ist ein schnell messendes System erforderlich. Das Spektroradiometer IS 320D der Firma Instrument Systems ist in der Lage, Spektren von 280 nm bis 700 nm von ausreichender Qualität in schneller Folge zu vermessen. Kernstück des Gerätes ist ein Doppelmono-

Abbildung 2.8 Das Monochromatorsystem IS320D vor dem Schwarzen Strahler.
Zu sehen ist das Klimagehäuse, in dem sich das Monochromatorsystem befindet. Der Diffusor an der Frontseite wird direkt vom Schwarzen Strahler bestrahlt, wenn sich die Filterdetektoren im Vordergrund nicht im Strahlengang befinden.
2.2 Der Schwarze Strahler BB3200pg

Gegenüber einem, mit längeren Integrationszeiten messenden, stationären Spektroradiometer sind die Standardabweichung der Messungen mit 1 % bis 4 % relativ hoch, jedoch für Trendmessungen ausreichend. Das System wurde im Rahmen eines Projektes zur UV-Messung ausführlich charakterisiert und verbessert [64].

Vorgesehen für Feldmessungen solarer Bestrahlung, eignet es sich auch für Trendmessungen an Strahlern im Labor. Dafür wird der normalerweise senkrecht weisende Diffusor in eine waagerechte Position gebracht, wie es in Abbildung 2.8 dargestellt ist. Da die Aufnahme eines Spektrums nur etwa eine Minute dauert und mit der Aufnahme von jeweils zehn Spektren eine akzeptable Standardabweichung der Meßdaten von < 1 % erreicht wird, können mit dem Schwarzen Strahler an einem Messtag mehrere Strahltemperaturen angefahren und dann spektral vermessen werden. Auf diese Weise kann mit diesem Gerät im Spektralbereich von 280 nm bis 700 nm die Selbstkalibrierung nach Gleichung (2.44) einfach durchgeführt werden.

Mit diesem Spektroradiometer wurden umfangreiche Meßreihen durchgeführt, um die Art und Ursache der im Spektrum des Schwarzen Strahlers auftretenden Absorptionslinien aufzudecken (siehe 2.5.2).

2.2 Der Schwarze Strahler BB3200pg

2.2.1 Aufbau des Strahlers

Hauptbestandteil des Schwarzen Strahlers BB3200pg ist ein aus Pyrographitringen zusammengesetzter Hohlraum (engl. „Cavity“), der über einen hohen elektrischen Strom direkt widerstandsgeheizt wird. Die Ringe werden durch eine Druckfeder mit einem Kupferzylinder gegen eine Frontelektrode zusammengepreßt (Abbildung 2.9). Die Feder muß eine thermische Ausdehnung des Hohlraumes um bis zu 1,5 cm bei hohen Temperaturen zulassen. Über ein Kupfer-Leitungsband und den Kupferzylinder ist die Cavity flexibel mit der hinteren Elektrode verbunden.

Das Front-Fenster verschließt den Hohlraum, so daß er vakuiert und mit dem Schutzgas Argon geflutet werden kann. Da jedoch zeitlich veränderliche Transmissionsverluste durch das Fenster auftreten, wird dieses im Betrieb entfernt und das im hinteren Teil mit leichtem Überdruck eingespülte Argon kann vorne entweichen. Hierbei strömt das heiße, möglicherweise verunreinigte Argon an der Meßblende vorbei, was zu Degradiation und damit zu einer Änderung der Meßblendenfläche führen kann (siehe 2.4.3.1). Mit eingebautem Front-Fenster könnte ein leicht modifizierter Strahler unter höherem Argon-Überdruck bei Betriebstemperaturen bis zu 3800 Kelvin betrieben werden [90].
Der Strahler ist an der Rückseite mit einem Quarzglasfenster versehen, das im Betrieb nicht entfernt werden darf. Durch dieses Fenster läßt sich die Bodenrückseite des Hohlraumes direkt auf eine Photodiode abbilden, mit der unabhängig von den Messungen vor dem Strahler die zeitliche Änderung der Strahltromperatur aufgezeichnet wird (siehe 2.4.1). Der Hohlraum wird von einem, mit feinem Graphitpulver gefüllten, Graphit-Doppelzylinder umgeben. Dieser dient ebenso wie die Graphit- und Pyrographitblenden zur thermischen Abschirmung des Hohlraumes, der möglichst isotherm sein sollte, um eine wohldefinierte Temperaturstrahlung abzugeben. Tatsächlich ändert sich die Strahltromperatur in Bodennähe kaum (siehe 2.4.1 und 2.3). An den Elektroden und auf der Außenseite muß der Strahler auf Raumtemperatur gekühlt werden. Der Vakuumrezipient, die Elektroden und der von der Druckfeder umspannte Kupferzylinder lassen sich mit einem offenen Wasserkreislauf mit einer Kühlleistung von bis zu 15 kW kühlen (siehe 2.2.2.1).

Abbildung 2.9 Der Hochtemperatur-Hohlraumstrahler BB3200pg. Schematischer Aufbau des Strahlers im Auslieferungszustand. Bei der Verbesserung des Strahlers in der PTB wurde die Bodenposition und die Bodenform verändert, sowie die Meßblendenhalterung vom Strahler entkoppelt.

2.2.2 Technische Daten zur Charakterisierung
Die Hauptanforderung an einen Hochtemperatur-Hohlraumstrahler ist sicherlich ein effektiver Emissionsgrad von möglichst eins, um einen gut angenäherten Schwarzen Strahler als Primärnormal zu erhalten. Zusätzlich sollte der Strahler bei hohen Temperaturen und mit großer strahlender Fläche ohne großen Aufwand einsetzbar und die benötigten Umgebungsparameter wohlbekannt sein. Bei einem widerstandsgeheizten Strahler in Argon-Schutzatmosphäre sind dies hauptsächlich die elektrischen Daten, die notwendige Kühlleistung und der benötigte Argonfluß (2.2.2.1). Hinzu kommen Informationen über Aufheizphasen und Abkühlzeiten (2.2.2.2), die Temperaturrelaxation nach Stromänderungen und die Temperaturstabilität im geregelten und ungeregulierten Betrieb (2.2.2.3). Die vom Hersteller gemachten groben Vorgaben über die technischen Daten und die Handhabung des Strahlers, wurden daher überprüft und genauer bestimmt.

2.2.2.1 Elektrische Daten, Kühlleistung und Argonfluß
Laut Hersteller benötigt der Schwarze Strahler BB3200pg eine elektrische Leistung von 15 kW, bei einer Maximalspannung von 30 Volt. Von der Firma Schulz-Electronic wurde nach unseren Vorgaben ein spezielles Netzgerät entwickelt [101], das aus bis zu zwanzig parallel geschalteten Netzteilen besteht, die jeweils bis zu 45 Ampere bei maximal 70 Volt liefern. Zur Zeit sind vierzehn Netzteile...
eingebaut, so daß ein Maximalstrom von 630 Ampere zur Verfügung steht. Das Netzgerät wird im strömregelten Zustand betrieben und erreicht dort eine Stromstabilität von besser als ±0,01 %. Um Strahltemperaturen bis zu 3300 Kelvin zu erreichen, sind im Normalbetrieb des Strahlers Ströme bis zu 550 Ampere bei Spannungen bis zu 20 Volt nötig. Oft verwendete Arbeitspunkte des Strahlers liegen zwischen 500 Ampere und 550 Ampere. Der Strahler besitzt dort einen elektrischen Widerstand von (38±3) mΩ und die Temperatur steigt etwa um (3,9±0,3) K/A. Bei 500 Ampere wird eine Temperatur von (3000±10) Kelvin erreicht (Abbildung 2.10), und es werden 9,5 kW elektrische Leistung benötigt. Bei Einstellung des momentan möglichen Maximalstromes von 630 Ampere könnte eine Strahltemperatur von 3500 Kelvin erreicht werden, bei einer elektrischen Leistung von 15,5 kW.

Diese gut reproduzierbaren Werte gelten nur, wenn der Strahler an mehreren aufeinander folgenden Meßtagen in Betrieb war. Wurde der Strahler für die Wartung demontiert und wieder zusammengesetzt, verschieben sich die elektrischen Werte. Der Widerstand steigt bei 500 Ampere auf bis zu 50 mΩ und es werden um bis zu 70 Kelvin höhere Temperaturen erreicht. Nach etwa drei Meßtagen ist das stabile Strahlerverhalten wieder erreicht. Die Reproduzierbarkeit des Arbeitspunktes reicht nicht für eine genaue Temperaturbestimmung des Strahlers aus, allerdings läßt sich mit der Temperatur-Stromkennlinie in Abbildung 2.10 eine gewünschte Temperatur auf etwa ±10 Kelvin genau einstellen.

Abbildung 2.10 Temperatur-Stromkennlinie des Schwarzen Strahlers.

Die Temperatur stellt sich bei 500 A reproduzierbar auf (3000±10) K ein und steigt mit (3,9±0,3) K/A.

Zeigt der Strahler ein stark von der Kennlinie abweichendes Verhalten, deutet dies auf eine fehlerhafte Temperaturmessung, einen falsch justierten Strahler oder anomale Alterungsvorgänge des Schwarzen Strahlers hin.

Die elektrische Leistung von 9,5 kW bei einer Strahlungstemperatur von 3000 Kelvin muß durch die Wasserkühlung nahezu vollständig abgeführt werden. Im Vergleich dazu beträgt die durch die Öffnung emittierte Strahlungsleistung \(\Phi = M \cdot A \) bei 3000 Kelvin nur etwa 610 Watt. Nach dem Stefan-Boltzmann Gesetz gilt dabei für die spezifische Ausstrahlung \(M \) eines Schwarzen Strahlers

\[
M = \sigma T^4 \quad \text{mit} \quad \sigma = \frac{2 \pi^5 k^4}{15 c^2 h^3} = 5,67051 \cdot 10^{-8} \text{ W m}^{-2} \text{ K}^{-4} ,
\]

und die Öffnung \(A \) des Schwarzen Strahlers hat einen Durchmesser von 13 mm.

Strömt das Kühlwasser mit etwa 18 l/min durch den Rezipienten und die Elektroden, wird (bei einer Wärmekapazität des Wassers von 4,182 kJ kg\(^{-1}\) K\(^{-1}\)) die Wassertemperatur um etwa 7 Kelvin erhöht, um eine Wärmeleistung von 8,9 kW abzuführen.

63
Bei der maximal erreichbaren Strahlt-temperaturen von 3500 Kelvin beträgt die emittierte Strahlungsleistung etwa 1,1 kW und es müßten 14,4 kW elektrischer Leistung zusätzlich gekühlt werden. Bei gleichem Volumenfluß würde das Kühlwasser etwa um 11,5 Kelvin erwärmt werden.

Es ist zu beachten, daß ausreichend Argon fließt, damit auch die Graphitteile im vorderen Bereich des Hohlraumes gut umspült sind und nicht mit eventuell von außen eindringendem Luftsauresstoff reagieren können. Ist der Argonfluß zu hoch, kann es vor der Strahleröffnung jedoch zu turbulenten Verwirbelungen und Schlierenbildung kommen. Diese werden von den Filterdetektoren als scheinbare Temperaturunterschiede wahrgenommen. Der Vergleich mit der rückwärtig angebrachten Monitorphotodiode (siehe 2.4.1) und einem abbildenden Pyrometer, dargestellt in Bild 2.11 zeigt die Wirkung der Reduzierung des Argonflusses auf die Temperaturmessung. Während bei höherem Argonfluß die Temperaturmessung mit den Filterdetektoren um ±0,5 Kelvin schwankt und um etwa 1 Kelvin tiefer liegt, verläuft sie nach Reduzierung der Volumengeschwindigkeit (Zeitbezug 0 min) parallel zu den beiden anderen Temperaturmessungen. Die verbleibende absolute Temperaturdifferenz der Filterdetektormessung zur Pyrometermessung liegt im Bereich der Meßunsicherheiten der beiden Meßmethoden [105][108].

Abbildung 2.11 Wirkung des Argonflusses auf die Temperaturmessung mit Filterdetektoren. Bei dem Zeitbezug kleiner null war ein Argonfluß von etwa 49 l/h eingestellt, danach wurde der Fluß auf etwa 28 l/h gesenkt.

2.2.2.2 Aufheizphasen und Abkühlzeiten

Wird der Strahler aufgeheizt, dehnt er sich um bis zu 15 mm aus. Diese Ausdehnung muß von der Druckfeder ausgeglichen werden. Damit es nicht zu mechanischen Spannungen und Zerstörungen aufgrund der unterschiedlichen thermischen Ausdehnungskoeffizienten der einzelnen Komponenten kommt, sollte der Strahler nicht zu schnell aufgeheizt werden. Der Abkühlvorgang ist ebenfalls langsam durchzuführen, damit nicht durch die abnehmende mechanische Spannung einzelne Pyrographitringe verrutschen können. Laut Hersteller sollten diese Komplikationen nicht auftreten und die Heizstrom wird am VNIIOFI innerhalb weniger Minuten abgestellt [107].

Untersuchungen am Strahler in der PTB haben jedoch gezeigt, daß mit moderaten Stromrampen und Pausen für Relaxationsvorgänge eine wesentlich höhere Temperaturstabilität (siehe 2.2.2.3) und offensichtlich auch eine längere Lebensdauer des Pyrographit-Hohlraumes erreicht werden kann. Erst nach nahezu 1000 Betriebsstunden, von denen für etwa 300 Stunden Strahlertemperaturen überhalb 2950 K erreicht wurden, ist eine deutlich sichtbare Beschädigung und Alterung der Hauptbestandteile
2.2 Der Schwarze Strahler BB3200pg

des Strahlers aufgetreten. Der Hersteller gibt die Lebensdauer eines Hohlraumes dagegen nur mit etwa 100 Stunden an.

Der typische Verlauf eines Meßtages am Schwarzen Strahler wird in Abbildung 2.12 dargestellt. Der Heizstrom wird in vier immer flacher verlaufenden Rampen hochgeregelt. Die Pausen konstanten Stromes zwischen den Rampen, geben dem System die Möglichkeit, etwas zu relaxieren. Der Hohlraum dehnt sich aus, der mechanische Druck auf die einzelnen Pyrographitringe nimmt zu und der elektrische Kontakt verbessert sich. Mit zunehmender Strahlertemperatur nimmt der elektrische Widerstand weiter ab. Kurz nach Erreichen des Maximalstromes nach etwa 1,75 Stunden wird ein konstanter elektrischer Widerstand von \((39 \pm 3) \, \Omega\) erreicht. Die Strahlertemperatur hat sich nach einer weiteren halben Stunde bis Stunde ausreichend stabilisiert (siehe auch Abbildung 2.13).

2.2.2.3 Temperaturstabilität

Für spektrale Messungen und um den Hochtemperatur-Hohlraumstrahler als Primärnormal nutzen zu können, muß die Temperatur des Strahlers bekannt sein. Da aber nicht gleichzeitig die Temperaturmessung und spektrale Messungen durchgeführt werden können, ist eine ausreichende Temperaturstabilität Voraussetzung für Messungen mit geringen Unsicherheiten.

Eine Temperaturstabilisierung ließe sich durch eine Regelung erreichen, bei der die Strahlertemperatur als Sensor und der Heizstrom oder die Heizleistung als Stellglied verwendet wird. Am VNIIOFI wird die Temperaturmessung über die Monitorphotodiode an der Rückseite verwendet, um den Strahler durch den Heizstrom mittels einer PID-Regelung zu stabilisieren [107].
Unter optimalen Meßbedingungen wird eine Temperaturstabilität von ±0,15 K erreicht, die durch Regeländerungen um bis zu 2 Ampere eingestellt wird. Dieses Verfahren ist sehr aufwendig und störanfällig. So können leichte Schwankungen in der Wasser- kühlung oder kleine Änderungen des elektrischen Widerstandes das System zu schwer kontrollierbaren Überschwingungen bewegen [108].

In Abbildung 2.13 ist ein solches stabiles Verhalten dargestellt, das sich eine Stunde nach Erreichen des Arbeitspunktes (Meßzeit 0 h) eingestellt hat. Während einer Meßzeit von drei Stunden ist die Strahlertemperatur um etwa +0,6 K gedriftet entsprechend einer Kurzzeitstabilität von besser als 0,2 K/h. Je nach Arbeitspunkt und Zustand des Hohlraumes beträgt die Langzeitdrift maximal 2 K/h. Die höhere Drift tritt bei Strahlertemperaturen unter 2900 Kelvin und über 3150 Kelvin auf, und ist auch zu beobachten, wenn der Strahler nach einer Wartung wieder zusammengebaut wurde. Die hohe Temperaturstabilität bei konstant gehaltenem Heizstrom macht eine zusätzliche Temperaturregelung entbehrlich, da diese nur mit höherem Aufwand durchführbar ist und auch durch Regelschwingungen zu einem ungünstigeren Ergebnis führen könnte.

Abbildung 2.13 Temperaturstabilität während einer spektralen Messung.
Der Meßabstand zwischen zwei Temperaturmessungen ist etwa zwei Minuten, dazwischen wurden spektrale Messungen durchgeführt.

2.3 **Nutzbare strahlende und bestrahlte Flächen**

Der Öffnungswinkel, unter dem der Schwarze Strahler von einem Empfänger oder einer bestrahlten Fläche aus gesehen werden darf, muß genau definiert sein und sollte von möglichst homogener Strahlung erfüllt sein. Die Anordnung von Hohlraum und sichtbegrenzender Meßblende spielen dabei eine sehr wichtige Rolle (siehe 2.1.5). Für jede Meßblende und jeden Meßabstand kann die nutzbare bestrahlte Fläche nach Gleichung (2.34) berechnet werden (2.3.1). Zur Messung der Strahlungscharakteristik wurden verschiedene Verfahren angewandt, um unterschiedliche Aspekte der Anwendung des Strahlers zu berücksichtigen. Mit einem Pyrometer, daß horizontal verfahren wird, läßt sich die Strahldichteverteilung parallel zur Strahlerachse in der Meßblendenbene ermitteln (2.3.2). Eine sehr kleine Blende, die am Ort der Meßblende sowohl horizontal als auch vertikal verfahren wird, ermöglicht die Ermittlung der spezifischen Ausstrahlung der Strahlerfläche (2.3.3). Wird ein Empfänger mit kleiner Fläche in der Meßebene der Bestrahlungsstärkemessung verfahren, kann die Homogenität der Strahlung auf der bestrahlten Fläche ermittelt werden (2.3.4). Die benannten Methoden haben sehr viel zu den in 2.4.2 und 2.4.3 angeführten Optimierungsverfahren beigetragen.
2.3 Nutzbare strahlende und bestrahlte Flächen

2.3.1 Berechnung der nutzbaren bestrahlten Flächen

Die Anordnung des Hohlraumes mit seinen Vorblenden und der Ort der Meßblende als Strahleröffnung vor dem Hohlraum legen eindeutig die Geometrie für Meßblenden und Empfängerflächen fest (siehe 2.1.4.1). Die verwendete Meßblende muß von außen sichtbegrenzend sein und bestimmt dann die maximal zu nutzende bestrahlte Fläche in einer definierten Meßentfernung.

Unter Kenntnis der Geometrie des Hohlraumes und des Abstandes zur Meßblende kann zunächst nach Gleichung (2.33) der maximal zulässige Blendendurchmesser \(d_{\text{max}} \) berechnet werden.

Für den Schwarzen Strahler wurden – nach Anpassung von Bodenform und Position (siehe 2.4.2) – die in Abbildung 2.2 eingeführten Größen gemessen und daraus \(d_{\text{max}} \) berechnet:

\[
D = 37,0 \text{ mm} ; \quad b = 20,1 \text{ mm} ; \quad x_{\text{DB}} = 178,0 \text{ mm} ; \quad x_{\text{Dd}} = 263,5 \text{ mm} \Rightarrow d_{\text{max}} = 12,0 \text{ mm} . \quad (2.51)
\]

Aus einem Satz gefertigter Meßblenden wurden hauptsächlich zwei Blenden verwendet. Für die Blenden P-MB 2 und P-MB 14 ergaben sich die in Tabelle 2.1 angegebenen Werte.

<table>
<thead>
<tr>
<th>Blende</th>
<th>(d / \text{mm})</th>
<th>(x_m = 500 \text{ mm})</th>
<th>(B / \text{mm})</th>
<th>(x_m = 800 \text{ mm})</th>
<th>(B / \text{mm})</th>
<th>(x_m = 1000 \text{ mm})</th>
<th>(B / \text{mm})</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-MB 2</td>
<td>6,0</td>
<td>52,8</td>
<td>88,0</td>
<td>111,6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P-MB 14</td>
<td>8,2</td>
<td>46,3</td>
<td>79,1</td>
<td>100,9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(d_{\text{max}})</td>
<td>12,0</td>
<td>35,4</td>
<td>63,9</td>
<td>82,9</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabelle 2.1 Durchmesser \(B \) der nutzbaren bestrahlten Flächen bei einigen Meßabständen \(x_m \). Angabe für zwei verwendete Meßblenden (mit dem Durchmesser \(d \)) und für den maximal zulässigen Durchmesser \(d_{\text{max}} \) einer Meßblende.

Der Kegel, der durch Meßabstände und nutzbare Flächen gebildet wird, erhält bei kleineren Meßblenden eine deutlich größere Basis. Wichtig ist, daß die Kegelspitze, wie in Abbildung 2.2 dargestellt ist, nicht in der Meßblende Ebene liegt, sondern etwas davor (51 mm bei P-MB 2, 76 mm bei P-MB 14, 127 mm bei \(d_{\text{max}} \)). Je kleiner eine Meßblende gewählt wird, desto größer ist bei gleichem Meßabstand der nutzbare bestrahlte Bereich.

Auch wenn die Bestrahlungsstärke proportional zur Blendenfläche wächst, ist bei einer kleineren Blende die Empfindlichkeit gegenüber der Justierung, sowohl für die Meßblende, als auch für die Empfängerfläche geringer.

2.3.2 Messungen der Strahldichteverteilung der Strahlerfläche

Abbildung 2.14 Meßkonfiguration für einen x-Scan mit dem Pyrometer.

Das Pyrometer wird horizontal verschoben, so daß der Meßfleck die Meßblendenebene in x-Richtung überstreicht.

Mit einem Pyrometer wird im allgemeinen die Strahldichte eines Strahlers für die Temperaturmessung bestimmt. Das Linearpyrometer LP2 vom Institut für Kernenergetik und Energiesysteme (IKE), Stuttgart wird für Temperaturmessungen bis 3300 K verwendet [44][54] und diente in erster Linie zur ersten Überprüfung der Zuverlässigkeit der Temperaturmessung mit Breitband-Filterdetektoren [105][108], siehe auch 3.2.7.1.

Das Ergebnis zeigt die Verteilung der senkrecht zur Strahlerebene abgestrahlten Strahldichte \(L_n(x) \). In Abbildung 2.15 ist die Änderung des Photostromes des Pyrometers von der Mitte zu den Rändern der Meßblendenwelle, gemessen in 0,5 mm Schritten, dargestellt. Die Meßblende wurde entfernt, so daß die gesamte Breite der Strahleröffnung, die von einer Stahlblende mit 15 mm Durchmesser gebildet wird, vermessen werden konnte. Da der Meßfleck einen Durchmesser von 1 mm hat, kann so ein Durchmesser von etwa 13 mm vermessen werden, bevor die Strahlung zunehmend abgeschattet wird. Der Photostrom nimmt bis zum Rand um 0,4 % bzw. 0,7 % ab. Bei den gegebenen Strahltemperaturen und der Meßempfindlichkeit des Pyrometers entspricht dies einer Temperaturänderung von 1,6 K bzw. 2,8 K.

Abbildung 2.15 Strahldichteverteilung von BB3200pg vor den Verbesserungsmaßnahmen. Die Strahldichte nimmt zum Rand des Hohlraumes deutlich ab. Eine Photosignaländerung von 0,5 % entspricht einer Temperaturänderung von 2 Kelvin.

Eine derartige Temperaturänderung über den Querschnitt des Bodens ist für Strahldichtemessungen nicht tolerierbar, weil sie dadurch sehr empfindlich gegenüber Änderungen in der Justierung reagieren. Nach den in 2.4 beschriebenen Verbesserungen am Schwarzen Strahler, ergaben die in Abbildung 2.16 dargestellten Messungen ein deutlich besseres Ergebnis. Der Photostrom nimmt von der Mitte zum Rand nur um etwa 0,2 % zu. Die relative Temperaturänderung von 0,8 Kelvin liegt deutlich unter der absoluten Meßunsicherheit des Pyrometers.

Abbildung 2.16 Strahldichteveränderungen des verbesserten Strahlers bei zwei Strahlertemperaturen. Die Strahldichteverteilung konnte deutlich verbessert werden. Eine Photosignaländerung von 0,2 % entspricht etwa 0,8 K Temperaturänderung.

Der Kurvenverlauf zeigt eine leicht wellige Struktur, der die Form des gefurchten Strahlerbodens widerspiegelt. Die Furchen des flachen Bodens (siehe 2.4.2), die der Erhöhung des effektiven Emissionsgrades dienen, ändern jeweils etwas den Temperaturgradienten von der Bodenmitte zum Rand. Dieser Effekt ist auch deutlich in Abbildung 2.18 sichtbar, bei der die spezifische Ausstrahlung des Schwarzen Strahlers ermittelt wurde. Der Effekt ist gegenüber der Meßunsicherheit bei Strahldichtemessungen vernachlässigbar, da bei einer Reproduzierbarkeit der Justierung von besser als 4 mm – die sehr einfach einzuhalten ist – das Photosignal sich sogar um weniger als 0,05 % ändert.
2.3 Nutzbare strahlende und bestrahlte Flächen

2.3.3 Verteilung der spezifischen Ausstrahlung der Strahlerfläche
Da die Strahldichteverteilung $L_n(x)$ in Richtung senkrecht zur Meßblendenebene als weitgehend homogen betrachtet werden kann, sollte dies auch für die Bestrahlungsstärke $E_n(x)$, die auf einen Empfänger mit kleiner Fläche in großem Meßabstand trifft, gelten. Diese Annahme kann mit der Messung der spezifischen Ausstrahlung bestätigt werden.

Abbildung 2.17 Meßkonfiguration für einen xy-Scan mit einer Miniblende.
Der Detektor an ortsfester Position erfäßt die spezifische Ausstrahlung des Strahlers durch die verfahrbare Miniblende mit einem Durchmesser < 1 mm.

Eine Miniaturblende mit einem Durchmesser von etwa 1 mm wird am Ort der Strahlermeßblende schrittweise in x und y-Richtung verfahren (Abbildung 2.17). Ein Filterdetektor mit kleiner Empfängerfläche (Durchmesser 6 mm) in großer Meßentfernung (820 mm), mißt ein Photosignal, daß proportional zur senkrecht abgestrahlten Bestrahlungsstärke jedes Meßpunktes ist. Auf diese Weise erhält man ein Abbild der Verteilung der spezifischen Ausstrahlung des Strahlers in seiner Hauptabstrahlungsrichtung.

Abbildung 2.18 Temperaturverteilung der Strahlung in der Meßblendenebene.
Aus dem xy-Scan mit einer Miniblende am Ort der Meßblende wurde die Temperaturverteilung in der Meßblendenebene berechnet. Der eingezeichnete Kreis entspricht der Größe einer Meßblende.

Eine aus der Photostromänderung berechnete Temperaturverteilung für den (nach den Vorgaben in 2.4) verbesserten Strahler ist in Abbildung 2.18 dargestellt. Über den gesamten Bereich der Strahlerfläche ändert sich die Temperatur um weniger als ± 2,5 Kelvin. Der eingezeichnete Kreis entspricht der Größe der wassergekühlten Meßblende, die für diese Messung entfernt wurde. Über dieser Fläche ändert sich die Temperatur nur um ± 1,5 Kelvin. Am ringförmigen konzentrischen Temperaturverlauf ist in Abbildung 2.18 wiederum deutlich die Struktur des Strahlerbodens erkennbar (siehe auch Abbildung 2.16).
Die Bestrahlungsstärke am Ort der Filterdetektoren ist die Summe aller Bereiche dieser Verteilung. Die sich ergebende effektive radiometrische Temperatur weicht nur sehr geringfügig von der Temperatur einer perfekt homogen strahlenden Fläche ab (siehe 4.2.2). Wollte man den Einfluß der spezifischen Ausstrahlung auf eine größere bestrahlte Fläche erfassen, müßte für jedes Flächenelement dieser Fläche ein xy-Scan mit der Miniblende durchgeführt werden. Aufgrund der hinreichenden Homogenität in der Richtung der Strahlerachse wurde auf diese aufwendigen Messungen verzichtet.

2.3.4 Homogenität der Bestrahlungsstärke

Für die Messung mit Reflexionsnormalen ist die Kenntnis der Verteilung der Bestrahlungsstärke über eine größere bestrahlte Fläche von großer Bedeutung. Bei ebenen Reflexionsnormalen und einem idealen kleinflächigen Strahler kann die Homogenität nicht besser sein als vom \cos^4-Gesetz vorgeschrieben (siehe 2.1.5.4). Diese Verteilung wird auch für den Hohlraumstrahler angestrebt, die erreichte effektive Homogenität kann durch Überlagerung geringfügig unterschiedlich heißer Strahlerbereiche gegenüber einem Punktstrahler sogar etwas besser sein.

Abbildung 2.19 Meßkonfiguration für einen xy-Scan mit einem Filterdetektor.
Der Detektor wird in der bestrahlten Ebene verschoben und erfaßt dort die flächenhafte Bestrahlungsstärkeverteilung.

Die Bestrahlungsstärkeverteilung wird bei eingebauter Meßblende mit einem Filterdetektor gemessen, der in x und y-Richtung bewegt wird (Abbildung 2.19). Er befindet sich in einer Entfernung zur Meßblende, die dem Ort der Temperaturmessung mit den Filterdetektoren entspricht (ca. 500 mm), oder dem Ort des Reflexionsnormales für Bestrahlungsstärkekali birierungen (ca. 800 mm).

Abbildung 2.20 Bestrahlungsstärkeverteilung vor der Verbesserung des Strahlers.
Die Bestrahlungsstärke am Ort des Reflexionsnormales (820 mm Entfernung zur Meßblende) nimmt über den berechneten nutzbaren Durchmesser von 72 mm um 1,8 % ab. Das entspricht einer Temperaturabnahme von 5,4 Kelvin von der Mitte zu den Randbereichen.

Während der Untersuchungen zur Verbesserung des Schwarzen Strahlers wurden am Ort des Reflexionsnormales hauptsächlich x-Scans durchgeführt, die eine schnelle Aussage über die horizontale Temperaturverteilung längs des Durchmessers der bestrahlten Fläche erlauben.
2.3 Nutzbare strahlende und bestrahlte Flächen

In Abbildung 2.20 ist die Änderung des Photostromes zum Referenzpunkt \(x = 0 \) mm aufgetragen. Die dargestellte Kurve ist bereits nach Gleichung (2.40) \(\cos^4 \)-korrigiert, die Änderungen sind also bereits ein wenig abgeschwächt. Dennoch nimmt der Photostrom von der Mitte bis zum Rand um 1,8 % ab. Dies entspricht einer Temperaturänderung am Schwarzen Strahler um 5,4 Kelvin. Durch die Verbesserungsmaßnahmen am Strahler (siehe 2.4.2) konnte diese Inhomogenität der Bestrahlungsstärke deutlich verringert werden. Ein xy-Scan am Ort des Reflexionsnormales im Abstand von 800 mm zur Meßblende des Strahlers ist in Abbildung 2.21 in eine Temperaturverteilung umgerechnet worden. Vom Zentrum der bestrahlten Fläche bis zum Rand der berechneten maximal nutzbaren Fläche (äußerer Kreis) steigt die Temperatur leicht um 2,8 Kelvin an (in dieser Darstellungsform nicht auflösbar).

Abbildung 2.21 Temperaturverteilung in der Meßebene des Reflexionsnormales.

Die relative Photostromänderung des Detektors wurde in eine Temperaturänderung umgerechnet. Der eingezeichnete äußere Kreis deutet den berechneten nutzbaren Durchmesser, der innere Kreis die tatsächlich maximal genutzte Fläche für Bestrahlungsstärke-messungen an.

Die in Abbildung 2.18 beobachteten konzentrischen Strukturen sind an dieser Stelle nicht mehr zu beobachten, da sich, wie bereits erwähnt, die spezifischen Ausstrahlungen in jedem Punkt im Fernfeld überlagern. Auftretende nicht konzentrische Bereiche konstanter Temperatur rühren vom zeitlichen Verlauf der Messung her, bei dem eine leichte Temperaturdrift des Strahlers nicht verhindert werden konnte. Sie sind deshalb bei Folgemessungen nicht zu reproduzieren.

Auf den verwendeten Reflexionsnormalen wird maximal ein Durchmesser von 40 mm für die Bestrahlungsstärkekalibrierung verwendet. In diesem Bereich ändert sich die Temperatur um weniger als 1 Kelvin. Der Einfluss dieser Temperaturänderungen auf die Bestrahlungsstärkekalibrierungen ist sehr gering (siehe 4.2.2).

Wie in Abbildung 2.22 dargestellt wird, ist am Ort der Filterdetektoren (500 mm Entfernung zur Meßblende) die unkorrigierte Änderung des Photostromes (Kreise) sogar besser als der ebenfalls eingezeichnete Verlauf der \(\cos^4 \)-Kurve eines idealen punktförmigen Strahlers (gestrichelte Linie). Die Durchführung einer \(\cos^4 \)-Korrektur (durchgezogene Linie) auf die Meßkurve (Dreiecke) vergrößert die Inhomogenität allerdings nur geringfügig. Im Bereich des berechneten maximalen Durchmessers (gestrichelte vertikale Linien) ändert sich der Photostrom um weniger als 0,2 %; die Temperaturänderung beträgt entsprechend weniger als 0,6 Kelvin. Die Filterdetektoren mit einem Empfängerdurchmesser von 4 mm bis 6 mm können bequem auf besser als 5 mm zum Zentrum justiert werden. In diesem Bereich von 15 mm Durchmesser beträgt die Änderung des Photostromes weniger als 0,05 % und die Temperaturänderung weniger als 0,15 Kelvin. Damit erweist sich die Justierung der Filterdetektoren in diesem Punkt als vollkommen unkritisch gegenüber Temperaturfehlmessungen.
Abbildung 2.22 Bestrahlungsstärke am Ort der Filterdetektoren nach der Verbesserung des Strahlers.
Dargestellt ist sowohl der unkorrigierte Verlauf, als auch der \(\cos^4 \)-korrigierte Verlauf der Meßkurve (wie in Abbildung 2.20). Die \(\cos^4 \)-Korrektur und die Bestrahlungsstärkeverteilung eines Punktstrahlers (siehe 2.1.5.4) sowie der berechnete maximal nutzbare Durchmesser (siehe 2.1.4.1) sind ebenfalls eingezeichnet.

2.4 Maßnahmen zur Verbesserung des Strahlers

Der Hochtemperatur-Hohlraumstrahler war bereits im Auslieferungszustand ein Schwarzer Strahler von hoher Qualität und relativ einfacher Handhabbarkeit. Im Laufe der Untersuchungen konnte einige zum Teil bedeutende Modifikationen an der Konstruktion vorgenommen werden, die zur Verbesserung der Charakteristik des Strahlers geführt haben. Einige Änderungen wurden in Zusammenarbeit mit dem VNIIOFI durchgeführt. So konnte die Temperaturverteilung im Hohlraum durch Änderung der Position und Form des Strahlerbodens deutlich verbessert werden (2.4.2). Durch einen neuen Frontdeckel und eine gesonderte Meßblendenhalterung konnte die Kühlung im Frontbereich verbessert und eine Degradation der Meßblenden verhindert werden (2.4.3). Umfangreiche Untersuchungen zur Aufheiz- und Abkühlphase des Strahlers führten zu einer ausreichenden Temperaturstabilität und zur Erhöhung der Lebensdauer des Hohlraumes (siehe 2.2.2.2 und 2.2.2.3). Der Aufbau einer Monitorphotodiode an der Rückseite des Strahlers erlaubt die relative Kontrolle der Strahlertemperatur auch bei längeren spektralen Messungen vor dem Strahler (2.4.1).

2.4.1 Monitorphotodiode an der Strahlerrückseite

Bei dem verwendeten Empfänger handelt es sich um eine Doppelphotodiode, einen doppelten, unterschiedlich dotierten pn-Übergang mit zwei unterschiedlichen spektralen Empfindlichkeiten.
2.4 Maßnahmen zur Verbesserung des Strahlers

Das Verhältnis der Signale der beiden Photodioden kann nach vorausgehender Temperaturkalibrierung zur Überwachung von Temperaturänderungen des Strahlerbodens herangezogen werden.

Abbildung 2.23 Temperaturmonitoring mit der Monitorphotodiode.

Über einen großen Bereich kann die Temperaturänderung des Strahlers, nach Kalibrierung mit dem Breitband-Filterdetektor, gemäß Gleichung (2.52) mit der Monitorphotodiode überwacht werden. Die Temperaturdifferenz zwischen Filterdetektor und kalibriert Monitordioden variiert um maximal 0,5 Kelvin.

Diese Methode dient der Messung kleiner Temperaturänderungen, ist jedoch nicht als eigenständiges Verfahren zur absoluten Temperaturmessung geeignet.

Nach Kalibrierung über einen größeren Temperaturbereich durch Messungen an der Vorderseite des Strahlers mit einem Pyrometer oder einem Breitband-Filterdetektor, läßt sich, unter Verwendung des Quotienten Q der Photosignale der Doppelphotodiode, die Temperatur T_{Mon} der Strahlerrückseite in erster Näherung linear interpolieren:

$$T_{\text{Mon}}(Q) = T_0 + m Q$$ (2.52)

Diese Kalibrierung ist nach jeder Wartung des Strahlers und Neujustierung des Monitorsystems zu wiederholen. Für die Überwachung kleiner Temperaturänderungen kann die Steigung m in guter Näherung zu $m = -370$ angenommen werden. Die Offset-Temperatur T_0 wird dann jeweils bei einer einzigen Kalibrierung $T_{\text{Mon}}(Q) = T_{\text{Kal}}$ bestimmt.

Bei den in Abbildung 2.23 dargestellten Messungen, wurden die Parameter T_0 und m mittels linearer Regression über den gesamten dargestellten Temperaturbereich von 72 Kelvin bestimmt. Die Temperaturdifferenz $T_{\text{Mon}} - T_{\text{FD}}$ zwischen Messungen mit dem Breitband-Filterdetektor vor dem Strahler und der Monitorphotodiode ist größtenteils kleiner als ±0,2 Kelvin. Lediglich in dem Bereich, in dem die Temperaturänderung mit 6 K/min sehr hoch ist, kommt es zu Abweichungen bis zu -0,4 K. Hier wirkt sich aus, daß zwischen Bodenrückseite und Vorderseite bei Änderungen eine kurze Zeitkonstante von wenigen Sekunden besteht. Störungen (hier die Absenkung des Heizstromes) wirken sich geringfügig schneller auf die Rückseite des Strahlerbodens aus, als auf die Vorderseite.

2.4.2 Anpassung von Bodenform und –Position des Hohlraumes

Abbildung 2.24 Endgültige Form des Hohlraumes.

Bei einem ebenen Boden wirkt sich der Wärmestau gleichmäßig aus.

<table>
<thead>
<tr>
<th>Bodenform</th>
<th>Bodenmaterial</th>
<th>Boden-Position</th>
<th>Effektiver Emissionsgrad ε_{eff}</th>
<th>Inhomogenitäten</th>
</tr>
</thead>
<tbody>
<tr>
<td>eben Pyrographit alte Position</td>
<td>0,99664</td>
<td>–</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>eben Graphit alte Position</td>
<td>0,99886</td>
<td>+0,5 %</td>
<td>+0,04 %</td>
<td></td>
</tr>
<tr>
<td>Innenkonus 120° Graphit alte Position</td>
<td>0,99988</td>
<td>-1,9 %</td>
<td>-0,8 %</td>
<td></td>
</tr>
<tr>
<td>Außenkonus 120° Graphit alte Position</td>
<td>0,999989</td>
<td>+2,5 %</td>
<td>+0,8 %</td>
<td></td>
</tr>
<tr>
<td>Innenkonus 140° Graphit alte Position</td>
<td>0,99987</td>
<td>-0,5 %</td>
<td>-0,4 %</td>
<td></td>
</tr>
<tr>
<td>Innenkonus 120° Graphit neue Position</td>
<td>0,99988</td>
<td>-0,15 %</td>
<td>-0,1 %</td>
<td></td>
</tr>
<tr>
<td>eben mit Furchen Graphit neue Position</td>
<td>0,99988</td>
<td>+0,1 %</td>
<td>+0,1 %</td>
<td></td>
</tr>
</tbody>
</table>

Tabelle 2.2 Zwischenschritte zur Optimierung von Bodenform und Bodenposition.
In der neuen Position erwiesen sich der Boden mit dem 120°-Innenkonus und der Boden mit den konzentrischen Furchen als gleichwertig.

2.4.3 Anordnung der Meßblenden
Eine wassergekühlte Meßblende befindet sich vor dem Hohlraum des Schwarzen Strahlers und bildet dort die strahlende Fläche des Strahlers. Die Fläche der Blende muß sehr genau bekannt sein, und darf sich während einer Messung bzw. zwischen zwei Blendenkalibrierungen nicht ändern.
2.4 Maßnahmen zur Verbesserung des Strahlers

2.4.3.1 Nachweis der Degradation der Meßblenden P-MB2 und P-MB14

In Abbildung 2.26 ist der Meßaufbau für diese Überprüfung dargestellt. Eine Lampe bestrahlt die Meßblende mit der Bestrahlungsstärke \(\dot{E} \). Durch die Blendenfläche \(A_s \) gelangt die Strahlungsleistung
\[\Phi_u = E \cdot A_b \] in die Ulbricht-Kugel. Der an der Kugel angebrachte Detektor hat einen zur Strahlungsleistung proportionalen Photostrom \(i_d = D_d \cdot \Phi_u \).

Für alle Meßblenden muß der Quotient \(Q_m \) aus Photostrom und Blendenfläche konstant sein, wenn die Fläche genau bestimmt und die Photostrommessung linear ist:

\[
Q_m = \frac{i_d}{A_b} = E \cdot D_d.
\] (2.53)

Mit zehn Meßblenden aus dem kalibrierten Blendensatz wurden diese Messungen durchgeführt und zur Berechnung von \(Q_m \) wurden die Kalibrierwerte der Blendenfläche \(A_b \) eingesetzt. Der Mittelwert \(Q_M \) aus allen Messungen ist mit einer relativen Standardabweichung von 0,1 % bestimmt. Die Abweichungen der Quotienten der einzelnen Meßblenden zu \(Q_M \) sind in Abbildung 2.27 dargestellt.

Die zehn unbenutzten Meßblenden weichen nur geringfügig vom Mittelwert ab, während die Blenden P-MB 2 und P-MB 14 um 1,9 % bzw. 3,3 % differieren. Nachdem die Blende noch einmal manuell gereinigt wurde (P-MB 14b), stieg diese Abweichung sogar auf 4,3 % an.

Die beiden degradierten Blenden sind nicht mehr verwendbar und es wurde eine neue Meßblendenhalterung konstruiert und eingesetzt.

Abbildung 2.27 Nachweis der Degradation der Meßblenden P-MB2 und P-MB14.

2.4.3.2 Verwendung einer neuen Meßblendenhalterung

2.5 Spektrale Messungen am Schwarzen Strahler

Die Methode der spektralen Selbstkalibrierung (2.1.6) bietet einerseits die Möglichkeit einer Selbstkonsistenzprüfung für den Schwarzen Strahler und die damit verbundene Temperaturmessung durchzuführen. Andererseits läßt sich mit dieser Methode auf einfache Weise eine Überprüfung der Kalibrierungen an den verschiedenen Spektroradiometern durchführen. Zunächst wurden an den vorhandenen Meßplätzen derartige Messungen bei verschiedenen Strahlertemperaturen zur Bestrahlsstärkekali- "

\[
\frac{\left(E(T_1) \right)}{\left(E(T_2) \right)} \cdot \frac{\left(i(T_1) \right)}{\left(i(T_2) \right)} - 1 \quad \%
\]

\[T_1 = 3056,7 \text{ K} \quad \bullet \quad T_2 = 3166,9 \text{ K} \]

Abbildung 2.29 Selbstkalibrierung am UV-optimierten Meßplatz. Zwischen 210 nm und 350 nm liegen die Abweichungen der Kalibrierungen zwischen den beiden Strahlertemperaturen im Rahmen der für die Apparatur angegebenen Meßunsicherheiten.

\[
\left(\frac{E(T_2)}{E(T_1)} \right) \cdot \left(\frac{i(T_1)}{i(T_2)} \right) - 1 \% \\
T_1 = 3012.9 \text{ K} \\
T_2 = 3148 \text{ K}
\]

Abbildung 2.30 Selbstkalibrierung vor dem Standardmeßplatz für spektrale Bestrah lungsstärke.

Eine derartige Selbstkonsistenzprüfung für den UV-optimierten Meßplatz ist in Abbildung 2.29 dargestellt. Die Messungen erfolgten bei zwei verschiedenen Strahlertemperaturen im Spektralbereich von 200 nm bis 350 nm. Oberhalb 240 nm sind die Abweichungen kleiner als 1 %, während sie zwischen 210 nm und 230 nm mit Abweichungen kleiner als 3 % noch im Bereich der angegebenen Meßunsicherheiten für diese Apparatur liegen. Die Abweichung von fast 9 % bei 200 nm ist deutlich zu hoch. Sie rührt von den erheblichen Standardabweichungen für das kleine Meßsignal bei der tieferen Temperatur \(T_1 \) her.

2.5.2 Absorptionslinien im Spektrum

Bereits am Meßplatz für spektrale Bestrah lungsstärke deutet der Verlauf der Abweichungen bei der Selbstkalibrierung (Abbildung 2.30) darauf hin, daß im Spektrum des Schwarzen Strahlers Absorptionslinien vorhanden sind, die mit steigender Temperatur überproportional anwachsen. Vergleichbare Effekte konnten auch am UV-optimierten Meßplatz beobachtet werden. Hierzu wurde die Methode der spektralen Selbstkalibrierung bei verschiedenen Temperaturen verwendet, wie sie in 2.1.6 beschrieben wird.

Deutlich zeigt sich in Abbildung 2.31, daß bei etwa 360 nm eine Absorption vorhanden sein muß, die mit zunehmenden Temperaturunterschieden ausgeprägter wird. Auch die Abweichungen im Spektralbereich unterhalb 250 nm deuten auf eine Absorption hin, die mit zunehmender Temperatur überproportional anwächst. Da in diesem Bereich jedoch die Meßunsicherheit bei kleineren Strahlertemperaturen deutlich zunimmt, sind die Absorptionseffekte noch nicht sehr deutlich nachzuweisen, erfordern in Zukunft jedoch weitere Untersuchungen.
2.5 Spektrale Messungen am Schwarzen Strahler

Abbildung 2.31 Selbstkalibrierung mit Absorption an der UV-optimierten Apparatur.

Auch am neuen Meßplatz für spektrale Bestrah lungsstärke wurde die in Abbildung 2.32 dargestellte Absorptionslinie beobachtet. Bei einem Temperaturunterschied von etwa 177 Kelvin (untere Kurve) ist das Minimum der Absorptionsänderung bei 385 nm sehr ausgeprägt und im angrenzenden Bereich von einem breiten Sattel umgeben. Am schnellen Spektroradiometer Spectro 320D wurde daraufhin der Spektralbereich zwischen 350 nm und 400 nm näher analysiert. Unterschiedliche Strahlerkonfigurationen wurden untersucht, um die Ursachen für die Absorptionslinien einzugrenzen und nach Möglichkeit abzustellen.

Abbildung 2.32 Absorption am neuen Meßplatz.
Bei einem Temperaturunterschied von 177 Kelvin (untere Kurve) ist die Änderung der Absorption bei 385 nm deutlich ausgeprägt.

2.5.2.1 Ursachen für die Absorption und Gegenmaßnahmen
Erste Untersuchungen mit dem schnellen Spektroradiometer ergaben eine deutliche Absorption mit einem Maximum bei 387,5 nm (Abbildung 2.33). Die Lage des Maximums ist jeweils auf ± 0,5 nm reproduzierbar, nicht jedoch die Höhe der Absorption. So kann die Abweichung vom idealen Schwarzen Strahler bei der Selbstkalibrierung nach Gleichung (2.48) unter gleichen Meßbedingungen an einem Tag etwa 2,5 % betragen und an einem anderen Meßtag 5,4 %. Diese Schwankungen machen das Ausmaß der Absorption bei einer individuellen Messung unvorhersehbar. Aufgrund
Teil 2 Der Hochtemperatur-Hohlraumstrahler als Primärstrahlergerät für die spektrale Bestrahlungsstärke

längere Untersuchungen und Erfahrungswerte lassen sich jedoch Herkunft, Ursachen und Gegenmaßnahmen für die Absorptionslinien angeben.

Abbildung 2.33 Absorptionslinien nachgewiesen mit dem IS Spectro 320D.
Bei 3146 Kelvin tritt deutlich eine Absorption mit einem Maximum bei 387,5 nm auf.
Da die Absorptionslinien mit einer Absorptionsschulter von bis zu 60 nm Breite einher gehen, ist es inakzeptabel, bei der Kalibrierung den Bereich der Absorption zu meiden, da dann ein sehr großer und bedeutender Spektralbereich ausgespart werden müßte. Die Absorptionslinie bei 387,5 nm ist sehr deutlich und wurde daher exemplarisch für diese ersten Untersuchungen herangezogen.

Abbildung 2.34 Hauptlinien der Absorption im Strahlerspektrum.
Die deutlichste Absorption tritt bei 387 nm, 422 nm, 470 nm und 515 nm auf. Diese Banden finden sich auch im Spektrum von C2 und CN.

Besonders bei stärkerer Absorption zeigen sich jedoch auch weitere Linien im Spektralbereich zwischen 350 nm und 590 nm.
Die einzelnen Bandensysteme sind nach ihren Entdeckern benannt und wurden unter Beobachtungsbedingungen erfahrt, die den Verhältnissen im Hochtemperatur-Hohlraumstrahler entsprechen.

<table>
<thead>
<tr>
<th>Bandensystem und Beobachtungsbedingung</th>
<th>Verbindung</th>
<th>Wellenlänge / nm</th>
<th>Rel. Intensität</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deslandres-D’Azambuja System</td>
<td>C₂</td>
<td>358,7</td>
<td>7</td>
</tr>
<tr>
<td>beobachtet im Kohlebogen unter Hochtemperaturbedingungen</td>
<td></td>
<td>359,3</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>360,4</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>382,5</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>385,2</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>410,2</td>
<td>9</td>
</tr>
<tr>
<td>Swan System</td>
<td>C₂</td>
<td>469,8</td>
<td>7</td>
</tr>
<tr>
<td>beobachtet in Elektro-Öfen</td>
<td></td>
<td>471,5</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>473,7</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>516,5</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>589,9</td>
<td>8</td>
</tr>
<tr>
<td>Violet System</td>
<td>CN</td>
<td>358,6</td>
<td>7</td>
</tr>
<tr>
<td>beobachtet im Kohlebogen und bei Einleitung von Kohlenstoffkomponenten in aktiven (heißen) Stickstoff</td>
<td></td>
<td>359,0</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>385,5</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>386,2</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>387,1</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>388,3</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>418,1</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>419,7</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>421,6</td>
<td>9</td>
</tr>
</tbody>
</table>

Tabelle 2.3 Lage einiger Linien der Molekülspektren von C2 und CN nach [79].

Die Linien sind so gruppiert, wie sie bei der Beobachtung mit größerer Bandbreite zusammenfallen.

Da das Spektroradiometer auf eine spektrale Bandbreite von 2,5 nm eingestellt war und aufgrund der begrenzten Auflösungsmöglichkeit bei der Methode der Selbstkalibrierung, wurden in Tabelle 2.3 eng zusammenliegende Linien zu Gruppen zusammengefaßt. Von besonderer Bedeutung sind die Gruppe um 360 nm, die an der UV-Apparatur beobachtet werden konnte (siehe Abbildung 2.31) und die Gruppe um 387 nm, die am stärksten auftritt und immer vorhanden ist. Bei hoher Verunreinigung treten noch zusätzlich deutlich die Gruppen um 420 nm und 470 nm sowie die intensiven Linien bei 516,5 nm und 589,9 nm auf (Abbildung 2.34).

81
Abbildung 2.35 Absorptionslinie bei 387,5 nm bei Verwendung von hochreinem Helium als Schutzgas.
Die Absorption ist deutlich größer, als sie mit Argon als Schutzgas jemals beobachtet wurde.

Abbildung 2.36 Absorption mit und ohne Fenster unter Argon-Schutzgas.
Das Verschließen des Fenster hat zunächst keinen Unterschied in der Absorption bewirkt. Nachdem das Fenster aber wieder geöffnet wurde (T_4), stieg die Absorption deutlich an.
Der Ort der Entstehung von Cyano-Verbindungen läßt sich allerdings so noch nicht eindeutig eingrenzen. Es besteht auch beim Einsatz von hochreinem Schutzgas die Möglichkeit, daß Luftstckstoff in
2.5 Spektrale Messungen am Schwarzen Strahler

Die Messungen bei der Referenztemperatur \(T_1 = 2717 \) Kelvin wurden bei offenem Strahler durchgeführt. Bei der Temperatur \(T_2 = T_3 = 3169 \) Kelvin weisen die Messungen mit und ohne Fenster keinen Unterschied auf. Bei beiden ist eine leichte Absorption bei 387,5 nm zu erkennen. Nach der Messung wurde das Fenster wieder entfernt und bei der direkt folgenden Messung mit dem wieder geöffneten Strahler tritt bei \(T_4 = 3172 \) Kelvin eine deutliche Zunahme und Ausprägung der Absorption auf. Bei geschlossenem Fenster haben sich also Reaktionskomponenten angesammelt, die bei geöffnetem Fenster vermehrt in den Strahlengang gelangen und dort zur linienhaften Absorption führten. Da die Cyan-Linie um 387 nm sehr stark ausgeprägt ist, findet nun im Strahlengang vor dem Strahler eine vermehrte Cyan-Bildung statt.
Andererseits besteht auch bei geschlossenem Fenster eine Absorption im Strahler, unabhängig davon, ob Argon und Verunreinigungen an anderer Stelle zur Seite abgeleitet werden, oder ob der Strahler vollständig verschlossen wird. Da außerdem die CN-Linie bei 387 nm dann nicht so stark auftritt, bestätigt sich, daß auch \(\text{C}_2 \) im Strahler einen deutlichen Anteil an der Absorption hat. Folgende zusätzliche Beobachtungen bekräftigen diese Aussage:

- Wenn der Strahler demontiert wird, finden sich große Mengen feinsten Graphitstaubs im Hohlraum, der zum Teil beim heißen Strahler als dünner Schmauch austritt.
- Nachdem der Strahler gereinigt, montiert und mehrfach evakuiert wurde, tritt am ersten Meßtag nahezu keine linienhafte Absorption auf. Erst an den folgenden Meßtagen nimmt die Absorption zu.
- Normalerweise wird der Strahler zwischen den Meßtagen unter Argonüberdruck verschlossen gehalten. Wenn man den Strahler jedoch nachts zusätzlich evakuiert, verlangsamt sich die Zunahme der Absorption deutlich.
- Die Pyrographitringe hinter dem Boden sind bereits stark degradiert. Sie sind an den Kanten abgerundet und liegen nicht mehr großflächig aufeinander. Es wurde also bereits eine nicht unerhebliche Menge an Graphit (und damit Kohlenstoff) abgetragen.

Die Bohrungen weisen unter einem Winkel von 60° nach außen und sind in einer äußeren Vertiefung des Bodens verborgen. Messungen haben ergeben, daß die Bohrungen keinen Einfluß auf die Temperaturverteilung des Bodens haben und daher auch nicht die Bestrahlungsstärke im Fernfeld beeinflussen.
Zusätzlich muß für den äußeren Bereich des Strahlers eine Argonableitung erfolgen, mit der auch die Verunreinigungen unschädlich entsorgt werden können. Da bereits Bohrungen für die Montageführung beim Zusammenbau des Strahlers vorhanden sind, reicht eine Argonableitung am Schraubdeckel für die Strahlerfront aus. Mit der Regulierung der Argonableitung läßt sich außerdem
Teil 2 Der Hochtemperatur-Hohlraumstrahler als Primärstrahlnormale für die spektrale Bestrahlungsstärke

einstellen, wie groß der Anteil des nach außen abfließenden Argons gegenüber dem Anteil des durch den Hohlraum und die Strahleröffnung strömenden Argons ist.

Mit der Summe der Maßnahmen wird es möglich sein, die Absorption von Strahlung durch Cyan und C₂ in Zukunft weitgehend zu verhindern. Dennoch bleibt es notwendig, durch Selbstkalibrierungen und lückenlose relative spektrale Messungen regelmäßig den gesamten Spektralbereich auf Absorptionslinien hin zu überprüfen.

2.6 Vergleich des Pyrographitstrahlers BB3200pg mit dem Graphitstrahler BB22p

2.6.1 Aufbau und Technische Daten von BB22p

2.6.2 Betriebszeiten, Temperaturstabilität und Temperaturverteilung von BB22p

Wenn der Strahler mit konstantem elektrischem Strom betrieben wird, driftet die Temperatur ungleichmäßig mit etwa -3 K/h bis -5 K/h. Diese Drift kann einerseits mit einer Proportional-Differential-Regelung (PD) über das Signal der Monitorphotodiode abgefangen werden.
Da eine PD-Regelung aber sehr störanfällig ist, wurde andererseits eine leichte Stromrampe zur Temperaturstabilisierung verwendet [105]. Mit einem leichten Stromanstieg von 0,4 A/h werden beispielsweise bei einer Strahlertemperatur von 2900 Kelvin, die Temperaturänderungen auf ±0,2 K eingegrenzt.

Die Temperaturverteilung in der Meßebene der Bestrahlungsstärkemessung (Abbildung 2.37) ist für den Strahler BB22p etwas ungünstiger als für den Strahler BB3200pg bei einem vergleichbaren Meßabstand (vergleiche Abbildung 2.21). Über den maximal nutzbaren Durchmesser von nur 40 mm ist die Temperaturinhomogenität mit ±3 Kelvin deutlich höher als beim Pyrographitstrahler. Kleinere Temperaturänderungen um ±1 Kelvin sind nur in einem Bereich mit etwa 20 mm Durchmesser um das Zentrum des Strahlungsfeldes vorhanden.

2.6.3 Spektrale Vergleichsmessungen zwischen BB3200pg und BB22p

Unter Kenntnis der Strahlertemperatur sind für beide Schwarze Strahler die spektralen Bestrahlungsstärken berechenbar und man kann sie direkt miteinander vergleichen. Voraussetzung dafür ist eine Messung der spektralen Bestrahlungsstärke unter gleichen Meßbedingungen.

Dann gilt für beide Schwarze Strahler in demselben Maße Gleichung (2.43) und die Abweichung einer gegenseitigen Kalibrierung nach Gleichung (2.45)

\[
\frac{E_{BB22p}(\lambda,T_2)}{E_{BB3200pg}(\lambda,T_2)} - \frac{E_{BB3200pg}(\lambda,T_1)}{E_{BB22p}(\lambda,T_1)} = k_{BB22p}(\lambda,T_2) \cdot E_{BB3200pg}(\lambda,T_1) - 1
\]

sollte verschwinden. Mit dem schnellen Monochromatorsystem IS 320D (vgl. 2.1.6.6) wurden die beiden Schwarzen Strahler an verschiedenen Meßtagen bei ähnlichen Strahlertemperaturen vermessen. Die Abweichung von BB22p zu BB3200pg im Spektralbereich von 280 nm bis 700 nm, dargestellt in Abbildung 2.38, liegen innerhalb der Standardabweichung für Messungen mit dem IS 320D. Die durchgezogene dicke Kurve entspricht einer Mittelung über die verrauschte Abweichung. Zwischen 290 nm und 375 nm beträgt die Abweichung deutlich weniger als 1 %.

Die Absorptionslinie (vgl. 2.5.2) im Spektrum des BB22p bei 387,5 nm, ist in Abbildung 2.38 angedeutet. In diesem Bereich steigt die Absorptionsänderung zwischen BB22p und BB3200pg bis auf ~6,8 %. Da die Absorptionslinie sehr schmal ist, tritt sie bei der mittleren Abweichung nicht so deutlich auf. Zwischen 400 nm und 690 nm weichen die Strahler deutlich weniger als 0,5 % voneinander ab.

85
Teil 2 Der Hochtemperatur-Hohlraumstrahler als Primärstrahlernormal für die spektrale Bestrahlungsstärke

Abbildung 2.38 Spektraler Vergleich zwischen BB22p und BB3200pg. Messungen mit dem schnellen Spektrometer im Spektralbereich von 280 nm bis 700 nm. Die mittlere Abweichung von BB22p zu BB3200pg (dicke Kurve) liegt deutlich unter 1 %.

Beide Schwarzen Strahler können als unabhängige Primärmormale eingesetzt werden, wobei BB3200pg wegen der an ihm durchgeführten Optimierungen und der deutlich größeren spektralen Bestrahlungsstärke aufgrund höherer Strahlttemperaturen vorzuziehen ist.
Teil 3 Möglichkeiten der Realisierung einer empfängergestützten spektralen Bestrahlungsstärke

Die Messung der spektralen Bestrahlungsstärke konnte mit dem Aufbau der neuen Spektroradiometriemeßplätze und der Verwendung des Pyrographit-Hohlraumstrahlers deutlich verbessert werden. Der Schwarze Strahler wird hierbei als Primärnormal für die Strahlerradiometrie eingesetzt. Um seine spektrale Charakteristik nach dem Planckschen Strahlungsgesetz (2.18) berechnen zu können, bedarf es jedoch der Kenntnis der Strahlertemperatur, die mit unterschiedlichen Methoden bestimmt werden kann. Im Folgenden wird dargestellt, daß die bislang verwendete klassische Pyrometrie von der abbildungsfreien radiometrische Bestimmung der Strahlertemperatur durch Breitband-Filterdetektoren in Handhabung und Meßgenauigkeit übertroffen wird (3.2). Bei dieser empfängergestützten Methode läßt sich die Messung der Strahlertemperatur innerhalb einer radiometrischen Kalibrierkette (3.1.1) auf die Strahlungsleistungsmessung mit dem Kryoradiometer und damit auf die Messung elektrischer Leistung zurückführen. Eine weitere Methode zur empfängergestützten Realisierung der spektralen Bestrahlungsstärke beruht auf einer Modifikation der radiometrischen Kette (3.1.4). Das Meßprinzip und die Möglichkeiten dieser auf Lasermessungen basierenden Methode werden untersucht und beschrieben (3.3). Erste Messergebnisse belegen die Durchführbarkeit dieser neuen Methode zur Bestimmung der Temperatur eines Schwarzen Strahlers und der genauen Messung der spektralen Bestrahlungsstärke an einer diskreten Laserwellenlänge (3.3.3).

3.1 Grundlagen

Zusätzlich zu den in den ersten beiden Teilen angeführten theoretischen und experimentellen Grundlagen soll an dieser Stelle die sogenannte „radiometrische Kette“ beschrieben werden (8.1.1) und verschiedene Temperaturbegriffe der Strahlungsmessung kurz erläutert werden (8.1.2). Grundsätzliche Überlegungen zur Bewertung der Strahlung eines Planckschen Strahlers mit schmalbandigen und breitbandigen Detektoren zeigen Möglichkeiten und Grenzen der Messung mit gefilterten Detektoren auf (8.1.3).

3.1.1 Die radiometrische Kette

In der Metrologie und im Qualitätsmanagement ist die Rückführbarkeit physikalischer Größen von ausschlaggebender Bedeutung. Wenn hierbei eine Rückführung auf SI-Basiseinheiten nicht möglich ist, wird die Rückführung auf abgeleitete Größen angestrebt. In der Radiometrie wird eine sogenannte radiometrische Kette gebildet, bei der alle strahlungsphysikalischen Größen und auch Größen der Photometrie aufeinander aufbauen [25][65].

Die in der PTB in Braunschweig derzeit im Aufbau befindliche radiometrische Kette ist in Abbildung 3.1 dargestellt. Sie teilt sich in die drei Teilgebiete Empfänger-Radiometrie, Strahler-Radiometrie und Photometrie auf: Der in der vorliegenden Arbeit in der Hauptsache untersuchte und verbesserte Bereich ist die Strahler-Radiometrie und ihre Rückführbarkeit auf die Empfänger-Radiometrie. Die dargestellte Verbindung über Breitband-Filterdetektoren wurde realisiert und weitgehend optimiert (siehe 3.2), ebenso wurde eine Modifikation der radiometrischen Kette, wie sie in Abbildung 3.2 dargestellt ist, aufgebaut und umfassend charakterisiert (siehe 3.3).

3.1.1.1 Empfänger-Radiometrie

Der obere Bereich in Abbildung 3.1 umfaßt die Empfänger-Radiometrie. Ein Laser-Kryoradiometer ist das Primärnormal für die Empfindlichkeit s(\(\lambda\)) bezüglich der Strahlungslistung \(\Phi\) [112][113][114]. Ein auf die Temperatur des flüssigen Heliums (4,2 K) gekühlter Hohlraum wird durch die Absorption der Strahlungslistung einer Laserlinie im mW-Bereich geringfügig erwärmt. Durch dynamische elektrische Substitution [41] wird die Strahlungslistung mit elektrischer Leistung verglichen und somit direkt auf die SI-Basiseinheiten Spannung und Widerstand zurückgeführt.
Bei diskreten Wellenlängen zwischen 300 nm und 1100 nm kann das Kryoradiometer mit einer relativen Standardmeßunsicherheit \(< 10^{-4}\) kalibriert werden. Die Anforderungen an die Meßapparatur und die Umgebungsbedingungen sind recht anspruchsvoll, so daß das Laser-Kryoradiometer der PTB in Braunschweig im Reinraumzentrum betrieben wird.

Ebenfalls im Reinraumzentrum wird derzeit ein Breitband-Kryoradiometer aufgebaut, dessen Empfindlichkeit \(s(\lambda)\) bezüglich spektraler Strahlungsleistung lückenlos ebenfalls mittels elektrischer Substitution bestimmt wird \([8][117]\). An den diskreten Laserlinien \(\lambda_i\) ist die absolute Empfindlichkeit \(s(\lambda_i)\) des Breitband-Kryoradiometers außerdem direkt mit der Empfindlichkeit \(s(\lambda_i)\) des Laser-Kryoradiometers vergleichbar.

\[
E(\lambda) = \frac{P(\lambda)}{A} \quad \text{mit} \quad P(\lambda) = \int_{\lambda_1}^{\lambda_2} E(\lambda') \, d\lambda'
\]

\[
E_{\text{rel}}(\lambda) = \frac{E(\lambda)}{E(\lambda_0)}
\]

\[
I(\lambda) = I(\lambda_0) \quad \text{mit} \quad I(\lambda_0) = I(\lambda)
\]

\[
V(\lambda) = V(\lambda_0) \quad \text{mit} \quad V(\lambda_0) = V(\lambda)
\]

\[
E(\lambda) = \frac{P(\lambda)}{A} \quad \text{mit} \quad P(\lambda) = \int_{\lambda_1}^{\lambda_2} E(\lambda') \, d\lambda'
\]

Mit einer Kombination aus Strahlern und Monochromatorsystem kann die Empfindlichkeit \(s(\lambda)\) breitbandig auf eine Reihe anderer Empfängernormale übertragen werden. Als Arbeitsnormale sollen Trap-Empfänger \([32]\) sowie in Dünnenschichttechnologie hergestellte Thermosäulen \([78]\) verwendet werden. Unter Verwendung kalibriert Meßblenden wird die Empfindlichkeit von Filterdetektoren bezüglich spektraler Bestrahlungsstärke kalibriert. Für Photometer, die in der Photometrie eingesetzt werden, wird die relative spektrale Empfindlichkeit \(s(\lambda_{\text{rel}})\) bestimmt, die der \(V(\lambda)\)-Kurve entspricht, sowie die
3.1 Grundlagen

Absolutempfindlichkeit $s(\lambda_0)$ an der Wellenlänge $\lambda_0 = 555$ nm kalibriert und bei diskreten Laserwellenlängen λ_1 überprüft. Da sich das Breitband-Kryoradiometer zur Zeit noch im Aufbau befindet, werden für die Übergangszeit elektrisch kalibrierte Empfänger bei Raumtemperatur (ESR) als Absolutempfänger verwendet [74][115] (siehe auch [8][2.5]). Der Anschluß an das Kryoradiometer erfolgt durch einen indirekten Vergleich über sogenannte Trap-Empfänger. Diese Detektoren bestehen aus drei oder mehr Photodioden, die hintereinander jeweils in einem Neigungswinkel von 45° bzw. 90° zueinander angeordnet sind. In dieses Detektorsystem einfallende Strahlung wird nach mehrfacher Reflexion über einen großen Spektralbereich wie in einer Lichtfalle (engl. „Trap“) absorbiert und von den parallel geschalteten Photodioden nahezu vollständig in elektrischen Photostrom umgewandelt [32]

3.1.1.2 Photometrie

Der mittlere untere Bereich in Abbildung 3.1 entspricht der Photometrie, bei der wichtige photometrische Größen von Lichtquellen wie Lichtstärke I_V, Leuchtdichte L_V und Beleuchtungsstärke E_V weitergegeben werden können [95]. Mit einem Goniophotometer, daß eine Lichtquelle im gesamten Raumwinkel erfassen kann, wird der Gesamtlichtstrom Φ_V bestimmt. Von thermischen Lichtquellen, die einer Normlichtart entsprechen, kann die Verteilungstemperatur T_d bestimmt werden.

Alle Messungen stützen sich in erster Linie auf die Realisierung der Basis einheit Candela als Einheit der Lichtstärke I_V, die auf folgenden Messungen und Kalibrierungen basiert [7][94][96]:

1. Ein Photometer wird in der Empfänger-Radiometrie kalibriert. Die relative spektrale Empfindlichkeit $s(\lambda)_\text{rel}$ sollte dem $V(\lambda)$-Hellempfindlichkeitsgrad des Auges weitgehend entsprechen. Die spektrale Empfindlichkeit $s(\lambda_0)$ in A m2 W$^{-1}$ bei der Wellenlänge $\lambda_0 = 555$ nm muß absolut bestimmt werden.
2. Eine Lampe wird in der Strahler-Radiometrie kalibriert. Benötigt wird die relative spektrale Strahlungsfunktion dieser Lampe, zum Beispiel dargestellt durch die relative spektrale Bestrahlungseigenschaft $E(\lambda)_\text{rel}$.
3. Die Meßentfernung d zwischen Lampe und Photometer muß genau bestimmt und festgelegt sein.
4. Aus der Bewertung der Strahlungsfunktion der Lampe mit dem Photometer läßt sich die Lichtstärke I_V bestimmen:

$$I_V = \frac{K_m}{s(\lambda_0)} \frac{d^2}{\Omega_0} \int \frac{E(\lambda)_\text{rel} V(\lambda)}{E(\lambda)_\text{rel} s(\lambda)_\text{rel}} \, d\lambda.$$ \hspace{1cm} (3.1)

Hierbei ist i_{ph} der Photostrom des Photometers in Ampere und $K_m = 683,002$ cd·sr/W ist der Maximalwert des spektralen Strahlungsäquivalents für photopisches Sehen.

Die Realisierung der Basis einheit Candela basiert also im Wesentlichen auf Kalibrierungen im Bereich der Empfänger-Radiometrie und der Strahler-Radiometrie.

3.1.1.3 Strahler-Radiometrie

3.1.1.4 Modifikation der radiometrischen Kette

Die Verbindung zwischen der Empfänger-Radiometrie und der strahlergestützten Radiometrie läßt sich auch durch Vergleich einer Strahlungsleistungsmessung mit einer Messung der spektralen Bestrahlungsstärke herstellen \[106\]. Die hierzu notwendigen Modifikationen der radiometrischen Kette sind in Abbildung 3.2 dargestellt. In dieser Form der Kette entfällt das Breitband-Kyoradiometer. Statt dessen wird die absolute spektrale Empfindlichkeit \(s(\lambda_i) \) eines Empfängernormales direkt an einer diskreten Laserwellenlänge \(\lambda_i \) bestimmt, um damit am Meßplatz für spektrale Bestrahlungsstärke die Strahlungsleistung \(\Phi(\lambda_i) \) eines anderen Lasers gleicher Wellenlänge zu bestimmen. Mit Hilfe eines Systems aus Ulbricht-Kugel als Diffusor und Spektroradiometer können Laserleistung \(\Phi(\lambda_i) \) und spektrale Bestrahlungsstärke \(E_\lambda(\lambda_i) \) des Schwarzen Strahlers bei der Wellenlänge \(\lambda_i \) des Lasers miteinander verglichen werden (siehe 3.3.1). Unter Kenntnis von \(E_\lambda(\lambda_i) \) bei derselben Wellenlänge \(\lambda_i \) läßt sich die Strahlertemperatur \(T_{BB} \) ermitteln und daraus die spektrale Bestrahlungsstärke \(E_\lambda(\lambda) \) berechnen.

Abbildung 3.2 Modifikation der radiometrischen Kette.
Der Schwarze Strahler als Primärnormal der Strahler-Radiometrie ist durch nur noch einen Meßschritt auf das Kyoradiometer als Primärnormal der Empfänger-Radiometrie zurückführbar.

3.1.2 Temperaturbegriffe der Strahlungsmessung

Will man mit einem Schwarzen Strahler messbare Bestrahlungsstärken im sichtbaren oder sogar im ultravioletten Spektralbereich erreichen, so muß man den Hohlraum auf Temperaturen größer als 2500 Kelvin – besser noch größer als 3000 Kelvin – erhitzen. Methoden zur Temperaturmessung durch Kontakt (etwa durch ein Thermoelement) sind nur bis etwa 1800 Kelvin mit akzeptabler Meßunsicherheit durchführbar.

Durch Eintauchen des Strahlers in ein Bad eines schmelzenden Metalles läßt sich eine Fixierung der Temperatur und damit eine genaue Bestimmung noch bis zu 2720 Kelvin erreichen. Man kann hierbei die verschiedenen Schmelzpunkte von Palladium (1827 K), Platin (2042 K), Rhodium (2236 K) und
3.1 Grundlagen

Iridium (2720 K) ausnutzen. In den meisten Anwendungen wird jedoch nur der Goldpunkt bei
(1337,33±0,2) K verwendet. In der internationalen Temperaturskala ITS-90 ist der Erstarrungspunkt
des Kupfers mit 1357,77 K als der höchste Fixpunkt der Skala angegeben [81].

Da die Strahlung eines Schwarzen Strahlers durch das Plancksche Strahlungsgesetz (2.18) im gesam-
ten Spektralbereich bestimmt ist, läßt sich seine Temperatur mit verschiedenen Methoden auch über
die emittierte Strahlung ermitteln. Die reale Temperatur von Wärmestrahlen mit einem wellenlängen-
unabhängigen Emissionsgrad $\varepsilon < 1$ (sogenannte graue Strahler) läßt sich über das Kirchhoffsche
Gesetz (2.15) ermitteln, wenn der Emissionsgrad bekannt ist. Oft werden bei grauen Strahlern Tem-
peraturen angegeben, die die Strahlungseigenschaften des grauen Strahlers zu denen des Schwarzen
Strahlers in Beziehung setzen und nicht unbedingt der realen Temperatur des grauen Strahlers
equivalent sind.

In Abhängigkeit von der Methode der Messung einer Temperatur sind, in Bezug auf die Strahlung
eines Körpers, verschiedene Begriffe geprägt und in der DIN 5031 Teil 5 zusammengestellt worden
[18]. Die in diesem Zusammenhang wichtigsten Benennungen sind hier kurz angeführt:

- Die Verteilungstemperatur T_d eines zu kennzeichnenden Strahlers ist diejenige Temperatur des
 Schwarzen Strahlers, bei der dieser die gleiche relative spektrale Strahlungsverteilung hat, wie der
toz kennzeichnende Strahler. Es ist auch möglich, die Verteilungstemperatur nur für einen
begrenzten Wellenlängenbereich anzugeben, der dann zu benennen ist.
- Die Verhältnistemperatur T_v eines zu kennzeichnenden Strahlers ist diejenige Temperatur des
 Schwarzen Strahlers, bei der das Verhältnis der spektralen Strahllichten für zwei verschiedene
Wellenlängen λ_1 und λ_2 ebenso groß ist, wie bei dem zu kennzeichnenden Strahler. Im
allgemeinen ist ein Rückschluß von T_v auf die spektrale Verteilung der Strahlungsleistung
unmöglich.
- Die Spektrale Strahlungstemperatur T_s (schwarze Temperatur) eines zu kennzeichnenden Strahlers
für eine bestimmte Wellenlänge ist diejenige Temperatur des Schwarzen Strahlers, bei der dieser
 die gleiche spektrale Strahllichte hat wie der zu kennzeichnende Strahler. Die Wellenlänge ist
anzugeben.

Im allgemeinen liegt die reale Körpertemperatur eines Wärmestrahlers über den oben genannten
Temperaturen, da sein Emissionsgrad kleiner als der eines Schwarzen Strahlers ist.

3.1.3 Bewertung von Schwarzer Strahlung in einem begrenzten Spektralbereich

Monochromatoren und Filterkombinationen sondern definierte Bereiche des Spektrums eines Strahlers
aus, die auf die Empfängerfläche eines Detektors gelangen. Das Spektrum des Schwarzen Strahlers
wird also mit der spektralen Empfindlichkeit des Meßsystems bewertet. Im allgemeinen erzeugt die so
bewertete Strahlung einen Photostrom i_{Det} in Abhängigkeit von der spektralen Empfindlichkeit des
Meßsystems. Die Gleichung der spektralen Bewertung der Bestrahlungsstärke lautet dann

$$i_{Det}(T_{BB}) = \int_0^\infty s(\lambda) \cdot E_{BB}(\lambda, T_{BB}) \, d\lambda.$$ (3.2)

Der resultierende Photostrom $i_{Det}(T_{BB})$ ist abhängig von der Strahltemperatur T_{BB} und kann daher
umgekehrt bei entsprechender Kalibrierung zur Bestimmung dieses wichtigen Parameters für die
Berechnung der spektralen Bestrahlungsstärke herangezogen werden (3.2).

Die spektrale Empfindlichkeit $s(\lambda)$ des Meßsystems wird neben ihrem spektralen Verlauf durch
weitere Merkmale charakterisiert. Neben der Angabe von Schwerpunktwellenlänge λ_S und Halbwert-
breite $\Delta \lambda$ ist dies die Steilheit (relative Steigung) ihres spektralen Verlaufes

$$\frac{\delta s(\lambda)}{\delta \lambda} \cdot \frac{1}{s(\lambda)},$$ (3.3)

die im allgemeinen mit zunehmender Halbwertbreite abnimmt.
Das Integral der spektralen Bewertung in Gleichung (3.2) ist aufgrund der Gleichung des Planckschen Strahlungsgesetzes und der oftmals nicht als Funktion angegebenen spektralen Empfindlichkeit nicht analytisch lösbar, sondern muß jeweils numerisch berechnet werden.

3.1.3.1 Simulation der spektralen Empfindlichkeit durch eine abgewandelte Gaußfunktion

Die abgewandelte Gaußfunktion bei schmaler und breiter Halbwertbreite und ihre Steilheit.

Die Funktion ist stetig und im Maximum auf eins normiert. Mit zunehmender Breite nimmt die relative Steilheit der Flanken ab (gestrichelte Linien). Zum Vergleich ist der Verlauf der relativen spektralen Empfindlichkeit eines realisierten Breitband-Filterdetektors (FD18) eingzeichnet.

Mit einer geeigneten Funktion zur Simulation der spektralen Empfindlichkeit $s(\lambda)$ soll der Einfluß unterschiedlicher Merkmale von $s(\lambda)$ auf das berechnete Photosignal $i_\text{Det}(T_{BB})$ im Modell berechnet werden. Der spektrale Verlauf einer Abwandlung der Normalverteilung oder Gaußfunktion (Gaußsche Glockenkurve) entspricht den Charakteristika typischer Verläufe der Empfindlichkeit von optischen Meßsystemen:

$$s(\lambda) = a \cdot \exp \left(-\frac{(\lambda - \lambda_S)^2}{2(\Delta \lambda/b)^2} \right)$$

mit $a = 1 \text{ A} \cdot \text{W}^{-1} \cdot \text{m}^2$ und $b = 2,354820045$.

Die Funktion ist symmetrisch, normiert auf die Schwerpunktwellenlänge λ_S und der Faktor b wurde so angepaßt, daß $s(\lambda)$ die Halbwertbreite $\Delta \lambda$ besitzt. Der Faktor a ist der Einheitenfaktor für die spektrale Empfindlichkeit bezüglich Bestrahlungsstärke. Die Steilheit dieser Verteilung nimmt mit dem Quadrat der Halbwertbreite ab:

$$\frac{\delta s(\lambda)}{\delta \lambda} \cdot \frac{1}{s(\lambda)} = \frac{\lambda_S - \lambda}{(\Delta \lambda/b)^2}.$$

Der spektrale Verlauf und die Steilheit dieser simulierten spektralen Empfindlichkeit für drei verschiedene Halbwertbreiten ist in Abbildung 3.3 dargestellt. Zum Vergleich wurde die relative spektrale Empfindlichkeit eines Breitband-Filterdetektors (FD18) mit einer Halbwertbreite von 104 nm eingetragen, deren spektraler Verlauf und Steilheit nahezu einer abgewandelten Gaußfunktion entspricht. Auch sehr schmalbandige Detektoren entsprechen im wesentlichen der simulierten Funktion mit entsprechend großer Steilheit.
3.1 Grundlagen

3.1.3.2 Die optimale spektrale Lage eines Detektors

Welcher Spektralbereich der Temperaturstrahlung eines Schwarzen Strahlers bewertet wird, d.h. die spektrale Lage der Bewertung, wird vorwiegend durch die Schwerpunktwellenlänge λ_S des Meßsystems bestimmt. Betrachtet man das Plancksche Strahlungsgesetz, so nimmt mit steigender Temperatur die spektrale Bestrahlungsstärke bei einer Wellenlänge λ zu. Für kürzere Wellenlängen steigt die Änderung mit der Temperatur an.

Abbildung 3.4 Relative Änderung der spektralen Bestrahlungsstärke mit der Strahlertemperatur.
Beim kurzen Wellenlängen ist die relative Änderung am größten, jedoch ist sie bei 3200 Kelvin für 200 nm nur 2,7 mal größer als für 550 nm.

Als Maß für diese Änderung wird der Temperaturkoeffizient τ angegeben, der der relativen Änderung der Bestrahlungsstärke E_{BB}, bzw. des resultierenden Photostromes i mit der Strahlertemperatur T_{BB} entspricht:

$$\tau = \frac{\delta i}{\delta T_{BB}} \cdot \frac{1}{i} \cdot \frac{\delta E_{BB}}{E_{BB}} \cdot \frac{1}{\delta T_{BB}}.$$ (3.6)

Abbildung 3.5 Spektrale Bestrahlungsstärke eines Schwarzen Strahlers normiert auf 550 nm.
Die Auftragung für verschiedene Strahlertemperaturen zeigt, daß die Bestrahlungsstärke zum UV-Spektralbereich hin deutlich abnimmt. Bei 3200 Kelvin und 200 nm beträgt sie nur etwa 10^{-4} des Wertes für 550 nm.
In Abbildung 3.4 ist die relative Änderung der spektralen Bestrahlungsstärke mit der Temperatur für verschiedene Wellenlängen dargestellt. Diese ist bei 3200 Kelvin für 200 nm am größten (0,0070 K⁻¹), allerdings auch nur etwa 2,7 mal höher als die relative Änderung bei 550 nm (0,0026 K⁻¹). Für die Nachweispfindlichkeit einer Messung ist die Höhe des Meßsignals und damit verbunden das Signal-Rausch-Verhältnis von großer Bedeutung. Bei konstanter Strahlttempatur nimmt die Bestrahlungsstärke und damit das Meßsignal zu kürzeren Wellenlängen hin ab.

Abbildung 3.5 verdeutlicht in der Normierung auf die spektrale Bestrahlungsstärke bei 550 nm, die Abnahme zum UV-Spektralbereich hin. Die Bestrahlungsstärke bei 3200 Kelvin beträgt für 200 nm nur 10⁻⁹ des Wertes bei 550 nm. Im Infraroten bei 1000 nm steigt sie nur etwa um den Faktor zwei gegenüber der Bestrahlungsstärke bei 550 nm. Betrachtet man also gleichzeitig die relative Änderung mit der Temperatur und die Höhe der Bestrahlungsstärke (bzw. den Temperaturkoeffizienten und die Höhe des Photostromes), so erweisen sich Detektoren im Sichtbaren und im Infrarot-Spektralbereich als geeignet zur Bestimmung der Strahlttempatur über einen großen Temperaturbereich. Da ein Großteil der verwendeten Filterdetektoren Schwerpunktwellenlängen um 550 nm besitzen (siehe 3.2), wird im Folgenden die abgewandelte Gaußfunktion mit $\lambda_s = 550$ nm und unterschiedlichen Halbwertbreiten verwendet.

3.1.3.3 Die optimale Halbwertbreite für einen Detektor

Neben der spektralen Lage werden die Eigenschaften eines optischen Meßsystems in besonderem Maße durch die Halbwertbreite der spektralen Empfindlichkeit und die Steilheit des spektralen Verlaufs bestimmt. Diese Merkmale wirken sich auf die Bestimmung der Temperatur des Schwarzen Strahlers und auf die spektrale Kalibrierung der Detektoren aus. Detektoren mit großen Halbwertbreiten und kleiner Steilheit der Flanken lassen sich mit geringerer Meßunsicherheit kalibrieren, als schmalbandige Detektoren. Auf den Temperaturkoeffizienten hat die Halbwertbreite einen eher geringen Einfluß, wie Abbildung 3.6 verdeutlicht. Bei 3200 Kelvin ist der Temperaturkoeffizient für eine Halbwertbreite von 1 nm nur 1,05 mal größer als für einen Detektor mit 200 nm Halbwertbreite.

![Abbildung 3.6 Relative Änderung des Photosignals mit der Strahlttempatur bei unterschiedlichen Halbwertbreiten.](image)

Die Schwerpunktwellenlänge beträgt einheitlich 550 nm. Die Änderung des Photosignals bei 3200 Kelvin für 10 nm Halbwertbreite ist lediglich 1,05 mal größer als für 200 nm Halbwertbreite.

Das Photosignal selbst nimmt mit der Halbwertbreite zu und ist z.B. bei 200 nm Halbwertbreite 20 mal höher als bei einer Halbwertbreite von 10 nm (Abbildung 3.4). Hierbei ist außerdem zu beachten, daß für alle Halbwertbreiten derselbe Absolutwert von 1 A·W⁻¹·m² für die maximale spektrale Empfindlichkeit angenommen wird. Bei Detektoren mit sehr schmalbandigen Interferenzfiltern gilt oftmals zusätzlich, daß die Transmission im Maximum, d.h. die spektrale Empfindlichkeit bei der Schwerpunktwellenlänge teilweise um eine Größenordnung kleiner ist, als bei breitbandigen Detektoren.
3.1 Grundlagen

Abbildung 3.7 Photosignal bei unterschiedlichen Halbwertbreiten normiert auf $\Delta \lambda = 200$ nm.

Die Änderung ist nahezu temperaturunabhängig. Für 3200 Kelvin erreicht das Photosignal bei 10 nm Halbwertbreite nur etwa 0,05 des Wertes mit 200 nm Halbwertbreite.

Allein schon vom Standpunkt der Photosignalamplitude (Signal-Rausch-Verhältnis) empfiehlt sich daher die Verwendung breitbandiger optischer Meßsysteme.

Aufgrund der vergleichsweise geringen Variation des Temperaturkoeffizienten mit der Strahltemperatur (siehe Abbildung 3.4 und Abbildung 3.6) werden alle folgenden Berechnungen bei der für den Pyrographitstrahler BB3200pg und für Messungen im UV-Spektralbereich charakteristischen Strahltemperatur von $T_{BB} = 3200$ Kelvin durchgeführt.

3.1.3.3 a Der Einfluß von Fehlkonfigurationen auf das Photosignal

Bei der Kalibrierung und der Verwendung von Detektoren und optischen Meßsystemen ist der Einfluß systematischer Fehler zu berücksichtigen, die sich auf die spektrale Empfindlichkeit und die Messung vor dem Schwarzen Strahler auf verschiedene Arten auswirken. Bei der Kalibrierung kann beispielsweise die Wellenlängeneinstellung verschoben sein oder der Absolutwert der spektralen Empfindlichkeit falsch bestimmt worden sein. Bei der Verwendung der Detektoren und insbesondere von Meßsystemen mit Interferenzfiltern, kann durch Fehljustierung oder Alterung eine Verschiebung der Schwerpunktwellenlänge auftreten, die spektrale Empfindlichkeit abnehmen oder es ändert sich die Steilheit der Flanken und damit die Halbwertbreite des spektralen Verlaufes.

Abbildung 3.8 verdeutlicht, daß sich systematische Abweichungen dieser Art weitgehend unabhängig von der Halbwertbreite auf das resultierende Photosignal bei einer konstanten Strahltemperatur von beispielsweise 3200 Kelvin auswirken. Es werden verschiedene Arten der Fehlkonfiguration mit typischen Maximalwerten dargestellt. Bei einer Verschiebung der Wellenlänge um $\delta \lambda = 0,5$ nm ändert sich der Photostrom bei 3200 Kelvin beispielsweise zwischen 0,29 % und 0,25 % mit zunehmender Halbwertbreite. Diese Fehlkonfiguration tritt bei der Kalibrierung von $s(\lambda)$ durch eine fehlerhafte Wellenlängeneinstellung auf oder wird infolge von Alterung (Temperatur- und Feuchtigkeitseinflüsse) oder Fehljustierung eines Interferenzfilters bewirkt (eine Verkippung gegen die optische Achse führt zu einer Verschiebung der effektiven Wellenlänge). Die Polarisation der einfallenden Strahlung führt bei Interferenzfiltern zusätzlich zu einer Verschiebung der Empfindlichkeitskurve ([6], Kap.6.3).

Ebenfalls durch Alterung, Fehljustierung des Detektors oder fehlerhafter Absolutkalibrierung kann eine spektral unabhängige Änderung der Empfindlichkeit $s(\lambda)$ auftreten. Bei Annahme einer relativen Änderung von $\delta s/s = 0,5$ % ändert sich auch das Photosignal unabhängig von der Wellenlänge um 0,5 %. Eine derartige Abweichung ergibt sich auch bei fehlerhafter Berechnung von $E_{BB}(\lambda)$, wenn zum Beispiel die Strahlerfläche oder der Abstand zum Strahler falsch bestimmt wurde (in Abbildung 3.8 nicht gesondert eingezeichnet).

Die Änderung der Flanken infolge von Alterung oder Fehljustierung wurde durch eine Änderung der Halbwertbreite um 0,5 % simuliert. Dies entspricht einer Änderung der Flankensteilheit um 1 % und wirkt sich auf das Photosignal nahezu unabhängig von der Halbwertbreite mit 0,5 % aus.
Wenn bei der Berechnung des Photosignals nur unvollständig über relative spektrale Empfindlichkeiten \(s(\lambda)/s(\lambda_S) \geq 10^{-2} \) integriert wird (1/100-Breite), so nimmt die Änderung des Photosignals von 0,24 % bis 0,26 % geringfügig mit der Halbwertbreite zu. Bei unvollständiger Integration über die 1/1000-Breite beträgt die relative Änderung des Photosignals bei 3200 Kelvin weniger als 0,02 % (jedoch ohne Berücksichtigung von Fehlstrahlung, siehe unten).

Zum Vergleich mit diesen an der abgewandelten Gaußfunktion simulierten Berechnungen werden in Abbildung 3.8 die numerisch berechneten relativen Änderungen des Photostromes für den Breitband-Filterdetektor (FD18) eingezeichnet (Erläuterungen siehe Text).

Zum Vergleich mit diesen an der abgewandelten Gaußfunktion simulierten Berechnungen werden in Abbildung 3.8 die numerisch berechneten relativen Änderungen des Photostromes für den Breitband-Filterdetektor FD18 mit einigen möglich Fehlkonfigurationen dargestellt. Sie decken sich weitgehend mit den berechneten Abweichungen der Simulation.

3.1.3.3 b Der Einfluß von Fehlstrahlung auf das Photosignal

Neben den typischen systematischen Fehlern infolge von Fehlkonfigurationen kann die fehlende Berücksichtigung von Fehlstrahlung oder weiteren spektralen Durchlaßbereichen der Monochromator oder Filter-Empfänger-Kombinationen zu deutlichen Abweichungen des Photosignals führen.

Beider Verwendung von Interferenzfiltern und bei der Verwendung von Monochromatoren ist es möglich, daß Durchlaßbereiche höherer Ordnung auftreten, die einen sehr ähnlichen spektralen Verlauf mit vergleichbarer Halbwertbreite aber deutlich geringerer spektraler Empfindlichkeit besitzen. Eine derartige 2. Ordnung tritt bei der doppelten Schwerpunktwellenlänge auf (hauptsächlich bei Interferenzfiltern) oder rührt von der 2. Beugungsordnung von Strahlung bei der halben Schwerpunktwellenlänge des Hauptdurchlaßbereiches her (bei Monochromatoren). In Abbildung 3.9 ist die Auswirkung einer 2. Ordnung bei 1100 nm dargestellt, deren maximale spektrale Empfindlichkeit 0,5 % der Empfindlichkeit des Hauptdurchlaßbereiches bei 550 nm entspricht. Die resultierende spektrale Empfindlichkeit eines derartigen optischen Meßsystems nach Gleichung (3.4) ist gegeben durch

\[
s(\lambda) = a \cdot \exp\left(\frac{(\lambda - \lambda_S)^2}{2(\Delta\lambda/b)^2}\right) + 0,005 \cdot a \cdot \exp\left(\frac{(\lambda - 2\cdot\lambda_S)^2}{2(\Delta\lambda/b)^2}\right)
\]

mit \(\lambda_S = 550 \text{ nm} \).

Wird bei der Bestimmung bzw. Berechnung des Photosignals die zweite Ordnung nicht berücksichtigt, ergibt sich in diesem Fall eine Änderung des Photosignals bei 3200 Kelvin von etwa 1 %, die unabhängig von der Halbwertbreite des Systems ist.

Eine weitere Möglichkeit des Vorhandenseins von Fehlstrahlung ist ein von der Halbwertbreite unabhängiger weiterer Durchlaßbereich konstanter Breite und Höhe, der zum Beispiel durch eine Fehlkonstruktion des Filters oder eine weitere Transmissionsbande entstehen kann.
Wird dieser Bereich bei der Kalibrierung von \(s(\lambda) \) nicht berücksichtigt, da er weit ab vom Hauptdurchlaßbereich liegen kann, wird das Photosignal nach Gleichung (3.2) falsch berechnet. Die sich ergebende Änderung des Photostromes ist ebenfalls für ein Fallbeispiel in Abbildung 3.9 dargestellt (gestrichelte Linie). Es wurde ein zweiter gaußförmiger Durchlaßbereich bei 1100 nm mit einer konstanten Halbwertbreite von \(\Delta \lambda = 5 \) nm und einer relativen Amplitude von 0,5 % der maximalen spektralen Empfindlichkeit gewählt. Der Einfluß dieser Fehlstrahlung auf die Änderung des Photostromes hängt deutlich von der Halbwertbreite des Hauptdurchlaßbereiches ab. Während sich bei 1 nm Halbwertbreite das Photosignal um 4,7 % ändert, ist bei \(\Delta \lambda = 200 \) nm die Abweichung kleiner als 0,025 %.

Abbildung 3.9 Einfluß von Fehlstrahlung auf die Photosignaländerung.

Eine vergleichbare relative Änderung des Photosignals mit der Halbwertbreite ergibt sich, wenn die spektrale Bestrahlsstärke innerhalb der spektralen Empfindlichkeit des optischen Meßsystems deutliche Emissionslinien oder Absorptionsbanden aufweist (in Abbildung 3.9 nicht gesondert aufgeführt). Breitband-Filterdetektoren sind in solch einem Fall (wie es bei BB3200pg auch beobachtet wurde, siehe [2,5,2]) wesentlich unempfindlicher als schmalbandige optische Meßsysteme, jedoch ist zu berücksichtigen, daß bei der Verwendung sehr schmalbandiger Interferenzfilter die Wahrscheinlichkeit, daß Emissionslinien oder Absorptionsbanden der Strahlung im Durchlaßbereich des Filters liegen, wesentlich geringer ist.

Bei Interferenzfiltern besteht außerdem die Möglichkeit, daß sie nur eine begrenzte Blockung besitzen, d.h. die Transmission des Filters der Spektralbereiche in der Umgebung der Durchlaßbande (Sperrbereich) verschwindet nicht vollständig, sondern die Strahlung wird zu einem geringen Anteil ebenfalls durchgelassen. Bei hochwertigen Interferenzfiltern verbleibt eine Resttransmission von etwa \(10^{-6} \) oder weniger. Einige Filter, insbesondere für den UV-Spektralbereich, sind bestenfalls mit einer Resttransmission von \(10^{-4} \) im Sperrbereich herstellbar [98]. Der Einfluß eines solchen Blockungsfehlers über den Bereich der vorhandenen spektralen Empfindlichkeit einer Silizium-Photodiode von 300 nm bis 1100 nm ist mit der strichpunktierten Linie in Abbildung 3.9 dargestellt. Für besonders schmalbandige Interferenzfilter ergibt sich eine deutliche Änderung, so daß bei deren Kalibrierung daher immer auch genau auf die Sperrbereiche geachtet werden muß.

Die Halbwertbreite und damit die Steilheit der Flanken der spektralen Empfindlichkeit wirken sich deutlich auf die Meßunsicherheit bei der Kalibrierung der spektralen Empfindlichkeit aus. Die dritte Beispielberechnung in Abbildung 3.9 geht von einer Meßunsicherheit von 1/10 der Steigung aus, das entspricht z. B. einer Unsicherheit der Wellenlängeneinstellung von 0,1 nm. Die dadurch bewirkte Änderung der spektralen Empfindlichkeit wächst mit der Steilheit an, bzw. fällt mit der Halbwert-
breite. In Höhe der Halbwertbreite zum Beispiel beträgt gemäß Gleichung (3.5) für die abgewandelte
Gaußfunktion die relative Änderung der Steigung der spektralen Empfindlichkeit
\[\frac{\delta s(\lambda)}{\delta \lambda} \cdot \frac{1}{s(\lambda)} = \frac{b^2}{2 \Delta \lambda}, \] (3.8)
was bei 10 nm Halbwertbreite einer Änderung von 0,28 nm⁻¹ entspricht und für eine Halbwertbreite
von 200 nm eine Änderung von 0,014 nm⁻¹ ergibt (siehe Abbildung 3.). Bei einer Unsicherheit der
Wellenlängeneinstellung von 0,1 nm steigt die Abweichung der spektralen Empfindlichkeit innerhalb
an ihrer 1/1000 Breite auf Werte über 8,7 % an, während sie für die Halbwertbreite von 200 nm unterhalb
0,44 % bleibt.

Die sich aus dieser Meßunsicherheit ergebende größtmögliche Änderung des Photosignals bei
3200 Kelvin ist in Abbildung 3.9 mit der gepunkteten Linie dargestellt. Bei 10 nm Halbwertbreite
ändert sich das Photosignal um 1,88 %, während die Änderung für eine Halbwertbreite von 200 nm
nur 0,09 % beträgt. Damit hat die Unsicherheit der Kalibrierung, die durch die Steilheit der spektralen
Empfindlichkeit verursacht wird, für schmalbandige Detektoren den größten Einfluß auf die Änderung
bzw. Unsicherheit des Photosignals, während sie für breitbandige Detektoren zu vernachlässigen ist.

Einige der oben angeführten systematischen Fehlkonfigurationen treten außerdem bei Detektoren mit
smalbandigen Interferenzfiltern in stärkerem Maße auf, als bei breitbandigen optischen Meßsys-
temen. So tritt zum Beispiel eine Verschiebung der Schwerpunktwellenlänge bei Interferenzfiltern
aufgrund von Fehljustierung oder Alterung häufiger und in stärkerem Maße auf, als bei breitbandigen
Filterkombinationen aus ionengefärbten Gläsern (siehe 3.2.1). Auch die Möglichkeit einer oder
mehrerer zusätzlicher Durchlaßbereiche höherer Ordnung ist für Interferenzfilter deutlich wahr-
scheinlicher als für breitbandige Detektoren.

Es werden daher im Folgenden Breitband-Filterdetektoren vorgestellt, deren Kompaktheit und
einfache Handhabbarkeit eine zuverlässige Bestimmung der Temperatur eines Schwarzen Strahlers
ermöglichen.

3.2 Breitband-Filterdetektoren zur Bestimmung der radiometrischen Temperatur des
Hochtemperatur-Hohlraumstrahlers

Eine der im Rahmen dieser Dissertation vorgestellten radiometrischen Methoden zur Temperatur-
bestimmung führt zur Ermittlung einer effektiven Temperatur \(T_{\text{eff}} \), die zwischen spektraler Strahlungs-
temperatur \(T_S \) und Verteilungstemperatur \(T_d \) eingeordnet werden kann. Im Gegensatz zur Schwarzen
Temperatur \(T_S \) wird zur Bestimmung nicht nur eine diskrete Wellenlänge herangezogen, sondern ein
er über einen größeren Wellenlängenbereich integriertes bewertetes Signal zur Auswertung verwendet.
Die so ermittelte Temperatur könnte man als integrale Strahlungstemperatur bezeichnen. Im Gegen-
satz wiederum zur Verteilungstemperatur läßt sich mit ihr keine Angabe über die Verteilung der
Strahlung in dem erfaßten Wellenlängenintervall machen.

Ein größerer Wellenlängenbereich kann zum Beispiel mit einem sogenannten Breitband-Filterdetektor
abgedeckt werden, der durch Wahl geeigneter Filter vor einem Empfängers ausschließlich in einem
deutlich abgegrenzten Spektralbereich strahlungsempfindlich ist. Man könnte dabei zum Beispiel auf
Photometer oder \(V(\lambda) \)-Empfänger zurückgreifen, bei denen die Empfindlichkeit des Detektors dem
spektralen Helllempfindlichkeitsgrad des Auges angepaßt ist, der sogenannten \(V(\lambda) \)-Kurve.

Die Halbwertbreite der Breitband-Filterdetektoren liegt generell im Bereich von 50 nm bis etwa
250 nm. Dadurch werden schwer zu vermessende steile Flanken der spektralen Empfindlichkeitskurve
vermieden und es wird ein großer Bereich der Strahlung des Schwarzen Strahlers zur Temperatur-
bestimmung verwendet. Filterkombinationen aus ionengefärbten Gläsern eignen sich in Kombina-
tion mit hochwertigen Si-Photodioden besonders zum Einsatz bei Breitband-Filterdetektoren.

Derartige Detektoren besitzen neben ihrer Kompaktheit (3.2.2) eine hohe Langzeitstabilität mit gerin-
ger Sensibilität gegenüber Umwelteinflüssen (3.2.6).
3.2 Breitband-Filterdetektoren zur Bestimmung der radiometrischen Temperatur des Hochtemperatur-Hohlraumstrahlers

Abbildung 3.10 Relative spektrale Empfindlichkeit verschiedener Breitband-Filterdetektoren.

Zum Vergleich ist die spektrale Bestrahlungsstärke eines Schwarzen Strahlers bei 3200 K eingezeichnet und die Höhe der Halbwertbreite der Empfindlichkeiten durch die gestrichelte Linie angedeutet.

3.2.1 Auswahl geeigneter breitbandiger Filter

Es werden Filter-Empfänger-Kombinationen mit einer breitbandigen spektralen Empfindlichkeit verwendet, um Probleme, die mit schmalbandigen Interferenzfiltern auftreten können, zu verhindern. Für die Auswahl der Filter für Breitband-Filterdetektoren sind daher folgende Kriterien von Bedeutung:

- Die Filter sollten sich durch Umwelteinflüsse nicht verändern. Dazu zählt die Resistenz gegenüber relaterer Luftfeuchte, Temperaturänderungen und UV-Bestrahlung.
- Die spektrale Transmission der Filter muß weitgehend unabhängig von der Richtung der Bestrahlung sein.
- Die Filter sollten eine homogene Transmission über einer größeren Fläche besitzen.
- Die Kombination aller Filter muß über einen großen Bereich eine hohe Transmission haben.
- In diesem Bereich dürfen sich keine Unstetigkeiten in der spektralen Transmissionscharakteristik befinden, wie sie z.B. von Absorptionsbanden verursacht werden.
- Außerhalb des gewünschten Durchlässigkeitsbereiches muß der (integrale) Transmissionsgrad minimal werden.
- Es soll insbesondere kein weiterer Durchlaßbereich (höhere Banden) auftreten.
- Die Kanten des Durchlaßbereiches sollten relativ flach verlaufen, um die Meßunsicherheit bei der spektralen Kalibrierung zu reduzieren.
- Um eine mögliche Degradation der Si-Photodiode zu verhindern, muß Strahlung aus dem UV-Spektralbereich unterhalb 300 nm durch geeignete (UV-beständige) Filter unterdrückt werden.

Die Filter zum Beispiel, die für den Detektor FD6 verwendet wurden, zeigen folgende Eigenschaften (nach [99]):

- **KG5/2**: Ein ionengefärbter Wärmeschutzfilter mit steiler Absorptionskante im ultravioletten Spektralbereich und abflachender Kante bei 689 nm sowie einem Sperrbereich im infraroten Spektralbereich. Der Filter dient im Filterdetektor als Wärmeschutz und als Sperrfilter für den Spektralbereich oberhalb 900 nm.

- **BG18/2**: Ein ionengefärbtes Blau-Grün-Glas mit Bandpasscharakter und steilen Absorptionskanten. Die Mittenwellenlänge des Bandpasses liegt bei 482 nm, die Halbwertbreite beträgt 231 nm. Der Filter besitzt eine nicht zu steile Kante abnehmender Transmission bei 592 nm, die die langwellige Kante des Filterdetektors bewirkt.

- **GG375/2**: Ein ionengefärbtes Langpaßfilter mit einer Kantenlage von 370 nm, also einer Sperrbereichzone im ultravioletten Spektralbereich. Unterhalb 360 nm wird keine Strahlung durchgelassen. Diese Flanke des Filters stellt die kurzwellige Kante des Filterdetektors dar. Oberhalb 440 nm liegt der Transmissionsgrad bis hin zu 2000 nm durchgehend bei 0,92.

3.2 Breitband-Filterdetektoren zur Bestimmung der radiometrischen Temperatur des Hochtemperatur-Hohlraumstrahlers

3.2.2 Aufbau der Filterdetektoren

Die Filterdetektoren bestehen aus einem kompakten zylindrischen Gehäuse von etwa 4 cm Durchmesser, in dem sich der Photodetektor mit Filterkombination und ein Temperaturmeßwiderstand Pt100 befindet. Der schematische Aufbau eines solchen Detektors ist in Abbildung 3.12 dargestellt. Auf die Si-Photodiode vom Typ Hamamatsu S1227-1010BQ sind Farbglasfilter so aufgeklebt, daß sie die gesamte strahlungsempfindliche Fläche der Diode (ca. 1 cm²) überdecken. Diese Kombination wird durch eine dünne Blende mit 4 mm bis 6 mm Durchmesser abgedeckt. An der Rückseite des Gehäuses befinden sich Steckkontakte zum Anschluß der Photodiode an einen Operationsverstärker und des Widerstandes Pt100 an eine Meßbrücke oder ein entsprechendes Multimeter. Der Filterdetektor kann in ein Kühlgehäuse mit entsprechender zylindrischer Aussparung gesteckt werden. Dieses Gehäuse wird dann mit einem geschlossenen Wasserkreislauf auf eine konstante Temperatur von zum Beispiel 25 °C thermostatisiert. Die abdeckende Meßblende definiert zugleich die Bezugsebene für Entfernungsmessungen. Sie begrenzt das auf die Diode fallende Strahlungsfeld und ist daher als bestrahlte Fläche anzusehen. Da die Filterdetektoren mit dieser Blende bezüglich Bestrahlungsstärke kalibriert wurden, geht die exakte Größe ihrer Fläche in die Temperaturberechnungen nicht mit ein.

Der kompakte unveränderbare Aufbau der Filterdetektoren bietet entscheidende Vorzüge:

- Mehrere Detektoren können auf engem Raum vor dem Schwarzen Strahler eingesetzt werden.
- Photodiode, Filterkombination, Detektorblende und Gehäuse werden gleichmäßig und ohne Temperaturgradienten thermostatisiert.
- Eventuell vorhandene Interreflexionen zwischen den Filtern und der Photodiode werden auch bei leichter Verkantung des Detektors oder unterschiedlichen Bestrahlungsbedingungen voll erfaßt.
- Die vordere Blende ist sichtbegrenzend und daher eindeutige Bezugsebene für Abstands Messungen. Das quadratische Abstands gesetz ist für Filterdetektoren dieser Bauart sehr gut erfüllt (siehe 1.1.6.3).

3.2.3 Berechnung des Photostromes

Wird ein Filterdetektor auf seine Empfindlichkeit bezüglich Bestrahlungsstärke (in AW⁻¹m²) kalibriert, so ist er zur Bestimmung der radiometrischen Temperatur T_{BB} des Strahlers (möglichst homogen) direkt zu bestrahlen. Es wird keine zusätzliche Abbildungsoptik benötigt.
Unter Kenntnis der vorhandenen Geometrie aus Öffnungsfläche A_{BB} des Strahlers und Abstand d_{FD} zum Filterdetektor, läßt sich aus der Integration der spektralen Empfindlichkeit $s_{FD}(\lambda)$ zusammen mit dem Planckschen Strahlungsgesetz (2.17) der Photostrom i_{FD} gemäß Gleichung (3.2) in eineindeutiger Abhängigkeit von der radiometrischen Temperatur T_{BB} des Strahlers berechnen:

$$i_{FD}(T_{BB}) = \int s_{FD}(\lambda) E_{\lambda}(\lambda,T_{BB}) \, d\lambda = G \int s_{FD}(\lambda) L_{\lambda}(\lambda,T_{BB}) \, d\lambda. \quad (3.9)$$

Damit ist ein direkter Bezug zwischen der Meßgröße elektrischer Photostrom i_{FD} des Filterdetektors und der radiometrischen Temperatur T_{BB} des Schwarzen Strahlers hergestellt. Im Gegensatz zum Spektralpyrometer bedarf es beim Filterdetektor keiner zusätzlichen Temperaturkalibrierung, sondern die Temperatur T_{BB} des Hohlraumstrahlers kann absolut angegeben werden. Man hat damit die für photoelektrische Empfängersysteme typische Rückführung von Bestrahlungsstärke (oder auch Strahlungsleistung) auf elektrische Leistung erreicht.

Unsicherheitsfaktoren der Meßapparatur beschränken sich dann im Wesentlichen auf die Meßunsicherheit der Bestimmung der spektralen Empfindlichkeit $s_{FD}(\lambda)$ und auf den geometrischen Leitwert G, für den unter Annahme kleiner Flächen bei großem Meßabstand gilt:

$$G = \cos \varepsilon_1 \cdot \cos \varepsilon_2 \cdot \frac{A_{BB}}{d_{FD}^2}. \quad (3.10)$$

Wählt man senkrechte Abstrahlung und Inzidenz, reduziert sich der geometrische Faktor auf das Verhältnis von Strahlerfläche A_{BB} zu Meßabstandsquadrat d_{FD}^2.

Berechnet man i_{FD} nach Gleichung (3.9) für einen weiten Bereich der Strahlertemperaturen T_{BB}, kann man die Temperatur aus dieser tabellarischen Darstellung ablesen. Eine rechnergestützte Auswertung des Photosignales erlaubt jedoch auch leicht eine iterative Näherung an die dem Photostrom zugehörige Strahlertemperatur durch mehrfache numerische Integration mit der Temperatur als Parameter.

3.2.4 Bestimmung der Strahlertemperatur durch polynomialische Näherung

Als effektives Verfahren zur Bestimmung der Strahlertemperatur hat sich die polynomialische Näherung erwiesen.

Mit Hilfe von Rechnern ist es einfach, auf die diskreten Berechnungen nach Gleichung (3.9) einen Algorithmus anzuwenden, der zwischen den Werten interpoliert (Splinefunktion) oder eine Annäherung des Gesamtverlaufs durch ein geeignetes Polynom n-ten Grades (Polynomfit) realisiert. Splinefunktionen haben den Vorteil, daß sie an den Stützpunkten zweimal stetig differenzierbar sind und daher die Summe aller Splines einen glatten Verlauf mit minimaler Krümmung durch alle Stützstellen ergibt. Man erhält jedoch für jedes benachbarte Paar von Stützpunkten eine Komponente des Splines, was zu sehr umfangreichen Datensätzen führen kann.

Die Näherung durch ein Polynom n-ten Grades ergibt für die weitere Berechnung eine überschaubare Menge von n Polynomkoeffizienten. Für Polynome kann sich jedoch nachteilig auswirken, daß sie zwischen den Stützstellen oszillieren, so daß einige Stützstellen nicht durchlaufen werden. Das kann besonders zu den Enden des Gesamtintervalls zu größeren Abweichungen (Residuen) führen und bedeutet zudem, daß die Ableitung der Polynome nicht der Steigung der Originalkurve entspricht. Der große Vorteil eines Polynomes ist die leichte und schnelle Berechnung der Funktionswerte, die für Polynome bis zum 9. Grad auch mit einem programmierbaren Taschenrechner durchgeführt werden kann.

In der Physik ist es für Interpolationen oft hilfreich, den Verlauf der Stützstellen durch Wahl einer geeignetem Darstellung zu linearisieren, um dann mit einer linearen Regression oder einem Polynom kleinerer Ordnung eine einfache Näherungsfunktion zu finden. Die Temperaturkurve von Breitband-Filterdetektoren hat einen exponentiellen Verlauf, so daß sich eine Logarithmierung des Photostromes, anbietet. Mit einer Näherung für die Umkehrfunktion läßt sich dann die gesuchte Abhängigkeit des Photostromes von der Temperatur interpolieren. Es hat sich gezeigt, daß die Verwendung eines Polynomes fünften Grades ausreich, um die Temperaturkurve eines Breitband-Filterdetektors sehr gut zu näheren.
3.2 Breitband-Filterdetektoren zur Bestimmung der radiometrischen Temperatur des Hochtemperatur-Hohlraumstrahlers

Durch die Gleichung

\[T_P(i_{FD}) = \sum_{k=0}^{5} p_k \log^k \left(\frac{i_{FD}}{G \cdot i_0} \right) \quad (3.11) \]

mit \(i_0 = 1 \) Ampere als Einheitenfaktor und dem um den Geometriefaktor \(G \) korrigierten Photostrom \(i_{FD} \) des Filterdetektors wird das Näherungspolynom für die logarithmische Darstellung definiert. Eine physikalische Bedeutung läßt sich den Koeffizienten \(p_k \) nicht zuordnen, da sich ihre Herkunft auf eine gemessene Empfindlichkeitskurve der Filterdetektoren stützt. Sie besitzen dennoch die Einheit Kelvin, wenn man fordert, daß die Logarithmen dimensionslos bleiben. Diese Forderung wird durch den Einheitenfaktor \(i_0 = 1 \) Ampere in Gleichung (3.11) erfüllt. Die Koeffizienten sind so zu bestimmen, daß die Differenz \(T(i_{FD}) - T_P(i_{FD}) \) über dem für die Näherung gewählten Temperaturbereich (Näherungsbereich) minimal wird.

Die Abweichungen der Näherungswerte von den Stützstellen sind beispielsweise für eine Regression zwischen 2600 K und 3300 K maximal 0,7 mK, während die Residuen für eine Näherung im Bereich zwischen 3000 K und 3300 K maximal \(4 \cdot 10^{-6} \) K betragen. Sie sind damit viel kleiner als die jede erreichbare Meßunsicherheit (siehe 4.2.3), so daß die Verwendung eines Polynomes zur Näherung der Temperaturkurve die Temperaturanzeige der Filterdetektoren nicht verfälscht. Mit einer Polynomregression fünften Grades für den Logarithmus des Photostromes \(i_{FD} \) läßt sich also die Temperaturkurve \(T(i_{FD}) \) für einen Breitband-Filterdetektor mit großer Genauigkeit annähern. Diese Näherung kann als Grundlage für eine direkt bei der Messung berechnete Temperaturanzeige des Schwarzen Strahlers verwendet werden und erleichtert somit die Angabe einer Strahler temperatur zu jedem beliebigen Zeitpunkt.

Die Verwendung von Näherungspolynomen höheren Grades erhöht die erreichte Genauigkeit der Näherung nur unwesentlich, teilweise ergeben sich sogar größere Residuen.

3.2.5 Kalibrierung der spektralen Empfindlichkeit

Die Temperaturmessung mit Breitband-Filterdetektoren erfordert die Kenntnis der spektralen Empfindlichkeit \(s_{FD}(\lambda) \) bezüglich Bestrahlungsstärke in \(\text{AW}^{-1}\text{m}^2 \). Die Filterdetektoren wurden zu diesem Zweck spektral vermessen und mit elektrisch substituierenden Radiometern (ESR) verglichen [74][115]. Diese Absolutempfänger werden in der PTB in mehreren Variationen über einen großen Strahlungsleistungsbereich angewandt. Zwei Grundtypen kommen zum Einsatz: Scheibenförmige Empfänger mit einem Absorptionsgrad von 0,9734 im sichtbaren Spektralbereich und kegelförmige Hohlräume, die 99,95 % der Strahlung im Spektralbereich von 250 nm bis 20 µm absorbieren. Die Erwärmung der Empfänger wird registriert und dann mit elektrischer Leistung die gleiche Aufheizung oftmals an einem unbestrahlten identisch aufgebauten Empfänger durchgeführt. Die zugeführte elektrische Leistung entspricht dann – unter Berücksichtigung umfangreicher Anpassungskorrekturen – der vorher absorbierten Strahlungsleistung [41].

Die Vermessung der Filterdetektoren erfolgt in zwei Schritten [111]. Zunächst wird die absolute spektrale Empfindlichkeit \(s_{\text{rel}}(\lambda) \) bestimmt. Als Strahlungsquellen dienen eine Halogenenglühlampe und eine Quecksilberbogenlampe, deren Strahlung mit einem Prisma-Doppelmonochromator spektral zerlegt wird. Die aus dem Monochromator austretende Strahlung wird nacheinander auf den Filterdetektor und eine Thermosäule abgebildet. Die relative spektrale Empfindlichkeit der Thermosäule ist insbesondere im Spektralbereich oberhalb 400 nm nahezu unabhängig von der Wellenlänge. Die Empfindlichkeit \(s_{\text{rel}}(\lambda) \) wurde zuvor aus einem Vergleich mit einem thermoelektrischen Hohlraumempfänger bestimmt.

In einem zweiten Schritt wird die absolute Empfindlichkeit bezüglich Bestrahlungsstärke \(s_{\text{abs}}(\lambda_0) \) der Filterdetektoren an einer Wellenlänge \(\lambda_0 \) bestimmt. Hierzu wird typischerweise die Quecksilberlinie bei 546,1 nm verwendet, bei Bedarf können aber auch andere Spektrallinien oder Laserlinien verwendet werden. Die Strahlung einer Spektrallinie wird mit Interferenzfiltern aus dem Spektrum der Quecksilberbogenlampe selektiert und (gegebenenfalls über ein Linsensystem) nacheinander der Filterdetektor und das elektrisch substituierende Radiometer großflächig und homogen bestrahlt. Das ESR ist mit einer Öffnungsblende mit bekannter Fläche \(A_{\text{ESR}} \) versehen.
Auf diese Weise kann aus der absorbierten Strahlungsleistung Φ_{ESR} die Bestrahlungsstärke $E = \frac{\Phi_{\text{ESR}}}{A_{\text{ESR}}}$ der auftreffenden Strahlung berechnet werden und die absolute Empfindlichkeit des Filterdetektors bei dieser Wellenlänge bestimmt werden. Es ergibt sich die absolute spektrale Empfindlichkeit des vermessenen Filterdetektors zu
\[
s(\lambda) = s_{\text{abs}}(\lambda_0) \frac{s_{\text{rel}}(\lambda)}{s_{\text{rel}}(\lambda_0)}.
\]
Diese Form der Kalibrierung besitzt zur Zeit eine erweiterte ($k = 2$) Meßunsicherheit von 0,5 % bis zu 1 % [73]. Zur Zeit wird im Reinraumzentrum der PTB ein Relativmeßplatz mit Gitter-Doppelmonochromator und Breitband-Kryoradiometer eingerichtet. Zusammen mit der Absolutmessung gegen am Laser-Kryoradiometer kalibrierte Trap-Empfänger soll die Meßunsicherheit dann auf unter 0,1 % gesenkt werden.

3.2.6 Stabilität der Filterdetektoren

Eine Senkung der Meßunsicherheit der Kalibrierung der Filterdetektoren und die damit verbundene genauere Temperaturmessung am Schwarzen Strahler fordert auch eine hohe Stabilität der Breitband-Filterdetektoren und eine Unempfindlichkeit gegenüber Umwelteinflüssen. Zwischen den spektralen Kalibrierungen sollte sich die spektrale Empfindlichkeit der Detektoren deutlich weniger als die Meßunsicherheit der Kalibrierung ändern. Andernfalls ist das Kalibrierintervall deutlich zu verkürzen oder als unstabil erkannte Detektoren sind auszusondern.

Die Kombination aus ionisch gefärbten Filtern und Si-Photodioden erweist sich als sehr stabil und unempfindlich gegenüber äußeren Einflüssen.

3.2.6.1 Erfahrungen aus Voruntersuchungen

Die verwendete Silizium-Photodiode S1227-BQ von Hamamatsu hat einen sehr ausgedehnten Linearitätsbereich bis etwa 3 mA. Bei Temperaturmessungen am Schwarzen Strahler treten Photoströme bis maximal 0,1 mA auf, so daß ein linearer Zusammenhang zwischen Bestrahlungsstärke und resultierendem Photostrom bei geeigneter elektrischer Meßeinrichtung gesichert ist. Die relative Alterung der Empfindlichkeit der Photodiode unter Bestrahlung ist kleiner als $1,2 \cdot 10^{-4}$ h$^{-1}$. Auch das elektronische Rauschen und der Dunkelstrom sind gering. Bei der Vermessung des Photostrumes über längere Zeit sowohl bei konstanter schwacher Bestrahlung als auch ohne Bestrahlung (Dunkelstrom) ergab sich ein elektronisches Rauschen als statistische Verteilung der Meßwerte von 1 pA mit und ohne Bestrahlung. Es liegt damit wesentlich niedriger als die Meßstromänderungen (ohne das Photonerauschen von 20 pA) durch die Temperaturchwankungen, denen ein Hohlraumstrahler bei einer Stabilisierung auf $3200 \pm 0,1$ Kelvin unterliegt.

Der Einfluß von Änderungen der Gehäusetemperatur T_{Det} des Detektors auf das spektrale Verhalten ist ebenfalls gering. Im allgemeinen werden die Filterdetektoren auf $25 \pm 0,1$ °C thermostatisiert. Die temperaturabhängige relative spektrale Empfindlichkeitsänderung
\[
\frac{\Delta s_{\text{FD}}(\lambda)}{\Delta T_{\text{Det}} \cdot s_{\text{FD}}(\lambda)}
\]
ist für den gesamten Spektralbereich des Filterdetektors nicht größer als $4 \cdot 10^{-3}$ K$^{-1}$ und liegt unter $0,5 \cdot 10^{-3}$ K$^{-1}$ im Bereich innerhalb der Halbwertbreite der spektralen Empfindlichkeit. Eine Thermostatierung auf 0,1 °C ist daher ausreichend und minimiert Unsicherheiten der Messungen aufgrund von Schwankungen der Temperatur des Filterdetektors. Es wurde sichergestellt, daß sich der Filterdetektor auch bei längerer Bestrahlung durch den Schwarzen Strahler nicht um mehr als etwa 0,1 Kelvin erwärmt, sondern durch das Kühlwasser im Gehäuse ausreichend thermostatisiert wird. Ebenso unempfindlich gegenüber Temperaturchwankungen des Gehäuses ist der Photostrom der Photodiode.
Die temperaturabhängige relative Photostromänderung

$$\frac{\Delta i_{FD}}{i_{FD}} \cdot \Delta T_{Det}$$ (3.14)

ist für den gesamten Meßbereich des Photostromes nicht größer als $2 \cdot 10^{-4}$ K$^{-1}$. Bei der oben angeführten Thermostatisierung ist der Einfluß auf das Meßergebnis mit $\Delta i_{FD} / i_{FD} = 2 \cdot 10^{-5}$ verschwindend gering.

Insgesamt haben sich die Filterdetektoren demnach als von guter Qualität und Stabilität erwiesen. Langzeitmessungen haben ergeben, daß Breitband-Filterdetektoren auch über längere Zeiträume ausreichend stabil sind.

3.2.6.2 Langzeitmessungen an den Filterdetektoren

Die Qualität der Komponenten der Breitband-Filterdetektoren sollte auch zur Stabilität des gesamten Detektors führen. Neben wiederholter spektraler Kalibrierungen einzelner Detektoren (FD6, FD15, FD18), bei denen im Rahmen der Meßunsicherheit keine Veränderung festzustellen ist, kann mit einer einfachen Meßmethode die Langzeitstabilität eines großen Satzes unterschiedlicher Detektoren bestimmt werden.

Der Satz von acht Breitband-Filterdetektoren verhält sich mit Änderungen $\leq 0,5\%$ über den gesamten Meßzeitraum praktisch stabil. Die zwei Detektoren mit einem der Hellempfindlichkeitskurve $V(\lambda)$ des menschlichen Auges gleichen spektralen Verlauf müssen bei Verwendung zur Temperaturbestimmung aufgrund ihrer Änderungen um bis zu 0,75 $\%$ mindestens im Halbjahresrhythmus rekalibriert werden. Von den Breitband-Filterdetektoren wurden die Detektoren FD3, FD11 und FD15 in regelmäßigen Abständen vor dem Schwarzen Strahler verwendet, der Detektor FD6 wurde sogar dauerhaft über die gesamte bisherige Betriebszeit des Strahlers eingesetzt. Dennoch zeigen diese Detektoren gegenüber den anderen sorgfältig gelagerten Detektoren keine höhere Alterung oder Instabilität.

Die Änderung der zwei Detektoren mit Interferenzfiltern, die nur zur Messung ihrer Stabilität verwendet wurden und nicht zu Messungen vor dem Schwarzen Strahler, ist nicht zu akzeptieren. Der Detektor iFD1 besteht aus einem Interferenzfilter der Firma Schott und einer S1227 Si-Photodiode und hat seine Schwerpunktwellenlänge bei 632,8 nm mit einer Halbwertbreite von 2,9 nm. Diese Kombination ändert kontinuierlich, die Gesamtempfindlichkeit hat nach zwei Jahren um 3,5 $\%$ abgenommen. Die Kombination iFD2 besteht aus ähnlichen Komponenten, jedoch bei einer Schwerpunktwellenlänge von 365 nm und einer Halbwertbreite von 4,9 nm. Dieser Interferenzfilterdetektor ändert sich sprunghaft um bis zu 2 $\%$ zwischen den Messungen.

Im Laufe der Untersuchungen an Filterdetektoren wurde auch die Möglichkeit verfolgt, sogenannte Doppeldetektoren zu verwenden. Bei diesem Typ befinden sich zwei Detektoren hinter derselben sichtbegrenzenden Blende, so daß der Quotient ihrer Photoströme unabhängig vom geometrischen Leitwert G nach Gleichung (3.10) ist.
Prinziell ist ein derartiges Detektorsystem geeignet, eine höhere Nachweispfindlichkeit und ein besseres Auflösungsvermögen gegenüber Änderungen der Strahlertemperatur zu erreichen. Der Doppeldetektor DD1 mit seinen Kanälen 1 und 2 besteht aus einer Diffusorscheibe und einer Doppelphotodiode, wie sie auch im Monitorsystem des Schwarzen Strahlers verwendet wird (siehe 2.4.1). Beide Kanäle der Photodiode sind um bis zu 5,9 % gealtert und zeigen ein unstetiges Verhalten bezüglich ihrer Änderungen. Der baugleiche Detektor DD2 wurde mit seinen Änderungen von bis zu 9 % nicht mit in Abbildung 3.13 aufgenommen.

Abbildung 3.13 Langzeitstabilität verschiedener Filterdetektoren.
Breitband-Filterkombinationen und $V(\lambda)$-ähnliche Detektoren sind über lange Zeiträume ausreichend stabil, während Doppeldetektoren und Detektoren mit Interferenzfiltern offensichtlich instabil sind.

Der Doppeldetektor DD3 besteht aus einem schräg angeordneten Zweifarben-Filter und zwei S1227 Si-Photodioden, die in Transmission (DD3/0) und in Reflexion unter 45° (DD3/45) bestrahlt werden. Das Zweifarben-Filter besteht aus einer auf einen Glasträger aufgedampften dielektrischen Schicht, die einen hohen Transmissionsgrad für Strahlung oberhalb 440 nm besitzt und den spektralen Anteil unterhalb 440 nm reflektiert. Besonders die Reflexion der Beschichtung ändert sich im Laufe der Messungen um bis zu 5,2 %, während die Transmission mit Änderungen unterhalb 1 % relativ konstant erfolgt. Beide Typen von Doppeldetektoren und die Detektoren mit Interferenzfiltern erwiesen sich also aufgrund ihrer Instabilität als ungeeignet zur Verwendung als radiometrische Empfängernormale zur Bestimmung der Temperatur des Schwarzen Strahlers. Die aus ionischen Filtergläsern bestehenden Breitband-Filterdetektoren und die Detektoren gleichen Typs mit dem $V(\lambda)$-ähnlichen spektralen Verlauf eignen sich dagegen durchaus zur Realisierung der empfängergestützten spektralen Bestrahlungsstärkeseale.

3.2.7 Temperaturmessung vor dem Schwarzen Strahler

Breitband-Filterdetektoren weisen aufgrund ihrer radiometrischen (nicht temperaturgestützten) Absolutkalibrierung besonders bei höheren Strahlertemperaturen eine geringere Meßunsicherheit auf als Pyrometer. Diese werden nur bis maximal 2600 Kelvin rückführbar auf die ITS-90 kalibriert [48], so daß höhere Meßwerte extrapoliert werden müssen.

Die kompakte Bauweise der Filterdetektoren erlaubt es, sie in den Strahlengang zwischen Schwarzem Strahler und Spektoradiometer zu bringen, um die Strahlertemperatur bei spektralen Messungen fortlaufend bestimmen zu können (siehe 1.2.1). Die Detektoren können problemlos für Vergleichsmessungen transportiert und vor anderen Schwarzen Strahlern verwendet werden. Damit ist ein einfacher indirekter Vergleich verschiedener Skalen möglich (siehe 4.2.5).

Vor dem Pyrographitstrahler werden die Breitband-Filterdetektoren auf einer fest mit dem Strahler verbundenen xy-Verschiebevorrichtung montiert (Abbildung 3.14). Damit können die Detektoren senkrecht zur Strahlerachse in das Zentrum des Strahlenganges des Schwarzen Strahlers gebracht werden, um die Strahlertemperatur zu bestimmen. Sie lassen sich auch schrittweise über eine definierte Fläche verfahren, um die Homogenität der bestrahlten Ebene zu vermessen (siehe 2.3.4). Alle in den Teilen 1 und 2 angeführten Temperaturmessungen wurden mit Breitband-Filterdetektoren durchgeführt, auch Kalibrierungen mit dem Schwarzen Strahler beziehen sich auf die abbildungsfreie radiometrische Bestimmung der Strahlertemperatur.

<table>
<thead>
<tr>
<th>Detektor</th>
<th>Schwerpunkt wellenlänge / nm</th>
<th>Halbwertbreite / nm</th>
</tr>
</thead>
<tbody>
<tr>
<td>FD3</td>
<td>514</td>
<td>198</td>
</tr>
<tr>
<td>FD6</td>
<td>515</td>
<td>196</td>
</tr>
<tr>
<td>FD11</td>
<td>505</td>
<td>159</td>
</tr>
<tr>
<td>FD15</td>
<td>510</td>
<td>164</td>
</tr>
<tr>
<td>FD18</td>
<td>558</td>
<td>104</td>
</tr>
<tr>
<td>FD20</td>
<td>437</td>
<td>85</td>
</tr>
</tbody>
</table>

Tabelle 3.1 Schwerpunktwellenlängen und Halbwertbreiten verwendeter Breitband-Filterdetektoren.

In Abbildung 3.14 ist die Halterung der Filterdetektoren abgebildet, jedoch ohne einen Doppeltubus vor der Halterung, um Streulicht abzuschatten. Eine Blende in jedem Tubus sorgt dafür, daß Strahlung vom Schwarzen Strahler nur auf die schwarze Fläche der Filterdetektorgehäuse gelangt, sie wirkt...
Teil 3 Möglichkeiten der Realisierung einer empfängergestützen spektralen Bestrahlungsstärke

In Abbildung 3.15 ist das Ergebnis von Vergleichsmessungen mit bis zu sechs verschiedener Breitband-Filterdetektoren als Temperaturdifferenz zum Mittelwert der Temperaturmessungen dargestellt. Gemessen wurde in einem Temperaturbereich von 2200 Kelvin bis 3200 Kelvin.

Die Unterschiedlichkeit der verwendeten Detektoren läßt sich an der Schwerpunktwellenlänge und an der Halbwertbreite ihrer spektralen Empfindlichkeit, wie sie in Tabelle 3.1 eingetragen sind, aufzeigen. Die Detektoren FD3, FD6, FD11 und FD15 unterscheiden sich geringfügig aber für die Temperaturmessung deutlich auflösbar (siehe 3.1.3) voneinander. FD18 und FD20 setzen sich spektral sehr deutlich von dieser Gruppe ab. Im für spektrale Messungen hauptsächlich relevanten Temperaturbereich oberhalb 2900 Kelvin stimmen die Temperaturmessungen dieser unterschiedlichen Filterdetektoren besser als ± 2 Kelvin überein.

Abbildung 3.15 Vergleich der Temperaturmessung mit verschiedenen Breitband-Filterdetektoren.

Die mit den Detektoren bestimmten Strahltemperaturen stimmen in einem Bereich von ± 1 Kelvin bei tieferen Temperaturen und bis ± 2 Kelvin oberhalb 3000 Kelvin überein.

Damit wird, im Rahmen der Meßunsicherheiten und der Reproduzierbarkeit dieser Übersichtsmessungen (siehe 4.2.3), eine Konformität der Methode zur Temperaturmessung mit den Breitband-Filterdetektoren untereinander bestätigt. Mit einem in Rückführung auf die internationale Temperaturskala ITS-90 kalibrierten Linearpyrometer läßt sich eine Aussage über die Vergleichbarkeit dieser empfängergestützten Temperaturmessung zur pyrometrischen Temperaturmessung machen.

3.2.7.1 Vergleich zu Messungen mit dem IKE-Linearpyrometer LP2

Da die abbildungsfreie radiometrische Methode zur Temperaturbestimmung auf einer Absolutkalibrierung der Breitband-Filterdetektoren beruht, weist die Übereinstimmung verschiedener Detektoren untereinander auch auf eine sichere Absolutmessung ohne nennenswerte systematische Fehler hin. Es empfiehlt sich aber in jedem Fall, eine neue Meßmethode mit bewährten konventionellen Meßverfahren zu vergleichen.

Daher wurden die Temperaturmessungen eines Breitband-Filterdetektors mit der Temperaturbestimmung durch das in 2.3.3 beschriebene Linearpyrometer verglichen. Das Pyrometer ist mit zwei
3.3 Eine lasergestützte Methode zur radiometrischen Temperaturbestimmung

Abbildung 3.16 Abweichung der Temperaturbestimmung von FD6 zur Messung mit dem Linearpyrometer.

Die Messungen mit dem Breitband-Filterdetektor FD6 stimmt bis auf 1 Kelvin mit den Temperaturangaben des Pyrometers überein.

Die Verwendung von Breitband-Filterdetektoren zur abbildungsfreien radiometrischen Bestimmung der Strahlertemperatur eines Schwarzen Strahlers hat sich bewährt (nicht zuletzt auch im internationalen Vergleich, siehe [4.2.5]), so daß diese standardmäßig vor dem Pyrographitstrahler BB3200pg eingesetzt werden und deren Bestimmung der Strahlertemperatur letztendlich rückführbar auf die Messung der elektrischen Leistung ist.

Eine zusätzliche Meßmethode, die unabhängig von den Messungen mit Filterdetektoren ist, kann die Bindung der spektralen Bestrahlungsstärkemessung an die empfängergestützte Strahlungsleistungsmessung und somit die Rückführung auf SI-Einheiten noch weiter festigen. Diese lasergestützte Methode in Verbindung mit einem Trap-Photodetektor wird im Folgenden beschrieben.

3.3 Eine lasergestützte Methode zur radiometrischen Temperaturbestimmung

in den USA, bei dem die Strahlldichte eines Goldpunktstrahlers mit der Strahlungsleistung eines Laser verglichen wurde [69]. Erfahrungen und Ergebnisse der Untersuchung einiger verwendeter Komponenten können übernommen werden; die Realisierung der Verknüpfung der Strahlungsleistung eines Lasers mit der spektralen Bestrahlungsstärke eines Hochtemperatur-Hohlraumstrahlers ist jedoch ein neues Gebiet, das der empfängergestützten Realisierung der spektralen Bestrahlungsstärke dient.

3.3.1 Vergleich von Laserstrahlung und Temperaturstrahlung

Der Grundgedanke dieser neuen Methode ist es, Laserstrahlungsleistung mit der spektralen Beststrahlungsstärke des Schwarzen Strahlers zu vergleichen. Die absolute Strahlungsleistung eines Lasers im Bereich von wenigen nW bis zu einigen mW kann mit sehr geringer Meßunsicherheit mit Hilfe eines Trap-Detektors bestimmt werden, der zuvor gegen das Laser-Kryoradiometer kalibriert worden ist (siehe 3.1.1.1). Unter Kenntnis der Laserleistung kann die spektrale Empfindlichkeit eines Spektro- radiometers an der Laserwellenlänge bezüglich Strahlungsleistung kalibriert werden (3.3.1.3). Der Schwarze Strahler bestrahlt die Öffnung des Spektroradiometers (genauer: die Öffnung der Ulbricht-Kugel), im Gegensatz zur quasimonochromatischen Strahlung des Lasers, mit einem kontinuierlichen Spektrum thermischer Strahlung. Um die spektrale Strahlungsleistung bzw. die spektrale Beststrahlungsstärke des Schwarzen Strahlers an der Laserwellenlänge zu bestimmen, sind einige Korrekturen durchzuführen. Unter anderem muß der Spaltfunktion des Monochromators bekannt sein (3.3.2) und die relative Änderung der spektralen Empfindlichkeit im Bereich der Laserwellenlänge bestimmt werden (3.3.4).

Damit läßt sich eine Beziehung zwischen Laserleistung und spektraler Beststrahlungsstärke formulieren (3.3.1.1), die sich für die praktische Berechnung deutlich vereinfachen läßt (3.3.1.2). Mit der Auswahl verschiedener Gittersätze und spektraler Spaltbreiten des Doppelmonochromators wird die Durchführbarkeit der Bestimmung der spektralen Beststrahlungsstärke und damit der Strahlertemperatur des Schwarzen Strahlers unter verschiedenen Bedingungen überprüft (3.3.3).

3.3.1.1 Die Beziehung zwischen Laserleistung und spektraler Beststrahlungsstärke

Es besteht die Aufgabe, quasimonochromatische Laserleistung mit dem kontinuierlichen Beststrahlungsstärkepektrum des Schwarzen Strahlers zu vergleichen. Der optische Weg und das damit verbundene physikalische Modell ist für beide Strahlungsarten gleich; jedoch muß ihre Wirkung auf das System unterschiedlich berücksichtigt werden. Während die spektrale Beststrahlungsstärke des Temperaturstrahlers über einen begrenzten Spektralbereich mit der Spaltfunktion des Monochromators und dem spektralen optischen Leitwert des Gesamtsystems bewertet werden muß, entfällt diese Bewertung für die monochromatische Laserstrahlung. Das Modell des Strahlungstransports ergibt sich aus

\[
i_{\text{S,def}}(\lambda_{\text{las}},b) = \int_{0}^{\infty} s_{\text{det}}(\lambda) \cdot \tau_{\text{mon}}(\lambda,\lambda_{\text{las}},b) \cdot G_{\text{mon}}(\lambda, b) \cdot \beta_{\text{Kugel}}(\lambda) \cdot \Phi_{\text{S,ein}}(\lambda) \, d\lambda .
\]

Ein Anteil der vom Strahler S in die Ulbricht-Kugel eingestrahlten spektralen Strahlungsleistung \(\Phi_{\text{S,ein}}(\lambda) \) galgen – bewertet mit dem spektralen Durchlaßgrad \(\beta_{\text{Kugel}}(\lambda) \) nach Gleichung (1.5) – auf den Eintrittsspalt des Monochromators. Dort wird, der nach Maßgabe des geometrischen Leitwertes \(G_{\text{mon}} \) (siehe 1.1.2) geschwächte Strahlungsanteil auf die Gitter der Monochromatoren abgebildet. Ist der Monochromator auf die Laserwellenlänge \(\lambda_{\text{las}} \) eingestellt, wird der mit der spektralen Transmission \(\tau_{\text{mon}}(\lambda,\lambda_{\text{las}},b) \) gewichtete Strahlungsanteil des auf die Wellenlänge \(\lambda_{\text{las}} \) eingestellten Monochromators mit der Spaltbreite \(b \) auf den Austrittsspalt abgebildet. Dort wird die spektrale Strahlungsleistung mit der spektralen Empfindlichkeit \(s_{\text{det}}(\lambda) \) des Detektors bewertet. Die Integration über die gesamte transmittierte Strahlung ergibt den Photostrom \(i_{\text{S,def}}(\lambda_{\text{las}},b) \), den der Strahler S mit der Strahlungsleistung \(\Phi_{\text{S,ein}} \) im Endeffekt bewirkt. Für den Schwarzen Strahler mit der homogenen Beststrahlungsstärke \(E_{\text{BB,ein}}(\lambda) \) in der Ebene der Öffnung \(A_{\text{kugel}} \) der Ulbricht-Kugel ergibt sich aus Gleichung (3.15) die Beziehung
3.3 Eine lasergestützte Methode zur radiometrischen Temperaturbestimmung

Für den Laser mit der quasimonochromatischen Strahlungsleistung \(\Phi_{\text{las}}(\lambda) = \Phi_{\text{las,0}} \delta(\lambda - \lambda_{\text{las}}) \) – wobei \(\delta(\lambda - \lambda_{\text{las}}) \) die Diracsche-Deltafunktion ist – vereinfacht sich Gleichung (3.15) zu

\[
i_{\text{las,det}}(\lambda_{\text{las}}) = s_{\text{det}}(\lambda_{\text{las}}) \cdot \tau_{\text{mod}}(\lambda_{\text{las}}, \lambda_{\text{las}}, b) \cdot G_{\text{mod}}(\lambda, b) \cdot \beta_{\text{kugel}}(\lambda) \cdot \Phi_{\text{las,0}} .
\]

(3.17)

Die theoretische Berechnung des Photostromes erfordert daher genaue Kenntnisse über die optischen Eigenschaften der einzelnen am Strahlungstransport beteiligten Komponenten. Bei der experimentellen Nutzung des Modells nach Gleichung (3.15) lassen sich jedoch einige sinnvolle Näherungen anbringen. Der Monochromator wird an der festen Laserwellenlänge \(\lambda_{\text{las}} \) hergestellt.

\[R(\lambda, b) = s_{\text{det}}(\lambda) \cdot \eta_{\text{mod}}(\lambda) \cdot G_{\text{mod}}(\lambda, b) \cdot \beta_{\text{kugel}}(\lambda) . \]

(3.18)

Da sich \(R(\lambda, b) \) im Bereich \(\lambda_{\text{las}} \) nur wenig mit der Wellenlänge ändert, läßt sich der Gerätefaktor um \(\lambda_{\text{las}} \) mit der zweiten Ordnung einer Taylorreihe approximieren:

\[R(\lambda, b) = R(\lambda_{\text{las}}, b) + R'(\lambda_{\text{las}}, b) \cdot (\lambda - \lambda_{\text{las}}) + \frac{R''(\lambda_{\text{las}}, b)}{2} \cdot (\lambda - \lambda_{\text{las}})^2 . \]

(3.19)

Vereinfachend erhält man

\[R(\lambda, b) = R(\lambda_{\text{las}}, b) \cdot (1 + r_1(\lambda - \lambda_{\text{las}}) + r_2(\lambda - \lambda_{\text{las}})^2) = R(\lambda_{\text{las}}, b) \cdot r(\lambda, \lambda_{\text{las}}) , \]

(3.20)

mit der relativen spektralen Änderung des Gerätefaktors \(r(\lambda, \lambda_{\text{las}}) \) und den Polynomkoeffizienten \(r_1 \) und \(r_2 \), die experimentell zu ermitteln sind (siehe 3.3.1.4).

Mit diesen Näherungen vereinfachen sich die Gleichungen (3.16) und (3.17) deutlich und man erhält

\[
i_{\text{BB,det}}(\lambda_{\text{las}}, b) = R(\lambda_{\text{las}}, b) \cdot A_{\text{kugel}} \cdot \int \Phi_{\text{mod}}(\lambda, \lambda_{\text{las}}, b) \cdot r(\lambda, \lambda_{\text{las}}) \cdot E_{\text{BB, ein}}(\lambda, T) \, d\lambda \]

(3.21)

sowie

\[
i_{\text{las,det}}(\lambda_{\text{las}}, b) = R(\lambda_{\text{las}}, b) \cdot \Phi_{\text{las,0}} .
\]

(3.22)

Durch Kombination der Gleichungen (3.16) und (3.17) bzw. der Näherungen (3.21) und (3.22) ist die Beziehung zwischen Laserleistung und spektraler Bestrahlungsstärke des Schwarzen Strahlers hergestellt:

\[
\Phi_{\text{las,0}} = \frac{i_{\text{las,det}}(\lambda_{\text{las}}, b)}{i_{\text{BB,det}}(\lambda_{\text{las}}, b)} \cdot A_{\text{kugel}} \cdot \int \Phi_{\text{mod}}(\lambda, \lambda_{\text{las}}, b) \cdot r(\lambda, \lambda_{\text{las}}) \cdot E_{\text{BB, ein}}(\lambda, T) \, d\lambda .
\]

(3.23)
Nach Vermessung der spektralen Spaltfunktion \(N_{\text{mod}}(\lambda, \lambda_{\text{las}}, b) \), der experimentellen Ermittlung der relativen Änderung \(r(\lambda, \lambda_{\text{las}}) \) des optischen Gerätefaktors des Spektroradiometers und unter Kenntnis der Strahlertemperatur \(T \) läßt sich nach Gleichung (3.23) die Leistung \(\Phi_{\text{las},0} \) des Lasers direkt berechnen und mit der Leistungsmessung eines bei der Laserwellenlänge \(\lambda_{\text{las}} \) entsprechend kalibrierten Trap-Empfängers vergleichen.

Die Empfindlichkeit \(s_{\text{trap}}(\lambda_{\text{las}}) \) des Empfängers kann mit wesentlich geringerer Meßunsicherheit kalibriert und damit die Leistung des Lasers wesentlich genauer bestimmt werden, als die Temperatur des Schwarzen Strahlers. Daher soll mit Hilfe der Gleichung (3.23) umgekehrt von einer gemessenen Laserleistung \(\Phi_{\text{las},\text{meß}} \) auf die spektrale Bestrahlungsstärke \(E(\lambda, T) \) respektive die Strahlertemperatur \(T \) geschlossen werden. Dazu muß der Integralterm in Gleichung (3.23) entfaltet werden. Eine analytische Berechnung dieser Entfaltung ist wegen der Komplexität des Planckschen Strahlungsgesetzes und der fehlenden Modellierbarkeit der Spaltfunktion nicht möglich und auch die numerische Auflösung der Gleichung nach der Strahlertemperatur \(T \) erweist sich als außerordentlich aufwendig. Mit rechnergestützten numerischen Berechnungen läßt sich jedoch der Integralterm schnell für jede beliebige Strahlertemperatur berechnen. Man kann dann mit diesen tabellierten Werten, iterativ oder mit nichtlinearer Regression die Strahlertemperatur \(T_{\text{meß}} \) bestimmen, bei der sich \(\Phi_{\text{las},0} = \Phi_{\text{las},\text{meß}} \) ergibt.

3.3.1.2 Sinnvolle Näherung für sehr kleine Spaltbreiten

Wenn der Monochromator auf kleine Spaltbreiten eingestellt wird, ändert sich die spektrale Bestrahlungsstärke \(E_{\text{BB,ein}}(\lambda_{\text{las}}, T) \) über der Spaltfunktion nur sehr wenig und der Einfluß auf den Integralterm in Gleichung (3.23) ist vernachlässigbar gering. Gleiches gilt für die relative Änderung des optischen Gerätefaktors, die zu \(r(\lambda, \lambda_{\text{las}}) = 1 \) angenommen werden kann. Bei einer idealen, symmetrischen, auf die Maximumwellenlänge \(\lambda_{\text{las}} \) normierten Spaltfunktion gilt für den verbleibenden Integralterm

\[
\int N_{\text{mod}}(\lambda, \lambda_{\text{las}}, b) \, d\lambda = \Delta \lambda_{\text{H,mod}}(\lambda_{\text{las}}, b) , \tag{3.24}
\]

mit der Halbwertbreite \(\Delta \lambda_{\text{H,mod}}(\lambda_{\text{las}}, b) \), die sich aus der eingestellten Spaltbreite \(b \) ergibt.

Mit diesen Näherungen läßt sich Gleichung (3.23) noch einmal deutlich vereinfachen und ist nun nach \(E_{\text{BB,ein}}(\lambda_{\text{las}}, T) \) auflösbar:

\[
E_{\text{BB,ein}}(\lambda_{\text{las}}, T) = \Phi_{\text{las},0} \cdot \frac{i_{\text{BB,def}}(\lambda_{\text{las}}, b)}{i_{\text{las,def}}(\lambda_{\text{las}}, b)} \cdot \frac{f_N}{A_{\text{kugel}} \cdot \Delta \lambda_{\text{H,mod}}(\lambda_{\text{las}}, b)} . \tag{3.25}
\]

Mit dem Formfaktor für die Spaltfunktion

\[
f_N = \frac{\Delta \lambda_{\text{H,mod}}(\lambda_{\text{las}}, b)}{\int N_{\text{mod}}(\lambda, \lambda_{\text{las}}, b) \, d\lambda} \tag{3.26}
\]

wird die Abweichung einer vermessenen Spaltfunktion vom idealen Verlauf berücksichtigt und entsprechend korrigiert. Aus Gleichung (3.25) läßt sich damit in guter Näherung eine Strahlertemperatur \(T \) ermitteln und damit die spektrale Bestrahlungsstärke \(E_{\text{BB}}(\lambda, T) \) des Schwarzen Strahlers für alle Wellenlängen berechnen.

Die Gleichung (3.25) wird exakt gelöst, wenn man den bereinigten Formfaktor

\[
f_{N,\text{BB}} = \frac{E_{\text{BB}}(\lambda_{\text{las}}, T) \cdot \Delta \lambda_{\text{H,mod}}(\lambda_{\text{las}}, b)}{\int N_{\text{mod}}(\lambda, \lambda_{\text{las}}, b) \cdot E_{\text{BB}}(\lambda, T) \cdot r(\lambda, \lambda_{\text{las}}, b) \, d\lambda} \tag{3.27}
\]

einsetzt, der die Näherung wieder rückgängig macht.

In der Praxis empfiehlt es sich, zunächst die Strahlertemperatur \(T \) mit dem Formfaktor \(f_N \) für die Spaltfunktion zu bestimmen, um dann mit dem bereinigten Formfaktor \(f_{N,\text{BB}} \) iterativ eine genauere Näherung für die Strahlertemperatur \(T \) zu erhalten.
3.3 Eine lasergestützte Methode zur radiometrischen Temperaturbestimmung

Wie gering die Abweichung zwischen \(f_N \) und \(f_{N,BB} \) durch die Näherung \(E_{BB,ein} = \text{const.} \) bei kleinen Spaltbreiten ist, wird in Abbildung 3.17 verdeutlicht. Dargestellt wird die um \(\lambda_{las} = 632,8 \text{ nm} \) symmetrische ideale Spaltfunktion \(N_{mon}(\lambda, \lambda_{las}) \) mit einer relativ großen spektralen Halbwertbreite von 10 nm und die relative Änderung der spektralen Bestrahlungsstärke \(E_{BB}(\lambda, T) \) bei 3300 Kelvin. Der Einfluß auf den Formfaktor ist selbst bei einer spektralen Halbwertbreite von 10 nm sehr gering. Mit \(f_{N,BB} = 1,00011 \) gegenüber \(f_N = 1 \) ist die Korrektur nahezu vernachlässigbar.

Die Abweichung der Spaltfunktion von der Dreieckfunktion führt zu einer Änderung des Formfaktors. Bei einer für Doppelmonochromatoren typischen Verbreiterung der Spaltcharakteristik im unteren Bereich, wie sie in Abbildung 3.17b stark überzeichnet dargestellt wird, ergibt sich ein Formfaktor kleiner als eins. Aber auch für diesen Fall beeinflußt die Berücksichtigung der Bestrahlungsstärke-Änderung den Formfaktor nur sehr geringfügig. Darüber hinaus ist die Änderung des Formfaktors \(f_{N,BB} \) mit der Strahlertemperatur \(T \) bei gegebener Spaltbreite sehr gering. So ist beispielsweise selbst bei einer spektralen Halbwertbreite von 10 nm um die Laserwellenlänge \(\lambda_{las} = 632,8 \text{ nm} \) im Bereich zwischen 2900 Kelvin und 3400 Kelvin die relative Änderung \(\delta f_N / \delta T \cdot f_N \) kleiner als \(1 \cdot 10^{-7} \text{ K}^{-1} \). Daher kann zunächst mit \(f_N \) in Gleichung (3.25) die vorläufige Strahlertemperatur \(T \) ermittelt werden, mit der dann in Gleichung (3.27) der bereinigte Formfaktor \(f_{N,BB} \) berechnet werden kann. Mit diesem wird dann wiederum mit Hilfe von Gleichung (3.25) iterativ die genauere Strahlertemperatur \(T_{end} \) ermittelt.

Die Laserleistung \(\Phi_{las,0} \) wird vor Ort mit einem Trap-Detektor vermessen, dessen spektrale Empfindlichkeit \(N_{mon}(\lambda_{las}) \) am Laser-Kryoradiometer bestimmt wurde. Der Detektor kann während der spektralen Vermessung mit dem Spektroradiometer nicht im Strahlengang stehen und der eingesetzte HeNe-Laser besitzt keine aktive Leistungsstabilisierung. Daher wird die Kalibrierung des Trap-Detektors zunächst auf eine Monitorphotodiode übertragen (siehe Abbildung 3.18), die von einem Strahlteiler ausgekoppelten Strahlungsanteil des Lasers empfängt. Dieser Monitordetektor kann dann
während einer Vermessung mit dem Spektroradiometer die Laserleistung bestimmen und so die Empfindlichkeit des Systems bezüglich der Laserlinie festlegen.

Die Empfindlichkeit $s_{md}(\lambda_{las})$ der Monitorphotodiode mit Strahlteiler berechnet sich aus den gemessenen Photosignalen für Trap-Detektor und Monitordetektor:

$$s_{md}(\lambda_{las}) = \frac{i_{md}}{i_{trap}} \cdot s_{trap}(\lambda_{las}) .$$ (3.28)

Bei spektralen Messungen kann später die spektrale Empfindlichkeit bezüglich der Laserstrahlung auf das Spektroradiometer übertragen werden:

$$s_{def}(\lambda_{las}, b) = \frac{i_{def}(\lambda_{las}, b)}{\Phi_{las,0}} = \frac{i_{las,def}(\lambda_{las}, b)}{s_{md}} \cdot \frac{i_{md}(\lambda_{las})}{s_{md}} .$$ (3.29)

Um die zeitlich etwas auseinander liegenden Messungen mit Laser und mit Schwarzen Strahler am Spektroradiometer untereinander zu vergleichen, wird das Photosignal $i_{S,monl}$ der Monitorlampe beim jeweiligen Strahler S zur Stabilisierung der Substitution verwendet. Mit Gleichung (3.29) ergibt sich für die Kalibrierung des Schwarzen Strahlers mit dem Laser nach Gleichung (3.25):

$$E_{BB,ein}(\lambda_{las}, T) = \frac{i_{md}}{s_{md}(\lambda_{las})} \cdot \frac{i_{BB,ein}(\lambda_{las}, b)}{i_{def}(\lambda_{las}, b)} \cdot \frac{i_{las,monl}(\lambda_{las}, b)}{i_{BB,monl}(\lambda_{las}, b)} \cdot \frac{f_{N}}{A_{kugel} \Delta \lambda_{monl}(\lambda_{las}, b)} .$$ (3.30)

Obige Gleichung verkörpert die derzeit erreichte kürzeste Verbindung zwischen empfängergestützter Skala, repräsentiert durch die Empfindlichkeiten $s_{md}(\lambda_{las})$ bzw. $s_{trap}(\lambda_{las})$, und strahlergestützter Skala, dargestellt durch die Bestrahlungsstärke $E_{BB,ein}(\lambda_{las}, T)$. Mit einer weitergehenden Automatisierung des Meßplatzes wird es möglich sein, direkt vor jeder Kalibrierung des Schwarzen Strahlers die Laserleistung zu messen und die Empfindlichkeit des Spektroradiometers zu bestimmen. Dazu ist es erforderlich, den Trap-Detektor und den Umlenkspiegel für den Laser automatisch mit Verschiebeeinheiten in den Strahlengang zu bringen.

Dann bietet sich auch die Möglichkeit, Prüflampen und Sekundärnormale ebenfalls direkt mit Laser und Trap-Detektor zu kalibrieren, um die auf die Lampe übertragene Skala an einem weiteren, vom Transfer mit Strahlern unabhängigen Punkt zu fixieren.

3.3.1.4 Nähe rung für die spektrale Änderung des optischen Gerätefaktors

Zur Bestimmung des Formfaktors $f_{N,BB}$ nach Gleichung (3.27) ist neben der Ermittlung der (vorläufigen) Strahlentemperatur T^* und der Spaltfunktion $N_{monl}(\lambda, \lambda_{las})$ auch die Kenntnis der relativen spektralen Änderung $r(\lambda, \lambda_{las})$ des optischen Gerätefaktors $R(\lambda, b)$ in der Nähe der Laserwellenlänge λ_{las} erforderlich. Die zum optischen Gerätefaktor zusammengefaßten Komponenten sind Material- und Gerätegrößen, die nur schwach mit der Wellenlänge variieren, unabhängig von der eingestellten Spaltbreite b des Monochromators sind und auch nicht von der Strahlentemperatur T des Schwarzen Strahlers abhängen. Die relative spektrale Änderung des optischen Gerätefaktors läßt sich daher durch Vermessung eines Strahlerspektrums in der Nähe von λ_{las} bestimmen. Analog zur Gleichung (2.43) in Abschnitt 2.1.6 kann eine Meßbeziehung formuliert werden:

$$i_{BB,def}(\lambda, T) = E_{BB}(\lambda, T) \cdot R(\lambda_{las}, b) \cdot r(\lambda_{las}, \lambda_{las}) \cdot \int N_{monl}(\lambda', \lambda_{las}) \, d\lambda' .$$ (3.31)

Hierbei wird vereinfachend angenommen, daß der Verlauf der Spaltfunktion in der Nähe von λ_{las} konstant ist, und damit gilt $\int N_{monl}(\lambda', \lambda_{las}) \, d\lambda' = \int N_{mon}(\lambda', \lambda_{las}) \, d\lambda'$. Ebenso ist gemäß Definition in Gleichung (3.20) bei der Laserwellenlänge $r(\lambda_{las}, \lambda_{las}) = 1$. Die relative spektrale Änderung des optischen Gerätefaktors ergibt sich daher näherungsweise durch Normierung auf die Werte bei λ_{las} zu

$$r(\lambda_{las}, \lambda_{las}) = \frac{i_{BB,def}(\lambda_{las}, T)}{i_{BB,def}(\lambda_{las}, T)} \cdot \frac{E_{BB}(\lambda_{las}, T)}{E_{BB}(\lambda_{las}, T)} .$$ (3.32)
Durch die Polynomregression mit (3.20) ergeben sich die Koeffizienten \(r_1 \) und \(r_2 \) aus der Definition von \(r(\lambda, \lambda_{\text{las}}) \). Wiederholungsmessungen bei verschiedenen Strahlertemperaturen ermöglichen die Festigung von \(r_1 \) und \(r_2 \).

Die Wirkung des optischen Gerätefaktors auf den Formfaktor \(f_{N,BB} \) ist ebenso zu bewerten wie der Einfluß durch die Bestrahlungsstärkeänderung. Selbst eine relativ hohe Änderung des optischen Gerätefaktors um 0,01 nm\(^{-1}\) ändert den eindeutigen Formfaktor um weniger als 0,1 %. Dennoch dient eine Abschätzung von \(r(\lambda, \lambda_{\text{las}}) \) zweifelsohne der Verringerung der gesamten Meßunsicherheit.

3.3.1.5 Einfluß der Ulbricht-Kugel auf Kohärenz und Polarisation der Laserstrahlung

Die Strahlung des He-Ne-Lasers ist linear polarisiert und zeitlich und räumlich kohärent. Das Spektrodiometer hat stark polarisationsempfindlich, daher sollte die einfallende Strahlung durch geeignete Maßnahmen depolarisiert und incohärent gemacht werden.

Bei der indirekten Vermessung der Spaltfunktion lassen sich Interferenzeffekte im Monochromator durch Beobachten der Spaltfunktionen an den Flanken der Spaltfunktionen sinusschwingende Variationen auf, deren Amplitude mit größerem Öffnungswinkel abnimmt. Bei den im Rahmen dieser Arbeit durchgeführten Messungen der Spaltfunktion ist der Einfluß der Kohärenz eher klein (siehe 3.3.2.4). In Abbildung 3.19 ist demgemäß eine leichte verbleibende (scheinbare) Welligkeit der gemessenen Spaltfunktionen zu erkennen, die in der Gesamtheit auf die Berechnung der Formfaktoren nahezu keinen Einfluß hat.

Beim Vergleich der Laserstrahlungsleistung mit der incohärenten Strahlung des Schwarzen Strahlers muß der incohärente Spaltbreitenvergleich mit dem verbleibenden Einfluß der Kohärenz allerdings eine Erhöhung der Meßunsicherheit um etwa 0,5 \% zugeschrieben werden. Um die Gesamtunsicherheit der Meßmethode deutlich zu reduzieren, ist es in Zukunft notwendig, die Kohärenz des Lasers für das Spektrodiometer durch geeignete zusätzliche Maßnahmen zu zerstören. Eine temporäre Störung wird erreicht, indem das Strahlungsfeld der auftreffenden oder gestreuten Strahlung zeitlich variiert wird und der Detektor am Spektrodiometer die Messung über einen längeren Zeitraum integriert. Eine Möglichkeit einer wirkungsvollen Störung wird realisiert, indem die Laserstrahlung durch eine Multimode-Glasfaser geleitet wird, die sich in einer oder mehreren Windungen in einem

Die aus der Glasfaser austretende Strahlung wird (mit einem großen Öffnungswinkel) direkt in eine Ulbricht-Kugel eingeleitet. Auf diese Weise ließe sich jedoch die Strahlungsleistung des Lasers nicht mehr mit dem Trap-Detektor messen, der für einen kollimierte Strahl kalibriert wurde. Am neuen Meßplatz für Bestrahlungsstärke läßt sich eine zeitliche Störung der Kohärenz vor allem durch zwei andere Maßnahmen realisieren:

Diese Variationen der lasergestützten Meßmethode konnten im Rahmen dieser Arbeit noch nicht berücksichtigt werden, da die Integration der Drehscheibe in der Wandung der Ulbricht-Kugel einen größeren Konstruktions- und Zeitaufwand benötigt.

3.3.2 Spaltfunktionen des Doppelmonochromators

3.3.2.1 Der Verlauf der Spaltfunktion

Unter der Spaltfunktion ist die (relative) spektrale Verteilung der Bestrahlungsstärke am Austrittsspalt eines Monochromators zu verstehen, die sich aus der Beugung am Gitter ergibt. Unter idealen Bedingungen und Einstellungen wird dieser Verlauf rein durch die geometrische Optik des Systems bestimmt. Ausgehend von einer homogenen Bestrahlungsstärke auf den Eintrittsspalt des Monochromators mit der Höhe \(h_{\text{ein}} \) und der Spaltbreite \(b_{\text{ein}} \), wird am Austrittsspalt eines Einfachmonochromators in Czerny-Turner-Anordnung [53] bei der Wellenlängeneinstellung \(\lambda_0 \) die spektrale Zerlegung vom Bild des Eintrittsspaltes erzeugt. Bei monochromatischer Strahlung, fehlerfreier Abbildung und gleichen Spaltgrößen, deckt das entstehende Bild vom Rechteck des Eintrittsspaltes exakt den Austrittsspalt ab. Bei kontinuierlicher Einstrahlung fällt nicht nur das Bild der Wellenlänge \(\lambda_0 \) auf den Austrittsspalt, sondern auch die um die Lineardispersion \(d\lambda_0 / d\lambda \) seitlich verschobenen Spaltbilder benachbarter Wellenlängen \(\lambda' = \lambda_0 \pm d\lambda \). Da die Größe benachbarter Spaltbilder über dem Austritts-
3.3 Eine lasergestützte Methode zur radiometrischen Temperaturbestimmung

...spalt beim idealen Monochromator linear abnimmt, ergibt sich für die relative spektrale Verteilung $N_{\text{mon}}(\lambda',\lambda_0)$ eine Dreieckfunktion, wie sie in Abbildung 3.17a dargestellt wird.

Eine charakteristische Größe dieser Dreieckfunktion (und damit der Spaltfunktion) ist die spektrale Bandbreite oder Halbwertbreite $\Delta \lambda_{\text{tr}}$, die bei der idealen Spaltfunktion der halben Sockelbreite entspricht und über die Linearversperrung mit der geometrischen Spaltbreite b verbunden ist:

$$\Delta \lambda_{\text{tr}} = b \cdot (dx / d\lambda)^{-1}.$$ \hspace{1cm} (3.33)

Sind Eintrittsspalt und Austrittsspalt unterschiedlich groß, ergibt sich ein Trapez als Spaltfunktion, da entweder mehrere Bilder benachbarter Wellenlängen vollständig auf den Austrittsspalt gelangen (Austrittsspalt $b_{\text{aus}} >$ Eintrittsspalt b_{ein}), oder der Austrittsspalt mehrere benachbarte Bilder gleichermaßen beschneidet ($b_{\text{aus}} < b_{\text{ein}}$). Die Halbwertbreite berechnet sich dann aus dem Maximum der geometrischen Spaltbreiten: $\Delta \lambda_{\text{tr}} = \max\{b_{\text{ein}}, b_{\text{aus}}\} \cdot (dx / d\lambda)^{-1}$, die untere Sockelbreite des Trapezes entspricht der Summe der Spaltbreiten $(b_{\text{ein}} + b_{\text{aus}}) \cdot (dx / d\lambda)^{-1}$ und die obere Breite dem Betrag der Differenz $|b_{\text{ein}} - b_{\text{aus}}| \cdot (dx / d\lambda)^{-1}$ [59]. Auch für trapezförmige Spaltfunktionen ergibt sich aus Gleichung (3.26) ein Formfaktor f_{tr} von eins.

Für einen idealen Doppelmonochromator in additiver Anordnung, also einer Hintereinanderschaltung zweier identischer Monochromatoren mit sich addierender Dispersion, ergeben sich vergleichbare Verhältnisse. Jedes abgebildete Teilrechteck auf dem Austrittsspalt des ersten Monochromators gelangt als Bild des Eintrittsspaltes des zweiten Monochromators mit noch kleineren Anteilen auf dessen Austrittsspalt. Beim idealen Doppelmonochromator ergibt die resultierende Spaltfunktion wieder ein Dreieck, jedoch mit der halben Sockelbreite und Halbwertbreite $\Delta \lambda_{\text{tr},\text{mon}} = b / 2 \cdot (dx / d\lambda)^{-1}$. Sind die drei Spalte des Doppelmonochromators unterschiedlich eingestellt, ergibt sich zunächst am Austrittsspalt des ersten Monochromators ein Trapez als Spaltfunktion, die am Austrittsspalt des zweiten Monochromators die Form von zwei aufeinander gesetzten Trapezen annehmen kann.

Neben dieser auf Einstellungen beruhenden Abweichung vom idealen Monochromator, trägt bei bestehenden Spektoralapparaten die heterochrome Fehlstrahlung zur Deformation der Spaltfunktion bei. Fehlstrahlung kann durch Abbildungsfehler, Streustrahlung oder Fehlreflexionen im Monochromator durch den Austrittsspalt gelangen. Die Spaltfunktion reicht dann nicht nur bis zur berechneten Sockelbreite, sondern der Fehlstrahlungsanteil sorgt für eine Deformation der Flanken und für ein Abklingen der Spaltcharakteristik über die ideale Spaltbreite hinaus. Im Doppelmonochromator wird der Fehlstrahlungsanteil noch einmal deutlich reduziert, so daß die Verbreiterung der Spaltfunktion deutlich geringer ausfällt. Die heterochrome Fehlstrahlung kann auch eine Asymmetrie der resultierenden Spaltfunktion bewirken, die sich oftmals nur in den Ausläufern der Spaltcharakteristik zeigt, mit wachsender Spaltbreite jedoch deutlich zunimmt. Diese Deformation der Spaltfunktion führt immer zu einem von eins abweichenden Formfaktor. Um die Abweichung der Spaltfunktion $N_{\text{mon}}(\lambda',\lambda_0,b)$ von ihrem idealen Verlauf zu ermitteln, um damit die Formfaktoren f_{tr} und $f_{\text{tr},\text{BB}}$ zu bestimmen, bedarf es einer genauen Ausmessung der vollständigen Spaltcharakteristik.

3.3.2.2 Methoden für die Ausmessung der Spaltfunktion

Die direkte Methode der Bestimmung der Spaltfunktion besteht aus der Messung der Photosignale $i(\lambda',\lambda_0,b)$, die sich durch monochromatische Bestrahlung mit der Bestrahlungsstärke $E(\lambda')$ der Wellenlänge λ' auf den Monochromator mit der Wellenlängeneinstellung λ_0 ergeben. Bei Korrektur mit dem optischen Gerätefaktor $R(\lambda',b)$ aus Gleichung (3.18) (oder der Annahme, daß dieser konstant ist), ergibt sich per Definition direkt die (normierte) Spaltfunktion des Monochromators

$$N_{\text{mon}}(\lambda',\lambda_0,b) = \frac{i(\lambda',\lambda_0,b) \cdot R(\lambda_0,b)}{i(\lambda_0,\lambda_0,b) \cdot R(\lambda,b')} \cdot \frac{E(\lambda_0)}{E(\lambda')}.$$ \hspace{1cm} (3.34)

Laser können als Strahlungsquellen für quasimonochromatische Strahlung eingesetzt werden. Einige Lasersysteme (zum Beispiel Farbstofflaser und vibronische Festkörperlaser [21]) lassen sich über einen größeren Spektralbereich auf verschiedene Wellenlängen abstimmen.
Für die Vermessung der Spaltfunktion bei der im Rahmen dieser Arbeit verwendeten Monochromatoreinstellung $\lambda_0 = \lambda_{\text{las}} = 632,8$ nm standen jedoch keine durchstimmbaren monochromatischen Strahlungsquellen zur Verfügung. Daher wurde die Methode der inversen Bestimmung der Spaltfunktion verwendet. Diese Verfahrensweise sieht vor, Meßwerte $i(\lambda_{\text{las}}, \lambda, b)$ von einer monochromatischen Strahlungsquelle der Wellenlänge λ_{las} bei verschiedenen Monochromatoreinstellungen λ aufzunehmen. Wenn man von einer Lineardispersion und der Annahme ausgeht, daß der relative Verlauf benachbarter Spaltfunktionen symmetrisch und identisch sein muß, gilt $i(\lambda_{\text{las}}, \lambda, b) = i(\lambda, \lambda_{\text{las}}, b)$ und man erhält

$$N_{\text{mm}}(\lambda', \lambda_{\text{las}}, b) = \frac{i(\lambda_{\text{las}}, \lambda', b)}{i(\lambda_{\text{las}}, \lambda_{\text{las}}, b)}.$$ (3.35)

Bei dem indirekten Verfahren ist zu bedenken, daß der Verlauf der korrespondierenden Strahlengänge im Monochromator für die Ermittlung der Gleichungen (3.34) und (3.35) gespiegelt ist \[4\]. Daher wird bei der indirekten Bestimmung der Spaltfunktion auch die Asymmetrie der Fehlstreuung gespiegelt. Diese Spiegelung hat auf den Formfaktor f_N zunächst keinen Einfluß. Bei der Bewertung kontinuierlicher Strahlung und der damit verbundenen Verwendung des bereinigten Formfaktors $f_N,_{\text{BB}}$ muß jedoch eine Spiegelung der Spaltfunktion an der Maximumwellenlänge λ_{las} durchgeführt werden. Oftmals sind allerdings nur die fernen spektralen Ausläufer der Spaltfunktion eines Doppelmonochromators bedingt durch den Fehlstrahlausenteil von einer derartigen Asymmetrie betroffen \[93\].

3.3.2.3 Inverse Ausmessung mit einem Laser fester Wellenlänge

Für den neuen Meßplatz für spektrale Bestrah lungsstärke bietet sich die indirekte Vermessung der Spaltfunktion mit dem fest eingebauten Laser am Meßplatz an (siehe 1.4, Abbildung 1.16). Mit diesem He-Ne-Laser werden mehrere Aufgaben übergreifend erledigt:

- Die Wellenlängeneinstellung am Doppelmonochromator wird mit der Laserwellenlänge kalibriert, indem zunächst beide Einzelmonochromatoren einjustiert werden, um dann die Wellenlängeneinstellung des Gesamtsystems zu überprüfen.
- Die Spaltfunktionen des Monochromators bei unterschiedlichen Einstellungen der Spalte und beim Einsatz unterschiedlicher Gitter werden indirekt vermessen.
- Die Laserleistung kann direkt mit der Bestrahlungsstärke des Schwarzen Strahlers verglichen werden.

Abbildung 3.18 Aufbau für Messungen mit Laser, Monochromator und Trap-Detektor.

Mit dem Aufbau kann die Spaltfunktion des Monochromators indirekt vermessen, der Laser gegen den Schwarzen Strahler verglichen und die Laserleistung mit dem Trap-Detektor bestimmt bzw. der Monitor-Detektor kalibriert werden.

Der Strahlengang für die Laserstrahlung ist in [Abbildung 3.18](#) skizziert. Zunächst wird die Leistung des Lasers von ca. 50 mW mit einem Graufilter auf das Niveau der spektralen Strahlungsleistung des Schwarzen Strahlers über der Spaltfunktion von etwa 50 µW reduziert. Ein Verschluß schattet die direkte Laserstrahlung für Dunkelmessungen der Detektoren ab.

Die Spaltfunktionen werden unter denselben Einstellungen und Bedingungen vermessen, wie später andere Strahler vermessen werden. Für erste Untersuchungen wurden je sieben Spaltbreiten mit zwei verschiedenen Gittersätzen verwendet. Für alle vierzehn Einstellungen wurde zunächst die Wellenlängeneinstellung überprüft und korrigiert. Die notwendigen Korrekturen der werkseitigen Wellenlängeneinstellungen am Monochromator bei $\lambda_{\text{las}} = 632,8$ nm sind in Tabelle 3.2 vermerkt. Besonders bei größeren Spaltbreiten variieren diese Korrekturen um bis zu ±0,5 nm.

Danach wurden die Spaltfunktionen über einen längeren Zeitraum mehrmals vermessen, um die Reproduzierbarkeit der Einstellungen zu überprüfen. Erst beim Vermessen der fernen Flanken der Spaltfunktionen wurde der Graufilter entfernt, um die Meßdynamik um drei Größenordnungen zu erhöhen. Dabei ist allerdings zu beachten, daß der Einfluß heterochromer Fehlstrahlung (hier erzeugt durch den Laser bei Wellenlängeneinstellungen $\lambda' \neq \lambda_{\text{las}}$) von der eingestrahlten Strahlungsleistung abhängt.

3.3.2.4 Charakteristika und Symmetrie der Spaltfunktionen

Die Spaltfunktionen wurden bei jeder Einstellung in Schritten von 0,05 nm bzw. 0,1 nm insgesamt jeweils sechs- bis siebenmal vermessen. In Tabelle 3.2 werden die erhaltenen wichtigen Merkmale der einzelnen Spaltfunktionen aufgeführt.

<table>
<thead>
<tr>
<th>Einstellungen</th>
<th>Spalt- breite / mm</th>
<th>Spaltfunktionen</th>
<th>Wellenlängenkorrektur</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Halbwertbreite / nm</td>
<td>Integral / nm</td>
</tr>
<tr>
<td>I T312R0μ3</td>
<td>0,5</td>
<td>0,936 ± 0,009</td>
<td>1,000 ± 0,007</td>
</tr>
<tr>
<td>1200 Striche / mm</td>
<td>1</td>
<td>1,636 ± 0,010</td>
<td>1,691 ± 0,005</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>3,137 ± 0,009</td>
<td>3,142 ± 0,006</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>4,643 ± 0,008</td>
<td>4,629 ± 0,006</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>6,072 ± 0,007</td>
<td>6,089 ± 0,006</td>
</tr>
<tr>
<td>Blaze β bei 300 nm</td>
<td>5</td>
<td>7,492 ± 0,012</td>
<td>7,502 ± 0,005</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>8,897 ± 0,012</td>
<td>8,914 ± 0,010</td>
</tr>
<tr>
<td>II T306R1μ0</td>
<td>0,5</td>
<td>2,07 ± 0,06</td>
<td>2,16 ± 0,01</td>
</tr>
<tr>
<td>600 Striche / mm</td>
<td>1</td>
<td>3,31 ± 0,02</td>
<td>3,47 ± 0,02</td>
</tr>
<tr>
<td></td>
<td>1,5</td>
<td>4,81 ± 0,04</td>
<td>4,81 ± 0,01</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>6,21 ± 0,05</td>
<td>6,20 ± 0,02</td>
</tr>
<tr>
<td>Blaze β bei 1000 nm</td>
<td>2,5</td>
<td>7,43 ± 0,01</td>
<td>7,56 ± 0,02</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>8,92 ± 0,02</td>
<td>8,99 ± 0,02</td>
</tr>
<tr>
<td></td>
<td>3,5</td>
<td>10,25 ± 0,02</td>
<td>10,39 ± 0,02</td>
</tr>
</tbody>
</table>

Tabelle 3.2 Charakteristika der Spaltfunktionen und Wellenlängeneinstellungen. Bei idealer Spaltfunktion sollten Halbwertbreite und Integral übereinstimmen. Der Formfaktor f_N ergibt sich aus dem Verhältnis von Halbwertbreite zu Integral. Die am Monochromator vorzunehmenden Wellenlängenkorrekturen sind für die korrekte Einstellung auf 632,8 nm angegeben.
Die Angabe der Spaltbreite in mm entspricht der werkseitigen Einstellung. Aus der Lineardispersion mit der Bedingung eines Nulldurchganges ergibt sich, daß die tatsächliche geometrische Spaltbreite um 0,22 mm größer ist. Dann ergibt sich für den Gittersatz I bei 632,8 nm eine Lineardispersion von 1,45 nm/mm und beim Gittersatz II ändert sich die spektrale Spaltbreite um 2,74 nm/mm.

Die Halbwertbreite und das Integral der auf den Maximalwert normierten Spaltfunktionen sind mit ihren einfachen Standardabweichungen angegeben, um die Reproduzierbarkeit der Messungen zu verdeutlichen. Besonders bei sehr kleinen Spaltbreiten weichen die Meßwerte in den steilen Flanken teilweise um bis zu 15 % voneinander ab, ihr Anteil an der Gesamtcharakteristik ist jedoch relativ gering. Im Zentralbereich der breiteren Spaltfunktionen und in ihren Ausläufern sinkt die relative Standardabweichung unter 1 %. Die relativen Standardabweichungen der Halbwertbreite und der Integrale liegen größtenteils unter 0,1 %, sind bei den Einstellung für Gitter II jedoch deutlich höher als bei den Einstellungen für Gitter I.

In Abbildung 3.19 sind einige Spaltfunktionen der beiden Gittersätze dargestellt. Der Verlauf aller Funktionen ist in dieser Darstellung nahezu dreieckförmig und die Sockelbreite entspricht in guter Näherung der doppelten Halbwertbreite der Spaltfunktionen. Die zu beobachtende leichte Welligkeit der Kurvenverläufe ist auf den Einfluß der Kohärenz des Lasers bei der Vermessung der Spaltfunktion zurückzuführen (siehe 3.3.1.5).

Beim Gittersatz I ist die Spaltfunktion für die Einstellung 6 mm im oberen Bereich deutlich asymmetrisch. Die Einzelmonochromatoren sind für diese Spaltbreite nicht optimal aufeinander abgestimmt worden. Daher liegt die Maximumwellenlänge der Spaltfunktion um 0,9 nm oberhalb der Schwerpunktwellenlänge.

Diese deutlich sichtbare Asymmetrie und die daher notwendige Spiegelung der Spaltfunktion hat einen Einfluß auf den bereinigten Formfaktor . Bei 3300 Kelvin weicht von ab. Bei einer Spiegelung der Spaltfunktion ändert sich nicht, während sich um 0,8 % ändert und nun um +0,5 % vom Formfaktor der Spaltfunktion abweicht. Daraus ergibt sich eine Korrektur, die zu einer um 1 Kelvin höheren Strahlertemperatur führt.

In der logarithmischen Darstellung in Abbildung 3.20 zeigen sich deutlich die durch Fehlstrahlung erweiterten Flanken der Spaltfunktionen bei größeren Spaltbreiten. Mit der für Vergleichsmessungen notwendigen Abschwächung des Lasers durch Graufilter konnten die Spaltfunktionen bis etwa vermessen werden.
3.3 Eine lasergestützte Methode zur radiometrischen Temperaturbestimmung

Bei Funktionswerten kleiner als 10^{-3} wurde die zusätzliche Vermessung der Randbereiche mit eingetragen, die mit dem Laser ohne diese Abschwächung durchgeführt wurde. Ihr Verlauf gleicht sich über die zwei gemeinsamen Größenordnungen von 10^{-3} bis 10^{-5} sehr gut an.

![Abbildung 3.20 Logarithmische Darstellung der Spaltfunktionen bei verschiedenen Spaltbreiten.](image)

a.) Für den Gittersatz I; b.) für den Gittersatz II.

Die eingezeichneten Symbole entsprechen jeweils der gespiegelten Spaltfunktion.

Zusätzlich zu den indirekt vermessenen Spaltfunktionen, die durch Linien repräsentiert werden, stellen die Symbole die an der Wellenlänge λ_{las} gespiegelten Spaltfunktionen dar. Sie verdeutlichen die Symmetrie in weiten Teilen der Spaltcharakteristik, von der nur in den Randbereichen der Spaltfunktionen abgewichen wird.

3.3.3 Kalibrierung des Schwarzen Strahlers an der HeNe-Wellenlänge 632,8 nm

Mit demselben Meßaufbau, mit dem Bestrahlungsstärkekalibrierungen durchgeführt werden (Abbildung 1.16) und auch die Spaltfunktion des Doppelmonochromators vermessen wird (Abbildung 3.18), kann der Strahler gegen Laser vermessen und an der Laserwellenlänge seine spektrale Bestrahlungsstärke kalibriert werden. Übersichtsmessungen, die eine Anwendbarkeit dieser Methode mit akzeptabler Meßunsicherheit demonstrieren sollen, wurden mit einem Helium-Neon-Laser (HeNe-Laser) bei 632,8 nm und dem Schwarzen Strahler in einem Temperaturbereich zwischen 2500 Kelvin und 3200 Kelvin durchgeführt.

Der Ablauf dieser Messungen vollzieht sich im Wechsel zwischen Strahlermessungen bei jeweils allen Monochromatoreinstellungen und anschließend folgenden Lasermessungen. Zunächst wird eine Spaltbreite eingestellt und der Doppelmonochromator auf die jeweils 632,8 nm entsprechende Wellenlängeneinstellung gebracht. Nachdem der Schwarze Strahler gegen die Monitorlampe vermessen wurde, wird die nächste Spalteinstellung angefahren. Die Messungen mit dem Schwarzen Strahler sind abgeschlossen, wenn Meßwerte für alle Spalteinstellungen bei beiden Gittersätzen aufgenommen wurden. Dieser Vorgang dauert etwa dreißig Minuten. Sofort anschließend wird mit denselben Einstellungen auch der Laser vermessen. Mit Hilfe des Formfaktors f_{N} für jede Spalteinstellung wird nach Gleichung (3.30) die vorläufige spektrale Bestrahlungsstärke $E_{\text{BB,ein}}(\lambda_{\text{las}},T)$ bei 632,8 nm bestimmt. Aus dem Planckschen Strahlungsgesetz (2.18) läßt sich unter Kenntnis der Strahlerfläche A_{BB} und des Meßabstandes d_{BB} die vorläufige Strahlertemperatur berechnen:

$$T^* = \frac{c_2}{\lambda_{\text{las}} \cdot \ln \left(\frac{1}{E_{\text{BB,ein}}} \cdot \frac{A_{\text{BB}}}{d_{\text{BB}}} \cdot \frac{c_1}{\lambda_{\text{las}}^3 + 1} \right)}.$$

Hiermit wiederum läßt sich der bereinigte Formfaktor $f_{\text{N,BB}}$ bestimmen, sowie die endgültige Bestrahlungsstärke $E_{\text{end}}(\lambda_{\text{las}},T)$ und die Strahlertemperatur T_{end} berechnen.

Für den Gittersatz I wurden die Messungen für die geometrischen Spaltbreiten 1 mm bis 5 mm (Halbwertbreiten 1,6 nm bis 7,5 nm) jeweils immer direkt nacheinander doppelt ausgeführt, alle anderen Messungen wurden jeweils einzeln vorgenommen. Die paarweise übereinander liegenden Meßpunkte geben also einen Anhaltspunkt für die direkte Wiederholbarkeit der Messungen bei einer Strahlertemperatur. Ebenso kann die Variation der relativen Lage der Meßpunkte zueinander bei verschiedenen Temperaturen als ein Maß für die Reproduzierbarkeit angesehen werden. Die Formfaktoren $f_{N,BB}$ ändern sich nur sehr wenig mit der Temperatur (siehe 3.3.1.2), so daß ihr Einfluß auf das Meßergebnis konstant bleibt. Dennoch variiert besonders für Gitter II bei verschiedenen Strahlertemperaturen die relative Lage der Meßpunkte zueinander sehr deutlich. Die Streuung der Meßwerte nimmt mit steigender Strahlertemperatur zu. Sie ist auf die Unsicherheit der Bestimmung der Spaltfunktion sowie auf die Reproduzierbarkeit der Wellenlängeneinstellungen zurückzuführen. Gitter II hat eine deutlich höhere Dispersion als Gitter I und damit wirkt sich eine Fehlpositionierung der Wellenlänge stärker aus. Beim kontinuierlichen und wenig variierenden Spektrum des Schwarzen Strahlers ist der systematische Fehler beim Vergleich gegen die ähnlich verlaufende Monitorlampe gering. Wellenlängenfehler wirken sich jedoch sehr deutlich auf die Vermessung des Lasers auf. Wird der Monochromator nicht auf die Laserwellenlänge λ_{las} eingestellt, wird ein zu geringer Photostrom $i_{\text{las},\text{det}}(\lambda_{\text{las}}, b)$ gemessen und somit dem Schwarzen Strahler eine zu

Abbildung 3.21 Temperaturmessung mit der Lasermethode.
Bei verschiedenen Spalteinstellungen und bei beiden Gittersätzen wurde die Strahlertemperatur bestimmt. Für den Gittersatz II ist die Variation der Meßpunkte aufgrund einer erhöhten Meßunsicherheit größer.
3.3 Eine lasergestützte Methode zur radiometrischen Temperaturbestimmung

hohe Bestrahungsstärke \(E_{BB,\lambda}(\lambda_{las}, T) \) zugeordnet. Die sich ergebende Strahltemperatur \(T \) ist dann ebenfalls zu hoch. Bei einer Wellenlängenreproduzierbarkeit von 0,2 nm für den Gittersatz II ergibt sich besonders bei kleinen Spaltbreiten eine Unsicherheit für das Photosignal des Lasers von bis zu 0,3 %.

Bei Gittersatz I und der sehr kleinen Spaltbreite von 0,5 mm ist bei einer Reproduzierbarkeit der Wellenlängeneinstellung von 0,1 nm die Änderung der Spaltfunktion mit 3 % deutlich schlechter als bei allen anderen Einstellungen des Doppelmonochromators.

Die Vermessung der Spaltfunktionen für den Gittersatz II erfolgte mit höherer Meßunsicherheit, wie die Standardabweichungen von Halbwertbreiten und Integralen in Tabelle 3.2 verdeutlichen. Es zeigt sich auch, daß bei Werten der Spaltfunktion kleiner als 10^{-3} die relativen Standardabweichungen der Meßpunkte auf über 15 % steigen, während sie bei Gitter I bei größeren Spaltbreiten noch für Werte der Spaltfunktion bis 10^{-4} unterhalb einer derartigen Standardabweichung lagen. Die sehr schmalen Spaltfunktionen von Gitter I bei Spaltbreiten von 0,5 mm und 1 mm sind jedoch ebenfalls mit einer ähnlich hohen Meßunsicherheit behaftet. Daher kann der Temperaturwert für die kleinste Halbwertbreite von Gitter I besonders stark vom Mittel der anderen Meßpunkte abweichen.

Abbildung 3.22 Vergleich der Bestrahungsstärkekalibrierung mit Laser und mit Filterdetektor.

Die spektrale Bestrahungsstärke bei 632,8 nm wurde zum einen direkt gegen den Laser bestimmt und zum anderen aus der Temperaturangabe des Filterdetektors berechnet. Dargestellt ist die relative Abweichung der beiden Methoden zueinander und die Standardabweichung der Einzelmessungen bei verschiedenen Spaltbreiten.

Die Position des auf der Kugelwand auftreffenden Laserstrahls kann mit Hilfe von Autokollimation an Hilfsspiegeln auf 0,5 mm reproduzierbar eingestellt werden. Allerdings sollte diese Justierung bei
idealer Kugelinnenfläche keinen Einfluß auf das Meßergebnis haben, solange der Laserstrahl vollständig durch die Öffnung der Kugel gelangt. Eine Dejustierung des Laserstrahls um 5 mm ergibt eine Änderung des Quotienten aus Meßsignal vom Laser zum Meßsignal der Monitorlampe von 0,1 %. Diese Abweichung liegt innerhalb der Reproduzierbarkeit derartiger Messungen mit dem Doppelmonochromator von etwa ± 0,1 % (siehe auch [4.3]). Trotz der oben angeführten Unsicherheiten, zeigen die Ergebnisse deutlich, daß diese neue Methode zur Bestimmung der Strahlertemperatur erfolgreich ist. Die mittleren Abweichungen zu Temperaturmessungen mit Breitband-Filterdetektoren, deren Temperaturangaben in Abbildung 3.21 in den Legenden eingetragen wurden, sind durchgängig kleiner als 3 Kelvin. Aus den Bestimmungen der Bestrahlungsstärke mit der Lasermethode läßt sich für jeden Gittersatz der Mittelwert berechnen (wobei die Messungen mit 0,5 mm Spaltbreite bei Gitter I ausgespart werden) und die Standardabweichung bestimmen. Ebenso läßt sich aus der Temperatur der Filterdetektoren die Bestrahlungsstärke am Ort der Öffnung der Ulbricht-Kugel berechnen, wenn der geometrische Faktor aus Strahlerfläche und Quadrat des Abstandes zur Kugelöffnung berücksichtigt werden. Die relative Abweichung der mit der Lasermethode bestimmten Bestrahlungsstärke zu den mit den Ergebnissen der Filterdetektoren berechneten Werten ist in Abbildung 3.22 dargestellt. Die zweifache relative Standardabweichung der Mittelwerte für die Lasermethode ist ebenfalls eingezeichnet. Die Bestrahlungsstärken weichen um weniger als 1 % voneinander ab, ein für diese ersten Messungen zufriedenstellendes Ergebnis. Damit gelangt die Bedeutung der Methode der Bestrahlungsstärkekalibrierung mit dem Laser trotz aller Unwägbarkeiten und Unsicherheiten auf Anhieb in den Bereich bereits etablierter Methoden zur Bestimmung der Temperatur eines Schwarzen Strahlers. Durch geeignete Maßnahmen, die eine Erhöhung der Reproduzierbarkeit und eine Verringerung der Transferunsicherheit erworben, kann diese Methode noch deutlich verbessert werden.
Teil 4 Übersicht über Erfahrungen, Verbesserungen, Meßunsicherheiten

In den vorangegangenen drei Teilen wurden die drei Teilaufgaben der Bestrahlungsstärkekalibrierung beschrieben und Meßaufbauten, Charakterisierungen und Verbesserungsmaßnahmen ausführlich behandelt. Die drei Bereiche wirken sich gemeinsam auf die Leistungsfähigkeit der Strahler-Radiometrie aus, so daß die wichtigsten Aspekte in diesem Teil der Arbeit noch einmal zusammengefaßt und ihre innere Verbindung beschrieben werden soll. Bisher erreichte Verbesserungen werden dargestellt und Perspektiven für zusätzliche Verbesserungen aufgezeigt.

In einem weiteren Kapitel werden die wichtigsten Beiträge zur Meßunsicherheit beschrieben und die Meßunsicherheiten für die Bestimmung der Temperatur des Schwarzen Strahlers und die spektrale Bestrahlungsstärkekalibrierung angegeben. Die Verringerung der Meßunsicherheiten durch zusätzliche Verbesserungsmaßnahmen wird abgeschätzt. Bei internationalen Vergleichsmessungen wurden Übereinstimmungen der Meßergebnisse erreicht, die innerhalb der abgeschätzten Meßunsicherheiten liegen.

4.1 Erfahrungen und Verbesserungen

In den letzten Jahren konnte die spektrale Bestrahlungsstärkekalibrierung durch Verbesserungsmaßnahmen und die Anwendung neuer Techniken deutlich verbessert werden. Diese Maßnahmen und Techniken werden in den ersten drei Teilen dieser Arbeit eingehend beschrieben. In der Verbindung und im Zusammenspiel der drei Teilaufgaben der Strahler-Radiometrie ergibt sich die derzeit realisierte spektrale Bestrahlungsstärkekalibrierung.

4.1.1 Strahler-Radiometrie

Die in 3.1.1 vorgestellte Kalibrierkette der Radiometrie enthält in einem Teilbereich die Strahler-Radiometrie, bei der die Kalibrierung von Strahlern bezüglich spektraler Bestrahlungsstärke durchgeführt wird.

Abbildung 4.1 Schematische Darstellung der Strahlerradiometrie. Ausschnitt aus der radiometrischen Kette, der die Bestrahlungsstärkekalibrierung darstellt. Der Filterdetektor als Standardmeßmethode zur Temperaturbestimmung stellt das Bindeglied zur Empfängerradiometrie dar.

Die Erfahrungen und Verbesserungen der drei Teilaufgaben, die gemeinsam die empfänger-thermische Realisierung der spektralen Bestrahlungsstärke darstellen, werden im Folgenden noch einmal zusammengefaßt.

4.1.2 Der spektrale Vergleich von Strahlern mit Spektroradiometern

In der PTB wird beim Vergleich von Strahlern das Substitutionsverfahren angewendet, das heißt die Strahler werden nacheinander am selben Ort unter denselben optisch gegebenen Bedingungen vermessen. Die zeitliche Stabilität des Meßsystems zwischen zwei Messungen wird mit einem stabilen Monitorstrahler gesichert, dessen spektraler Verlauf den Spektren der untereinander verglichenen Primär- und Sekundärnormale gleich. Die Stabilität des Monitorstrahlers kann zusätzlich durch Monitorempfänger überwacht werden; denn ausgewählte Empfänger sind grundsätzlich langzeitstabil als die stabilsten Lampen.

Für den UV-Meßplatz wurde im kurzwelligen Spektralbereich eine bis zu 600-fach höhere Nachweisempfindlichkeit gegenüber der Standardmeßapparatur erreicht. Dieser Gewinn an Effektivität wurde zum einen durch die Reduzierung der Zahl der Spiegel im Strahlengang von 13 auf 2 Spiegelflächen erreicht, so daß Reflexionsverluste an diesen Spiegeln nicht mehr auftreten (einzig an den beiden abbildenden Reflexionsgittern treten noch geringe Verluste auf). Zum anderen wird ein sonnenblindender Photomultiplier eingesetzt, dessen Kathodenbeschichtung für Strahlung oberhalb...
4.1 Erfahrungen und Verbesserungen

380 nm keine messbare spektrale Empfindlichkeit mehr besitzt. Damit wird der starke Einfluß von Streulicht größerer Wellenlängen nahezu vollständig unterdrückt. An der UV-Apparatur können sowohl Temperaturstrahler als auch UV-Gasentladungs lampen oberhalb von 190 nm vermessen werden [72].

4.1.3 Die Auswahl geeigneter Strahler für die Weitergabe der spektralen Bestrahlungsstärke

Bedingt durch den Schwarzen Strahler als Primärnormal und die Verwendung von Halogen Glühlampen als Monitorstrahler sind die Spektroradiometer vorwiegend für die Messung von Temperaturstrahlern optimiert. Derartige Strahler bieten ein geeignetes Bezugs- oder Transfernormal für den Spektralbereich von 200 nm bis 3000 nm.

4.1.4 Auswirkung der Verbesserungen am Schwarzen Strahler auf die spektrale Bestrah lungsstärkeskala

4.1 Erfahrungen und Verbesserungen

Der Graphitstrahler BB22p mit Betriebstemperaturen bis zu 3000 Kelvin kann ebenfalls als Primärmormal für die spektrale Bestrahlungsstärke eingesetzt werden. Eine Konsistenzprüfung ergab die Übereinstimmung der von beiden Strahlnormalen dargestellten Bestrahlungsstärken, so daß die Schwarzen Strahler erwartungsgemäß gleichwertig als Primärmormalen eingesetzt werden können. Der Strahler BB3200pg wird allerdings bei höheren Strahlertemperaturen und dadurch mit wesentlich höheren Bestrahlungsstärken im UV-Spektalbereich betrieben.

4.1.5 Breitband-Filterdetektoren als Standardmeßmethode zur Bestimmung der radiometrischen Temperatur des Schwarzen Strahlers

Zur Bestimmung der Temperatur eines Schwarzen Strahlers wird im Bereich der Bestrahlungsstärkekalibrierung in der PTB mittlerweile die abbildungsfreie Messung der gewichteten Bestrahlungsstärke mit Breitband-Filterdetektoren verwendet. Diese auf die Empfänger-Radiometrie rückführende Meßmethode übertrifft für hohe Strahlertemperaturen die Messung mit Spektralpyrometern in der Meßgenauigkeit und in der Handhabbarkeit.

Langzeitmessungen und Rekalibrierungen haben ergeben, daß die verwendeten Breitband-Filterdetektoren eine hohe Langzeitstabilität aufweisen, die unabhängig vom Grad und der Dauer der Bestrahlung ist. Demgegenüber haben sich Filterdetektoren mit schmalbandigen Interferenzfiltern als weniger stabil erwiesen. Außerdem konnte gezeigt werden, daß derartige Detektoren aufgrund der...
Teil 4 Übersicht über Erfahrungen, Verbesserungen, Meßunsicherheiten

Steilheit ihrer Empfindlichkeit und des schmalen Bereiches der gewichteten Bestrahlungsstärke nur mit größerer Meßunsicherheit zu kalibrieren sind.

Die Anfälligkeit bezüglich Umgebungsbedingungen und Fehljustierung kann außerdem zu unkalibrierten systematischen Fehlern bei der Temperaturbestimmung führen.

Die Bestimmung der radiometrischen Temperatur des Schwarzen Strahlers mit den verschiedenen Breitband-Filterdetektoren weist über einen großen Temperaturbereich eine gute Übereinstimmung untereinander auf, die auch gegenüber einem bezüglich der thermodynamischen Temperaturskala kalibrierten Spektralpyrometer besteht.

Die hohe Stabilität, Kompaktheit und einfache Handhabbarkeit der Filterdetektoren ermöglicht den empfängergestützten Vergleich der Bestrahlungsstärkeskalen verschiedener Institute. So wurden zum Beispiel 1997 in Moskau erfolgreich Vergleichsmessungen mit Breitband-Filterdetektoren der PTB, Filterradiometern des National Physical Laboratory (NPL, Großbritannien) und einem Photometer des VNIIOFI durchgeführt (siehe 4.2.5).

Insgesamt hat sich die Temperaturbestimmung mit Breitband-Filterdetektoren als eine neue abbildungsfreie radiometrische Standardmeßmethode etabliert, die eine Rückführung der Strahler-temperatur und damit der Bestrahlungsstärkeskala über die Empfänger-Radiometrie auf die elektrische Leistungsmessung ermöglicht.

4.1.6 Die lasergestützte Meßmethode als Erweiterung der Möglichkeiten zur Bestimmung der spektralen Bestrahlungsstärke und der Strahlertemperatur

Der direkte Vergleich von Laserstrahlung bekannter Strahlungsleistung mit der unbekannten spektralen Bestrahlungsstärke des Schwarzen Strahlers bei derselben Laserwellenlänge bietet eine weitere Möglichkeit, der empfängergerüstzüten Realisierung der Bestrahlungsstärkeskala.

Für nahezu ideale Spaltfunktionen konnte gezeigt werden, daß sich ihr Einfluß in erster Näherung auf einen (von der Bestrahlungsstärke unabhängigen) Formfaktor und die spektrale Halbwertbreite der Spaltfunktion reduziert. Mit diesem Formfaktor wird die Beziehung zwischen den Strahlungsleistungen vereinfacht und reduziert sich zu einer linearen Beziehung zwischen Laserstrahlungsleistung und spektraler Bestrahlungsstärke des Schwarzen Strahlers an der Laserwellenlänge.

Doppelmonochromators die Spaltfunktionen mit Hilfe des Lasers indirekt vermessen und die jeweiligen Formfaktoren ermittelt.

Die Spaltfunktionen bei unterschiedlichen Spaltbreiten soll durch Nachjustierung des Doppelmonochromators verbessert werden, indem die Spaltverstellung aufeinander optimiert wird und die Schwerpunktwellenlängen der beiden Einzelmonochromatoren möglichst akkurat abgestimmt werden. Nach Abschluß dieser Verbesserungen sollte es außerdem möglich sein, auch andere Temperaturstrahler wie zum Beispiel Normallampen mit Hilfe der lasergestützten Meßmethode zu kalibrieren, d.h. ihnen an den Laserwellenlängen eine (vom Vergleich mit anderen Temperaturstrahlern unabhängige) spektrale Bestrahlsungsstärke zuzuordnen.

Insgesamt wird mit den hier zusammengefaßten Ergebnissen der vorangegangenen Abschnitte eine empfängergestützte Realisierung der spektralen Bestrahlsungsstärkeskala mit deutlich verringerten Meßunsicherheiten erreicht, die weiterhin ausbaufähig ist.

4.2 Meßunsicherheiten und Vergleichsmessungen

Für eine Kalibrierung wird eine geringe Meßunsicherheit der Messung physikalischer Größen angestrebt. Bei der spektralen Bestrahlsungsstärkekaliubierung ergeben sich wiederum drei Bereiche, die diesbezüglich zu optimieren sind: die Bestrahlsungsstärke des Primärnormales, die Bestimmung der Strahltemperatur zur Berechnung der spektralen Bestrahlsungsstärke und die Übertragung der Skala auf andere Strahler.

Einige grundlegende Überlegungen sollen die Verfahrensweise bei der Bestimmung der Meßunsicherheit verdeutlichen (4.2.1). Es werden die benötigten Meßbeziehungen noch einmal wiederholt und die direkte sowie die indirekte Bestimmung der Meßunsicherheit demonstriert. Die den einzelnen Eigenschaften des Hochtemperatur-Hohlraumstrahlers beigeordneten geringen Meßunsicherheitsbeiträge werden diskutiert (4.2.1). Die Temperaturbestimmung weist zur Zeit den größten Beitrag zur Meßunsicherheit der spektralen Bestrahlsungsstärke auf. Die Komponenten, die zur Meßunsicherheit der Temperaturmessung führen, werden detailliert behandelt und der Einfluß einiger Verbesserungsmöglichkeiten aufgezeigt (4.2.3). Ein für die Temperaturmessung durchgeführter internationaler Vergleich wird dargestellt, bei dem sich eine Übereinstimmung im Rahmen der kombinierten Meßunsicherheiten ergab (4.2.3). Zuletzt wird die sich ergebende Meßunsicherheit für die Realisierung der empfängergestützten spektralen Bestrahlsungsstärkeskala angegeben (4.2.6).
4.2.1 Grundlegende Überlegungen zur Bestimmung der Meßunsicherheiten

Der erste Schritt zur Angabe der Meßunsicherheit ist die Aufstellung eines physikalischen Modells der Auswertung, in dem der Zusammenhang \(f \) zwischen Eingangsgrößen \(X_i \) einer Messung und der gesuchten Meßgröße \(Y \) formuliert wird:

\[
Y = f(X_1, X_2, ..., X_n) . \tag{4.1}
\]

Der Zusammenhang \(f \) sollte analytisch angegeben werden, kann aber auch aus einer Gruppe von (verschachtelten) Funktionen bestehen, deren Ausformulierung in einem einzigen Zusammenhang analytisch nicht möglich wäre. Dieser Fall kommt beispielsweise bei dem Einfluß der radiometrischen Temperaturbestimmung auf die spektrale Bestrahlungsstärkekalibrierung vor. Ein Zusammenhang zwischen Eingangsgrößen und Meßgröße kann auch durch die experimentelle Überprüfung oder die numerische Berechnung aufgestellt werden. Eine derartige Umrechnung wird zum Beispiel nötig, wenn aus dem gemessenen Photostrom des Filterdetektors auf die Strahlertemperatur geschlossen werden soll.

Bei der Messung werden für die Eingangsgrößen lediglich Schätzwerte \(x_i \) verwendet, die unter demselben funktionalen Zusammenhang zum Schätzwert der gesuchten Meßgröße \(y \) führen:

\[
y = f(x_1, x_2, ..., x_n) . \tag{4.2}
\]

Den Schätzwerten \(x_i \) der Eingangsgrößen ist eine Meßunsicherheit \(u(x_i) \) beigeordnet. Bei der Angabe der Standardmeßunsicherheit unterscheidet man zwischen zwei Typen der Ermittlung. Man spricht von einer Typ A Ermittlungsmethode, wenn die Standardmeßunsicherheit durch statistische Analyse wiederholter Beobachtungen ermittelt wird. Der Schätzwert \(x_i \) bei \(n \) Beobachtungen \(b_j \) der Größe \(X_i \) ergibt sich als arithmetischer Mittelwert

\[
x_i = \frac{1}{n} \sum_{j=1}^{n} b_j , \tag{4.3}
\]

während sich aus der empirischen Varianz des Mittelwertes das Quadrat der beizuordnenden Standardmeßunsicherheit \(u(x_i) \) ergibt:

\[
u^2(x_i) = \frac{1}{n} \cdot \frac{1}{n-1} \sum_{j=1}^{n} (b_j - x_i)^2 . \tag{4.4}
\]

Schätzwerten \(x_i \), die nicht aus einer statistischen Beobachtung gewonnen wurden, werden nach der Typ B Ermittlungsmethode behandelt. Meßwert und beigeordnete Meßunsicherheit werden entsprechend der jeweiligen Kenntnis und Erfahrungen bestimmt. Ist beispielsweise aus einer vorangegangenen Kalibrierung einer Eingangsgröße \(X_i \) nur ein Wert \(x_i \) gegeben, dem eine Standardmeßunsicherheit \(u(x_i) \) beigeordnet wurde, so ist dieser zu verwenden. Kann für die Größe \(X_i \) aufgrund theoretischer oder empirischer Grundlagen eine Wahrscheinlichkeitsverteilung angenommen werden, so ergibt sich der Schätzwert \(x_i \) aus dem Erwartungswert und die Standardmeßunsicherheit \(u(x_i) \) als die Quadratwurzel der Varianz dieser Verteilung. Können beispiels-
4.2 Meßunsicherheiten und Vergleichsmessungen

weise für eine Größe \(X_i \) nur eine Obergrenze \(a_+ \) und eine Untergrenze \(a_- \) angegeben werden – zum Beispiel aufgrund von Herstellerangaben oder der Ablesbarkeit einer Skala – so wird diese geringe Kenntnis in dem durch die Grenzen eingeschränkten Intervall mit einer gleichverteilenden Rechteckverteilung berücksichtigt.

Der Schätzwert der Meßgröße ergibt sich dann in der Mitte des Intervalls

\[
x_i = \frac{1}{2} (a_+ + a_-)
\]

(4.5)

und das Quadrat der Meßunsicherheit für das Intervall der Länge \(2a = a_+ - a_- \) berechnet sich aus der Varianz:

\[
u^2(x_i) = \frac{1}{12} (a_+ - a_-)^2 = \frac{1}{3} a^2.
\]

(4.6)

Kann man aus näher zu spezifizierenden Gründen annehmen, daß die Meßwerte wahrscheinlicher in der Mitte des Intervalls zu finden sind als am Rand, so kann eine Dreieckverteilung oder sogar eine Normalverteilung eine bessere Beschreibung der Kenntnisse darstellen.

Aufgrund der unterschiedlichen Möglichkeiten sollte bei der Angabe von Typ B Meßunsicherheiten immer die zugrunde gelegte Annahme über die Verteilung der Meßwerte bei der Zusammenstellung der Eingangsdeterminante der Auswertung mit erwähnt werden [13].

Sind die Schätzwerte \(x_i \) und die ihnen beigeordneten Standardmeßunsicherheiten \(u(x_i) \) für alle Eingangsgrößen \(X_i \) festgelegt, muß der Schätzwert \(y \) der Ergebnisgröße \(Y \) bestimmt werden und die beizuerdende Standardmeßunsicherheit \(u(y) \) ermittelt werden. Für den Fall unkorrelierter Eingangsgrößen ergibt sich das Quadrat der Meßunsicherheit \(u(y) \) als Quadratsumme der Unsicherheitsbeiträge der Eingangsgrößen:

\[
u^2(y) = \sum_{i=1}^{n} u^2(x_i) = \sum_{i=1}^{n} c_i^2 u^2(x_i). \]

(4.7)

Der zu dem Eingangsschätzwert \(x_i \) gehörende Sensitivitätskoeffizient \(c_i \) beschreibt den Einfluß, der von Änderungen des Schätzwertes für die Eingangsgrößen auf den Schätzwert \(y \) der Ergebnisgröße ausgeht. Er berechnet sich aus der partiellen Ableitung der Modellfunktion \(f \) nach den Eingangsgrößen \(X_i \) an der Stelle der Eingangsschätzwerte \(x_i \) :

\[
c_i = \frac{\delta f}{\delta x_i} = \frac{\delta f}{\delta X_i} \bigg|_{X_i=x_1 \ldots X_n=x_n}. \]

(4.8)

Die Sensitivitätskoeffizienten können je nach der verwendeten Auswertungsvorschrift [13] mit Gleichung (4.7) direkt ermittelt werden, aus numerisch berechneten partiellen Ableitungen bestimmt werden oder aus den Änderungen des Schätzwertes \(y \) für Änderungen des Schätzwertes \(x_i \) um \(\pm u(x_i) \) und um \(-u(x_i) \) berechnet werden.

Sind zwei (oder mehr) Eingangsgrößen \(x_j \) und \(x_k \) untereinander korreliert, so ist die Kovarianz \(u(x_j, x_k) = u(x_j) \cdot u(x_k) \cdot r(x_j, x_k) \) als zusätzlicher Beitrag zur Meßunsicherheit zu berücksichtigen. Durch den Korrelationskoeffizienten \(r(x_j, x_k) \) mit \(|r| \leq 1 \) wird der Grad der Korrelation bestimmt. Insgesamt kann die Korrelation dabei auch negative Beiträge zur beizuerdenden Meßunsicherheit \(u(y) \) liefern.

Bei Kalibrierungen wird die erweiterte Meßunsicherheit \(U \) angegeben, indem die dem Schätzwert \(y \) der Ergebnisgröße \(Y \) beigeordnete Standardmeßunsicherheit \(u(y) \) mit dem Erweiterungsfaktor \(k \) multipliziert wird. Bei dem in der Praxis üblichen Erweiterungsfaktor \(k = 2 \) und einer normalverteilten Meßgröße entspricht \(y \pm U(y) \) dem Intervall mit einer Überdeckungswahrscheinlichkeit von 95 %. Mit der erweiterten Meßunsicherheit wird daher ein Wertebereich beschrieben, der einen großen Teil – meist 95 % – der Werte enthält, die unter den Bedingungen der Messung als verträgliche Werte der Meßgröße angegeben werden können. Ihre Angabe ist nur für die Ergebnisgröße sinnvoll und zulässig.
4.2.2 Meßunsicherheitsbeiträge beim Hochtemperatur-Hohlraumstrahler

Bevor die Meßunsicherheiten für die Temperaturmessung und die Realisierung der spektralen Bestrah lungsstärke berechnet werden, sollen die Beiträge des Schwarzen Strahlers zu den Meßunsicherheiten diskutiert werden. Bei dem Hochtemperatur-Hohlraumstrahler handelt es sich genau genommen nicht um einen idealen Schwarzen Strahler mit einem Emissionsgrad von exakt eins, sondern er besitzt einen effektiven Emissionsgrad kleiner als eins. Mit dem gefurchten Strahlerboden in der geänderten Position wurde mit Hilfe der Monte-Carlo-Methode ein (in erster Näherung spektral unabhängiger) effektiver Emissionsgrad von 0,99988 ± 0,00001 berechnet (siehe Tabelle 2.2). Die angegebenen Grenzen von ±10⁻⁴ rühren von den Berechnungsgrenzen des Simulationsprogrammes und der (minimalen) Variationsmöglichkeit der Eingabeparameter her. Bezogen auf den effektiven Emissionsgrad und im Rahmen der sich ergebenden Meßunsicherheiten für die Temperaturmessung (siehe Tabelle 4.1) und die Bestrahlungsstärkekalibrierung (siehe Tabelle 4.2) kann man den Hohlraumstrahler daher bedenkenlos als Schwarzen Strahler bezeichnen.

Die Temperaturstabilität bzw. Temperaturdrift des Strahlers liefert ebenfalls einen sehr geringen Beitrag zu den Meßunsicherheiten. Es wurde gezeigt, daß sich die Strahlertemperatur während einer Temperaturmessung oder einer spektralen Einzelmessung um weniger als 0,01 Kelvin ändert (2 min⁻¹ 0,2 K/h, siehe 2.2.2.3), der Strahler also innerhalb der Grenzen von ±0,01 Kelvin als temperaturstabil angesehen werden kann.

Stattdessen wird für die folgende empirische Abschätzung die gemessene Bestrahlungsstärkeverteilung in der Meßebene zugrunde gelegt. Um den Einfluß der Inhomogenität auf die Bestrahlungskernmessung zu beschreiben, wird daher im Folgenden ersetztweise von einem punktförmigen Strahler ausgegangen, der jedoch eine Richtungsvertei lung in der spezifischen Ausstrahlung besitzt. Diese Vereinfachung entspricht in etwa den Bedingungen, wie sie bei der Messung der Bestrahlungskernverteilung in (2.3.4) gegeben waren. Dadurch kann der Einfluß der (nach der Optimierung des Schwarzen Strahlers) verbleibenden Variation der Bestrahlungsstärke auf die Bestrahlungsstärkemessung abgeschätzt werden.

In der Meßebene der bestrahlten Fläche wurde mit den Breitband-Filterdetektoren die Änderung der Bestrahlungsstärke über der bestrahlten Fläche gemessen. Der Variation des Photostroms der Filterdetektoren kann eine (effektive radiometrische) Temperaturverteilung zugeordnet werden, die dann für jede Wellenlänge in die Variation der spektralen Bestrahlungsstärke umgerechnet werden kann. Eine derartige lineare (radialsymmetrische) Temperaturänderung $T_2(r_2)$ von der Mitte der bestrahlten Fläche zu ihrem Rand mit dem Radius R_2 ist durch die Beziehung

$$T_2(r_2) = T_{M,2} + \Delta T_2 \frac{r_2}{R_2}$$

gegeben, wobei $T_{M,2}$ der (Referenz-) Temperatur in der Mitte der bestrahlten Fläche entspricht (der Index 2 steht für bestrahlte Fläche, siehe 1.1.1). Mit dieser Temperaturverteilung variiert auch die spektrale Bestrahlungsstärke über der bestrahlten Fläche. Die Bewertung der spektralen Bestrahlungsstärke mit einem Spektroradiometer findet integral über die bestrahlte Fläche statt. Es wird daher eine über der Fläche gewichtete spektrale Bestrahlungsstärke $E_{\text{gew}}(\lambda, T_2(r_2))$ erfaßt, die sich aus dem Planckschen Strahlungsgesetz [2.18] der Temperaturverteilung nach Gleichung (4.9) berechnen läßt:

$$E_{\text{gew}}(\lambda, T_2(r_2)) = \frac{c_1}{d^2 \pi \lambda} \int_0^{R_2} 2 \pi r_2 dr_2 \exp\left(\frac{c_2}{\lambda \cdot (T_{M,2} + \Delta T_2 \frac{r_2}{R_2})}\right) - 1 \right) \cdot \exp\left(\frac{c_2}{\lambda \cdot (T_{M,2} + \Delta T_2 \frac{r_2}{R_2})}\right)$$. (4.10)
4.2 Meßunsicherheiten und Vergleichsmessungen

Bei der routinemäßigen spektralen Messung wird mit Breitband-Filterdetektoren nur die Temperatur $T_{M,2}$ in der Flächenmitte ($r_2 = 0$) bestimmt und für die Berechnung der spektralen Bestrahlungsstärke von einer homogenen bestrahlten Fläche mit der spektralen Bestrahlungsstärke $E(\lambda, T_{M,2})$ ausgegangen. Die mit dieser Annahme vernachlässigte Abweichung zwischen $E_{\text{gew}}(\lambda, T_2(r_2))$ und $E(\lambda, T_{M,2})$

$$\delta E(\lambda, T_{M,2}) = E_{\text{gew}}(\lambda, T_2(r_2)) - E(\lambda, T_{M,2})$$

(4.11)

stellt dann den Einfluß der Temperaturinhomogenität – bzw. der Variation der spektralen Bestrahlungsstärke über der bestrahlten Fläche – auf die Bestrahlungsstärkeberechnung dar. Diese für exakte Berechnungen notwendige Korrektur ist unabhängig vom Gesamtradius R_2 der bestrahlten Fläche und hängt nur von der Temperaturänderung ΔT_2 über der bestrahlten Fläche und der Wellenlänge der Bestrahlungsstärkeberechnung ab.

Abbildung 4.2 Abweichung der Bestrahlungsstärke bei Temperaturinhomogenität. Gegenüber der homogenen Bestrahlungsstärke bei der Strahltabelle $T_{M,2} = 3200$ Kelvin weicht die sich aus einer linearen Temperaturänderung ΔT_2 zum Rand der bestrahlten Fläche hin ergebende inhomogene Bestrahlungsstärke geringfügig ab.

Abbildung 4.2 verdeutlicht, daß bei kurzen Wellenlängen insbesondere unterhalb 300 nm der Einfluß der Temperaturinhomogenität eine entscheidende Rolle spielt. Die Berechnungen wurden für die Referenztemperatur $T_{M,2} = 3200$ K durchgeführt. Eine Temperaturänderung von $\Delta T_2 = 3$ K entspricht der Inhomogenität der Bestrahlungsstärke über dem Reflexionsstandard des Standardspektroradiometers vor der Optimierung des Schwarzen Strahlers. Bei dieser deutlichen Variation der spektralen Bestrahlungsstärke über der bestrahlten Fläche muß eine Korrektur für die Inhomogenität berücksichtigt werden. Nach den Verbesserungsmaßnahmen reduzierte sich die Temperaturänderung über der bestrahlten Fläche der Standardmeßapparatur auf etwa 0,3 Kelvin. Beim neuen Spektroradiometer ändert sich die Strahlungstemperatur über der Öffnung der Ulbricht-Kugel um weniger als $\Delta T_2 = 0,15$ K und führt damit zu Abweichungen gegenüber einer homogen angenommenen Bestrahlungsstärke von weniger als 0,07 %. Für diese Abweichungen müssen im Rahmen dieser Betrachtungen keine Korrekturen für die Inhomogenität durchgeführt werden. Die spektrale Bestrahlungsstärke über der bestrahlten Fläche kann innerhalb der Grenzen von ±0,04 % als homogen angesehen werden.

(oder vereinfachend der strahlenden Fläche des Strahlers) stammen. So hat sich bei der Messung der spezifischen Ausstrahlung gezeigt, daß die Strahltneueptur über der strahlenden Fläche leicht variiert (siehe [1.3.3]).

Nach den Verbesserungsmaßnahmen am Schwarzen Strahler ergab sich eine Temperaturänderung von etwa $\Delta T_1 = 5 \text{ K}$ über der gesamten strahlenden Fläche, während sich über der Strahlerfläche bei eingebauter Meßblende die Temperatur um $\Delta T_1 = 3 \text{ K}$ ändert (der Index 1 steht für strahlende Fläche, siehe [1.1.1]). Es kann im Folgenden gezeigt werden, daß derartige Temperaturänderungen in der spezifischen Ausstrahlung durch die Bestimmung der effektiven radiometrischen Strahltentemperaturen mit Hilfe der Breitband-Filterdetektoren für die Berechnung der spektralen Bestrahlungsstärke vernachlässigbar sind.

Die als punktförmig anzusehende bestrahlte Fläche (z.B. die als punktförmig angenommenen Breitband-Filterdetektoren) werde von dieser inhomogenen spezifischen Ausstrahlung bestrahlt. Mit den Breitband-Filterdetektoren wird dieser Form der Bestrahlung eine mittlere Strahltentemperatur $T_{\text{gew,1}} = T_3(r_2 = 0) = T_{M,2}$ zugeordnet. Die Variation der spezifischen Ausstrahlung der strahlenden Fläche wurde mit den Breitband-Filterdetektoren und einer sehr kleinen Blende in der Ebene der Strahleröffnung gemessen. Aus der Änderung des Photostromes der Filterdetektoren läßt sich auf die Änderung der Temperatur $T_1(r_1)$ über der strahlenden Fläche schließen. Die Temperaturverteilung der strahlenden Fläche kann ebenfalls näherungsweise als linear und radialsymmetrisch angesehen werden:

$$T_1(r_1) = T_{M,1} + \Delta T_1 \frac{r_1}{R_1}$$ \hfill (4.12)

mit der Temperatur $T_{M,1}$ im Zentrum der strahlenden Fläche mit dem Radius R_1.

Diese Verteilung wiederum bewirkt in erster Näherung bei der standardmäßigen Temperaturmessung durch die Breitband-Filterdetektoren (oder der Messung der Bestrahlungsstärkeverteilung der bestrahlten Fläche) die Zuordnung einer mittleren Strahltentempe-ratur $T_{\text{gew,1}}$:

$$T_{\text{gew,1}} = \frac{1}{2\pi R_1} \int_0^{R_1} T_1(r_1) \cdot 2\pi r_1 \, dr_1 = \frac{1}{2\pi R_1} \int_0^{R_1} \left(T_{M,1} + \Delta T_1 \frac{r_1}{R_1} \right) \cdot 2\pi r_1 \, dr_1 = T_{M,1} + \frac{2}{3} \Delta T_1.$$ \hfill (4.13)

Abbildung 4.3 Einfluß der spezifischen Ausstrahlung auf die resultierende Bestrahlungsstärke.

Die beobachtete Temperaturvariation ΔT_1 der spezifischen Ausstrahlung $M_{\text{gew}}(\lambda, T_1(r_1))$ über der Strahlerfläche hat durch die Bestimmung der effektiven radiometrischen Strahltentemperatur $T_{\text{gew,1}}$ mit den Breitband-Filterdetektoren einen vernachlässigbaren Einfluß auf die Berechnung der spektralen Bestrahlungsstärke.
4.2 Meßunsicherheiten und Vergleichsmessungen

Die Annahme, daß die Bestrahlungsstärke über einem bestrahlten Flächenelement von einer homogenen spezifischen Ausstrahlung \(M(\lambda, T_{\text{gew},1}) \) der Strahlertemperatur \(T_{\text{gew},1} \) herrührt, weicht nur sehr gering von der genau berechneten gewichteten spezifischen Ausstrahlung \(M_{\text{gew}}(\lambda, T_{1(r)}) \) der gesamten strahlenden Fläche ab, die analog zu Gleichung (4.10) berechnet wird:

\[
M_{\text{gew}}(\lambda, T_{1(r)}) = \frac{c_1}{d^2 \pi^5} \int_0^{R_1} \frac{2 \pi r_1 \, dr_1}{\lambda \cdot (T_{1(r)} + \Delta T_{r})} \cdot 1 . \tag{4.14}
\]

Die zu vernachlässigende Abweichung

\[
\frac{\delta M(\lambda, T_{\text{gew},1})}{M(\lambda, T_{\text{gew},1})} = \frac{M_{\text{gew}}(\lambda, T_{1(r)})}{M(\lambda, T_{\text{gew},1})} \cdot 1 , \tag{4.15}
\]

die für Temperaturänderungen unter 9 Kelvin kleiner als 0,01 % wird, ist in Abbildung 4.3 dargestellt. Die Temperaturänderung der spezifischen Ausstrahlung über der strahlenden Fläche der Meßblende hat demnach mit einer Unsicherheit kleiner als 0,003 % eine vernachlässigbare Auswirkung auf die Temperaturmessung mit Breitband-Filterdetektoren bzw. die spektrale Bestrahlungsstärke.

4.2.3 Meßunsicherheit der Temperaturbestimmung mit Filterdetektoren

Die theoretische Meßgleichung für die Bestimmung der radiometrischen Temperatur eines Schwarzen Strahlers mit Breitband-Filterdetektoren ist in Gleichung (3.9) gegeben. Für die praktische Durchführung der Messung ist diese Gleichung um den effektiven Emissionsgrad \(\varepsilon \) des Hohlraumstrahlers zu erweitern und mit dem Verstärkungsfaktor \(V_{\text{fl}} \) zu versehen, da die über einem Strom-Spannungswandler abfallende Meßspannung ausgewertet wird. Für die Berechnung der Meßunsicherheit ist es sinnvoll, die spektrale Empfindlichkeit der Filterdetektoren nach (3.12) zu verwenden, faktorisiert in die absolute spektrale Empfindlichkeit \(s_{\text{abs}} \) bei der Wellenlänge \(\lambda_0 \) und die relative spektrale Empfindlichkeit \(s_{\text{rel}}(\lambda) \) mit der Normierung \(s_{\text{ref}}(\lambda_0) = 1 \). Dann ergibt sich als Modellgleichung für die Bestimmung der Strahlertemperatur mit Breitband-Filterdetektoren:

\[
U_{\text{FD}}(T_{\text{BB}}) = \varepsilon \cdot (V_{\text{fl}} + \delta V_{\text{fl}}) \cdot \cos \varepsilon_1 \cdot \cos \varepsilon_2 \cdot \frac{A_{\text{BB}}}{d_{\text{fl}}} \cdot (s_{\text{abs}} + \delta s_{\text{abs}}) \int s_{\text{ref}}(\lambda) \cdot \frac{1}{\pi \lambda} \cdot \exp \left\{ \frac{c_2}{\lambda} \cdot (\lambda - T_{\text{BB}}) \right\} d\lambda . \tag{4.16}
\]

Mit den Größen \(\delta V_{\text{fl}}, \delta A_{\text{BB}} \) und \(\delta s_{\text{abs}} \) werden die unbekannten Änderungen des Verstärkungsfaktors \(V_{\text{fl}} \), der Strahlerfläche \(A_{\text{BB}} \) und der spektralen Empfindlichkeit \(s_{\text{abs}} \) seit der letzten Kalibrierung berücksichtigt. Gleichung (4.16) läßt sich nicht nach der gesuchten Größe Strahlertemperatur \(T_{\text{BB}} \) auflösen. Die Unsicherheit für die Temperaturmessung läßt sich jedoch direkt aus der resultierenden Unsicherheit der Spannungsmessung berechnen, die sich aus den Unsicherheitsbeiträgen der einzelnen Eingangsgrößen ergibt. Für die Herleitung zur Berechnung der Meßunsicherheit für die Spannungsmessung werden die Terme in Gleichung (4.16) zu den entscheidenden Grundbestandteilen zusammengefaßt:

\[
U_{\text{FD}}(T_{\text{BB}}) = \kappa \int s_{\text{ref}}(\lambda) \cdot L_\lambda(\lambda, T_{\text{BB}}) \, d\lambda , \tag{4.17}
\]

mit dem Konvertierungsfaktor \(\kappa \) und der spektralen Strahldichte \(L_\lambda \) des Schwarzen Strahlers. Die relative spektrale Empfindlichkeit \(s_{\text{rel}}(\lambda) \) wird während der Kalibrierung nur bei diskreten Wellenlängen \(\lambda_j \) bestimmt, so daß die Integration in Gleichung (4.17) durch eine numerische Integration (z. B. nach der Trapez- oder der Simpson-Regel) erfolgt.
Die Meßgleichung (4.17) ändert sich dann in eine Aufsummierung

$$U_{FD}(T_{BB}) = \kappa \sum_{j=1}^{N} s_j \cdot L_\lambda(\lambda_j, T_{BB}) \cdot p_j$$ \hspace{1cm} (4.18)

mit $s_{rel}(\lambda_j) = s_j$ und den Summierungsfaktoren p_j, die sich aus den Schrittweiten $\delta \lambda_j$ und den Gewichtsfaktoren des verwendeten numerischen Integrationsverfahrens ergeben. Bei einfacher Summation gilt beispielsweise $p_1 = p_N = \frac{1}{2} \cdot \delta \lambda_j$.

Damit läßt sich der Einfluß einer Änderung der Eingangsgrößen auf die Änderung der SpannungsMESSung $\Delta U(T_{BB})$ angeben:

$$\Delta U(T_{BB}) = \frac{\Delta \kappa}{\kappa} U(T_{BB}) + \kappa \sum_{j=1}^{N} \Delta s_j \cdot L_\lambda(\lambda_j, T_{BB}) \cdot p_j + \Delta T_{BB} \cdot \kappa \sum_{j=1}^{N} \frac{\delta L_\lambda(\lambda_j, T_{BB})}{\delta T_{BB}} \cdot \frac{p_j}{s_j \cdot \delta T_{BB}}$$ \hspace{1cm} (4.19)

Diese Gleichung hat die Struktur

$$\Delta U(T_{BB}) = \Delta \kappa \cdot c_\kappa + \sum_{j=1}^{N} c_j \cdot \Delta s_j + c_T \cdot \Delta T_{BB}$$ \hspace{1cm} (4.20)

mit den Sensitivitätskoeffizienten

$$c_\kappa = \frac{U(T_{BB})}{\kappa}$$

$$c_j = \kappa \cdot L_\lambda(\lambda_j, T_{BB}) \cdot p_j$$ \hspace{1cm} (4.21)

$$c_T = \frac{\kappa \sum_{j=1}^{N} s_j \cdot \frac{\delta L_\lambda(\lambda_j, T_{BB})}{\delta T_{BB}}}{\lambda_j \cdot T_{mn}} \cdot \frac{\delta U(T_{BB})}{\delta T_{BB}} \cdot \frac{p_j}{s_j \cdot \delta T_{BB}}$$

Daraus ergibt sich die Standardmeßunsicherheit der Temperaturbestimmung zu:

$$u^2(T_{BB}) = \frac{1}{c_T^2} \left(u^2(U) + c_\kappa^2 \cdot u^2(\kappa) + \sum_{j=1}^{N} c_j^2 \cdot u^2(s_j) \right)$$ \hspace{1cm} (4.22)

Diese Gleichung läßt sich für spätere Berechnungen weiter umformen, indem man die relative Meßunsicherheit der Spannungsmessung und des Konvertierungsfaktors κ verwendet:

$$u(T_{BB}) = \frac{U}{c_T} \sqrt{w^2(U) + e_{\kappa}^2 \cdot w^2(\kappa) + \frac{1}{U^2} \sum_{j=1}^{N} c_j^2 \cdot u^2(s_j)}$$ \hspace{1cm} (4.23)
4.2 Meßunsicherheiten und Vergleichsmessungen

Der Umrechnungsfaktor für die Meßunsicherheit der Temperaturmessung U/c_T entspricht dem Kehrwert des Temperaturkoeffizienten τ, der in 3.1.3 mit Gleichung (3.6) eingeführt wurde:

$$\tau = \frac{\delta U}{\delta T_{BB}} \cdot \frac{1}{U} = c_T \cdot \frac{1}{U}. \quad (4.24)$$

Der Wert der Standardmeßunsicherheit, der der relativen spektralen Empfindlichkeit $s_{rel}(\lambda)$ beigeordnet ist, ist in der Summe von der Strahlertemperatur T_{BB} abhängig, da die Sensivitätskoeffizienten c_j die spektrale Strahlldichte $L_{\lambda}(\lambda, T_{BB})$ beinhalten. Für die Standardmeßunsicherheiten $u(s_j)$ der Relativmessung, die im Hauptempfindlichkeitsbereich der Filterdetektoren kleiner als 0,2 % des jeweiligen Wertes s_j werden, ist die sich in der Summe ergebende Standardmeßunsicherheit der Temperaturmessung (dritter Term in Gleichung (4.23)) eher gering. In Abbildung 4.4 wird gezeigt, daß der Unsicherheitsbeitrag der Summe über alle $u(s_j)$ bei Strahltemperaturen unterhalb 3400 K kleiner als 0,06 Kelvin ist. Die Meßunsicherheitsbeiträge anderer Eingangsgrößen sind teilweise um mehr als eine Größenordnung höher.

Abbildung 4.4 Unsicherheitsbeitrag der relativen spektralen Empfindlichkeit von FD6. Die typischen Meßunsicherheiten der Relativkalibrierung $u(s_j)$ tragen aufsummiert nur in geringem Maße zur Temperaturmeßunsicherheit bei (mit $w(s_j) \leq 0,2 \%$).

4.2.3.1 Meßunsicherheiten die den Werten der Eingangsgrößen beigeordnet werden

Die den Werten der Eingangsgrößen beigeordneten Meßunsicherheiten werden größtenteils nach der Typ B Ermittlungsmethode gewonnen, da sie aus Kalibrierungen zu entnehmen sind oder von der Ablesegenauigkeit der Instrumente herrühren. Ein bedeutender Anteil der Eingangsgrößen ist im Konvertierungsfaktor κ zusammengefaßt:

$$\kappa = \varepsilon \cdot (V_{a1} + \delta V_{a1}) \cdot \cos \varepsilon_1 \cdot \cos \varepsilon_2 \cdot \frac{4A_{BB} + \delta A_{BB}}{d_{FD}} \cdot (s_{abs} + \delta s_{abs}). \quad (4.25)$$

Das Quadrat der relativen Standardmeßunsicherheit des Konvertierungsfaktors entspricht dann der Quadratsumme der relativen Meßunsicherheiten der Eingangsgrößen

$$w^2(\kappa) = w^2(\varepsilon) + \frac{u^2(V_{a1}) + u^2(\delta V_{a1})}{(V_{a1} + \delta V_{a1})^2} + w^2(\cos \varepsilon_1) + w^2(\cos \varepsilon_2)$$

$$+ \frac{u^2(A_{BB}) + u^2(\delta A_{BB})}{(A_{BB} + \delta A_{BB})^2} + 4 \cdot w^2(d_{FD}) + \frac{u^2(s_{abs}) + u^2(\delta s_{abs})}{(s_{abs} + \delta s_{abs})^2}, \quad (4.26)$$

deren repräsentative bzw. erreichte (und teilweise noch erreichbaren) Beiträge im Folgenden diskutiert werden sollen.
Emissionsgrad ε des Schwarzen Strahlers: Der Emissionsgrad ε liegt rechnerisch mit einer relativen Abweichung innerhalb $\pm 0,01 \%$ bei eins (siehe 4.2.2).

Verstärkungsfaktor V_{IU} des Strom-Spannungswandlers: Der Verstärkungsfaktor beträgt $10^3 \, \text{V} / \text{A}$ und wurde mit einer Meßunsicherheit von $0,1 \, \text{V} / \text{A}$ kalibriert. Die Drift δV_{IU} einschließlich auftretender Änderungen der Umgebungsbedingungen wird aus früheren Kalibrierungen mit Abweichungen kleiner als $\pm 3 \times 10^{-5}$ zu Null abgeschätzt.

Winkeleinstellungen $\cos \varepsilon_1$ des Strahlers und $\cos \varepsilon_2$ des Empfängers: Empfänger und Strahler werden senkrecht zueinander ausgerichtet, d.h. $\cos \varepsilon_1 = \cos \varepsilon_2 = 1$. Da die Abweichungen von der idealen Einstellung innerhalb der Grenzen $\pm 1^\circ$ liegen, ergibt sich eine relative Unsicherheit kleiner als $1,5 \times 10^{-4}$.

Strahlerfläche A_{BB}: Der mittlere Durchmesser der Meßblende des Schwarzen Strahlers wurde im Fachlab. 5.31 "Maß und Form" mit der in 2.1.4.2 beschriebenen Methode kalibriert. Einschließlich der Rundheitsabweichungen wird die Standardmeßunsicherheit für diesen Durchmesser mit $1 \, \mu \text{m}$ abgegeben. Bei dem gemessenen Durchmesser von 7,055 mm ergibt sich eine Blendenfläche von $39,096 \, \text{mm}^2 \pm 0,011 \, \text{mm}^2$. Vergleichsmessungen mit der Methode der direkten optischen Ausmessung nach 2.1.4.2 d an der Technischen Universität Helsinki (HUT) haben im Rahmen einer vergleichbaren Meßunsicherheit von $0,016 \, \text{mm}^2$ zu übereinstimmenden Meßergebnissen geführt. Die Fläche des Blinds hat sich nach eigenen Nachmessungen innerhalb der Grenzen von $\pm 0,05 \%$ nicht geändert. Es empfiehlt sich eine Neukalibrierung der Meßblende, um die Unsicherheit der Blendenflut δA_{BB} weiter verringern zu können. Mit der in der PTB durchgeführten Methode ist eine Bestimmung des effektiven Durchmessers einer entsprechend hergestellten Meßblende mit einer Meßunsicherheit von $0,03 \, \mu \text{m}$ möglich (entsprechend $\approx 10^{-4}$ der Blendenfläche) [61].

Abstand d_{FB} zwischen Strahler und Empfänger: Der Einbau der Blenden für die Filterdetektoren und den Schwarzen Strahler in thermostatisierte Gehäuse erlaubt keine direkte Anmessung des Abstandes der Blendenflächen. Mit zwei zusätzlichen Hilfsmessungen wird der Abstand der Meßblenden zur Gehäuseaußenfläche bestimmt. Die Ablesungen der einzelnen Abstände liegen jeweils innerhalb von $\pm 0,05 \, \text{mm}$. Die resultierende Standardmeßunsicherheit für die Abstands messung beträgt daher $0,05 \, \text{mm}$ bei einem Meßabstand von 500 mm.

Absolutempfindlichkeit s_{abs} der Breitband-Filterdetektoren: Die Absolutempfindlichkeit der Filterdetektoren wurde mit einer Standardmeßunsicherheit von $0,25 \%$ angegeben. Der Detektor FD6 hat bei 546,1 nm eine Absolutempfindlichkeit von $7,07 \times 10^{-6} \, \text{A m}^2 \, \text{W}^{-1}$. Die Drift zwischen zwei Kalibrierungen wird mit weniger als $\pm 0,02 \times 10^{-6} \, \text{A m}^2 \, \text{W}^{-1}$ abgeschätzt. Die Standardmeßunsicherheit aufgrund der Drift muß daher mit mindestens $0,006 \times 10^{-6} \, \text{A m}^2 \, \text{W}^{-1}$ (0,08 %) angegeben werden. Der Unsicherheitsbeitrag der Absolutempfindlichkeit und der damit verbundene Beitrag der Empfindlichkeitsdrift bilden den größten Anteil zur Meßunsicherheit der Temperaturbestimmung.

Spannungsmessung U mit einem Digitalmultimeter: Bei der Spannungsmessung wurde der Meßbereich 10 Volt gewählt und Spannungen bis zu 5 Volt gemessen. Die Standardmeßunsicherheit der Anzeige des Multimeters Keithley 2010 beträgt nach Herstellerangaben $1 \, \mu \text{V}$. Die Drift δU in zwei Jahren (seit Inbetriebnahme des Gerätes) wird innerhalb der Grenzen von weniger als $\pm 0,1 \, \text{mV}$ zu Null abgeschätzt, daß entspricht einer Standardmeßunsicherheit der Drift von $0,058 \, \text{mV}$.

4.2.3.2 Meßunsicherheit der Strahlertemperatur T_{BB}
Die Unsicherheitskomponenten und die der Strahlertemperatur beizulegende Standardmeßunsicher heit für die Temperaturmessung sind in Tabelle 4.1 zusammengefaßt. Hierbei wurden Meßwerte für den Detektor FD6 verwendet, die sich bei der Messung einer Strahlertemperatur von 3200 K ergeben. Da mit Ausnahme des Meßabstandes für die Berechnung mit den relativen Meßunsicherheiten $w(x)$ die relativen Sensitivitätskoeffizienten $e_i = 1 / \tau$ betragen (für den Meßabstand gilt $e_i(d_{FB}) = 2 \cdot 1 / \tau$), werden diese nicht angegeben.
4.2 Meßunsicherheiten und Vergleichsmessungen

Für die Größen X_i mit Drift δX_i, die summiert werden müssen, wird in Anlehnung an Gleichung (4.26) verwendet. Der Unsicherheitsbeitrag für die Temperaturmessung wird aus

$$ u_i(y) = u_i(T_{BB}) = e_i \cdot w(x_i) \quad (4.28) $$

berechnet. Für den Unsicherheitsbeitrag der Relativmessung s_{rel} für die Temperaturmessung, wird der Wert $u_{s_{rel}}(T_{BB}) = 0,052$ Kelvin verwendet, wie er sich aus Abbildung 4.4 bei 3200 Kelvin (an der gestrichelten Linie) ergibt.

An den aufgelisteten Unsicherheitsbeiträgen der Eingangsgrößen in Tabelle 4.1 ist deutlich zu erkennen, daß der Unsicherheitsbeitrag der Absolutkalibrierung s_{abs} und die damit verbundene Meßunsicherheit der Drift der Empfindlichkeit δs_{abs} den entscheidenden Anteil liefern. Wird die relative Standardmeßunsicherheit $w(s_{abs})$ der Absolutkalibrierung auf 0,05 % gesenkt (was möglich ist), kann eine Standardmeßunsicherheit der Temperaturmessung von 0,27 Kelvin für die Messung mit dem Breitband-Filterdetektor FD6 angegeben werden.

<table>
<thead>
<tr>
<th>Größe X_i</th>
<th>Schätzwert x_i</th>
<th>Standardmeßunsicherheit $u(x_i)$</th>
<th>Verteilung</th>
<th>Rel. Meßunsicherheit $w(x_i)$</th>
<th>Unsicherheitsbeitrag $u_i(y)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>ε</td>
<td>0,99988</td>
<td>10^{-4}</td>
<td>Normal</td>
<td>0,0001</td>
<td>0,04 K</td>
</tr>
<tr>
<td>V_{fl}</td>
<td>10^4 V / A</td>
<td>0,1 V / A</td>
<td>Normal</td>
<td>0,00001</td>
<td>0,004 K</td>
</tr>
<tr>
<td>δV_{fl}</td>
<td>0 V / A</td>
<td>0,3 V / A</td>
<td>Rechteck</td>
<td>0,00002</td>
<td>0,007 K</td>
</tr>
<tr>
<td>$\cos \varepsilon_1$</td>
<td>1</td>
<td>1,54·10^{-4}</td>
<td>Normal</td>
<td>0,0002</td>
<td>0,06 K</td>
</tr>
<tr>
<td>$\cos \varepsilon_2$</td>
<td>1</td>
<td>1,54·10^{-4}</td>
<td>Normal</td>
<td>0,0002</td>
<td>0,06 K</td>
</tr>
<tr>
<td>A_{BB}</td>
<td>39,096 mm²</td>
<td>0,011 mm²</td>
<td>Normal</td>
<td>0,0003</td>
<td>0,11 K</td>
</tr>
<tr>
<td>δA_{BB}</td>
<td>0 mm²</td>
<td>0,011 mm²</td>
<td>Rechteck</td>
<td>0,0003</td>
<td>0,11 K</td>
</tr>
<tr>
<td>d_{FD}</td>
<td>500 mm</td>
<td>0,05 mm</td>
<td>Rechteck</td>
<td>0,0002</td>
<td>0,08 K</td>
</tr>
<tr>
<td>s_{abs}</td>
<td>7,07·10^{-6} Am²W⁻¹</td>
<td>1,8·10^{-8} Am²W⁻¹</td>
<td>Normal</td>
<td>0,0025</td>
<td>0,95 K</td>
</tr>
<tr>
<td>δs_{abs}</td>
<td>0 Am²W⁻¹</td>
<td>5,7·10^{-9} Am²W⁻¹</td>
<td>Rechteck</td>
<td>0,0008</td>
<td>0,3 K</td>
</tr>
<tr>
<td>U</td>
<td>1,108753 V</td>
<td>0,000001 V</td>
<td>Normal</td>
<td>0,000001</td>
<td>0,0004 K</td>
</tr>
<tr>
<td>δU</td>
<td>0 V</td>
<td>0,00058 V</td>
<td>Rechteck</td>
<td>0,00005</td>
<td>0,02 K</td>
</tr>
<tr>
<td>s_{rel}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0,05 K</td>
</tr>
<tr>
<td>T_{BB}</td>
<td>3200 K</td>
<td></td>
<td></td>
<td></td>
<td>1,02 K</td>
</tr>
</tbody>
</table>

Tabelle 4.1 Standardmeßunsicherheit für die Temperaturmessung mit Breitband-Filterdetektoren.

Wenn außerdem den Möglichkeiten entsprechend die Meßunsicherheit der Abstands messung halbiert, die senkrechte Ausrichtung von Strahler und Empfänger in den Grenzen von $\pm 0,5^\circ$ erfolgt und die Strahlerfläche mit einer relativen Meßunsicherheit $< 10^4$ bestimmt wird, reduziert sich die Standardmeßunsicherheit der Temperaturmessung mit Breitband-Filterdetektoren auf 0,2 Kelvin. Die erweiterte Meßunsicherheit der Temperaturmessung wird mit dem Erweiterungsfaktor $k = 2$ multipliziert, damit eine Überdeckungswahrscheinlichkeit von 95 % für die Messung der Strahlertemperatur erreicht wird. Die Strahlertemperatur wird damit für das oben berechnete Beispiel der bisher erreichten Meßunsicherheiten mit 3200 K ± 2 K angegeben.
Die relativen Standardmeßunsicherheiten \(w(x) \) anderer Filterdetektoren unterscheiden sich nur unwesentlich von den Angaben für FD6 (da die geometrischen Bedingungen identisch sind und die relative Standardmeßunsicherheit der Absolutempfindlichkeit für alle Detektoren mit 0,25 % angegeben wird). Allerdings ergeben sich leicht unterschiedliche Temperaturkoeffizienten \(\tau \) für die Photostromverläufe, so daß die beigeordnete Meßunsicherheit der Temperaturmessung zwischen den Filterdetektoren gering variiert. In Abbildung 4.5 sind die um \(k = 2 \) erweiterten Meßunsicherheiten der verwendeten Breitband-Filterdetektoren für einen großen Bereich der Strahlertemperaturen aufgetragen. Sie bestätigen die Übereinstimmung, die bei dem Vergleich von Temperaturmessungen untereinander mit den Filterdetektoren erreicht wurde (Abbildung 3.15 in 3.2.7). Damit erreicht die abbildungsfreie radiometrische Methode der Temperaturbestimmung mit Breitband-Filterdetektoren bereits mit dem jetzigen Stand eine deutlich geringere Meßunsicherheit, als sie mit Pyrometern erreicht werden konnte (erweiterte Meßunsicherheit \(k = 2 \) 1,4 Kelvin bei 2000 Kelvin nach [48] und 3,4 Kelvin bei 3000 Kelvin extrapoliert [105]).

Abbildung 4.5 Erweiterte Standardmeßunsicherheit \((k = 2) \) für die Temperaturbestimmung.
Die Meßunsicherheit ändert sich für verschiedene Filterdetektoren geringfügig, da sie leicht unterschiedliche Temperaturkoeffizienten \(\tau \) besitzen.

4.2.4 Meßunsicherheit der Strahlerkalibrierung mit dem Laser

Die Vermessung der sehr schmalen und zum Teil asymmetrischen Spaltfunktion des Monochromators bewirken in grober Näherung eine Meßunsicherheit für die Gesamtvermessung von 0,15 %. Der Einfluß der aufgrund der Kohärenz des Lasers auftretenden Interferenzerscheinungen auf die Vermessung der Spaltfunktionen und die Vergleichsmessungen zum Schwarzen Strahler kann zu
4.2 Meßunsicherheiten und Vergleichsmessungen

diesem Zeitpunkt nicht exakt quantisiert werden. Nähere Aufschlüsse darüber soll die in 3.3.1.5 beschriebene Methode des bewegten Diffusors geben. Der Beitrag zur Meßunsicherheit der Bestrahlungsstärkekaliibrierung kann aber bereits jetzt zu kleiner als 0,3 % abgeschätzt werden.

Insgesamt ergibt sich mit dieser Überschlagsrechnung eine erweiterte Meßunsicherheit \((k = 2)\) der spektralen Bestrahlungsstärke bei 632,8 nm von etwa 0,8 %. Die entspricht bei einer Strahltemperatur von 3200 Kelvin einer erweiterten Standardmeßunsicherheit für die Bestimmung der radiometrischen Temperatur von etwa 6 Kelvin. Die beobachteten Abweichungen zur Temperaturbestimmung mit Breitband-Filterdetektoren liegen deutlich innerhalb dieser Grenzen, was die Durchführbarkeit dieser neuen Meßmethode bestätigt. Die unabhängige lasergestützte Methode kann daher nach einigen Verbesserungen am Spektroradiometer, der Ulbricht-Kugel und der Laserstabilisierung als sinnvolle Ergänzung zur Messung der Strahltemperatur mit Breitband-Filterdetektoren verwendet werden.

4.2.5 Internationale Vergleichsmessungen der radiometrischen Temperaturbestimmung

4.2.5.1 Messungen am Schwarzen Strahler beim VNIIOFI in Moskau

Teil 4 Übersicht über Erfahrungen, Verbesserungen, Meßunsicherheiten

[Abbildung 4.6] Temperaturvergleiche bei Messungen am VNIIOFI in Moskau.
Drei verschiedene Meßmethoden wurden verglichen. Im Bereich oberhalb 2500 Kelvin stimmen die Temperaturmessungen im Rahmen der erweiterten Meßunsicherheit überein (Balken mit k = 2).

Insgesamt liefern die unterschiedlichen Methoden der drei metrologischen Staatsinstitute gut übereinstimmende Werte für die Strahlertemperaturen der Schwarzen Strahler und bestätigen damit die Gleichwertigkeit dieser verschiedenen empfängergestützten Absolutmeßverfahren.

4.2.6 Die erweiterte Meßunsicherheit der Darstellung der spektralen Bestrahlungsstärke
Mit dem Schwarzen Strahler als Primärnormal kann die spektrale Bestrahlungsstärke dargestellt werden. Die Darstellung der Bestrahlungsstärke ist eine Berechnung basierend auf dem Planckschen Strahlungsgesetz (2.18), die aufgrund der Eigenschaften des Schwarzen Strahlers und der Messung der Strahlertemperatur mit einer bestimmmbaren Unsicherheit durchgeführt wird.
Die Modellgleichung für die Berechnung der spektralen Bestrahlungsstärke lautet

\[E(\lambda, T_{BB}) = \varepsilon \cdot \cos \varepsilon_{diff} \cdot \cos \varepsilon_{diff} \cdot \frac{A_{diff} + \delta A_{diff} \cdot \frac{d_{diff}}{d_{diff}^2}}{\pi \lambda^2} \cdot \frac{1}{\exp \left(\frac{c_2}{\lambda T_{BB}}\right)} + \delta E(\lambda, T), \quad (4.29) \]

wobei \(\delta E(\lambda, T) \) den Einfluß der Inhomogenität innerhalb der bestrahlten Fläche berücksichtigt (siehe \[4.2.2\]). Die Winkel \(\varepsilon_{diff} \) und \(\varepsilon_{diff} \) sind die Winkel, unter denen Strahlerfläche und bestrahlte Fläche (z.B. ein Diffusor vor dem Spektroradiometer) gegen die optische Achse verkannt sind. Diese Achse ist die zentrale Verbindung mit dem Abstand \(d_{diff} \) zwischen Strahler und bestrahlter Fläche und kann sich durch Fehljustierung von der optischen Achse bei der Temperaturmessung unterscheiden. Die Winkel und Abstände sind daher nicht zur radiometrischen Temperaturmessung korreliert. Für den Emissionsgrad \(\varepsilon \), die Strahlerfläche \(A_{BB} \) und ihre Drift \(\delta A_{BB} \) besteht allerdings eine Korrelation zwischen Temperaturmessung und Berechnung der Bestrahlungsstärke. Wird beispielsweise bei der Temperaturbestimmung die Strahlerfläche als zu groß angenommen, wird dem Strahler eine zu kleine Temperatur zugewiesen, die zu einer kleineren spektralen Bestrahlungsstärke führt. Im Gegensatz dazu führt die zu große Strahlerfläche zu einer größeren spektralen Bestrahlungsstärke. Ob die Bestrahlungsstärke nun insgesamt vergrößert oder verkleinert wird, ist spektral abhängig.

Diese Korrelation zwischen Temperaturmessung und Bestrahlungsstärkekalibrierung muß bei der Bestimmung der Meßunsicherheit berücksichtigt werden. Die Berechnung der resultierenden Meßunsicherheiten der anderen Eingangsgrößen kann direkt durch die partiellen Ableitungen erfolgen und die Sensitivitätskoeffizienten lauten:

\[
c_{\cos \varepsilon_{diff}} = \frac{E(\lambda, T_{BB})}{\cos \varepsilon_{diff}} \quad c_{\cos \varepsilon_{diff}} = \frac{E(\lambda, T_{BB})}{\cos \varepsilon_{diff}} \quad c_{d_{diff}} = -2 \cdot \frac{E(\lambda, T_{BB})}{d_{diff}}
\]

\[c_{T_{BB}} = \frac{c_2}{\lambda T_{BB}} \cdot \left(1 + \frac{1}{\exp \left(\frac{c_2}{\lambda T_{BB}}\right)} \right) \cdot \frac{E(\lambda, T_{BB})}{T_{BB}} \]

\[c_{\lambda} = \left(\frac{c_2}{\lambda T_{BB}} \cdot \left(1 + \frac{1}{\exp \left(\frac{c_2}{\lambda T_{BB}}\right)} \right) - 5 \right) \cdot \frac{E(\lambda, T_{BB})}{\lambda} \]

Die spektrale Bestrahlungsstärke wird jeweils für eine angegebene Wellenlänge – mit der an dieser Wellenlänge bestimmten Strahler temperatur \(T_{BB} \) – berechnet. Daher verschwindet die Unsicherheit \(u(\lambda) \) der Wellenlänge für die Darstellung der spektralen Bestrahlungsstärke. Die Meßunsicherheit der Wellenlänge tritt erst bei der Übertragung der Skala auf andere Strahler mit Hilfe eines Spektroradiometers auf.

Der Sensitivitätskoeffizient bzw. die beizudordnende Meßunsicherheit für die Strahlerfläche \(A_{BB} \) und den effektiven Emissionsgrad \(\varepsilon \) muß durch eine numerische partielle Ableitung berechnet werden. Der Einfluß dieser Eingangsgrößen wirkt sich sowohl auf die Temperaturbestimmung als auch auf die Bestrahlungsstärkekombination aus. Am Beispiel der Strahlerfläche sei diese Berechnung verdeutlicht: Die Sensitivitätskoeffizient für die Einganggröße \(A_{BB} \) berechnet sich nach \[14\] zu

\[c_{A_{BB}} = \frac{E(\lambda, T_{BB}(A_{BB}+u(A_{BB}))) A_{BB}+u(A_{BB})) - E(\lambda, T_{BB}(A_{BB}-u(A_{BB}))) A_{BB}-u(A_{BB}))}{2 u(A_{BB})}. \]

Er kann positiv und negativ sein und berücksichtigt sowohl den korrellierten als auch den unkorrelierten Einfluß der Meßunsicherheit der Strahlerfläche \(u(A_{BB}) \) auf die beigeordnete Standardmeflungsicherheit der spektralen Bestrahlungsstärke. Die resultierende Unsicherheit \(w_{corr} \) der spektralen Bestrahlungsstärke für diese Eingangsgroßen ist spektral abhängig.

In Abbildung 4.7 wird deutlich, daß sie ein Minimum nahe der Schwerpunktwellenlänge der spektralen Empfindlichkeit des benutzten Breitband-Filterdetektors besitzt. An dieser Stelle heben sich der Einfluß von verkleinerter Strahler temperatur und vergrößerter Bestrahlungsaus. In der Berechnung für eine Strahler temperatur von 3200 Kelvin gemessen mit FD6 (Schwerpunktwellenlänge 515 nm, siehe Tabelle 2.1) verschwindet der Unsicherheitsbeitrag für die spektrale Bestrahlungsstärke bei allen Eingangsgrößen um 534 nm.
Teil 4 Übersicht über Erfahrungen, Verbesserungen, Meßunsicherheiten

Abbildung 4.7 Unsicherheitsbeiträge w_{korr} der korrelierten Eingangsgrößen A_{BB}, δA_{BB} und ε für die Meßunsicherheit der spektralen Bestrahlungsstärke. Die Korrelation wurde für eine Strahlertemperatur von 3200 Kelvin und die Temperaturbestimmung mit FD6 berechnet.

Die Beiträge der anderen, unkorrelierten Eingangsgrößen werden für eine Beispielrechnung bei 3200 Kelvin folgendermaßen abgeschätzt:

Winkeleinstellungen $\cos \varepsilon_{\text{diff1}}$ des Strahlers und $\cos \varepsilon_{\text{diff2}}$ der bestrahlten Fläche: Der Strahler und die bestrahlte Fläche (z.B. des Diffusors vor dem Spektroradiometer) werden senkrecht zueinander ausgerichtet, d.h. $\cos \varepsilon_{\text{diff1}} = \cos \varepsilon_{\text{diff2}} = 1$. Bei einer Genauigkeit der Einstellung von besser als $0^\circ \pm 1^\circ$ ergibt sich eine relative beigeordnete Meßunsicherheit kleiner als $1.5 \cdot 10^{-4}$.

Abstand d_{diff} zwischen Strahler und Empfänger: Die Schnitte der Meßblende, die die Öffnung der Ulbricht-Kugel am neuen Spektroradiometer bildet, und der Einbau der Meßblende am Schwarzen Strahler in thermostatisierte Gehäuse erlaubt keine direkte Anmessung des Abstandes der Blendenflächen. Mit zwei zusätzlichen Hilfsmessungen wird der Abstand der Meßblenden zur Gehäuseaußenfläche bestimmt. Die Ablesungen der einzelnen Abstände liegen jeweils innerhalb von ± 0.05 mm. Die resultierende Meßunsicherheit für den Abstand beträgt daher 0.05 mm bei einem Meßabstand von 900 mm.

Temperatur T_{BB} des Schwarzen Strahlers: Die Temperatur wird mit Breitband-Filterdetektoren zu 3200 Kelvin gemessen. Die Meßunsicherheit der Temperaturmessung berechnet sich nach Gleichung (4.23) wobei an dieser Stelle die Unsicherheitsbeiträge der korrelierten Eingangsgrößen A_{BB}, δA_{BB} und ε nicht berücksichtigt werden. Es ergibt sich eine Standardmeßunsicherheit der Temperaturmessung von 1,00 Kelvin.

Inhomogenität der spektralen Bestrahlungsstärke δE: Die Inhomogenität der Strahlungstemperatur über der bestrahlten Fläche wird für den neuen Meßplatz mit der Öffnung der Ulbricht-Kugel als bestrahlte Fläche zu 0,15 Kelvin angenommen (siehe 4.2.3). Bei Annahme einer homogenen Bestrahlung (Inhomogenität $\delta E = 0$ Wm$^{-2}$) entspricht die relative Meßunsicherheit für die spektrale Bestrahlungsstärke den aus Abbildung 4.2 entnommenen Abweichungen.

Die relative Meßunsicherheit der spektralen Bestrahlungsstärke berechnet sich dann nach der Gleichung

$$w^2(E(\lambda, T)) = w^2(\cos \varepsilon_{\text{diff1}}) + w^2(\cos \varepsilon_{\text{diff2}}) + 4 \cdot w^2(d_{\text{diff}}) + \frac{\delta E^2}{E^2(\lambda, T)} + w_{\text{korr}}^2(A_{BB}) + w_{\text{korr}}^2(\delta A_{BB}) + w_{\text{korr}}^2(\varepsilon).$$

(4.32)

Die für die Eingangsgrößen resultierenden Standardmeßunsicherheiten der spektralen Bestrahlungsstärke sind für einige Wellenlängen in Tabelle 4.2 aufgeführt. Es zeigt sich deutlich, daß die der Temperaturmessung beigeordnete Meßunsicherheit den Hauptanteil der Standardmeßunsicherheit der spektralen Bestrahlungsstärke stellt. Einen geringen Einfluß besitzen
bei 200 nm noch die korrelierten Größen ε, A_{BB} und δA_{BB}. Erst wenn die Meßunsicherheit der Temperaturbestimmung deutlich gesenkt wird, gewinnen die Standardmeßunsicherheiten der anderen Eingangsgrößen an Einfluß.

Tabelle 4.2

<table>
<thead>
<tr>
<th>Größe</th>
<th>Schätzwert X_i</th>
<th>Unsicherheit $U(X_i)$</th>
<th>$\lambda = 200$ nm</th>
<th>$\lambda = 300$ nm</th>
<th>$\lambda = 500$ nm</th>
<th>$\lambda = 1 \mu$m</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\cos \varepsilon_{\text{diff}}$</td>
<td>1</td>
<td>$1,54 \cdot 10^{-4}$</td>
<td>$0,002 %$</td>
<td>$0,002 %$</td>
<td>$0,002 %$</td>
<td>$0,002 %$</td>
</tr>
<tr>
<td>$\cos \varepsilon_{\text{diff}2}$</td>
<td>1</td>
<td>$1,54 \cdot 10^{-4}$</td>
<td>$0,002 %$</td>
<td>$0,002 %$</td>
<td>$0,002 %$</td>
<td>$0,002 %$</td>
</tr>
<tr>
<td>d_{diff}</td>
<td>900 mm</td>
<td>$0,05$ mm</td>
<td>$0,01 %$</td>
<td>$0,01 %$</td>
<td>$0,01 %$</td>
<td>$0,01 %$</td>
</tr>
<tr>
<td>ε</td>
<td>0,99988</td>
<td>$0,0001$</td>
<td>$0,02 %$</td>
<td>$0,01 %$</td>
<td>$0,001 %$</td>
<td>$0,005 %$</td>
</tr>
<tr>
<td>A_{BB}</td>
<td>39,096 mm2</td>
<td>$0,011$ mm2</td>
<td>$0,05 %$</td>
<td>$0,02 %$</td>
<td>$0,002 %$</td>
<td>$0,01 %$</td>
</tr>
<tr>
<td>δA_{BB}</td>
<td>0 mm2</td>
<td>$0,012$ mm2</td>
<td>$0,05 %$</td>
<td>$0,02 %$</td>
<td>$0,002 %$</td>
<td>$0,01 %$</td>
</tr>
<tr>
<td>δE</td>
<td>0 K</td>
<td>$0,15$ K</td>
<td>$0,07 %$</td>
<td>$0,05 %$</td>
<td>$0,03 %$</td>
<td>$0,01 %$</td>
</tr>
<tr>
<td>T_{BB}</td>
<td>3200 K</td>
<td>$1,00$ K</td>
<td>$0,70 %$</td>
<td>$0,47 %$</td>
<td>$0,28 %$</td>
<td>$0,14 %$</td>
</tr>
</tbody>
</table>

Die in [Abbildung 4.8] spektral dargestellte relative erweiterte ($k = 2$) Meßunsicherheit der spektralen Bestrahlungsstärke zeigt, daß bereits bei der erreichten Meßunsicherheit der Temperaturmessung die spektrale Bestrahlungsstärke mit einer vergleichsweise geringen Meßunsicherheit realisiert werden kann.

[Abbildung 4.8] Erweiterte relative Meßunsicherheit ($k = 2$) der spektralen Bestrahlungsstärke.
Berechnung für eine Strahlertemperatur von 3200 Kelvin und die Temperaturmessung mit Breitband-Filterdetektoren (FD6).

Oberhalb 280 nm beträgt die relative erweiterte Meßunsicherheit weniger als 1 %. Damit ist die Unsicherheit in der Realisierung der spektralen Bestrahlungsstärke gegenüber früheren Angaben [86] deutlich reduziert worden. Durch die oben beschriebene Reduzierung der Standardmeßunsicherheit bei der Kalibrierung von Filterdetektoren und die damit verbundene Verminderung der Meßunsicherheit für die Temperaturmessung kann die Standardmeßunsicherheit der spektralen Bestrahlungsstärke noch zusätzlich um etwa einen Faktor drei gesenkt werden.
Die Entwicklung einer empfängergestützten spektralen Bestrahlungsstärkeskala: Zusammenfassung und Ausblick

Der Schwarze Strahler BB3200pg wird als Primärnormal für die spektrale Bestrahlungsstärke eingesetzt. Er stellt mit Betriebstemperaturen bis über 3300 Kelvin und einer nutzbaren strahlenden Fläche von bis zu 12 mm Durchmesser auch im UV-Spektralbereich bis 190 nm eine ausreichend leistungsstarke Quelle zur Absolutmessung der spektralen Bestrahlungsstärke dar.

Die effektive radiometrische Strahlertemperatur des Schwarzen Strahlers ist ein bedeutender und nützlicher Parameter bei der Berechnung und Darstellung der spektralen Bestrahlungsstärke mit Hilfe des Planckschen Strahlungsgesetzes. Eine Kombination aus breitbandigen ionengefärbten Glas-Niederglasfiltern und hochwertigen Si-Photodioden ermöglicht die relativ einfache Bestimmung der Strahlertemperatur mit geringer Meßunsicherheit. Diese Breitband-Filterdioden, deren absolute spektrale Empfindlichkeit bezüglich spektraler Bestrahlungsstärke kalibriert wird, nutzen die direkte abbildungsfreie radiometrische Messung der gewichteten Bestrahlungsstärke. Sie erlauben damit einen
unmittelbaren Rückschluß auf die für die Darstellung der Bestrahlungsstärke relevante effektive Strahlertemperatur des Schwarzen Strahlers, die sogenannte radiometrische Temperatur (im Gegensatz zur thermodynamischen Temperatur). Die kompakte Bauform und einfache Handhabbarkeit der Detektoren erlaubt auch während spektraler Messungen vor einem Spektroradiometer jedermann (bei zum Beispiel bei jeder Wellenlänge der spektralen Messung) eine schnelle und direkte Bestimmung der Strahlertemperatur. Die Vorzüge der Verwendung breitbandiger Filterkombinationen gegenüber schmalbandigen Interferenzfiltern wurden aufgezeigt und es wurde die hohe Langzeitstabilität der Breitband-Filterdetektoren nachgewiesen.

Breitband-Filterdetektoren haben als neue Standardmeßmethode in der PTB die Relativmeßmethode der klassischen Pyrometrie abgelöst. Bei Strahlertemperaturen von 3200 Kelvin ermöglichen Breitband-Filterdetektoren die direkte abbildungsfreie Bestimmung der effektiven radiometrischen Temperatur des Schwarzen Strahlers mit einer erweiterten Standardmeßunsicherheit (k = 2) von 2,0 Kelvin. In Verbindung mit den Eigenschaften des Schwarzen Strahlers läßt sich damit die spektrale Bestrahlungsstärke mit erweiterten Standardmeßunsicherheiten von 1,4 % bei 200 nm und kleiner 1 % oberhalb von 280 nm darstellen. Mit Hilfe eines neuen Meßplatzes für die Empfängerkalibrierung in Verbindung mit einem Breitband-Kryoradiometer soll die Kalibrierung von Breitband-Filterdetektoren mit einer erweiterten (k = 2) Standardmeßunsicherheit von 0,1 % realisiert werden. In Verbindung mit der Reduzierung der Meßunsicherheiten für die Bestimmung der Strahlerfläche und des Strahlerabstandes wird dann bei 3200 Kelvin für die Temperaturmessung eine erweiterte Meßunsicherheit von 0,4 Kelvin und damit für die Realisierung der spektralen Bestrahlungsstärke bei 200 nm eine erweiterte Standardmeßunsicherheit von 0,3 % erreicht werden können.

Die bereits deutlich verbesserte Realisierung der spektralen Bestrahlungsstärke wird damit den aus unterschiedlichen Anwendungsbereichen gestellten hohen Anforderungen gerecht und bietet ein mit vertretbarem Aufwand zu realisierendes zusätzliches Verbesserungspotential. Die Verwendung neuer Meßmethoden ermöglicht die direkte empfängergestützte Anbindung an das Kryoradiometer als Primärnormal der Empfänger-Radiometrie und damit eine Rückführung auf die elektrische Leistung und das SI-Einheitensystem.
Anhang

Tabellenverzeichnis

Tabelle 1.1 Übersicht über die wichtigsten verwendeten strahlungsphysikalischen Größen und ihre Beziehungen untereinander nach [6][17]... 10
Tabelle 1.2 Lineare Regression für Abstandsmessungen mit verschiedenen Konfigurationen von Strahler und Empfänger... 20
Tabelle 1.3 Gittersätze für den Messplatz für Bestrahlungsstärkekalibrierungen.. 31
Tabelle 1.4 Angabe spektraler Parameter bei Routinekalibrierungen.. 33
Tabelle 1.5 Gitter im neuen Monochromatorsystem.. 40
Tabelle 2.1 Durchmesser B der nutzbaren bestrahlten Flächen bei einigen Meßabständen x_me…………………………………. 67
Tabelle 2.2 Zwischenschritte zur Optimierung von Bodenform und Bodenposition.. 74
Tabelle 2.3 Lage einiger Linien der Molekülspektren von C2 und CN nach [79]... 81
Tabelle 3.1 Schwerpunktwellenlängen und Halbwertbreiten verwendeter Breitband-Filterdetektoren…………… 107
Tabelle 3.2 Charakteristika der Spaltfunktionen und Wellenlängeneinstellungen... 119
Tabelle 4.1 Standardmefunsicherheit für die Temperaturmessung mit Breitband-Filterdetektoren……………… 141
Tabelle 4.2 Standardmefunsicherheit für die Realisierung der spektralen Bestrahlungsstärke mit einem Schwarzen Strahler der Strahlertemperatur 3200 Kelvin.. 147

Abbildungsverzeichnis

Abbildung 1.1 In der PTB verwendete Strahlernormale.. 12
Abbildung 1.2 Melkkopf zur Messung von solarer UV-B Strahlung... 19
Abbildung 1.3 Abstandsvariation vor dem Diffusor-Melkkopf mit unterschiedlichen Konfigurationen............ 19
Abbildung 1.4 Verbesserter Spannungsteiler für die Photonenzählung... 22
Abbildung 1.5 Diskriminatorlevel bei verschiedenen Einstellungen... 23
Abbildung 1.6 Versuchsaufbau zur Linearitätsmessung.. 24
Abbildung 1.7 Linearitätsabweichung bei der Gleichstrommessung (DC).. 25
Abbildung 1.8 Linearitätsabweichung bei der Photonenzählung (PC).. 26
Abbildung 1.9 Linearitätsabweichung bei einer höheren Diskriminatorlevel.. 26
Abbildung 1.10 Melkkopf zur Kalibrierung von Strahlern bezüglich spektraler Bestrahlungsstärke........... 28
Abbildung 1.11 Der Strahlgang für Strahlendichtemessungen.. 30
Abbildung 1.12 Aufbau des UV-optimierten Melkkopfes... 34
Abbildung 1.13 Reflexionsgrade verschiedener Komponenten der Spektrodiemeister.................................. 35
Abbildung 1.14 Verbesserung der UV-Apparatur gegenüber der Standardmessapparatur............................ 35
Abbildung 1.15 Spektrale Empfindlichkeit der Photokathode der Photomultiplier.. 36
Abbildung 1.16 Aufbau des neuen Melkkopfes für spektrale Bestrahlungsstärke.. 37
Abbildung 1.17 Strahlgang der Monitorlampe an der Ulbricht-Kugel... 39
Abbildung 1.18 Stabilität des Photosignalquotienten Q(λ) bei unterschiedlichen Systemeinstellungen.......... 42
Abbildung 1.19 Spektraler Verlauf des Signalquotienten Q(λ) bei unterschiedlichen Apparaturen............ 43
Abbildung 1.20 Abweichungen der Kalibrierungen an neuen Spektrodiometer zu Messungen an der UV-
Apparatur und an der alten Apparatur zur Bestrahlungsstärkekalibrierung.. 44
Abbildung 2.1 Die spektrale Strahlhöhe eines Schwarzen Strahlers in Abhängigkeit von der Temperatur, berechnet nach dem Plancksehen Strahlungsgesetz... 46
Abbildung 2.2 Skizze zur Berechnung der nutzbaren bestrahlten Fläche... 51
Abbildung 2.3 Geometrie der Strahler-Detektor Anordnung für einen x-Scan.. 54
Abbildung 2.4 Simulation von Meßdaten zur Verdeutlichung der Korrekturberechnungen.......................... 55
Abbildung 2.5 Korrektur des STR der simulierten Meßdaten.. 56
Abbildung 2.6 Abweichungen bei der Selbstkalibrierung.. 58
Abbildung 2.7 Schematischer Aufbau des Spektrodiometers IS 320D... 60
Abbildung 2.8 Das Monochromatorsystem IS320D vor dem Schwarzen Strahler....................................... 60
Abbildung 2.9 Der Hochtemperatur-Hohlraumstrahler BB320ppg... 62
Abbildung 2.10 Temperatur-Stromkennlinie des Schwarzen Strahlers.. 63
Literaturverzeichnis

European co-operation for Accreditation, Expression of the Uncertainty of Measurement in Calibration, EA-4/02 (vorher EAL-R2), Examples, EA-4/02-S1 (vorher EAL-R2-S1), 1997.

Hamamatsu Photonics K.K., Photomultiplier Tube - principle to application, Editor Hidehito Kume et. al., Hamamatsu City, Japan, Hamamatsu Photonics K.K., 1994.

Danksagung

Die vorliegende Arbeit entstand in der Physikalisch-Technischen Bundesanstalt in Braunschweig im Fachbereich 4.1 Licht und Strahlung.

Herrn Prof. Dr. J. Metzdorf danke ich ganz besonders für die mir dargebotene Möglichkeit, dieses interessante Thema auf dem Gebiet der Spektroradiometrie zu bearbeiten und für die einzigartige Förderung der Arbeit im Rahmen der wissenschaftlichen Betreuung.

Herrn Dr. W. Möller, Leiter des Fachlaboratoriums 4.13 Optoelektronik, Herrn Dr. K. Stock vom Fachlaboratorium 4.11 Radiometrische Einheiten, und allen Mitarbeiterinnen und Mitarbeitern des Fachbereiches 4.1 danke ich für ihre tatkräftige Unterstützung, die konstruktiv kritische Begleitung meiner Arbeit, die Bereitstellung der Einrichtungen und Meßapparaturen und für das ausgesprochen gute Arbeitsklima in den Fachlaboratorien.

Mein ganz besonderer Dank gilt Frau S. Galal Yousef, die gemeinsam mit mir im Rahmen ihrer Diplomarbeit[33] und darüber hinaus viele Messungen zur Charakterisierung des Schwarzen Strahlers durchgeführt hat und zu etlichen konstruktiven Anregungen und Diskussionen beigetragen hat.

Lebenslauf

07.03.1967 geboren im Franziskushospital Harderberg
1973 – 1977 Besuch der Grundschule Dröper in Georgsmarienhütte
1977 – 1979 Schüler der Orientierungsstufe Oesede in Georgsmarienhütte
1979 – 1986 Besuch des Gymnasium Oesede
07.06.1986 Abitur am Gymnasium Oesede

1986 – 1988 Zivildienst in der Sozialstation Oesede
1988 – 1994 Physikstudium an der Technischen Universität Braunschweig
Oktober 1990 Vordiplom in Physik
April 1994 Diplom in Physik

seit Mai 1994 wiss. Angestellter der Physikalisch-Technischen Bundesanstalt im Fachbereich Licht und Strahlung

Juli 1995 – Juni 1999 Promotion in der PTB und an der Technischen Universität Braunschweig