Feedback

A Flexible, Heterogeneous Image Processing Framework for Spaceborne Reconfigurable Data Processing Modules

Lange, Tobias

Scientific instruments as payload of current space missions are often equipped with high-resolution sensors. Thereby, especially camera-based instruments produce a vast amount of data. To obtain the desired scientific information, this data usually is processed on ground. Due to the high distance of missions within the solar system, the data rate for downlink to the ground station is strictly limited. The volume of scientific relevant data is usually less compared to the obtained raw data. Therefore, processing already has to be carried out on-board the spacecraft.
An example of such an instrument is the Polarimetric and Helioseismic Imager (PHI) on-board Solar Orbiter. For acquisition, storage and processing of images, the instrument is equipped with a Data Processing Module (DPM). It makes use of heterogeneous computing based on a dedicated LEON3 processor in combination with two reconfigurable Xilinx Virtex-4 Field-Programmable Gate Arrays (FPGAs).
The thesis will provide an overview of the available space-grade processing components (processors and FPGAs) which fulfill the requirements of deepspace missions. It also presents existing processing platforms which are based upon a heterogeneous system combining processors and FPGAs. This also includes the DPM of the PHI instrument, whose architecture will be introduced in detail. As core contribution of this thesis, a framework will be presented which enables high-performance image processing on such hardware-based systems while retaining software-like flexibility. This framework mainly consists of a variety of modules for hardware acceleration which are integrated seamlessly into the data flow of the on-board software. Supplementary, it makes extensive use of the dynamic in-flight reconfigurability of the used Virtex-4 FPGAs.
The flexibility of the presented framework is proven by means of multiple examples from within the image processing of the PHI instrument. The framework is analyzed with respect to processing performance as well as power consumption.

Wissenschaftliche Instrumente auf aktuellen Raumfahrtmissionen sind oft mit hochauflösenden Sensoren ausgestattet. Insbesondere kamerabasierte Instrumente produzieren dabei eine große Menge an Daten. Diese werden üblicherweise nach dem Empfang auf der Erde weiterverarbeitet, um daraus wissenschaftlich relevante Informationen zu gewinnen. Aufgrund der großen Entfernung von Missionen innerhalb unseres Sonnensystems ist die Datenrate zur Übertragung an die Bodenstation oft sehr begrenzt. Das Volumen der wissenschaftlich relevanten Daten ist meist deutlich kleiner als die aufgenommenen Rohdaten. Daher ist es vorteilhaft, diese bereits an Board der Sonde zu verarbeiten.
Ein Beispiel für solch ein Instrument ist der Polarimetric and Helioseismic Imager (PHI) an Bord von Solar Orbiter. Um die Daten aufzunehmen, zu speichern und zu verarbeiten, ist das Instrument mit einem Data Processing Module (DPM) ausgestattet. Dieses nutzt ein heterogenes Rechnersystem aus einem dedizierten LEON3 Prozessor, zusammen mit zwei rekonfigurierbaren Xilinx Virtex-4 Field-Programmable Gate Arrays (FPGAs).
Die folgende Arbeit gibt einen Überblick über verfügbare Komponenten zur Datenverarbeitung (Prozessoren und FPGAs), die den Anforderungen von Raumfahrtmissionen gerecht werden, und stellt einige existierende Plattformen vor, die auf einem heterogenen System aus Prozessor und FPGA basieren. Hierzu gehört auch das Data Processing Module des PHI Instrumentes, dessen Architektur im Verlauf dieser Arbeit beschrieben wird. Als Kernelement der Dissertation wird ein Framework vorgestellt, das sowohl eine performante, als auch eine flexible Bilddatenverarbeitung auf einem solchen System ermöglicht. Dieses Framework besteht aus verschiedenen Modulen zur Hardwarebeschleunigung und bindet diese nahtlos in den Datenfluss der On-Board Software ein. Dabei wird außerdem die Möglichkeit genutzt, die eingesetzten Virtex-4 FPGAs dynamisch zur Laufzeit zu rekonfigurieren.
Die Flexibilität des vorgestellten Frameworks wird anhand mehrerer Fallbeispiele aus der Bildverarbeitung von PHI dargestellt. Das Framework wird bezüglich der Verarbeitungsgeschwindigkeit und Energieeffizienz analysiert.

Cite

Citation style:
Could not load citation form.

Access Statistic

Total:
Downloads:
Abtractviews:
Last 12 Month:
Downloads:
Abtractviews:

Rights

Use and reproduction:
All rights reserved

Export