Stochastic Analysis and Learning-based Algorithms for Resource Provisioning in Optical Networks

Singh, Sandeep Kumar ORCID

The unprecedented growth in Internet traffic has driven the innovations in provisioning of optical resources as per the need of bandwidth demands such that the resource utilization and spectrum efficiency could be maximized. With the advent of the next generation flexible optical transponders and switches, the flexible-grid-based elastic optical network (EON) is foreseen as an alternative to the widely deployed fixed-grid-based wavelength division multiplexing networks. At the same time, the flexible resource provisioning also raises new challenges for EONs. One such challenge is the spectrum fragmentation. As network traffic varies over time, spectrum gets fragmented due to the setting up and tearing down of non-uniform bandwidth requests over aligned (i.e., continuous) and adjacent (i.e., contiguous) spectrum slices, which leads to a non-optimal spectrum allocation, and generally results in higher blocking probability and lower spectrum utilization in EONs. To address this issue, the allocation and reallocation of optical resources are required to be modeled accurately, and managed efficiently and intelligently.

The modeling of routing and spectrum allocation in EONs with the spectrum contiguity and spectrum continuity constraints is well-investigated, but existing models do not consider the fragmentation issue resulted by these constraints and non-uniform bandwidth demands. This thesis addresses this issue and considers both the constraints to computing exact blocking probabilities in EONs with and without spectrum conversion, and with spectrum reallocation (known as defragmentation) for the first time using the Markovian approach. As the exact network models are not scalable with respect to the network size and capacity, this thesis proposes load-independent and load-dependent approximate models to compute approximate blocking probabilities in EONs. Results show that the connection blocking due to fragmentation can be reduced by using a spectrum conversion or a defragmentation approach, but it can not be eliminated in a mesh network topology.

This thesis also deals with the important network resource provisioning task in EONs. To this end, it first presents algorithmic solutions to efficiently allocate and reallocate spectrum resources using the fragmentation factor along spectral, time, and spatial dimensions. Furthermore, this thesis highlights the role of machine learning techniques in alleviating issues in static provisioning of optical resources, and presents two use-cases: handling time-varying traffic in optical data center networks, and reducing energy consumption and allocating spectrum proportionately to traffic classes in fiber-wireless networks.

Die flexible Nutzung des Spektrums bringt in Elastischen Optischen Netze (EON) neue Herausforderungen mit sich, z.B., die Fragmentierung des Spektrums. Die Fragmentierung entsteht dadurch, dass die Netzwerkverkehrslast sich im Laufe der Zeit ändert und so wird das Spektrum aufgrund des Verbindungsaufbaus und -abbaus fragmentiert. Das für eine Verbindung notwendige Spektrum wird durch aufeinander folgende (kontinuierliche) und benachbarte (zusammenhängende) Spektrumsabschnitte (Slots) gebildet. Dies führt nach den zahlreichen Reservierungen und Freisetzungen des Spektrums zu einer nicht optimalen Zuordnung, die in einer höheren Blockierungs-wahrscheinlichkeit der neuen Verbindungsanfragen und einer geringeren Auslastung von EONs resultiert. Um dieses Problem zu lösen, müssen die Zuweisung und Neuzuordnung des Spektrums in EONs genau modelliert und effizient sowie intelligent verwaltet werden.

Diese Arbeit beschäftigt sich mit dem Fragmentierungsproblem und berücksichtigt dabei die beiden Einschränkungen: Kontiguität und Kontinuität. Unter diesen Annahmen wurden analytische Modelle zur Berechnung einer exakten Blockierungswahrscheinlichkeit in EONs mit und ohne Spektrumskonvertierung erarbeitet. Außerdem umfasst diese Arbeit eine Analyse der Blockierungswahrscheinlichkeit im Falle einer Neuzuordnung des Sprektrums (Defragmentierung). Diese Blockierungsanalyse wird zum ersten Mal mit Hilfe der Markov-Modelle durchgeführt. Da die exakten analytischen Modelle hinsichtlich der Netzwerkgröße und -kapazität nicht skalierbar sind, werden in dieser Dissertation verkehrslastunabhängige und verkehrslastabhängige Approximationsmodelle vorgestellt. Diese Modelle bieten eine Näherung der Blockierungswahrscheinlichkeiten in EONs. Die Ergebnisse zeigen, dass die Blockierungswahrscheinlichkeit einer Verbindung aufgrund von einer Fragmentierung des Spektrums durch die Verwendung einer Spektrumkonvertierung oder eines Defragmentierungsverfahrens verringert werden kann.

Eine effiziente Bereitstellung der optischen Netzwerkressourcen ist eine wichtige Aufgabe von EONs. Deswegen befasst sich diese Arbeit mit algorithmischen Lösungen, die Spektrumressource mithilfe des Fragmentierungsfaktors von Spektral-, Zeit- und räumlichen Dimension effizient zuweisen und neu zuordnen. Darüber hinaus wird die Rolle des maschinellen Lernens (ML) für eine verbesserte Bereitstellung der optischen Ressourcen untersucht und das ML basierte Verfahren mit der statischen Ressourcenzuweisung verglichen. Dabei werden zwei Anwendungsbeispiele vorgestellt und analysiert: der Umgang mit einer zeitveränderlichen Verkehrslast in optischen Rechenzentrumsnetzen, und eine Verringerung des Energieverbrauchs und die Zuweisung des Spektrums proportional zu Verkehrsklassen in kombinierten Glasfaser-Funknetzwerken.

Cite

Citation style:

Singh, Sandeep: Stochastic Analysis and Learning-based Algorithms for Resource Provisioning in Optical Networks. 2020.

Access Statistic

Total:
Downloads:
Abtractviews:
Last 12 Month:
Downloads:
Abtractviews:

show details

Rights

Use and reproduction:
All rights reserved

Export