Droplet splashing on thin moving films at high Weber numbers

Burzynski, David A.; Bansmer, Stephan E. GND

The influence of a thin moving film on the splashing of droplets was investigated experimentally at high Weber numbers. This study was conducted using a flywheel experiment fitted with a new film gener- ation system, which allows for the production of thin films with variable mean velocity for different liquids. The thickness was measured using a miniature confocal-chromatic sensor during the rotation of the flywheel. Using shadowgraph techniques, the splashing process was analyzed and the evolution of the crown height and diameter were described. It was also demonstrated that the film velocity and thickness influence the development of the crown geometry. The combination of a high-speed and a high-resolution camera allowed us to observe two different instabilities that accelerate the breakup pro- cess, leading to a complete atomization of the crown into secondary droplets. The instabilities observed were: spreading holes and a separation from the crown base. Using the formed holes, we calculated the lamella thickness using two different methods, yielding a constant value of 31 ±3 μm for all the exper- iments. We estimated both the time at which the hole instabilities appeared and the time at which the breakup process began. Moreover, it was demonstrated that small bubbles in the lamella are responsible for the hole formation. We also showed that the entire breakup process is delayed by increasing the film flow velocity, regardless of the Weber number.

Cite

Citation style:

Burzynski, David A. / Bansmer, Stephan E.: Droplet splashing on thin moving films at high Weber numbers. 2018. Elsevier.

Access Statistic

Total:
Downloads:
Abtractviews:
Last 12 Month:
Downloads:
Abtractviews:

show details

Rights

Use and reproduction:

Export