Efficient Machine Learning for Attack Detection

Wressnegger, Christian

Detecting and fending off attacks on computer systems is an enduring problem in computer security. In light of a plethora of different threats and the growing automation used by attackers, we are in urgent need of more advanced methods for attack detection. In this thesis, we address the necessity of advanced attack detection and develop methods to detect attacks using machine learning to establish a higher degree of automation for reactive security. Machine learning is data-driven and not void of bias. For the effective application of machine learning for attack detection, thus, a periodic retraining over time is crucial. However, the training complexity of many learning-based approaches is substantial. We show that with the right data representation, efficient algorithms for mining substring statistics, and implementations based on probabilistic data structures, training the underlying model can be achieved in linear time. In two different scenarios, we demonstrate the effectiveness of so-called language models that allow to generically portray the content and structure of attacks: On the one hand, we are learning malicious behavior of Flash-based malware using classification, and on the other hand, we detect intrusions by learning normality in industrial control networks using anomaly detection. With a data throughput of up to 580 Mbit/s during training, we do not only meet our expectations with respect to runtime but also outperform related approaches by up to an order of magnitude in detection performance. The same techniques that facilitate learning in the previous scenarios can also be used for revealing malicious content, embedded in passive file formats, such as Microsoft Office documents. As a further showcase, we additionally develop a method based on the efficient mining of substring statistics that is able to break obfuscations irrespective of the used key length, with up to 25 Mbit/s and thus, succeeds where related approaches fail. These methods significantly improve detection performance and enable operation in linear time. In doing so, we counteract the trend of compensating increasing runtime requirements with resources. While the results are promising and the approaches provide urgently needed automation, they cannot and are not intended to replace human experts or traditional approaches, but are designed to assist and complement them.

Die Erkennung und Abwehr von Angriffen auf Endnutzer und Netzwerke ist seit vielen Jahren ein anhaltendes Problem in der Computersicherheit. Angesichts der hohen Anzahl an unterschiedlichen Angriffsvektoren und der zunehmenden Automatisierung von Angriffen, bedarf es dringend moderner Methoden zur Angriffserkennung. In dieser Doktorarbeit werden Ansätze entwickelt, um Angriffe mit Hilfe von Methoden des maschinellen Lernens zuverlässig, aber auch effizient zu erkennen. Sie stellen der Automatisierung von Angriffen einen entsprechend hohen Grad an Automatisierung von Verteidigungsmaßnahmen entgegen. Das Trainieren solcher Methoden ist allerdings rechnerisch aufwändig und erfolgt auf sehr großen Datenmengen. Laufzeiteffiziente Lernverfahren sind also entscheidend. Wir zeigen, dass durch den Einsatz von effizienten Algorithmen zur statistischen Analyse von Zeichenketten und Implementierung auf Basis von probabilistischen Datenstrukturen, das Lernen von effektiver Angriffserkennung auch in linearer Zeit möglich ist. Anhand von zwei unterschiedlichen Anwendungsfällen, demonstrieren wir die Effektivität von Modellen, die auf der Extraktion von sogenannten n-Grammen basieren: Zum einen, betrachten wir die Erkennung von Flash-basiertem Schadcode mittels Methoden der Klassifikation, und zum anderen, die Erkennung von Angriffen auf Industrienetzwerke bzw. SCADA-Systeme mit Hilfe von Anomaliedetektion. Dabei erzielen wir während des Trainings dieser Modelle einen Datendurchsatz von bis zu 580 Mbit/s und übertreffen gleichzeitig die Erkennungsleistung von anderen Ansätzen deutlich. Die selben Techniken, um diese lernenden Ansätze zu ermöglichen, können außerdem für die Erkennung von Schadcode verwendet werden, der in anderen Dateiformaten eingebettet und mittels einfacher Verschlüsselungen obfuskiert wurde. Hierzu entwickeln wir eine Methode die basierend auf der statistischen Auswertung von Zeichenketten einfache Verschlüsselungen bricht. Der entwickelte Ansatz arbeitet unabhängig von der verwendeten Schlüssellänge, mit einem Datendurchsatz von bis zu 25 Mbit/s und ermöglicht so die erfolgreiche Deobfuskierung in Fällen an denen andere Ansätze scheitern. Die erzielten Ergebnisse in Hinsicht auf Laufzeiteffizienz und Erkennungsleistung sind vielversprechend. Die vorgestellten Methoden ermöglichen die dringend nötige Automatisierung von Verteidigungsmaßnahmen, sollen den Experten oder etablierte Methoden aber nicht ersetzen, sondern diese unterstützen und ergänzen.

Cite

Citation style:

Wressnegger, Christian: Efficient Machine Learning for Attack Detection. 2019.

Access Statistic

Total:
Downloads:
Abtractviews:
Last 12 Month:
Downloads:
Abtractviews:

show details

Rights

Use and reproduction:
All rights reserved

Export