Towards Tactical Lane Change Behavior Planning for Automated Vehicles

Ulbrich, Simon Martin

Automated driving within one lane is a fascinating experience. Yet, it is even more interesting to go a step ahead: Making automated lane changes without human driver interaction. This thesis presents a concept and implementation demonstrated in "Jack", the Audi A7 piloted driving concept vehicle. Given that automated driving is in the media every other day already, why is it still such a big issue to do tactical behavior planning for automated vehicles? It is one of the core areas where it is surprisingly obvious why humans are currently so much smarter than machines: Tactical driving behavior planning is a social task that requires cooperation, intention recognition, and complex situation assessment. Without complex cognitive capabilities in today's automated vehicles, it is core of this thesis to find simple algorithms that pretend intelligence in behavior planning. In fact, such behavior planning in automated driving is a constant trade-off between utility and risk: The vehicle has to balance value dimensions such as safety, legality, mobility, and additional aspects like creating user and third party satisfaction. This thesis provides a framework to boil down such abstract dimensions into a working implementation. Several of the foundations for this thesis were developed as part of the Stadtpilot project at TU Braunschweig. While there has been plenty of research on concepts being tested in perfect, simulated worlds only, the approaches in this thesis have been implemented and evaluated in real world traffic with uncertain and imperfect sensor data. The implementation has been tested, tweaked, and used in "Jack" for more than 50,000 km of automated driving in everyday traffic.

Automatisiertes Fahren innerhalb eines Fahrstreifens ist eine faszinierende Erfahrung. Noch spannender ist es jedoch noch einen Schritt weiter zu gehen: Auch Fahrstreifenwechsel automatisiert auszuführen, ohne Interaktion mit einem Menschen als Fahrer. In dieser Dissertation wird hierfür ein Konzept und dessen Umsetzung in „Jack“ präsentiert, dem Audi A7 piloted driving concept Fahrzeug. Automatisiertes Fahren ist aktuell in den Medien in aller Munde. Warum ist es dennoch eine große Herausforderung taktische Verhaltensplanung für automatisierte Fahrzeuge wirklich umzusetzen? Es ist einer der Kernbereiche, in denen offensichtlich wird, warum Menschen aktuell Maschinen im Straßenverkehr noch weitaus überlegen sind: Taktische Verhaltensplanung ist eine soziale Aufgabe, welche Kooperation, das Erkennen von Absichten und der Bewertung komplexer Situationen bedarf. Mangels wirklicher kognitiver Fähigkeiten in den heutigen automatisierten Fahrzeugen ist es Kern dieser Dissertation Algorithmen zu finden, welche zumindest den Eindruck intelligenter Verhaltensplanung erzeugen. Eine solche Verhaltensplanung ist ein permanentes Abwägen von Nutzen und Risiken. Das Fahrzeug muss permanent Entscheidungen im Spannungsfeld zwischen Sicherheit, Legalität, Mobilität und weiten Aspekten wie Nutzerzufriedenheit und Zufriedenheit Dritter treffen. In dieser Dissertation wird ein Konzept entwickelt, um solche abstrakten Entscheidungsdimensionen in ein implementierbares Konzept herunterzubrechen. Viele Grundlagen dafür wurden im Rahmen des Stadtpilot Projekts der TU Braunschweig erarbeitet. In vorausgehenden Arbeiten wurden bereits viele Ansätze entwickelt und auf Basis von perfekten, simulierten Daten evaluiert. Der in dieser Arbeit präsentierte Ansatz ist in der Lage mit unsicherheits- und fehlerbehafteten Messdaten umzugehen. Der Ansatz aus dieser Dissertation wurde in dem automatisiert fahrenden Fahrzeug „Jack“ implementiert und bereits über 50.000 km im normalen Straßenverkehr genutzt und getestet.

Vorschau

Zitieren

Zitierform:

Ulbrich, Simon: Towards Tactical Lane Change Behavior Planning for Automated Vehicles. 2018.

Zugriffsstatistik

Gesamt:
Volltextzugriffe:
Metadatenansicht:
12 Monate:
Volltextzugriffe:
Metadatenansicht:

Details anzeigen

Rechte

Nutzung und Vervielfältigung:
Alle Rechte vorbehalten

Export