Tensor approximation methods for stochastic problems

Zander, Elmar Klaus GND

Spektrale stochastische Methoden haben sich als effizientes Werkzeug zur Modellierung von Systemen mit Unsicherheiten etabliert. Der Vorteil dieser Methoden ist, dass sie nicht nur Statistiken liefern, sondern auch eine direkte Darstellung der Lösung als sogenanntes Surrogatmodell. Besonders attraktiv für elliptische stochastische partielle Differentialgleichungen (SPDGln) ist das stochastische Galerkin Verfahren, da in diesem wesentliche Eigenschaften des Differentialoperators erhalten bleiben. Ein Nachteil der Methode ist jedoch, dass enorme Mengen an Speicherplatz benötigt werden, da die Lösung in einem Tensorprodukt der räumlichen und stochastischen Ansatzräume liegt. Bisher wurden verschiedene Ansätze erprobt, um diese Anforderung zu verringern. Hierzu zählen Modellreduktionstechniken, Unterraumiterationen, um den Lösungsraum auf einen beherrschbaren Unterraum einzuschränken, oder Methoden, welche die Lösung schrittweise aus Rang-1 Produkten aufzubauen. In der vorliegenden Arbeit werden Bestapproximationen der Lösungen linearer SPDGln als Niedrig-Rang-Darstellungen gesucht. Dies wird dadurch erreicht, dass Tensordarstellungen sowohl für die Eingangsdaten als auch für die Lösung verwendet und während des ganzen iterativen Lösungsprozesses beibehalten werden. Da diese Darstellungen weitere Näherungen während des Lösungsprozesses erfordern, ist es wesentlich die Konvergenz der Lösung genau zu überwachen. Ferner müssen Besonderheiten der Präkonditionierung der diskreten Systeme und der Stagnation der iterativen Verfahren beachtet werden. Mit dem Ziel der praktischen Anwendbarkeit als einem wesentlichen Bestandteil dieser Arbeit wurde großer Wert auf eine detaillierte Beschreibung der Implementierungstechniken gelegt.

Spectral stochastic methods have gained wide acceptance as a tool for efficient modelling of uncertain stochastic systems. The advantage of those methods is that they provide not only statistics, but give a direct representation of the measure of the solution as a so-called surrogate model, which can be used for very fast sampling. Especially attractive for elliptic stochastic partial differential equations (SPDEs) is the stochastic Galerkin method, since it preserves essential properties of the differential operator. One drawback of the method is, however, that it requires huge amounts of memory, as the solution is represented in a tensor product space of spatial and stochastic basis functions. Different approaches have been investigated to reduce the memory requirements, for example, model reduction techniques using subspace iterations to reduce the approximation space or methods of approximating the solution from successive rank-1 updates. In the present thesis best approximations to the solutions of linear elliptic SPDEs are constructed in low-rank tensor representations. By using tensor formats for all random quantities, the best subsets for representing the solution are computed “on the fly” during the entire process of solving the SPDE. As those representations require additional approximations during the solution process it is essential to control the convergence of the solution. Furthermore, special issues with preconditioning of the discrete system and stagnation of the iterative methods need adequate treatment. Since one goal of this work was practical usability, special emphasis has been given to implementation techniques and their description in the necessary detail.

Vorschau

Zitieren

Zitierform:

Zander, Elmar: Tensor approximation methods for stochastic problems. Braunschweig Aktualisierte Version 2017.

Zugriffsstatistik

Gesamt:
Volltextzugriffe:
Metadatenansicht:
12 Monate:
Volltextzugriffe:
Metadatenansicht:

Details anzeigen

Rechte

Nutzung und Vervielfältigung:
Alle Rechte vorbehalten

Export