Wirkungsweise von Polypropylen-Fasern in brandbeanspruchtem Hochleistungsbeton

Pistol, Klaus

Das Hauptanliegen der Arbeit besteht in der experimentellen Erforschung der faserbedingten mikrostrukturellen Schädigungsprozesse in brandbeanspruchtem HPC. Dazu werden das thermische Degradationsverhalten von PP-Fasern mithilfe thermoanalytischer Verfahren aus der Polymerforschung untersucht und die Wechselwirkung der schmelzenden PP-Fasern mit dem umgebenden Betongefüge unter Verwendung hochtemperaturmikroskopischer Methoden analysiert. Des Weiteren werden erstmalig akustische und röntgentomographische Methoden zur zerstörungsfreien Untersuchung der Rissgenese in thermisch beanspruchten Betonproben kombiniert. Zur Validierung der Ergebnisse und zur Visualisierung von mikroskopischen Morphologieänderungen im Faserbereich werden ergänzend Bruchflächen von thermisch geschädigten Proben rasterelektronenmikroskopisch untersucht. Die Ergebnisse zeigen, dass durch die thermische Degradation der PP-Fasern zwischen 160 und 350 °C Kapillarröhren entstehen, die durch eine bei ca. 160 °C einsetzende Mikrorissbildung netzartig verbunden werden. Durch die Mikrorissbildung werden Spannungen im Mikrogefüge des Betons abgebaut (thermomechanischer Effekt) und die Ausbildung eines netzartig verbundenen Transportwegesystems für den ausströmenden Wasserdampf (thermohydraulischer Effekt) ermöglicht. Als Synthese und Abschluss der Arbeit werden zwei Modelle entwickelt, in denen die theoretisch und experimentell gewonnenen Erkenntnisse für die Beschreibung der Wirkungsmechanismen von PP-Fasern zusammenfließen. In einem mikroporomechanischen Modell werden alle an dem Wirkmechanismus der PP-Fasern beteiligten Prozesse den Strukturelementen des Betons (Feststoff, Fluide und Porenraum) zugeordnet. Für eine weitere modellhafte Beschreibung der Wirkungsweise von PP-Fasern wird in einem einfachen thermodynamischen Modell der wassergefüllte Porenraum von HPC als thermodynamisch geschlossenes System idealisiert, bei dem das den Porenraum umgebende Feststoffgerüst die thermodynamische Systemgrenze bildet. Bei dieser Modellvorstellung wird anhand eines Temperatur-Entropie-Diagramms für Wasser gezeigt, dass durch die rissbedingte Öffnung der thermodynamischen Systemgrenze ab ca. 160 °C der thermodynamische Zustand des Porenwasser beeinflusst wird, so dass das Porenwasser bereits bei vergleichsweise niedrigem Druck und niedriger Temperatur vollständig verdampft, ohne den kritischen Grenzdruck von ca. 5 MPa (Zugfestigkeit des Betons) zu erreichen.

The majority of this thesis deals with experimental investigations of PP-fibre induced microstructural damage processes in fire exposed HPC. For this purpose, the thermal degradation of PP-fibres is investigated by means of thermoanalytical techniques used for polymers. The interaction of the melting PP-fibres with the surrounding cement matrix is analysed using high-temperature microscopy techniques. Furthermore, acoustic methods as well as x-ray computed tomography are combined for the first time for the non-destructive analysis of the crack formation in heated concrete samples. Additionally, fracture surfaces of thermally damaged samples are investigated by scanning electron microscopy in order to validate the results and to visualize morphological changes in the fibre region. The obtained results show that the thermal decomposition of the PP-fibres between 160 and 350 °C causes the formation of capillary tubes, which are connected by the simultaneous formation of micro-cracks at 160 °C. This enables the relief of micromechanical stresses in heated concrete (thermo-mechanical effect) and the formation of a permeable net-like transport system for the evaporating water (thermo-hydraulic effect). Combining the theoretical and experimental acquired results two models are developed as a synthesis and conclusion of the presented thesis. In a microporomechanical model all processes which are involved in the mode of action of the PP-fibers are related to the basic elements of the microstructure of concrete (solid, fluids and pore space). A further thermodynamic model idealizes the water filled pore spaces of HPC as a closed thermodynamic system. The pore space enclosing the cement matrix represents the boundary of the thermodynamic system. As a result of the micro crack formation at approximately 160 °C the boundary of the system is opening. On the basis of a Temperature-Entropy-Diagram it can be shown that due to the microcracking the thermodynamic state of the pore water is influenced. Thus, the pore water fully evaporates at a comparatively low pressure and temperature without exceeding the critical pressure of 5 MPa (tensile strength of concrete).

Vorschau

Zitieren

Zitierform:

Pistol, Klaus: Wirkungsweise von Polypropylen-Fasern in brandbeanspruchtem Hochleistungsbeton. 2015.

Zugriffsstatistik

Gesamt:
Volltextzugriffe:
Metadatenansicht:
12 Monate:
Volltextzugriffe:
Metadatenansicht:

Details anzeigen

Rechte

Nutzung und Vervielfältigung:
Alle Rechte vorbehalten

Export