What Search Engines Can’t Do. Holistic Entity Search on Web Data

Homoceanu, Silviu

Mehr als 50% aller Web Suchanfragen sind entitätsbezogen. Benutzer suchen entweder nach Entitäten oder nach Entitätsinformationen. Dennoch solche Anfragen von Suchmaschinen nicht gut unterstützt. Aufbauend auf dem Konzept des semiotischen Dreiecks aus der kognitiven Psychologie, haben wir drei Anfragetypen zur Entitätssuche identifiziert: typbasierte Anfragen – Suche nach Entitäten eines gegebenen Typs, prototypbasierte Anfragen – Suche nach Entitäten mit bestimmten Eigenschaften, und instanzbasierte Anfragen – Suche nach Entitäten die ähnlich zu einer gegebene Entität sind. Für typbasierte Anfragen haben wir eine Methode entwickelt die query expansion mit einer self-supervised vocabulary learning Technik auf strukturierten und unstrukturierten Daten verbindet. Unser Ansatz liefert einen guten Kompromiss zwischen Precision und Recall. Für prototypbasierte Anfragen stellen wir ProSWIP vor. Dies ist ein eigenschaftsbasiertes System um Entitäten aus dem Web abzurufen. Da aber die Anzahl der Eigenschaften die durch die Benutzer bereitgestellt werden relativ klein sein kann, baut ProSWIP auf direkten Fragen und Benutzer Feedback um die Menge der Eigenschaften zu einer Menge welche die Intentionen der Benutzer korrekt erfasst zu erweitern. Unsere Experimente zeigen dass mit maximal vier Fragen eine perfekte Precision erreicht wird. In dem Fall von instanzbasierten Anfragen besteht die Schwierigkeit darin eine Anfrageform zu finden die die Benutzerintentionen eindeutig macht. Wir stellen eine minimalistische instanzbasierte Anfrage, die aus einem Beispiel und dem entsprechenden Entitätstypen besteht vor. Mit Hilfe des Konzepts der Familienähnlichkeit entwickeln wir eine praktische Lösung um Entitäten mit Bezug zur der Anfragenentität direkt aus dem Web abzurufen. Unser Ansatz erzielt sogar für Anfragen, die für standard Entitätssuchaufgaben wie related entity finding problematisch waren, gute Ergebnisse. Entitätszusammenfassung ist ein anderer Typ von entitätszentrischen Anfragen, der Informationen bezüglich einer Entität bereitstellt. Googles Knowledge Graph ist der Stand der Technik für solche Aufgaben. Aber das Zurückgreifen auf manuell erstellte Knowledgebases schließt weniger bekannten Entitäten für das Knowledge Graph aus. Wir schlagen daher vor datengetriebene Ansätze zu nutzen. Wir sind überzeugt dass das Bewältigen dieser vier Anfragetypen eine holistische Entitätssuche auf Web Daten für die nächste Generation von Suchmaschinen ermöglicht.

More than 50% of all Web queries are entity related. Users search either for entities or for entity information. Still, search engines do not accommodate entity-centric search very well. Building on the concept of the semiotic triangle from cognitive psychology, which models entity types in terms of intensions and extensions, we identified three types of queries for retrieving entities: type-based queries - searching for entities of a given type, prototype-based queries - searching for entities having certain properties, and instance-based queries - searching for entities being similar to a given entity. For type-based queries we present a method that combines query expansion with a self-supervised vocabulary learning technique built on both structured and unstructured data. Our approach is able to achieve a good tradeoff between precision and recall. For prototype-based queries we propose ProSWIP, a property-based system for retrieving entities from the Web. Since the number of properties given by the users can be quite small, ProSWIP relies on direct questions and user feedback to expand the set of properties to a set that captures the user’s intentions correctly. Our experiments show that within a maximum of four questions the system achieves perfect precision of the selected entities. In the case of instance-based queries the first challenge is to establish a query form that allows for disambiguating user intentions without putting too much cognitive pressure on the user. We propose a minimalistic instance-based query comprising the example entity and intended entity type. With this query and building on the concept of family resemblance we present a practical way for retrieving entities directly from the Web. Our approach can even cope with queries which have proven problematic for benchmark tasks like related entity finding. Providing information about a given entity, entity summarization is another kind of entity-centric query. Google’s Knowledge Graph is the state of the art for this task. But relying entirely on manually curated knowledge bases, the Knowledge Graph does not include all new and less known entities. We propose to use a data-driven approach. Our experiments on real-world entities show the superiority of our method. We are confident that mastering these four query types enables holistic entity search on Web data for the next generation of search engines.

Vorschau

Zitieren

Zitierform:

Homoceanu, Silviu: What Search Engines Can’t Do. Holistic Entity Search on Web Data. 2015.

Zugriffsstatistik

Gesamt:
Volltextzugriffe:
Metadatenansicht:
12 Monate:
Volltextzugriffe:
Metadatenansicht:

Details anzeigen

Rechte

Nutzung und Vervielfältigung:
Alle Rechte vorbehalten

Export