Dynamics of Granular Material on Small Bodies

Hofmann, Marc

Die ROSETTA Sonde der Europäischen Raumfahrtorganisation ESA passierte auf dem Weg zu ihrem Zielobjekt, dem Kometen 67P/Tschurjumow-Gerasimenko, am 10. Juli 2010 den Asteroiden (21) Lutetia in einer Entfernung von 3170 km. Das Kamera-System der Sonde, OSIRIS (Optical, Spectroscopic, and Infrared Remote Imaging System), machte während des Vorbeiflugs 462 Photoaufnahmen. Anhand dieser Aufnahmen fand man heraus, dass (21) Lutetia von einer Schicht aus Regolith bedeckt ist, die teilweise mehrere Hundert Meter dick ist. An einigen Kraterhängen ließen sich lawinenartige Abrutsche erkennen. Ein möglicher Auslösemechanismus für solche Lawinen in niedriger Schwerkraft ist der Einschlag von langsamen Partikeln in einem Größenbereich von mm bis cm. In dieser Arbeit wurde experimentell untersucht, unter welchen Voraussetzungen ein solcher kleinskaliger Einschlag in der Lage ist, eine Lawine auf einem Asteroiden auszulösen. Die Auswertung der gesammelten Daten ergab, dass kleinskalige Einschläge in der Lage sind Lawinen auszulösen, wenn der Neigungswinkel des Hanges nah am Schüttwinkel des untersuchten Materials sein muss. Außerdem spielt die Korngrößenverteilung des Hangmaterials eine wichtige Rolle für die Wahrscheinlichkeit eine Lawine auszulösen. Auf Grundlage der Ergebnisse dieses Experiments wurden Monte-Carlo-Simulationen durchgeführt, um die Zeitskala zu bestimmen, auf der dieser Prozess der kleinskaligen Einschläge die Oberfläche eines Asteroiden beeinflusst. Die Lebensdauer eines steil geneigten Hanges auf einem Asteroiden im Hauptgürtel ergab sich daraus zu etwa Hunderttausend Jahren. Die mikrophysikalischen Prozesse während eines kleinskaligen Einschlags wurden mit Hilfe der so genannten Discrete Element Method untersucht. Dazu wurde die Software ESyS-Particle benutzt. Die Ergebnisse zeigen, dass die durch den Einschlag in das System eingebrachte Energie größtenteils in Partikeln nahe der Oberfläche verbleibt. Die Energie wird durch inelastische Stöße zwischen den Körnern des Target-Materials dissipiert. Die Energie, die in der Oberflächenschicht verbleibt, wird vom Einschlagspunkt ausgehend radialsymmetrisch verteilt. Für einen hohen Wert von g wird dieser Prozess von der Gravitation dominiert, für kleine Werte von g spielt die Geometrie der Teilchen im Target die größere Rolle. Diese Erkenntnisse bestätigen den Schluss, dass kleinskalige Einschläge, sowohl in reduzierter wie auch in normaler Schwerkraft, geeignet sind, Erdrutsche und Lawinen auszulösen.

The European Space Agency’s ROSETTA spacecraft, en route towards its target Comet 67P/Churyumov-Gerasimenko, passed by the Asteroid (21) Lutetia on the 10 July 2010 at a distance of 3170km.OSIRIS - the Optical, Spectroscopic, and Infrared Remote Imaging System on board Rosetta - took 462 images. These images show that (21) Lutetia is covered with a thick layer of regolith. On slopes of several craters this regolith layer collapsed in landslide-like events. A possible trigger mechanism for these low-gravity avalanches is the slow impact of a small mm to cm-sized body. An experiment was conducted to investigate if such an impact is a viably mechanism to trigger an avalanche on an asteroid. The data collected during the experimental investigation show that these minor impacts can trigger a landslide-like event if the target material is tilted close to the angle of repose. The grain size distribution also influences the likelihood of an avalanche depending on the type of material under investigation. Using the findings of this experiment a set of Monte-Carlo-Simulations was conducted to find out on which time scales minor impacts can influence the surfaces of asteroids in the main belt. The results show that a steep slope can be completely resurfaced within 100.000 years by minor impacts alone. The microphysical processes governing the energy distribution during a minor impact were also studied using the Discrete Element Method (DEM) software ESyS-Particles. The simulations show that the energy that gets introduced into the target system by the impactor is largely retained close to the surface of the target. The energy gets dissipated in inelastic collisions that happen more frequently in the depth of the material where the mean number of contacts per particle is higher than at the surface. The energy retained at the surface gets distributed radially away from the impact site. This distribution can be governed by gravity (when g is large) or the local arrangement of the particles (when gravity is low). These findings reinforce the conclusion that low-energy impacts are a viable trigger mechanism for avalanches, both in low and normal gravity.

Vorschau

Zitieren

Zitierform:

Hofmann, Marc: Dynamics of Granular Material on Small Bodies. 2014.

Zugriffsstatistik

Gesamt:
Volltextzugriffe:
Metadatenansicht:
12 Monate:
Volltextzugriffe:
Metadatenansicht:

Details anzeigen

Rechte

Nutzung und Vervielfältigung:
Alle Rechte vorbehalten

Export