Dense Correspondence Field Estimation from Multiple Images

Sellent, Anita

Most optical flow algorithms assume pairs of images that are acquired with an ideal, short exposure time. We present two approaches, that use additional images of a scene to estimate highly accurate, dense correspondence fields. In our first approach we consider video sequences that are acquired with alternating exposure times so that a short-exposure image is followed by a long-exposure image that exhibits motion-blur. With the help of the two enframing short-exposure images, we can decipher not only the motion information encoded in the long-exposure image, but also estimate occlusion timings, which are a basis for artifact-free frame interpolation. In our second approach we consider the data modality of multi-view video sequences, as it commonly occurs, e.g., in stereoscopic video. As several images capture nearly the same data of a scene, this redundancy can be used to establish more robust and consistent correspondence fields than the consideration of two images permits.

Die meisten Verfahren zur Schätzung des optischen Flusses verwenden zwei Bilder, die mit einer optimalen, kurzen Belichtungszeit aufgenommen wurden. Wir präsentieren zwei Methoden, die zusätzliche Bilder zur Schätzung von hochgenauen, dichten Korrespondenzfeldern verwenden. Die erste Methode betrachtet Videosequenzen, die mit alternierender Belichtungsdauer aufgenommen werden, so dass auf eine Kurzzeitbelichtung eine Langzeitbelichtung folgt, die Bewegungsunschärfe enthält. Mit der Hilfe von zwei benachbarten Kurzzeitbelichtungen können wir nicht nur die Bewegung schätzen, die in der Bewegungsunschärfe der Langzeitbelichtung verschlüsselt ist, sondern zusätzlich auch Verdeckungszeiten schätzen, die sich bei der Interpolation von Zwischenbildern als große Hilfe erweisen. Die zweite Methode betrachtet Videos, die eine Szene aus mehreren Ansichten aufzeichnen, wie z.B. Stereovideos. Dabei enthalten mehrere Bilder fast dieselbe Information über die Szene. Wir nutzen diese Redundanz aus, um konsistentere und robustere Bewegungsfelder zu bestimmen, als es mit zwei Bildern möglich ist.

Vorschau

Zitieren

Zitierform:

Sellent, Anita: Dense Correspondence Field Estimation from Multiple Images. 2011.

Zugriffsstatistik

Gesamt:
Volltextzugriffe:
Metadatenansicht:
12 Monate:
Volltextzugriffe:
Metadatenansicht:

Details anzeigen

Rechte

Nutzung und Vervielfältigung:
Alle Rechte vorbehalten

Export