Programmable Josephson Arrays for Impedance Measurements

Lee, Jinni

An innovative way of networking two programmable Josephson arrays generating synchronous waveforms for impedance ratio measurements, as the first of its kind, is presented. This pioneering approach of the Josephson Impedance Bridges is far more flexible than conventional bridges at the same level of measurement uncertainty. Results prove that aside from having the capability of measuring over a wider frequency range, the Josephson bridge permits measurements on two impedances with any value of phase angle between them. In the two-terminal-pair Josephson bridge setup, measurements are made for a 1:1 resistance ratio at the 10-k level in the frequency range between 25 Hz and 10 kHz. Uncertainties reach to levels of better than a few parts in 108 and results agree to the values measured from conventional impedance bridges. Two methods for four-terminal impedance measurements have been investigated, the potential comparison circuit and the coaxial setup. Both methods are capable of measuring from DC to 6 kHz with uncertainties to 10−8. The four-terminal-pair coaxial setup has potential to decrease the relative uncertainty down to 10−9 once systematic errors are analyzed and canceled. Thermal converter measurements have been made to investigate the effects of transients on stepwise approximated sinewaves. Rms measurements show that transients limit the uncertainty to about 10−6 at 1 kHz. A simple model with an equivalent time constant is presented to evaluate the influence of different parameters on the shape of the transients. It has been experimentally established, at the 10−8 level of uncertainty for the determination of impedance ratios, that the variations of the transients in stepwise approximated waveforms can be neglected when using the fundamental component of rectangular waveforms. Quantization at up to 10 kHz has been confirmed by varying the bias current of the Josephson arrays resulting in constant resistance ratios within the measurement resolution.

Ein innovativer Weg, zwei programmierbare Josephson-Schaltungen für Impedanz-Verhältnismessungen zu verknüpfen, wird erstmals in dieser Arbeit präsentiert. Dieser neuartige Ansatz einer Josephson-Impedanzmessbrücke ist flexibler als konventionelle Impedanzmessbrücken bei gleicher Messunsicherheit. Es wird gezeigt, dass neben der Möglichkeit, über einen wesentlich größeren Frequenzbereich zu messen, die Josephson-Impedanzmessbrücke auch Messungen sehr unterschiedlicher Impedanzverhältnisse und beliebiger Phasenwinkel erlaubt. In einer Zwei-Tor-Anordnung der Josephson-Impedanzmessbrücke wurden Messungen für ein 1:1 Widerstandsverhältnis bei 10 k im Frequenzbereich von 25 Hz bis 10 kHz durchgeführt. Die Ergebnisse stimmen mit denen einer konventionellen Messbrücke im Rahmen der Unsicherheit von wenigen 10−8 überein. Für eine Vier-Tor-Anordnung wurden zwei unterschiedliche Methoden untersucht, eine Spannungsverhältnisschaltung und eine koaxiale Vier-Tor-Anordnung. Letztere hat das Potential, Unsicherheiten von 10−9 zu erreichen, sobald systematische Fehler eliminiert sind. Um Effekte der Transienten in stufenförmig approximierten Sinuswellen zu untersuchen, wurden Messungen an Thermokonvertern durchgeführt. Diese Effektivmessungen zeigen, dass Transienten die relative Messunsicherheiten auf etwa 10−6 bei einer Frequenz von 1 kHz beschränken. Es wird ein einfaches Modell vorgestellt, das die Form der Transienten in Abhängigkeit der wesentlichen Parameter beschreibt. Experimentell konnte bei Impedanzverhältnismessungen mit einer relativen Messunsicherheit von 10−8 nachgewiesen werden, dass die Variation der Transienten in stufenförmig approximierten Wellenformen vernachlässigbar ist, wenn die fundamentale Komponente eines Rechtecksignals verwendet wird. Quantisierte Plateaus wurden bis zu Frequenzen von 10 kHz gefunden, bei denen die Variation des angelegten Stroms durch die Josephson-Schaltungen keine Veränderung des Impedanzverhältnisses zur Folge hatte.

Zitieren

Zitierform:

Lee, Jinni: Programmable Josephson Arrays for Impedance Measurements. 2010.

Zugriffsstatistik

Gesamt:
Volltextzugriffe:
Metadatenansicht:
12 Monate:
Volltextzugriffe:
Metadatenansicht:

Details anzeigen

Rechte

Nutzung und Vervielfältigung:
Alle Rechte vorbehalten

Export